
invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Dines Bjørner

SOFTWARE ENGINEERING
Volume I: The Triptych Approach

March 26, 2008. Compiled December 17, 2008, 15:56

Harbaville Altar, Constantinople; middle 10th Century

To be submitted, late 2008, for evaluation, to:

Springer
Berlin Heidelberg New York

Hongkong London

Milan Paris Tokyo



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
VI

Document History

• Version 1 released March 26, 2008:
⋆ A first “vastly incomplete” draft of this document was conceived March

26, 2008 and essential parts of Appendices F–K and N–P were “lifted”
from [40].

• Version 2 released April 19, 2008:
⋆ On Sunday April 6, 2008, a complete reorganisation of the material
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⋆ A week, April 6–11, 2008, was then spent on “fattening” the syntactic
structure of this textbook. The Pre- and Postlude appendices were
added to Parts V and VI.
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Saturday April 12, 2008.

⋆ Work on Chap. 1 and Appendix E progressed significantly during the
week of April 12–19, 2008.

• Version 3 released May 7, 2008:
⋆ Draft copy notice inserted.
⋆ Cross-referecing between Vol. 1 text and Vol. 1 slides pages.

So far no check has been made for “synchroneity”.
⋆ Thus Vol. 1 text margin numbers refer to Vol. 2 slide numbers.
⋆ Notes on ‘A Possible (12 week) Course Plan’ inserted into Preface,

pages 11–14.
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Preface

A Different Textbook !

This textbook shall teach you a modern, mathematics-based approach to soft-
ware development, from earliest conception to basic outlines of software ar-
chitectures: from domains via requirements to design.

It does so in a novel way: Vol. I of this book is a guide to the study of
Vol. II of this book. Vol. II contains, over 14 appendices (Appendices E–R)
a fairly large ‘support’ example of a software development. It is carried out
according to the principles and techniques outlined in Vol. I.

For lecturers there are electronic (postscript and pdf) slides covering both
volumes. One way of lecturing based on this book is to display lecture slides
(i.e., Vol. I) on one screen and lecture support slides (i.e., Vol. II) on an
adjacent screen. For readers (i.e., strudents) a CD ROM contains all texts
and slides thus enabling several modes of study are made possible. On that
CD ROM the text versions of Vols. I–II have cross-references to corresponding
slide versions !

Background

I wrote [33, 34, 35] as “The Mother of all Books on Software Engineering” !
Since the 2006 publication of [33, 34, 35] a few clarifications of some domain

and requirements engineering principles and techniques have come about —
and been published [39, 36, 40, 37, 42, 38].

The book [33, 34, 35], with its 2414 pages, may not exactly be a most
enticing way to be introduced to the wonders of how domain engineering pre-
cedes requirements engineering. This is despite the possibilities that subsets
of each volume can be studied by themselves (first Vol. 1, then Vol. 2), and
likewise subsets of Vol. 3 can be studied independent of the previous volumes.

Finally, an essence of [33, 34, 35] is the triptych of Vol. 3 [34].
The present book focuses on that triptych — but in a totally different way.
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In fact, this book is “totally” different from previous textbooks and signals
a new way of teaching.

The Essentials

I have therefore written this “two volume” book as such a hopefully enticing
way into the related engineering of domains and requirements.

So, in two small volumes, one in paper format, the other probably as an
enclosed CD ROM, you get the very essence of domain and requirements
engineering.

We cover both informal and formal specifications. The formal specifications
are in the RAISE specification language RSL. This language will be introduced
“along the way” — as it is being used. Every “first time” formula will be
explained, and an RSL Primer, Appendix S, summarises the syntactic aspects
of the language.

Volume I: A 225 Page Guide to The Triptych Method

Volume I consists of

• Chaps. 1–5 (Pages 1–225) and
• Appendices A–D (Pages 227–314).

The two “volumes” are to be studied in companion: You put both volumes
in front of you, perhaps Vol. I in paper form, as a booklet, and Vol. II you
may then display on your PC screen. Vol. I makes numerous references to
“this or that” section of Vol. II. So you read Vol. I, get referred to, and thus
checks with “such and such” a section of Vol. II. In lecture form slides will be
available for the entire book. The lecturer will have both volumes displayable
on two “parallel” lecture hall overhead screens and can alternate between
lecture parts from Vol. I and example (support) parts from Vol. II.

Volume I contains four appendices:

• Appendix A is the Bibliography. It lists some ?? entries.
• Appendix B contains a extensive Indexes.
• Appendix C contains a rather complete (and hence large) Glossary (Pages 259–

310). You may wish to study it all by itself ! It explains some 500 terms.
• Appendix D contains a brief overview of two axiom systems, one for time,

the other for time-space.

Volume II: A Supporting Software Development

Volume II consists of

• Appendices E–R: A Model Development (317–499);
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• Appendix S: An RSL Primer (503–525);
• Appendix T: Solutions to Exercises of Chaps. 1–3 and Appendices F–R.

Volume I will exclusively consist of informal English text. That text explains
the Triptych approach to software development. Volume II provides all sup-
porting examples on pages 317 to 499. Hence Vol. I will make numerous ref-
erences to sections and pages of Vol. II.

On Lecturing over this Book

This book is written for a basically 12 week 3rd year undergraduate or a
1st year graduate course. Students — and readers in general — need some
experience in programming.

Knowledge accrued from a combination of passing 3–4 courses in functional
programming [97], imperative programming (as in a suitable subset of C,
Java or C#), logic programming [142, 112, 11, 12] and parallel programming
using, for example CSP [66, 111] is always a winner. Short of that a subset of
these “clean programming” courses and either Java or C# is OK. (Familiarity
with object-oriented programming is not necessary.) In fact, just studying the
delightful [221] might just be enough !

Both Vols. I and II are offered as colourful slides — covering almost all
material. Slides are by chapter and appendix, and are organised around the
concept of two sets of 35+35 minute lectures per week, that is, a total of 24
lectures of 70 minutes. In addition a weekly three hour tutoring afternoon
is intended to go through the model development of Vol. II together with
presenting solutions to exercises posed at previous tutoring sessions.

Two kinds of exercises are offered. The first class of exercises are directly
related to the topic of the appendix at the end of which they are posed.
The second class, instead of focusing on the domain of Vol. II, namely that of
transportation, suggests that students work out term reports much in the style
of the model development of Vol. II, but for different domains. Any domain
could be chosen, but we offer guidance, also in Appendices E–R of Vol. II, to
such domains as: the financial service industry and container line industry.

A Possible Course Plan

A course based on this 2-volume book, i.e., the ‘formal’ text and the extensive
example of a model development, has three parts:

• formal lecture sessions,
• tutorial sessions and
• student (“at home”) course project work.

Yes, we suggest, strongly, that students pursue a lecturer-guided term project.
This course project is, likewise strongly, suggested to be that of a domain — or
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possibly a domain and requirements — engineering project. In such a project
students are typically collected in M groups of approximately n students
each — where n typically is 3–5, with 4 being optimal. Each group focuses
on a distinct domain (and possible requirements). Exercise sections of most
chapters of Vol. I outline such group projects.

The following lecture plan can be “squeezed” into a 12 week, 2 sessions
per week, course period:“slide 1”

“slide 2”

• Introduction:
Lecture 1 : The Triptych and Informative Documents (I): Week #1

1 The Triptych Paradigm
2 Phases, Stages and Steps
3 Informative Documents (I)

(a) Project Name and Date
(b) Project Partners and Addresses Addr.
(c) Current Situation
(d) Needs and Ideas
(e) Scope and Span
(f) Assumptions and Dependencies
(g) Implicit/Derivative Goals
(h) Synopsis
Lectures: Pages 3–13. The Model Development: Pages 317–326.

Lecture 2 : Inform.Docs. (II) & Method.: Week #1
1 Informative Docs. (II)

(i) Software Development Graphs
(j) Resource Allocation
(k) Budget Estimate
(l) Standards Compliance

(m) Contracts and Design Briefs
(n) Logbook

2 Methodology
Lectures: Pages 13–24. The Model Development: Pages 13–331.

Lecture 3: Conceptual Framework (I): Week #2
1 Modelling and Analysis
2 Descriptions, Prescriptios, Specifications
3 Informal and Formal Development
4 Software

Lectures: Pages 25–34.
Lecture 4: Conceptual Framework (II): Week #2

5 Entities, Functions, Events, Behaviours
Lectures: Pages 34–42. The Model Development: Pages 343–364.

6 Domain Modelling versus Operational Research
Lectures: Pages 42–45.“slide 3”

• Domain Engineering:
Lecture 5 : Prelude Stages: Week #3
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1 The Domain Concept
2 Stages of Domain Engineering
3 Domain Stakeholders
4 Domain Acquisition
5 Domain Analysis and Concept Formation
6 Business Processes
7 Terminology

Lectures: Pages 51–64. The Model Development: Pages 332–339.
Lectures 6–8 : Domain Modelling:

1 Lecture 6: Week #4
(a) Intrinsics
(b) Support Technologies
Lectures: Pages 64–73. The Model Development: Pages 343–384.

2 Lecture 7: Week #5
(a) Management and Organisation
(b) Rules and Regulations
Lectures: Pages 73–84. The Model Development: Pages 387–411.

3 Lecture 8: Week #5
(a) Scripts
(b) Human Behaviour
Lectures: Pages 84–102. The Model Development: Pages 415–454.

Lecture 9 : Postlude Stages: Week #6
1 Verification
2 Validation
3 Theory Formation
4 Domain Engineering Process Graph
5 Domain Engineering Documents

Lectures: Pages 102–106. The Model Development: Pages 457–457. “slide 4”

• Requirements Engineering:
Lecture 10 : Prelude Stages: The Requirements Engineering Stages Week #6

Lectures: Pages 109–127. The Model Development: Pages 461–469.
Lectures 11-13 : Requirements Modelling:
Lecture 11 : Domain Reqs. Modelling: Week #7

1 Projection,
2 Instantiation,
3 Determination
4 Extension
5 Fitting
6 Composition

Lectures: Pages 127–132. The Model Development: Pages 471–481.
Lecture 12 : Interface Reqs. Modelling: Week #8

1 Shared Phenomena
2 Shared Entity Requirements
3 Shared Function Requirements
4 Shared Event Requirements
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5 Shared Behaviour Requirements
Lectures: Pages 133–134. The Model Development: Pages 483–485.

“slide 5”

• Continued: Main Stage: Requirements Modelling: Week #9
Lecture 13 : Machine Reqs.:

1 Performance
2 Dependability
3 Maintainability
4 Platform
5 Documentability
6 Etcetera

Lectures: Pages 135–163. The Model Development: Pages 487–491.
Lecture 14 : Postlude Stages: Week #9

1 Verific., Valid.
2 Feasibility, Satisfiability
3 Requirements Engineering Process Graph
4 Requirements Engineering Documents

Lectures: Pages 163–166. The Model Development: Pages 493–493.
“slide 6”

• Software Design:
Lecture 15 : Architectural Design Week #10

Lectures: Pages 167–189. The Model Development: Pages 497–498.
Lecture 16 : Component Design &c. Week #11

1 Component Design
2 Software Design Process Graph
3 Software Design Documents

Lectures: Pages 189–222. The Model Development: Pages 498–499.
• Summary:

Lecture 17 : Review of Phases, Stages and Steps: Week #12
1 Domains, Requirements, Software Design
2 Process Graphs
3 Documents
4 Process Assessment and Improvement

Lectures: Pages 225–225. The Model Development: Pages 225–225.
“slide 7”

An Explanation

• We assume a 12 week course period, that is, a total of 24 courses sessions.
• Each session is two times 35–45 minutes.
• By a ‘formal’ session we mean

⋆ a possibly tiered auditorium session in which the lecturer
⋆ lectures over Vol. 1 material
⋆ while showing some Vol. 2 examples
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⋆ on two overhead projectors —
· one for Vol. 1 slides,
· the other, occasionally “blinded”, for Vol. 2 slides.

• By a ‘tutoring’ session we mean a
⋆ a, usually flat classroom, session in in which the lecturer
⋆ only shows Vol. 2 slides
⋆ while walking around the room, discussing the examples
⋆ and their work on the course project with students.

• In weeks 1, 2, 4, 5 and 9 there are two formal lectures per week.
We are taking into account that student project work is not yet generating
sufficient classroom questions.

• All other weeks have one formal session and one tutoring per week.



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8

Acknowledgements

Can’t think of anyone at the moment (December 17, 2008) !



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8

Contents

VOLUME I: THE TRIPTYCH METHOD

Document History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
A Different Textbook ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
The Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

Volume I: A 225 Page Guide to The Triptych Method . . . . . . . X
Volume II: A Supporting Software Development . . . . . . . . . . . . X

On Lecturing over this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
A Possible Lecture Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XVII

Part I Opening

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 What Is a Domain ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 An Attempt at a Definition . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Examples of Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Triptych Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Triptych Phases of Software Development . . . . . . . . . . . . . 4

1.3.1 The Three Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Attempts at Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Comments on The Three Phases . . . . . . . . . . . . . . . . . . 5

1.4 Stages and Steps of Software Development . . . . . . . . . . . . . . . . . 6
1.4.1 Stages of Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XX Contents

1.4.2 Steps of Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Development Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Informative Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.0 An Enumeration of Informative Documents . . . . . . . . 7
1.6.1 Project Name and Dates . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.2 Project Partners and Places . . . . . . . . . . . . . . . . . . . . . . 8
1.6.3 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.4 Needs and Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.5 Concepts and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.6 Scope and Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.7 Assumptions and Dependencies . . . . . . . . . . . . . . . . . . . 11
1.6.8 Implicit/Derivative Goals . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.9 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.10 Software Development Graphs . . . . . . . . . . . . . . . . . . . . 13

Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A Conceptual Software Development Graph . . . . . . . . 14
Who Sets Up the Graphs ? . . . . . . . . . . . . . . . . . . . . . . . 14
How Do Software Development Graphs Come

About ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.11 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.12 Budget (and Other) Estimates . . . . . . . . . . . . . . . . . . . . 16
1.6.13 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Development Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Documentation Standards . . . . . . . . . . . . . . . . . . . . . . . . 17
Standards Versus Recommendations . . . . . . . . . . . . . . . 17
Specific Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.14 Contracts and Design Briefs . . . . . . . . . . . . . . . . . . . . . . 19
Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Contract Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Design Briefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.15 Logbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.16 Discussion of Informative Documentation . . . . . . . . . . 23

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Methodological Consequences: Principle,

Techniques and Tools . . . . . . . . . . . . . . . . . . . 24
1.7 Modelling Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7.1 Domain Modelling Documents . . . . . . . . . . . . . . . . . . . . 25
1.7.2 Requirements Modelling Documents . . . . . . . . . . . . . . . 25

1.8 Analysis Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.8.1 Verification, Model Checks and Tests . . . . . . . . . . . . . . 26
1.8.2 Concept Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.8.3 Domain Analysis Documents . . . . . . . . . . . . . . . . . . . . . 27
1.8.4 Requirements Analysis Documents . . . . . . . . . . . . . . . . 27



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXI

1.9 Descriptions, Prescriptions, Specifications . . . . . . . . . . . . . . . . . 27
1.9.1 Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.9.2 Reiteration of Differences . . . . . . . . . . . . . . . . . . . . . . . . 27
1.9.3 Rôle of Domain Descriptions . . . . . . . . . . . . . . . . . . . . . 28

The Sciences of Human and Natural Domains . . . . . . 28
The ‘Human Domains’ . . . . . . . . . . . . . . . . . . 28
The Natural Sciences . . . . . . . . . . . . . . . . . . . 29
Research Areas of the Human Domains . . . 29

Rôle of Domain Descriptions — Summarised . . . . . . . 29
1.9.4 Rôle of Requirements Prescriptions . . . . . . . . . . . . . . . . 29

The Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Machine Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.9.5 Rough Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.9.6 Narratives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.10 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10.1 What is Software ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10.2 Software is Documents ! . . . . . . . . . . . . . . . . . . . . . . . . . 31

Domain Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Requirements Documents . . . . . . . . . . . . . . . . . . . . . . . . 31
Software Design Documents . . . . . . . . . . . . . . . . . . . . . . 31
Software System Documents . . . . . . . . . . . . . . . . . . . . . . 31

1.11 Informal and Formal Software Development . . . . . . . . . . . . . . . 32
1.11.1 Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Informal Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Formal Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Formal Software Development . . . . . . . . . . . . . . . . . . . . 32
Systematic (Formal) Development ! . . . . . . . . . . . . . . . 33
Rigorous (Formal) Development ! . . . . . . . . . . . . . . . . . 33
Formal (Formal) Development ! . . . . . . . . . . . . . . . . . . . 33

1.11.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.12 Entities, Functions, Events and Behaviours . . . . . . . . . . . . . . . . 34

1.12.1 Simple Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Atomic Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Attributes — Types and Values: . . . . . . . . . 35
Composite Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Mereology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Composite Entities — Continued . . . . . . . . . . . . . . . . . 36
States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Formal Modelling of Entities . . . . . . . . . . . . . . . . . . . . . 37

1.12.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Functions — Resumed . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Function Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Function Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.12.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXII Contents

1.12.4 Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Simple Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
General Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Concurrent Behaviours . . . . . . . . . . . . . . . . . 40
Communicating Behaviours . . . . . . . . . . . . . 40

Formal Modelling of Behaviours . . . . . . . . . . . . . . . . . . 41
1.12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.12.6 Functions, Events and Behaviours as Entities . . . . . . . 41

Review of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Functions as Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Events as Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Behaviours as Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.13 Domain vs. Operational Research Models . . . . . . . . . . . . . . . . . 42
1.13.1 Operational Research (OR) . . . . . . . . . . . . . . . . . . . . . . 42
1.13.2 Reasons for Operational Research Analysis . . . . . . . . . 42
1.13.3 Domain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.13.4 Domain and OR Models . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.13.5 Domain versus Mathematical Modelling . . . . . . . . . . . . 43

1.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Part II A Triptych of Software Engineering

2 Domain Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1 Discussions of The Domain Concept . . . . . . . . . . . . . . . . . . . . . . 51

2.1.1 The Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.3 The Domain Dogma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Stages of Domain Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.1 An Overview of “What to Do ?” . . . . . . . . . . . . . . . . . . 52

[1] Domain Information . . . . . . . . . . . . . . . . . . . . . . . . . . 52
[2] Domain Stakeholder Identification . . . . . . . . . . . . . . 52
[3] Domain Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 53
[4] Domain Analysis and Concept Formation . . . . . . . 53
[5] Domain Business Processes . . . . . . . . . . . . . . . . . . . . 53
[6] Domain Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 53
[7] Domain Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
[8] Domain Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 54
[9] Domain Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
[10] Domain Verification versus Domain Validation . . 54
[11] Domain Theory Formation . . . . . . . . . . . . . . . . . . . 54

2.2.2 A Summary Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Domain Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Domain Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXIII

2.4.1 Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.2 Why Be Concerned About Stakeholders ? . . . . . . . . . . 57
2.4.3 How to Establish List of Stakeholders ? . . . . . . . . . . . . 57
2.4.4 Form of Contact With Stakeholders . . . . . . . . . . . . . . . 57

2.5 Domain Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.1 Another Characterisation . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.2 Sources of Domain Knowledge . . . . . . . . . . . . . . . . . . . . 58
2.5.3 Forms of Solicitation and Elicitation . . . . . . . . . . . . . . . 58

Solicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.4 Solicitation and Elicitation . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.5 Aims and Objectives of Elicitation . . . . . . . . . . . . . . . . 59
2.5.6 Domain Description Units . . . . . . . . . . . . . . . . . . . . . . . . 59

Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Domain Analysis and Concept Formation . . . . . . . . . . . . . . . . . 60
2.6.1 Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.2 Aims and Objectives of Domain Analysis . . . . . . . . . . 61
Aims of Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . 61
Objectives of Domain Analysis . . . . . . . . . . . . . . . . . . . 61

2.6.3 Concept Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Aims and Objectives of Domain Concept Formation . 61

2.7 Domain, i.e., Business Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.1 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.2 Business Process Description . . . . . . . . . . . . . . . . . . . . . 62
2.7.3 Aims & Objectives of Business Process Description . . 62

Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7.4 Disposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8 Domain Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.1 The ‘Terminology’ Dogma. . . . . . . . . . . . . . . . . . . . . . . . 63
2.8.2 Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8.3 Term Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8.4 Aims and Objectives of a Terminology . . . . . . . . . . . . . 64
2.8.5 How to Establish a Terminology . . . . . . . . . . . . . . . . . . 64

2.9 Domain Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9.1 Aims & Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9.2 Domain Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9.3 Describing Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.9.4 Domain Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Construction of Model of Domain Intrinsics . . . . . . . . 65



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXIV Contents

Overview of Support Example . . . . . . . . . . . . . . . . . . . . 65
Review of Support Example . . . . . . . . . . . . . . . . . . . . . . 66

Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Magic Functions on Entities: . . 66
Some Preliminary Observations: 67

Functions [Operations] . . . . . . . . . . . . . . . . . . 67
General: . . . . . . . . . . . . . . . . . . . . 67
Syntax and Semantics: . . . . . . . 67
Preliminary Observations: . . . . 68

Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
On A Concept of ‘Interesting

Events’: . . . . . . . . 68
Auxiliary Concepts . . . . . . . . . . . . . . . . . . . . . 69
Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Two Forms of Behaviour
Abstraction: . . . . . 69

A Functional Behaviour
Abstraction: . . . . . 69

Well-formedness of
Functional
Abstractions: . . . . 70

A [CSP] Process-oriented
Behaviour
Abstraction: . . . . . 70

Discussion of Domain Intrinsics . . . . . . . . . . . . . . . . . . . 70
2.9.5 Support Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Technology as an Embodiment of Laws of Physics . . . 70
From Abstract Domain States to Concrete

Technology States . . . . . . . . . . . . . . . . . . . . . . 71
Intrinsics versus Other Facets . . . . . . . . . . . . . . . . . . . . . 71
The Three Support Examples . . . . . . . . . . . . . . . . . . . . 71

Transport Net Signalling . . . . . . . . . . . . . . . . 71
Road-Rail Level Crossing . . . . . . . . . . . . . . . 72
Rail Switching . . . . . . . . . . . . . . . . . . . . . . . . . 72

Discussion of Support Technologies . . . . . . . . . . . . . . . . 73
2.9.6 Management and Organisation . . . . . . . . . . . . . . . . . . . 73

Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Management Issues . . . . . . . . . . . . . . . . . . . . . 74
Basic Functions of Management . . . . . . . . . . 74
Formation of Business Policy . . . . . . . . . . . . 74
Implementation of Policies and Strategies . 75
Development of Policies and Strategies . . . . 75
Management Levels . . . . . . . . . . . . . . . . . . . . 75
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Resource Conversion . . . . . . . . . . . . . . . . . . . 76



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXV

Strategic Management . . . . . . . . . . . . . . . . . . 76
Tactical Management . . . . . . . . . . . . . . . . . . . 76
Operational Management . . . . . . . . . . . . . . . 77
Supervisors and Team Leaders . . . . . . . . . . . 77
Description of ‘Management’ . . . . . . . . . . . . 78
Review of Support Examples . . . . . . . . . . . . 79

The Enterprise Function: . . . . . 79
The Enterprise Processes: . . . . . 79

Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.9.7 Rules and Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Domain Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Domain Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Formalisation of the Rules and Regulations Concepts 82
On Modelling Rules and Regulations . . . . . . . . . . . . . . 83

2.9.8 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Analysis of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
The Performing Arts: Producers and Consumers . . . . 86

Operations on Digital Works . . . . . . . . . . . . 86
License Agreement and Obligation . . . . . . . 86
Two Assumptions . . . . . . . . . . . . . . . . . . . . . . 86
Protection of the Artistic Electronic Works 87
A License Language . . . . . . . . . . . . . . . . . . . . 87

A Hospital Health Care License Language . . . . . . . . . . 90
Patients and Patient Medical Records . . . . 90
Medical Staff . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Professional Health Care . . . . . . . . . . . . . . . . 90
A Notion of License Execution State . . . . . . 91
The License Language . . . . . . . . . . . . . . . . . . 92

Public Government and the Citizens . . . . . . . . . . . . . . . 93
The Three Branches of Government . . . . . . 93
Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Document Attributes . . . . . . . . . . . . . . . . . . . 94
Actor Attributes and Licenses . . . . . . . . . . . 94
Document Tracing . . . . . . . . . . . . . . . . . . . . . 94
A Document License Language . . . . . . . . . . 94
The Form of Licenses . . . . . . . . . . . . . . . . . . . 94

Discussion: Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 98
Work Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Permissions and Obligations . . . . . . . . . . . . . 99

Script and Contract Languages . . . . . . . . . . . . . . . . . . . 99
Review of Support Examples . . . . . . . . . . . . . . . . . . . . . 99

The Aircraft Simulator Script . . . . . . . . . . . . 99
The Bill-of-Lading Script . . . . . . . . . . . . . . . . 99



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXVI Contents

The Timetable Script Language . . . . . . . . . . 100
The Bus Transport Contract Language . . . 100

Modelling Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.9.9 Human Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Meta-characterisation of Human Behaviour . . . . . . 100
Review of Support Examples . . . . . . . . . . . . . . . . . . . . . 101
On Modelling Human Behaviour . . . . . . . . . . . . . . . . . . 101

2.9.10 Consolidation of Domain Facets Description . . . . . . . . 101
2.9.11 Discussion of Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.10 Domain Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.11 Domain Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.12 Verification Versus Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.13 Domain Theory Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.14 Domain Engineering Process Graph . . . . . . . . . . . . . . . . . . . . . . 102
2.15 Domain Engineering Documents . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.15.1 Description Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.15.2 Analytic Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.17 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.1 Discussion of The Requirements Concept . . . . . . . . . . . . . . . . . . 109

3.1.1 Some Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.1.2 One Domain, Many Requirements . . . . . . . . . . . . . . . . . 111
3.1.3 The Machine as Target . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.1.4 Machine = Hardware + Software . . . . . . . . . . . . . . . . . 111
3.1.5 On “Derivation” of Requirements . . . . . . . . . . . . . . . . . 111
3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.2 Stages of Requirements Engineering . . . . . . . . . . . . . . . . . . . . . . 112
3.2.1 An Overview of “What To Do?” . . . . . . . . . . . . . . . . . . 112

[1] Requirements Information . . . . . . . . . . . . . . . . . . . . . 112
[2] Requirements Stakeholder Identification . . . . . . . . . 113
[3] Requirements Acquisition . . . . . . . . . . . . . . . . . . . . . 113
[4] Requirements Analysis & Concept Formation . . . . 113
[5] Requirements Business Process Re-Engineering . . 114
[6] Requirements Terminology . . . . . . . . . . . . . . . . . . . . 114
[7] Requirements Modelling . . . . . . . . . . . . . . . . . . . . . . 114
[8] Requirements Verification . . . . . . . . . . . . . . . . . . . . . 115
[9] Requirements Validation . . . . . . . . . . . . . . . . . . . . . . 115
[10] Requirements Satisfiability and Feasibility . . . . . . 116
[11] Requirements Theory Formation . . . . . . . . . . . . . . 116

3.2.2 A Summary Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3 Requirements Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.4 Requirements Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5 Requirements Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXVII

3.5.1 Domain Requirements Acquisition . . . . . . . . . . . . . . . . 119
3.5.2 Interface Requirements Acquisition . . . . . . . . . . . . . . . . 120
3.5.3 Machine Requirements Acquisition . . . . . . . . . . . . . . . . 120

3.6 Analysis and Concept Formation . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7 Business Process Re-Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.7.1 What Are BPR Requirements? . . . . . . . . . . . . . . . . . . . 121
3.7.2 Overview of BPR Operations . . . . . . . . . . . . . . . . . . . . . 121
3.7.3 BPR and the Requirements Document . . . . . . . . . . . . . 122

Requirements for New Business Processes . . . . . . . . . . 122
Place in Narrative Document . . . . . . . . . . . . . . . . . . . . . 122
Place in Formalisation Document . . . . . . . . . . . . . . . . . 122

3.7.4 Intrinsics Review and Replacement . . . . . . . . . . . . . . . . 123
3.7.5 Support Technology Review and Replacement . . . . . . 123
3.7.6 Management and Organisation Reengineering . . . . . . . 124
3.7.7 Rules and Regulations Reengineering . . . . . . . . . . . . . . 124
3.7.8 Script Reengineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7.9 Human Behaviour Reengineering . . . . . . . . . . . . . . . . . . 126
3.7.10 Discussion: Business Process Reengineering . . . . . . . . . 126

Who Should Do the Business Process Reengineering? 126
Who Should Do the Business Process Reengineering? 126
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.8 Requirements Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9 Requirements Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.9.1 Aims & Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9.2 Requirements Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9.3 Domain Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Domain Requirements Projection . . . . . . . . . . . . . . . . . 128
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Discussion of Support Example . . . . . . . . . . 129

Domain Requirements Instantiation . . . . . . . . . . . . . . . 129
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Discussion of Support Example . . . . . . . . . . 130

Domain Requirements Determination . . . . . . . . . . . . . . 130
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Discussion of Support Example . . . . . . . . . . 130

Domain Requirements Extension . . . . . . . . . . . . . . . . . . 130
Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Discussion of Support Example . . . . . . . . . . 131

Domain Requirements Fitting . . . . . . . . . . . . . . . . . . . . 131
A Requirements Fitting Procedure . . . . . . . 131
Requirements Fitting Verification . . . . . . . . 132



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXVIII Contents

Domain Requirements Consolidation . . . . . . . . . . . . . . 132
3.9.4 Interface Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Domain/Machine Sharing . . . . . . . . . . . . . . . . . . . . . . . . 133
Interface Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Data Communication . . . . . . . . . . . . . . . . . . . 134
Digital Sampling . . . . . . . . . . . . . . . . . . . . . . . 134
Tactile: Keyboards &c. . . . . . . . . . . . . . . . . . 134
Visual: Displays, Lamps, &c. . . . . . . . . . . . . 134
Audio: Voice, Alarms, &c. . . . . . . . . . . . . . . . 134
Other Sensory Interface Modalities . . . . . . . 134

Entities: Domain/Machine Sharing . . . . . . . . . . . . . . . . 134
Data Intialisation . . . . . . . . . . . . . . . . . . . . . . 134
Data Refreshment . . . . . . . . . . . . . . . . . . . . . . 134

Functions: Domain/Machine Sharing . . . . . . . . . . . . . . 134
Interactive Human/Machine Dialogues . . . . 134
Interactive Machine/Machine Protocols . . . 134

Events: Domain/Machine Sharing . . . . . . . . . . . . . . . . . 134
Human/Machine/Human Events . . . . . . . . . 134
Machine/Machine Events . . . . . . . . . . . . . . . 134
Other Context/Machine Events . . . . . . . . . . 134

Behaviour: Domain/Machine Sharing . . . . . . . . . . . . . . 134
Human/Machine/Human Behaviours . . . . . 134
Machine/Machine Behaviours . . . . . . . . . . . . 134
Other Context/Machine Behaviours . . . . . . 134

3.9.5 Machine Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
An Enumeration of Issues . . . . . . . . . . . . . . . . . . . . . . . . 135
Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . 135

Other Resource Consumption . . . . . . . . . . . . 137
Dependability Requirements . . . . . . . . . . . . . . . . . . . . . . 137

Accesability Requirements . . . . . . . . . . . . . . 140
Availability Requirements . . . . . . . . . . . . . . . 140
Integrity Requirements . . . . . . . . . . . . . . . . . 141
Reliability Requirements . . . . . . . . . . . . . . . . 141
Safety Requirements . . . . . . . . . . . . . . . . . . . . 141
Security Requirements . . . . . . . . . . . . . . . . . . 141
Robustness Requirements . . . . . . . . . . . . . . . 142

Maintenance Requirements . . . . . . . . . . . . . . . . . . . . . . . 143
Adaptive Maintenance Requirements . . . . . 143
Corrective Maintenance Requirements . . . . 143
Perfective Maintenance Requirements . . . . . 144
Preventive Maintenance Requirements . . . . 144
Extensional Maintenance Requirements . . . 144

Platform Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Development Platform Requirements . . . . . 145
Execution Platform Requirements . . . . . . . . 145



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXIX

Maintenance Platform Requirements . . . . . 145
Demonstration Platform Requirements . . . . 146
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Documentation Requirements . . . . . . . . . . . . . . . . . . . . 146
Fault Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Fault Tree Syntax . . . . . . . . . . . . . . . . . . . . . . 149
Event Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 149

Primary events:: . . . . . . . . . . . . . 149
Intermediate events:: . . . . . . . . . 149

Gate Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 149
OR gate:: . . . . . . . . . . . . . . . . . . . 149
AND gate:: . . . . . . . . . . . . . . . . . 150
INHIBIT gate:: . . . . . . . . . . . . . . 150
XOR (exclusive or) gate:: . . . . . 150
PRIORITY AND gate:: . . . . . . 151

Fault Tree Semantics . . . . . . . . . . . . . . . . . . . 151
Primary Events: . . . . . . . . . . . . . 152
Intermediate Events: . . . . . . . . . 152

Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

OR:: . . . . . . . . . . . . . . . . . . . . . . . 153
AND:: . . . . . . . . . . . . . . . . . . . . . . 153
INHIBIT:: . . . . . . . . . . . . . . . . . . 154
XOR:: . . . . . . . . . . . . . . . . . . . . . . 154
PRIORITY AND:: . . . . . . . . . . . 155

Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Deriving Safety Requirements . . . . . . . . . . . 158
Deriving Component Requirements . . . . . . . 158

OR gates: . . . . . . . . . . . . . . . . . . . 158
AND gates: . . . . . . . . . . . . . . . . . 159
INHIBIT gates: . . . . . . . . . . . . . . 160
XOR gates: . . . . . . . . . . . . . . . . . 160
PRIORITY AND gates: . . . . . . 161

Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.9.6 Discussion: Machine Requirements . . . . . . . . . . . . . . . . 163
3.10 Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.11 Requirements Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.12 Requirements Satisfiability and Feasibility . . . . . . . . . . . . . . . . . 163
3.13 Requirements Theory Formation . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.14 Requirements Engineering Process Graph . . . . . . . . . . . . . . . . . 164
3.15 Requirements Engineering Documents . . . . . . . . . . . . . . . . . . . . 164

3.15.1 Requirements Prescription Documents . . . . . . . . . . . . . 164
3.15.2 Requirements Analysis Documents . . . . . . . . . . . . . . . . 165

3.16 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXX Contents

3.17 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.1 Discussion of the Software Design Concept . . . . . . . . . . . . . . . . 169
4.2 Stages of Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.2.1 An Overview of “What to Do ?” . . . . . . . . . . . . . . . . . . 169
[1] Software Design Information . . . . . . . . . . . . . . . . . . . 169
[2] Software Design Stakeholders . . . . . . . . . . . . . . . . . . 169
[3] Software Design Acquisition . . . . . . . . . . . . . . . . . . . 169
[4] Software Design Analysis and Concept Formation 169
[5] Software Design Options . . . . . . . . . . . . . . . . . . . . . . 169
[6] Software Design Terminology . . . . . . . . . . . . . . . . . . 169
[7] Software Design Modelling . . . . . . . . . . . . . . . . . . . . 169
[8] Software Design Verification . . . . . . . . . . . . . . . . . . . 169
[9] Software Design Validation . . . . . . . . . . . . . . . . . . . . 169
[10] Software Design Release, Transfer & Maintenance169
[11] Software Design Documentation . . . . . . . . . . . . . . . 169

4.2.2 A Summary Enumeration . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3 Software Design Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4 Software Design Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.5 Software Design Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.6 Software Design Analysis and Concept Formation . . . . . . . . . . 171
4.7 Software Design Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.8 Software Design Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.9 A Domain Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.10 Software Design Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.10.1 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Initial Domain Requirements Architecture . . . . . . . . . . 175
Initial Machine Requirements Architecture . . . . . . . . . 177
Analysis of Some Machine Requirements . . . . . . . . . . . 179

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Adaptive Maintainability . . . . . . . . . . . . . . . . 180

Prioritisation of Design Decisions . . . . . . . . . . . . . . . . . 180
Corresponding Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Design Decision wrt. Performance . . . . . . . . 181
Design Decision wrt. Availability . . . . . . . . . 182
Design Decision wrt. Accessibility . . . . . . . . 183
Design Decision wrt. Adaptability . . . . . . . . 186

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Principles and Techniques . . . . . . . . . . . . . . . 187

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXXI

4.10.2 Component Design and its Refinement . . . . . . . . . . . . . 189
Overview Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

System Complexity . . . . . . . . . . . . . . . . . . . . . 189
Proposed Remedies . . . . . . . . . . . . . . . . . . . . . 189
Stepwise Development . . . . . . . . . . . . . . . . . . 190
Stagewise Iteration . . . . . . . . . . . . . . . . . . . . . 190

Overview of Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Step 0: Files and Pages . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A “Snapshot” . . . . . . . . . . . . . . . . . . . . . . . . . 193
An Abstract Formal Model . . . . . . . . . . . . . . 193
Abstract Versus Concrete Basic Actions . . . 195
Concrete Actions . . . . . . . . . . . . . . . . . . . . . . . 196

Step 1: Catalogue, Disk and Storage . . . . . . . . . . . . . . . 196
Catalogue Directories . . . . . . . . . . . . . . . . . . . 197

Data Structure: . . . . . . . . . . . . . . 197
Invariant: . . . . . . . . . . . . . . . . . . . 198

Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Action Signatures: . . . . . . . . . . . 201
Create and Erase File Actions: 201
Put Page Action: . . . . . . . . . . . . 201
Get and Delete Page Actions: . 202

Adequacy and Sufficiency . . . . . . . . . . . . . . . 202
Adequacy: . . . . . . . . . . . . . . . . . . 202
Sufficiency: . . . . . . . . . . . . . . . . . 203

Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Comparable Results: . . . . . . . . . 203
The Correctness Statement: . . . 203

Step 2: Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Data Refinement . . . . . . . . . . . . . . . . . . . . . . . 204
Disk Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A “Snapshot”: . . . . . . . . . . . . . . . 205
FS0, FS1 and FS2 Types . . . . . . . . . . . . . . . . 205

Concrete Semantic Types: . . . . 206
Disk Type Invariant . . . . . . . . . . . . . . . . . . . . 206
Disk Type Abstraction . . . . . . . . . . . . . . . . . . 207
Adequacy, Sufficiency, Operations and

Correctness . . . . . . . . . . . . . . . . . 207
Step 3: Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Technology Considerations . . . . . . . . . . . . . . 207
Cached Directory and Page Access . . . . . . . 207
Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXXII Contents

Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Open and Close Actions: . . . . . 210
Create and Put Actions: . . . . . . 210
Erase, Get, and Delete Actions:211

Adequacy, Sufficiency and Correctness . . . . 211
Step 4: Storage Crashes . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Storage and Disk . . . . . . . . . . . . . . . . . . . . . . . 211
Concrete Semantic Types . . . . . . . . . . . . . . . 212
Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Consistent Storage and Disks . . . . . . . . . . . . 213

Consistent Storage: . . . . . . . . . . 213
Consistent Disk: . . . . . . . . . . . . . 213

Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Garbage Collection . . . . . . . . . . . . . . . . . . . . . 214
New Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Check and Crash Actions: . . . . 215
Some Previous Commands . . . . . . . . . . . . . . 215

Open and Close Actions: . . . . . 215
Put Action: . . . . . . . . . . . . . . . . . 216

Step 5: Flattening Storage and Disks . . . . . . . . . . . . . . 216
“Flat” Storage and Disk . . . . . . . . . . . . . . . . 216
“The Rest” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Step 6: Disk Space Management . . . . . . . . . . . . . . . . . . 217
The Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
“The Rest” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Principles and Techniques . . . . . . . . . . . . . . . 219

Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.10.3 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.10.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.10.5 Programming Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 221

Extreme Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Aspect Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Intentional Programming . . . . . . . . . . . . . . . . . . . . . . . . 221
Other Paradigms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.11 Software Design Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.12 Software Design Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.13 Software Design Release, Transfer & Maintenance . . . . . . . . . . 221
4.14 Software Design Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.14.1 Software Design Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.14.2 Software Design Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.16 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXXIII

Part III A Review of The Triptych Approach to SE

5 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.1 Domains, Requirements, Software Design . . . . . . . . . . . . . . . . . . 225
5.2 Process Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.3 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.4 Process Assessment and Improvement . . . . . . . . . . . . . . . . . . . . . 225

Part IV Administrative Appendices

A Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

B Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.1 Index of Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
B.2 Index of Domain Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B.3 Index of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.4 Index of Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.5 Index of Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.6 Index of Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
B.7 Index of Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
B.8 Index of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

C Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.1 Categories of Reference Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

C.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.1.2 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
C.1.3 Encyclopædia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.1.4 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.1.5 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.1.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.1.7 Thesaurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

C.2 Typography and Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
C.3 The Glosses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Last page of Vol. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

D Time and Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
D.1 van Benthem’s Theory of Time . . . . . . . . . . . . . . . . . . . . . . . . . . 311
D.2 Blizard’s Theory of Time-Space . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Discussion of the Blizard Model of Space/Time . . . . . 314
D.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXXIV Contents

VOLUME II: A MODEL DEVELOPMENT

Frontispiece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Document History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Part V Domain Engineering

E Prelude Domain Engineering Actions . . . . . . . . . . . . . . . . . . . . . . 317
E.1 Informative Domain Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 317

E.1.1 Project Name and Dates . . . . . . . . . . . . . . . . . . . . . . . . . 318
E.1.2 Project Partners and Places . . . . . . . . . . . . . . . . . . . . . . 318
E.1.3 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
E.1.4 Needs and Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

E.1.5 Concepts and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 321
E.1.6 Scope and Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
E.1.7 Assumptions and Dependencies . . . . . . . . . . . . . . . . . . . 323
E.1.8 Implicit/Derivative Goals . . . . . . . . . . . . . . . . . . . . . . . . 324
E.1.9 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
E.1.10 Software Development Graphs . . . . . . . . . . . . . . . . . . . . 327
E.1.11 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
E.1.12 Budget Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
E.1.13 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
E.1.14 Contract and Design Brief . . . . . . . . . . . . . . . . . . . . . . . 330
E.1.15 Logbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

E.2 Stakeholder Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
E.3 Domain Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

E.3.1 Road Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
E.3.2 Rail Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
E.3.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

E.4 Domain Analysis and Concept Formation . . . . . . . . . . . . . . . . . 336
E.4.1 Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
E.4.2 Incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
E.4.3 Concept Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

E.5 Domain [i.e., Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
E.6 Domain Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
E.7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
E.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXXV

F Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
F.1 An Essence of ‘Transport’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
F.2 Business Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
F.3 Simple Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

F.3.1 Basic Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
F.3.2 Further Entity Properties . . . . . . . . . . . . . . . . . . . . . . . . 347
F.3.3 Entity Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

F.4 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
F.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
F.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

F.5 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
F.5.1 Some General Comments . . . . . . . . . . . . . . . . . . . . . . . . 357
F.5.2 Transport Event Examples . . . . . . . . . . . . . . . . . . . . . . . 357
F.5.3 Banking Event Examples . . . . . . . . . . . . . . . . . . . . . . . . 357

F.6 Some Fundamental Modelling Concepts . . . . . . . . . . . . . . . . . . . 358
F.6.1 Time and Time Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 358
F.6.2 Vehicles and Hub and Link Positions . . . . . . . . . . . . . . 359

F.7 Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
F.7.1 Traffic as a Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
F.7.2 A Net Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

F.8 Traffic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
F.9 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
F.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

G Support Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
G.1 Net Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

G.1.1 Intrinsic Concepts of States . . . . . . . . . . . . . . . . . . . . . . 367
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Link and Hub States . . . . . . . . . . . . . . . . . . . 367
Link and Hub State Spaces and

State-change Designators . . . . . 368
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Syntactic Well-formedness

Functions: . . . . . . 368
Syntactic and Semantic Well-

formedness
Functions: . . . . . . 368

Semantic Well-formedness
Functions: . . . . . . 368

Auxiliary Functions: . . . . . . . . . 369
State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

G.1.2 A Support Technology Concept of States . . . . . . . . . . . 370
Narrative (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Formalisation (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXXVI Contents

Narrative (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Formalisation (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

G.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
G.2 Road-Rail Level Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

G.2.1 An Intrinsic Concept of Road-Rail Level State . . . . . . 372
G.2.2 A Concrete Concept of Road-Rail Level State . . . . . . 373
G.2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
G.2.4 Function and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

State Variables . . . . . . . . . . . . . . . . . . . . . . . . 375
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Safety Properties: . . . . . . . . . . . . 376
Function Properties: . . . . . . . . . 376

What is Next ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
G.2.5 The Road Traffic Domain . . . . . . . . . . . . . . . . . . . . . . . . 378
G.2.6 The Train Traffic Domain . . . . . . . . . . . . . . . . . . . . . . . . 379
G.2.7 The Device Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
G.2.8 The Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Approaching Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Passing Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

G.2.9 Some Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
G.3 A Rail Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

G.3.1 A Diagrammatic Rendering of Rail Units . . . . . . . . . . 382
G.3.2 Intrinsic Rail Switch States . . . . . . . . . . . . . . . . . . . . . . 382
G.3.3 Rail Switching Support Technologies . . . . . . . . . . . . . . 382
G.3.4 Switches With Probabilistic Behaviour and Error

States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
G.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
G.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

H Management and Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
H.1 A Simple, Functional Description of Management . . . . . . . . . . 387

H.1.1 A Base Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
H.1.2 A Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
H.1.3 A Discussion of The Formal Model . . . . . . . . . . . . . . . . 388

A Re-Narration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
On The Environment &c. . . . . . . . . . . . . . . . . . . . . . . . . 389
On Intra-communication . . . . . . . . . . . . . . . . . . . . . . . . . 389
On Recursive Next-state Definitions . . . . . . . . . . . . . . . 390
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

H.2 A Simple, Process Description of Management . . . . . . . . . . . . . 390
H.2.1 An Enterprise System . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
H.2.2 States and The System Composition . . . . . . . . . . . . . . 391
H.2.3 Channels and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 391



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXXVII

H.2.4 Process Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
H.2.5 The Shared State Process . . . . . . . . . . . . . . . . . . . . . . . . 392
H.2.6 Staff Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
H.2.7 A Generic Staff Behaviour . . . . . . . . . . . . . . . . . . . . . . . 393

A Diagrammatic Rendition . . . . . . . . . . . . . . . . . . . . . . . 393
Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

H.2.8 Management Operations . . . . . . . . . . . . . . . . . . . . . . . . . 396
Focus on Management . . . . . . . . . . . . . . . . . . 396
Own and Global States . . . . . . . . . . . . . . . . . 396
State Classification . . . . . . . . . . . . . . . . . . . . . 396

Transport System States . . . . . . . . . . . . . . . . . . . . . . . . . 397
Transport Net State Changes: . 397
Net Traffic State Changes: . . . . 397
Managed State Changes: . . . . . . 397

H.2.9 The Overall Managed System . . . . . . . . . . . . . . . . . . . . 397
H.2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Management Operations . . . . . . . . . . . . . . . . . . . . . . . . . 398
Managed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

H.3 Discussion of First Two Management Models . . . . . . . . . . . . . . 398
H.3.1 Generic Management Models . . . . . . . . . . . . . . . . . . . . . 398
H.3.2 Management as Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 399

H.4 Transport Enterprise Organisation . . . . . . . . . . . . . . . . . . . . . . . . 399
H.4.1 Transport Organisations . . . . . . . . . . . . . . . . . . . . . . . . . 400
H.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
H.4.3 Modelling Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Net Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Enterprise Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Staff Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Staff Kind Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Hierarchical Staff Structures . . . . . . . . . . . . . 402
Matrix Staff Structures . . . . . . . . . . . . . . . . . 403

Net and Enterprise Kind Constraints . . . . . . . . . . . . . . 403
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 403

H.4.4 Net Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

H.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
H.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XXXVIII Contents

I Rules and Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
I.1 Two Informal Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
I.2 Two Formal Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

I.2.1 The “Free Sector” Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Analysis of Informal “Free Sector” Rule Text . . . . . . . 408
Formalised Concepts of Sectors, Lines, and Free

Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Formalisation of the “Free Sector” Rule . . . . . . . . . . . . 410

I.2.2 The “Free Sector” Regulation . . . . . . . . . . . . . . . . . . . . 411
Completion of the “Free Sector” Regulation . . . . . . . . 411
Analysis of the Completed “Free Sector” Regulation . 411

I.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
I.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

J Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
J.1 Informal Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
J.2 Timetable Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

J.2.1 The Syntax of Timetable Scripts . . . . . . . . . . . . . . . . . . 420
Well-formedness of Journies . . . . . . . . . . . . . . . . . . . . . . 420

J.2.2 The Pragmatics of Timetable Scripts . . . . . . . . . . . . . . 424
Subset Timetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Marked Timetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

The Marking of Timetables . . . . . . . . . . . . . . 428
J.2.3 The Semantics of Timetable Scripts . . . . . . . . . . . . . . . 429

Bus Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
J.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

J.3 A Contract Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
J.3.1 Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
A Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
A Pragmatics and Semantics Analysis . . . . 431
Contracted Operations, An Overview . . . . . 431

The Final Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
J.3.2 A Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Uniqueness and Traceability of Contract
Identifications . . . . . . . . . . . . . . . . . . . . . . . . . 433

Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Execution State . . . . . . . . . . . . . . . . . . . . . . . . 435

Local and Global States: . . . . . . 435
Global State: . . . . . . . . . . . . . . . . 435



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XXXIX

Local sub-contractor
contract States:
Semantic Types: . 435

Local sub-contractor
Bus States:
Semantic Types: . 436

Local sub-contractor Bus
States: Update
Functions: . . . . . . 436

Constant State Values: . . . . . . . 437
Initial sub-contractor

contract States: . . 438
Initial sub-contractor Bus

States: . . . . . . . . . 439
Communication Channels: . . . . 439
Run-time Environment: . . . . . . . 440

The System Behaviour . . . . . . . . . . . . . . . . . . 441
Semantic Elaboration Functions . . . . . . . . . . 441

The Licenseholder Behaviour: . 441
The Bus Behaviour: . . . . . . . . . . 442
The Global Time Behaviour: . . 444
The Bus Traffic Behaviour: . . . 444
License Operations: . . . . . . . . . . 445
Bus Monitoring: . . . . . . . . . . . . . 445
License Negotiation: . . . . . . . . . . 447
The Conduct Bus Ride Action: 447
The Cancel Bus Ride Action: . . 448
The Insert Bus Ride Action: . . 448
The Contracting Action: . . . . . . 449

J.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
J.4 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
J.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

K Human Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
K.1 A First, Informal Example: Automobile Drivers . . . . . . . . . . . . 453

K.1.1 A Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
K.1.2 A Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

K.2 A Second Example: Link Insertion . . . . . . . . . . . . . . . . . . . . . . . . 453
K.2.1 A Diligent Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
K.2.2 A Sloppy via Delinquent to Criminal Operation . . . . . 454

K.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
K.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XL Contents

L Postlude Domain Engineering Actions . . . . . . . . . . . . . . . . . . . . . 457
L.1 Domain Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
L.2 Domain Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
L.3 Towards a Domain Teory of Transportation . . . . . . . . . . . . . . . . 457
L.4 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
L.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Part VI Requirements Engineering

M Prelude Requirements Engineering Actions . . . . . . . . . . . . . . . . 461
M.1 Informative Requirements Documents . . . . . . . . . . . . . . . . . . . . . 461

M.1.1 Project Name and Dates . . . . . . . . . . . . . . . . . . . . . . . . . 461
M.1.2 Project Partners and Places . . . . . . . . . . . . . . . . . . . . . . 462
M.1.3 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
M.1.4 Needs and Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
M.1.5 Concepts and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 463
M.1.6 Scope and Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
M.1.7 Assumptions and Dependencies . . . . . . . . . . . . . . . . . . . 465
M.1.8 Implicit/Derivative Goals . . . . . . . . . . . . . . . . . . . . . . . . 465
M.1.9 Concepts and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 465
M.1.10 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
M.1.11 Software Development Graphs . . . . . . . . . . . . . . . . . . . . 465
M.1.12 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
M.1.13 Budget Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
M.1.14 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
M.1.15 Contracts and Design Briefs . . . . . . . . . . . . . . . . . . . . . . 466
M.1.16 Logbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

M.2 Requirements Stakeholder Identification . . . . . . . . . . . . . . . . . . . 466
M.3 Requirements Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
M.4 Requirements Analysis and Concept Formation . . . . . . . . . . . . 467
M.5 Business Process Re-engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 467

M.5.1 The Example Requirements . . . . . . . . . . . . . . . . . . . . . . 467
Re-engineering Domain Entities . . . . . . . . . . . . . . . . . . . 468
Re-engineering Domain Operations . . . . . . . . . . . . . . . . 468
Re-engineering Domain Events . . . . . . . . . . . . . . . . . . . . 468
Re-engineering Domain Behaviours . . . . . . . . . . . . . . . . 468

M.6 Requirements Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
M.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

N Domain Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
N.1 Domain Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

N.1.1 RoMaS: A Road Maintenance System. . . . . . . . . . . . . 471
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XLI

N.1.2 PtPToll: Toll Road IT System . . . . . . . . . . . . . . . . . . 472
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

N.2 Domain Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
N.2.1 RoMaS: Road Maintenance System . . . . . . . . . . . . . . . 473

Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

N.2.2 PtPToll: Toll Road IT System . . . . . . . . . . . . . . . . . . 474
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Formalisation of Well-formedness . . . . . . . . . . . . . . . . . 475

N.3 Domain Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
N.3.1 RoMaS: Road Management System . . . . . . . . . . . . . . . 476

Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

N.3.2 PtPToll: Toll Road IT System . . . . . . . . . . . . . . . . . . 477
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

N.4 Domain Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
N.4.1 RoMaS: Road Management System . . . . . . . . . . . . . . . 479

Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

N.4.2 PtPToll: Toll Road IT System . . . . . . . . . . . . . . . . . . 479
Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

N.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
N.5 Requirements Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

N.5.1 RoMaS & PtPToll Narrative . . . . . . . . . . . . . . . . . . 480
N.5.2 RoMaS & PtPToll Formalisation . . . . . . . . . . . . . . . 481

N.6 Requirements Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
N.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

O Interface Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
O.1 Shared Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

O.1.1 Data Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
O.1.2 Data Refreshment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

O.2 Shared Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
O.2.1 Interactive Operation Execution . . . . . . . . . . . . . . . . . . 484

O.3 Shared Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
O.4 Shared Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
O.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XLII Contents

P Machine Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
P.1 Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

P.1.1 Machine Storage Consumption . . . . . . . . . . . . . . . . . . . . 487
P.1.2 Machine Time Consumption . . . . . . . . . . . . . . . . . . . . . . 487
P.1.3 Other Resource Consumption . . . . . . . . . . . . . . . . . . . . . 487

P.2 Dependability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.1 Accesability Requirements . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.2 Availability Requirements . . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.3 Integrity Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.4 Reliability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.5 Safety Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
P.2.6 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

P.3 Maintenance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
P.3.1 Adaptive Maintenance Requirements . . . . . . . . . . . . . . 489
P.3.2 Corrective Maintenance Requirements . . . . . . . . . . . . . 489
P.3.3 Perfective Maintenance Requirements . . . . . . . . . . . . . . 489
P.3.4 Preventive Maintenance Requirements . . . . . . . . . . . . . 489

P.4 Platform Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
P.4.1 Development Platform Requirements . . . . . . . . . . . . . . 490
P.4.2 Execution Platform Requirements . . . . . . . . . . . . . . . . . 490
P.4.3 Maintenance Platform Requirements . . . . . . . . . . . . . . 490
P.4.4 Demonstration Platform Requirements . . . . . . . . . . . . 490

P.5 Development Documentation Requirements . . . . . . . . . . . . . . . . 491
P.5.1 Informative Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 491
P.5.2 Specification Documents . . . . . . . . . . . . . . . . . . . . . . . . . 491
P.5.3 Analytic Documents: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
P.5.4 Installation Documentation . . . . . . . . . . . . . . . . . . . . . . 491
P.5.5 Demonstration Documentation . . . . . . . . . . . . . . . . . . . 491
P.5.6 User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
P.5.7 Maintenance Documentation . . . . . . . . . . . . . . . . . . . . . 491
P.5.8 Disposal Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 491

P.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
P.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Q Postlude Requirements Engineering Actions . . . . . . . . . . . . . . . 493
Q.1 Requirements Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Q.2 Requirements Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Q.3 Requirements Satisfiability and Feasibility . . . . . . . . . . . . . . . . . 493
Q.4 Towards a Requirements Teory of Transportation . . . . . . . . . . 493
Q.5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Q.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Part VII Software Design



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XLIII

R Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1 Informative Software Design Documents . . . . . . . . . . . . . . . . . . . 497

R.1.1 Project Name and Dates . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.2 Project Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.3 Project Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.4 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.5 Needs and Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.6 Concepts and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.7 Scope and Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.8 Assumptions and Dependencies . . . . . . . . . . . . . . . . . . . 497
R.1.9 Implicit/Derivative Goals . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.10 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.11 Software Development Graphs . . . . . . . . . . . . . . . . . . . . 497
R.1.12 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.13 Budget Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.14 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
R.1.15 Contracts and Design Briefs . . . . . . . . . . . . . . . . . . . . . . 497
R.1.16 Logbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

R.2 Software Design Stakeholder Identification . . . . . . . . . . . . . . . . . 498
R.3 Software Design Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.4 Software Design Analysis and Concept Formation . . . . . . . . . . 498
R.5 Software Design “BPR” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.6 Software Design Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.7 Software Design Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

R.7.1 Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.7.2 Component Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.7.3 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.7.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
R.7.5 Programming Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 498

Extreme Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Aspect-oriented Programming . . . . . . . . . . . . . . . . . . . . 498
Intensional Programming . . . . . . . . . . . . . . . . . . . . . . . . 498
??? Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Version Control & Configuration Management . . . . . . 498

R.8 Software Design Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.9 Software Design Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.10 Software Design Release, Transfer and Maintenance . . . . . . . . 499

R.10.1 Software Design Release . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.10.2 Software Design Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.10.3 Software Design Maintenance . . . . . . . . . . . . . . . . . . . . . 499

R.11 Software Design Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.11.1 Software Design Process Graph . . . . . . . . . . . . . . . . . . . 499
R.11.2 Software Design Documents . . . . . . . . . . . . . . . . . . . . . . 499

R.12 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
R.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XLIV Contents

Part VIII RAISE

S An RSL Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
S.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

S.1.1 Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Atomic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Composite Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

S.1.2 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Concrete Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Sorts — Abstract Types . . . . . . . . . . . . . . . . . . . . . . . . . 506

S.2 The RSL Predicate Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
S.2.1 Propositional Expressions . . . . . . . . . . . . . . . . . . . . . . . . 506
S.2.2 Simple Predicate Expressions . . . . . . . . . . . . . . . . . . . . . 507
S.2.3 Quantified Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 507

S.3 Concrete RSL Types: Values and Operations . . . . . . . . . . . . . . . 507
S.3.1 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
S.3.2 Set Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Set Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Set Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

S.3.3 Cartesian Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Cartesian Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . 509

S.3.4 List Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
List Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
List Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

S.3.5 Map Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Map Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Map Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

S.3.6 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Set Operator Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 510
Set Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Informal Explication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Set Operator Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 512

S.3.7 Cartesian Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
S.3.8 List Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

List Operator Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 513
List Operation Examples . . . . . . . . . . . . . . . . . . . . . . . . . 513
Informal Explication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
List Operator Definitions . . . . . . . . . . . . . . . . . . . . . . . . 514

S.3.9 Map Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Map Operator Signatures and Map Operation

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Map Operation Explication . . . . . . . . . . . . . . . . . . . . . . 516
Map Operation Redefinitions . . . . . . . . . . . . . . . . . . . . . 517



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
Contents XLV

S.4 λ-Calculus + Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
S.4.1 The λ-Calculus Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 517
S.4.2 Free and Bound Variables . . . . . . . . . . . . . . . . . . . . . . . . 518
S.4.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
S.4.4 α-Renaming and β-Reduction . . . . . . . . . . . . . . . . . . . . 518
S.4.5 Function Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
S.4.6 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

S.5 Other Applicative Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
S.5.1 Simple let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 520
S.5.2 Recursive let Expressions . . . . . . . . . . . . . . . . . . . . . . . . 520
S.5.3 Predicative let Expressions . . . . . . . . . . . . . . . . . . . . . . . 520
S.5.4 Pattern and “Wild Card” let Expressions . . . . . . . . . . 521
S.5.5 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
S.5.6 Operator/Operand Expressions . . . . . . . . . . . . . . . . . . . 522

S.6 Imperative Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
S.6.1 Statements and State Changes . . . . . . . . . . . . . . . . . . . . 522
S.6.2 Variables and Assignment . . . . . . . . . . . . . . . . . . . . . . . . 523
S.6.3 Statement Sequences and skip . . . . . . . . . . . . . . . . . . . . 523
S.6.4 Imperative Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . 523
S.6.5 Iterative Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
S.6.6 Iterative Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

S.7 Process Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
S.7.1 Process Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
S.7.2 Process Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
S.7.3 Input/Output Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
S.7.4 Process Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

S.8 Simple RSL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Part IX Solutions to Exercises

T Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
T.1 Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
T.2 Chapter 2: Domain Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 533
T.3 Chapter 3: Requirements Engineering . . . . . . . . . . . . . . . . . . . . . 534
T.4 Chapter 4: Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
T.5 Appendix D: Prelude Domain Actions . . . . . . . . . . . . . . . . . . . . 536
T.6 Appendix E: Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
T.7 Appendix F: Support Technologies . . . . . . . . . . . . . . . . . . . . . . . 537
T.8 Appendix G: Management and Organisation . . . . . . . . . . . . . . . 537
T.9 Appendix H: Rules and Regulations . . . . . . . . . . . . . . . . . . . . . . 537
T.10 Appendix I: Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
T.11 Appendix J: Human Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 538
T.12 Appendix K: Postlude Domain Actions . . . . . . . . . . . . . . . . . . . 538
T.13 Appendix L: Prelude Requirements Actions . . . . . . . . . . . . . . . . 538



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
XLVI Contents

T.14 Appendix M: Domain Requirements . . . . . . . . . . . . . . . . . . . . . . 539
T.15 Appendix N: Interface Requirements . . . . . . . . . . . . . . . . . . . . . . 539
T.16 Appendix O: Machine Requirements . . . . . . . . . . . . . . . . . . . . . . 539
T.17 Appendix P: Postlude Requirements Actions . . . . . . . . . . . . . . . 539
T.18 Appendix Q: Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008

“
slid

e
8
”



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8

Part I

Opening

A brief introduction, Chap. 1, sets the stage for Part II, Chaps. 2–4. The
introduction outlines what they cover and what they do not cover.
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1

Introduction “slide 9”

In this chapter we shall overview the ‘triptych’ approach to software devel-
opment. The paradigm, first proper section just below, motivates the triplet
of ‘domain’, ‘requirements’ and software ‘design’ ‘phases’ covered briefly in
Sect. 1.3. These phases can be pursued in a series of (usually sequentially
ordered) ‘stages’ and the stages likewise in likewise ‘steps’. Work on many
steps and some stages can occur in parallel. The stage and step concepts are
introduced in Sect. 1.4 and covered in detail in Chaps. 2–4. The software en-
gineering of these phases, their stages and steps are focused on constructing
‘documents’ — and the nature of these is covered in Sects. 1.5–1.8. Section
1.6 is the first major study section of this chapter. The core part of phase doc-
uments are either ‘descriptive’ (i.e., ‘indicative’, as it is), ‘prescriptive’ (i.e.,
‘putative’ in the form of properties of what ones wants) or specifies a software
design (i.e., are ‘imperative’). Sect. 1.9 briefly elaborates on these terms. The “slide 10”

term ‘software’ is given a proper definition — one that most readers should
find surprising — in Sect. 1.10. Section 1.11 covers the ideas behind pursu-
ing software development both using informal and formal techniques. And
Sect. 1.12 — another major study section of chapter — finally introduces the
notions of entities, functions, events and behaviours.

1.1 What Is a Domain ? “slide 11”

1.1.1 An Attempt at a Definition

Characterisation 1 (Domain) By a domain we shall understand a uni-
verse of discourse, small or large, a structure of entities, that is, of “things”,
individuals, particulars some of which are designated as state components;
of functions, say over entities, which when applied become possibly state-
changing actions of the domain; of events, possibly involving entities, occur-
ring in time and expressible as predicates over single or pairs of (before/after)
states; and of behaviours, sets of possibly interrelated sequences of actions
and events.
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4 1 Introduction

1.1.2 Examples of Domains “slide 12”

We give some examples of domains. (i) A country’s railways form a domain
of the rail net with its rails, switches, signals, etc.; of the trains travelling
on the net, forming the train traffic; of the potential and actual passengers,
inquiring about train travels, booking tickets, actually travelling, etc.; of the
railway staff: management, schedulers, train drivers, cabin tower staff, etc.;
and so forth.“slide 13”

(ii) Banks, insurance companies, stock brokers, traders and stock ex-
changes, the credit card companies, etc., form the financial services industry
domain.

(iii) consumers, retailers, wholesalers, producers and the supply chain form
“the market” domain.

There are many domains and the above have only exemplified “human
made” domains, not, for example, those of the natural sciences We shall have
more to say about this later. Essentially it is for domains like the ‘human
made’ domains that this book will show you how to professionally develop
the right software and where that software is right !

1.2 The Triptych Paradigm “slide 14”

Before software can be designed one must understand its requirements.
Before requirements can be expressed one must understand the applica-
tion domain.

We assume that the reader understands the term ‘software’, but we shall,
in Sect. 1.10, explain our definition of this term. By requirements we under-
stand a document which prescribes the properties that are expected from the
software (to be designed). By application domain we understand the business
area of human activity and/or the technology area for which the software is
to be applied. We shall, in the rest of this book, omit the prefix ‘application’
and just use the term ‘domain’.

1.3 The Triptych Phases of Software Development “slide 15”

1.3.1 The Three Phases

As a consequence of the “dogma” we view software development as ideally
progressing in three phases: In the first phase, ‘Domain Engineering’, a model
is built of the application domain. In the second phase, ‘Requirements En-
gineering’, a model is built of what the software should do (but not how it
should that). In the third phase, ‘Software Design’, the code that is subject
to executions on computers is designed.
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1.3 The Triptych Phases of Software Development 5

1.3.2 Attempts at Definitions “slide 16”

Characterisation 2 (Domain Engineering) By domain engineering we
shall understand the processes of constructing a domain model, that is, a
model, a description, of the chosen domain, as it is, “out there”, in some
reality, with no reference to requirements, let alone software.

Characterisation 3 (Requirements Engineering) By requirements en-
gineering we shall understand the processes of constructing a requirements
model, that is, a model, a prescription, of the chosen requirements, as we
would like them to be.

“slide 17”

Characterisation 4 (Software Design) By software design we shall un-
derstand the processes of constructing software, from high level, abstract (ar-
chitectural) designs, via intermediate abstraction level component and module
designs, to concrete level, “executable” code.

Characterisation 5 (Model) By a model we shall understand a mathe-
matical structure whose properties are those described, prescribed or design
specified by a domain description, a requirements prescription, respectively a
software design specification.

1.3.3 Comments on The Three Phases “slide 18”

The three phases are linked: the requirements prescription is “derived” from
the domain description, and the software design is derived from the require-
ments prescription in such a way that we obtain a maximum trust in the
software: that it meets customer expectations: that is, it is the right software,
and that it is correct with respect to requirements: that is, the software is
right. “slide 19”

Characterisation 6 (Phase of Software Development) By a phase of
development we shall understand a set of development stages which together
accomplish one of the three major development objectives: a(n analysed, vali-
dated, verified) domain model, a(n analysed, validated, verified) requirements
model, or a (verified) software design. These three “tasks”: a domain model,
a requirements model, and a software design will be defined below.

“slide 20”

Characterisation 7 (Software Development) Collectively the three phases
are included when we say ‘software development’.

Domain engineering is covered as follows: Chapter 2 outlines all the stages
and steps of domain engineering. It does not bring examples. Instead the
book provides for one large example, the ‘Model Development’ of most of
Vol. II. Hence Appendices F–K provides in “excruciating” detail examples of
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6 1 Introduction

all the relevant aspects of domain engineering. These are then being referred
to in Chap. 2.

Requirements engineering is covered as follows: Chapter 3 outlines all the
stages and steps of requirements engineering. Like Chap. 2 Chap. 3 does not
bring examples. Instead Appendices N–P provides in “excruciating” detail
examples of all the relevant aspects of requirements engineering. These are
then being referred to in Chap. 3.

Software design is not covered “in earnest” in this book. Chapter 4
overviews how one refines the requirements prescription, in stages and steps
of development, into executable code. Appendix R, as a consequence, only
offers some rudimentary examples.

1.4 Stages and Steps of Software Development “slide 21”

We make distinctions between phases of development (i.e., the domain engi-
neering, the requirements engineering and the software design phases), stages
of development — within a phase, and steps of development — within a stage.

1.4.1 Stages of Development “slide 22”

Characterisation 8 (Stage of Software Development) By a stage of de-
velopment we mean a major set of logically strongly related development steps
which together solves a clearly defined development task.

We shall later define the stages of the major phases, and we shall then be
rather loose as to what constitutes a development step. That is, Chaps. 2–3
shall define the specific stages relevant to those phases of development.

1.4.2 Steps of Development “slide 23”

Characterisation 9 (Step of Software Development) By a step of de-
velopment we mean iterations of development within a stage such that the
purpose of the iteration is to improve the precision or make the document
resulting from the step reflect a more concrete description, prescription or
specification.

1.5 Development Documents “slide 24”

All we do, really, as software developers, can be seen as a long sequence of doc-
umenting, i.e., producing, writing, documents alternating with thinking and
reasoning about and presenting and discussing these documents to and with
other people: customers, clients and colleagues. Among the last documents to
be developed in this series are those of the executable code.“slide 25”
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1.6 Informative Documents 7

In this section we shall take a look at the kind of documents that should
result from the various phases, stages and steps of development, and for whose
writing, i.e., as “input”, aside from other documents, we do all the thinking,
reasoning, and discussing.

For any of the three phases of development, one can distinguish three
classes of documents:

• Informative Documents Sect. 1.6 (Page 7)
• Modelling Documents Sect. 1.7 (Page 25)
• Analysis Documents Sect. 1.8 (Page 26)

1.6 Informative Documents “slide 26”

An informative document ‘informs’. An informative document is expressed
in some national language.1 Informative documents serve as a link between
developers. clients and possible external funding agencies:

• “What is the project name ?” Item 12

• “When is the project carried out ?” Item 1
• “Who are the project partners ?” Item 2
• “Where is the project being done ?” Item 2
• “Why is the project being pursued ?” Items 3(a)–3(b)
• “What is the project all about ?” Items 3(b)–3(g)
• “How is the project being pursued ?” Items 4–6

“slide 27”

And many other such practicalities. Legal contracts can be seen as part of
the informative documents. We shall list the various kinds of informative
documents that are typical for domain and for requirements engineering.

1.6.0 An Enumeration of Informative Documents

Instead of broadly informing about the aims and objectives of a development
project we suggest a far more refined repertoire of information “tid-bits”. A
listing of the sixteen names of these “tid-bits” hints at these: “slide 28”

1 Project Name and Date Sect. 1.6.1
2 Project Partners (‘whom’) and Place(s) (‘where’) Sect. 1.6.2
3 [Project: Background and Outlook]

(a) Current Situation Sect. 1.6.3
(b) Needs and Ideas Sect. 1.6.4
(c) Concepts and Facilities Sect. 1.6.5
(d) Scope and Span Sect. 1.6.6

1 The fact that informative documents are informal displays a mere coincidence of
two times ‘inform’.

2 The item numbers refer to the enumerated listing given on Page 7.
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(e) Assumptions and Dependencies Sect. 1.6.7
(f) Implicit/Derivative Goals Sect. 1.6.8
(g) Synopsis Sect. 1.6.9

4 [Project Plan]
(a) Software Development Graph Sect. 1.6.10
(b) Resource Allocation Sect. 1.6.11
(c) Budget Estimate Sect. 1.6.12
(d) Standards Compliance Sect. 1.6.13

5 Contracts and Design Briefs Sect. 1.6.14
6 Logbook Sect. 1.6.15

For examples of ‘information’ modelling and resulting documents we refer to
Appendix E, Sect. E.1 and to Appendix M, Sect. M.1.“slide 29”

We shall now explain each of these kinds of informative documents.

1.6.1 Project Name and Dates “slide 30”

The first information are those of

• Project Name: the name of the endeavour;
• Project Dates: the dates of the project.

For examples of ‘project name and dates’ modelling and resulting documents
we refer to Appendix E, Sect. E.1.1, Page 318 and to Appendix M, Sect. M.1.1,
Page 461.

1.6.2 Project Partners and Places “slide 31”

The second information is that of

• Project Partners: who carries out the project.
Full partner (collaborator) details are (eventually) to be given:
⋆ Client(s): full names, addresses, and possibly names of contact persons,

etc., of the people and/or companies and/or institutions who and which
have ‘ordered’ the project and who and which shall receive its resulting
documents.

⋆ Developer(s): full names, addresses, and possibly names of contact per-
sons, etc., of the people and/or companies and/or institutions who and
which are primarily developing the deliverables of the project and who
and which shall receive its main funding.“slide 32”

⋆ Project Consultant(s): full names, addresses, and possibly names of pos-
sible consultants, i.e., companies and/or individuals outside “the circle”
of clients and developers.

⋆ Project Funding Agencies: full names, addresses, possibly names of con-
tact persons, etc., of the people and/or agencies who and which are
possibly [co-]funding the project.
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1.6 Informative Documents 9

⋆ Project Audience: full names, addresses, and possibly names of contact
persons, etc., of the people and/or agencies who and which are possibly
(also) interested in the project.“slide 33”

• Project Places: where is the project carried out ? Full addresses: visiting
and postal mailing addresses and electronic addresses.

For examples of ‘project partners and places’ modelling and resulting docu-
ments we refer to Appendix E, Sect. E.1.2, Page 318 and to Appendix M,
Sect. M.1.2, Page 462.

1.6.3 Current Situation “slide 34”

Usually a domain engineering project is started for some reason. Either the
developer or the client, or both, have only scant knowledge of the domain,
or, when they have it is not written down but is “inside” the heads of some
or most of their (i.e., developer or client) staff. Similarly a requirements “slide 35”

engineering project is started for some reason. A common reason is that of
the current situation on the client side. Either no IT is used but there is
a need for some IT, or current IT is outdated, or new demands are made
by owners, management or employees in general at the client, demands that
“translate” into altered or new IT; or customers of the client may have similar
expectations — of better e-service etc., from the client, i.e., their provider. “slide 36”

For a software design project .... .... ....
The ‘Current Situation’ document must outline this in succinct terms: say

half to a full page.
For examples of ‘current situation’ modelling and resulting documents we

refer to Appendix E, Sect. E.1.3, Page 319 and to Appendix M, Sect. M.1.3,
Page 462.

1.6.4 Needs and Ideas “slide 37”

Needs

Usually the current situation is paraphrased, i.e., accentuated, by expressions
of specific ‘needs’ for a domain description, or for a requirements prescription,
or for a completed software design, i.e., for software.

The need for a domain description could either be that it should form
the basis for an orderly process of requirements development, or the basis
for teaching and learning courses, say for new staff of the enterprise (of the
domain), or both. “slide 38”

The need for a requirements prescription could either be that it should
form the basis for an orderly process of requirements development, or the
basis for a tender, i.e., an offer to develop some software, or both. “slide 39”

Usually can express needs while at the same time indicate how one might
foresee an expressed need being possibly fulfilled, i.e., achieved.
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10 1 Introduction

A need for a software design may be that it must be based on an existing
requirements prescription.

A need for a requirements prescription may be that it must be based on
an existing domain description.

A need for a domain description may be that it must be just informal,
another need may be that it be both informal and formal.

Ideas3

One thing are the ‘needs’. Another thing are the ‘ideas’. If there are needs
but no ideas, or if there is no need but ideas, then “forget it”: no reason to
embark on a development !

By ideas we mean that there are some substantial concepts that, when
properly deployed, can lead to a believable development, whether of a domain
description, of a requirements prescription, or of a software design.“slide 41”

By domain ideas we mean such concepts “upon” or “around” which one
can build, one can model, a domain description. Examples will be given in
Sect. 2.3 on page 55

By requirements ideas we mean such concepts “upon” or “around” which
one can build, one can model, a requirements prescription. Examples will be
given in Sect. 3.3 on page 117

By software design ideas we mean such concepts “upon” or “around” which
one can build, one can model, a software design. Examples will be given in
Sect. 4.3 on page 170

• • •

For examples of ‘needs and ideas’ modelling and resulting documents we re-
fer to Appendix E, Sect. E.1.4, Page 320 and to Appendix M, Sect. M.1.4,
Page 462.

1.6.5 Concepts and Facilities “slide 42”

The pragmatics of the ‘concepts and facilities’ section is to — ever so briefly
— inform all parties to the contract of which are the most important ideas of
the subject domain of the contract. A facility is a physical phenomenon (here
embodied, for example, in the form of software tools) while a concept is a
mental construction (covering, usually some physical phenomena or concepts
of these).“slide 43”

In the context of informing only about a domain description development
project the concepts and facilities are intended, in the document section of
that name, to be the most pertinent concepts and facilities on which the
domain description should focus.“slide 44”

3
“slide 40”
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1.6 Informative Documents 11

In the context of informing only about a requirements prescription develop-
ment project the concepts and facilities are intended, in the document section
of that name, to be the most pertinent concepts and facilities of the require-
ments prescription: which are the novel ideas which the requirements should
be based. For examples of ‘concepts and facilities’ modelling and resulting doc-
uments we refer to Appendix E, Sect. E.1.5, Page 321 and to Appendix M,
Sect. M.1.5, Page 463.

1.6.6 Scope and Span “slide 45”

Characterisation 10 (Scope) By scope — in the context of informative
software development documentation — we shall understand an outline of
the broader setting of the problem, i.e., the universe of discourse at hand. .

Characterisation 11 (Span) By a span — in the context of informative
software development documentation — we shall understand an outline of
the more specific area and the nature of the problem that need be tackled. .

“slide 46”

Let us examine a few generic cases of scope/span determination.
(i) “Pure” domain engineering scope and span: By ‘ “pure” domain engi-

neering’ we mean a project aimed at just producing a domain model. In such
a case the scope should typically be chosen as wide as possible, while the span
is a proper, but not too “small” subset of the scope. “slide 47”

(ii) Domain and requirements engineering scope and span: By ‘domain and
requirements engineering’ we mean a project first aimed at producing a do-
main model and then, from it, “derive” a requirements model. In such a case
the scope should typically be chosen to be comfortably wider than the scope
of the requirements part of the project. “slide 48”

(iii) Requirements engineering and software design scope and span: By ‘re-
quirements engineering and software design’ we mean a project first aimed at
producing a requirements model and then, from it, “derive” a software design.
In such a case the scope and span part of the requirements part of the project
should be equal. Software design projects have their scope and span being set
by the requirements part of the project.

For examples of ‘scope and span’ modelling and resulting documents we
refer to Appendix E, Sect. E.1.6, Page 322 and to Appendix M, Sect. M.1.6,
Page 464.

1.6.7 Assumptions and Dependencies “slide 49”

There are two kinds of assumptions and dependencies. One kind has to do
with sources of knowledge. For domain development there needs to be the
sources from which the domain engineer can learn about and develop the
domain description. We assume and depend on that. For requirements devel-
opment there needs to be a domain description as well as people from whom
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the requirements engineer can elicit the requirements and thus develop the
requirements prescription. We assume and depend on that. And for software
design there needs to be a requirements prescription. We assume and depend
on that. The other kind has to do with delineation of the domain.“slide 50”

Usually a domain description (one upon which we base our (domain) re-
quirements) leaves out what we might call the “fringes” of the domain, i.e.,
the environment of that domain. To also describe those parts might simply
“be too much”! That environment is simply judged too large, too unwieldy,
to describe.“slide 51”

Yet, sooner or later, that environment will show up in the requirements
prescription, if it is not already in the domain description. The requirements
prescription eventually, thus, comes to depend — maybe not exactly crucially,
but anyway — on events originating in the environment, or the ability of the
computing system to dispose of some output to that environment.

In the ‘assumptions and dependencies’ project document the project re-
sponsible must clearly express these assumptions and dependencies.

For examples of ‘assumptions and dependencies’ modelling and resulting
documents we refer to Appendix E, Sect. E.1.7, Page 323 and to Appendix M,
Sect. M.1.7, Page 465.

1.6.8 Implicit/Derivative Goals “slide 52”

Usually computing systems provide, or offer, a large number of entities, func-
tionalities, events and behaviours, and it is those requirements we prescribe.
But those entities, functionalities, events and behaviours really do not them-
selves reveal why they are or were prescribed. Usually their prescription serves
“ulterior” goals which cannot be quantified in a way that indicates what the
prescribed computing system should offer.“slide 53”

Typical meta-goals are such as: (i) “Deployment of the computing system
should result in greater profits for the company.” (ii) “Deployment of the
computing system should result in the company attaining a larger market
share for its products.” (iii) “Deployment of the computing system should
result in fewer worker accidents.” (iv) “Deployment of the computing system
should result in more satisfied customers (and staff).”“slide 54”

Other kinds of meta-goals are: (v) “The existence of a domain description
will have led or should lead to better understanding of the domain, hence to
improved performance of domain staff trained in the domain based on such
domain descriptions.” (vi) “The existence of a requirements prescription will
have led or should lead to more appropriately targeted software.”“slide 55”

In the ‘implicit/derivative goals’ project document the project responsible
must clearly express these implicit/derivative goals.

For examples of ‘implicit/derivative goals’ modelling and resulting docu-
ments we refer to Appendix E, Sect. E.1.8, Page 324 and to Appendix M,
Sect. M.1.8, Page 465.
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1.6 Informative Documents 13

1.6.9 Synopsis “slide 56”

The four sub-groups of informative document parts: current situation, needs
and ideas, scope and span, and concepts and facilities, form an introductory
“whole” that now need be “solidified”. They need to be brought together in
a more coherent fashion — in what we shall call the synopsis document “slide 57”

Characterisation 12 (Synopsis) By a synopsis4 — in the context of infor-
mative software development documentation — we shall understand the same
as a resumé, a summary, that is, a comprehensive view, that is, an extract of
a combination of current situation, needs and ideas, concepts, and scope and
span documentation informing about a universe of discourse for which some
development work is desired, for example: (i) the construction of a domain “slide 58”

description, (ii) or the construction of a requirements prescription based on
an existing domain description, or both; (iii) or the construction of a software
design based on existing requirements prescription; (iv) or both (requirements
and software design), (v) or all (domain, requirements and software design);
(vi) or the first two (domain and requirements).

For examples of ‘synopsis’ modelling and resulting documents we refer to
Appendix E, Sect. E.1.9, Page 325 and to Appendix M, Sect. M.1.10, Page 465. “slide 59”

“slide 60”

1.6.10 Software Development Graphs “slide 61”

Development projects need be managed. This is true also for single person
projects. Management of domain engineering projects must take into account
that these are normally research projects: little is objectively known about
the domain before it is properly described; hence one must be prepared for
“unforeseen” resource usage. Software development graphs are a means of “slide 62”

capturing, either beforehand, during, or after the project how that project is
to be done, is being done, or was done, respectively !

Graphs5

Characterisation 13 (Software Development Graph) By a software de-
velopment graph we shall syntactically understand a labelled graph whose
distinctly labelled nodes (vertexes) designate development activities (phases,
stages or steps), and whose distinctly labelled, directed edges (arcs) designate
precedence relations between (node designated) activities. “slide 64”

Semantically a software development graph designate a set of project be-
haviour designators. A project behaviour designator is a sequence of phase,
stage or step state designators and state transition designators.

4 Synopsis: Greek, comprehensive view, from synopsis: to be going to see together.
5

“slide 63”
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A phase, stage or step state designator is a node label such that the node is
that of a phase part, or a stage part, or a step part of a software development
graph.

A state transition designator is an edge label such that the edge is that of
an edge of a development graph.

A Conceptual Software Development Graph6
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     ... etcetera ... etcetera

Fig. 1.1. A software development graph (left)
and two (incomplete) project behaviour designators (center and right)

The center graph of Fig. 1.1 portrays the following incompletely listed project
behaviour designator:

<{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,{L}>

“slide 66”
The “abstracted” software development graph of Fig. 1.1 denotes a very large
number of project behaviours, that is, a very large number of project be-
haviour designators, and, for each of these, depending on the states of phase,
stage or step, as represented, for example, by the states of the documents
related to each of the nodes, a very large number of (dynamic) behaviours.

Who Sets Up the Graphs ?7

Management is responsible for setting up an appropriate software development
graph (for each project). A software development graph shows how manage-
ment intends to pursue the project: which phases, stages and steps to conduct,
that is, to which depth of adherence to the triptych principles management
wishes to achieve its aims.

Chapters 2 and 3 will illustrate “abstracted”, i.e., generic, software de-
velopment graph reflecting phases, stages and steps. Sections 2.14 and 3.14
summarize these (Figs. 2.3 on page 103 and 3.17 on page 164).

6
“slide 65”

7
“slide 67”
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How Do Software Development Graphs Come About ?8

For a given, specific project, its software development graph comes about in
any number of ways. (i) Either the project is a “repeat” project, that is, is
developing a kind of software which has been developed before. In that case
one simply uses the software development graph used in those earlier projects.
But since there probably are some small, or perhaps not even that small,
difference between the current project and the previous ones, the currently
chosen software development graph may be modified. Thus every software
development graph will be recorded for possible re-use in future. It becomes
part of the “corporate assets” of the software house. “slide 69”

(ii) Or the project is a “research” project, that is, is developing a new kind
of software which has not been developed before. In that case one starts with
the process diagram most appropriate for the project.

If it is a domain engineering project then one starts with the domain
engineering process graph of Fig. 2.3 on page 103 as the software development
graph; modifies this graph to suit the specific domain at hand, all the while
recalling that development of domain descriptions are really research rather
than engineering tasks, hence accepting that the software development graph
need be modified along the way: clear resource estimates of time and effort
cannot be assured. “slide 70”

If it is a requirements engineering projectthen one starts with the domain
engineering process graph of Fig. 3.17 on page 164 as the software development
graph; and modifies this graph to suit the specific requirements at hand. One
must always be prepared to modify the software development graph along the
way.

For examples of ‘concrete software development graph’ modelling and re-
sulting documents we refer to Appendix E, Sect. 1.6.10, Page 13 and to Ap-
pendix M, Sect. M.1.11, Page 465.

1.6.11 Resource Allocation “slide 71”

Characterisation 14 (Software Development Graph Attribute) An at-
tributed software development graph is a software development graph whose
nodes and edges have been assigned development attributes.

“slide 72”

Usually node development attributes include whether the node is a do-
main, a requirements or a software design development node; whether the
node is a phase, stage, or step node; of what specific kind the node — when
not just a phase node — is: any one of the stages of the three triptych phases9;

8
“slide 68”

9 The phases of domain and requirements modelling and analysis will first be “re-
vealed” in Chaps. 2 and 3 — the only stage of the information document devel-
opment is just that stage.
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any one of the 16 kinds of information document development steps enumer-
ated on Page 7; or any one of the many stages or steps of the domain and
requirements modelling and analysis to be “revealed” in Chaps. 2 and 3.“slide 73”

Given an attributed software development graph and given experience
from projects “similar” to the one described by the graph one can now esti-
mate resources to be allocated to each task, that is, to the carrying out the
actions implied by each of its nodes. These resource estimates are of the“slide 74”

following kinds: number and qualifications of project staff; when, i.e., during
which periods each individual, but not yet named staff, is to be available for
the action denoted by the box being attributed; tools (office space, equipment
(incl. IT equipment), software — by allocated staff members — to be available
for that action; ‘begin’ and ‘end time’; etcetera.

These estimates can be affixed to the nodes (boxes); thus augmenting its
set of attributes.

For examples of ‘resource allocation’ modelling and resulting documents we
refer to Appendix E, Sect. E.1.11, Page 327 and to Appendix M, Sect. M.1.12,
Page 465.

1.6.12 Budget (and Other) Estimates “slide 75”

From the augmented (i.e., extended attributed) software development graph
one can now derive a number of estimates:

• (i) a budget estimate, per phase and stage, and thus for the entire (software
development graph [SDG] designated) project;

• (ii) a time estimate, per phase and stage, and thus for the entire (SDG
designated) project;

• (iii) a staff estimate, per phase and stage, and thus for the entire (SDG
designated) project (here it must be analysed which activities can occur
in parallel) and usually in the form of a histogram;

• (iv) an equipment estimate, per phase and stage, and thus for the entire
(SDG designated) project;

• etcetera.

For examples of ‘budget estimate’ modelling and resulting documents we refer
to Appendix E, Sect. E.1.12, Page 328 and to Appendix M, Sect. M.1.13,
Page 466.

1.6.13 Standards Compliance “slide 76”

A distinction is made between development standards and documentation
standards.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
1.6 Informative Documents 17

Development Standards

Usually development occurs in the context of following some development
standards (one or more). The Institute of Electrical and Electronics Engineers
(IEEE [115]) has established a number of standards for the development of a
various kinds of software. Other national and international organisations, in-
cluding the International Organization for Standardization (ISO [117]) and the
International Telecommunication Union (ITU [121]), have established similar
standards.

Documentation Standards10

Usually documentation occurs in the context of following some documentation
standards (one or more). The Institute of Electrical and Electronics Engineers
(IEEE [115]) has established a number of standards also for the documentation
of a various kinds of software. Other national and international organisations,
including the International Organization for Standardization (ISO [117]) and
the International Telecommunications Union (ITU [121]), have also estab-
lished similar standards.

Standards Versus Recommendations11

Some standards are binding, some are recommendations. Reference to specific
standards and recommendations can be written into project contracts with
the meaning that the project must comply with these standards and recom-
mendations. Some standards mandate or recommend the use — and hence
the documentation style — of certain development practices. Other standards
mandate or recommend the use of specific spelling forms, mnemonics, abbre-
viations, etc.

Specific Standards12

There are very many standards for software development and for its documen-
tation. Some standards come and go. Others are quite stable. A study of more
specialised standards reveals the following acronyms: MIL-STD-498, DOD-
STD-2167A, RTCA/DO-178B, JSP188 and DEF STAN 05-91. The reader is
invited to search for these on the Internet. It therefore makes little sense for
us to list other than a few clusters of seemingly more stable and trustworthy
standards. “slide 80”

• International Organization for Standardization (ISO): http://www.iso.ch/

10
“slide 77”

11
“slide 78”

12
“slide 79”
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⋆ ISO 9001: Quality Systems Model for quality assurance in design, devel-
opment, production, installation and servicing

⋆ ISO 9000-3: Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software

⋆ ISO 12207: Software Life Cycle Processes http://www.12207.com/“slide 81”

• IEEE Standards: http://standards.ieee.org/

⋆ IEEE Std 610.12-1990, Standard Glossary of Software Engineering Termi-
nology
This standard contains definitions for more than 1000 terms, establish-
ing the basic vocabulary of software engineering.

⋆ IEEE Std 1233-1996, Guide for Developing System Requirements Specifi-
cations
This standard provides guidance for the development of a set of re-
quirements that, when realized, will satisfy an expressed need.“slide 82”

⋆ IEEE Std 1058.101987, Standard for Software Project Management Plans
This standard specifies the format and contents of software project
management plans.

⋆ IEEE Std 1074.1-1995, Guide for Developing Software Life Cycle Processes
This guide provides approaches to the implementation of IEEE Std
1074. (This standard defines the set of activities that constitute the
mandatory processes for the development and maintenance of soft-
ware.)

⋆ IEEE Std 730.1-1995, Guide for Software Quality Assurance Plans
The purpose of this guide is to identify approaches to good Software
Quality Assurance practices in support of IEEE Std 730. (The standard
establishes a required format and a set of minimum contents for Soft-
ware Quality Assurance Plans. The description of each of the required
elements is sparse and thus provides a template for the development
of further standards, each expanding on a specific section of this doc-
ument.)“slide 83”

⋆ IEEE Std 1008-1987 (reaffirmed 1993), Standard for Software Unit Testing
The standard describes a testing process composed of a hierarchy of
phases, activities, and tasks. Further, it defines a minimum set of tasks
for each activity.

⋆ IEEE Std 1063-1987 (reaffirmed 1993), Standard for Software User Doc-
umentation
This standard provides minimum requirements for the structure and
information content of user documentation.

⋆ IEEE Std 1219-1992, Standard for Software Maintenance
This standard defines a software maintenance process.

“slide 84”

• Software Engineering Institute (SEI): http://www.sei.cmu.edu

⋆ Software Process Improvement Models and Standards, including SEI’s var-
ious Capability Maturity Models

• UK Ministry of Defence Standards http://www.dstan.mod.uk/
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⋆ 00-55: Requirements for Safety Related Software in Defence Equipment
http://www.dstan.mod.uk/data/00/055/02000200.pdf

⋆ 00-56: Safety Management Requirements for Defence Systems
http://www.dstan.mod.uk/data/00/056/01000300.pdf

So, please, use the Internet for latest on standards relevant to your project.
For examples of ‘standards compliance’ modelling and resulting docu-

ments we refer to Appendix E, Sect. E.1.13, Page 329 and to Appendix M,
Sect. M.1.14, Page 466.

1.6.14 Contracts and Design Briefs “slide 85”

Contracts

The current situation, needs and ideas, concepts and facilities, scope and span
and synopsis document parts set the stage for, and are a necessary background
for contractual documents. Usually one contract document is sufficient for
small projects. And usually several related contract documents are needed for
larger projects.

Characterisation 15 (Contract) By a contract — in the context of infor-
mative software development documentation — we shall understand a sepa-
rate, clearly identifiable document (i) which is legally binding in a court of “slide 86”

law, (ii) which identifies parties to the contract, (iii) which describes what
is being contracted for, possibly mutual deliveries, by dates, by contents, by
quality, etc., (iv) which details the specific development principles, techniques,
tools and standards to be used and followed, (v) which defines price and pay-
ment conditions for the deliverables, (vi) and which outlines what is going to
happen if delivery of any one deliverable is not made on time, or does not
have the desired contents, or does not have the desired quality, etc.

Items (iii–iv) constitute the main part of a design brief. (See below.) “slide 87”

For national and for international contracts predefined forms which make
more precise what the contracts must contain are usually available. We will
not bring in an example. Such an example would have to reflect the almost
‘formal’ status of ‘legal binding’, and would thus have to be extensive and
very carefully worded, hence rather long. Instead we refer to national and
international contract forms.

The software development field is undergoing dramatic improvements.
Clients are entitled to have legally guaranteed quality standards (incl. correct-
ness verification). Hence contracts will have to refer to(i)the broader domain “slide 88”

and give specific references to named domain stakeholders, if the development
of a domain description is (to be) contracted; or (ii)existing domain descrip-
tions and give specific references to named stakeholders, if the development
of a requirements prescription is (to be) contracted; or (iii)existing require-
ments prescriptions and give specific references to named stakeholders, if the
development of software is (to be) contracted.
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Therefore contracts should name “the methods” by means of which the
deliveries will be developed — as we have indicated in item (iv) of the char-
acterisation.

Contract Details13

1 Overview: Contracts between an organization and a software vendor
should clearly describe the rights and responsibilities of the parties to
the contract. The contracts should be in writing with sufficient detail to
provide assurances for performance, source code accessibility, software and
data security, and other important issues. Before management signs the
contracts, it should submit them for legal counsel review.“slide 90”

Organizations may encounter situations where software vendors cannot or
will not agree to the terms an organization requests. Under these circum-
stances, organizations should determine if they are willing to accept or
able to mitigate the risks of acquiring the software without the requested
terms. If not, consideration of alternative vendors and software may be
appropriate.

2 General Issues of Licensing:“slide 91”

Software is usually licensed, not purchased; and under licensing agree-
ments, organizations obtain no ownership rights, even if the organization
paid to have the software developed. In general, for domain descriptions
and requirements prescriptions, a license should clearly define permitted
users and sites.

3 Copyright:“slide 92”

Proprietary as well as open-source software are protected by copyright
laws. If need be then clients and vendors must make sure that also their
domain descriptions and requirements prescriptions are protected by being
proprietary.

4 Domain, Requirements and Software Development Specifica-
tions:“slide 93”

Contracts for the development of custom domain descriptions, require-
ments prescriptions, and software design must be very specific about the“slide 94”

scope and span of domain descriptions and requirements prescriptions,
that requirements prescriptions build on accepted domain descriptions,
that requirements prescriptions are feasible and satisfiable, and that soft-
ware designs build on accepted requirements prescriptions.

5 Performance Standards:“slide 95”

This issue relates to requirements and software. When the requirements
prescriptions are claimed feasible and satisfiable, then there must be soft-
ware that satisfies the requirements. These requirements also include per-
formance requirements, part of the machine requirements to be covered
in Chap. 3.

6 Documentation, Modification, Updates and Conversion:“slide 96”

13
“slide 89”
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A licensing or development agreement should require vendors to deliver
appropriate documentation. This should include all kinds of documenta-
tion — such as defined later. A license or separate maintenance agreement
should address the availability and cost of document updates and modifi-
cations.

7 Bankruptcy: “slide 97”

In addition to escrow agreements, organizations should consider the need
for other clauses in licensing agreements to protect against the risk of
a vendor bankruptcy. For mission-critical software, organizations should
consult with their legal counsel on how best to deal with the Bankruptcy
laws, which typically gives a bankrupt vendor discretion to determine
which of its executory contracts it will continue to perform and which it
will reject. Proper structuring of the contract can help an organization
protect its interests if a vendor becomes insolvent.

8 Regulatory Requirements: “slide 98”

Domain descriptions, requirements prescriptions and software designs
must individually often have to comply with national (state and federal),
regional (NAFTA, EU, etc.), and/or international (ICAO, IMO, etc.)
regulatory agency requirements. These compliance requirements must be
clearly stated in the contract.

9 Payments: “slide 99”

Software development contracts normally call for partial payments at spec-
ified milestones, with final payment due after completion of acceptance
tests. Organizations should structure payment schedules so developers
have incentives to complete the project quickly and properly. Properly
defined milestones can break development projects into deliverable seg-
ments so an organization can monitor the developer’s progress and identify
potential problems.
Contracts should detail all features and functions the delivered software
will provide. If a vendor fails to meet any of its express requirements,
organizations should retain the right to reject the tendered product and
to withhold payment until the vendor meets all requirements.

10 Representations and Warranties: “slide 100”

Organizations should seek an express representation and warranty — this
is a statement by which one party gives certain assurances to the other,
and on which the other party may rely — in the document deliverables,
that the licensed documentation whether a domain description a require-
ments prescriptions, or a software design (incl. code) does not infringe
upon the intellectual property rights of any third parties.

11 Dispute Resolution: “slide 101”

Organizations should consider including dispute resolution provisions in
contracts and licensing agreements. Such provisions enhance an organi-
zation’s ability to resolve problems expeditiously and may provide for
continued software development during a dispute resolution period.

12 Agreement Modifications: “slide 102”
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Organizations should ensure software licenses clearly state that vendors
cannot modify agreements without written signatures from both parties.
This clause helps ensure there are no inadvertent modifications through
less formal mechanisms some states may permit.

13 Vendor Liability Limitations:“slide 103”

Some vendors may propose contracts that contain clauses limiting their
liability.They may add provisions that disclaim all express or implied war-
ranties or that limit monetary damages to the value of the product itself,
specific liquidated damages, etc.. Generally, courts uphold these contrac-
tual limitations on liability in commercial settings unless they are un-
conscionable. Therefore, if organizations are considering contracts, they
should consider whether the proposed damage limitation bears an ade-
quate relationship to the amount of loss the financial organization might
reasonably experience as a result of the vendor’s failure to perform its
obligations. Broad exculpatory clauses that limit a vendor’s liability are
a dangerous practice that could adversely affect the soundness of an or-
ganization because organizations could be injured and have no recourse.

14 IT Security:“slide 104”

We interpret this contract aspect only in the light of software. There
is an ISO recommendation of IT Security:INTERNATIONAL ISO/IEC
STANDARD 17799 Reference number ISO/IEC 17799:2005(E), ISO/IEC
2005, ISO/IEC 17799:2005(E), Information technology, Security tech-
niques: Code of practice for information security management, ISO copy-
right office, Case postale 56, CH-1211 Geneva 20, Switzerland. E-mail
copyright@iso.org, Web www.iso.org. Published in Switzerland. Second
edition, 2005-06-15. We advice clients and developers to carefully adhere
to that ISO recommendation.

15 Subcontracting and Multiple Vendor Relationships:“slide 105”

Some software vendors may contract third parties to develop software for
their clients. To provide accountability, it may be beneficial for organi-
zations to designate a primary contracting vendor. Organizations should
include a provision specifying that the primary contracting vendor is re-
sponsible for the software regardless of which entity designed or developed
the software. Organizations should also consider imposing notification and
approval requirements regarding changes in vendor’s significant subcon-
tractors.

16 Restrictions and Adverse Comments:“slide 106”

Some software licenses include a provision prohibiting licensees from dis-
closing adverse information about the performance of the software to any
third party. Such provisions could inhibit an organization’s participation
in user groups, which provide useful shared experience regarding software
packages. Accordingly, organizations should resist these types of provi-
sions.
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Design Briefs14

Characterisation 16 (Design Brief) By a design brief we understand a
clearly delineated subset text of the contract. To recall (from the characteri-
sation): This text (item (iii)) describes what is being contracted for possibly
mutual deliveries, by dates, by contents, by quality, etc., and ((iv)) it details
the specific development principles, techniques and tools; that is, the design
brief directs the developers, the providers of what the contract primarily des-
ignates, as to what, how and when to develop what is being contracted.

For examples of ‘contract and design brief’ modelling and resulting docu-
ments we refer to Appendix E, Sect. E.1.14, Page 330 and to Appendix M,
Sect. M.1.15, Page 466.

1.6.15 Logbook “slide 108”

Characterisation 17 (Logbook) By a logbook we understand a record, a
set of notes, which as correctly as is humanly feasible, lists the development,
release, installation, use, maintenance, etc., history of a project.

A logbook serves as a necessary reference in innumerable, usually unforesee-
able instances of development. “slide 109”

Example 1 (Logbook) An “abstracted” . . . (dot, dot, dot) example is:

2 Jan. 1991: Initial meeting between partners &c.
...
31 May 1993: Acceptance of domain model &c.
...
24 October 1994: Acceptance of requirements model &c.
...
3 June 1996: Acceptance of software delivery &c.
...

The &c. signify reports, and the . . . signify other logbook entries. .

1.6.16 Discussion of Informative Documentation “slide 110”

General

We have identified some useful components of informative document parts.
There may be other such informative parts. It all may depend on the universe
of discourse, i.e., the problem at hand. We thus encourage the software devel-
oper to carefully reflect on which are the necessary and sufficient informative
document parts.
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There is usually a separate set of informative documents to be worked out
for each phase of development: (i) the domain phase, (ii) the requirements
phase, and (iii) the software design phase. “slide 111”

The current situation, needs, ideas, concepts, scope, span, synopsis and
contract document parts differ in content between these phases. Usually the
informative document parts, although crucially important, need not require
excessive resources to develop, but their development must still be very care-
ful!

In general, the informative document parts are concerned with the socioe-
conomic, even geopolitical, and hence pragmatic context of the projects about
which they inform. As such they are “fluid”, i.e., less precise, in what they
aim at and what their objectives are. The next two documentation kinds are,
in that respect, much more precise, and much more focused.

Methodological Consequences: Principle, Techniques and Tools15

Principle 1 (Information Document Construction) When first contem-
plating a new software development project, make sure — as the very first
thing — to establish a proper complement of (all) informative documents.
Throughout the entire development and after — during the entire lifetime of
the result, whether a domain model, or a requirements model, or a software
system — maintain this set of informative documents.

“slide 113”

Principle 2 (Information Documents) The informative documents must
be authoritative, definitive and interesting to read.

“slide 114”

Technique 1 (Information Document Construction) First establish a
document embodying the fullest possible table of contents, whether for just
a domain development, or a requirements development, or a software design
project, or for a combination of these. Then fill in respective document parts,“slide 115”

“little by little”, just a few sentences, using terse, precise, i.e., concise lan-
guage, while avoiding descriptions (prescriptions and specifications) and anal-
yses. Throughout maintain clear monitoring and control of all versions of these
documents.

“slide 116”

Tool 1 (Information Document Construction) A text processing sys-
tem, preferably LATEX, but MS Word will do, with good cross-referencing
facilities, even between separately ‘compilable’ documents, provides a ‘mini-
mum’ tool of documentation. Add to this a reasonably capable version moni-
toring and control system (such as CVS [59]) and you have a workable system.

The subject of document version monitoring and control will not be dealt
with in this volume.“slide 117”

“slide 118” 14
“slide 107”

15
“slide 112”
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1.7 Modelling Documents “slide 119”

Documents which describe, prescribe or specify something, such document are
intended to model those things. They, the document, are not those things, just
conceptualisations, i.e., models of them. In this book we shall only seriously
cover the modelling of domains and of requirements.

1.7.1 Domain Modelling Documents16
“slide 120”

Chapter 2 covers domain engineering in general and Sect. 2.9 covers domain
modelling in particular.

Domain descriptions are documents. They are usually rather substantial.
They usually include the following kinds of documents:

1 stakeholder identification and liaison records, Sect. 2.4
2 acquisition sketches, Sect. 2.5
3 business process rough sketches, Sect. 2.7
4 terminologies, Sect. 2.8
5 and domain models proper. Sect. 2.9

“slide 121”

Chapter 2 will cover the domain engineering phase with its

• (i) stakeholder identification, Sect. 2.4
• (ii) domain acquisition, Sect. 2.5
• (iii) domain analysis and concept formation, Sect. 2.6
• (iv) business process rough sketching, Sect. 2.7
• (v) terminology, Sect. 2.8
• (vi) domain modelling, Sect. 2.9
• (vii) domain model verification, Sect. 2.10
• (viii) domain model validation, Sect. 2.11
• and (ix) domain theory formation Sect. 2.13

stages. Documents emerge from each of these stages.
Documents 1, 2, 3, 4 and 5 correspond to (i), (ii), (iv), (v) and (vi). The

other activities are analytic.

1.7.2 Requirements Modelling Documents17
“slide 122”

Chapter 3 covers requirements engineering in general and Sect. 3.9 covers
requirements modelling in particular.

Requirements prescriptions are documents. They are usually rather sub-
stantial. They usually include the following kinds of documents:

16 By ‘Domain Modelling Documents’ we mean the same as by ‘Domain Description
Documents’.

17 By ‘Requirements Modelling Documents’ we mean the same as by ‘Requirements
Prescription Documents’.
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1 stakeholder identification and liaison records,
2 acquisition sketches,
3 business process re-engineering rough sketches,
4 terminologies, and
5 requirements models proper.

“slide 123”

Chapter 3 will cover the requirements engineering phase with its

• (i) stakeholder identification, Sect. 3.4
• (ii) requirements acquisition, Sect. 3.5
• (iii) requirements analysis and concept formation, Sect. 3.6
• (iv) business process re-engineering rough sketching, Sect. 3.7
• (v) terminology, Sect. 3.8
• (vi) requirements modelling, Sect. 3.9
• (vii) requirements model verification, Sect. 3.10
• (viii) requirements model validation, Sect. 3.11
• (ix) requirements feasibility and satisfiability analysis, Sect. 3.12
• and (x) requirements theory formation. Sect. 3.13

stages. Documents emerge from each of these stages.
Correspondence between Items 1–5 and Items (i–x) are as for correspond-

ing domain stages and documents.

1.8 Analysis Documents “slide 124”

1.8.1 Verification, Model Checks and Tests

Characterisation 18 (Analysis) By analysis we mean a process which re-
sults in a document and which analyses another document: a domain de-
scription, a requirements prescription, or a software design, and where the
analysis is either a verification (in the sense of formally proving a property),
or a model check (in the sense of writing another, mechanically analysable,
document which “models” the former and checks whether it possesses a given
property), or a formal (or even informal) test (in the sense of subjecting the
former document to a form of “execution” to observe whether that execution
yields a given result).

1.8.2 Concept Formation “slide 125”

Yet there is also another form of analysis. One that results in the analysing
engineer forming a concept.

Characterisation 19 (Concept Formation) By concept formation we mean
an analysis process in which the analysing engineer from analysed phenomena
or analysed concrete concepts form a concept, respectively a “more” abstract,
i.e., less concrete concept.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
1.9 Descriptions, Prescriptions, Specifications 27

1.8.3 Domain Analysis Documents “slide 126”

Chapter 2 covers domain engineering in general and Sects. 2.6 and 2.10–2.13
covers domain analysis in particular.

Stages (iii, vii, viii, ix) listed in Sect. 1.7.1 are analytic. They result in the
following kinds of documents:

1 domain analysis (and concept formation) see Sect. 2.6
2 domain model verification, see Sect. 2.10
3 domain model validation, see Sect. 2.11
4 and domain theory formation. see Sect. 2.13

1.8.4 Requirements Analysis Documents “slide 127”

Chapter 3 covers domain engineering in general and Sects. 3.6 and 3.10–3.13
covers requirements analysis in particular.

Stages (iii, vii, viii, ix, x) listed in Sect. 1.7.2 are analytic. They result in
the following kinds of documents:

1 requirements analysis (and concept formation), Sect. 3.6
2 requirements model verification, Sect. 3.10
3 requirements model validation, Sect. 3.11
4 requirements feasibility and satisfiability, Sect. 3.12
5 and requirements theory formation. Sect. 3.13

1.9 Descriptions, Prescriptions, Specifications “slide 128”

1.9.1 Characterisations

We have, so far, used the terms descriptions, prescriptions and specifications
— and we shall continue to use these terms — with the following meanings.

(A) Descriptions are of “what there is”, that is, descriptions are, in this
book, of domains, “as they are”;

(B) Prescriptions are of “what we would like there to be”, that is, pre-
scriptions are, in this book, of requirements to software; and

(C) Specifications are of “how it is going to be”, that is, specifications are,
in this book, of software.

1.9.2 Reiteration of Differences “slide 129”

Descriptions are intended to state objective facts, i.e., are indicative. Prescrip-
tions are intended to state commonly supposed and assumed to exist facts,
i.e., are putative which we here take to be the same as optative: expressive
of wish or desire. Specifications are intended to be expressive of a command,
not to be avoided or evaded, i.e., are imperative. “slide 130”
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Descriptions are intended to state objective facts, i.e., are indicative. Pre-
scriptions are intended to state commonly supposed and assumed to exist
facts, i.e., are putative which we here take to be the same as optative: ex-
pressive of wish or desire. Specifications are intended to be expressive of a
command, not to be avoided or evaded, i.e., are imperative.“slide 131”

(i) Software shall satisfy requirements.
(ii) Requirements defines properties of software.
(iii) Requirements must be commensurate with “their domain”; that is,

requirements must satisfy all the properties of the domain insofar as these
have not been re-engineered.

(iv) Requirements prescriptions denote requirements models.
(v) Requirements models are not the software, only abstractions of soft-

ware.
(vi) Requirements models are computable adaptations of subsets of domain

models.
(vii) Domains satisfy a number of laws.
(viii) Domain laws should be expressed by or derivable from domain de-

scriptions.
(ix) Domain descriptions denote domain models.
(x) Domain models are not the domain, only abstractions of domains.

1.9.3 Rôle of Domain Descriptions “slide 132”

Domain descriptions for common computing system (colloquially: IT) appli-
cations relate to requirements prescriptions and software specifications (incl.
code) as physics relate to classical engineering artifacts: (a) electricity, plasma
physics, etc., relate to electronics; (b) mechanics, aerodynamics, etc., relate
to aeronautical engineering; (c) nuclear physics, thermodynamics, etc., relate
to nuclear engineering; etcetera.“slide 133”

Domain engineering relate to IT applications as follows: (d) transport do-
mains to software (engineering) for road, rail, shipping and air traffic appli-
cations; (e) financial service industry domains to software (engineering) for
banking, stock trading; portfolio management, insurance, credit card, etc.,
applications; (f) market trading (“the market”) domains to software (engi-
neering) for consumer, retailer, wholesaler, supply chain, etc., applications
(aka “e-business”); etcetera.

The Sciences of Human and Natural Domains18

The ‘Human Domains’

The domains for which most software systems are at play are — what we shall call —

the human domains of financial service industries banks, insurance companies, stock

18
“slide 134”
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(etc.) trading brokers, traders, exchanges, etcetera; transportation industries roads,

rails, shipping and air traffic; “the market” of consumers, retailers, wholesalers,

product originators, and their distribution chains; etcetera,

The Natural Sciences19

In contrast the natural sciences includes physics: classical mechanics: statics,
kinematics, dynamics, continuum mechanics: solid mechanics and fluid me-
chanics, mechanics of liquids and gases: hydrostatics, hydrodynamics, pneu-
matics, aerodynamics, and other fields; electromagnetism, relativity, thermo-
dynamics and statistical mechanics, quantum mechanics, etcetera “slide 136”

The above listing is of disciplines within the natural sciences. It is not
to be confused with a listing of research areas such as: condensed matter
physics, atomic, molecular, and optical physics, high energy/particle physics,
astrophysics and physical cosmology, etc.

Research Areas of the Human Domains20

To establish a domain description for an area within the human domain —
for which there was no prior domain description — is a research undertaking
— just as it is for establishing a domain description for an area within the
domain of natural sciences. There are thus as many21 human domain research
areas as there are reasonably clearly separable such areas within the human
domain.

Rôle of Domain Descriptions — Summarised22

That then is the rôle of domain descriptions to gain understanding, through
research, and, independently, to obtain the right software: software that meet
client expectations.

1.9.4 Rôle of Requirements Prescriptions “slide 139”

A main rôle of a requirements prescription is to prescribe “the machine” !

The Machine

Characterisation 20 (Machine) By ‘the machine’ we shall mean a combi-
nation of hardware and software.

19
“slide 135”

20
“slide 137”

21 and we think: exciting research areas
22

“slide 138”
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Machine Properties

The purpose of developing a requirements prescription is to prescribe proper-
ties of a machine.

1.9.5 Rough Sketches “slide 140”

Characterisation 21 (Rough Sketch) By a rough sketch we mean an in-
formal text which does not claim to be consistent or complete, and which
attempts, perhaps in an unstructured manner, to outline a phenomenon or a
concept.

Rough sketches are useful “starters” towards narratives, and are used in ac-
quired domain or requirements knowledge, and in outlining business processes
and re-engineered such.

We refer to the rough sketch example of Sect. F.2 on page 343.

1.9.6 Narratives “slide 141”

Characterisation 22 (Narrative) By a narrative we mean an informal
text which is structured, which is claimed consistent and relative complete,
and which informally defines a phenomenon or a concept.

“slide 142”

Narratives will be our main “work horse”, our chief means, at communicating
domain descriptions and requirements prescriptions to all stakeholders.

We refer to the narrative example of Page 343 of Sect. F.3.1 on page 343.“slide 143”

Characterisation 23 (Annotation) By an annotation we mean an infor-
mal text which is structured so as to follow, usually line-by-line a formal
(mathematical) text which it aims at explaining to a lay reader not familiar
with the mathematical formulas.

“slide 144”

We usually mandate that all formulas be annotated. But we do not mandate
a specific “formal” way of structuring the annotations.

We refer to the annotations example of Page 344 of Sect. F.3.1 on page 343
(which annotates the formalisation of Page 344 of Sect. F.3.1 on page 343).

1.10 Software “slide 145”

1.10.1 What is Software ?

Characterisation 24 (Software) By software we understand: a set of doc-
uments: the domain development (incl. verification and validation) documents,
the requirements development (incl. verification and validation) documents,
and the software design development (incl. verification) documents.
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1.10.2 Software is Documents ! “slide 146”

Domain Documents

The domain development documents include the informative documents and
the documents which record stakeholder identification and relations, domain
acquisition, domain analysis and concept formation, rough sketches of the
business (i.e., domain) processes, terminologies, domain description, domain
verification (incl. model check and test), domain validation and domain theory
formation.

Requirements Documents23

The requirements development documents include the informative documents
and the documents which record stakeholder identification and relations, re-
quirements acquisition, requirements analysis and concept formation, rough
sketches of the re-engineered business (i.e., new, revised domain) processes,
terminologies, requirements description, requirements verification (incl. model
check and test), requirements validation and requirements theory formation.

Software Design Documents24

And the software design development documents include the informative doc-
uments, the documents which record architectural designs (“how derived from
requirements”) and verifications (incl. model checks and tests), component de-
signs and verifications (incl. model checks and tests), module designs and ver-
ifications (incl. model checks and tests), code designs and verifications (incl.
model checks and tests), and the actual executable code documents.

Sections 2.15, 3.15 and 4.14 shall detail the above documents.

Software System Documents25

Characterisation 25 (Software System) By a software[-based] system we
shall understand a set of software system documents (see below) as well as
the hardware, the IT equipment for which the software is oriented: computers,
their peripherals, data communication equipments, etcetera.

“slide 150”

The software system documents include: the actual executable code docu-
ments, as well as ancillary documents: demonstration (i.e., demo) manuals,
training manuals, installation manuals, user manuals, maintenance manuals,
and development and maintenance logbooks.

23
“slide 147”

24
“slide 148”

25
“slide 149”
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1.11 Informal and Formal Software Development “slide 151”

In this book we shall advocate a combination of informal and formal develop-
ment. And in this section we shall use the term specification (specify) to also
cover description (describe) and prescription (prescribe), etc.

1.11.1 Characterisations

Informal Development

Characterisation 26 (Informal Development) By informal development
we understand, in this book, a software development which does not use formal
techniques, see below; instead it may use UML and an executable program-
ming language.

Formal Development26

Characterisation 27 (Formal Development) By formal development we
mean, in this book, a software development which uses one or more formal
techniques, see below, and it may then use these in a spectrum from system-
atically via rigorously to formally.

“slide 153”

For characterisations of systematically, rigorously and formally we refer to
charaterisations below.

Formal Software Development

Characterisation 28 (Formal Software Development Technique) By a
formal development technique we mean, in this book, a software development
in which specifications are expressed in a formal language, that is, a language
with a formal syntax so that all specifications can be judged well-formed or
not; a formal semantics so that all well-formed specifications have a precise
meaning; and a (relatively complete) proof system such that one may be able
to reason over properties of specifications or steps of formally specified de-
velopments from a more abstract to a more concrete step. Additionally a
formal technique may be a calculus which allows developers to calculate, to
refine “next”, formally specified development steps from a preceding, formally
specified step.

Formal techniques are usually supported by software tools that check for syn-
tactic and helps check for semantic correctness.

Examples of formal techniques, sometimes referred to as formal methods,
are Alloy [122], ASM (Abstract State Machines) [188], B and event-B [4, 52],
DC (Duration Calculus) [228], MSC and LSC (Message and Live Sequence

26
“slide 152”
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Charts) [102, 118, 119, 120], Petri Nets [173, 124, 185, 184, 186], Statecharts
[98, 99, 101, 103, 100], RAISE (Rigorous Approach to Industrial Software
Engineering) [33, 34, 35, 85, 87, 86], TLA+ (Temporal Logic of Actions) [131,
132, 155], VDM (Vienna Development Method) [44, 45, 78] and Z [203, 204,
226, 108]. The EATCS27 Monograph [43] arose from [188, 52, 69, 163, 86, 155,
108] and covers ASM, B and event-B, CafeOBJ, CASL, DC, RAISE, TLA+,
VDM and Z.

This book will, in Vol. II, primarily feature the RAISE approach and thus
use its Specification Language RSL. For a more comprehensive introduction to
formal techniques we refer to [33, 34, 35].

Systematic (Formal) Development !28

Characterisation 29 (Systematic (Formal) Development) By a system-
atic use of a formal technique we mean, in this book, a software development
which which formally specifies whenever something is specified, but which
does not (at least only at most in a minor of cases) reason formally over steps
of development.

Rigorous (Formal) Development !29

Characterisation 30 (Rigorous (Formal) Development) By a rigorous
use of formal techniques we mean, in this book, a software development which
which formally specifies whenever something is specified, and which formally
express (some, if not all) properties that ought be expressed, but which does
not (at least only at most in a minor number of cases) reason formally over
steps of development, that is, verify these to hold, either by theorem proving,
or by model checking, or by formally based tests.

Formal (Formal) Development !30

Characterisation 31 (Formal (Formal) Development) By formal use of
a formal techniques we mean, in this book, a software development which
which formally specifies whenever something is specified, which formally ex-
presses (most, if not all) properties that ought be expressed, and which for-
mally verifies these to hold, either by theorem proving, or by model checking,
or by formally based tests.

27 EATCS: European Association for Theoretical Computer Science
28

“slide 154”

29
“slide 155”

30
“slide 156”
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1.11.2 Recommendations “slide 157”

This book advocates that software development be pursued according to the
triptych paradigm, and that the phases, stages and steps, as outlined in
Chaps. 2–4, be pursued in a combination of both informal and formal descrip-
tions, prescriptions and specifications, in a systematic to rigorous fashion.“slide 158”

“slide 159”

1.12 Entities, Functions, Events and Behaviours “slide 160”

So what is it that we describe, prescribe and specify, informally or formally ?
The answer is: simple entities, operations, events and behaviours We shall,
in this section, survey these concepts of of domains, requirements and soft-
ware designs. In the domain we observe phenomena. “slide 161” From usually
repeated such observations we form (immediate, abstract) concepts. We may
then “lift” such immediate abstract concepts to more general abstract con-
cepts. Phenomena are manifest. They can be observed by human senses (seen,
heard, felt, smelled or tasted) or by physical measuring instruments (mass,
length, time, electric current, thermodynamic temperature, amount of sub-
stance, luminous intensity). Concepts are defined.“slide 162”

We shall analyse phenomena and concepts according to the following
simple, but workable classification: simple entities, functions (over entities),
events (involving changes in entities, possibly as caused by function invoca-
tions, i.e., actions, and/or possibly causing such), and behaviours as (possibly
sets of) sequences of actions (i.e., function invocations) and events.

1.12.1 Simple Entities “slide 163”

Characterisation 32 (Simple Entity) By a simple entity we mean some-
thing we can point to, i.e., something manifest, or a concept abstracted from,
such a phenomenon or concept thereof.

Simple entities are either atomic or composite. The decision as to which simple
entities are considered atomic or composite is a decision solely taken by the
describer.

Atomic Entities31

Characterisation 33 (Atomic Entity) By an atomic entity we intuitively
understand a simple entity which “cannot be taken apart” (into other, the
sub-entities) and which possess one or more attributes.

31
“slide 164”
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Attributes — Types and Values:32

With any entity we can associate one or more attributes.

Characterisation 34 (Attribute) By an attribute we understanda pair of
a type and a value.

“slide 166”

Example 2 (Atomic Entities)
Entity: Person Entity: Bank Account

Type Value Type Value
Name Dines Bjørner number 212 023 361 918
Weight 118 pounds balance 1,678,123 Yen
Height 179 cm interest rate 1.5 %
Gender male credit limit 400,000 Yen

.

“Removing” an attribute from an entity destroys its “entity-hood”.

Composite Entities33

Characterisation 35 (Composite Entity) By a composite entity we intu-
itively understand an entity (i) which “can be taken apart” into sub-entities,
(ii) where the composition of these is described by its mereology, and (iii)
which, apart from the attributes of the sub-entities, further possess one or
more attributes.

Sub-entities are entities.

Mereology34

Characterisation 36 (Mereology) By mereology we understanda theory
of part-hood relations. That is, of the relations of part to whole and the
relations of part to part within a whole.

The term mereology seems to have been first used in the sense we are using
it by the Polish mathematical logician Stanis law Leshniewski [145, 159, 206,
207, 214].

32
“slide 165”

33
“slide 167”

34
“slide 168”
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Composite Entities — Continued35

Example 3 (Transport Net, A Narrative)
Entity: Transport Net

Subentities: Segments
Junctions

Mereology: “set” of one or more s(egment)s and
“set” of two or more j(unction)s

such that each s(egment) is delimited by two j(unctions)
and such that each j(unction) connects one or more s(egments)
Attributes

Types: Values:
Multimodal Rail, Roads
Transport Net of Denmark
Year Surveyed 2006

.
“slide 170”

To put the above example of a composite entity in context we give and example
of both an informal narrative and a corresponding formal specification:“slide 171”

Example 4 (Transport Net, A Formalisation) A transport net consists
of one or more segments and two or more junctions. With segments [junctions]
we can associate the following attributes: segment [junction] identifiers, the
identifiers of the two junctions to which segments are connected [the identifiers
of the one or more segments connected to the junction], the mode of a segment
[the modes of the segments connected to the junction]“slide 172”

type
N, S, J, Si, Ji, M

value
obs Ss: N → S-set, obs Js: N → J-set
obs Si: S → Si, obs Ji: J → Ji
obs Jis: S → Ji-set, obs Sis: J → Si-set
obs M: S → M, obs Ms: J → M-set

axiom
∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)} ...

type
Nm, Co, Ye

value
obs Nm: N → Nm, obs Co: N → Co, obs Ye: N → Ye

Si, Ji, M, Nm, Co, Ye are not entities. They are names of attribute types and,
as such, designate attribute values. N is composite, S and J are considered
atomic .
35

“slide 169”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
1.12 Entities, Functions, Events and Behaviours 37

States36

Characterisation 37 (State) By a domain statewe shall understand a col-
lection of domain entities chosen by the domain engineer.

The pragmatics of the notion of state is that states are recurrent arguments
to functions and are changed by function invocations.

Formal Modelling of Entities37

How do we model entities ? The answer is: by selecting a name for the desired
“set”, that is, type of entities; by defining that type to be either an abstract
type, i.e., a sort,

type
A

or a concrete type, i.e., with defined, concrete values.

type
A = Type Expression

“slide 175”
Values of the type are then expressed as:

value
a:A

As our main support example unfolds in Vol. II we shall illustrate sorts
with their observer functions and concrete types over either basic types
(Booleans, integers, natural numbers, reals, etc., or over composite types (sets,
Cartesians, records, lists, maps, functions). Appendix Sect. S.1 (Pages 503–
506) gives a terse introduction to the type system of our main formal specifi-
cation language RSL.

1.12.2 Functions “slide 176”

Characterisation 38 (Function) By a function we shall understand some-
thing which when applied to what we shall call arguments (i.e., entities) yield
some entities called the result of the function (application).

Actions

Characterisation 39 (Action) By an action we shall understand the same
thing as applying a state-changing function to its arguments (including the
state).

36
“slide 173”

37
“slide 174”
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Functions — Resumed38

The observer functions of the formal example above are not the kind of func-
tions we are (later) seeking to identify in domains and requirements. These
observer functions are mere technicalities: needed, due to the way in which
we formalise — and are deployed in order to express sub-entities, mereologies
and attributes.

Function Signatures39

Characterisation 40 (Function Signature) By a function signature we
mean the name and type of a function.

type
A, B, ..., C, X, Y, .., Z

value
f: A × B × ... × C → X × Y × ... × Z

The last line above expresses a schematic function signature.

Function Descriptions40

Characterisation 41 (Function Description) By a function description
we mean a function signature and something which describes the relationship
between function arguments (the a:A’s, b:B’s, . . . , c:C’s and the x:X’s, y:Y’s,
. . . , z:Z’s).

“slide 180”

Example 5 (Well Formed Routes)type
P = Ji × Si × Ji /∗ path: triple of identifiers ∗/
R′ = P∗ /∗ route: sequence of connected paths ∗/
R = {| r:R′

• wf R(r) |} /∗ subtype of R′: those r′s satisfying wf R(r) ∗/
value

wf R: R′ → Bool
wf R(r) ≡

∀ i:Nat•{i,i+1}⊆inds r⇒let (,,ji′)=r(i),(ji′′,,)=r(i+1) in ji′=ji′′ end

The last line above describes the route wellformedness predicate. The meaning
of the “(,,” and “,,)” is that the omitted path components “play no rôle”

38
“slide 177”

39
“slide 178”

40
“slide 179”
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1.12.3 Events “slide 181”

Characterisation 42 (Event)

• An event can be characterised by
⋆ a predicate, p and
⋆ a pair of (“before”) and (“after”) of pairs of

· states and
· times:
· p((tb, σb), (ta, σa)).

⋆ Usually the time interval ta − tb
⋆ is of the order ta ≃ next(tb)

.
“slide 182”

Sometimes the event times coincide, tb = ta, in which case we say that the
event is instantaneous. The states may then be equal σb = σa or distinct !

We call such predicates as p for event predicates.
By an event we shall thus, to paraphrase, understand an instantaneous

change of state not directly brought about by some explicitly willed action in
the domain, but either by “external” forces. or implicitly as a non-intended
result of an explicitly willed action.

Events may or may not lead to the initiation of explicitly issued operations. “slide 183”

Example 6 (Events) A ‘withdraw’ from a positive balance bank account
action may leave a negative balance bank account. A bank branch office may
have to temporarily stop actions, i.e., close, due to a bank robbery.

Internal events: The first example above illustrates an internal event. It was
caused by an action in the domain, but was not explicitly the main intention
of the “withdraw” function.

External events: The second example above illustrates an external event.
We assume that we have not explicitly modelled bank robberies!

1.12.4 Behaviours “slide 184”

Simple Behaviours

Characterisation 43 (Simple Behaviour) By a simple behaviour

• we understand a sequence, q, of zero, one or more
⋆ actions
⋆ and/or events
⋆ q1, q2, . . . , qi, qi+1, . . . , qn

• such that the state
⋆ resulting from one such action, qi,
⋆ or in which some event, qi, occurs,

• becomes the state in which the next action or event, qi+1,
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⋆ if it is an action, is effected,
⋆ or, if it is an event, is the event state

.
“slide 185”

Example 7 (Simple Behaviours) The opening of a bank account, followed
by zero, one or more deposits into that bank account, and/or withdrawals from
the bank account in question, ending with a closing of the bank account.
Any prefix of such a sequence is also a simple behaviour. Any sequence in
which one or more events are interspersed is also a simple behaviour.

General Behaviours41

A behaviour is either a simple behaviour, or is a concurrent behaviour, or,
if the latter, can be either a communicating behaviour or not (i.e., just a
concurrent behaviour).

Concurrent Behaviours42

Characterisation 44 (Concurrent Behaviour) By a concurrent behaviour
we shall understand a set of behaviours (simple or otherwise).

“slide 188”

Example 8 (Concurrent Behaviours) A set of simple behaviours, that
may result from two or more distinct bank clients, each operating of their
own, distinct, that is, non-shared accounts, forms a concurrent behaviour.

Communicating Behaviours43

Characterisation 45 (Communicating Behaviour) By a communicat-
ing behaviour we shall understand a set of two or more behaviours where
otherwise distinct elements (i.e., behaviours) share events.

“slide 190”

Sometimes we do not model the behaviour from which external events are
incident (i.e., “arrive”) or to which events emanate (i.e., “depart”). But such
an environment is nevertheless a behaviour.“slide 191”

Example 9 (Communicating Behaviours) Consider a bank.To model that
two or more clients can share the same bank account one could model the bank
account as one behaviour and each client as a distinct behaviour. Let us as-
sume that only one client can open an account and that only one client can
close an account. Let us further assume that sharing is brought about by one
client, say the one who opened the account, identifying the sharing clients.
Now, in order to make sure that at most one client accesses the shared account

41
“slide 186”

42
“slide 187”

43
“slide 189”
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at one one time (in any one “smallest” transaction interval) one may model
“client access to account” as a pair of events such that during the interval
between the first (begin transaction) and the second (end transaction) event
no other client can share events with the bank account behaviour. Now the
set of behaviours of the bank account and one or more of the client behaviours
is an example of a communicating behavior.

Formal Modelling of Behaviours44

Communicating behaviours, the only really interesting behaviours, can be
modelled in a great variety of ways: from set-oriented models in B [4, 53],
RSL [85, 87, 33, 34, 35, 84, 41], VDM [44, 45, 78, 77], or Z [203, 204, 226,
108, 107], to models using for example CSP [110, 194, 196, 111],(as for example
“embedded” in RSL [85],), or, to diagram models using, for example, Petri
nets [124, 173, 185, 184, 186], message [118, 119, 120] or live sequence charts
[63, 102, 126], or state-charts [98, 99, 101, 103, 100].

1.12.5 Discussion “slide 193”

The main aim of Sect. 1.12 is to ensure that we have a clear understanding
of the modelling concepts of entities, functions, events and behaviours. To
“reduce” the modelling of phenomena and concepts to these four kinds of
phenomena and concepts is, of course, debatable. Our point is that it works,
that further classification, as is done in for example John F. Sowa’s [202],
is not necessary, or rather, is replaced by how we model attributes of, for
example, entities, and how we model facets (Sect. 2.9.2, next chapter).

1.12.6 Functions, Events and Behaviours as Entities

Review of Entities

In the example of Chap. F we identify the following as being entities: (i) nets
(Item 6 on page 344), (ii) links (Item 5 on page 343), (iii) hubs (Item 5), (iv)
insert commands (Item 18 on page 349), (v) remove commands (Item 19 on
page 349), (vi) time (Item 31 on page 358), (vii) time intervals (Item 35 on
page 359), (viii) vehicles (Item 42 on page 359), (ix) positions (Item 43 on
page 359) and (x) traffic (Item 44 on page 360).

It may surprise some that we designate the insert and remove commands
as entities. They are certainly of conceptual nature, but can be given manifest
representations in the form of documents (that, for example order the building
of a link and its eventual inclusion in the net).

It may surprise some that we designate time and time intervals as entities.
They are certainly of conceptual and very abstract nature, but so is our choice.

44
“slide 192”
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It may surprise some that we designate positions as entities. They are
certainly manifest: one can point to a position.

And it may finally surprise some that we designate traffics as entities. It
is certainly manifest, and can be recorded, say by video-recording the traffic.
So that is also our choice.

Functions as Entities

to be written

Events as Entities

to be written

Behaviours as Entities

to be written

1.13 Domain vs. Operational Research Models “slide 194”

1.13.1 Operational Research (OR)

Since World War II, as a result of research and application of what became
known as OR models (OR for Operational Research), these have won a signif-
icant position also within the transportation infrastructure. But domain mod-
els are not OR models. OR models usually use classical applied mathematics:
calculus ([partial] differential equations), statistics, probability theory, graph
theory, combinatorics, signal analysis, theory of flows in networks, etcetera
where domain engineering use formal specification languages emphasising ap-
plied mathematical logic and modern algebra.

1.13.2 Reasons for Operational Research Analysis “slide 195”

OR models are established, that is, OR analysis is performed, for the following
reasons: to solve a particular problem, usually a resource allocation and/or
scheduling problem, but also, less often, the problem is one of taking advice:
should an investment be made, should one form of resource be “converted”
into another form, etc. Once solved the solver and the client knows how to
best allocate and/or schedule the investigated resource or whether to perform
a certain kind of investment, etc. OR models typically do not themselves lead
to software derived from the OR model, but sometimes results of OR analysis
become constants in or parameters for otherwise independently developed
software.
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1.13.3 Domain Models “slide 196”

Domain models are usually established (i) to understand an area of a domain
much wider than that analysable by current OR techniques, and sometimes
(ii) for purposes of “deriving” appropriate requirements, and (iii) for imple-
menting the right software. It has then turned out that in order to achieve
items (i–iii) above one has to use the kind of mathematics shown in this book.

1.13.4 Domain and OR Models “slide 197”

But domain and OR modelling are not really that separated — as it may
appear from the above. Oftentimes software (as well as hardware) design de-
cisions must (or ought to) be based on OR analysis. The two kinds of modelling
must still be pursued. But it is desirable that their scientists and engineers,
i.e., that their practitioners, collaborate. Today they do not collaborate. Today
only the domain engineers are aware of the existence of OR engineers.

1.13.5 Domain versus Mathematical Modelling “slide 198”

We could widen our examination of domain modelling versus OR modelling to
domain modelling versus mathematical modelling, where the latter extends
well beyond OR modelling to the modelling of physical and human made
domains in its widest sense — such as also practiced by physicists, biologists,
etc.

For OR modelling as well as mathematical modelling we can say that
domain modelling currently lacks the formal techniques offered by the former.

But we are digressing !

1.14 Summary “slide 199”

The exercises of this chapter, see next, reveal the essence of this chapter: (i)
the ‘triptych paradigm’ (Sect. 1.2); (ii) the ‘triptych phases of software en-
gineering’ (Sect. 1.3); (iii) the ‘stages’ and ‘steps’ of software development
(Sect. 1.4); (iv) the three classes of development documents (Sect. 1.5); (v)
the detailed nature of 16 kinds of ‘informative documents’ (Sect. 1.6); (vi) the
concepts of ‘modelling documents’ (Sect. 1.7); (vii) the concepts of ‘analysis “slide 200”

documents’ (Sect. 1.8); (viii) the concepts of ‘descriptions, prescriptions’ and
‘specifications’ (Sect. 1.9); (ix) the concept of ‘software’ (Sect. 1.10); (x) the
concepts (Sect. 1.11) of ‘informal development’, ‘formal development’, ‘infor-
mal and formal development’, ‘formal software development technique’, ‘sys-
tematic development’, ‘rigorous development’ and ‘formal development’; (xi)
the concepts of ‘entities’, ‘functions’, ‘events’ and ‘behaviours’ (Sect. 1.12);
and (xii) the concepts of ‘operational research’ versus those of ‘domain mod-
els’ (Sect. 1.13).
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1.15 Exercises

Exercise 1. The Triptych Paradigm: Rehearse the text of the triptych
dogma so that you can express it, “by heart”, precisely.
Solution 1 Vol. II, Page 529, suggests a way of answering this exercise.

Exercise 2. The Triptych Phases of Software Development: Rehearse
the text of the triptych phases of software development so that you can express
it, “by heart”, precisely.
Solution 2 Vol. II, Page 529, suggests a way of answering this exercise.

Exercise 3. Phases, Stages and Steps of Software Development: Ex-
plain the concepts of software development phase, stage and step.
Solution 3 Vol. II, Page 529, suggests a way of answering this exercise.

Exercise 4. Development Documents:
Enumerate the three kinds of development documents outlined in this

chapter, that is, express them, “by heart”, precisely.
Solution 4 Vol. II, Page 530, suggests a way of answering this exercise.

Exercise 5. Enumeration of Informative Documents:
Enumerate, as best as you can, the 16 kinds of informative documents

outlined in this chapter — express them, “by heart”, as precisely as you can.
Solution 5 Vol. II, Page 530, suggests a way of answering this exercise.

Exercise 6. Descriptions, Prescriptions, Specifications:
In which contexts are the terms descriptions, prescriptions and specifica-

tions used in this book, such as proclaimed in this chapter.
Solution 6 Vol. II, Page 530, suggests a way of answering this exercise.

Exercise 7. Software:
Explain what the term ‘software’ covers, such as characterised in this chap-

ter. That is: list as you can best remember, the names of the documents that
together “make up” software.
Solution 7 Vol. II, Page 530, suggests a way of answering this exercise.

Exercise 8. Informal and Formal Software Development:
Explain, as precisely as possible, the terms ‘informal development’, ‘for-

mal development’, ‘informal and formal development’, ‘formal software de-
velopment technique’, ‘systematic development’, ‘rigorous development’ and
‘formal development’ such as characterised in this chapter.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
1.15 Exercises 45

Solution 8 Vol. II, Page 532, suggests a way of answering this exercise.

Exercise 9. Entities and States, Functions and Actions, Events and
Behaviours:

Please define, as close to the characterisations of this chapter the notions
of entities, states, functions, actions, events and behaviours.
Solution 9 Vol. II, Page 532, suggests a way of answering this exercise.

Exercise 10. Mereology, Atomic and Composite Entities:
Please define, as close to the characterisations of this chapter the notion

of entities: atomic and composite. Focus, in particular, on the issue of the
attributes of composite entities, their sub-entities and their mereology.
Solution 10 Vol. II, Page 533, suggests a way of answering this exercise.

“slide 201”
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Part II

A Triptych of Software Engineering

This part consists, as is implied by the ‘triptych’ adjective, of three chapters.

• Domain Engineering Chapter 2, Pages 051–106
• Requirements Engineering Chapter 3, Pages 109–166
• Software Design Chapter 4, Pages 169–222
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We have, for each of these three chapters, perhaps somewhat “artificially”,
structured these according to almost the same sectioning:

1 Informative Documents
2 Stakeholder Identification
3 Acquisition
4 Analysis & Concept Formation
5 D Business Processes

R Business Process Re-Engineering
S Software Design Options

6 Terminology

7 Modelling
8 Verification
9 Validation

10 D Verification versus Validation
R Satisfiability and Feasibility
S Release, Transfer & Maintenance

11 D,R Theory Formation
S Documentation

The D, R, S andD,R markers shall indicate that the associated section title
relates to only the domain, the requirements, the software design, or to both
domain and requirements development. No marker shall indicate that the
section title is common to all the triptych phases.

Of course, for these ‘commonalities’, there are content-wise differences.
Several of the ‘common’-type sections, of respective chapters, that is, sev-

eral of the phase stages, cover almost identical methodology steps.

• • •

Here are more detailed listings of the respective chapter topics:

Chapter 2: Domain Engineering

1 Domain Information Sect. 2.3 (Page 55)
2 Domain Stakeholder Identification, Sect. 2.4 (Page 56)
3 Domain Acquisition, Sect. 2.5 (Page 57)
4 Domain Analysis and Concept Formation, Sect. 2.6 (Page 60)
5 Domain [i.e., Business] Processes, Sect. 2.7 (Page 62)
6 Domain Terminology, Sect. 2.8 (Page 63)
7 Domain Modelling, Sect. 2.9 (Page 64)

(a) Intrinsics Sect. 2.9.4 (Page 65)

(b) Support Technologies
Sect. 2.9.5 (Page 70)

(c) Management & Organistation
Sect. 2.9.6 (Page 73)

(d) Rules & RegulationsSect. 2.9.7
(Page 80)

(e) Scripts Sect. 2.9.8 (Page 84)

(f) Human Behaviour Sect. 2.9.9
(Page 100)

8 Domain Verification, Sect. 2.10 (Page 102)
9 Domain Validation and Sect. 2.11 (Page 102)

10 Domain Verification Versus Domain Validation and Sect. 2.12 (Page 102)
11 Domain Theory Formation, Sect. 2.13 (Page 102)
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Chapter 3: Requirements Engineering

1 Requirements Information Sect. 3.3 (Page 117)
2 Requirements Stakeholder Identification Sect. 3.4 (Page 119)
3 Requirements Acquisition Sect. 3.5 (Page 119)
4 Requirements Analysis & Concept Formation Sect. 3.6 (Page 121)
5 Business Process Re-Engineering Sect. 3.7 (Page 121)
6 Requirements Terminology Sect. 3.8 (Page 127)
7 Requirements Modelling Sect. 3.9 (Page 127)

(a) Domain Requirements Sect. 3.9.3 (Page 128)
(b) Interface Requirements Sect. 3.9.4 (Page 133)
(c) Machine Requirements Sect. 3.9.5 (Page 135)

8 Requirements Verification Sect. 3.10 (Page 163)
9 Requirements Validation Sect. 3.11 (Page 163)

10 Requirements Satisfiability and Feasibility Sect. 3.12 (Page 163)
11 Requirements Theory Formation Sect. 3.13 (Page 163)

Chapter 4: Software Design

1 Software Design Information Sect. 4.3 Page 170
2 Software Design Stakeholders Sect. 4.4 Page 171
3 Software Design Acquisition Sect. 4.5 Page 171
4 Software Design Analysis and Concept Formation Sect. 4.6 Page 171
5 Software Design Options Sect. 4.7 Page 171
6 Software Design Terminology Sect. 4.8 Page 172
7 Software Design Modelling Sect. 4.10 Page 175

(a) Architectural Design Sect. 4.10.1 (Page 175)
(b) Component and Module Design Sect. 4.10.3 (Page 221)
(c) Coding Sect. 4.10.4 (Page 221)
(d) Programming Paradigms Sect. 4.10.5 (Page 221)

8 Software Design Verification Sect. 4.11 Page 221
9 Software Design Validation Sect. 4.12 Page 221

10 Software Design Release, Transfer & Maintenance Sect. 4.13 Page 221
11 Software Design Documentation Sect. 4.14 Page 221
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Domain Engineering “slide 203”

Domain engineering is a new element of software engineering. Domain engi-
neering is to be performed prior to requirements engineering for the case where
there is no relevant domain description on which to base the requirements en-
gineering. For the case that such a description exists that description has to
first be checked: its scope must cover at least that of the desired requirements. “slide 204”

This chapter shall outline the stages and steps of development actions to
be taken in order to arrive, in a proper way, at a proper domain description.

2.1 Discussions of The Domain Concept “slide 205”

2.1.1 The Novelty

The idea of domain engineering preceding requirements engineering is new.
Well, in some presentations of requirements engineering there are elements of
domain analysis. But basically those requirements engineering-based forms of
analysis do not expect the requirements engineer to write down, that is, to se-
riously describe the domain, and certainly not in a form which is independent
of, that is, separated from the requirements prescriptions. “slide 206”

As also outlined in Sects. 1.2 and 1.13, domain models are as necessary for
requirements development and — thus also — for software design, as physics
is for the classical branches of electrical and electronics, mechanics, civil, and
chemical engineering.

2.1.2 Implications “slide 207”

This new aspect of software engineering implies that software engineers, as
a group, engaged in a software development project, from (and including)
domain engineering via requirements engineering to (and including) software
design, must possess the necessary formal and practical bases: the science
skills of domain engineering, the R&D skills of requirements engineering, and
the (by now) engineering skills of software design.
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2.1.3 The Domain Dogma “slide 208”

From Sect. 1.2 we repeat:

Before software can be designed one must understand its requirements.
Before requirements can be expressed one must understand the applica-
tion domain.

2.2 Stages of Domain Engineering “slide 209”

2.2.1 An Overview of “What to Do ?”

How do we then construct a domain description ? That is, which are the
stages of domain engineering ? The answer is: there are a number of stages,
which, when followed in some order, some possibly concurrently, will lead
you reasonably disciplined way from scratch to goal ! Before enumerating the
stages let us argue their presence and basic purpose.

[1] Domain Information1

We are here referring to the construction of informative documents.
We have earlier, as mentioned above, extensively (Pages 6–24) covered the

general issues of informative documents. The reader is strongly encouraged to
review those pages, Sect. 1.5.

Suffice it here to restate that each and every of the items listed on Page 7
must be kept up-to-date during the full development cycle. This means that
this activity is of “continuing concern” all during development.“slide 211”

The purpose of this stage of development, to repeat, is to record all relevant
administrative, socio-economic, budgetary, project management (planning)
and all such non-formalisable information which has a bearing on the domain
description project.

[2] Domain Stakeholder Identification2

The domain is populated with staff (management, workers, etc.), customers
(clients, users), providers of support, equipment, etc., the public at large —
always “interfering, having opinions”, regulatory agencies, politicians seeking
“14 minutes of TV coverage”, etcetera.

There are many kinds of staff, many kinds of customers, many kinds of
providers, etc. All these need be identified so that as complete a coverage
of sources of domain knowledge can be established and used when actively
acquiring, that is, soliciting and eliciting knowledge about the domain.

Section 2.4 will elaborate on this topic.

1
“slide 210”

2
“slide 212”
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[3] Domain Acquisition3

The software engineers need a domain description. Software engineers, today,
are basically the only ones who have the tools4, techniques and experience in
creating large scale specifications. But the software engineers do not possess
the domain knowledge. They must solicit and elicit, that is, they must acquire
this knowledge from the domain stakeholders. “slide 214”

Characterisation 46 (Domain Acquisition (I)) By domain acquisition
we understand a process in which documents, interviews, etc., informing —
“in any shape or form” — about the domain entities, functions, events and
behaviours are collected from the domain stakeholders.

Compare the above characterisation to that of Characterisation 50 on page 57.
Section 2.5 will elaborate on this topic.

[4] Domain Analysis and Concept Formation5

The acquired domain knowledge is then analysed, that is, studied with a
view towards discovering inconsistencies and incompleteness of what has been
acquired as well as concepts that capture properties of knowledge about the
phenomena and concepts being analysed.

Section 2.6 will elaborate on this topic.

[5] Domain Business Processes6

On the basis of acquired knowledge, sometimes as part of its acquisition one is
either presented with or constructs rough sketches of the business processes of
the domain. An aim of describing these business processes is to check the ac-
quired knowledge for inconsistencies and completeness and whether proposed
concepts help improve the informal understanding.

Section 2.7 will elaborate on this topic.

[6] Domain Terminology7

Out of the domain acquisition, analysis and business process rough-sketching
processes emerges a domain terminology. That is, a set of terms that cover
entities, functions, events and behaviours of the domain. It is an important “slide 218”

aspect of software development to establish, use and maintain a variety of
terminologies. And first comes the domain terminology.

Section 2.8 will elaborate on this topic.

3
“slide 213”

4 The two main tools of domain description are concise English and a number of
formal specification languages.

5
“slide 215”

6
“slide 216”

7
“slide 217”
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[7] Domain Modelling8

Based on properly analysed domain acquisitions these are “domain descrip-
tion units” we can now model the domain. The major stage of the domain
engineering phase is that of domain modelling, that is, of precisely describe in
narrative and possibly also in formal terms the domain as it is. Several prin-
ciples, many techniques and many tools can be given for describing domains.

Section 2.9 will elaborate on this topic.

[8] Domain Verification9

While describing a domain one may wish to verify properties of what is being
described. The use here of the term ‘verification’ covers (i) formal testing, that
is, testing (symbolic executions of descriptions) based on formally derived test
cases and test answers, (ii) model checking, that is, executions of simplified,
but crucial models of what is being described, and (iii) formal verification that
is, formal, possibly mechanisable proof of theorems (propositions etc.) about
what is being described.

Section 2.10 will elaborate on this topic.

[9] Domain Validation10

Characterisation 47 (Validation) By validation we shall mean a system-
atic process — involving representatives of all stakeholders and the domain
engineers — going carefully through all the narrative descriptions and con-
firming or rejecting these descriptions.

Section 2.11 will elaborate on this topic.

[10] Domain Verification versus Domain Validation11

Verification serves to ensure that the domain model is right. Validation serves
to ensure that one obtains the right model.

[11] Domain Theory Formation12

Describing a domain, precisely, and even formally, verifying propositions and
theorems, is tantamount to establishing a basis for a domain theory. Just as
in physics, we need theories also of the man-made universes.

Section 2.13 will elaborate on this topic.

8
“slide 219”

9
“slide 220”

10
“slide 221”

11
“slide 222”

12
“slide 223”
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2.2.2 A Summary Enumeration “slide 224”

We can now summarise the relevant stages of domain engineering:

1 Domain Information Sect. 2.3 (Page 55)
2 Domain Stakeholder Identification, Sect. 2.4 (Page 56)
3 Domain Acquisition, Sect. 2.5 (Page 57)
4 Domain Analysis and Concept Formation, Sect. 2.6 (Page 60)
5 Domain [i.e., Business] Processes, Sect. 2.7 (Page 62)
6 Domain Terminology, Sect. 2.8 (Page 63)
7 Domain Modelling, Sect. 2.9 (Page 64)

(a) Intrinsics Sect. 2.9.4 (Page 65)

(b) Support TechnologiesSect. 2.9.5
(Page 70)

(c) Management & Organistation
Sect. 2.9.6 (Page 73)

(d) Rules & Regulations Sect. 2.9.7
(Page 80)

(e) Scripts Sect. 2.9.8 (Page 84)

(f) Human Behaviour Sect. 2.9.9
(Page 100)

8 Domain Verification, Sect. 2.10 (Page 102)
9 Domain Validation and Sect. 2.11 (Page 102)

10 Domain Verification Versus Domain Validation and Sect. 2.12 (Page 102)
11 Domain Theory Formation, Sect. 2.13 (Page 102)

2.3 Domain Information “slide 225”

We highlight, in the next many “highlighted” paragraphs, what is special, to
domain description developments, with respect to the many items of project
information.

Current Situation: Cf. Sect. 1.6.3, Page 9 “slide 226”

As mentioned in Sect. 1.6.3 on page 9 the context in which the domain de-
velopments starts must be emphasized. Focus on just that. Please no reference
to possible requirements or software designs.

More to come

Needs and Ideas: Cf. Sect. 1.6.4, Pages 9–10 “slide 227”

to be written

Concepts and Facilities: Cf. Sect. 1.6.5, Pages 10–11 “slide 228”

to be written

Scope and Span: Cf. Sect. 1.6.6, Page 11 “slide 229”
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to be written

Assumptions and Dependencies: Cf. Sect. 1.6.7, Pages 11–12 “slide 230”

to be written

Implicit/Derivative Goals: Cf. Sect. 1.6.8, Page 12“slide 231”

to be written

Synopsis: Cf. Sect. 1.6.9, Page 13“slide 232”

to be written

Software Development Graphs: Cf. Sect. 1.6.10, Pages 13–15“slide 233”

to be written

Resource Allocation: Cf. Sect. 1.6.11, Pages 15–16“slide 234”

to be written

Budget (and Other) Estimates: Cf. Sect. 1.6.12, Page 16“slide 235”

to be written

Standards Compliance: Cf. Sect. 1.6.13, Pages 16–19“slide 236”

to be written

Contracts and Design Briefs: Cf. Sect. 1.6.14, Pages 19–23“slide 237”

to be written

2.4 Domain Stakeholders “slide 238”

2.4.1 Characterisations

Characterisation 48 (Stakeholder) By a domain stakeholder we shall un-
derstand a person, or a group of persons, “united” somehow in their common
interest in, or dependency on the domain; or an institution, an enterprise, or
a group of such, (again) characterised (and, again, loosely) by their common
interest in, or dependency on the domain.

“slide 239”

Characterisation 49 (General Application Domain Stakeholder) By
general application domain stakeholders we understand stakeholders whose
primary interest is neither the projects which develop software (from domains,
via requirements to software design), nor the products evolving from such
projects. Instead we mean stakeholders from typically non-IT business areas.
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2.4.2 Why Be Concerned About Stakeholders ? “slide 240”

The domain stakeholders are the main sources of domain knowledge. So the
domain engineers must acquire as much and more than the knowledge relevant
to describe the domain. And the domain stakeholders must eventually validate
the domain engineers’ domain description.

2.4.3 How to Establish List of Stakeholders ? “slide 241”

Awareness, by the domain engineers, of who and which are the main and the
subordinate domain “players”, is obtained by the same initial processes that
first acquire domain knowledge, namely by reading about the domain, from
books, journals, the Internet, by talking to stakeholders, and by interviewing
these systematically.

The process is an iterative one. One cannot know till “deep” into domain
modelling whether one has obtained a reasonably complete list.

2.4.4 Form of Contact With Stakeholders “slide 242”

Sections 2.5 and 2.11 outlinethe regular interactions between domain stake-
holders and domain engineers from the early stages of domain acquisition to
the late stage of domain validation. This form of domain stakeholder and en-
gineers interaction alternates betweenone-on-one meetings, e-mails, the joint
filling out of larger questionnaires, and joint multi-stakeholder group and do-
main engineer presentations. The domain engineers shall carefully keep record
of all that is communicated.

For examples of domain stakeholder identification modelling and resulting
documents we refer to Appendix E, Sect. E.2 (Page 332).

2.5 Domain Acquisition “slide 243”

2.5.1 Another Characterisation

Characterisation 50 (Domain Acquisition (II)) By domain acquisition
we shall here understand the systematic solicitation and elicitation of knowl-

edge about the chosen domain and the systematic vetting, recording and clas-
sification of this knowledge.

Compare the above characterisation to that of Characterisation 46 on page 53.
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2.5.2 Sources of Domain Knowledge “slide 244”

To return to the issue of stakeholders, from where does the domain engi-
neer acquire the domain knowledge ? The answer is: from many (stakeholder)
sources. We suggest some sources: from the Internet13, from infrastructure
books, papers, etc.14, from owners and staff of the client15, from customers of
the client16, possibly from domain regulators17, from consultancy, equipment
and service providers for and to the client18 and possibly others.

2.5.3 Forms of Solicitation and Elicitation “slide 245”

Solicitation

How can the domain engineer solicit19 the desired domain knowledge ? By
searching the Internet, looking up books, papers and reports (the latter typi-
cally from university and college institutes and from libraries); and by contact-
ing and by asking to be referred to domain knowledgeable client and customer
staff.

Elicitation20

How does the domain engineer elicit21 the desired domain knowledge ? By
studying hopefully relevant Internet Web pages, books, papers and reports
and by forming “impressions of” (“first ideas about”) the domain from such
studies; and by interviewing (“questionnairing”) contacted domain stakehold-
ers, with interviews being based on the prior ‘impressions’ from Web pages,
books, papers, reports, or from other stakeholder interviews.

13 For each infrastructure domain: air traffic, airports, banking, health care in gen-
eral and hospitals in particular, for railways, roads, shipping, etc., there are many
Web pages that can be searched.

14 Similarly to footnote 13.
15 This includes all management levels [executive (strategic), tactical and opera-

tional management], planners, schedulers, and “blue collar” workers (!).
16 Notice the distinction between client and customer: By client we here refer to the

domain institution with whom the domain engineers have a contract for develop-
ing a domain description. By customer we here refer to that client’s customers.

17 Most, if not all, domains have their own regulators. The air line industry have
their global and national civil aviation organisations or authorities. The banking
industry have their federal or national finance “watchdogs”. Etcetera.

18 We exclude the developers from this list.
19 To solicit: to try to obtain by usually urgent requests or pleas.
20

“slide 246”

21 To elicit: to call forth or draw out.
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2.5.4 Solicitation and Elicitation “slide 247”

Solicitation and elicitation is an iterative process: Impressions obtained early
in the process may turn out to be wrong. Hence they must be scrapped and
lead to reevaluation of the acquisition process, and to it being repeated.

2.5.5 Aims and Objectives of Elicitation “slide 248”

The aims of elicitation is to cover the span of the domain as accurately and
fully as possible.

The objectives of elicitation is to obtain “bits and pieces” — and hopefully
much more – of relevant domain knowledge within the scope of the domain
being studied. We shall refer to the ‘bits and pieces’ of domain knowledge as
domain description units.

2.5.6 Domain Description Units “slide 249”

Characterisation

Characterisation 51 (Domain Description Unit) By a domain descrip-
tion unit we shall mean an as far as possible well-formed sentence, something
which names and describes some entity, function, event or behaviour of the
domain, that is, something expressible which “makes sense”, that is, which can
contribute to the modelling of an entity, a function, an event or a behaviour
.

Handling22

Thus domain acquisition amounts to the laborious, painstaking process of
collecting (storing) what may appear to the domain engineer as “zillions”
of domain description units. In preparation for the ongoing, say concurrent
domain analysis and concept formation process domain description units are
provided with attributes such as name(s) (of one or more kinds of phenomena
and/or concepts), kinds (entity, function, event and behaviour), source (name,
etc., of stakeholder and domain engineer), and date(s) (of first acquisition and
possible updates or revisions23).

For examples of domain acquisition unit modelling and resulting docu-
ments we refer to Appendix E, Sect. E.3 (Page 332).

22
“slide 250”

23 We omit treatment of the necessary handling of all versions of any domain de-
scription unit.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
60 2 Domain Engineering

2.6 Domain Analysis and Concept Formation “slide 251”

Given a suitable set, not necessarily what may be believed to be a reason-
ably complete set, of reasonably related domain description units, where, by
‘related’, we mean domain description units that contain overlapping (names
of) entities, functions, events and behaviours, one can start analysing these
domain description units.

2.6.1 Characterisations “slide 252”

First some preliminaries.

Consistency

Characterisation 52 (Consistency) By consistency of a set of two or
more domain description units we mean that no combination of any subset of
these contradicts another combination of a subset of these.

Contradiction24

Characterisation 53 (Contradiction) By two different sets of domain de-
scription units being in contradiction of one another we mean that one can
claim a propertyand its negation to hold in the model of the domain descrip-
tion units.

Completeness25

Characterisation 54 (Relative Completeness) By relative completeness
of a set of domain description units we mean a consistent set of domain de-

scription units which allows a meaningful modelling of what is being described
such that the model does not leave something accidentally undefined.

That is, we can perfectly well imagine that we leave some domain aspects
purposely undefined.

Conflict26

Characterisation 55 (Conflict) By a conflict of a set of domain descrip-
tion units we mean an inconsistency that cannot be resolved by the domain
engineer only discussing the conflicting domain description units with the
stakeholders from whom the units are elicited.
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“slide 256”

There are three cases of conflict resolution. (i) A single stakeholder is assumed
not to generate conflicts. (ii) Two or more stakeholders from the same stake-
holder group should be able, together with the domain engineers, to resolve
the conflict. (iii) Two or more stakeholders from different stakeholder groups
may, together with the domain engineers, have to refer to their management
for resolution.

2.6.2 Aims and Objectives of Domain Analysis “slide 257”

Aims of Domain Analysis

Characterisation 56 (Domain Analysis, Aims) By domain analysis we
mean a systematic study of all domain description units, that is a “close
reading and review” of these whose aim is to cover them all.

Objectives of Domain Analysis27

Characterisation 57 (Domain Analysis, Objectives) By domain anal-
ysis objectives we mean a domain analysis whose objective it is to find [all]
inconsistencies and [all] incompletenesses, to remove these, and to ensure a
relatively scope-complete set of consistent domain description units.

2.6.3 Concept Formation “slide 259”

In addition to detecting inconsistencies, conflicts and incompleteness of a set
of domain description units, domain analysis also has as objective to possibly
form concepts.

Characterisation 58 (Domain Concept) By a domain concept we mean
a concept, an abstraction, a mental construction, which captures all essential
properties and “suppresses” expression of properties deemed not essential.

Aims and Objectives of Domain Concept Formation28

The aim of domain concept formation is to focus on similarities of domain
phenomena or already defined domain concepts and, from these possibly form
new, usually more generic concepts.

24
“slide 253”

25
“slide 254”

26
“slide 255”

27
“slide 258”

28
“slide 260”
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The objective of domain concept formation is to arrive at simpler domain
models, at generic domain models, that is, models which cover several more
concrete, i.e., instantiated domains.

For examples of domain analysis and concept formation modelling and
resulting documents we refer to Appendix E, Sect. E.4 (Page 336).

2.7 Domain, i.e., Business Processes “slide 261”

2.7.1 Characterisation

Characterisation 59 (Business Process) By a business process we un-
derstand the procedurally describable aspects, of one of the (possibly many)
ways in which a business, an enterprise, a factory, etc., conducts its yearly,
quarterly, monthly, weekly and daily processes, that is, regularly occurring
chores. The process may involve strategic, tactical or operational manage-
ment and work-flow planning and decision activities; or the administrative,
and, where applicable, the marketing, the research and development, the pro-
duction planning and execution, the sales and the service (work-flow) activities
— to name some.

2.7.2 Business Process Description “slide 262”

A business process description is usually in the form of a behaviour description
which covers core entities, functions and events. Usually one describes several
(more or less related) business processes

2.7.3 Aims & Objectives of Business Process Description “slide 263”

Aims

The aims of describing a set of domain business processes is to cover all the
“standard”, i.e., all the most common as well as a reasonable number of the
more special business processes of the chosen span and scope while covering
most of the entities, functions and events that were identified is the full set of
domain description units.

Objectives29

The objectives of describing a set of domain business processes is to discover
domain entities, functions and events that were omitted from, i.e., are not
found in the the full set of domain description units; that is, to somehow
“test” and validate the domain acquisition stage.

29
“slide 264”
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2.7.4 Disposition “slide 265”

So what do we do if and when we find that the full set of domain description
units and the rough-sketched domain business processes are at odds ? We
obviously have to inquire with the relevant domain stakeholders. Based on
their “feedback” we have to modify the full set of domain description units
as well as the rough-sketched domain business processes. This is an iterative
process and may involve modifying the domain analysis and concept formation
findings.

• • •

For examples of business processes modelling and resulting documents we refer
to Appendix E, Sect. E.5 (Page 337).

2.8 Domain Terminology “slide 266”

2.8.1 The ‘Terminology’ Dogma

It is an important aspect of domain engineering to establish, use and maintain
a domain terminology.

2.8.2 Characterisations “slide 267”

Characterisation 60 (Term) By a term is here meant [140]: a word or
phrase used in a definite or precise sense in some particular subject, as a
science or art; a technical expression; by word or group of words expressing a
notion or conception, or denoting an object of thought.

“slide 268”

Characterisation 61 (Terminology) By terminology is meant [140]: the
doctrine or scientific study of terms; the system of terms belonging to a science
or subject; technical terms collectively; nomenclature.

2.8.3 Term Definitions “slide 269”

Thus a terminology is a set of definitions consisting of a “left-hand side”
definiendum, usually a name, “the term”, of that which is to be defined, and
a “right-hand side” definiens, the expression which defines.

The definiens expressionmay either contain ground terms, that is, terms
that are taken for understood, and the definiens expression is then called an
atomic expression; or it contains other terms being defined in the terminology
and the definiens expression is then called a composite expression. “slide 270”

A set of term definitions form a well-formed terminology if all professional,
i.e., domain-specific terms are defined, and, although some terms may be
(mutually) recursively defined, these recursions do terminate by means of
alternative definition choices.
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2.8.4 Aims and Objectives of a Terminology “slide 271”

The aims of a domain terminology (i.e., of domain terminologisation) is to
cover all the terms that are specific to the domain.

The objectives of a domain terminology (i.e., of domain terminologisation)
is to ensure that all stakeholders30, the developers and the domain description
readers obtain as near, if not, the same understanding of the recorded terms.

2.8.5 How to Establish a Terminology “slide 272”

First a set of terms to be defined is selected. Then each term is defined, either
atomically, or in composite manner, possibly recursively. The definition ends
when all selected terms have been defined and all uses of domain-specific terms
not already in the list of selected terms have been defined.“slide 273”

As can be seen from the above procedure it requires careful administration
and usually ends up in a prolonged, iterated process.

When defined informally, the domain engineer may wish to use pictures,
diagrams. When defined formally one may have to prove that the definitions
are sound.

For examples of domain terminology modelling and resulting documents
we refer to Appendix M, Sect. E.6 (Page 338).“slide 274”

“slide 275”

2.9 Domain Modelling “slide 276”

2.9.1 Aims & Objectives

The aims of the domain modelling stage of domain engineering are to research
the chosen domain, to find suitable delineations within and structures of that
domain. The objectives of the domain modelling stage of domain engineering
are to develop narrative and formal descriptions of the domain, to analyse
those descriptions, and hence to establish a and contribute to a theory of that
domain.

For a large scale example of domain modelling we refer to Appendices E–L.

2.9.2 Domain Facets “slide 277”

In this, a major methodology chapter of the current book, we shall start
unravelling a number of principles, techniques of and a tool (RSL) for domain
modelling.

Domain modelling, as we shall see, entails modelling a number of domain
facets.“slide 278”

30 Different stakeholder groups often have quite different interpretations of some
terms — and these co-existing interpretations have to be reconciled.
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Characterisation 62 (Domain Facet) By a domain facet we mean one
amongst a finite set of generic ways of analysing a domain: a view of the
domain, such that the different facets cover conceptually different views, and
such that these views together cover the domain.

2.9.3 Describing Facets “slide 279”

These are the facets that we find “span” a domain in a pragmatically sound
way: (i) intrinsics, (ii) support technology, (iii) management & organisation,
(iv) rules & regulations, (v) scripts and (vi) human behaviour:
There may be other ways in which to view, that is, to understand the domain.
That is, there may be other compositions of other “facets”, which together
also “span” the domain. The ones listed above, (i–vi), are the ones we shall
pursue.

We shall cover these facets — in Chaps. F–K.

2.9.4 Domain Intrinsics “slide 280”

Characterisation 63 (Domain Intrinsics) By domain intrinsics we mean
those phenomena and concepts of a domain which are basic to any of the other
facets (listed earlier and treated, in some detail, below), with such domain
intrinsics initially covering at least one specific, hence named, stakeholder
view.

By studying just the domain intrinsics we get to understand a, or rather, the
essence of the domain.

If we remove any one aspect of the domain intrinsics then we jeopardise
our understanding of the domain.

Construction of Model of Domain Intrinsics31

So the domain engineer, on the basis of analysed and possibly abstracted
domain description units must construct a domain intrinsics model. The model
consists, we advocate, of two complimentary parts: a narrative description
and a formal description. The usual description principles and techniques
apply:these are shown applied in the support example that complements this
volume; we advice the reader to study that example carefully: learn by reading.

Overview of Support Example32

Appendix F (Pages 343–364) exemplify a domain intrinsics. It does so while
also exemplifying: (i) entities, (i) functions, (i) events and (i) behaviours.

31
“slide 281”

32
“slide 282”
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We advice the reader to recall the material on entities, functions, events and
behaviors of Sect. 1.12 (Pages 34–42). Section F.6 exemplifies some important
concepts which provide a “bridge” between events and behaviours.

Review of Support Example33

Entities

Section F.3 (Pages 343–348) exemplifies some intrinsic entities of an abstract
transport domain.

The intrinsic net entities include those of hubs, links, nets, hub identifiers
and link identifiers.34

We start, cf. Page 344, by narrating and formalising what we have chosen
to be the most basic aspects of transportation: hubs (intersections, junctions,
nodes) (Item 5) and links (segments, edges) (also Item 5) of transportation
nets (Item 6). We model these as sorts, i.e., abstract types. Then we model
nets as simple Cartesians of sets of hubs and sets of links. Finally an axiom
(also Item 6) secures that a net has at least one link and at least two hubs.“slide 284”

Recall, please, that what we model are phenomena in a perceived, real
world. So hubs are “real” hubs; and links are “real” links; they are not rep-
resentations (for example in some computer, but abstractions) of these. One
can, however, introduce a notion of (unique) hub and link identifiers — and
we do so in Item 7 on page 344. That is, we model (Item 8a) “observing” hubs
by observing their distinct hub identifiers; and “observing” links by observing
their distinct link identifiers. Distinctness is modelled by an axiom (Item 8b).“slide 285”

And any given link is connected to a pair of specific, distinct hubs (Item 9,
Page 345). Any given hub is connected to a definite number of specific, distinct
links (Item 10). In our perceived reality we can be located at a hub and from
there we can observe these links (Item 9(a)); and we can be located at, or
on, a link and from there we can observe the connected hubs (Item 10(a)).
That is, we model (Item 9(a)) “observing” hubs by observing their distinct
hub identifiers (Item 9); and “observing” links by observing their distinct link
identifiers (Item 10). To avoid “dangling”35 identifiers we express two axioms:
Items 11–12. To express these axioms we introduce two auxiliary functions
(iohs, iols).“slide 286”

Magic Functions on Entities: Link and hub identifiers are such attributes.
Links and hubs may have any number of attributes36. When types are ex-
pressed as sorts, that is, as abstract types, then there is no limit to which

33
“slide 283”

34 Later we shall introduce further intrinsic entities: vehicles, traffic, etc.
35 A hub or a link identifiers is ‘dangling’ if there is no hub, respectively link of that

identifier. The identifier “reference” hangs “dangling in the air”.
36 Links may, for example, have the following attributes: cadestral coordinates (say

according to some Bezier curve), length, mode (whether rail, or road, or other),
name (not to be confused with identifier), maintenance status, etc.
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kinds of observer functions one may introduce on values of the sort type, in
order to observe attributes of those values. If we had a definite, that is, a “slide 287”

concrete type model of a type, viz.:

type T = A × B × C × D × E × UId

then values of type T would be expressible as (a,b,c,d,e,uid) where a:A, b:B, c:C,
d:D and e:E and where uid:UId is “a” unique identifier. Now we can compare
two T values t′ and t′′ without involving the UId component, for example
for equality: The purpose of the Appendix section on Entity Projections
Sect. F.3.2, Pages 347–348 is to be able to compare sort values free of some
attribute. “slide 288”

Some Preliminary Observations: We have illustrated a few entity types and
values. Please observe that with seven such: hubs, links, nets, hub identifiers,
link identifiers, pseudo-hubs and pseudo links as well as with their associated
observer functions quite a lot can be said about transportation nets. “slide 289”

Exercises 2.17 on page 104 – 2.17 on page 105 — which can be solved
on the basis of material presented so far — show that these simple intrinsic
entities “cover a lot of ground”. This leads us to formulate the following37:

Principle 3 (“Narrow Bridge”) Search for and then select a possibly
smallest set of intrinsic phenomena and concepts, typically entities and func-
tions, based on which further phenomena can be better understood and on
which further concepts can be defined.

Functions [Operations]38

General: Section F.4 exemplifies some intrinsic functions39 of an abstract
transport domain. The functions are, perhaps, somewhat “strange”. You may
have expected functions such asvehicles entering and leaving the net. vehicles
accelerating or decelerating and stopping, or other, but we have chosen the
‘Insert’ and ‘Remove’ link operations on nets so as to stay with a minimum
of phenomena and concepts and not have to introduce the concepts of vehi-
cles, entering and leaving positions and traffic (these will soon be introduced,
anyway, but now in the context of behaviours). “slide 291”

Syntax and Semantics: In introducing the Insert and Remove operations we
illustrate additional concepts of abstraction and modelling, namely those of
syntax and semantics, and of well-formedness of syntactical entities. Well-
formedness of the semantic types of nets has already been illustrated — by
the axioms governing relations between hub and links and their identifiers.
Now these hubs, links and identifiers also ‘occur’ in the syntactical commands,
out of context from the intended nets on which to perform the commanded
operations. “slide 292”

37 — as inspired by Michael A. Jackson’s Principle of the ‘Narrow Bridge’ [123].
38

“slide 290”

39 We use the terms functions and operations synonymously.
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Preliminary Observations: Some functions directly correspond to operations
of the domain, for example, Insert and Remove. Other functions are intro-
duced, by the domain engineer, in order to factor the definition of the domain
operations into a manageable “size”. The former are called main or sometimes
semantic functions. The latter are called auxiliary functions.

Principle 4 (Syntax and Semantics) When considering a function of a
domain examine whether (some of) the arguments of the function form an
entity that can be considered a syntactic entity for which the function being
considered is to define the semantics of the syntactic entity.

“slide 293”

Technique 2 (Function Factoring) When considering the definition of func-
tions one should seriously experiment with the introduction of auxiliary func-
tions. Often this can be done more optimally once a number of main, or
semantic, functions have been, or are being defined. Then one can better sur-
vey the need for auxiliary functions — and then which such to introduce and
define.

Events40

Section F.5 exemplifies some intrinsic events of an abstract transport domain.
The event concept, as defined (Sect. 1.12.3 on page 39), is strongly inter-

twined with the concept of time. One example of an event further involves a
concept of position (of vehicles on the net). The two concepts, time and po-
sition, can be thought of as entities and can be claimed to be intrinsic. They
were not exemplified, so far, in Sect. F.3, but will be covered in Sect. F.6.“slide 295”

On A Concept of ‘Interesting Events’: The definition of events is, perhaps,
too broad. It covers the examples that we have labelled as events. But it also
covers examples which we, for pragmatic reasons, have no interest in singling
out as events. Examples of un-interesting events are: (i) a vehicle leaving a link
while entering a hub; and (ii) the increase of a bank account balance as the
direct, willed result of a deposit. We would say that such state changes which
occur at times that are determined by willed, oftentimes human actions (to
wit: deposits and driving), as events are very explicitly willed and are hence
un-interesting. The event of a bank balance exceeding, that is, “going below”
the credit limit, we would, however call an interesting one.“slide 296”

As the reader may now discern: we cannot give a precise, formal character-
isation of the borderline between un-interesting and interesting events; it is,
in our thinking, purely a pragmatic choice made by the domain stakeholders
and domain engineers as to what constitutes an interesting event. The choices,
across a domain description, as to that borderline is crucial, it is often deter-
mined by an individual stakeholder (group) view: events that are, or may be,
interesting to one stakeholder group may very well be un-interesting to another
stakeholder group. An abstract example could be: whether one event (usu-“slide 297”

40
“slide 294”
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ally un-interesting event) precedes or succeeds another (usually un-interesting
event) could be an interesting event. The two (usually) un-interesting events
could then be said to be “atomic” with respect to the “composite” interesting
event.

Auxiliary Concepts41

Section F.6 exemplifies some auxiliary concepts of an abstract transport do-
main. They are: time and vehicle positions on the transport net. The time
concept is not a simple one: We decompose the time concept into two: one
is the concept of absolute time, the other is the concept of time intervals.
The definition of (absolute) time given in Appendix Sect. F.6.1 The vehicle
position concept is a simple one. “slide 299”

In Appendix D we present two axioms systems: one is a van Benthem’s
continuum theory of time, Sect. D.1, the other is Blizard’s theory of time-
space, Sect. D.2. The description of time given in Appendix Sect. F.6.1 is not
a proper axiom system but, in a short way hints at the problem of a proper ax-
iomatisation of time — such as demonstrated in Benthem’s continuum theory
of time, Sect. D.1

Behaviours42

Section F.7 exemplifies some intrinsic events and behaviours of an abstract
transport domain.

We remind the reader of the definition of what constitutes a behaviour,
Sect. 1.12.4: a finite set of possibly infinite length sequences of actions and
events where events express synchronisation and communication between be-
haviours.

Two Forms of Behaviour Abstraction: In Appendix Sect. F.7 we model be-
haviours in two different ways: as entities that abstract functions from time
into “whatever the behaviour is really about”, for example, the vehicle be-
haviour of Page 362, and as a set of communicating sequential processes, that
is, in CSP. “slide 301”

A Functional Behaviour Abstraction: The former form of abstraction, ‘as enti-
ties that abstract functions from time into . . . ’, abstracts the synchronisation
and communication aspects of events, instead these are “hidden” in “whatever
the behaviour is really about”. First, however, we narrate: traffic is a discrete,
monotonic function from a proper subset of time to positions of vehicles (mod-
elled as maps from vehicles to positions). Now: when we say that we hide the
synchronisation and communication aspects of events, we mean to say that
some properties of these events only transpire indirectly from the time-wise
succession of ‘positions of vehicles’. That is: one has to examine the traffic

41
“slide 298”

42
“slide 300”
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abstraction to identify such events as: vehicle crashes (two or more vehicles
occupying same positions), vehicles leaving the traffic at some velocity (that
is, driving, at some speed, off the links), etc.“slide 302”

Well-formedness of Functional Abstractions: The author of this book is of the
unabashed opinion that the abstract model of traffic: TF′ = PSoTime →m (N ×
(V →m P)) is an elegant model ! But that perceived elegance comes at at least
one cost: The TF type admits “traffics” that are not intended; hence the TF
type must be subtyped: type TF = {| tf:TF′

• wf TF{tf} |}. and The Time type
must be constrained with respect to a dense type of enumerable times T: Time
= {|tset:T-set•wf PSoTime(tset)|} where wf TF and wf PSoTime are defined
on Appendix Sect. F.7.1 on page 361 etcetera and Sect. F.6.1 on page 358“slide 303”

A [CSP] Process-oriented Behaviour Abstraction: The latter form of abstrac-
tion: ‘as a set of communicating sequential processes’, is shown in Sect. F.7.2.

Here we abstract behaviour (a finite set of possibly infinite length se-
quences of actions and events) by the set of traces (of actions and input/output
events) of a finite set of — in this case CSP — processes43. The abstraction
from domain behaviours to description language processes is thus rather “di-
rect”, that is, hardly an abstraction !

Discussion of Domain Intrinsics44

to be written

2.9.5 Support Technologies “slide 305”

Characterisation 64 (Support Technologies) By domain support tech-
nologies we mean ways and means of concretesing certain observed (abstract
or concrete) phenomena or certain conceived concepts in terms of (possi-
bly combinations of) human work, mechanical, hydro mechanical, thermo-
mechanical, pneumatic, aero-mechanical, electro-mechanical, electrical, elec-
tronic, telecommunication, photo/opto-electric, chemical, etc. (possibly com-
puterised) sensor, actuator tools.

Technology as an Embodiment of Laws of Physics45

For examples of domain support technology modelling and resulting docu-
ments we refer to Appendix G.

By technology, we here mean “gadgets” (instruments, machines, artifacts)
which somehow or other embody, exploit, rely on, etc., laws of physics (in-
cluding chemistry).

43 By the trace of a CSP process we understand, as an example, a sequence of labels
of CSP actions and CSP input/output events. The labels name (and describe)
the actions (and, if need be, also the state in which the action is interpreted) and
the input/output channel and the communicated message value.

44
“slide 304”

45
“slide 306”
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From Abstract Domain States to Concrete Technology States

Usually an intrinsic domain phenomenon or concept embody an abstract no-
tion of state. The essence of a support technology is then to render such an
abstract notion of state more concrete.

Intrinsics versus Other Facets46

Take as “other facets” those of supporting technologies. The nature of intrin-
sics in the light of a supporting technology is to force the domain engineer to
think abstractly in order to capture an essence of a phenomenon or concept
of the domain, not by its “implementing” support technologies, i.e., the how,
but by what that domain phenomenon or concept really means, semantically.

This point is illustrated in the examples of an intrinsic concepts of states
versus the examples of a corresponding support technology concepts of states
of the three examples of Appendix G:

• (intrinsics) Sect. G.1.1 on page 367 versus (support technologies) Sect. G.1.2
on page 370;

• (intrinsics) Sect. G.2 on page 372 versus (support technologies) Sect. G.2.2
on page 373;

• (intrinsics) Sect. G.3 on page 381 versus (support technologies) Sect. G.3.3
on page 382;

The Three Support Examples47

In review, we model, in Appendix G, three sets of supporting technologies:
road intersection semaphore (green, yellow, red) signalling, road-rail level
crossing (a more complicated variant of the road intersection semaphore ex-
ample) and rail switching (a very simplified treatment).

Transport Net Signalling

The road intersection semaphore is rather conventional: instead of letting car
drivers just drive as they please, a road intersection semaphore shows which
crossings of the road intersection are advised by means of green/yellow/red
lamps. “slide 309”

The example does not model clearly inconsistent signalling such as green
signals in all directions (rather than unlit lamps), or such as too quick lamp
changes from red/yellow to green, for example along a pair of opposite direc-
tions in a four street intersection while the lamps in the cross direction are
still green/yellow, etcetera. We leave it to the reader to describe such cases.

The example also does not model failure of semaphore equipment. The
road-rail level crossing hints at such modelling.

46
“slide 307”

47
“slide 308”
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Road-Rail Level Crossing48

This example examines a “tiny”, recurrent part of rail nets. After some pre-
liminaries, Sects. G.2.1–G.2.2, on the intrinsic and the concrete concepts of
road-rail level intersection (i.e., hub) states, and an overview, Sect. G.2.3, fol-
lows five technical parts: (i) ‘Function and Safety’ Sect. G.2.4, (ii) ‘The Road
Traffic Domain’ Sect. G.2.5, (iii) ‘The Train Traffic Domain’ Sect. G.2.6, (iv)
‘The Device Domain’ Sect. G.2.7 and (v) ‘The Software Design’ Sect. G.2.8.“slide 311”

(i) The ‘Function and Safety’ Sect. G.2.4 part is general for basically any
safety critical, real-time embedded system development, and, as such, intro-
duces a number of concepts by means of which we express, not only the basic
function and safety properties, but also those of the following four parts (ii–v).
Part (i) also illustrates also the first use of the Duration Calculus. We advice
the reader, at this point, to study Sect. G.2.4 carefully (Pages 374–378).“slide 312”

(ii) The ‘Road Traffic Domain’ Sect. G.2.5 part is very brief. Part (ii)
separates out the “minimum” assumptions about the road traffic with respect
to the road-rail intersection. The developer must express these in order for
the entire development to make sense, that is, proven correct. We advice the
reader to study Sect. G.2.5 carefully (Pages 378–378).“slide 313”

(iii) The ‘Train Traffic Domain’ Sect. G.2.6 part is also brief. Again the
part separates out the “minimum” assumptions about the train traffic, with
respect to the road-rail intersection. The developer must express these in order
for the entire development to make sense, that is, proven correct. We advice
the reader to study Sect. G.2.6 carefully (Pages 379–379).“slide 314”

(iv) The ‘Device Domain’ Sect. G.2.7 part, is also very brief Part (iv)
again expresses “minimum” assumptions about the technological devices that
govern the monitoring and control of the road-rail intersection. The developer
must formulate these in order for the entire development to make sense, that is,
proven correct. We advice the reader to study Sect. G.2.7 carefully (Pages 379–
380).“slide 315”

(v) The ‘Software Design’ Sect. G.2.8 part, finally, is also brief. We advice
the reader to study Sect. G.2.8 carefully (Pages 380–381).

Rail Switching49

The last example of a support technology is that of an ordinary rail switch,
cf. Sect. G.3 Pages 381–384. First the example clarifies the issue of intrinsic
rail switches in contrast to a variety of human and mechanical and electro-
mechanical support technologies. Then the example focuses, briefly, on the
“statistics” of such electro-mechanically supported switches.“slide 317”

The example does not complete “the line of thought” introduced by the
probability state diagram of Fig. G.4 on page 383. A completion would then
go on to show how the probabilities (provided by the supplier of such rail

48
“slide 310”

49
“slide 316”
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switches) would be part of a Markov modelling of the state switching be-
haviour. That Markov model models an implementation in which repeated
signalling (with assumed sensing of whether a state change has indeed taken
place) serves to “lower” the probability of an eventual erroneous state —
usually to some such number as 10−8.

Discussion of Support Technologies50

The modelling of support technologies must face several aspects and deploy
several modelling tools. In our modelling of support technologies we exemplify
just three aspects: “refinement” of simple support technology state switching
to compositions of such atomic state switching signals; consideration of tim-
ing aspects; and consideration of probabilities of state switching signals not
achieving their desired effect. Two related comments are in order: (i) actual “slide 319”

support technologies are orders of magnitude more complex than the ones
illustrated here; and (ii) their proper domain description becomes relatively
large development projects “in-and-by-themselves”! “slide 320”

“slide 321”

2.9.6 Management and Organisation “slide 322”

Management

Management is an elusive term. Business schools and private consultancy
firms excel in offering degrees and 2–3 day courses in ‘management’. In the
mind of your author most of what is being taught — and even researched —
is a lot of “hot air”. Well, the problem here, is, of course, that your author
was educated at a science & technology university51. In the following we shall
repeat some of this ‘hot air ’. And after that we shall speculate on how to
properly describe the outlined (“cold air”) management concepts. “slide 323”

Characterisation 65 (Domain Management) By domain management
we mean people (i) who determine, formulate and thus set standards (cf.
rules and regulations, a later lecture topic) concerning strategic, tactical and
operational decisions; (ii) who ensure that these decisions are passed on to
(lower) levels of management, and to “floor” staff; (iii) who make sure that
such orders, as they were, are indeed carried out; (iv) who handle undesirable
deviations in the carrying out of these orders cum decisions; and (v) who
“backstop” complaints from lower management levels and from floor staff.

50
“slide 318”

51 — which, alas, now also offers such ‘management’ degree courses !
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Management Issues52

Management in simple terms means the act of getting people together to
accomplish desired goals. Management comprises (vi) planning, (vii) orga-
nizing, (viii) resourcing, (ix) leading or directing, and (x) controlling an orga-
nization (a group of one or more people or entities) or effort for the purpose
of accomplishing a goal. Resourcing encompasses the (xi) deployment and
manipulation of human resources, (xii) financial resources, (xiii) technological
resources, and (xiv) natural resources

Basic Functions of Management53

These are normally seen as management issues:
Planning: (xv) deciding what needs to happen in the future (today, next

week, next month, next year, over the next 5 years, etc.) (xvi) and generating
plans for action. Organizing: (xvii) making optimum use of the resources (xix)
required to enable the successful carrying out of plans. Leading/Motivating:
(xx) exhibiting skills in these areas (xxi) for getting others to play an effec-
tive part in achieving plans. Controlling: (xxii) monitoring – (xxiii) checking
progress against plans, (xxiv) which may need modification based on feedback.

Formation of Business Policy54

(xxvi) The mission of a business seems to be its most obvious purpose – which
may be, for example, to make soap. (xxvii) The vision of a business is seen
as reflecting its aspirations and specifies its intended direction or future des-
tination. (xxviii) The objectives of a business refers to the ends or activity at
which a certain task is aimed55. The business policy is a guide that stipulates
(xix) rules, regulations and objectives, (xxx) and may be used in the man-
agers’ decision-making. (xxxi) It must be flexible and easily interpreted and
understood by all employees. The business strategy refers to (xxxii) the coor-“slide 327”

dinated plan of action that it is going to take, (xxxiii) as well as the resources
that it will use, to realize its vision and long-term objectives. (xxxiv) It is a
guideline to managers, stipulating how they ought to allocate and utilize the
factors of production to the business’s advantage. (xxxv) Initially, it could
help the managers decide on what type of business they want to form.

52
“slide 324”

53
“slide 325”

54
“slide 326”

55 Pls. note that, in this book, we otherwise make a distinction between aims and
objectives: Aims is what we plan to do; objectives are what we expect to happen
if we fulfill the aims.
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Implementation of Policies and Strategies56

(xxxvi) All policies and strategies are normally discussed with managerial per-
sonnel and staff. (xxxvii) Managers usually understand where and how they
can implement their policies and strategies. (xxxviii) A plan of action is nor-
mally devised for the entire company as well as for each department. (xxxix)
Policies and strategies are normally reviewed regularly. (xxxvii) Contingency
plans are normally devised in case the environment changes. (xl) Assessments
of progress are normally and regularly carried out by top-level managers. (xli)
A good environment is seen as required within the business.

Development of Policies and Strategies57

(xlii) The missions, objectives, strengths and weaknesses of each department
or normally analysed to determine their rôles in achieving the business mis-
sion. (xliii) Forecasting develops a picture of the business’s future environ-
ment. (xliv) Planning unit are often created to ensure that all plans are con-
sistent and that policies and strategies are aimed at achieving the same mission
and objectives. (xlv) Contingency plans are developed — just in case ! (xlvi)
Policies are normally discussed with all managerial personnel and staff that
is required in the execution of any departmental policy.

Management Levels58

A careful analysis has to be made by the domain engineer of how management
is structured in the domain being described. One view, but not necessarily the
most adequate view for a given domain is that management can be seen as
composed from the board of directors (representing owners, private or public,
or both), the senior level or strategic (or top, upper or executive) management,
the mid level or tactical management, the low level or operational manage-
ment, and supervisors and team leaders. Other views, other “management
theories” may apply. We shall briefly pursue the above view.

Resources59

Management is about resources. A resource is any physical or virtual entity of
limited availability such as, for example, time and (office, factory, etc.) space,
people (staff, consultants, etc.), equipment (tools, machines, computers, etc.),
capital (cash, goodwill, stocks, etc.), etcetera.

Resources have to be managed allocated (to [factory, sales, etc.] processes,
projects, etc.), and scheduled (to time slots).

56
“slide 328”

57
“slide 329”

58
“slide 330”

59
“slide 331”
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Resource Conversion60

Resources can be traded for other resources: capital funds can be spent on
acquiring space, staff and equipment, services and products can be traded for
other such or for monies, etc.

The decisions as to who schedules, allocates and converts resources are
made by strategic and tactical management. Operational management trans-
forms abstract, general schedules and allocations into concrete, specific such.

Strategic Management61

A strategy is a long term plan of action designed to achieve a particular goal.
Strategy is differentiated from tactics or immediate actions with resources at
hand by its nature of being extensively premeditated, and often practically
rehearsed. Strategies are used to make business problems easier to understand
and solve. Strategic management deals with conversion of long term resources
involving financial issues and with long term scheduling issues.“slide 334”

Among examples of strategic management issues (in supply chain manage-
ment) we find: (xlvii) strategic network optimization, including the number,
location, and size of warehouses, distribution centers and facilities; (xlviii)
strategic partnership with suppliers, distributors, and customers, creating
communication channels for critical information and operational improve-
ments such as cross docking, direct shipping, and third-party logistics; (xlix)
product design coordination, so that new and existing products can be op-
timally integrated into the supply chain, load management; (l) information
technology infrastructure, to support supply chain operations; (li) where-to-
make and what-to-make-or-buy decisions; and (lii) aligning overall organiza-
tional strategy with supply strategy. The problem, in domain modelling, is to
find suitable abstractions of these mundane activities.“slide 335”

Strategic management (liii) requires knowledge of management rôles and
skills; (liv) have to be aware of external factors such as markets; (lv) decisions
are generally of a long-term nature; (lvi) decision are made using analytic,
directive, conceptual and/or behavioral/participative processes; (lvii) are re-
sponsible for strategic decisions; (lviii) have to chalk out the plan and see that
plan may be effective in the future; and (lix) is executive in nature.

Tactical Management62

Tactical management deals with shorter term issues than strategic manage-
ment, but longer term issues than operational management. Tactical manage-
ment deals with allocation and short term scheduling.“slide 337”

Among examples of tactical management issues (in supply chain manage-
ment) we find: (lx) sourcing contracts and other purchasing decisions; (lxi)

60
“slide 332”

61
“slide 333”

62
“slide 336”
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production decisions, including contracting, locations, scheduling, and plan-
ning process definition; (lxii) inventory decisions, including quantity, location,
and quality of inventory; (lxiii) transportation strategy, including frequency,
routes, and contracting; (lxiv) benchmarking of all operations against com-
petitors and implementation of best practices throughout the enterprise; (lxv)
milestone payments; and (lxvi) focus on customer demand. The problem, in
domain modelling, is to find suitable abstractions of these mundane activities.

Operational Management63

Operational management deals with day-to-day and week-to-week issues
where tactical management deals with month-to-month and quarter-to-quarter
issues and strategic management deals with year-to-year and longer term is-
sues. (Operational management is not to be confused with the concept of
operational research and operational analysis which deals with optimising re-
source usage (allocation and scheduling). “slide 339”

Among examples of operational management issues (in supply chain man-
agement) we find: (lxviii) daily production and distribution planning, includ-
ing all nodes in the supply chain; (lxix) production scheduling for each manu-
facturing facility in the supply chain (minute by minute); (lxx) demand plan-
ning and forecasting, coordinating the demand forecast of all customers and
sharing the forecast with all suppliers; (lxxi) sourcing planning, including
current inventory and forecast demand, in collaboration with all suppliers;
(lxxii) inbound operations, including transportation from suppliers and re-
ceiving inventory; (lxxiii) production operations, including the consumption “slide 340”

of materials and flow of finished goods; (lxxiv) outbound operations, including
all fulfillment activities and transportation to customers; (lxxv) order promis-
ing, accounting for all constraints in the supply chain, including all suppliers,
manufacturing facilities, distribution centers, and other customers. The prob-
lem, in domain modelling, is to find suitable abstractions of these mundane
activities.

Supervisors and Team Leaders64

We make here a distinction between managers, “on one side”, and supervisors
and team leaders, “on the other side”. The distinction is based on managers
being able to make own decisions without necessarily having to confer or
discuss these beforehand or to report these afterwards, while supervisors and
team leaders normally are not expected to make own decisions: if they have
to make decisions then such are considered to be of “urgency”, must normally
be approved of beforehand, or, at the very least, reported on afterwards. “slide 342”

Supervisors basically monitor that work processes are carried out as
planned and report other than minor discrepancies. Team leaders coordinate

63
“slide 338”

64
“slide 341”
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work in a group (“the team”) while participating in that work themselves;
additionally they are also supervisors.

Description of ‘Management’65

On the last several pages (73–78) we have outlined conventional issues of
management.

The problems confronting us now are: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

The reason why these two “leading questions” questions are posed is that
the management issues mentioned on pages 73–78 are generally “too lofty”,
“too woolly”, that is, are more about “feelings” than about “hard, observable
facts”.“slide 344”

We, for example, consider the following issues for “too lofty”, “too woolly”:
Item (xix) Page 74: “to enable the successful . . . ” is problematic; Item (xx)
Page 74: how to check that managers “exhibit these skills” ?; Item (xxi)
Page 74: “play an effective part” is problematic; Item (xxvii) Page 74: how to
check that vision is being or is achieved ?; Item (xxviii) Page 74: the objec-
tives must, in order to be objectively checked, be spelled out in measurable
details; Item (xxxi) Page 74: how to check “flexible” and “easily”; Item (xxxiii)
Page 74: how to check that the deployed resources are those that contribute
to “achieving vision and long term objectives; Item (xxxiv) Page 74: “guide-
line”, “factors of production” and “advantage” cannot really be measured;
Item (xxxv) Page 74: “what type of business they want to form” is too inde-
terminate; Item (xxxvi) Page 75: how to describe (and eventually check) “are
normally or must be discussed” other than “just check” without making sure
that managerial personnel and staff have really understood the issues and will
indeed follow policies and strategies; Item (xxxvii) Page 75: how does one de-
scribe “managers must, or usually understand where and how” ?; Item (xxxix)
Page 75: in what does a review actually consists ?; Item (xli) Page 75: how
does one objectively describe “a good environment” ?; Item (xlii) Page 75:
how does one objectively describe that which is being “analysed”, the “anal-
ysis” and the “determination” processes ?; Item (xliii) Page 75: how is the
“development” and a “picture” objectively described ?; etcetera.“slide 345”

As we see from the above “quick” analysis the problems hinge on our
[in]ability to formally, let alone informally describe many management issues.
In a sense that is acceptable in as much as ‘management’ is clearly accepted
as a non-mechanisable process, one that requires subjective evaluations: “feel-
ings”, “hunches”, and one that requires informal contacts with other manage-
rial personnel and staff.“slide 346”

But still we are left with the problems: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

65
“slide 343”
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Our simplifying and hence simple answer is: the domain engineer shall
describe what is objectively observable or concepts that are precisely defined
in terms of objectively observable phenomena and concepts defined from these
and such defined concepts.

This makes the domain description task a reasonable one, one that can
be objectively validated and one where domain description evaluators can ob-
jectively judge whether (projected) requirements involving these descriptions
may be feasible and satisfactory.

Review of Support Examples66

There are three examples (i) a grossly simplifying abstraction: the enterprise
function, which focuses on the abstract interplay between management groups,
workers, etc.; and the formal model is expressed in a recursive function style;
(ii) a grossly simplifying abstraction the enterprise processes, which focuses on
the sequential, non-deterministic processes with input/output messages that
communicate between management groups, workers, etc.; the formal model is
expressed in the CSP style. “slide 348”

The Enterprise Function: The enterprise function is narrated in Sect. H.1.1,
and formalised in Sect. H.1.2 on page 388; the formalisation is explained and
commented upon on Pages 388–390 (Sect. H.1.3). Here we shall just briefly
discuss meta-issues of domain description, modelling and abstraction. “slide 349”

The description is grossly ‘abstracted’: it leaves out any modelling of what
distinguishes top-level, executive, strategic management from mid-level, tac-
tic management, and these from “low-level” operations management, and all
of these from supervisors, team leaders and workers. Emphasis has been put
sôlely on abstractions of their intercommunication in order to achieve a “next
step” state. “slide 350”

The formalisation of enterprise is, formally speaking, doubtful. The seman-
tics of the formal specification language, RSL, does not allow such recursions,
or rather, put far too severe restrictions on the state space Σ, for the definition
to be of even pragmatic interest. Thus the definition is really a fake: at most it
hints at what goes on, such as outlined on Pages 388–390 (Sect. H.1.3). Why
is the definition a fake? Or rather: Why do we show this “definition”? “slide 351”

In order for a recursive function definition, enterprise, (as here over states
Σ) to make sense the type Σ must satisfy some ordering properties and so
must the component types whose values are involved in any of the auxiliary
functions invoked by enterprise. Since we have not specified any of these types
we take the position that function definition, enterprise, is just a pseudo func-
tion. It is indicative of “what is going on”, and that is why we bring it! “slide 352”

The Enterprise Processes: The enterprise processes are narrated and for-
malised, alternatively, in Sect. H.2 on Pages 390–398, Here we shall just briefly
discuss meta-issues of domain description, modelling and abstraction. “slide 353”

66
“slide 347”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
80 2 Domain Engineering

to be written
“slide 354”

to be written

Organisation67

Characterisation 66 (Domain Organisation) By domain organisation
we mean the structuring of management and non-management staff levels;
the allocation of strategic, tactical and operational concerns to within man-
agement and non-management staff levels; and hence the “lines of command”:
who does what and who reports to whom — administratively and functionally.

“slide 356”

to be written
“slide 357”

.

Director
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Fig. 2.1. Two organisational structures

For examples of domain management and organisation modelling and re-
sulting documents we refer to Appendix H.

2.9.7 Rules and Regulations “slide 358”

Human stakeholders act in the domain, whether clients, workers, managers,
suppliers, regulatory authorities, or other. Their actions are guided and con-
strained by rules and regulations. These are sometimes implicit, that is, not
“written down”. But we can talk about rules and regulations as if they were
explicitly formulated.

For examples of narratives of domain rules and regulations we refer to
appendix Examples 28–29 (Page 407).“slide 359”

67
“slide 355”
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The main difference between rules and regulations is that rules express
properties that must hold and regulations express state changes that must be
effected if rules are observed broken.

Rules and regulations are directed not only at human behaviour but also
at expected behaviours of support technologies.

Rules and regulations are formulated by enterprise staff, management or
workers, and/or by business and industry associations, for example in the form
of binding or guiding national, regional or international standards68, and/or
by public regulatory agencies.

Domain Rules69

For examples of narratives of domain rules we refer to appendix Examples 28–
29 (Page 407).

Characterisation 67 (Domain Rule) By a domain rule we mean some
text which prescribes how people or equipment are expected to behave when
dispatching their duty, respectively when performing their functions.

“slide 361”

Usually the rule text, when written down, appears in some, not necessarily
public documents. It is not our intention to formalise these rule texts, but to
formally define the crucial predicates and, if not already formalised, then also
the domain entities over which the predicate ranges.

Domain Regulations70

For examples of narratives of domain regulations we refer to appendix Exam-
ples 28–29 (Page 407).

Characterisation 68 (Domain Regulation) By a domain regulation we
mean some text which prescribes what remedial actions are to be taken when
it is decided that a rule has not been followed according to its intention.

“slide 363”

Usually the regulation text, when written down, appears in some, not nec-
essarily public documents. It is not our intention to formalise these rule texts,
but to formally define the crucial functions and, if not already formalised,
then also the domain entities over which these functions range.

68 Viz.: ISO (International Organisation for Standardisation, www.iso.org/iso/-
home.htm), CENELEC (European Committee for Electrotechnical Standardiza-
tion, www.cenelec.eu/Cenelec/Homepage.htm), etc.

69
“slide 360”

70
“slide 362”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
82 2 Domain Engineering

Formalisation of the Rules and Regulations Concepts

At a meta-level, i.e., explaining the general framework for describing the syn-
tax and semantics of the human-oriented domain languages for expressing
rules and regulations, we can say the following:

Rules, as already mentioned, express predicates, and regulations express
state changes. In the following we shall review a semantics of rules and regu-
lations.“slide 364”

There are, abstractly speaking, usually three kinds of languages involved
wrt. (i.e., when expressing) rules and regulations (respectively when invoking
actions that are subject to rules and regulations). Two languages, Rules and
Reg, exist for describing rules, respectively regulations; and one, Stimulus,
exists for describing the form of the [always current] domain action stimuli.“slide 365”

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from
any configuration to a next configuration, where configurations are those of the
system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands
for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current
and next configurations, (Θ × Θ) → Bool, where these next configurations
have been brought about, i.e., caused, by the stimuli. These stimuli express: If
the predicate holds then the stimulus will result in a valid next configuration.“slide 366”

type
Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value
meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool
valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool
valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

“slide 367”
A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e.,
has as its semantics, its meaning, a semantic regulation, se reg:REG, which is a
pair. This pair consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ ×
Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ, that is, both involving current and next domain
configurations. The two kinds of functions express: If the predicate holds,“slide 368”

then the action can be applied.
The predicate is almost the inverse of the rules functions. The action func-

tion serves to undo the stimulus function.“slide 369”

type
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Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool
Act REG = Θ → Θ

value
interpret: Reg → REG

“slide 370”
The idea is now the following: Any action of the system, i.e., the application
of any stimulus, may be an action in accordance with the rules, or it may not.
Rules therefore express whether stimuli are valid or not in the current con-
figuration. And regulations therefore express whether they should be applied,
and, if so, with what effort. “slide 371”

More specifically, there is usually, in any current system configuration,
given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such
pair. Let sy sti be any possible stimulus. And let θ be the current config-
uration. Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ violate the
rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the mean-
ing of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning
of the regulation, sy reg, must be applied, act reg(θ), to remedy the situation. “slide 372”

axiom
∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end

“slide 373”
It may be that the regulation predicate fails to detect applicability of regula-
tions actions. That is, the interpretation of a rule differs, in that respect, from
the interpretation of a regulation. Such is life in the domain, i.e., in actual
reality

On Modelling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities,
including those grouped into “the state”, functions, events, and behaviours.
Thus the full spectrum of modelling techniques and notations may be needed. “slide 374”

Since rules usually express properties one often uses some combination of ax-
ioms and well-formedness predicates. Properties sometimes include temporal-
ity and hence temporal notations (like Duration Calculus or Temporal Logic
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of Actions ) are used. And since regulations usually express state (restora-
tion) changes one often uses state changing notations (such as found in B,
RSL, VDM-SL, and Z). In some cases it may be relevant to model using some
constraint satisfaction notation [12] or some Fuzzy Logic notations [219].“slide 375”

“slide 376”

2.9.8 Scripts “slide 377”

For examples of narratives of domain scripts we refer to appendix Exam-
ples 30–32 (Pages 415–418).

Characterisation 69 (Domain Script) By a domain script we mean the
structured wording of a rule or a regulation that has legally binding power,
that is, which may be contested in a court of law.

Analysis of Examples71

1 Bus [Train] Timetables (Schedules): Page 415
The bus/train timetable is informally sketched. Sect. J.2 will elaborate,
and formalise, this timetable example. In addition that section will relate
timetables to the underlying net of to the resulting and possible traffics. A
timetable script thus can be given several pragmatics: (i-ii) a, perhaps not
exactly legally binding, contract between the bus/train operator and the
passengers, as well as a contract between the bus/train operator and the
public authorities which may be financially supporting community com-
muting; (iii) a particular timetable (considered as syntax) semantically
denotes a possibly infinite set of bus/train traffics, each of which satisfies
the timetable, i.e., runs to schedule; and (iv) a script, to be followed by
the drivers/train engine men, guiding these in the bus/train journey (to
speed up or slow down, etc.).“slide 379”

2 Aircraft Flight Simulator Script: Pages 415–416
The example script is from a specific aircraft simulator demo. It has been
abstracted a bit from the real case script. You may think of the example
script being partly “programmed” into the flight simulator which is a
reactive system awaiting pilot trainee actions and reactions. As you note,
it is quite detailed. It mentions many phenomena and concepts of aircraft
flights: entities (simple as well as behavioural), operations, events, and
itself prescribes a behaviour. You may additionally think of the example
script as also (in addition to the flight simulator hardware and software)
“scripting” the pilot trainee. Thus a specific script, for example, denotes
an infinity of actual behaviours of pilot trainees working in conjunction
with flight simulators.“slide 380”

3 Bill of Lading: Pages 417–418
The bill of lading is also a script, but it is quite different from the previ-
ous two examples. It only very, very loosely hints at transport behaviours.

71
“slide 378”
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Whereas it certainly puts some constraints on freight transport. The bill
of lading script is a legal instrument which entitles the consignee to receive
the freight at the destination harbour; stipulates, in the closing “condi-
tions” item, legal protection of the two parties to the contract; etcetera.

Licenses72

License:

a right or permission granted in accordance with law by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful

Merriam Webster On-line [209]
“slide 382”

The concepts of licenses and licensing express relations between actors (li-
censors (the authority) and licensees), simple entities (artistic works, hospital
patients, public administration and citizen documents) and operations (on
simple entities), and as performed by actors. By issuing a license to a licensee,
a licensor wishes to express and enforce certain permissions and obligations:
which operations on which entities the licensee is allowed (is licensed, is per-
mitted) to perform. As such a license denotes a possibly infinite set of allowable
behaviours. “slide 383”

We shall consider three kinds of entities: (i) digital recordings of artistic
and intellectual nature: music, movies, readings (“audio books”), and the like,
(ii) patients in a hospital as represented also by their patient medical records,
and (iii) documents related to public government. “slide 384”

The permissions and obligations issues are, (i) for the owner (agent) of
some intellectual property to be paid (i.e., an obligation) by users when they
perform permitted operations (rendering, copying, editing, sub-licensing) on
their works; (ii) for the patient to be professionally treated — by medical
staff who are basically obliged to try to cure the patient; and (iii) for public
administrators and citizens to enjoy good governance: transparency in law
making (national parliaments and local prefectures and city councils), in law
enforcement (i.e., the daily administration of laws), and law interpretation
(the judiciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps copy) other
documents. “slide 385”

In this section we shall rough-sketch-describe pragmatic aspects of the three
domains of (1) production, distribution and consumption of artistic works, (2)
the hospitalisation of patient, i.e., hospital health care and (3) the handling of
law-based document in public government. The emphasis is on the pragmatics
of the terms, i.e., the language used in these three domains.

72
“slide 381”
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The Performing Arts: Producers and Consumers73

The intrinsic entities of the performing arts are the artistic works: drama
or opera performances, music performances, readings of poems, short sto-
ries, novels, or jokes, movies, documentaries, newsreels, etc. We shall limit
our span to the scope of electronic renditions of these artistic works: videos,
CDs or other. In this paper we shall not touch upon the technical issues of
“downloading”(whether ”streaming” or copying, or other).

Operations on Digital Works74

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while“slide 388”

protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

License Agreement and Obligation75

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

Two Assumptions76

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from“slide 391”

the fulfilment of the first). The second assumption is that the consumer is not
allowed to, or cannot operate77 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results

73
“slide 386”

74
“slide 387”

75
“slide 389”

76
“slide 390”

77 render, copy and edit
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in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

Protection of the Artistic Electronic Works78

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

A License Language79

type
0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′readme′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

“slide 394”
(0.) Licenses are given names, ln:Ln, so are actors (owners, licensors, and

users, licensees), nn:Nm. By w:W we mean a (net) reference to (a name of) the
downloaded possibly segmented artistic work being licensed, where segments
are named (s:S), that is, s:S is a selector to either a segment of a downloaded
work or to a segment of a copied and or and edited work. “slide 395”

(1.) Every license (lic:Lic) has a unique name (ln:Ln).
(2.) A license (lic:Lic) contains four parts: the name of the licensor, the

name of the licensee, a reference to (the name of) the work, a set of commands
(that may be permitted to be performed on the work). “slide 396”

(3.) A command is either a render, a copy or an edit or a readme command,
or a sub-licensing (sub-license) command. “slide 397”

(4.–6.) The render, copy and edit commands are each “decorated” with
an ordered list of selectors (i.e., selector names) and a (work) variable name.
The license command

copy 〈s1,s2,s7〉 v

means that the licensed work, ω, may have its sections s1, s2 and s7 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands. “slide 398”

78
“slide 392”

79
“slide 393”
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(7.) The ”readme” license command, in a license, ln, referring, by means of
w, to work ω, somehow displays a graphical/textual “image” of, that is, infor-
mation about ω. We do not here bother to detail what kind of information may
be so displayed. But you may think of the following display information names
of artistic work,artists, authors, etc., names and details about licensed com-
mands, a table of fees for performing respective licensed commands, etcetera.“slide 399”

(8.) The license command

schema: license cmd1,cmd2,...,cmdn on work v
formal: mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensee to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one to reflect such
constraints. The license also do not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted.“slide 400”

A license licenses the licensee to render, copy, edit and license (possibly
the results of editing) any selection of downloaded works. In any order — but
see below — and any number of times. For every time any of these operations
take place payment according to the payment function occurs (that can be
inspected by means of the read license command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied
versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function.“slide 401”

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” (see next section) functions are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage.“slide 402”

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary.“slide 403”

type
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5. V
6. Act = Ln × (Rndr|Copy|Edit|License)
7. Rndr == mkR(sel:S∗,wrk:(W|V))
8. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
9. Edit == mkE(wrks:V∗,into:V)
10. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

“slide 404”
(5.) By V we mean the name of a variable in the users own storage into

which downloaded works can be copied (now becoming a local work. The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested. “slide 405”

(6.) Every action of a licensee is tagged by the name of a relevant license.
If the action is not authorised by the named license then it is rejected. Render
and copy actions mention a specific sequence of selectors. If this sequence is
not an allowed (a licensed) one, then the action is rejected. (Notice that the
license may authorise a specific action, a with different sets of sequences of
selectors — thus allowing for a variety of possibilities as well as constraints.) “slide 406”

(7.) The licensee, having now received a license, can render selections of
the licensed work, or of copied and/or edited versions of the licensed work. No
reference is made to the payment function. When rendering the semantics is
that this function is invoked and duly applied. That is, render payments are
automatically made: subtracted from the licensees account and forwarded to
the licensor. “slide 407”

(8.) The licensee can copy selections of the licensed work, or of previously
copied and/or edited versions of the licensed work. The licensee identifies a
name for the local storage file where the copy will be kept. No reference is made
to the payment function. When copying the semantics is that this function
is invoked and duly applied. That is, copy payments are automatically made:
subtracted from the licensees account and forwarded to the licensor. “slide 408”

(9.) The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function. “slide 409”

When copying the semantics is that this function is invoked and duly applied.
That is, copy payments are automatically made: subtracted from the licensees
account and forwarded to the licensor. Although no reference is made to any
edit functions these are made available to the licensee when invoking the edit
command. You may think of these edit functions being downloaded at the
time of downloading the license. Other than this we need not further specify
the editing functions. Same remarks apply to the above copying functions. “slide 410”

(10.) The licensee can further sub-license copied and/or edited work. The
licensee must give the license being assembled a unique name. And the licensee
must choose to whom to license this work. A sub-license, like does a license,
authorises which actions can be performed, and then with which one of a set of
alternative selection sequences. No payment function is explicitly mentioned.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
90 2 Domain Engineering

It is to be semi-automatically derived (from the originally licensed payment
fee function and the licensee’s payment demands) by means of functionalities
provided as part of the licensed payment fee function.“slide 411”

The sub-license command information is thus compiled (assembled) into
a license of the form given in (1.–3.). The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
issuing the sub-license. From the license label of the command it is known
whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

A Hospital Health Care License Language80

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients, in
a sense, issue a request to be treated with the aim of full or partial restitution.
This request is directed at medical staff, that is, the patient authorises medical
staff to perform a set of actions upon the patient. One could claim, as we shall,
that the patient issues a license.

Patients and Patient Medical Records81

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

Medical Staff82

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

80
“slide 412”

81
“slide 413”

82
“slide 414”
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We refer to the abstract syntax formalised below (that is, formulas 1.–5.).
The work on the specific form of the syntax has been facilitated by the work
reported in [14].83

A Notion of License Execution State84

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations on local works could
not be done before these had been created — say by copying. Editing could
only be done on local works and hence required a prior action of, for example,
copying a licensed work. In the context of hospital health care most of the
actions can only be performed if the patient has reached a suitable state in
the hospitalisation. We refer to Fig. 2.2 for an idealised hospitalisation plan. “slide 416”

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. 2.2. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

“slide 417”

83 As this work, [14], has yet to be completed the syntax and annotations given here
may change.

84
“slide 415”
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We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same !) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice ! One cannot design a language and
prevent it being misused!

The License Language85

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.“slide 419”

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL. But it is decorated! The subtypes {|boldface
keyword|} are inserted for readability.“slide 420”

(0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for CoL) the
licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative.

(5.) A command (Cmd) is a state-labelled statement.“slide 421”

(3.) A sub-license just states the command set that the sub-license licenses.
As for the Artistic License Language the licensee chooses an appropriate sub-
set of commands. The context “inherits” the name of the patient. But the
sub-licensee is explicitly mandated in the license!

(6.) An alternative is also just a set of commands. The meaning is that
either the licensee choose to perform the designated actions or, as for ML, but
now freely choosing the sub-licensee, the licensee (now new licensor) chooses
to confer actions to other staff.“slide 422”

85
“slide 418”
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(7.) A statement is either an admit, an interview, a plan analysis, an
analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive Information given in the patient medical report for the designated
state inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc. “slide 423”

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

“slide 424”
(8.) Each action actually attempted by a medical staff refers to the license,

and hence the patient name.
(9.) Actions are either of an admit, an interview, a plan analysis, an analy-

sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap- “slide 425”

pears in the named license and the patient (medical record) designates state
σ.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3.) is compiled from contextual information.

Public Government and the Citizens86

The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)87, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of public
government. Typically national parliament and local (province and city) coun- “slide 427”

cils are part of law-making government, law-enforcing government is called the
executive (the administration), and law-interpreting government is called the
judiciary [system] (including lawyers etc.).

Documents88

A crucial means of expressing public administration is through documents.89

We shall therefore provide a brief domain analysis of a concept of documents.
(This document domain description also applies to patient medical records
and, by some “light” interpretation, also to artistic works — insofar as they
also are documents.) “slide 429”

86
“slide 426”

87 De l’esprit des lois (The Spirit of the Laws), published 1748
88

“slide 428”

89 Documents are, for the case of public government to be the “equivalent” of artistic
works.
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Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

Document Attributes90

With documents one can associate, as attributes of documents, the actors who
created, edited, read, copied, distributed (and to whom distributed),shared,
performed calculations and shredded documents.“slide 431”

With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

Actor Attributes and Licenses91

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as
licenses.

Document Tracing92

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

A Document License Language93

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

The Form of Licenses

type
0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

90
“slide 430”

91
“slide 432”

92
“slide 433”

93
“slide 434”
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“slide 435”

type
7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12a. Licn == mkLi(kind:LiTy)
12b. LiTy == grant | extend | restrict | withdraw
13. Shar == mkSh(doc:UDI,with:An-set)
14. Rvok == mkRv(doc:UDI,from:An-set)
15. Rlea == mkRl(dn:Dn)
16. Rtur == mkRt(dn:Dn)
17. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
18. Shrd == mkSh(doc:UDI)

“slide 436”
(0.) The are names of licenses (Ln), actors (An), documents (UDI), docu-

ment classes (DCn) and calculation functions (Cfn).
(1.) There are four kinds of licenses: granting, extending, restricting and

withdrawing.
(2.) Actors (licensors) grant licenses to other actors (licensees). An actor

is constrained to always grant distinctly named licenses. No two actors grant
identically named licenses.94 A set of operations on (named) documents are
granted. “slide 437”

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations, or fully).

(6.) There are nine kinds of operation authorisations. Some of the next
explications also explain parts of some of the corresponding actions (see (16.–
24.).

(7.) There are names of documents (Dn), names of classes of documents
(DCn), and there are unique document identifiers (UDI). “slide 438”

(8.) Creation results in an initially void document which is
not necessarily uniquely named (dn:Dn) (but that name is uniquely as-

sociated with the unique document identifier created when the document is
created95) typed by a document class name (dcn:DCn) and possibly based
on one or more identified documents (over which the licensee (at least) has
reading rights). We can presently omit consideration of the document class
concept. “based on” means that the initially void document contains refer-
ences to those (zero, one or more) documents.96 The “based on” documents
are moved from licensor to licensee. “slide 439”

94 This constraint can be enforced by letting the actor name be part of the license
name.

95 — hence there is an assumption here that the create operation is invoked by the
licensee exactly (or at most) once.

96 They can therefore be traced (etc.) — as per [32].
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(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved from licensor to licensee — if not al-
ready so moved as the result of the specification of other authorised actions.“slide 440”

(10.) Reading a document only changes its “having been read” status (etc.)
— as per [32]. The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions.“slide 441”

(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied
document is marked to be a copy (etc.) — as per [32]. The master document,
if not the result of a create or copy, is moved from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions.“slide 442”

(12a.) A licensee can sub-license (sL) certain operations to be performed
by other actors.

(12b.) The granting, extending, restricting or withdrawing permissions,
cannot name a license (the user has to do that), do not need to refer to
the licensor (the licensee issuing the sub-license), and leaves it open to the
licensor to freely choose a licensee. One could, instead, for example, constrain
the licensor to choose from a certain class of actors. The licensor (the licensee
issuing the sub-license) must choose a unique license name.“slide 443”

(13.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead the licensing actions with a shared attribute.) The
shared document, if not the result of a create and edit or copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions. Sharing a document does not move nor copy it.“slide 444”

(14.) Sharing documents can be revoked. That is, the reading rights are
removed.

(15.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy.“slide 445”

(16.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document.“slide 446”

(17.) Two or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of a creates
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and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(18.) A document can be shredded. It seems pointless to shred a document
if that was the only right granted wrt. document. “slide 447”

17. Action = Ln × Clause
18. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
19. Cre == mkCre(dcn:DCn,based on docs:UID-set)
20. Edt == mkEdt(uid:UID,based on docs:UID-set)
21. Rea == mkRea(uid:UID)
22. Cop == mkCop(uid:UID)
23. Lic == mkLic(license:L)
24. Sha == mkSha(uid:UID,with:An-set)
25. Rvk == mkRvk(uid:UID,from:An-set)
25. Rev == mkRev(uid:UID,from:An-set)
26. Rel == mkRel(dn:Dn,uid:UID)
27. Ret == mkRet(dn:Dn,uid:UID)
28. Cal == mkCal(fct:Cfn,over docs:UID-set)
29. Shr == mkShr(uid:UID)

“slide 448”
A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”. “slide 449”

(17.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited. “slide 450”

(19.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(20.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(21.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(22.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy. “slide 451”

(23.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
98 2 Domain Engineering

any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.“slide 452”

(24.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,
for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(25.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.“slide 453”

(26.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created now is being able to
see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(27.) A document may be returned. It means that the licensor who orig-
inally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it.“slide 454”

(28.) A license may (conditionally) apply any of a licensed set of calcu-
lation functions to “downloaded” (edited, copied, etc.) documents, or can
(unconditionally) apply any of a licensed set of calculation functions to cre-
ated (etc.) documents. The result of a calculation is a document. The licensee
obtains all operation authorisations to this document (— as for created doc-
uments).

(29.) A license may (conditionally) shred a “downloaded” (etc.) document.

Discussion: Comparisons97

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages.“slide 456”

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

Work Items98

The work items of the artistic license language(s) are essentially “kept” by the
licensor. The work items of the hospital health care license language(s) are
fixed and, for a large set of licenses there is one work item, the patient which
is shared between many licensors and licenses. The work items of the public
administration license language(s) — namely document — are distributed to
or created and copied by licenses and may possibly be shared.

97
“slide 455”

98
“slide 457”
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Operations99

The operations of the artistic license language(s) are are essentially “kept” by
the licensor. The operations of the hospital health care license language(s)
are are essentially “kept” by the licensees (as reflected in their professional
training and conduct). The operations of the public administration license
language(s) are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct).

Permissions and Obligations100

Generally we can say that the modalities of the artistic license language(s) are
essentially permissions with payment (as well as use of licensor functions)
being an obligation; that the modalities of the hospital health care license
language(s) are are essentially obligations; and, as well, that the modalities of
the public administration license language(s) are essentially obligations We
shall have more to say about permissions and obligations later (much later).

Script and Contract Languages101

By a domain script language we mean the definition of a set of licenses and

actions where these licenses when issued and actions when performed have
morally obliging power.

By a domain contract language we mean a domain script language
whose licenses and actions have legally binding power, that is, the issue of
licenses and the invocation of actions may be contested in a court of law. We
now refer to licenses as contracts.

Review of Support Examples102

to be written

The Aircraft Simulator Script103

to be written

The Bill-of-Lading Script104

to be written

99
“slide 458”

100
“slide 459”

101
“slide 460”

102
“slide 461”

103
“slide 462”

104
“slide 463”
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The Timetable Script Language105

to be written

The Bus Transport Contract Language106

to be written
“slide 466”

to be written
“slide 467”

to be written

Modelling Scripts107

2.9.9 Human Behaviours “slide 469”

Characterisation 70 (Human Behaviour) By human behaviour we mean
any of a quality spectrum of carrying out assigned work: from (i) careful, dili-
gent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv)
outright criminal pursuit.

A Meta-characterisation of Human Behaviour108

Commensurate with the above, humans interpret rules and regulations differ-
ently, and not always consistently — in the sense of repeatedly applying the
same interpretations.

Our final specification pattern is therefore:

type

Action = Θ
∼
→ Θ-infset

value
hum int: Rule → Θ → RUL-infset
action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

“slide 471”

105
“slide 464”

106
“slide 465”

107
“slide 468”

108
“slide 470”
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The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rules. A human, in carrying out an action, interprets
applicable rules and chooses one which that person believes suits some (pro-
fessional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies
the intent, i.e., yields true on the pre/post-configuration pair, when the ac-
tion is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate
regulation is applied or not. “slide 472”

The above-stated axioms express how it is in the domain, not how we
would like it to be. For that we have to establish requirements.

Review of Support Examples109

to be written
“slide 474”

to be written

On Modelling Human Behaviour110

To model human behaviour is, “initially”, much like modelling management
and organisation. But only ‘initially’. The most significant human behaviour
modelling aspect is then that of modelling non-determinism and looseness,
even ambiguity. So a specification language which allows specifying non-
determinism and looseness (like CafeOBJ and RSL) is to be preferred.

For examples of domain human behaviour modelling and resulting docu-
ments we refer to Appendix K.

2.9.10 Consolidation of Domain Facets Description “slide 476”

The many previous domain facet stages may have yielded descriptions which,
typically at the formal level, does not reveal how it all “hangs together”. In
such cases, and in general, consolidation of these domain facet documentaton
stages could take the following forms.

With each potential management unit we associate a process or an in-
dexed set of two or more processes, usually an indeterminate number. Such
management units will usually involve entities and behaviours — whether
staff of entity behaviours. Usually type definitions and axioms (about sorts)
and value definitions of auxiliary and well-formedness functions about values
can be kept separate from the process definitions. The entity processes usu-
ally take, as arguments, the entity whose time-wise behaviour and interaction
with oother entity processes is being domain modelled. “slide 477”

With each structural component of the organisation we associate one or
more channels, or vector or array or tensor (or . . . ) indexed sets of channels.

109
“slide 473”

110
“slide 475”
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More to come

2.9.11 Discussion of Facets “slide 478”

“slide 479”

“slide 480” 2.10 Domain Verification “slide 481”

For examples of domain verification modelling and resulting documents we
refer to Appendix L, Sect. L.1 (Page 457).

2.11 Domain Validation “slide 482”

For examples of domain validation modelling and resulting documents we refer
to Appendix L, Sect. L.2 (Page 457).

2.12 Verification Versus Validation “slide 483”

2.13 Domain Theory Formation “slide 484”

For examples of domain theory formation modelling and resulting documents
we refer to Appendix L, Sect. L.3 (Page 457).

2.14 Domain Engineering Process Graph “slide 485”

2.15 Domain Engineering Documents “slide 486”

There are basically three kinds of domain development documents:

• information documents,
• description documents and
• analytic documents.

We have already covered, in Sect. 1.6, the concept of informative documents.
For examples of informative domain documents modelling and resulting

documents we refer to Appendix E, Sect. E.1 (Page 317).
In the next two sections we shall cover the motivation for and principles

and techniques of description and analysis documents.

2.15.1 Description Documents “slide 487”
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Identification and Liaison
Stakeholder

Elicitation Studies

Elicitation Interviews

Preparation, Presentation

Description Unit Indexing

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapters 10−11

Chapter 11

DOMAIN
DEVELOPMENT

Chapter 9

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

Stakeholder Identification

ACQUISITION

Fig. 2.3. Domain engineering process graph

1 Stakeholders
2 The Acquisition Process

(a) Studies
(b) Interviews
(c) Questionnaires
(d) Indexed Description Units

3 Terminology
4 Business Processes
5 Facets:

(a) Intrinsics

(b) Support Technologies

(c) Management and
Organisation

(d) Rules and Regulations

(e) Scripts

(f) Human Behaviour

6 Consolidated Description

2.15.2 Analytic Documents “slide 488”

1 Domain Analysis and
Concept Formation

(a) Inconsistencies

(b) Conflicts

(c) Incompletenesses

(d) Resolutions

2 Domain Validation

(a) Stakeholder Walkthroughs
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(b) Resolutions
3 Domain Verification

(a) Model Checkings

(b) Theorems and Proofs
(c) Test Cases and Tests

4 (Towards a) Domain Theory

2.16 Summary “slide 489”

2.17 Exercises

Exercise 11. Route Type: Given the concepts of hubs, links, nets, hub
identifiers, link identifiers, and their associated observer functions you are to
define the following concepts:

• transport routes (or just routes, for short) as suitable sequences of hub
and link identifiers.

If hubs identified by hi, hj and hk are linked by links identified by ℓij and ℓjk,
then the sequence of triples < (hi, ℓij , hj), (hj , ℓjk, hk) > is an example of a
way to represent a route.

• In other words, please define the type of such routes both informally, by
a precise narration, and formally, by a concrete type definition involving
Cartesians and lists.

Hint: You may wish to consult Appendix S’s outline of the Cartesian and list
concepts:

• Cartesian types (Item 9 on page 504 and Page S.1.1, Item [9]),
• list types (Items 10–11 and Page S.1.1, Items [10-11]) and
• their definition (framed box ‘Type Definition’ Page 505).
• Cartesian and list enumerations (Sects. S.3.3 on page 509 and S.3.4 on

page 509) and
• Cartesian and list operations (Sects. S.3.7 on page 513 and S.3.8 on

page 513).

Hint: We suggest that routes, r:R, are sequences of adjacent link visits where
a link visits are triples of hub, link, and hub identifiers — suitably constrained.

• Thus you are also to define a suitable well-formedness predicate:
1 wf R over routes and nets
2 which checks that adjacent link visits share hub identifiers
3 and that all hub and link identifiers are indeed indentifiers of hubs and

links of the net.

Solution 11 Vol. II, Page 533, suggests a way of answering this exercise.

Exercise 12. Route Generation: Given a net you are to formally define a
function which generates the set of all finite routes of the net.
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1 Basis Clause: A singleton sequence of the triplet of a (from) hub identi-
fier, hf , a(n along) link identifier, ℓft, and a (to) hub identifier, ht, where
the link, ℓ, identified by ℓft is connected to the two distinct hubs identfied
by the distinct identifiers hf and ht, such a singleton sequence is a route.

2 In the above defined singleton route, < (hf , ℓft, ht) >, hf is called the
first hub identifier and ht is called the last hub identifier.

3 Inductive Clause: If r and r′ are routes such that some hub identifier
hi is the last in r and the first in r′, then the concatenation, rr′, of the
two routes is a route.

4 Extremal Clause: Only such routes which can be formed by a finite
number of uses of the basis and the induction clauses are routes.

Solution 12 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 13. Route Lengths:

• With every link we associate a length.
• With every hub we can associate a set of lengths, one for each pair of

incoming and outgoing link. (The set can be thought of as being ‘indexed’
by the pairs of link identfiers.)

Now define the following functions:

1 Given a route and a net (of the route) calculate the length of the route in
that net.

2 Given a pair of distinct hub identifiers and a net of the identified hubs
find the set of routes between those hubs.

3 As for Item 2, find the shortest route between a given pair of distinct hub
identifiers.

4 As for Items 2–3, find the longest route.
5 Given a net and a set of distinct hub identifiers find the set of routes that

visits the so-identified hubs (at least once).
6 As for Item 5, find the shortest of the routes “found” by the function of

that item.

Solution 13 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 14. DE4:
Solution 14 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 15. DE4:
Solution 15 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 16. DE4:
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Solution 16 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 17. DE4:
Solution 17 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 18. DE4:
Solution 18 Vol. II, Page 534, suggests a way of answering this exercise.

“slide 490”
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Requirements Engineering “slide 492”

3.1 Discussion of The Requirements Concept

3.1.1 Some Principles

The objective of requirements engineering is to create a requirements pre-
scription.

IEEE Definition of ‘Requirements’

By a requirements we understand (cf. IEEE Standard 610.12 [113]): “A condition
or capability needed by a user to solve a problem or achieve an objective”.

“slide 493”

The above definition1 is adequate for our purposes. It stresses what require-
ments are. It is not operational, and that is good. It does not define the thing,
the requirements, by how they look, or how you construct them. The ‘what’
(not the ‘how’) of requirements is the purpose of this and the next seven
chapters. “slide 494”

The “Golden Rule” of Requirements Engineering

Principle 5 (Requirements Engineering [1) ]Prescribe only those require-
ments that can be objectively shown to hold for the designed software.

“Objectively shown” means that the designed software can either be proved
(verified), or be model checked, or be tested, to satisfy the requirements. “slide 495”

An “Ideal Rule” of Requirements Engineering

Principle 6 (Requirements Engineering [2) ]When prescribing require-
ments, formulate, at the same time, tests (theorems, properties for model
checking) whose actualisation should show adherence to the requirements.

1 We shall mostly be using the term ‘requirements’ in its plural form, but think of
it as “one body” of such!
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The rule is labelled “ideal”. We shall not show such precautions in this volume.
They ought to be shown. But either we would show one, or a few instances,
and they would “drown” in the mass of material otherwise presented. Or they
would, we claim, trivially take up too much space. The rule is clear. It is a
question for proper management to see that it is adhered to.“slide 496”

Principle 7 (Requirements Adequacy) Make sure that requirements co-
ver what users expect.

That is, do not express a requirement for which you have no users, but make
sure that all users’ requirements are represented or somehow accommodated.
In other words: the requirements gathering process needs to be like an ex-
tremely “fine-meshed net”: One must make sure that all possible stakeholders
have been involved in the requirements acquisition process, and that possible
conflicts and other inconsistencies have been obviated.“slide 497”

The approach which we put forward in this chapter, namely “deriving”
domain requirements “directly” from domain descriptions, and systematically
conceiving interface requirements also from domain descriptions shall help
secure adherence to this ‘Requirements Adequacy’ principle. We shall soon
explain the terms ‘domain requirements’ and ‘interface requirements’.“slide 498”

Principle 8 (Requirements Implementability) Make sure that require-
ments are implementable.

That is, do not express a requirement for which you have no assurance that it
can be implemented. In other words, although the requirements phase is not a
design phase, one must tacitly assume, perhaps even indicate, somehow, that
an implementation is possible. But the requirements in and by themselves,
stay short of expressing such designs.“slide 499”

Principle 9 (Requirements Verifiability and Validability) Make sure
that requirements are verifiable and can be validated.

That is, do not express a requirement for which you have no assurance that
it can be verified and validated. In other words, once a first-level software
design has been proposed, one must show that it satisfies the requirements.
Thus specific parts of even abstract software designs are usually provided with
references to specific parts of the requirements that they are (thus) claimed
to implement.“slide 500”

We conclude this discussion.

Characterisation 71 (Requirements) By requirements we shall under-
stand a document which prescribes desired properties of a machine: (i) what
entities the machine shall “maintain”, and what the machine shall (must; not
should) offer of (ii) functions and of (iii) behaviours (iv) while also expressing
which events the machine shall “handle”.
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3.1.2 One Domain, Many Requirements “slide 501”

Domain descriptions nearly always cover a much larger span than do any one
individual (set of) requirements, that is, a requirements for a specific software
product. Thus one can expect one domain description to be the basis for many
(more-or-less) distinct requirements prescriptions, which, since they are (to
be) based on the same domain description, and when they share some domain
phenomena and concepts, must (somehow) be made to fit one another. We
shall cover the notion of requirements fitting in Sect. 3.9.3 (starting Page 131)
when covering the topic of domain requirements.

3.1.3 The Machine as Target “slide 502”

A requirements prescription specifies externally observable properties of sim-
ple entities, functions, events and behaviours of the machine such as the
requirements stakeholders wish them to be.

3.1.4 Machine = Hardware + Software “slide 503”

The machine is what is required, that is, the hardware and software that is
to be designed and which are to satisfy the requirements.

3.1.5 On “Derivation” of Requirements “slide 504”

It is a highlight of this book that requirements engineering has a scientific
foundation and that that scientific foundation is the domain theory, that is the
properties of the domain as modelled by a domain description. Conventional
requirements engineering, as covered in a great number of software engineering
textbooks [175, 181, 201, 222, 88], does not have (such) a scientific foundation.
This foundation allows us to pursue requirements engineering in quite a new
manner. “slide 505”

The way in which we shall pursue the central core of requirements engi-
neering will now be sketched. When modelling the requirements, after all the
initial stages of requirements stakeholder identification, etc., we “divide” the
work into three kinds of requirements: (i) the domain requirements, (ii) the
interface requirements, and (iii) the machine requirements. “slide 506”

These sub-stages are related to their underlying domain as follows. (i) The
domain requirements are those requirements which can be expressed sôlely
using terms from the domain (in addition to ordinary, say, English. (iii) The
machine requirements are those requirements which can be expressed sôlely
using terms from the machine, that is, the hardware and software regime.
(ii) The interface requirements are then those requirements which can be
expressed using terms from both the domain and the machine. “slide 507”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
112 3 Requirements Engineering

This approach materially alters the way in which we pursue the prepara-
tory requirements engineering stages of stakeholder identification, require-
ments acquisition, requirements analysis and concept formation, business pro-
cess re-engineering and requirements terminology.

We will cover these preparatory requirements engineering stages in two
rounds: in an overview fashion, Sect. 3.2.1, and in some detail, Sects. 3.3–
3.8,. In our coverage we rely on the reader having first carefully studied the
“similarly named” domain engineering stage.

3.1.6 Summary “slide 508”

A requirements prescription thus (putatively) expresses what there should
be. A requirements prescription expresses nothing about the design of the
possibly desired (required) software.

• • •

We shall show how a major part of a requirements prescription can be “de-
rived” from “its” prerequisite domain description.

3.2 Stages of Requirements Engineering “slide 509”

3.2.1 An Overview of “What To Do?”

The present section’s main material, Pages 112–116, on “what to do” in re-
quirements development is very much like section on “what to do” in domain
development (Pages 52–54). So we kindly ask the reader to recall that former
section.

We first summarise what is to be done, ending that summary with an
overview listing (Page 116) (as we did for the stages of domain engineering
(Page 55) . Then, in subsequent section we cover, in some detail, how to do
that which is to be done (Sect. 3.3–3.13).

[1] Requirements Information2

This (numbered [1]) section is very much like the similarly named subsection
([1]) on Page 52.

The purpose of this stage of development, to repeat, is to record all rel-
evant administrative, socio-economic, budgetary, project management (plan-
ning) and such non-formalisable information which has a bearing on the re-
quirements prescription project.

For more specifics on this topic we refer to Sect. 3.3 (Page 117).
For the example ‘requirements information’ document we refer to (Ap-

pendix) Sect. M.1, Pages 461–466.

2
“slide 510”
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[2] Requirements Stakeholder Identification3

This (numbered [2]) section is very much like the similarly named subsection
([2]) on Page 52.

The purpose of this stage of development is to identify the requirements
stakeholders. They are usually a proper subset of the domain stakeholders.
One does not need to interact with all domain stakeholders as that was sup-
posedly done in the domain description development phase, and the domain
description is, of course, assumed available and the basis for the requirements
prescription development phase. For more specifics on this topic we refer to
Sect. 3.4

For the example ‘requirements stakeholder identification’ document we
refer to (Appendix) Sect. M.2, Pages 466–466.

[3] Requirements Acquisition4

This (numbered [3]) subsection is very much like the similarly named subsec-
tion ([3]) on Page 53.

The purpose of this stage of development is to acquire and elicit, to list,
to enumerate, to collect the requirements. Now since, as we shall see, the re-
quirements shall consist of three parts: the domain requirements, the interface
requirements and the machine requirements, and since the first two relies very
strongly on the domain description, a major part of the requirements acquisi-
tion takes on a rather different form than the way in which domain acquisition
takes place.

For more specifics on this topic we refer to Sect. 3.5
For the example ‘requirements acquisition’ document we refer to (Ap-

pendix) Sect. M.3, Pages 466–466.

[4] Requirements Analysis & Concept Formation5

This (numbered [4]) subsection is very much like the similarly named subsec-
tion ([4]) on Page 53.

The purpose of this stage of development is to analyse and conceive of
concepts around which to structure the requirements, for those relevant such
concepts that are not already part of the domain description.

While performing the steps of (a) the domain requirements, (b) the in-
terface requirements and (c) the machine requirements stages of development
these steps may give rise to inconsistencies incompletenesses for which analysis
has to check their absence. “slide 514”

While deriving the above three stages (a–b–c) analyses must be made to
secure that the required simple entities, functions, events and behaviours are

3
“slide 511”

4
“slide 512”

5
“slide 513”
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computable. (For a domain description incomputable concepts are allowed.)
(In fact, the whole purpose of requirements construction is to secure some
form of computability6.

For more specifics on this topic we refer to Sect. 3.6
For the example ‘requirements analysis’ document we refer to (Appendix)

Sect. M.4, Pages 467–467.

[5] Requirements Business Process Re-Engineering7

This (numbered [5]) subsection is very much like the similarly named subsec-
tion ([5]) on Page 53.

The background for this stage of development is the set of current busi-
ness processes as carried out in the domain at present and as described during
construction of the domain description. The purpose of this stage of develop-
ment is to prescribe how thee business processes are to be in future, once the
required software has been installed; that is: the business processes often need
be re-engineered since that is (to be) assumed by the required software.

For more specifics on this topic we refer to Sect. 3.7
For the example ‘business process re-engineering’ document we refer to

(Appendix) Sect. M.5, Pages 467–469.

[6] Requirements Terminology8

This (numbered [6]) subsection is very much like the similarly named subsec-
tion ([6]) on Page 53.

The purpose of this stage of development, one which “links” up to the
domain terminology, is to extend that domain terminology with the new terms
that arise as a consequence of interface and machine requirements. (The stages
of development [interface and machine requirements] will be covered later.)

For more specifics on this topic we refer to Sect. 3.8
For the example ‘requirements terminology’ document we refer to (Ap-

pendix) Sect. M.6, Pages 469–469.

[7] Requirements Modelling9

This (numbered [7]) subsection is very much like the similarly named subsec-
tion ([7]) on Page 54.

6 By this “some form” is meant: Either the concepts are computable or, through
interaction with an environment (a human or otherwise) the desired effect can be
achieved.

7
“slide 515”

8
“slide 516”

9
“slide 517”
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The purpose of this stage of development is to develop a requirements
prescription, that is a narrative and a formal specification of three require-
ments facets: domain requirements, interface requirements and machine re-
quirements. “slide 518”

These relate as follows: domain requirements are those requirements which
can be expressed sôlely by using terms from the domain (and otherwise ordi-
nary terms of English); machine requirements are those requirements which
can be expressed sôlely by using terms “from” the machine, i.e., hardware and
software terms (and otherwise ordinary terms of English); interface require-
ments are those requirements which can only be expressed using terms both
of the domain and of the machine. “slide 519”

For more specifics on this topic we refer to Sect. 3.9
For the example ‘requirements prescription’ document we refer to Appen-

dices N–P, Pages 471–491.

[8] Requirements Verification10

This (numbered [8]) subsection is very much like the similarly named subsec-
tion ([8]) on Page 54.

The purpose of this stage of development, which normally goes hand–in–
hand with requirements modelling, is to verify (prove, model check and/or
test) properties of what is being prescribed. Examples of requirements pre-
scription verification are that all arguments to defined functions are within
their range of applicability, that postulated functions can be implemented,
that defined functions are of a desired complexity, etcetera.

For more specifics on this topic we refer to Sect. 3.10
For the example ‘requirements verification’ document we refer to (Ap-

pendix) Sect. Q.1, Pages 493–493.

[9] Requirements Validation11

This (numbered [9]) subsection is very much like the similarly named subsec-
tion ([9]) on Page 54.

The purpose of this stage of development which normally comes after
proper completion of a requirements document, is to make sure that what has
been prescribed is actually what the relevant requirements stakeholder have
requested. The validation process is necessarily informal in that it relies sôlely
on the narrative prescriptions as these are the only ones that all requirements
stakeholders understand.

For more specifics on this topic we refer to Sect. 3.11
For the example ‘requirements validation’ document we refer to (Ap-

pendix) Sect. Q.2 Pages 493–493.

10
“slide 520”

11
“slide 521”
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[10] Requirements Satisfiability and Feasibility12

This (numbered [10]) section is new. It has no direct counterpart in domain
engineering.

The purpose of this stage of development is to secure that the full re-
quirements are implementable and in a way that is economic and relevant. By
feasible (i.e., relevance) we mean that an implementation does not consume
unreasonable resources: time, space, etcetera.

For more specifics on this topic we refer to Sect. 3.12
For the example ‘requirements satisfiability and feasibility’ document we

refer to (Appendix) Sect. Q.3 Pages, 493–493.

[11] Requirements Theory Formation13

This (numbered [11]) subsection is very much like the similarly named sub-
section ([11]) on Page 54.

The purpose of this stage of development further develop the domain the-
ory, Sect. 2.13, by examining the theorems of that theory as to their also
holding for the specific requirements hold and to develop such theorems that
hold for the specific requirements.

For more specifics on this topic we refer to Sect. 3.13
For the example ‘requirements theory formation’ document we refer to

(Appendix) Sect. Q.4 Pages 493–493.

3.2.2 A Summary Enumeration “slide 524”

1 Requirements Information Sect. 3.3 (Page 117)
2 Requirements Stakeholder Identification Sect. 3.4 (Page 119)
3 Requirements Acquisition Sect. 3.5 (Page 119)
4 Requirements Analysis & Concept Formation Sect. 3.6 (Page 121)
5 Business Process Re-Engineering Sect. 3.7 (Page 121)
6 Requirements Terminology Sect. 3.8 (Page 127)
7 Requirements Modelling Sect. 3.9 (Page 127)

(a) Domain Requirements Sect. 3.9.3 (Page 128)
(b) Interface Requirements Sect. 3.9.4 (Page 133)
(c) Machine Requirements Sect. 3.9.5 (Page 135)

8 Requirements Verification Sect. 3.10 (Page 163)
9 Requirements Validation Sect. 3.11 (Page 163)

10 Requirements Satisfiability and Feasibility Sect. 3.12 (Page 163)
11 Requirements Theory Formation Sect. 3.13 (Page 163)

12
“slide 522”

13
“slide 523”
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3.3 Requirements Information “slide 525”

This (numbered [1]) section is very much like the similarly named subsection
([1]) on Page 52.

For the example ‘requirements information’ document we refer to (Ap-
pendix) Sect. M.1, Pages 461–466.

We have earlier, as mentioned above, extensively (Pages 6–24) covered the
general issues of informative documents. The reader is strongly encouraged to
review those pages, Sect. 1.5. Suffice it here to emphasize the following.

We highlight, in the next many “highlighted” paragraphs, what is special,
to requirements prescription developments, with respect to the many items of
project information.

Current Situation: Cf. Sect. 1.6.3, Page 9 “slide 526”

As mentioned in Sect. 1.6.3 on page 9 the context in which the require-
ments developments starts must be emphasized. That context invariably in-
cludes the existence of a domain description. Please no reference to possible
software designs.

We refer to Appendix Sect. M.1.3 starting on Page 462 for an example
related to the current situation topic.

Needs and Ideas: Cf. Sect. 1.6.4, Pages 9–10 “slide 527”

to be written

We refer to Appendix Sect. M.1.4 starting on Page 462 for an example
related to the needs and ideas topic.

Concepts and Facilities: Cf. Sect. 1.6.5, Pages 10–11 “slide 528”

to be written

We refer to Appendix Sect. M.1.5 starting on Page 463 for an example
related to the concepts and facilities topic.

Scope and Span: Cf. Sect. 1.6.6, Page 11 “slide 529”

to be written

We refer to Appendix Sect. M.1.6 starting on Page 464 for an example
related to the scope and span topic.

Assumptions and Dependencies: Cf. Sect. 1.6.7, Pages 11–12 “slide 530”

to be written

We refer to Appendix Sect. M.1.7 starting on Page 465 for an example
related to the assumptions and dependencies topic.

Implicit/Derivative Goals: Cf. Sect. 1.6.8, Page 12 “slide 531”

to be written
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We refer to Appendix Sect. M.1.8 starting on Page 465 for an example
related to the implicit/derivative goals topic.

Synopsis: Cf. Sect. 1.6.9, Page 13 “slide 532”

to be written

We refer to Appendix Sect. M.1.10 starting on Page 465 for an example
related to the synopsis topic.

Software Development Graphs: Cf. Sect. 1.6.10, Pages 13–15“slide 533”

to be written

We refer to Appendix Sect. M.1.11 starting on Page 465 for an example
related to the software development graph topic.

Resource Allocation: Cf. Sect. 1.6.11, Pages 15–16“slide 534”

to be written

We refer to Appendix Sect. M.1.12 starting on Page 465 for an example
related to the resource allocation topic.

Budget (and Other) Estimates: Cf. Sect. 1.6.12, Page 16“slide 535”

to be written

We refer to Appendix Sect. M.1.13 starting on Page 466 for an example
related to the budget (and other) estimates topic.

Standards Compliance: Cf. Sect. 1.6.13, Pages 16–19“slide 536”

to be written

We refer to Appendix Sect. M.1.14 starting on Page 466 for an example
related to the standards compliance topic.

Contracts and Design Briefs: Cf. Sect. 1.6.14, Pages 19–23“slide 537”

to be written

We refer to Appendix Sect. M.1.15 starting on Page 466 for an example
related to the contract and design brief topic.“slide 538”

More to come
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3.4 Requirements Stakeholders “slide 539”

This section is an expansion on Item [2] on Page 52 and Sect. 2.4
On Page 113 we wrote that the set of requirements stakeholder is usual

a proper subset of of the domain stakeholders. We may need to modify this
statement. We assume that a list of domain stakeholders omitted adminis-
trative staff from the areas of general services staff: accounting, archiving
(journal), general procurement, etcetera. We assume they were omitted since
the domain, “technically speaking” was not about these areas. The domain,
for example, may be about railways for which we may have included passen-
ger ticketing staff but for which we omitted for example the “back room”
accounting staff. That latter staff would, in principle, not know whether they
were doing accounting for a railway-related company or for a financial service
system or for a hospital. If the requirements are for such general services of a
domain which do indeed impinge on such, previously omitted staff, then such
staff gropus must be included among the stakeholders. (But we do remind the “slide 540”

reader that our domain is in such a case extended with the phenomena and
concepts of the areas of general services thus identified — and appropriate
domain extensions must be provided for.)

For the example ‘requirements stakeholder identification’ document we
refer to (Appendix) Sect. M.2, Pages 466–466. We refer to Appendix Sect. M.2
starting on Page 466 for an example related to the requirements stakeholder
topic.

3.5 Requirements Acquisition “slide 541”

We have, in Sect. 3.2.1, Item [3], on Page 113, outlined the three stages of
requirements modelling: domain requirements, interface requirements and ma-
chine requirements. These requirements modelling stages were first overviewed,
in more detail in Sect. 3.1.5, Pages 111–111. The three requirements modelling
stages will be dealt with in “final” detail in Sects. 3.9.3–3.9.5, Pages 128–163.

We shall assume you have followed those brief outlines. Requirements ac-
quisition now basically follows these three kinds of requirements modelling
stages.

3.5.1 Domain Requirements Acquisition “slide 542”

Domain requirements acquisition is based sôlely on the domain description.
From that domain description is developed, in sub-stages (or steps) of develop-
ment a domain requirements acquisition document. The steps are projection,
instantiation, determination, extension and fitting. Each step takes a docu-
ment and results in a requirements acquisition document. The first step takes
a domain description document. All steps results in a domain requirements
acquisition document. “slide 543”
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Sect. 3.9.3 shall outline the details of the projection, instantiation, deter-
mination, extension and fitting operations. In the domain requirements acqui-
sition stage one basically marks up a “requirements acquisition copy” of the
domain description. In the domain requirements (Sect. 3.9.3) acquisition stage
one collects the ‘domain requirements acquisition’ mark-ups into a consistent
acquisition document editing it as per the mark-ups. All domain-to-domain
requirements acquisition operations (projection, instantiation, determination,
extension and fitting) are conducted interactively, between the domain en-
gineer and all the relevant requirement stakeholder, in turn, one after the
other, and, in principle, in no particular order. The domain engineer, in a“slide 544”

sense, guides the requirement stakeholders through the emerging domain re-
quirements acquisition prescription document determining what to project,
instantiate, make more deterministic, extend and fit.

3.5.2 Interface Requirements Acquisition

Interface requirements acquisition is based on the domain requirements ac-
quisition document and on some awareness of the facilities of machine being
required. Awareness and determination of which these facilities are, or could
be, evolve as a result of conducting the below steps of interface requrements.
First the domain engineer and the relevant requirement stakeholders deter-“slide 545”

mine which phenomena simple entities, functions, events and behaviours of
the domain need be represented by the machine. Then they go through each
of these kinds of phenomena to determine what sharing means: what proper-
ties of simple entities, functions, events and behaviours are to be satisfied
by the machine. This entails decisions on abstractions of initial data input“slide 546”

and refreshment, interactive computation of functions between the machine
and the domain, “translation” of events in the domain into the machine,
and interactive behaviours between the machine and the domain. Again, each
of these steps result in the input requirements acquisition document being
futher annotated — as were the domain requirements acquisition documents.
Proper requirements modelling documents now take these annotated acquisi-
tion documents and rework them, “clean them up”, into proper requirements
prescripton documents.

3.5.3 Machine Requirements Acquisition “slide 547”

Machine requirements acquisition is basically concerned with the acquisition
of such required properties of the desired machine as machine: performance,
dependability, maintenance, platform and documentation. We shall defer the
acquisition aspects of these machine requirements till we later, Sect. 3.9.5,
treat machine requirements modelling.

• • •

We refer to Appendix Sect. M.3 starting on Page 466 for an example related
to the requirements acquisition topic.
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3.6 Analysis and Concept Formation “slide 548”

to be written

We refer to Appendix Sect. M.4 starting on Page 467 for an example
related to the requirements analysis and concept formation topic.

3.7 Business Process Re-Engineering “slide 549”

Characterisation 72 (Business Process Reengineering) By business pro-
cess reengineering we understand the reformulation of previously adopted
business process descriptions, together with additional business process engi-
neering work.

3.7.1 What Are BPR Requirements? “slide 550”

Two “paths” lead to business process reengineering:

• A client wishes to improve enterprise operations by deploying new comput-
ing systems (i.e., new software). In the course of formulating requirements
for this new computing system a need arises to also reengineer the human
operations within and without the enterprise. “slide 551”

• An enterprise wishes to improve operations by redesigning the way staff
operates within the enterprise and the way in which customers and staff
operate across the enterprise-to-environment interface. In the course of for-
mulating reengineering directives a need arises to also deploy new software,
for which requirements therefore have to be enunciated.

One way or the other, business process reengineering is an integral component
in deploying new computing systems.

3.7.2 Overview of BPR Operations “slide 552”

We suggest six domain-to-business process reengineering operations:

1 introduction of some new and removal of some old intrinsics;
2 introduction of some new and removal of some old support technologies;
3 introduction of some new and removal of some old management and or-

ganisation substructures;
4 introduction of some new and removal of some old rules and regulations;
5 introduction of some new and removal of some old work practices (relating

to human behaviours); and
6 related scripting.
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3.7.3 BPR and the Requirements Document “slide 553”

Requirements for New Business Processes

The reader must be duly “warned”: The BPR requirements are not for a
computing system, but for the people who “surround” that (future) system.
The BPR requirements state, unequivocally, how those people are to act, i.e.,
to use that system properly. Any implications, by the BPR requirements, as
to concepts and facilities of the new computing system must be prescribed
(also) in the domain and interface requirements.

Place in Narrative Document14

We shall thus, in Sects. 3.7.4–3.7.8, treat a number of BPR facets. Each of
whatever you decide to focus on, in any one requirements development, must
be prescribed. And the prescription must be put into the overall requirements
prescription document.“slide 555”

As the BPR requirements “rebuilds” the business process description part
of the domain description15, and as the BPR requirements are not directly
requirements for the machine, we find that they (the BPR requirements texts)
can be simply put in a separate section.“slide 556”

There are basically two ways of “rebuilding” the domain description’s busi-
ness process’s description part (DBP ) into the requirements prescription part’s
BPR requirements (RBPR). Either you keep all of D as a base part in RBPR,
and then you follow that part (i.e., RBPR) with statements, R′

BPR, that ex-
press the new business process’s “differences” with respect to the “old” (DBP ).
Call the result RBPR. Or you simply rewrite (in a sense, the whole of) DBP

directly into RBPR, copying all of DBP , and editing wherever necessary.

Place in Formalisation Document16

The above statements as how to express the “merging” of BPR requirements
into the overall requirements document apply to the narrative as well as to
the formalised prescriptions.

We may assume that there is a formal domain description, DBP , (of busi-
ness processes) from which we develop the formal prescription of the BPR
requirements. We may then decide to either develop entirely new descrip-“slide 558”

tions of the new business processes, i.e., actually prescriptions for the busi-
ness reengineered processes, RBPR; or develop, from DBP , using a suitable
schema calculus, such as the one in RSL, the requirements prescription RBPR,
by suitable parameterisation, extension, hiding, etc., of the domain description
DBP .

14
“slide 554”

15 — Even if that business process description part of the domain description is
“empty” or nearly so!

16
“slide 557”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
3.7 Business Process Re-Engineering 123

3.7.4 Intrinsics Review and Replacement “slide 559”

Characterisation 73 (Intrinsics Review and Replacement) By intrin-
sics review and replacement we understand an evaluation as to whether cur-
rent intrinsics stays or goes, and as to whether newer intrinsics need to be
introduced.

“slide 560”

Example. 1 – Intrinsics Replacement: A railway net owner changes its
business from owning, operating and maintaining railway nets (lines, stations
and signals) to operating trains. Hence the more detailed state changing no-
tions of rail units need no longer be part of that new company’s intrinsics while
the notions of trains and passengers need be introduced as relevant intrinsics.
•

Replacement of intrinsics usually point to dramatic changes of the business
and are usually not done in connection with subsequent and related software
requirements development.

3.7.5 Support Technology Review and Replacement “slide 561”

Characterisation 74 (Support Technology Review and Replacement)
By support technology review and replacement we understand an evaluation
as to whether current support technology as used in the enterprise is adequate,
and as to whether other (newer) support technology can better perform the
desired services.

“slide 562”

Example. 2 – Support Technology Review and Replacement: Currently
the main information flow of an enterprise is taken care of by printed paper,
copying machines and physical distribution. All such documents, whether orig-
inals (masters), copies, or annotated versions of originals or copies, are subject
to confidentiality. As part of a computerised system for handling the future
information flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private keys,
and digital signatures. However, it is realised that there can be a need for
taking physical, not just electronic, copies of documents. The following busi- “slide 563”

ness process reengineering proposal is therefore considered: Specially made
printing paper and printing and copying machines are to be procured, and
so are printers and copiers whose use requires the insertion of special signa-
ture cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document. All copiers will refuse to copy such copied documents — hence the
special paper. Such paper copies can thus be read at, but not carried outside
the premises (of the printers and copiers). And such printers and copiers can
register who printed, respectively who tried to copy, which documents. Thus
people are now responsible for the security (whereabouts) of possible paper
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copies (not the required computing system). The above, somewhat construed “slide 564”

example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business reengineered”
persons authorised to print and possess confidential documents.

It is implied in the above that the reengineered handling of documents
would not be feasible without proper computing support. Thus there is a
“spill-off” from the business reengineered world to the world of computing
systems requirements. •

3.7.6 Management and Organisation Reengineering “slide 565”

Characterisation 75 (Management and Organisation Reengineering)
By management and organisation reengineering we understand an evaluation
as to whether current management principles and organisation structures as
used in the enterprise are adequate, and as to whether other management
principles and organisation structures can better monitor and control the en-
terprise.

“slide 566”

Example. 3 – Management and Organisation Reengineering: A rather
complete computerisation of the procurement practices of a company is being
contemplated. Previously procurement was manifested in the following phys-
ically separate as well as designwise differently formatted paper documents:
requisition form, order form, purchase order, delivery inspection form, rejec-
tion and return form, and payment form. The supplier had corresponding
forms: order acceptance and quotation form, delivery form, return acceptance
form, invoice form, return verification form, and payment acceptance form.
The current concern is only the procurement forms, not the supplier forms.
The proposed domain requirements are mandating that all procurer forms“slide 567”

disappear in their paper version, that basically only one, the procurement
document, represents all phases of procurement, and that order, rejection
and return notification slips, and payment authorisation notes, be effected by
electronically communicated and duly digitally signed messages that repre-
sent appropriate subparts of the one, now electronic procurement document.
The business process reengineering part may now “short-circuit” previous“slide 568”

staff’s review and acceptance/rejection of former forms, in favour of fewer
staff interventions.

The new business procedures, in this case, subsequently find their way into
proper domain requirements: those that support, that is monitor and control
all stages of the reengineered procurement process. •

3.7.7 Rules and Regulations Reengineering “slide 569”

Characterisation 76 (Rules and Regulation Reengineering) By rules
and regulations reengineering we understand an evaluation as to whether
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current rules and regulations as used in the enterprise are adequate, and as
to whether other rules and regulations can better guide and regulate the
enterprise.

Here it should be remembered that rules and regulations principally stipulate
business engineering processes. That is, they are — i.e., were — usually not
computerised. “slide 570”

Example. 4 – Rules and Regulations Reengineering: Assume now, due
to reengineered support technologies, that interlock signalling can be made
magnitudes safer than before, without interlocking. Thence it makes sense
to reengineer a domain rule of from: In any three-minute interval at most
one train may either arrive to or depart from a railway station into: In any
20-second interval at most two trains may either arrive to or depart from a
railway station.

This reengineered rule is subsequently made into a domain requirements,
namely that the software system for interlocking is bound by that rule. •

3.7.8 Script Reengineering “slide 571”

On one hand, there is the engineering of the contents of rules and regulations,
and, on another hand, there are the people (management, staff) who script
these rules and regulations, and the way in which these rules and regulations
are communicated to managers and staff concerned. “slide 572”

Characterisation 77 (Script Reengineering) By script reengineering we
understand evaluation as to whether the way in which rules and regulations
are scripted and made known (i.e., posted) to stakeholders in and of the
enterprise is adequate, and as to whether other ways of scripting and posting
are more suitable for the enterprise.

“slide 573”

More to come

“slide 574”

More to come

“slide 575”

More to come
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3.7.9 Human Behaviour Reengineering “slide 576”

Characterisation 78 (Human Behaviour Reengineering) By human be-
haviour reengineering we understand an evaluation as to whether current
human behaviour as experienced in the enterprise is acceptable, and as to
whether partially changed human behaviours are more suitable for the enter-
prise.

“slide 577”

Example. 5 – Human Behaviour Reengineering: A company has experi-
enced certain lax attitudes among members of a certain category of staff. The
progress of certain work procedures therefore is reengineered, implying that
members of another category of staff are henceforth expected to follow up on
the progress of “that” work.

In a subsequent domain requirements stage the above reengineering leads
to a number of requirements for computerised monitoring of the two groups
of staff. •

3.7.10 Discussion: Business Process Reengineering “slide 578”

Who Should Do the Business Process Reengineering?

It is not in our power, as software engineers, to make the kind of business
process reengineering decisions implied above. Rather it is, perhaps, more the
prerogative of appropriately educated, trained and skilled (i.e., gifted) other
kinds of engineers or business people to make the kinds of decisions implied
above. Once the BP reengineering has been made, it then behooves the client
stakeholders to further decide whether the BP reengineering shall imply some
requirements, or not.

Who Should Do the Business Process Reengineering?17

Once that last decision has been made in the affirmative, we, as software
engineers, can then apply our abstraction and modelling skills, and, while
collaborating with the former kinds of professionals, make the appropriate
prescriptions for the BPR requirements. These will typically be in the form
of domain requirements, which are covered extensively in Sect. ??.

General18

Business process reengineering is based on the premise that corporations must
change their way of operating, and, hence, must “reinvent” themselves. Some
corporations (enterprises, businesses, etc.) are “vertically” structured along

17
“slide 579”

18
“slide 580”
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functions, products or geographical regions. This often means that business
processes “cut across” vertical units. Others are “horizontally” structured
along coherent business processes. This often means that business processes
“cut across” functions, products or geographical regions. In either case ad-
justments may need to be made as the business (i.e., products, sales, markets,
etc.) changes.

We refer to Appendix Sect. M.5 starting on Page 467 for an example
related to the business process re-engineering topic.

3.8 Requirements Terminology “slide 581”

to be written

We refer to Appendix Sect. M.6 starting on Page 469 for an example
related to the requirements terminology topic. “slide 582”

“slide 583”

3.9 Requirements Modelling “slide 584”

3.9.1 Aims & Objectives

The aims of the requirements modelling stage of requirements engineering
are to finalise a delineation of the span for the requirements, to ensure that
the requirements relate strongly to the domain, and to help secure that that
the client gets the right software. The objectives of the requirements mod-
elling stage of requirements engineering are to develop a proper requirements
prescription, one that is well analysed (“theoretised”), and one that leads to
efficient and correct software.

3.9.2 Requirements Facets “slide 585”

It has been highlighted, significantly, above that there are three facets to re-
quirements modelling: modelling those, the domain requirements which can
be expressed sôlely using terms from the domain, modelling those, the inter-
face requirements which can be expressed using terms from both the domain
and the machine, and modelling those, the machine requirements which can
be expressed sôlely using terms from the machine. For interface requirements,
by “using terms both from the domain and the machine” we mean: that the
“smallest” requirements prescription units contain both kinds, that is, they
are used in an inseparable way.

We refer to Appendices N–P (Pages 471–491) for an example related to
the requirements modelling topic.
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3.9.3 Domain Requirements “slide 586”

A domain requirements prescription is that part of the overall requirements pre-
scription which can be expressed solely using terms from the domain description.
Thus to construct the domain requirements prescription all we need is col-
laboration with the requirements stakeholders (who, with the requirements
engineers, developed the BPR) and the possibly rewritten (BPR influenced)
domain description — which we shall refer to as a domain requirements doc-
ument.“slide 587”

The domain span is usually much, or just, larger than the domain implied
by the requirements one is about to construct. Therefore a first domain-to-
requirements operation is to project onto the first step domain requirements
only those phenomena and concepts of the domain which are required. The
resulting domain requirements projection often defines a much–too-general
set of phenomena and concepts which, although they are needed, may not be
needed in the generality given, hence they are instantiated to more specific
ones. The resulting domain requirements projection & instantiation often de-
fines its phenomena and concepts too non–deterministically, hence “excess”
non–determinism is more more determinate. Often computing and commu-“slide 588”

nication allows for phenomena and concepts which are not feasible in the
domain, hence we extend the emerging domain requirements projection & in-
stantiation & determination with such domain–lile phenomena and concepts
which are feasible. Finally, requirements engineering may take place in a con-
text where more than one group is developing requirements, but for “more-
or-less” distinct “areas”, hence we suggest to fit the various emerging domain
requirements into a consistent and cohenrent set of such.“slide 589”

Thus we end up with the following domain-to-requirements steps:

1 domain-to-requirements projection starts Page 128,
2 domain-to-requirements instantiation starts Page 129,
3 domain-to-requirements determination starts Page 130,
4 domain-to-requirements extension starts Page 130,
5 and domain-requirements fitting starts Page 131.

We shall next treat each of these steps in some detail. But first we must
now understand that whereas where the narratives and the formalisations
of the domain description characterised to — “spoke of” — phenomena in
the domain these, when projected, instantiated, etc., become concepts of the
machine !

Domain Requirements Projection19

By a domain projection we mean a subset of the domain description, one
which leaves out all those domain phenomena and concepts entities, functions,

19
“slide 590”
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events, and (thus) behaviours that the stakeholders do not wish represented
by the machine. The resulting document is a partial domain requirements
prescription.

We refer to Appendix Sect. N.1 Pages 471–472 for an example related to
the projection topic.

Guidelines20

Domain phenomena and concepts that are “removed” from the emerging par-
tial domain requirements prescription may leave uses of these phenomena and
concepts elsewhere in the remaining, emerging prescription undefined. Thus
they rally cannot be fully removed. The requirements modeller must make a
judicious decision as how to express these phenomena and concepts, usually
in some furher instantiated and more deterministic form as outlined next.

Discussion21

Thus projection is not an automatable operation. It is one which is carried
out jointly between the appropriate stakeholders and the domain engineers
where the latter edits the emerging outcome of projection.

‘Removing’ phenomena and concepts that are unwanted in the emerging
partial domain requirements prescription was first indicated in a domain ac-
quisition step where it was left as markings in a domain description document;
it is now “completed” by proper deletions and editing of both narratives and
formalisations.

Discussion of Support Example22

Domain Requirements Instantiation23

By domain instantiation we mean a refinement of the partial domain require-
ments prescription, resulting from the projection step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours
of the partial domain requirements prescription more concrete, more specific.
Instantiations usually render these concepts less general. The resulting docu-
ment is a partial domain requirements prescription.

We refer to Appendix Sect. N.2 Pages 473–476 for an example related to
the instantiation topic.

20
“slide 591”

21
“slide 592”

22
“slide 593”

23
“slide 594”
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Guidelines24

Discussion25

Discussion of Support Example26

Domain Requirements Determination27

By domain determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours
of the partial domain requirements prescription less non-determinate, more
determinate. Instantiations usually render these concepts less general. The
resulting document is a partial domain requirements prescription.

We refer to Appendix Sect. N.3 Pages 476–479 for an example related to
the determination topic.

Guidelines28

Discussion29

Discussion of Support Example30

Domain Requirements Extension31

By domain extension we understand the introduction of domain entities, func-
tions, events and behaviours that were not feasible in the original domain,
but for which, with computing and communication, there is the possibility of
feasible implementations, and such that what is introduced become part of
the emerging domain requirements prescription. The resulting document is a
partial domain requirements prescription.

We refer to Appendix Sect. N.4 Pages 479–480 for an example related to
the extension topic.

24
“slide 595”

25
“slide 596”

26
“slide 597”

27
“slide 598”

28
“slide 599”

29
“slide 600”

30
“slide 601”

31
“slide 602”
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Guidelines32

Discussion33

Discussion of Support Example34

Domain Requirements Fitting35

The issue of requirements fitting arises when two or more software devel-
opment projects are based on what appears to be the same domain. The
problem then is to harmonise the two or more software development projects
by harmonising, if not too late, their requirements developments. The result
is usually a three or more documents two or more specific requirements doc-
uments and a document, perhaps more than one, consisting of requirements
that are common to two or more of the specific requirements.

We refer to Appendix Sect. N.5 Pages 480–481 for an example related to
the fitting topic. “slide 607”

We thus assume that there are n domain requirements developments, dr1
,

dr2
, . . . , drn

, being considered, and that these pertain to the same domain —
and can hence be assumed covered by a same domain description. “slide 608”

By requirements fitting we mean a harmonisation of n > 1 domain re-
quirements that have overlapping (common) not always consistent parts and
which results in n ‘modified and partial domain requirements’, and m ‘com-
mon domain requirements’ that “fit into” two or more of the ‘modified and
partial domain requirements’. “slide 609”

By a modified and partial domain requirements we mean a domain require-
ments which is short of (that is, is missing) some description parts: text and
formula. By a common domain requirements we mean a domain requirements.
By the m common domain requirements parts, cdrs, fitting into the n modi-
fied and partial domain requirements we mean that there is for each modified
and partial domain requirements, mapdri, an identified subset of cdrs (could
be all of cdrs), scdrs, such that textually conjoining scdrs to mapdr can be
claimed to yield the “original” dri

.

A Requirements Fitting Procedure36

Requirements fitting consists primarily of a pragmatically determined se-
quence of analytic and synthetic (‘fitting’) steps. It is first decided which
n domain requirements documents to fit. Then a ‘manual’ analysis is made
of the selected, n domain requirements. During this analysis tentative com-
mon domain requirements are identified. It is then decided which m common

32
“slide 603”

33
“slide 604”

34
“slide 605”

35
“slide 606”

36
“slide 610”
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domain requirements to single out. This decision results in a tentative con-
struction of n modified and partial domain requirements. An analysis is made
of the tentative modified and partial and also common domain requirements.
A decision is then made whether to accept the resulting documents or to
iterate the steps above.

Requirements Fitting Verification37

Domain Requirements Consolidation38

After projection, instantiation, determination, extension and fitting, it is time
to review, consolidate and possibly restructure (including re-specify) the do-
main requirements prescription before the next stage of requirements devel-
opment.“slide 613”

We refer to Sect. 2.9.10 Pages 101–102 (Consolidation of Domain Facets
Description) for remarks similar to the below.

The many previous domain requirements stages may have yielded descrip-
tions which, typically at the formal level, does not reveal how it all “hangs
together”. In such cases, and in general, consolidation of these domain re-
quirements documentaton stages could take the following forms.

With each potential management unit we associate a process or an in-
dexed set of two or more processes, usually an indeterminate number. Such
management units will usually involve entities and behaviours — whether
staff of entity behaviours. Usually type definitions and axioms (about sorts)
and value definitions of auxiliary and well-formedness functions about values
can be kept separate from the process definitions. The entity processes usu-
ally take, as arguments, the entity whose time-wise behaviour and interaction
with oother entity processes is being requirements modelled.“slide 614”

With each structural component of the organisation we associate one or
more channels, or vector or array or tensor (or . . . ) indexed sets of channels.

More to come

• • •

We refer to Appendix N (Pages 471–481) for an example related to the domain
requirements topic.

“slide 615”“slide 616”

37
“slide 611”

38
“slide 612”
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3.9.4 Interface Requirements “slide 617”

By an interface requirements we mean a requirements prescription which re-
fines and extends the domain requirements by considering those requirements
of the domain requirements whose entities, operations, events and behaviours
are “shared” between the domain and the machine (being requirements pre-
scribed).

Domain/Machine Sharing39

‘Sharing’ means (a) that an entity is represented both in the domain and
“inside” the machine, and that its machine representation must at suitable
times reflect its state in the domain; (b) that an operation requires a sequence
of several “on-line” interactions between the machine (being requirements
prescribed) and the domain, usually a person or another machine; (c) that an “slide 619”

event arises either in the domain, that is, in the environment of the machine,
or in the machine, and need be communicated to the machine, respectively to
the environment; and (d) that a behaviour is manifested both by actions and
events of the domain and by actions and events of the machine. “slide 620”

So a systematic reading of the domain requirements shall result in an
identification of all shared entities, operations, events and behaviours. “slide 621”

Each such shared phenomenon shall then be individually dealt with: entity
sharing shall lead to interface requirements for data initialisation and refresh-
ment; operation sharing shall lead to interface requirements for interactive
dialogues between the machine and its environment; event sharing shall lead
to interface requirements for how such event are communicated between the
environment of the machine and the machine. behaviour sharing shall lead
to interface requirements for action and event dialogues between the machine
and its environment. “slide 622”

• • •

We shall now illustrate these domain interface requirements development steps
with respect to our ongoing example. “slide 623”
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Interface Modalities
“slide 624”

Data Communication
“slide 625”

Digital Sampling
“slide 626”

Tactile: Keyboards &c.
“slide 627”

Visual: Displays, Lamps, &c.
“slide 628”

Audio: Voice, Alarms, &c.
“slide 629”

Other Sensory Interface Modalities
“slide 630”

Entities: Domain/Machine Sharing

“slide 631”

Data Intialisation
“slide 632”

Data Refreshment
“slide 633”

Functions: Domain/Machine Sharing

“slide 634”

Interactive Human/Machine Dialogues

“slide 635”

Interactive Machine/Machine Protocols

“slide 636”

Events: Domain/Machine Sharing
“slide 637”

Human/Machine/Human Events

“slide 638”

Machine/Machine Events

“slide 639”

Other Context/Machine Events
“slide 640”

Behaviour: Domain/Machine Sharing

“slide 641”

Human/Machine/Human Behaviours

“slide 642”

Machine/Machine Behaviours
“slide 643”

Other Context/Machine Behaviours

• • •

We refer to Appendix O (Pages 483–485) for an example related to the inter-
face requirements topic.“slide 644”

“slide 645”
39

“slide 618”
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3.9.5 Machine Requirements “slide 646”

Characterisation 79 (Machine Requirements) By machine requirements
we understand those requirements that can be expressed sôlely in terms of (or
with prime reference to) machine concepts.

An Enumeration of Issues40

“slide 648”

1 Performance Requirements Page 136

(a) Storage Requirements Page ??
(b) Machine Cycle Requirements Page ??
(c) Other Resource Consumption Requirements Page 137

2 Dependability Requirements Page 137

(a) Accesability Requirements Page 140
(b) Availability Requirements Page 140
(c) Integrity Requirements Page 141
(d) Reliability Requirements Page 141
(e) Safety Requirements Page 141
(f) Security Requirements Page 141

“slide 649”

3 Maintenance Requirements Page 143

(a) Adaptive Maintenance Requirements Page 143
(b) Corrective Maintenance Requirements Page 143
(c) Perfective Maintenance Requirements Page 144
(d) Preventive Maintenance Requirements Page 144

4 Platform Requirements Page 145

(a) Development Platform Requirements Page 145
(b) Execution Platform Requirements Page 145
(c) Maintenance Platform Requirements Page 145
(d) Demonstration Platform Requirements Page 146

5 Documentation Requirements Page 146

Performance Requirements41

Characterisation 80 (Performance Requirements) By performance re-
quirements we mean machine requirements that prescribe storage consump-
tion, (execution, access, etc.) time consumption, as well as consumption of
any other machine resource: number of CPU units (incl. their quantitative
characteristics such as cost, etc.), number of printers, displays, etc., terminals
(incl. their quantitative characteristics), number of “other”, ancillary soft-
ware packages (incl. their quantitative characteristics), of data communication
bandwidth, etcetera.
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“slide 651”

Pragmatically speaking, performance requirements translate into financial re-
sources spent, or to be spent.

Example. 6 – Performance Requirements: Timetable System Users and
Staff — Narrative Prescription Unit: We continue Example ?? on page ??.
The machine shall serve 1000 users and 1 staff member. Average response
time shall be at most 1.5 seconds, when the system is fully utilised. •

“slide 652”

Till now we may have expressed certain (functions and) behaviours as generic
(functions and) behaviours. From now on we may have to “split” a specified
behaviour into an indexed family of behaviours, all “near identical” save for
the unique index. And we may have to separate out, as a special behaviour,
(those of) shared entities.“slide 653”

Example. 7 – Performance Requirements: Timetable System Users and
Staff: We continue Example 20 and Example 6. In Example 20 the sharing
of the timetable between users and staff was expressed parametrically.

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡ let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(u)(tt) in system(tt′) end end

“slide 654”

We now factor the timetable entity out as a separate behaviour, accessible,
via indexed communications, i.e., channels, by a family of client behaviours
and the staff behaviour.“slide 655”

type
CIdx /∗ Index set of, say 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ time table(tt) ‖ (‖ {client(i)|i:CIdx}) ‖ staff()

“slide 656”

40
“slide 647”

41
“slide 650”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
3.9 Requirements Modelling 137

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡

⌈⌉⌊⌋ {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

“slide 657”
Please observe the “shift” from using ⌈⌉ in system earlier in this example
to ⌈⌉⌊⌋ just above. The former expresses nondeterministic internal choice. The
latter expresses nondeterministic external choice. The change can be justified
as follows: The former, the nondeterministic internal choice, was “between”
two expressions which express no external possibility of influencing the choice.
The latter, the nondeterministic external choice, is “between” two expressions
where both express the possibility of an external input, i.e., a choice. The latter
is thus acceptable as an implementation of the former. •

“slide 658”

The next example, Example 8, continues the performance requirements ex-
pressed just above. Those two requirements could have been put in one phrase,
i.e., as one prescription unit. But we prefer to separate them, as they pertain
to different kinds (types, categories) of resources: terminal + data communi-
cation equipment facilities versus time and space. “slide 659”

Example. 8 – Performance Requirements of Storage and Speed for n-
Transfer Travel Inquiries: We continue Example ?? on page ??. When per-
forming the n-Transfer Travel Inquiry (rough sketch) prescribed above, the
first — of an expected many — result shall be communicated back to the
inquirer in less than 5 seconds after the inquiry has been submitted, and, at
no time during the calculation of the “next” results must the storage buffer
needed to calculate these exceed around 100,000 bytes. •

Other Resource Consumption42

Dependability Requirements43

“slide 662”

To properly define the concept of dependability we need first introduce and
define the concepts of failure, error, and fault. “slide 663”

Characterisation 81 (Failure) A machine failure occurs when the deliv-
ered service deviates from fulfilling the machine function, the latter being
what the machine is aimed at [182].



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
138 3 Requirements Engineering

“slide 664”

Characterisation 82 (Error) An error is that part of a machine state
which is liable to lead to subsequent failure. An error affecting the service is an
indication that a failure occurs or has occurred [182].

“slide 665”

Characterisation 83 (Fault) The adjudged (i.e., the ‘so-judged’) or hy-
pothesised cause of an error is a fault [182].

The term hazard is here taken to mean the same as the term fault.
One should read the phrase: “adjudged or hypothesised cause” carefully:

In order to avoid an unending trace backward as to the cause,44 we stop at
the cause which is intended to be prevented or tolerated.

“slide 666”

Characterisation 84 (Machine Service) The service delivered by a ma-
chine is its behaviour as it is perceptible by its user(s), where a user is a human,
another machine or a(nother) system which interacts with it [182].

“slide 667”

Characterisation 85 (Dependability) Dependability is defined as the prop-
erty of a machine such that reliance can justifiably be placed on the service it
delivers [182].

We continue, less formally, by characterising the above defined concepts [182].
“A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

The concept of dependability can be simply defined as “the quality or
the characteristic of being dependable”, where the adjective ‘dependable’ is
attributed to a machine whose failures are judged sufficiently rare or insignif-
icant.

Impairments to dependability are the unavoidably expectable circum-
stances causing or resulting from “undependability”: faults, errors and fail-
ures. Means for dependability are the techniques enabling one to provide the
ability to deliver a service on which reliance can be placed, and to reach con-
fidence in this ability. Attributes of dependability enable the properties which
are expected from the system to be expressed, and allow the machine quality
resulting from the impairments and the means opposing them to be assessed.“slide 668”

42
“slide 660”

43
“slide 661”

44 An example: “The reason the computer went down was the current supply did
not deliver sufficient voltage, and the reason for the drop in voltage was that
a transformer station was overheated, and the reason for the overheating was a
short circuit in a plant nearby, and the reason for the short circuit in the plant
was that . . . , etc.”
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Having already discussed the “threats” aspect, we shall therefore discuss
the “means” aspect of the dependability tree.

• Attributes:
⋆ Accessibility
⋆ Availability
⋆ Integrity
⋆ Reliability
⋆ Safety
⋆ Security
“slide 669”

• Means:
⋆ Procurement

· Fault prevention
· Fault tolerance

⋆ Validation
· Fault removal
· Fault forecasting

• Threats:
⋆ Faults
⋆ Errors
⋆ Failures

“slide 670”

Despite all the principles, techniques and tools aimed at fault prevention,
faults are created. Hence the need for fault removal. Fault removal is itself
imperfect. Hence the need for fault forecasting. Our increasing dependence on
computing systems in the end brings in the need for fault tolerance. We refer
to special texts [134, 230, 233] on the above four topics.

“slide 671”

Characterisation 86 (Dependability Attribute) By a dependability at-
tribute we shall mean either one of the following: accessibility, availability,
integrity, reliability, robustness, safety and security. That is, a machine is de- “slide 672”

pendable if it satisfies some degree of “mixture” of being accessible, available,
having integrity, and being reliable, safe and secure.

The crucial term above is “satisfies”. The issue is: To what “degree”? As we
shall see — in a later section — to cope properly with dependability require-
ments and their resolution requires that we deploy mathematical formula-
tion techniques, including analysis and simulation, from statistics (stochastics,
etc.).

In the next seven subsections we shall characterise the dependability at-
tributes further. In doing so we have found it useful to consult [134].
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Accesability Requirements45

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Their being
granted access to computing time is usually specified, at an abstract level, as
being determined by some internal nondeterministic choice, that is: essentially
by “tossing a coin”! If such internal nondeterminism was carried over, into an
implementation, some “coin tossers” might never get access to the machine.“slide 674”

Characterisation 87 (Accessibility) A system being accessible — in the
context of a machine being dependable — means that some form of “fairness”
is achieved in guaranteeing users “equal” access to machine resources, notably
computing time (and what derives from that).

“slide 675”

Example. 9 – Accessibility Requirements: Timetable Access: Based on
Examples 20 on page 172 and ?? on page ??, we can express: The timetable
(system) shall be inquirable by any number of users, and shall be updateable
by a few, so authorised, airline staff. At any time it is expected that up
towards a thousand users are directing queries at the timetable (system). And
at regular times, say at midnights between Saturdays and Sundays, airline staff
are making updates to the timetable (system). No matter how many users are
“on line” with the timetable (system), each user shall be given the appearance
that that user has exclusive access to the timetable (system). •

Availability Requirements46

Usually a desired, i.e., the required, computing system, i.e., the machine, will
be used by many users — over “near-identical” time intervals. Once a user has
been granted access to machine resources, usually computing time, that user’s
computation may effectively make the machine unavailable to other users —
by “going on and on and on”!“slide 677”

Characterisation 88 (Availability) By availability — in the context of a
machine being dependable — we mean its readiness for usage. That is, that
some form of “guaranteed percentage of computing time” per time interval
(or percentage of some other computing resource consumption) is achieved —
hence some form of “time slicing” is to be effected.

“slide 678”

Example. 10 – Availability Requirements: Timetable Availability: We con-
tinue Examples 20, ??, and 9: No matter which query composition any number
of (up to a thousand) users are directing at the timetable (system), each such
user shall be given a reasonable amount of compute time per maximum of
three seconds, so as to give the psychological appearance that each user —

45
“slide 673”

46
“slide 676”
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in principle — “possesses” the timetable (system). If the timetable system
can predict that this will not be possible, then the system shall so advise all
(relevant) users. •

Integrity Requirements47

Characterisation 89 (Integrity) A system has integrity — in the context
of a machine being dependable — if it is and remains unimpaired, i.e., has no
faults, errors and failures, and remains so, without these, even in the situations
where the environment of the machine has faults, errors and failures.

Integrity seems to be a highest form of dependability, i.e., a machine having
integrity is 100% dependable! The machine is sound and is incorruptible.

Reliability Requirements48

Characterisation 90 (Reliability) A system being reliable — in the con-
text of a machine being dependable — means some measure of continuous
correct service, that is, measure of time to failure.

Example. 11 – Timetable Reliability: Mean time between failures shall be
at least 30 days, and downtime due to failure (i.e., an availability require-
ments) shall, for 90% of such cases, be less than 2 hours. •

Safety Requirements49

Characterisation 91 (Safety) By safety — in the context of a machine
being dependable — we mean some measure of continuous delivery of service of
either correct service, or incorrect service after benign failure, that is: Measure
of time to catastrophic failure.

Example. 12 – Timetable Safety: Mean time between failures whose re-
sulting downtime is more than 4 hours shall be at least 120 days. •

Security Requirements50

We shall take a rather limited view of security. We are not including any
consideration of security against brute-force terrorist attacks. We consider
that an issue properly outside the realm of software engineering.

Security, then, in our limited view, requires a notion of authorised user,
with authorised users being fine-grained authorised to access only a well-
defined subset of system resources (data, functions, etc.). An unauthorised
user (for a resource) is anyone who is not authorised access to that resource.

47
“slide 679”

48
“slide 680”

49
“slide 681”

50
“slide 682”
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A terrorist, posing as a user, should normally fail the authorisation crite-
rion. A terrorist, posing as a brute-force user, is here assumed to be able to
capture, somehow, some authorisation status. We refrain from elaborating on
how a terrorist might gain such status (keys, passwords, etc.)!“slide 683”

Characterisation 92 (Security) A system being secure — in the context
of a machine being dependable — means that an unauthorised user, after
believing that he or she has had access to a requested system resource: (i)
cannot find out what the system resource is doing, (ii) cannot find out how the
system resource is working and (iii) does not know that he/she does not know!
That is, prevention of unauthorised access to computing and/or handling of
information (i.e., data).

“slide 684”

The characterisation of security is rather abstract. As such it is really no
good as an a priori design guide. That is, the characterisation gives no hints
as how to implement a secure system. But, once a system is implemented,
and claimed secure, the characterisation is useful as a guide on how to test
for security!“slide 685”

Example. 13 – Security Requirements: Timetable Security: We continue
Examples 20, ??, 9, and 10. Timetable users can be any airline client logging in
as a user, and such (logged-in) users may inquire the timetable. The timetable
machine shall be secure against timetable updates from any user. Airline staff
shall be authorised to both update and inquire, in a same session. •

“slide 686”

Example. 14 – Security Requirements: A Hospital Information System:
General access to (including copying rights of) specially designated parts of
a(ny) hospital patient’s medical journals is granted, in principle, only to cor-
respondingly specially designated hospital staff. In certain forms of (otherwise
well-defined) emergency situations any hospital paramedic, nurse or medical
doctor may “hit a panic button”, getting access to a hospital patient’s med-
ical journal, but with only viewing, not copying rights. Such incidents shall
be duly and properly recorded and reported, such that proper postprocessing
(i.e., evaluation) of such “panic button” accesses can take take place. •

Robustness Requirements51

Characterisation 93 (Robustness) A system is robust — in the context of
dependability — if it retains its attributes after failure, and after maintenance.

Thus a robust system is “stable” across failures and “across” possibly inter-
vening “repairs” and “across” other forms of maintenance.

• • •

51
“slide 687”
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Maintenance Requirements52

Characterisation 94 (Maintenance Requirements) By maintenance re-
quirements we understand a combination of requirements with respect to:
(i) adaptive maintenance, (iii) corrective maintenance, (ii) perfective mainte-
nance, (iv) preventive maintenance and (v) extensional maintenance.

“slide 689”

Maintenance of building, mechanical, electrotechnical and electronic artifacts
— i.e., of artifacts based on the natural sciences — is based both on documents
and on the presence of the physical artifacts. Maintenance of software is based
just on software, that is, on all the documents (including tests) entailed by
software. We refer to the very beginning of Sect. ?? for a proper definition of
what we mean by software.

Adaptive Maintenance Requirements53

Characterisation 95 (Adaptive Maintenance) By adaptive maintenance
we understand such maintenance that changes a part of that software so as to
also, or instead, fit to some other software, or some other hardware equipment
(i.e., other software or hardware which provides new, respectively replacement,
functions).

“slide 691”

Example. 15 – Adaptive Maintenance Requirements: Timetable System:
The timetable system is expected to be implemented in terms of a number of
components that implement respective domain and interface requirements, as
well as some (other) machine requirements. The overall timetable system shall
have these components connected, i.e., interfaced with one another — where
they need to be interfaced — in such a way that any component can later
be replaced by another component ostensibly delivering the same service, i.e.,
functionalities and behaviour. •

Corrective Maintenance Requirements54

Characterisation 96 (Corrective Maintenance) By corrective mainte-
nance we understand such maintenance which corrects a software error.

Example. 16 – Corrective Maintenance Requirements: Timetable Sys-
tem: Corrective maintenance shall be done remotely: from a developer site,
via secure Internet connections. •

52
“slide 688”

53
“slide 690”

54
“slide 692”
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Perfective Maintenance Requirements55

Characterisation 97 (Perfective Maintenance) By perfective maintenance
we understand such maintenance which helps improve (i.e., lower) the need
for hardware (storage, time, equipment), as well as software.

Example. 17 – Perfective Maintenance Requirements: Timetable Sys-
tem: The system shall be designed in such a way as to clearly be able to
monitor the use of “scratch” (i.e., buffer) storage and compute time for any
instance of any query command. •

Preventive Maintenance Requirements56

Characterisation 98 (Preventive Maintenance) By preventive mainte-
nance we understand such maintenance which helps detect, i.e., forestall, fu-
ture occurrence of software or hardware errors.

Preventive maintenance — in connection with software — is usually mandated
to take place at the conclusion of any of the other three forms of (software)
maintenance.

Extensional Maintenance Requirements57

Characterisation 99 (Extensional Maintenance) By extensional main-
tenance we understand such maintenance which adds new functionalities to
the software, i.e., which implements additional requirements.

Example. 18 – Extensional Maintenance Requirements: Timetable Sys-
tem: Assume a release of a timetable software system to implement a require-
ments that, for example, expresses that shortest routes but not that fastest
routes be found in response to a travel query. “slide 696”If a subsequent release
of that software is now expected to also calculate fastest routes in response to
a travel query, then we say that the implementation of that last requirements
constitutes extensional maintenance. •

“slide 697”

• • •

Whenever a maintenance job has been concluded, the software system is to
undergo an extensive acceptance test: a predetermined, large set of (typically
thousands of) test programs has to be successfully executed.

55
“slide 693”

56
“slide 694”

57
“slide 695”
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Platform Requirements58

Characterisation 100 (Platform) By a [computing] platform is here un-
derstood a combination of hardware and systems software — so equipped as to
be able to execute the software being requirements prescribed — and ‘more’.

What the ‘more’ is should transpire from the next characterisations.

Characterisation 101 (Platform Requirements) By platform require-
ments we mean a combination of the following: (i) development platform re-
quirements, (ii) execution platform requirements, (iii) maintenance platform
requirements and (iv) demonstration platform requirements.

“slide 699”

Example. 19 – Platform Requirements: Space Satellite Software: Else-
where prescribed software for some space satellite function is to satisfy the fol-
lowing platform requirements: shall be developed on a Sun workstation under
Sun UNIX, shall execute on the military MI1750 hardware computer running
its proprietary MI1750 Operating System, shall be maintained at the NASA
Houston, TX installation of MI1750 Emulating Sun Sparc Stations, and
shall be demonstrated on ordinary Sun workstations under Sun UNIX. •

Development Platform Requirements59

Characterisation 102 (Development Platform Requirements) By de-
velopment platform requirements we shall understand such machine require-
ments which detail the specific software and hardware for the platform on
which the software is to be developed.

Execution Platform Requirements60

Characterisation 103 (Execution Platform Requirements) By execu-
tion platform requirements we shall understand such machine requirements
which detail the specific (other) software and hardware for the platform on
which the software is to be executed.

Maintenance Platform Requirements61

Characterisation 104 (Maintenance Platform Requirements) By main-
tenance platform requirements we shall understand such machine require-
ments which detail the specific (other) software and hardware for the platform
on which the software is to be maintained.

58
“slide 698”

59
“slide 700”

60
“slide 701”

61
“slide 702”
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Demonstration Platform Requirements62

Characterisation 105 (Demonstration Platform Requirements) By demon-
stration platform requirements we shall understand such machine require-
ments which detail the specific (other) software and hardware for the plat-
form on which the software is to be demonstrated to the customer — say for
acceptance tests, or for management demos, or for user training.

Discussion63

Example 19 is rather superficial. And we do not give examples for each of the
specific four platforms. More realistic examples would go into rather extensive
details, listing hardware and software product names, versions, releases, etc.

Documentation Requirements64

We refer to Chap. ?? for a thorough treatment of the kind of documents that
normally should result from a proper software development project. And we
refer to overviews of these documents as they pertain to domain engineering
(Sects. ?? and ??), requirements engineering (Sects. ?? and ??), and software
design (Sect. ??).

Characterisation 106 (Documentation Requirements) By documenta-
tion requirements we mean requirements of any of the software documents
that together make up software (cf. the very first part of Section ??): (i) not
only code that may be the basis for executions by a computer, (ii) but also
its full development documentation: (ii.1) the stages and steps of application
domain description, (ii.2) the stages and steps of requirements prescription,
and (ii.3) the stages and steps of software design prior to code, with all of
the above including all validation and verification (incl., test) documents.“slide 706”

In addition, as part of our wider concept of software, we also include (iii) a
comprehensive collection of supporting documents: (iii.1) training manuals,
(iii.2) installation manuals, (iii.3) user manuals, (iii.4) maintenance manuals,
and (iii.5–6) development and maintenance logbooks.

“slide 707”

We do not attempt, in our characterisation, to detail what such documentation
requirements could be. Such requirements could cover a spectrum from the
simple presence, as a delivery, of specific ones, to detailed directions as to their
contents, informal or formal.

62
“slide 703”

63
“slide 704”

64
“slide 705”
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Fault Analysis65

In pursuing the formulation of requirements for dependable systems it is often
required that the requirements engineer perform what is called fault analysis.
A particular approach is called fault tree analysis. Dependable systems de-
velopment is worth a whole study in itself. So we cut short our mentioning
of this very important subject by emphasising its importance and otherwise
referring the reader to the relevant literature. A good introduction to the is-
sues of safety analysis in the context of formal techniques is [183]. We strongly
recommend this source — also for references to “the relevant literature”.

Source: Kirsten Mark Hansen

This example was kindly provided by Kirsten Mark Hansen. It is edited from
Chap. 4 of her splendid PhD Thesis [95].

Fault tree analysis is one of the most widely used safety analysis techniques.
It presumes a hazard analysis, which has revealed the catastrophic system
failures [231]. For each system failure, it deduces the possible combinations of
component failures which may cause this failure.

Fault tree analysis is a graphical technique, in which fault trees are drawn
using a predefined set of symbols. The graphic representation may be appeal-
ing, but it also causes the fault trees to be big and unmanageable.

A fault tree analysis is closely related to a system model, as the different
levels of system abstraction are reflected in the tree. The root corresponds
to a system failure, and the immediate causes of this failure are deduced as
logical combinations (conjunction and disjunction) of failures of the system
components.

Display

Buttons

Pulse
Generator

Electronics

Beeper

Fig. 3.1. Alarm clock

Figure 3.1 shows an alarm clock which is built from the components: A
display, some buttons, a pulse generator, some electronics, and a beeper. A
fault tree analysis of the failure of the alarm clock failing to activate the alarm
is presented in Fig. 3.2. The causes of this failure may either be the beeper

65
“slide 708”
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failing; the pulse generator not generating the right pulses; the electronics
failing, either by not activating the beeper or by not registering the buttons
pushed; or the buttons failing. We assume that the display has no impact on
this failure. Each of the components may again be considered as a system
consisting of components. The analysis stops when a component is considered
to be atomic.

Alarm clock does not
activate the alarm

OR

Pulse generator fails Electronics failBeeper fails Button fails

OR

activate beeper
Electronics do not

button pushed
Electronics do not register

Fig. 3.2. Fault tree for an alarm clock

A minimal cut set of a fault tree is the smallest combination of component
failures which, if they all occur, will cause the top event to occur. Smallest
means that if just one component failure is missing from the cut set, then the
top event does not occur. The fault tree in Fig. 3.2 has five minimal cut sets,
each containing a leaf as its only element. Two fault trees are defined to be
equivalent if they have the same minimal cut sets.

A concept related to the minimal cut set is the minimal path set. A minimal
path set is the smallest combination of primary events whose non-occurrence
assures the non-occurrence of the top event. The fault tree in Fig. 3.2 has one
minimal path set containing all the leaves of the tree.

As fault trees are used to analyse safety-critical systems for safety, it is
important that they have an unambiguous semantics. We will later illustrate
that often this is not the case. The aim of this chapter is therefore to assign a
formal semantics to fault trees, and to illustrate how such a semantics may be
used in the formulation of system safety requirements. The main reference in
this chapter is the fault tree handbook [237], which has been used intensively
in defining the syntax and the semantics of fault trees.

Some of the nodes of a fault tree are called events by safety analysts. In
order to avoid confusion, we stress that we use the safety analysis meaning
of the term event, namely the occurrence of a system state, rather than the
computer science meaning of an event, namely a transition between two states.
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Fault Tree Syntax

A fault tree analysis consists of building fault trees by connecting nodes from
a predefined set of node symbols by directed edges. Edges are directed in the
sense that for a given node the child nodes are called input nodes, and the
father node is called the output node. The node symbols are divided into three
groups: event symbols, gate symbols, and transfer symbols. We describe each
of the groups separately.

Event Symbols

The event symbols are divided into primary event symbols and intermediate
event symbols, where the primary event symbols are the leaves of the tree.

Primary events:: The primary event symbols are shown in Fig. 3.3.

Conditioning event Undeveloped eventBasic event External event

Fig. 3.3. Primary event symbols

• Basic event: A basic event contains an atomic component failure.
• Conditioning event: Conditioning events are most often used as input

to PRIORITY AND and to INHIBIT gates. When used as input to a
PRIORITY AND gate, the condition event is used to specify the order in
which the input events must occur.

• Undeveloped event: An undeveloped event contains a non-atomic com-
ponent failure. The fault tree is not developed further from this event due
to lack of time, money, interest, etc. The component is not atomic, so it is
possible later to develop the event further.

• External event: The content of an external event is not a failure, but
something that is expected to occur in the system environment.

Intermediate events:: The intermediate events consist only of one symbol,
namely the intermediate event symbol, a rectangular box. Intermediate events
cannot be found in the leaves of a fault tree.

Gate Symbols

Gate symbols designate Boolean combinators. They are shown in Fig. 3.4.

OR gate:: The informal description of an OR gate is that the output event
occurs when at least one of the input events occur. An OR gate may have any
number of input events. Fig. 3.2 is an example of a fault tree with two OR
gates.
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... ... ......
PRIORITY

AND INHIBITANDOR XOR

Fig. 3.4. Gate symbols

AND gate:: The informal description of an AND gate is that the output event
occurs only when all the input events occur. An AND gate may have any
number of input events. Fig. 3.5 is an example of a fault tree with an AND
gate. This fault tree states that all brakes on a bike have failed, when both
the foot brake “and” the hand brake have failed.

All brakes on bicycle failed

AND

Foot brake failed Hand brake failed

Fig. 3.5. Fault tree with AND gate

INHIBIT gate:: An INHIBIT gate is a special case of an AND gate. An IN-
HIBIT gate has one input event and one condition. The output event occurs
when both the input event occurs and the condition is satisfied. In the fault
tree in Fig. 3.6, the chemical reaction goes to completion when all reagents
and the catalyst are present.

INHIBIT

goes to completion
Chemical reaction

All reagents
are present

Catalyst
is present

Fig. 3.6. Fault tree with INHIBIT gate

XOR (exclusive or) gate:: The output event occurs only if exactly one of the
input events occurs. If more than one of the input events occur, the output
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event does not occur. An XOR gate may have any number of input events.
Fig. 3.7 shows a fault tree with an XOR gate. This fault tree states that a
train is not at the platform, either if the train is ahead of the platform, or if
it is behind the platform. Since the (specific) train cannot be at both places
it is exactly at one or the other.

XOR

Train is ahead
of the platform

Train is behind
the platform

at the platform
Train is not

Fig. 3.7. Fault tree with XOR gate

PRIORITY AND gate:: The output event occurs only if all the input events
occur, and if they occur in a left to right order. A PRIORITY AND gate may
have any number of input events. The fault tree in Fig. 3.8 states that the
door is locked if the door is (first) closed and the key is (then) turned.

Door is closed Key is turned

Door is locked

AND
PRIORITY

Fig. 3.8. Fault tree with PRIORITY AND gate

Fault Tree Semantics

In our attempt to give fault trees a formal semantics, we discovered that
the accepted informal descriptions of fault tree gates are ambiguous, allowing
several very different interpretations. For instance, the semantics of an AND
gate is defined as [237]: “The output fault occurs only if all the input faults
occur”; but what does this mean? Does it mean that all input faults have to
occur at the same time, or does it mean that all input faults have to occur,
but that they need not overlap in time? Does the output fault necessarily
occur when the input faults occur? Clearly such uncertainty is not desirable
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when dealing with safety-critical systems. In this section we therefore give
fault trees a formal semantics.

Primary Events: The first step in assigning a formal semantics to fault trees is
to define a model of the system on which the fault tree analysis is performed.
Assume that we have defined such a model and that it takes the form of system
states evolving over time. (This “system states evolving over time” model is
the basis for the duration calculus [228, 229]. We refer to Chap. 15, Vol. 2,
for an introduction to the duration calculus.) Using this model, we interpret
the leaves of a fault tree, i.e., the basic events, the undeveloped events, the
conditioning events, and the external events as duration calculus formulas.
Such a formula may for instance be:

• the constants true, false
• occurrence of a state P , i.e., ⌈P ⌉
• occurrence of a transition to state P , i.e., ⌈¬P ⌉; ⌈P ⌉
• lapse of a certain time, i.e., ℓ ≥ (30 + ǫ), or
• a limit of some duration, i.e.,

∫
P ≤ 4 × ǫ.

We consider the distinction between the different types of leaves to be prag-
matic, describing why the fault tree has not been developed further from the
that leaf, and therefore we make no distinction between the types of the leaves
in the semantics.

Intermediate Events: The semantics of intermediate events is defined by the
semantics of the leaves, edges, and gates in the subtrees in which the inter-
mediate events are the roots. Intermediate events are merely names for the
corresponding subtrees.

Edges

We now consider the meaning of the intermediate event, A, connected to an
event, B, by an edge, see Fig. 3.9.

A

B

Fig. 3.9. Fault tree with no gates

Assume that the semantics of B is B. We then define the semantics of A to
be

A = B,
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i.e., as logical identity, meaning that the system failure A occurs when the
failure B occurs. This semantics is pessimistic in the sense that it assumes that
if something has a possibility of going wrong, then it does go wrong. Informal
readings of fault trees often state that it is not mandatory that A holds when
B holds [237, 234], which is formalised as A ⇒ B. This semantics allows an
optimistic interpretation of fault trees in the sense that a system failure may
be avoided if the operator intervenes fast enough, has enough luck, etc. In
our opinion, speed, luck, and the like should not be parameters in safety-
critical systems, and we have therefore rejected this semantics. Another issue
is whether A and B occur at the same time or if there is some delay from the
occurrence of B to the occurrence of A. Often there will be such a delay, but
we have refrained from modelling it, as this again would give the impression
that once B has occurred there is a chance that A can be prevented.

Gates

We now consider the semantics of intermediate events connected to other
events through gates.

OR:: For the fault tree in Fig. 3.10 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn. We define the semantics of A to be

...

...

A

B1 B2 Bn

OR

Fig. 3.10. Fault tree with OR gate

A = B1 ∨ . . . ∨ Bn,

i.e., A holds iff either B1 or . . . or Bn holds. This interpretation shows that an
OR gate introduces single point failure. The failure occurs if just one of the
formulas holds.

AND:: In the fault tree in Fig. 3.11 assume that the semantics of B1, . . . , Bn

is B1, . . . , Bn.
We then define the semantics of A to be

A = B1 ∧ . . . ∧ Bn,
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...

...

A

B1 B2 Bn

AND

Fig. 3.11. Fault tree with AND gate

i.e., A holds iff B1, . . . , Bn hold simultaneously. We have considered a more
liberal interpretation of AND gates in which B1 to Bn need not hold simul-
taneously, namely A = 3B1 ∧ . . . ∧ 3Bn. This has been rejected since this
formula “remembers any occurrence of a Bi”, such that if B2 becomes true 1
year after B1, and B3 becomes true 3 years after B2, and . . . , then A holds.
This is clearly not the intended meaning of an AND gate.

INHIBIT:: We only consider INHIBIT gates in which the condition is not a
probability statement. According to the fault tree handbook, [237], the fault

INHIBIT

A

B1

B2

Fig. 3.12. Fault tree with INHIBIT gate

tree in Fig. 3.12 reads: “If the output A occurs then the input B1 has occurred
in the past while condition B2 was true”. We interpret this to be if A holds,
then both B1 and B2 hold, i.e., as an AND gate with B1 and B2 as inputs.
Thus the semantics of an INHIBIT gate is

A = B1 ∧ B2.

XOR:: A fault tree with an XOR gate is given in Fig. 3.13 (left). According
to the fault tree handbook, [237], this tree may be drawn as in the same figure
to the right, in which “Not both B1 AND B2” is a necessary condition for
the root formula to hold. As for the INHIBIT gate we interpret the condition
“Not both B1 AND B2” as a leaf which should also hold. By interpreting “Not
both B1 AND B2” as ¬(B1 ∧ B2), we obtain the semantics



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
3.9 Requirements Modelling 155

A

B1 B2

A

B1 B2

XOR OR Not both B1 AND B2

Fig. 3.13. Fault trees. Left with XOR gate. Right with OR gate and Condition

A = (B1 ∨ B2) ∧ ¬(B1 ∧ B2)

which may be rewritten to

A = (B1 ∧ ¬B2) ∨ (¬B1 ∧ B2).

This generalises to

A = (B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)).

PRIORITY AND:: A fault tree with a PRIORITY AND gate is given in
Fig. 3.14. The informal semantics states that the output event occurs if all

...

...

A

B1 B2 Bn

PRIORITY
AND

Fig. 3.14. Fault tree with PRIORITY AND gate

the input events occur in a left to right order. Assuming that B1, . . . , Bn have
the semantics B1, . . . , Bn, we define the semantics of A to be

A = B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .).
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Refinement

As we saw in the beginning of this section, fault trees are often used to model
system failures at different abstraction levels, Figs. 3.1 and 3.2.

If there is a shift in abstraction levels in a fault tree, we require that it
is indicated by a dashed line connecting a root in one tree (concrete model)
to a leaf in another tree (abstract model) as in Fig. 3.15. (In that figure we
have “abstracted” the Boolean combinators: BCx, BCy, BCz are either of OR,
AND, PRIORITY AND, INHIBIT or XOR.)

A

A1 A2

B

B1 B2

C

C1 C2

BCx

BCy

BCz

Fig. 3.15. Fault tree with three abstraction levels

We consider such a dashed line to connect two fault trees, where each of
the fault trees is defined in one system model. For each of the fault trees,
the semantics of the tree is defined as described previously. The dashed line
indicates a refinement relation between the systems for which the fault tree
analysis is performed. Consider the simple fault tree in Fig. 3.16 in which A
has the semantics A and is defined by the state functions V ara, and B has
the semantics B and is defined by the state functions V arb.
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A

B

Fig. 3.16. Simple fault tree with refinement

Assume that V ara is a subset of V arb. As a fault tree describes the un-
desired system behaviours, i.e., ¬A for the abstract system, and ¬B for the
concrete system, the refinement relation between the two systems is given by

¬B ⇒ ¬A

where ¬A is interpreted over the domain V arb. It is equivalent to

A ⇒ B.

If the state functions of the concrete system, B, relate to the state functions
of the abstract system, A, through a transformation φ, then the refinement
relation under transformation is interpreted over V ara ∪V arb and is given by

φ ∧ ¬B ⇒ ¬A

which is equivalent to

φ ∧ A ⇒ B.

In Fig. 3.15, assume that A1 has the semantics A1, A2 has the semantics A2,
B1 has the semantics B1, etc., then it may be deduced from the semantics of
fault trees that A has the semantics A1∨A2, B has the semantics B1∧B2 and
C has the semantics C1 ∨ C2. Further assume that the fault tree containing
the A’s is defined in model 1, which has the state functions V ara; the fault
tree containing the B’s is defined in model 2, which has the state functions
V arb; and the fault tree containing the C’s is defined in model 3, which has
the state functions V arc. Further assume that V arb relates to V ara through
the transformation φ, and that V arb is a subset of V arc. The proof obligations
that arise from the fault tree are therefore

φ ∧ A2 ⇒ B1 ∧ B2

which is interpreted over V ara ∪ V arb, and

B1 ⇒ C1 ∨ C2

in which B1 is interpreted over V arc.
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In program development the chain of refinements is from true towards
false. For fault trees the refinements from the top towards the bottom are
from false towards true. The reason for this is that fault trees specify the
undesired system states, whereas program development specifies the desired
system states.

Deriving Safety Requirements

Traditionally, fault trees are used to analyse existing system designs with
regard to safety. Instead of first developing a design, and then performing
a safety analysis, we propose that the design and the safety analysis should
be developed concurrently, thereby making it possible to let the fault tree
analysis influence the design. In order to do this, the fault tree analysis and
the system design must at each abstraction level use the same system model.
Given a common model, the system safety requirements may be deduced from
the fault tree analysis. Safety requirements derived in this way can be used
during system development in order to validate the design, but they can also
be used in a constructive way by influencing the design. We illustrate this
below.

For each fault tree in which the root is interpreted as S, the system should
be designed such that S never occurs, i.e., the safety commitment which the
system should implement is

2¬S.

If we have n fault trees in which the roots are interpreted as S1, . . . , Sn, the
safety commitment which may be deduced from these fault trees is

2¬S1 ∧ . . . ∧ 2¬Sn,

i.e., the system should ensure that no top event in any fault tree ever holds.
This corresponds to combining the trees by an OR gate.

Deriving Component Requirements

Assume that we have a fault tree like the one in Fig. 3.9, and that the safety
commitment is 2¬A. As the fault tree has the semantics A = B, 2¬A must
be implemented by implementing 2¬B. If the fault tree contains gates, the
derived specifications depend on the types of the gates.

OR gates: The fault tree in Fig. 3.10 has the semantics A = B1 ∨ . . . ∨ Bn.
In order to make the system satisfy the safety commitment 2¬A, we must
implement

2¬(B1 ∨ . . . ∨ Bn)

or equivalently
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2¬B1 ∧ . . . ∧ 2¬Bn.

This formula expresses that the system only satisfies its safety commitments
if all its components satisfy their local safety commitments. Now suppose that
the designer cannot control the first component, i.e., it is outside the scope
of the design of that component whether it satisfies B1 or not. Making the
safe choice of B1 being true causes 2¬B1 to be false, which trivially implies
that the safety commitment is violated. Making the tacit assumption that B1

is false is a very poor judgment, which essentially ignores the results of the
safety analysis. The only reasonable option is to weaken the specification. We
assume that the behaviour of the first component never satisfies B1, i.e., that
2¬B1 is true. To make the design team aware of this assumption, we add it to
the environment assumptions. So, if the design involved the assumptions Asm
before this design step, we have assumptions Asm ∧ 2¬B1 afterwards. The
specification of the requirements Asm ⇒ Com has thus been weakened, to
Asm ∧ 2¬B1 ⇒ Com, and the designer should alert the appropriate persons
as to this change in assumptions. Many design errors are located on interfaces.
The interface is made clearer and the likelihood of errors is reduced if one has
an explicit list of assumptions and adds to this list as the system development
progresses.

AND gates: Bear in mind that the fault tree in Fig. 3.11 has the semantics
A = B1 ∧ B2 ∧ . . . ∧ Bn and assume that the safety commitment is 2¬A.
This safety commitment corresponds to specifying that the components never
satisfy their duration formulas at the same time, i.e.,

2¬(B1 ∧ B2 ∧ . . . ∧ Bn).

One way to implement this is to implement the stronger formula

2¬B1 ∨ 2¬B2 ∨ . . . ∨ 2¬Bn,

i.e., to design at least one of the components such that it always satisfies its
local safety commitment. Often, the designer does not control all the input
components of an AND gate. For such components a safe approach is to
assume the worst case, namely that the component is in a critical state and
thereby contributes to violation of the safety commitment. Let us for instance
assume in the case of the fault tree in Fig. 3.11 that the first component is
uncontrollable. The worst case is that the component satisfies B1, i.e., that

2¬(true ∧ B2 ∧ . . . ∧ Bn)

meaning that the designer has to implement

2¬(B2 ∧ . . . ∧ Bn).

If it is not possible to make such an implementation, a final solution is to
assume that B1 always is false, and then see to it that this is implemented in
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another component by adding it to the list of assumptions, i.e., if we had the
assumptions Asm before this design step, we have the assumptions Asm ∧
2¬B1 afterwards. One should, at some point, arrive at a conjunction of Bi’s
which can be used in the design. Otherwise we must conclude that the system
is inherently unsafe. If the design relies on the absence of only one Bi, it is a
design which is vulnerable to single point failures.

INHIBIT gates: As the semantics of INHIBIT gates are the same as for AND
gates, the derivations of safety requirements for INHIBIT gates are the same
as for AND gates.

XOR gates: An event A which is output from an XOR gate which has
B1, . . . , Bn as input events has the semantics

A = (B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)).

A safety commitment 2¬A must be implemented by

2¬ ((B1 ∧ ¬(B2 ∨ . . . ∨ Bn))
∨
...
∨
(Bn ∧ ¬(B1 ∨ . . . ∨ Bn−1)))

which is equivalent to

2 ((¬B1 ∨ B2 ∨ . . . ∨ Bn)
∧
...
∧
(¬Bn ∨ B1 ∨ . . . ∨ Bn−1)).

This means that the designer has to make the design such that for every
observation interval either all the input events are false, or at least two of the
input events are true at the same time, i.e.,

2(All-false ∨ Two-true)

where

All-false ≡ ¬(B1 ∨ . . . ∨ Bn),
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Two-true ≡ ((B1 ∧ B2) ∨ . . . ∨ (B1 ∧ Bn)
∨
...
∨
(Bn ∧ B1) ∨ . . . ∨ (Bn ∧ Bn−1)).

Now assume that one of the components is uncontrollable, i.e., the designer
cannot control whether, e.g., B1 is true or not. If the Exclusive Or (XOR)
gate has more than two input events, then the design may be made such that
two of the other input events are always true. If this is not possible (perhaps
because the XOR gate only has two input events), the designer either has to
assume that B1 is false and then make the design such that the rest of the
B’s are always false, or assume that B1 is true and then make the design
such that one of the other input events is always true. In either case, he has
to make the rest of the design team aware of the assumption by adding it
to the list of assumptions about the environment. So, if the design involved
the assumptions, Asm, before this design step, and if the designer assumes
that B1 is always true, then the assumptions are Asm∧2B1 after this design
step, and if he assumes that B1 is always false, then the assumptions are
Asm ∧ 2¬B1. In principle the designer may also assume that whenever one
of the B’s which he can control is true then B1 is also true, and whenever all
the B’s he can control are false, then B1 is also false. As B1 is implemented in
another component than the rest of the B’s, and as A occurs if the components
are out of synchronization just once, we do not recommend this solution.

PRIORITY AND gates: The fault tree in Fig. 3.8 has the semantics A =
B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .). If the safety commitment is 2¬A, the
designer must implement

2¬(B1 ∧ 3(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .)).

This may either be done by making the design such that the Bi’s do not occur
in the specified order or such that one of the Bi’s does not occur at all, i.e.,

2¬B1 ∨ 2¬B2 ∨ . . . ∨ 2¬Bn.

If one of the Bi’s, e.g., B1 is uncontrollable, the worst case is that it does
not satisfy its local safety commitment, i.e., that B1 is true. The designer
therefore assume that B1 is true and attempts to make the design such that

2¬(B2 ∧ 3(B3 ∧ . . . ∧ 3Bn) . . .)

holds. If it is not possible to make such a design, the last opportunity is to
assume that B1 always is false, and then to assure that this is implemented
in another component by adding it to the list of assumptions about the envi-
ronment, i.e., the assumptions become Asm ∧ 2¬B1.
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Refinement

Assume that we have a fault tree in which an event A, with the semantics
A, is refined by an event B, with the semantics B, see Fig. 3.16. Further,
assume that the refinement relation has been verified, and that the safety
commitment is 2¬A. As part of the refinement relation is A ⇒ B, then 2¬A
must be implemented by implementing 2¬B.

Conclusion

In this section we have given fault trees a duration calculus semantics, and
we have defined how a fault tree analysis may be used to derive safety re-
quirements, both for systems and for system components. The semantics is
compositional such that the semantics of the root is expressed in terms of
the leaves. The derivation of safety requirements follows the structure of the
fault tree and results in safety requirements for the system’s components.
This derivation of safety requirements for components should stop when the
deduced requirements may be implemented using well-established methods,
e.g., formal program development techniques for software components.

As for all other techniques, this technique for deriving safety requirements
is no better than the people who use it. An error in the fault tree analysis
is reflected in the safety requirements, and the system failures for which a
safety analysis has not been performed are not extracted as requirements.
If, however, we compare this method to the existing ways of deriving safety
requirements, namely by more or less structured brainstorming, we think that
this method is an improvement.

In terms of safety requirements, a minimal cut set corresponds to the small-
est set of components which, if they do not fulfill their safety requirements,
will cause the system not to fulfill its safety requirements. If the minimal cut
set only contains one component, then the system is vulnerable to single point
failure.

A minimal path set corresponds to the smallest set of components which
must fulfill their safety requirements in order that the system fulfill its safety
requirements. If all components have to fulfill their safety requirements, i.e.,
the cardinality of the minimal path set equals the number of components,
then the system is unsafe, as it may fail if just one of the components fails.

We have defined the semantics in duration calculus, but other temporal
logics, like e.g., TLA+ [131, 132, 155] and linear temporal logic [146, 147, 148],
could also have been applied. The important thing is that the logic is capable
of expressing both the semantics of the intermediate events, based on the
structure of the fault tree, and the semantics of the leaves.

Fault trees are sometimes used in a probabilistic analysis of safety. We have
not given semantics to fault trees with probabilistic figures, as this requires
a deeper knowledge of stochastic processes than we have. The foundation for
assigning a formal semantics to such trees has been established in [141], in
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which a probabilistic duration calculus based on discrete Markov chains [235]
is defined and in [232] which defines a conversion algorithm from fault trees to
Markov chains. The idea, in probabilistic duration calculus, is that, given an
initial probability distribution, i.e., the probability that the system is initially
in a state v, and a transition probability matrix, i.e., the probability that the
system enters state u, given that the system is in state v, then it is possible
to calculate the probability that the system is in a certain state at a discrete
time t.

• • •

We refer to Appendix P (Pages 487–491) for an example related to the machine
requirements topic.

3.9.6 Discussion: Machine Requirements “slide 709”

We have — at long last — ended an extensive enumeration, explication and,
in many, but not all cases, exemplification, of machine requirements. When
examples were left out it was because the reader should, by now, be able to
easily conjure up such examples.

The enumeration is not claimed exhaustive. But, we think, it is rather
representative. It is good enough to serve as a basis for professional software
engineering. And it is better, by far, than what we have seen in “standard”
software engineering textbooks. “slide 710”

“slide 711”“slide 712”

3.10 Requirements Verification “slide 713”

to be written

3.11 Requirements Validation “slide 714”

to be written

3.12 Requirements Satisfiability and Feasibility “slide 715”

to be written

3.13 Requirements Theory Formation “slide 716”

to be written
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3.14 Requirements Engineering Process Graph “slide 717”

to be written
“slide 718”

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison
Stake Holder

Acquisition
Requirements

Requirements Modeling

Validation
& Verification

Domain Requirements Machine Requirements

Shared Data Initialisation

Shared Data Refreshment

Man−machine Dialogue

Physiological Dialogue

Machine−.Machine Dialogue

Dependability

Interface Requirements

Fitting

Extension

Instantiation

Determination

Projection

BPR

Shared Phenomena
Identification Performance

Accessability

Availability

Reliability

Safety

Security

Maintainability

Perfective

Adaptive

Corrective

Preventive

Portability

Documentation

Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Requirements Modeling

Fig. 3.17. Requirements engineering process graph

3.15 Requirements Engineering Documents “slide 719”

to be written
“slide 720”

3.15.1 Requirements Prescription Documents

to be written
“slide 721”

1 Stakeholders

2 The Acquisition Process

(a) Studies

(b) Interviews

(c) Questionnaires

(d) Indexed Description Units

3 Rough Sketches (Eurekas, IV)

4 Business Process Re-engineering

• Sanctity of Intrinsics

• Support Technology

• Management and Organisation

• Rules and Regulations

• Human Behaviour

• Scripting



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
3.16 Summary 165

5 Terminology
6 Facets: pg.:722

(a) Domain Requirements
• Projection
• Determination
• Instantiation
• Extension
• Fitting

(b) Interface Requirements
• Shared Phenomena and

Concept Identification
• Shared Data Initialisation
• Shared Data Refreshment
• Man-Machine Dialogue
• Physiological Interface
• Machine-Machine Dialogue

(c) Mach. Reqs. pg.:723

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive
⋆ Corrective
⋆ Perfective
⋆ Preventive

• Platform (P)
⋆ Development P
⋆ Demonstration P
⋆ Execution P
⋆ Maintenance P

• Doc. Reqs.
• Other Requirements

(d) Full Requirements
Facets Documentation

“slide 724”

3.15.2 Requirements Analysis Documents

to be written

2 Requirements Analysis and
Concept Formation
(a) Inconsistencies
(b) Conflicts
(c) Incompletenesses
(d) Resolutions

3 Requirements Validation
(a) Stakeholder Walkthroughs
(b) Resolutions

4 Requirements Verification
(a) Theorem Proofs

(b) Model Checks

(c) Test Cases and Tests

5 Requirements Theory

6 Satisfiability and Feasibility

(a) Satisfaction: correctness, un-
ambiguity, completeness, con-
sistency, stability, verifiability,
modifiability, traceability

(b) Feasibility: technical, eco-
nomic, BPR

3.16 Summary “slide 725”

to be written

More to come
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3.17 Exercises

Exercise 19. kap3.xs.1:
Solution 19 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 20. kap3.xs.2:
Solution 20 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 21. kap3.xs.3:
Solution 21 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 22. kap3.xs.4:
Solution 22 Vol. II, Page 534, suggests a way of answering this exercise.

Exercise 23. kap3.xs.5:
Solution 23 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 24. kap3.xs.6:
Solution 24 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 25. kap3.xs.7:
Solution 25 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 26. kap3.xs.8:
Solution 26 Vol. II, Page 535, suggests a way of answering this exercise.

“slide 726”
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4

Software Design “slide 728”

4.1 Discussion of the Software Design Concept “slide 729”

4.2 Stages of Software Design “slide 730”

“slide 731”

4.2.1 An Overview of “What to Do ?”
“slide 732”

[1] Software Design Information
“slide 733”

[2] Software Design Stakeholders
“slide 734”

[3] Software Design Acquisition
“slide 735”

[4] Software Design Analysis and Concept Formation
“slide 736”

[5] Software Design Options
“slide 737”

[6] Software Design Terminology
“slide 738”

[7] Software Design Modelling
“slide 739”

[8] Software Design Verification
“slide 740”

[9] Software Design Validation
“slide 741”

[10] Software Design Release, Transfer & Maintenance
“slide 742”

[11] Software Design Documentation
“slide 743”

4.2.2 A Summary Enumeration

1 Software Design Information Sect. 4.3 Page 170
2 Software Design Stakeholders Sect. 4.4 Page 171
3 Software Design Acquisition Sect. 4.5 Page 171
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4 Software Design Analysis and Concept Formation Sect. 4.6 Page 171
5 Software Design Options Sect. 4.7 Page 171
6 Software Design Terminology Sect. 4.8 Page 172
7 Software Design Modelling Sect. 4.10 Page 175

(a) Architectural Design Sect. 4.10.1 (Page 175)
(b) Component and Module Design Sect. 4.10.3 (Page 221)
(c) Coding Sect. 4.10.4 (Page 221)
(d) Programming Paradigms Sect. 4.10.5 (Page 221)

8 Software Design Verification Sect. 4.11 Page 221
9 Software Design Validation Sect. 4.12 Page 221

10 Software Design Release, Transfer & Maintenance Sect. 4.13 Page 221
11 Software Design Documentation Sect. 4.14 Page 221

4.3 Software Design Information “slide 744”

We have earlier, as mentioned above, extensively (Pages 6–24) covered the general
issues of informative documents. The reader is strongly encouraged to review those
pages, Sect. 1.5. Suffice it here to emphasize the following.

Current Situation: Cf. Sect. 1.6.3, Page 9

As mentioned in Sect. 1.6.3 on page 9 the context in which the software design
starts must be emphasized. That context invariably includes the existence of a
requirements prescription.

More to come

“slide 745”
Needs and Ideas: Cf. Sect. 1.6.4, Pages 9–10

to be written
“slide 746”

Concepts and Facilities: Cf. Sect. 1.6.5, Pages 10–11

to be written
“slide 747”

Scope and Span: Cf. Sect. 1.6.6, Page 11

to be written
“slide 748”

Assumptions and Dependencies: Cf. Sect. 1.6.7, Pages 11–12

to be written
“slide 749”

Implicit/Derivative Goals: Cf. Sect. 1.6.8, Page 12

to be written
“slide 750”

Synopsis:

to be written
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“slide 751”

Software Development Graphs: Cf. Sect. 1.6.10, Pages 13–15

to be written
“slide 752”

Resource Allocation: Cf. Sect. 1.6.11, Pages 15–16

to be written
“slide 753”

Budget (and Other) Estimates: Cf. Sect. 1.6.12, Page 16

to be written
“slide 754”

Standards Compliance: Cf. Sect. 1.6.13, Pages 16–19

to be written
“slide 755”

Contracts and Design Briefs: Cf. Sect. 1.6.14, Pages 19–23

to be written
“slide 756”

More to come

4.4 Software Design Stakeholders “slide 757”

to be written

4.5 Software Design Acquisition “slide 758”

to be written

4.6 Software Design Analysis and Concept Formation

“slide 759”

to be written

4.7 Software Design Options “slide 760”

to be written
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4.8 Software Design Terminology “slide 761”

to be written
“slide 762”

“slide 763”

4.9 A Domain Example “slide 764”

Example. 20 – Determination of Airline Timetable Queries: To exemplify
this rough-sketch domain (to) requirements operation we first present a rough
domain description, then the “more deterministic” domain requirements pre-
scription. (i) A rough-sketch timetable-querying domain description is: There
is given a further undefined notion of timetables. There is also given a con-
cept of querying a timetable. A timetable query, abstractly speaking, denotes
(i.e., stands for) a function from timetables to results. Results are not further
defined. “slide 765”(i) A rough-sketch timetable querying domain requirements
description is: There are given notions of departure and arrival times, and
of airports, and of airline flight numbers. “slide 766”Determination of Airline
Timetable Queries, I

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

T, An, Fn
end

“slide 767” A timetable consists of a number of air flight journey entries. Each
entry has a flight number, and a list of two or more airport visits. an airport
visit consists of three parts: An airport name, and a pair of (gate) arrival and
departure times. “slide 768”Determination of Airline Timetable Queries, II

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

JR′ = (T × An × T)∗

JR = {| jr:JR′
• len jr ≥ 2 ∧ ... |}

TT = Fn →m JR
end

We illustrate just one, simple form of airline timetable queries. A simple airline
timetable query either just browses all of an airline timetable, or inquires of
the journey of a specific flight. “slide 769”The simple browse query thus need
not provide specific argument data, whereas the flight journey query needs
to provide a flight number. A simple update query inserts a new pairing of
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a flight number and a journey to the timetable, whereas a delete query need
just provide the number of the flight to be deleted.

“slide 770”

The result of a query is a value: the specific journey inquired, or the entire
timetable browsed. The result of an update is a possible timetable change and
either an “OK” response if the update could be made, or a “Not OK” response
if the update could not be made: Either the flight number of the journey to
be inserted was already present in the timetable, or the flight number of the
journey to be deleted was not present in the timetable.

That is, we assume above that simple airline timetable queries only des-
ignate simple flights, with one aircraft. For more complex air flights, with
stopovers and changes of flights, see Example ?? on page ??.

You may skip the rest of the example, its formalisation, if your reading
of this book does not include the various formalisations. “slide 771”First, we
formalise the syntactic and the semantic types:

Determination of Airline Timetable Queries, III

scheme TI TBL 3Q =
extend TI TBL 3 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

end

Then we define the semantics of the query commands:
“slide 772”Determination of Airline Timetable Queries, IV

scheme TI TBL 3U =
extend TI TBL 3 with

class
value

Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() → λtt:TT•tt,
mk jour(fn)

→ λtt:TT • if fn ∈ dom tt
then [ fn7→tt(fn) ] else [ ] end

end end

And, finally, we define the semantics of the update commands:
“slide 773”

Determination of Airline Timetable Queries, V
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scheme TI TBL 3U =
extend TI TBL 3 with

class
Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) → λtt:TT •

if fn ∈ dom tt
then (tt,not ok) else (tt ∪ [ fn7→jr ],ok) end,

mk delt(fn) → λtt:TT •

if fn ∈ dom tt
then (tt \ {fn},ok) else (tt,not ok) end

end end

We can “assemble” the above into the timetable function — calling the new
function the timetable system, or just the system function. “slide 774”Before we
had:

Determination of Airline Timetable Queries, VI

value
tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

Now we get:

value
system: TT → Unit
system() ≡

(let q:Query in let v = Mq(q)(tt) in system(tt) end end)
⌈⌉ (let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end)

“slide 775”

Or, for use in Example 7:

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡

let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) = Mu(q)(tt) in system(tt′) end end

•
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4.10 Software Design Modelling “slide 776”

“slide 777”

4.10.1 Architectural Design

Introduction “slide 778”

The requirements prescriptions cover four areas: business process reengineering,
domain requirements, interface requirements and machine requirements. Only
the last three sets of requirements influence the design of the computing system,
i.e., the machine. The business process reengineering prescriptions are meant to
materially influence the behaviour of people using that machine. In this chapter we
shall primarily focus on architectural consequences of some machine requirements.

“slide 779”

This section is predominantly based on formalisations. The reader who wishes
to study this book only informally is thus left to not be able to enjoy one of
the many advantages of using formal specifications. The “closer” one gets to
actual program implementation, the more one has to express the software design
in a programming notation. The formalisms used are, however, simple and mostly
based on the CSP of RSL/CSP. We covered that subset of RSL in Vol. 1, Chap. 21.
So get used to it!

Initial Domain Requirements Architecture “slide 780”

Usually, when developing a domain requirements, we can formalise, incremen-
tally, the resulting domain requirements, not just by their properties, but we can
also give model-oriented prescriptions. The same holds for some interface require-
ments. “slide 781”But for some other interface requirements, and for most, if not
all, machine requirements, we cannot formalise the properties asked for, but one
can formalise their possible, claimed implementation, that is, an architectural
software design.

Model-oriented requirements prescriptions amount to partial software archi-
tecture specifications. Let us “slowly” unfold such a software architecture speci-
fication.

“slide 782”

Example. 21 – Component Diagram of a Simple Timetable System: We
refer to Example 20. We diagram that formalisation as shown in Fig. 4.1. The
arrows here were not thought of as channels.

“slide 783”

A Simple Timetable System We can model the diagram of Fig. 4.1 on the
next page by:

system: TT → Unit
system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
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Timetable

System

domain requirements component

Shared data structure component

embedded domain requirements component

StaffClient

Fig. 4.1. Timetable application components

client(tt) ≡ let q:Query in let v = Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in
let (r,tt′) = Mu(u)(tt) in system(tt′) end end

“slide 784”

Both the airline client and the airline staff make use of the (shared phe-
nomenon) airline timetable. It is therefore to be considered a data structure
that is shared not only between the domain and the machine, but also between
client and staff. •

“slide 785”

We call the component shown in Fig. 4.1, a domain requirements component. In
this case, we may claim that it consists of three embedded such.

We now, increasingly, since software design is our subject, turn to model-
oriented specifications. In this section, we almost exclusively develop and enrich
process-oriented specifications.

“slide 786”

Example. 22 – Formal Model of Simple Timetable System Process: We
refer to Example 21 (above), but assume arrows as designating channels. Each
of the three subcomponents of Fig. 4.1 are now considered to be separately
evolving behaviours, that is, processes.

“slide 787” Simple Timetable System Processes

channel
ctt:QU, ttc:VAL, stt:UP, ts:RES

value
system: TT → Unit
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system(tt) ≡ client() ‖ time table(tt) ‖ staff()

client: Unit → out ct in tc Unit
client() ≡ let qc:Query in ctt!Mq(qc) end ttc?;client()

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in ctt,stt out ttc,tts Unit
time table(tt) ≡

let qf = ctt? in ttc!qf(tt); time table(tt) end
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

“slide 788”

We can read the framed formulas above aloud for the reader who otherwise
cannot read these formulas: There are two connections, two interfaces, be-
tween the client and the time table, One in each direction. Similarly, there
are two connections, two interfaces, between the staff and the time table,
One in each direction. The system behaviour is the parallel composition of
three behaviours: client, staff and time table. Only the time table possesses the
timetable. All three behaviours, client, staff and time table, are cyclic: Recurse
indefinitely.

“slide 789”

The client behaviour sends query requests to the time table behaviour and
awaits response before recycling. The staff behaviour sends update requests to
the time table behaviour and awaits response before recycling. In either case,
the client and staff behaviours — before resuming their behaviour — ignore
the response.

The time table behaviour, as an obedient server, is ready, in each round,
each cycle, to engage in an event with either the client or the staff behaviours.
The time table behaviour expresses this by an external nondeterministic choice
(⌈⌉⌊⌋). We refer to Example 7 on page 136. •

• • •

In Examples ?? and ?? we exemplified aspects of interface requirements for the
example of the present chapter. One could claim, and with some justification, that
what Example ?? illustrated could as well be said to constitute a software design
specification. Other than this fleeting reference to interface software design, we
shall not, in this chapter, illustrate interface design.

Initial Machine Requirements Architecture “slide 790”

In general we can always claim that one can continue, after such software de-
sign which “implements” domain requirements concerns, with software design
concerned with implementing machine requirements.
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data structure component

domain requirements component

ctt[1]
ttc[1]

stt

tts

Client

Client

Client

StaffTimetable

Fig. 4.2. Timetable application components

“slide 791”

Example. 23 – Component Diagram and Formal Model of a Timetable
System: We shall exemplify a software design which can be said to implement
domain requirements. We refer to Example 7, but now, as it is, with n client
processes (Fig. 4.2). “slide 792”

This will be the last figure in Chap. ?? in which we explicitly show data
structure components.

“slide 793”Timetable Application Components

type
CIdx /∗ Index set of, say, 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ ‖{client(i)|i:CIdx} ‖ time table(tt) ‖ staff()

“slide 794”

The individual processes are defined next.
Timetable Application Components

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡
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⌈⌉⌊⌋ {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

We refer to Example 7 on page 136. “slide 795”For the readers who cannot
read the formulas we “read” them “aloud”: There is an index set of client
(names), CIdx. For each client there is a separate pair of channels, ct[i] and
tc[i], i.e., means of communicating with the time table process. This is just
a generalisation of the model given in Example 22. And, as in that model,
there is a pair of channels, st and ts, between the staff and the time table
process. The system is the parallel, comprehended composition of as many
client processes as there are elements in CIdx, composed, also in parallel, with
one staff and one time table process. “slide 796”The only difference between
the model of the present example and that of Example 22 on page 176 is,
first, that communications between client processes and the time table process
takes place over indexed channels, and, second, that the time table process
nondeterministically, externally, is ready to engage with any client process. •

“slide 797”

Thus we enter, in the continuing examples of this section, a stage where we are
now concerned with the implementation, i.e., the software architectural issues
as determined by machine requirements. But first let us exemplify an issue of
analysis.

Analysis of Some Machine Requirements “slide 798”

We have chosen, in this section, to focus on just a few machine requirements
issues. Although it may not be realistic of actual developments, it is sufficiently
illustrative of what goes on in actual software design developments concerned
with the implementation of machine requirements.

The machine requirements issues selected are performance, availability, acces-
sibility and adaptive maintainability.

Performance

“slide 799”

We refer to Examples 6 and 7. The performance issue chosen was the simple
one of making sure that n clients could be online simultaneously. And the software
design issue that we wish to look at is how to design a machine requirements
component, or a set of such components, that separate out from the time table
process the choice among n client processes and one staff process.

Availability

“slide 800”

We refer to Example 10. The time table process does not guarantee “fair”
choice between handling input from clients and input from staff processes (f.
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nondeterministic external choice (⌈⌉⌊⌋) of Example 23). The internal nondetermin-
istic choice that we are referring to above is that between the timetable process’s
handling of the n:Index client process inputs and its handling of the staff pro-
cess inputs. The RSL semantics of ⌈⌉⌊⌋ allows one side of the ⌈⌉⌊⌋ operator, i.e.,
one operand, to be selected indefinitely. “Fairness” is an issue of making sure
that both process operands of ⌈⌉⌊⌋ are “inquired” as to willingness to “progress”.1

That is, both the client and the staff processes should be given a fair chance of
communicating with the time table process.

Accessibility

“slide 801”

We refer to Example 9 on page 140. The current software architecture can
be said to prescribe strict, mutually exclusive serialisation of client and staff pro-
cesses wrt. time table process. This may be acceptable for zero time processing,
but it is not acceptable for time-consuming timetable operations (like, for exam-
ple, connection queries)! “Small, quick” query processing, such as journey, could
be interleaved with the processing of “large, time-consuming” queries, such as
connections.

Adaptive Maintainability

“slide 802”

We refer to Example 15. We focus on the direct channels between time table
and the client and staff processes. These direct channels, if also implemented as
channels (“ad verbatum”), might hinder the development (i.e., refinement) of
several distinct implementations of the client process.

Prioritisation of Design Decisions “slide 803”

The design decisions include a prioritisation of which machine requirements shall
first, then subsequently, determine program organisation design decisions. Our
example prioritisation is:

• First performance, then
• availability, then
• accessibility, and finally
• adaptive maintainability.

“slide 804”We do not motivate the specific prioritisation. Specific machine require-
ments prioritise one requirements over another. There may be various reasons for
a prioritisation. These prioritisation reasons are usually given in informative doc-
uments. We shall not go into a discussion of machine requirements prioritisation.

1 Our reasoning would be the same for the nondeterministic internal choice operator
⌈⌉.
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Corresponding Designs “slide 805”

So, on one hand, there is the issue of deciding how to suggest a software ar-
chitecture design (i.e., “a component or two”) which implement[s] a machine
requirement — a design which can, eventually, be shown, somehow, to satisfy the
(usually property-oriented) machine requirements. And, on the other hand, there
is the issue of choosing a way in which to represent this design decision.

“slide 806”

The emphasis in this section is on expressing designs in terms of diagrams:
(i) with some boxes designating domain requirements entities and functions, i.e.,
domain requirements components; (ii) with other boxes designating machine re-
quirements design choices, i.e., machine requirements components and (iii) with
arrows connecting these boxes designating means of invoking functions in respec-
tive components.

Design Decision wrt. Performance

“slide 807”

We illustrated in Sect. 4.10.1 on page 179 just one aspect of the larger machine
requirements concern: performance. It was based on Examples 6 and 7. We shall
now illustrate a design decision which is then recorded in the form of a “boxes and
arrows” diagram. Throughout this and the next design decisions (Sects. 4.10.1–
4.10.1) we shall use this rather informal mode of “design and reasoning”, which
is based on understanding boxes as usually cyclic processes and arrows as one-
or two-directional input/output event channels. That is, we shall omit the crucial
specification of the protocols which monitor and control events (synchronisations
and communication “along” the arrows) in (and between) processes (i.e., the
boxes).

“slide 808”

“slide 809”

Example. 24 – Performance Component Design: We refer to Fig. 4.2. We
observe that it is the time table process which performs the choice between n
client requests and one staff request. We decide to “factor” this aspect — of
choice — out from the time table process, and into one machine requirements
component, cli mpx (for client multiplexor component), and one machine re-
quirements component, cli stf mpx (for client/staff multiplexor component).
We refer to Fig. 4.3 on the following page. For the moment we might con-
sider the two machine requirements components as a pair of “inseparable,
back-to-back” components. Informally speaking, what goes on in the boxes
and on the channels is as follows: Assume a client, say client i, wishes to
communicate a query to the timetable. The client multiplexor then decides
between this, client i, request and possibly other such, client j, i 6= j, re-
quests, and selects one, say client j. The client multiplexor now passes that
request on to the client staff multiplexor. Assume that the staff, also at such
a time as client requests i, . . . , j, . . . , k are issued, issues an update request.
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...

...
...

...

client

staff

client

client

client

c_m[i]

m_c[i]

m_tt

tt_m s_tt

tt_s

machine requirements component

machine requirements component

domain requirements component time_table

cli_mpx

client_staff_multiplexor

cli_stf_mpx

Fig. 4.3. Client/staff multiplexor components

Now the client multiplexor decides on one of these two: client j query and the
staff update. Assume that the client multiplexor decides to choose the staff
request. That staff request is passed on to the timetable, is serviced, and a
result (response) is returned to the client staff multiplexor, which returns it
to the staff. Right after this the client staff multiplexor may choose to service
the client (j) query. It could choose a further staff update should such a re-
quest have been issued “right on the heels” of a former and serviced update
request. Now we assume that the client staff multiplexor services the (“out-
standing”) client (j) query. It is passed on to the timetable and is serviced,
and a result (value) is returned to the client staff multiplexor, which returns
it to the client multiplexor (whereupon the client staff multiplexor is freed to
service staff updates). The client multiplexor returns the result of the client j
query to that client and the client multiplexor is then freed to service either
“outstanding” or new client requests. Notice that at this stage of design we
have chosen to let the two multiplexor processes await completion, by them,
of the most recently serviced request. •

Design Decision wrt. Availability

“slide 810”

Example. 25 – Availability Component Design: First, we refer to Exam-
ple 10 on page 140 and then to the discussion of Sect. 4.10.1 on page 179.
To resolve nondeterminism that unfairly chooses among client query requests,
as in the client multiplexor, or as among a chosen client request and a staff
request, we must modify both multiplexors. Our design choice is to “equip”
both multiplexors each with their own arbitration procedure embodied in an
arbiter component.
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“slide 811”

Thus these arbiters shall secure a “more fair” choice — perhaps “less non-
deterministic” — within and between the two categories of users. A solution
could be to have an internal clock (or “bit”) secure alternate sampling of client
queries (to the client staff arbiter), respectively secure alternate sampling of
chosen client and staff requests (to the timetable process). We refer to Fig. 4.4.
•

“slide 812”

...

...

...
...

client

client

client

client

c_m[i]

m_c[i]

m_a

a_m

a_s

a_tt tt_a

s_a

staff

machine requirements ccomponent

domain requirements component

timetable

cli_stf_arbcli_mpx_arb

Fig. 4.4. Arbiter component

“slide 813”

Please observe across the two examples just given, Example 24 and Example 25,
that the boxes of a former design decision change “nature” (i.e., meaning) as a
result of a subsequent design decision. It is because we wish to have the design
freedom (i.e., the design options) to let this happen often, that we refrain at
this thereby informal step from detailing the “inner workings” of the boxes etc.
Now we need only fully specify (incl., possibly formalise) a last design decisions
accumulated step.

Design Decision wrt. Accessibility

“slide 814”

Example. 26 – Accessibility Component Design: First, we refer to Exam-
ple 9 and then to Sect. 4.10.1. The current software architecture (still) pre-
scribes strict, mutually exclusive serialisation of client and staff processes wrt.
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time table process. This is not acceptable for time-consuming time table op-
erations. Our design decision, in this step, is therefore to prescribe that the
time table process is to be a time-shared process. “slide 815”Thus the time table
process is to accept up to several requests, in any order, and to service each
request, for example, in some “round robin” fashion, in time slices, such that
zero, one or more, but a finite, small number of time slices, allocated to one
particular request, produces partial, and eventually full results for that re-
quest.

“slide 816”

To thus interleave client requests implies the passing of client identity —
all the way to the time table process. There, at the time table process, they
are associated with the time-shared processing, and affixed the partial or full,
computed, results when these are being communicated back in order to “sort”
out which partial or completed (i.e., full) results “belong to which request”.

“slide 817”

This is an acceptable solution even when it comes to the design of a
time table process which is as general as possible! Either the operating system
handles the time-sharing, and that system then handles the client (and now
also staff) request identities, or the timetable subsystem must!

“slide 818”

We decide therefore to make sure that two or more client processes can
be serviced in overlapping time intervals. This will be effected by a client
queue process (cli q) inserted between the client multiplexor processes (i.e.,
components) and the client staff arbiter process (i.e., component), and by a
client staff queue process (cli stf q), i.e., client staff queue component, inserted
between the client staff arbiter process (i.e., component) and the time table
process (i.e., component). The latter queue secures that also otherwise serially
serviced staff updates can be time-shared and “computed” in a piecemeal
fashion. “slide 819” We refer to Fig. 4.5 on the next page. The previous client
multiplexor and arbiter processes (i.e., components) have to be redefined in light
of “adding” client and (whether client i or) staff identities to the requests being
forwarded to the time table process. “slide 820”A journey query handling by the
timetable process could thus be interleaved with the handling of a connection
query from another client. The former may “arrive” at the time table process
before the latter, but that process may decide to first service the latter. A
more detailed specification of what goes on during the processing of requests
can be given:

We first specify the orderly flows of requests from clients and staff towards
the time table process. Thereafter we specify the orderly flows of partial and/or
completed results from the time table process back to respectively client and
staff processes. These two flows must themselves be interleaved and not inter-
fere with one another.

Each client request, after having been arbiter-chosen by the client multi-
plexor arbiter, is annotated with its origin (clienti) and passed on to the client
queue. Meanwhile the client multiplexor arbiter is freed to accept other requests.
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...

...
...

...

client
queue

arbiter
queue

client
multiplexor

arbiter
queue

client

client

client

client

c_m[i]

m_c[i]

a_s

a_tt tt_a

m_q

q_m

q_a

a_q s_a

staffarbiter_q
cli_mpx_
_arb_q cli_q

cli_stf_q

machine reqs. component

domain reqs. component

time−shared
timetable

Fig. 4.5. Time-sharing interleave components

The client queue notes that a request is being made by clienti and passes that
request on to the client staff arbiter, and is otherwise freed to accept further an-
notated client requests. The client staff arbiter selects client and staff requests
and passes selected such on to the client staff queue, while being freed to ar-
bitrate between subsequent client and staff requests. The client staff queue
process notes the identity of the request and passes it on to the time table
process.

In every time-slice that the time table process has a partial or a completed
result associated with a client or a staff request, it returns that result to the
client staff queue process. If the result is marked as completing a request, then
the client staff queue process removes it from its list of pending requests, as
now having been fully serviced by it and the time table process, while, in any
case returning the result to the client staff arbiter. That process, inspecting
the identity affixed to the returned result (by the time table process), decides
where to route that result: to the staff process, or to the client staff queue
process. In the former case the returned (partial or completed) result has
been fully handled. In the latter case the client staff queue process inspects
the returned value to see whether it represents a partial or a completed request
value. If the latter, then the client staff queue process removes it from its list
of pending client requests, as now having been fully serviced by it and the
time table process. In both cases the returned value is returned via the client
multiplexor arbiter to the client.

The above scheme allows inspection, at any time, by a client/staff timetable
service system (which we have not spoken of before) as to the state of pending
requests. •
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Design Decision wrt. Adaptability

“slide 821”

Example. 27 – Adaptive Maintainability Connector Design: First, we refer
to Example 15 and then to Sect. 4.10.1. To secure that the developer does not
take “white box” advantage of knowledge of how the client, staff, time table
and any other component processes are implemented, it is suggested to insert
connectors between these and the (newly introduced) arbiter process. The exis-
tence of these connectors forces a “standard” (“black box”) interface between
connected processes. “slide 822”The idea is that the protocol for communica-
tion between domain and machine requirements component processes, on one
side, and connector processes, on the other side, is made such that previously
neighbouring component processes are “effectively” shielded from one another
wrt. “white box” knowledge. We refer to Fig. 4.6 on the facing page.

The shaded circles and rounded corner boxes (both kinds without a black
edge) designate these connectors. The insertion of connectors between compo-
nents makes no change to the flow of messages across the network of processes.
So we basically inherit the detailed, informal specification that was given for
the flow of requests and results across the network of processes as given at
the end of Example 26.

The meaning of the connectors is subject to a wide range of interpreta-
tions. Take an example. Let the double-arrow lines between clients and the
client multiplexor arbiter stand for wide area communication lines. In some im-
plementation there is trust with respect to these lines: no noise, no intrusion.
The connectors on these double-arrow lines can therefore be very simple. In
other implementations there is noise, but no threat of intrusion. Now these
connectors need to implement some protocol that ensures uncorrupted re-
ceipts of messages. In yet other implementations there is threat of intrusion.
Now the connectors must implement some encryption scheme. And so forth.
•

“slide 823”

Discussion “slide 824”

General

We have concluded a stage of development. From a set of requirements we have
developed, informally, a software architecture, a first stage of software design. This
software design is informal, and, in a sense, incomplete. It is incomplete in the
sense that we have yet to specify the individual behaviours of each of the domain
and machine requirements components as well as of the connector components.
It is “complete” in the sense that we now have a “picture” which specifies: There
are those and those processes, and there are those and those channels, and no
more!
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domain reqs. component

machine reqs. component

Fig. 4.6. Adaptivity connectors

“slide 825”

This stage of architecture design deployed a technique — used a design ap-
proach — which was informal. It is based on “boxes and arrows”. The technique
is based on inserting, and perhaps renaming (i.e., redefining) “boxes and arrows”.
In each design decision step we presented (at the end of the corresponding exam-
ples) a detailed specification of how the network of processes was to behave. But
only in the last step did we commit ourselves to a specification that eventually
has to be implemented.

Principles and Techniques

“slide 826”

We summarise:

Principle 10 (Software Architecture) The principles of software architecture
are to sketch a first software design, to handle what is considered the most
crucial requirements and to get the long process of software design “on the
road”.

“slide 827”

Principle 11 (Software Architecture Design) The principles of software ar-
chitecture design are basically those of divide and conquer, i.e., separation
of concerns, of determination of overall component structuring, and hence of
determining major interfaces, so as to allow separate design groups to tackle
separately the development of components.

“slide 828”
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Principle 12 (Component) The idea of a component is that it serves as a
suitably free-standing collection of modules, which together offer either func-
tionalities (i.e., can perform functions), or data storage, or monitoring and/or
control of processes, possibly in response to events, in order to implement a
clearly identifiable (preferably small set of) requirements.

“slide 829”

Principle 13 (Component Design) Components emerge as a result of soft-
ware architecture design. Other than that, component design follows all the
principles of design according to which any software is designed.

“slide 830”

Technique 3 (Architecture Design) Major architecture design techniques re-
volve around decomposing the requirements into possibly separable major sub-
systems (which was not illustrated in this section); and deciding, for each such
subsystem decomposition, upon definition of resulting interfaces between sub-
systems, their protocol of communication over these interfaces and the types of
data exchanged. “slide 831”Techniques within subsystems also included explor-
ing (experimenting with) different prioritisations of related requirements in
order to ascertain whether one or another prioritisation results in an architec-
ture cum component structure (and interface) design that allows a reasonable
sequence of steps of extension, each addressing subsequent, i.e., remaining
(still related) requirements.

Subsequent chapters will uncover additional principles and techniques.

Bibliographical Notes “slide 832”

The Carnegie Mellon University group around David Garlan (G.D. Abowd, R.
Allen, M. Shaw, C. Shekaran, and others) has contributed rather significantly to
the clarification of many software architecture issues, notably such that relate to
components and their connections: [82, 7, 2, 83, 8, 198, 3, 80, 81, 9].
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“slide 835”

“slide 836”
4.10.2 Component Design and its Refinement

Overview Introduction “slide 837”

This section presents one large example. In it we show how a software architec-
ture — which satisfies some initial domain requirements — is developed in steps
alternating with the development of a component structure. This component
structure satisfies some further machine requirements, requirements that are not
really “discovered” till “halfway” through architecture design. The example also
illustrates the use of data refinement techniques for the purpose of conquering
the architectural complexity of a system.

System Complexity

That is, we are oftentimes faced with the problem of having to design a system
with very many properties, too many to be grasped in any one presentation. In-
stead we show a technique whereby the architectures, i.e., the full variety of all
properties, can be stepwise developed. From a small architectural specification —
exemplifying what is considered the very basic properties — one arrives, in steps,
at increasingly more complex designs. At each step a new, small set of properties
is “added” to the previous description.

Sometimes software systems contain unnecessarily many, seemingly inde-
pendent concepts. Occasionally a large number of such concepts are, however,
necessary. Their presence is required in order to cope with varieties of domain
requirements, interface requirements and, especially, machine requirements.

In all cases it is rather hard to grasp all the concepts, sort them out and inter-
relate them properly. In many cases this ability to dissect a software architecture
into its many constituent notions is seriously hampered by opaque presentations
of their interdependencies.

Proposed Remedies

“slide 838”

You can design software in either of two ways:
Either you make it so clear and simple such that it obviously has no bugs,

of you make it so complex such that it has no obvious bugs.

Sir Tony Hoare

“slide 839”

Three possibilities for “solving” the apparent complexity problem exist: two ex-
tremes, and a “middle road”. These choices are either not to design such multi-
concept systems at all, or go on designing them in the old “hacker” fashion. We
shall sometimes choose the first extreme, sometimes the “middle road” approach
outlined below, but never the second “compromise”!
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Stepwise Development

“slide 840”

Characterisation 107 (Stepwise Development) By stepwise development —
other terms, used interchangeably, are stepwise refinement, stepwise reifica-
tion, stepwise transformation — of a software design, we shall understand the
following: First a model is established which exhibits, as abstractly as deemed
reasonable, the intrinsic concepts and facilities for which the software was in-
tended, that is, a model which satisfies the domain requirements. Then this
model is subjected to data and/or operation refinement. “slide 841”The choice
of refinements is determined so as to satisfy those domain requirements which
were not all taken care of in the first step, and so as to — similarly — satisfy
(remaining) interface requirements, and so as to satisfy machine requirements.

We shall, in this section, emphasize variations of data refinement and data reifi-
cation referred to by the collective term data transformation. A sequence of trans-
formations may be needed. Each step introduces further properties and/or details,
none, some or all of which are exploited in exposing them to an external world.
The order of the steps and their nature is dictated, for example, by technological
and/or product strategic considerations.

Stagewise Iteration

“slide 842”

By stagewise iteration — other terms, used interchangeably, are stagewise
evolution or stagewise spiralling — of a software design, we shall understand the
following:

• One or more steps of development within a stage, s, are performed. (“Start”
with stage s.)

• Then one or more steps of development within a next stage, s′, are per-
formed. (Forward to stage s′.)

• Then one or more steps of development within stage s are performed.
(Back to stage s.)

• And so on, alternating between stages s, s′, s′′, . . . , s′′′. (Iterating, forward
and backward.)

Our example exhibits stagewise iteration.

Overview of Example “slide 843”

Our example is that of a file-handler system:

0. At the top level (step 0) of architecture we focus our attention on files, file
names, pages and page names as data and the creation, and erasure, of files,
and the writing, updating, reading, and deletion of pages as operations.
At this step files are named and consist of named pages.
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“slide 844”

At the top level no concession is made to the possible storing of files and their
pages in such diverse storage media as foreground (fast access, “core”), or back-
ground (slow access, “disk”) storage. The decision, which is hence recorded, of
eventually implementing the storing of files and pages on disk-like devices, predi-
cates a need to be able to “look up”, reasonably fast, where, on possibly several
disks, files and pages are stored.

“slide 845”

1., 2. In the next two steps we therefore introduce first the notions of catalogues
and directories, and, subsequently, as a further step of development, abstrac-
tions of the notions of main storage and disks.

Catalogues eventually record disk addresses of file directories, one per file. Di-
rectories eventually record disk addresses of pages. Our file system at this level
has one catalogue. We think, at the level of main storage and disks, of the one
catalogue as always residing in main storage, whereas all directories are normally
only stored on disks.

To speed up access to disk pages we operate on main storage copies of direc-
tories. The intention to operate on a file is then indicated by its opening, which is
an “act” that brings a disk directory copy into main storage. The intention to not
operate further on a file is then indicated by its closing, an “act” which reverses
the above copying.

“slide 846”

3. Hence open and close operations are introduced in step 3.

Opening and closing are file-related concepts primarily brought upon us by effi-
ciency considerations. These efficiency concerns are rooted in insufficient tech-
nologies. Thus they represent machine performance requirements.

Neither at the top, nor at the second level (i.e., in steps 2 and 3) of the file-
handler “architecting”, did we bother about the machine requirements issue of
reliability. We here define the reliability of our file handler as its ability to survive
crashes.

By a “crash” we restrictively mean anything which renders main storage
information (catalogue and opened directories) useless. By total “survival” we
mean the ability to continue (some time) after a “crash” as if no “crash” had
occurred. By “partial survival” we mean the ability to continue with at least a
nonvoid subset of the files after a “crash” — with the complement set of files
being clearly identified.

“slide 847”

4. In the fourth step, building upon redundancies in catalogue, directory and
page recordings, we therefore introduce notions of checkpointing files and
automatic recovery from “crashes”.

5.–6. Final steps — as presented here — hint at space management of storage
and disk: We introduce free lists of unused, available disk storage, etc.
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Methodology Overview “slide 848”

We paraphrase the above by giving an overview of the principles and techniques
to be deployed.

Principles

“slide 849”

We can summarise the principles as follows:

1 Stepwise unfolding of software architecture: Instead of going, in “one fell
swoop”, from (all of) the requirements to (all of) the architecture, we de-
compose this stage of the development of the software architecture of a simple
file handler into steps, each step taking care of one concern.

2 Interweaving domain and machine requirements implementation: Instead of
taking care, first, of all domain requirements, we alternate between considering
domain and machine requirements.

3 Invariance: Usually abstract type definitions, i.e., sorts, are subject to axioms
which express properties of the type, i.e., of its values. These axiomatic sort
properties are usually expressed in relation to (i.e., in terms of) the various
functions that are applicable to (otherwise well-formed) values of the type.
In stage- and stepwise refinement one usually represents abstract (i.e., sort)
types in terms of concrete types (e.g., sets, Cartesians, lists, maps, etc.). In
doing so the concrete type is usually capable of expressing “more” values
than are desired, i.e., values that do not properly represent any corresponding
abstract (sort) value — which was and is the idea. Hence we need to express
invariance of values of a type, i.e., a subtype. We do so by defining explicit
invariance predicates.

4 Abstraction, adequacy and sufficiency: While adhering to the above princi-
ples, we also adhere to principles of considering functions that abstract from
later design steps “back” to earlier design steps, or that express the adequacy
of a representation, that is, of a later design step (i.e., of a design decision),
wrt. an earlier, or that express the sufficiency of a representation.

5 Correctness: When “performing” a step of development, from a “more” ab-
stract to a “more” concrete design, one has to argue why the chosen step
implements the abstraction. Usually a formal proof is required. Often an in-
formal, but precise reasoning is sufficiently convincing.

Techniques

“slide 850”

We summarise the techniques, referring to Sect. 4.10.2, as they are invoked
in different steps:

• Intrinsic domain requirements:
⋆ Step 0: Intrinsic architecture: (Sect. 4.10.2)

files, create, erase, pages, write, update and delete
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A prescription is given of what we could consider the domain requirements of
the file handler. At the same time we might consider this prescription to also
be a specification of the basic software architecture from which we further
develop the full software architecture. Had we, instead, prescribed the domain
requirements by means of sorts, of the signatures of the file handler command
functions, and of axioms over these, then we could say that the specification
given below is truly that of a, or the, basic software architecture.

• Machine requirements:
⋆ Step 1: Catalogue (Sect. 4.10.2)
⋆ Step 2: Disk (Sect. 4.10.2)
Two steps of data refinement now follow: We choose a “more” concrete rep-
resentation (of the system) than given in step 0; we define an invariance
predicate; we redefine the file handler command functions; and we express
adequacy, sufficiency and correctness. We do not prove correctness.

• Domain and machine requirements:
⋆ Step 3: open and close commands (Sect. 4.10.2)
We argue design decisions based on considerations of technology, and, accord-
ingly (again) choose an “even more” concrete representation of the file-handler
system than presented in step 1. We then define invariance and abstraction
functions, redefine some of the file-handler command functions, and leave the
expression of adequacy, sufficiency and correctness to the reader. Again we do
not prove correctness.
“slide 851”

• Detailed component structure:
⋆ Step 4: Crash robustness: check and crash (Sect. 4.10.2)
⋆ Step 5: “Flat” storage (Sect. 4.10.2)
⋆ Step 6: Space management (Sect. 4.10.2)

Step 0: Files and Pages

The next four subsections present an abstraction of a file system architecture.

A “Snapshot”

Figure 4.7 abstracts a file system of three files named f1, f2 and f3. The first file
contains two pages, the second is empty and the third file contains three pages.

“slide 852”

An Abstract Formal Model

“slide 853”

Based on the immediately following English wording of what the type of the state
of our top-level file-handler is, we “derive” informally the formal type definitions.

The sôle data structure of our file-handler consists of a set of uniquely named
files. Each file consists of a set of uniquely named pages. Let Fn, Pn and PAGE
denote the further unspecified types of respectively file names, page names and
pages. “slide 854”Then: Step 0: Architecture: Files and Pages
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pg31

pg32

pg33
p33

p31

p32

pg11

pg12
p12

p11

f2

f1

f3

Simple

File

System

File System : fs:FS

Fig. 4.7. Base file system

type
[ Step 0 ]

FileSystem, File, Fn, Page, Pn, FILE, PAGE
FS0 = Fn →m FILE
FILE = Pn →m PAGE

value
obs Fns: FileSystem → Fn-set

obs Files: FileSystem
∼
→ File-set

obs FS0: FileSystem
∼
→ FS0

obs Fn: File
∼
→ Fn

obs FILE: File
∼
→ FILE

obs Pns: Page
∼
→ Pn-set

obs Pages: File
∼
→ Page-set

obs Pn: Page
∼
→ Pn

obs PAGE: Page
∼
→ PAGE

We have completed our first task: that of specifying the most important aspects
first, namely the semantic types. We need to express an invariance: The file names
of the system are those of the files of the system. And the page names of the
system are those of the pages of the system.

Step 0: Architecture: Files and Pages

axiom
∀ fs:FileSystem •

let fns = obs Fns(fs), files = obs Files(fs) in
fns = { obs Fn(f) | f:File • f ∈ files } ∧
∀ f:File • f ∈ files •
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let pns = obs Pns(f), pages = obs Pages(f) in
pns = { obs Pn(p) | p:Page • p ∈ pages }

end end

Abstract Versus Concrete Basic Actions

“slide 855”

To create an initially empty file (of no pages) we need to specify a new,
hitherto unused file name. To erase an existing file we need to specify the name
of a file already in the system. To put a page into a file we need to specify the
names of the file and page, and the page itself. To get a page from a file we to
need specify the names of the file and page. Finally, to delete a page we need to
specify the same:

“slide 856”

Abstract Versus Concrete Basic Actions

• Create file:
⋆ Abstract:

value

crea: Fn
∼
→ FileSystem

∼
→ FileSystem

crea(fn)(fs) as fs′

pre: fn 6∈ obs Fns(fs)
post: obs FS0(fs′) = obs FS0(fs) ∪ [ fn 7→ [ ] ]

or:

axiom
empty: File → Bool
empty((crea(fn)(fs))(fn)),
∼empty((crea(fn)(put(fn,pn,pg)(fs)))),
undef(empty((crea(fn)(eras(fn)(fs)))))

“slide 857”

⋆ Concrete:
value

crea0: Fn
∼
→ FS0

∼
→ FS0

crea0(fn)(fs) ≡ fs ∪ [ fn 7→ [ ] ]
pre: fn 6∈ obs Fns(fs)

“slide 858”

• Put file:
⋆ Abstract:

value

put: Fn × Page
∼
→ FileSystem

∼
→ FileSystem

put(fn,pg)(fs) as fs′

pre: fn ∈ obs Fns(fs)



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
196 4 Software Design

post: let cfs = obs FS(fs), cfs′ = obs FS(fs′),
pn = obs Pn(pg), cpg = obs PAGE(pg),
cfile = obs FILE((obs FS(fs))(fn)) in

cfs′ = cfs † [ fn 7→ pgs † [ pn 7→ cpg ] ] end

“slide 859”

or:

axiom
get(fn)(put(fn,pn,pg)(fs)) = pg,
undef(get(fn)(del(fn)(fs)))

⋆ Concrete:
value

put0: Fn × Pn × PAGE
∼
→ FS

∼
→ FS

put0(fn,pn,pg)(fs) ≡ fs†[ fn 7→ fs(fn)†[ pn 7→ pg ] ]
pre: fn ∈ dom fs

Concrete Actions

“slide 860”

Concrete Actions

value

eras0: Fn
∼
→ FS0

∼
→ FS0

eras0(fn)(fs) ≡ fs \ {fn}
pre: fn ∈ dom fs

get0: Fn × Pn
∼
→ FS0

∼
→ PAGE

get0(fn,pn) ≡ (fs(fn))(pn)
pre: f ∈ dom fs ∧ p ∈ dom (fs(fn))

del0: Fn × Pn
∼
→ FS0

∼
→ FS0

del0(fn,pn)(fs) ≡ fs † [ fn 7→ (fs(fn)) \ {pn} ]
pre: f ∈ dom fs ∧ p ∈ dom (fs(fn))

We have completely specified the basic, major functions of a simple file handler
system. The abstraction is just that: We have abstracted from any concern about
how actual input of commands, including input of pages, and of how output of
pages take place. We have also abstracted “away” considerations of what kind
of diagnostics to use in case of erroneous input — we have only defined, in
preconditions, what we mean by erroneous input. We have abstracted from any
representation of files, and, in fact, the entire file system. Finally, we have not
been, and shall not, in this entire example, be concerned with what pages are.

Step 1: Catalogue, Disk and Storage “slide 861”

We divide the next development into three steps. First, we introduce the data
notions of catalogues and directories, then the data notion of disk, and finally the
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data notions of storage and disk. The single aim of this level is to introduce the
operation notions of open and close.

Catalogue Directories

Figure 4.8 instantiates a first step of concretisation of Fig. 4.7. A catalogue and
some file directories have been “inserted” as a means of obtaining access to the
file pages.

“slide 862”

f1

f2

f3

p11

p12

p31

p32

p33

pa1

pa2

pa3

pa4

pa5

pg11

pg12

pg31

pg32

pg33

Catalogue

Directories

Directory f1

Directory f2

Directory f3

Pages

A Catalogue − Directory − Page Store 

Fig. 4.8. Catalogue + directories + pages

Data Structure: “slide 863”

We now adorn our type names according to the number of the step of de-
velopment. The zeroth step (which was the top level) gave us FS0.

To each file in FS1 we now associate a page directory. Each directory records
where pages are stored. Directories are named, and these names are recorded in
a catalogue.

Catalogue + Directories + Pages

type
[ Step 0 ]

FS0 = Fn →m (Pn →m PAGE)

[ Step 1 ]
FS1 = CTLG1 × DIRS1 × PGS1

“slide 864”
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You may (justifiably) think of directories “translating” user-oriented page names
into system-oriented page addresses, and PGS1 to be a disk-like space within
which all pages of all files are allocated. Let:




f1 7→

[
p11 7→ g11,
p12 7→ g12

]
,

f2 7→
[
p21 7→ g21

]
,

f3 7→ [ ]





be an abstract, FS0, file system. “slide 865”Its counterpart in FS1 is:







f1 7→ d1,
f2 7→ d2,
f3 7→ d3



 ,




d1 7→

[
p11 7→ a11,
p12 7→ a12

]
,

d2 7→
[
p21 7→ a21

]
,

d3 7→ [ ]



 ,




a11 7→ g11,
a12 7→ g12,
a21 7→ g21



 ,





Invariant: “slide 866”

The type definitions define too much. Not all combinations of catalogues,
directories and pages go together. We must require that there is a distinct directory
in DIRS1 for each file catalogued in CTLG1; that pages addressed in PGS1 are
actually recorded in directories; and that every page, understood as page-address,
is described in exactly one directory (that is belongs to exactly one file).

“slide 867”

Catalogue + Directory + Page Invariants

type
[ Step 0 ]

FS0 = Fn →m (Pn →m PAGE)

[ Step 1 ]
Dn, Pa
FS1 = CTLG1 × DIRS1 × PGS1
CTLG1 = Fn →m Dn
DIRS1 = Dn →m DIR1
DIR1 = Pn →m Pa
PGS1 = Pa →m PAGE

value
inv CTLG1: CTLG1 → Bool
inv CTLG 1(ctlg) ≡ card dom ctlg = card rng ctlg
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inv DIRS1: → Bool
inv DIRS1(dirs) ≡

card dom dirs = card rng dirs ∧
∀ dir:DIR1 • dir ∈ rng dirs ⇒ inv DIR1(dir)

inv DIR1: → Bool
inv DIR1(dir) ≡ card dom dir = card rng dir

inv PGS1: → Bool
inv PGS1(pgs) ≡ card dom pgs = card rng pgs

inv FS1: FS1 → Bool
inv FS1(ctlg,dirs,pgs) ≡

inv CTLG 1(ctlg) ∧inv DIRS1(dirs) ∧ inv PGS1(pgs) ∧
rng ctlg = dom dirs ∧⋃

{ rng dir | dir:DIR1 • dir ∈ rng dirs } = dom pgs ∧
∀ pa:Pa•pa ∈ dom pgs•∃! dn:Dn•dn ∈ dom dirs•pa ∈ rng dirs(dn)

“slide 868”

Annotations:

• The more concrete catalogue is well-formed if it is a bijection: To each file
name there corresponds a unique directory name.

• The collection of more concrete directories is well-formed if it is a bijection:
To each directory name there corresponds not only a unique directory, but
each of these directories is well-formed, i.e., is also a bijection. Directories
map each page name to a unique page.

• The collection of more concrete pages is well-formed if it is a bijection: To
each page address there corresponds a unique page. “slide 869”

The previous three items were concerned only with the well-formedness of respec-
tive components of the overall more concrete file system. What is missing, namely
the constraints that “cut across” the triplet structure is now formulated:

• The more concrete file system is well-formed:
⋆ if each of its parts is well-formed,
⋆ if the directory names mentioned in the catalogue correspond exactly to

those mentioned in the collection of directories, and
⋆ if, for every page address in the collection of pages, there exists a unique

directory name in whose directory that page address is mentioned.

Abstraction

“slide 870”

Given an FS1 file system we can abstract a “corresponding” FS0 from it.
Abstraction is a function.

“slide 871”

Catalogue + Directory + Page Abstraction
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type
[ Step 0 ]

FS0 = Fn →m (Pn →m PAGE)

[ Step 1 ]
Dn, Pa
FS1 = CTLG1 × DIRS1 × PGS1
CTLG1 = Fn →m Dn
DIRS1 = Dn →m DIR1
DIR1 = Pn →m Pa
PGS1 = Pa →m PAGE

value

abs FS0: FS1
∼
→ FS0

abs FS0(ctlg,dirs,pgs) ≡
[ fn 7→ [ pn 7→ pgs((dirs(ctlg(fn)))(pn))

| pn:Pn • pn ∈ dom dirs(ctlg(fn)) ]
| fn:Fn • fn ∈ dom ctlg ]

pre: inv FS1(ctlg,dirs,pgs)

“slide 872”

We can only retrieve (i.e., abstract) well-formed file systems.

• To abstract, i.e., to retrieve, from a more concrete file system, its abstract
counterpart is
⋆ for every file name, in the concrete catalogue,
⋆ to reconstruct named pages:

· namely, for every page address in the directory for that file
· to map it into its page in the collection of pages.

As an aside: We could also, in addition to abstraction functions, define their
“inverse”, injection functions:

type
A, B

value
wf A: A → Bool, wf B: B → Bool

abs A: B
∼
→ A, inj B: A

∼
→ B-infset

axiom
∀ a:A • wf A(a) ⇒ ∀ b:B • wf B(b) ⇒ b ∈ inj B(a) ⇒ abs A(b)=A

Actions

“slide 873”

We rewrite the action functions in terms of the new semantic types:
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Action Signatures: Action Signatures

value

crea1: Fn → FS1
∼
→ FS1

eras1: Fn → FS1
∼
→ FS1

put1: (Fn × Pn × PAGE) → FS1
∼
→ FS1

get1: (Fn × Pn) → FS1
∼
→ PAGE

del1: (Fn × Pn) → FS1
∼
→ FS1

“slide 874”

There are five commands: crea1, eras1, put1, get1 and del1 (create, erase, put,
get and delete). To create a file all the syntax that is needed is a new file name. To
do the update requires the entire file system — and results in a new file system.
We leave the “reading” of the remaining signatures for the reader to decipher.

Create and Erase File Actions: “slide 875”

Create and Erase File Actions

value
crea1(fn)(ctlg,dirs,pgs) ≡

let d:D • d 6∈ dom dirs in (ctlg ∪ [ fn 7→d ],dirs ∪ [ d 7→[ ] ],pgs) end
pre: f 6∈ dom ctlg

eras1(fn)(ctlg,dirs,pgs) ≡
(ctlg \ {fn},dirs \ {ctlg(fn)},pgs \ rng dirs(ctlg(fn)))

pre: f ∈ dom ctlg

“slide 876”

To create a named file is to “fetch” a new directory name, to let that directory
name be the designation of the file name in the catalogue, to initialise the named
directory to an empty such, and to not change the collection of pages.

Put Page Action: “slide 877”

Put Page Action

value
put1(fn,pn,pg)(ctlg,dirs,pgs) ≡

if pn ∈ dom dirs(ctlg(fn))
then

(ctlg,dirs,pgs † [ (dirs(ctlg(fn)))(pn) 7→ pg ])
else

let pa:Pa • pa 6∈ dom pgs in
let dirs′ = dirs ∪ [ ctlg(fn)7→(dirs(ctlg(fn))) ]∪[ pn 7→pa ],

pgs′ = pgs ∪ [ pa 7→ pg ] in
(ctlg,dirs′,pgs′) end end end

pre: f ∈ dom ctlg
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“slide 878”

To put a page into the file system is to overwrite that named page in the collection
of pages if there was already one by that name (and hence address). Otherwise
it is to “fetch” a new page address, to extend the appropriate directory with the
page name to page address association, and then to extend the collection of pages
accordingly. The former is an update, and the latter is a write.

Get and Delete Page Actions: “slide 879”

Get and Delete Page Actions

value
get1(fn,pn)(ctlg,dirs,pgs) ≡ pgs(dirs(ctlg(fn))(pn))
pre: f ∈ dom ctlg ∧ pn ∈ dom(dirs(ctlg(fn)))

del1(fn,pn)(ctlg,dirs,pgs) ≡
(ctlg,
dirs † [ ctlg(fn) 7→ (dirs(ctlg(fn))) \ {pn} ],
pgs \ {(dirs(ctlg(fn)))(pn)})

pre: f ∈ dom ctlg ∧ pn ∈ dom(dirs(ctlg(fn)))

“slide 880”

To get a named page from a named file is to look it up in the collection of pages
under the address in the directory as so directed by the catalogue. To delete
a named page from a named file is to remove the page name to page address
association from the directory and the page from the collection of pages.

Adequacy and Sufficiency

“slide 881”

Correctness of the above realisations of the semantic actions with respect to
the realisation of FS0 in terms of FS1 is expressed by means of the (i.e., an)
abstraction function.

We “divide” our correctness concern into three parts: adequacy of chosen
concrete data representation, sufficiency of the same, and correctness of each
concrete action specification with respect to the corresponding abstract action
specification.

Adequacy: “slide 882”

Adequacy

axiom
∀ fs0:FS0, ∃ fs1:FS1 • inv FS1(fs1) ⇒ fs0 = abs FS0(fs1)

A concrete file system model is adequate with respect to an abstract file system
model if for every abstract file system there corresponds a more concrete well-
formed one which abstracts, i.e., which retrieves to the abstract file system.
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Sufficiency: “slide 883”

Sufficiency

axiom
∀ fs1:FS1 • inv FS1(fs1) ⇒ abs FS0(fs1) ∈ FS0

A concrete file system model is sufficient with respect to an abstract file system
model if every well-formed concrete file system abstracts to an abstract file system.

Correctness

“slide 884”

Comparable Results: To express correctness of concrete action specifications with
respect to concrete action specifications we need to define an abstraction function
on results (RES).

“slide 885”

Comparable Results

type
[ Step 0 ]

RES0 = FS0 | PAGE
[ Step 1 ]

RES1 = FS1 | PAGE
value

abs RES0: RES1
∼
→ RES0

abs RES0(r) ≡
if r ∈ FS1

then if inv FS1(r) then abs FS0(r) else undef end
else r end

“slide 886”

The abstraction of a result which is an entire concrete file system requires that
that concrete file system is invariant, i.e., well-formed, and is then its abstraction.
Concrete pages do not differ, in this development, from abstract pages.

The Correctness Statement: “slide 887”

Correctness

axiom
[ adequacy ] ∧ [ sufficiency ] ∧
abs RES0(crea1(fn)fs1) = crea0(fn)fs0 ∧
abs RES0(eras1(fn)fs1) = eras0(fn)fs0 ∧
abs RES0(put1(fn,pn,pg)fs1) = put0(fn,pn,pg)fs0 ∧
abs RES0(get1(fn,pn)fs1) = get0(fn,pn)fs0 ∧
abs RES0(del1(fn,pn)fs1) = del0(fn,pn)fs0
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Where ‘=’ “extends” to: undef = undef!
“slide 888”

Correctness of this step of development is now that the semantic types, i.e.,
concrete data representation, at this step, are adequate, that its concrete data
representation is sufficient, and that every concrete operation yields a result which
is comparable to that of the corresponding abstract operation. This can be dia-
grammed as the commutation of two algebras. See Fig. 4.9.

“slide 889”

fs1

res1

fs0

res0

abstraction

abstraction

op
er
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er
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te

o0 o1
Fig. 4.9. Correctness: commutation of two algebras (FS0, FS1)

“slide 890”

Let us express the correctness theorem a bit more precisely. For every pair of
abstract (fs0:FS0) and concrete (fs1:FS1) file systems such that the concrete one
abstracts to the abstract one, it shall be the case that for respective, and corre-
sponding operations (o0, o1) that the results (o0(fs0), o1(fs1)) are comparable.

Step 2: Disks “slide 891”

Data Refinement

The data refinement of this step involves the “gathering” (into one component of
FS2) of directories and pages, that is, of the above DIRS1 and PGS1 components
of FS1, called DSK2. DIRS1 and PGS1 are modelled as maps, and DSK2 will
hence be a “merged” type of similar maps. “slide 892”Where before catalogue and
directory map range types were directory names, respectively page addresses:
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[
f1 7→ d1,

f2 7→ d2,

f3 7→ d3

]
,




d1 7→

[
p11 7→ a11,

p12 7→ a12

]
,

d2 7→
[
p21 7→ a21

]
,

d3 7→ [ ]



 ,

[
a11 7→ g11,

a12 7→ g12,

a21 7→ g21

]
,





The “merged” (or “gathered”) type will only have addresses in its map definition
set. We think of DSK2 as modelling “actual” disks.

Disk Type

“slide 893”

A “Snapshot”: Figure 4.10 is intended to show a “monolithic” state which con-
sists of three components: catalogue, disk directories and disk pages. The cata-
logue is intended to be (foreground) storage-bound, whereas the directories and
pages are to be disk-bound — as shown by the rectangle drawn around the latter.
The formalisation captures this grouping.

f1

f2

f3

p11

p12

p31

p32

p33

pa1

pa2

pa3

pa4

pa5

pg11

pg12

pg31

pg32

pg33

Catalogue

Directory f1

Directory f2

Directory f3

Directories Pages

Disk

A Catalogue − Directory Store 

Fig. 4.10. A “snapshot”

FS0, FS1 and FS2 Types

“slide 894”
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Concrete Semantic Types: Concrete Semantic Types

type
[ Step 0 ]

Fn, Pn, PAGE
FS0 = Fn →m (Pn →m PAGE)

[ Step 1 ]
Dn, Pa
FS1 = CTLG1 × DIRS1 × PGS1
CTLG1 = Fn →m Dn
DIRS1 = Dn →m DIR1
DIR1 = Pn →m Pa
PGS1 = Pa →m PAGE

[ Step 2 ]
Adr = Dn | Pa
FS2 = CTLG2 × DISK2
CTLG2 = Fn →m Adr
DISK2 = Adr →m (DIR2 | PAGE)
DIR2 = Pn →m Adr

that is:

type
DISK2 = (Dn →m DIR2)

⋃
(Pa →m PAGE)

Here addresses Adr (like file names, Fn, and page names, Pn, and pages, PAGE )
are further undefined. The

⋃
operator on map types is not proper RSL, but could

have been so without much trouble.

Disk Type Invariant

“slide 895”

Again, the type definitions define too much. In addition to the invariants
[“carried over” from the very similar definitions of FS1 ], we must (first) make
sure that directory addresses (listed in the catalogue) really denote directories
on the disk, respectively that page addresses listed in directories really denote
pages on the disk. Once this is established we can retrieve FS1 data from such
“tentatively well-formed” FS2 data, and this abstracted data must satisfy the
earlier stated constraints.

“slide 896”

Disk Type Invariant

value
inv FS2: FS2 → Bool
wf Dirs: FS2 → Bool

inv FS2(fs2) ≡ wf Dirs(fs2) ∧ inv FS1(abs FS1(fs2))
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wf Dirs(ctlg,disk) ≡
∀ a:Adr • a ∈ rng ctlg

⇒ a ∈ Dn ∧ disk(a) ∈ DIR2 ∧ ∀ a′:Adr • a′ ∈ rng disk(a)
⇒ a′ ∈ Pa ∧ disk(a′) ∈ PAGE

Disk Type Abstraction

“slide 897”

We leave as an exercise to narrate the abstraction function from FS2 to FS1.
But here, at least, is the formalisation:

Disk Type Abstraction

value

abs FS1: FS2
∼
→ FS1

abs FS1(ctlg,disk) ≡
(ctlg,[ a 7→ disk(a) | a:Adr • a ∈ rng ctlg ],disk \ rng ctlg)

Adequacy, Sufficiency, Operations and Correctness

“slide 898”

We leave as an exercise to define adequacy and sufficiency; semantic actions:
crea2, eras2, put2, get2, and del2; and correctness.

Step 3: Caches “slide 899”

Technology Considerations

We enumerate some technology constraints as they help motivate our next
design decisions.

• Storage space is expensive. Disk space is less so.
• Storage access is fast. Disk access is less so.
• Hence some data are in storage; most are on disk.
• Hence accessible data must first be “opened”.

We shall then see (i.e., next) our “design decision response” to the above
technology constraints.

Cached Directory and Page Access

“slide 900”

We now face the reality of storages and disks. By a storage we shall un-
derstand a memory medium for which access to information is orders of mag-
nitude faster than to information on what we shall then call disks! Access
to pages (on disk) goes via catalogue and directories, where the latter are
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also on disk. Thus two disk accesses per page access. (In this discussion we
think of the catalogue as residing in storage.) To cut down on disk accesses
we therefore decide to copy into storage the directories of those files whose
pages we wish to access. In the resulting model all pages will still be thought
of as stored only on the disk.

“slide 901”

Figure 4.11 shows how some directories are opened, that is, are cached
(hence copied) in fast access storage.

fn1

fn2

fn1

fn2

fn3

pn32

pg11

pg12

pga

pgb

pg31

pg32

pg33

pg11’

pn12

pn11

pn12

pn11

pn31

pn33

?

?

open directories

f1 directory

fn2 directory

fn3 directory

(sctlg,odirs) = storage

storage catalogue

Fig. 4.11. Cached directory and page access

“slide 902”

“slide 903”Semantic Data Types

type
[ Step 0 ]

Fn, Pn, PAGE
FS0 = Fn →m (Pn →m PAGE)

[ Step 1 ]
Dn, Pa
FS1 = CTLG1 × DIRS1 × PGS1
CTLG1 = Fn →m Dn
DIRS1 = Dn →m DIR1
DIR1 = Pn →m Pa
PGS1 = Pa →m PAGE

[ Step 2 ]
Adr = Dn | Pa
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FS2 = CTLG2 × DISK2
CTLG2 = Fn →m Adr
DISK2 = Adr →m (DIR2 | PAGE)
DIR2 = Pn →m Adr

[ Step 3 ]
FS3 = STG3 × DISK3
STG3 = CTLG2 × (Fn →m DIR2)
DISK3 = DISK2

value

open3: Fn → FS3
∼
→ FS3

clos3: Fn → FS3
∼
→ FS3

“slide 904”

So the data system consists now of a part residing in storage and another part
residing on disk. The storage part has two parts: the only catalogue (there
is), and the directories of opened files. The disk part consists of all directories
and all pages, merged into one map, as in the previous step.

Invariance

“slide 905”

Invariance

value
inv FS3: FS3 → Bool
wf StgDiskOverlap: FS3 → Bool

inv FS3(fs3) ≡ wf StgDiskOverlap(fs3) ∧ inv FS2(abs FS2(fs3))

wf StgDiskOverlap((ctlg,odirs),disk) ≡
dom odirs ⊆ dom ctlg ∧ ∀ fn:Fn • fn ∈ dom ctlg

⇒ odirs(fn)/dom disk(ctlg(fn)) = disk(ctlg(fn))/dom odirs(fn)

“slide 906”

The well-formedness of the new file system has two parts: First, there must
be “identity” (referred to as “overlap”) between those (opened) directories
residing in storage and those of the same files residing on the disk. Second,
the file system abstracted from the now more concrete new file system must be
invariant. We see that the opened (storage-bound, or residing) directories take
precedence over the similar file directories residing on disk. That is, updates
on the opened directories are not propagated “back” onto the disk before
closing the respective directories.

This is reflected in the abstraction function, which retrieves “more ab-
stract” file systems (step 2) from more concrete file systems (step 3); see
next.
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Abstraction

“slide 907”

Abstraction

value

abs FS2: FS3
∼
→ FS2

abs FS2(stg,dsk) ≡
(ctlg,disk † [ ctlg(fn) 7→ odirs(fn) | fn:Fn • fn ∈ dom odirs ])

We leave the narration of the abstraction function to the reader.

Actions

“slide 908”

We leave the annotation of the more concrete (step 3) action specifications
to the reader.

Actions

Open and Close Actions: “slide 909”

type
FS3 = STG3 × DISK3
STG3 = CTLG2 × (Fn →m DIR2)
DISK3 = Adr →m (DIR2 | PAGE)
CTLG2 = Fn →m Adr
DIR2 = Pn →m Adr

value

open3: Fn → FS3
∼
→ FS3

clos3: Fn → FS3
∼
→ FS3

open3(fn)((ctlg,odirs),disk) ≡
((ctlg,odirs ∪ [ fn 7→ disk(ctlg(fn)) ]),disk)

pre: fn ∈ dom ctlg ∧ fn 6∈ dom odirs

clos3(fn)((ctlg,odirs),disk) ≡
((ctlg,odirs \ {fn}),disk † [ ctlg(fn) 7→ odirs(fn) ])

pre: fn ∈ dom ctlg ∧ fn ∈ dom odirs

Create and Put Actions: “slide 910”

value

crea3: Fn → FS3
∼
→ FS3

crea3(fn)((ctlg,odirs),disk) ≡
let dn:Adr/Dn • a 6∈ dom disk in
((ctlg ∪ [ fn 7→ dn ],odirs),disk ∪ [ dn 7→ [ ] ]) end



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
4.10 Software Design Modelling 211

pre: fn 6∈ dom ctlg

put3: Fn × Pn × PAGE → FS3
∼
→ FS3

put3(fn,pn,pg)((ctlg,odirs),disk) ≡
if pn ∈ dom odirs(fn)

then
((ctlg,odirs),disk † [ (odirs(fn))(pn) 7→ pg ])

else
let pa:Adr/Pa • pa 6∈ dom disk in
let odirs′ = odirs † [ fn 7→ odirs(fn) ∪ [ pn 7→ pa ] ],

disk′ = disk ∪ [ pa 7→ pg ] in
((ctlg,odirs′),disk′)

end end end
pre: f ∈ dom ctlg ∧ fn ∈ dom odirs

Erase, Get, and Delete Actions: “slide 911”

These are left as exercises!

Adequacy, Sufficiency and Correctness

“slide 912”

These are also left as exercises! Hint: Recall nondeterministic selection of
Dn’s and Pa’s in FS2 and FS3. Therefore postulate the existence of one-to-
one mapping(s) between (pairs of) Dn’s, between (pairs of) Pa’s and between
Adr’s and Dn’s or Pn’s.

Step 4: Storage Crashes “slide 913”

By storage crash we mean that information, i.e., data, kept by storage, as
apart from being kept by a disk, is corrupted and can no longer be relied
upon.

Storage and Disk

“slide 914”

The catalogue is maintained in storage and if a crash occurs it cannot
be used in order to gain access to the disk. Thus, to safeguard against loss
of data a copy of the catalogue is kept on disk. Every so often the storage
(“master”) catalogue is copied — “checkpointed” — onto the disk. When a
crash occurs, the disk is considered intact, and the disk copy of the catalogue
can be copied “back” to storage. Certain actions performed between the most
recent checkpoint and cashe restore must be repeated.

“slide 915”

Figure 4.12 shows, relative to Fig. 4.11, the insertion of a copy on disk of the
storage (hence the disk) catalogue.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
212 4 Software Design

fn1

fn2

fn3

fn1

fn2

fn1

fn2

fn3

pn32

pg11

pg12

pga

pgb

pg31

pg32

pg33

pg11’

pn12

pn11

pn12

pn11

pn31

pn33

?

?

open directories

disk catalogue

f1 directory

fn2 directory

fn3 directory

dctlg

dipgs
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Fig. 4.12. Replicate catalogue

Concrete Semantic Types

“slide 916”

Concrete Semantic Types

type
[ Step 3 ]

FS3 = STG3 × DISK2
STG3 = CTLG2 × (Fn →m DIR2)
DISK2 = Adr →m (DIR2 | PAGE)
CTLG2 = Fn →m Adr
DIR2 = Pn →m Adr

[ Step 4 ]
FS4 = STG3 × DISK4
DISK4 = CTLG2 × DISK2

value
inv FS4: FS4 → Bool
inv FS4(stg.disk) ≡ consSTG(stg,disk) ∧ consDISK(disk)

consSTG: FS4 → Bool
consDISK: DISK4 → Bool

Invariance

“slide 917”
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Well-formedness of the fourth step file system design is the conjunction of
a consistent storage and consistent storage-disk pages.

Consistent Storage and Disks

“slide 918”

Consistent Storage: A consistent storage has the names of all the opened
(hence storage-bound) directories be a subset of the disk directories. Further,
when retrieving the disk system — from the storage directories and the addi-
tionally defined disk directories — that current disk system, restricted (/) to
those pages that can be reached from storage directories (as, and hence ex-
cluding void, old pages), but extended (†) with the disk system (ds) reachable
from the storage directories, shall be disk system 2 (i.e., DIR2) invariant.

“slide 919”

Consistent Storage

value
consSTG: FS4 → Bool
consSTG((ctlg,odirs),(,dipgs)) ≡

dom odis ⊆ dom ctlg
∧ inv FS2(ctlg,currentSDiPgs((ctlg,odirs),dipgs))

currSDiPgs: (STG3×(Fn →m DIR2))×DISK2 → DISK2
currSDiPgs((stg,odirs),dipgs) ≡

let as = currSAddrs((ctlg,odirs),dipgs) in
let ds = [ ctlg(fn)7→odirs(fn)|fn:Fn•fn ∈ dom odirs ]
in (disk / as) † ds end end

currSAddrs: (STG3×(Fn →m DIR2))×DISK2
∼
→ Adr-set

currSAddrs((stg,odirs),dipgs) ≡
let das = rng ctlg,

opas =
⋃

{ rng dir | dir:DIR2 • dir ∈ rng odirs},
cpas =

⋃
{ rng dipgs(a) | a:Adr • a ∈ { ctlg(fn)

| fn:Fn • fn ∈ dom ctlg \ dom odirs}} in
das ∪ opas ∪ cpas end

Consistent Disk: “slide 920”

The current disk system includes only those pages which can be “reached”
(i.e., addressed) from the disk catalogues.

“slide 921”

Consistent Disk

type
DISK4 = CTLG2 × DISK2

= (Fn →m Adr/Dn) × ((Adr/Pa) →m ((Dn →m Adr) | PAGE))
value
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consDISK: DISK4 → Bool
consDISK(dctlg,dipgas) ≡ inv FS2(dctlg,currDDiPgs(dctlg,dipgas))

currDDiPgs: DISK4 → Bool
currDDiPgs(dctlg,dipgs) ≡ dipgs / currDAddrs(dctlg,dipgs)

currDAddrs: DISK4
∼
→ Adr-set

currDAddrs(dctlg,dipgs) ≡
let das = rng dctlg in
let pas =

⋃
{ rng dipgs(a) | a:Adr • a ∈ das } in

das ∪ pas end end

Abstractions

“slide 922”

One can abstract, i.e., retrieve to step 3 file systems either on the basis
of storage catalogues, or on the basis of disk catalogues. The corresponding
retrieve functions use the same restriction functions as defined for consistencies
of storage, respectively disk subsystems above.

“slide 923”

Retrieval Functions
From Storage:

value

abs FS3 STG: FS4
∼
→ FS3

abs FS3 STG((sctlg,odirs),(,dipgs)) ≡
((sctlg,odirs),dsk/CurrSAddrs(sctlg,dipgs))

From Disk:

value

abs FS3 DSK: FS4
∼
→ FS3

abs FS3 STG(,(dctlg,dipgs)) ≡
((sctlg,[ ]),dipgs/CurrDAddrs(sctlg,dipgs))

Garbage Collection

“slide 924”

In garbage collection we delete all those pages which can no longer be
“reached” from the current storage and disk directories.

Garbage Collection

value

GarbColl: FS4
∼
→ FS4

GarbColl((sctlg,odirs),(dctlg,dipgs)) ≡
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let sas = currSAddrs((sctlg,odirs),dipgs),
das = currDAdrs(dctlg,dipgs) in

((sctlg,odirs),(dctlg,dipgas/sas ∪ das)) end

New Actions

“slide 925”

Check and Crash Actions: To checkpoint a file means to update the disk with
the latest version of that file’s storage directory. For that a new, i.e., a “fresh”
address is “fetched” and storage and disk catalogues suitably updated.

“slide 926”

Check and Crash Actions

value

check: Fn → FS4
∼
→ FS4

check(fn)((sctlg,odirs),(dctlg,dipgs)) ≡
let a:Addr • a 6∈ dom dipgs in
((sctlg † [ fn 7→ a ],odirs),

(dctlg † [ fn 7→ a ],
dipgs ∪ [ a 7→ odirs(fn) ])) end

pre: fn ∈ dom sctlg ∧ fn ∈ dom odirs

crash: () → FS4
∼
→ FS4

crash()(,(dctlg,dipgs)) ≡ ((dctlg,[ ]),(dctlg,dipgs))

To crash here means to render the storage catalogues void.

Some Previous Commands

“slide 927”

Open and Close Actions: We leave it to the interested reader to “trace” the
changes to the specifications of the open and close commands with respect to
the file system of step 3.

“slide 928”

Open and Close Actions

value

open4: Fn
∼
→ FS4

∼
→ FS4

open4((sctlg,opdirs),(dctlg,dipgs)) ≡
((sctlg,odirs ∪ [ fn 7→ dipgs(sctlg(fn)) ]),(dctlg,dipgs))

pre: fn ∈ dom sctlg ∧ fn 6∈ dom odirs

close4: Fn
∼
→ FS4

∼
→ FS4

close4((sctlg,opdirs),(dctlg,dipgs)) ≡
let a:Adr • a 6∈ dom dipgs in
((sctlg † [ fn 7→ a ],odirs \ {fn}),(dctlg,dipgs ∪ [ a 7→ odirs(fn) ])) end

pre: fn ∈ dom odirs
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Put Action: “slide 929”

Put Action

value

put4: Fn × Pn × PAGE
∼
→ FS4

∼
→ FS4

put4(fn,pn,pg)((sctlg,opdirs),(dctlg,dipgs)) ≡
let a:Adr • a 6∈ dom dipgs in
((sctlg,odirs † [ fn 7→ odirs(fn) † [ pn 7→ a ] ]),

(dctlg,dipgs ∪ [ a 7→ pg ])) end

The put action resembles the check file action.

Step 5: Flattening Storage and Disks “slide 930”

“Flat” Storage and Disk

The former step of development modelled the disk as a pair consisting of a
catalogue and the “previous” disk model. We now “merge” the former into
the latter.

“slide 931”
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Fig. 4.13. “Flat” storage and disk

“slide 932”

Figure 4.13 is really very much like Fig. 4.12. In that former figure some
dashed (disk) boxes (disk catalogue and disk pages) and a fully drawn storage
box (open directories) indicated separate accessible disk and storage areas.
These are now “merged” into being generally addressable.

“Flat” Storage and Disk From the former models we have:
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type
[ Step 3 ]

FS3 = STG3 × DISK2
STG3 = CTLG2 × (Fn →m DIR2)
DISK2 = Adr →m (DIR2 | PAGE)
CTLG2 = Fn →m Adr
DIR2 = Pn →m Adr

[ Step 4 ]
FS4 = STG3 × DISK4
DISK4 = CTLG2 × DISK2

“slide 933”

Defined in terms of some of the former types we get:

[ Step 5 ]
Loc, Adr
FS5 :: STG5 × DISK5
STG5 = ({master} →m SCTLG5)

⋃
(Loc →m DIR5)

DISK5 = ({copy} →m DCTLG5)
⋃

(Adr →m (DIR5|PAGE))
SCTLG5 = ({master} →m {copy})

⋃
(Fn →m DAdr)

DCTLG5 = ({ctlg} →m {master,copy})
⋃

(Fn →m Adr)
DAdr = Adr × Ref
Ref == nil | Loc

“The Rest”

“slide 934”

We leave the definition of invariants, abstraction function, actions, ade-
quacy, sufficiency, and correctness — as an exercise — to the reader.

Step 6: Disk Space Management “slide 935”

The Issue

We refer to Fig. 4.14. We can usually consider both storage and disk to both
consist of (thus two) finite sets of segments. At any one time some of these
pages are being used — for storage and disk catalogues, directories and file
pages. And, at any one time the remaining, thus unused, segments are “free”.
We decide, therefore, to maintain “lists” (actually sets) of references to free
segments.

“slide 936”

“slide 937”

Free segments can be allocated for new file (disk) pages, or new file (storage or
disk) directories. Such allocation removes a reference to a free segment from
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Fig. 4.14. Space management

the appropriate “free list”. Whenever directories and file pages have been
deleted and storage and disk catalogues and directories made to correspond,
then garbage collection can be applied. Garbage collection now “returns” the
reference to the garbage-collected segment to the “free list”.

“The Rest”

“slide 938”

We leave the definition of types, invariants, abstraction function, actions,
adequacy, sufficiency and correctness — as an exercise — to the reader.

Discussion “slide 939”

General

A long odyssey has ended. We have “slowly”, in small, “measured” steps un-
folded a software component design. From the basis of a “small” system com-
ponent, we added, “one-by-one”, additional properties. Some properties were
determined by domain requirements considerations. Other properties were
determined by machine requirements considerations. “slide 940”Some “new,
added” properties could be invoked by new commands. Other “new, added”
properties are just “always” there. To properly read and grasp this chapter
the reader must carefully read and make sure to understand every detailed
step, its design decisions, i.e., each and every line of specification, and its mi-
cro steps. Proper understanding requires patience, and that the reader solves
the posed exercises.

“slide 941”
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We have also, intertwined with the incremental presentation of design de-
tails, presented method principles and techniques. The stepwise unfolding is
one such principle. In each step, especially in the transition from one step to
the next, there were subprinciples and techniques. These include being con-
cerned about, and hence defining invariants (i.e., well-formedness); relating “a
more concrete step” to its “more abstract predecessor step”, and hence defin-
ing abstraction functions; and being concerned about correctness of a stepwise
refinement or extension, and hence in establishing correctness criteria. As a
matter of principle, a metaprinciple, this book does not show actual proofs of
correctness.

“slide 942”

The major lesson of this section can be summarised: When designing sys-
tems with a great many concepts, do so in stages of refinement and extension.
That is, introduce a few concepts at a time. Sketch invariants, abstraction
functions, and correctness criteria. Basically try to redefine the semantic func-
tions in every step. It is a good way to see whether one has confidence in the
present step’s design decisions.

Principles and Techniques

“slide 943”

We summarise:

Principle 14 (Component Development, Stepwise Discovery, I) And
yet another principle of component development is that of possibly helping
to discover new, initially, i.e., during requirements development, unforeseen
requirements.

“slide 944”

Principle 15 (Component Development, Stepwise Extension, II) One
possibility of component development is that of the stepwise unfolding of ex-
ternally observable properties. That is, of the extension of an architecture
that handles some, but not all requirements, to increasingly cater for addi-
tional requirements.

“slide 945”

Principle 16 (Component Development, Stepwise Refinement, III)
Another principle of component development is that of stepwise refinement
or stepwise extension: Either making more concrete a data type while redefin-
ing operations over any such data type (refinement), or “adding” additional
operations (extension). And doing this in up to several steps.

“slide 946”
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Technique 4 (Component Development) The corresponding techniques
of component development include development of invariants (well-formedness),
abstraction (and injection) functions, adequacy and sufficiency relations, more
concretised operation (action) definitions, and statements and possible proofs
of correctness.

Bibliographical Notes “slide 947”

The file system outlined in this chapter is based on Stoy and Strachey’s utterly
elegant operating system OS6 [212]. Work on the current model was prompted
by Abrial’s approach as documented in item (4) of [6].
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“slide 950”

4.10.3 Module Design
“slide 951”

4.10.4 Coding
“slide 952”

4.10.5 Programming Paradigms
“slide 953”

Extreme Programming
“slide 954”

Aspect Programming
“slide 955”

Intentional Programming
“slide 956”

Other Paradigms

4.11 Software Design Verification “slide 957”

4.12 Software Design Validation “slide 958”

4.13 Software Design Release, Transfer & Maintenance

“slide 959”

4.14 Software Design Documentation “slide 960”

“slide 961”

4.14.1 Software Design Graphs
“slide 962”

4.14.2 Software Design Texts

4.15 Summary “slide 963”

4.16 Exercises

Exercise 27. kap4.xs.1:
Solution 27 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 28. kap4.xs.2:
Solution 28 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 29. kap4.xs.3:
Solution 29 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 30. kap4.xs.4:
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Solution 30 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 31. kap4.xs.5:
Solution 31 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 32. kap4.xs.6:
Solution 32 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 33. kap4.xs.7:
Solution 33 Vol. II, Page 535, suggests a way of answering this exercise.

Exercise 34. kap4.xs.8:
Solution 34 Vol. II, Page 535, suggests a way of answering this exercise.

“slide 964”
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A Review of The Triptych Approach to SE



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8

5

Closing “slide 965”

5.1 Domains, Requirements, Software Design “slide 966”

5.2 Process Graphs “slide 967”

5.3 Documents “slide 968”

5.4 Process Assessment and Improvement “slide 969”

“slide 970”
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Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of do-
main and requirements specification, refinement and verification, are dealt
with in Alloy: [122], ASM: [188, 189], B/event B: [4, 53], CSP [110, 194, 196,
111], DC [228, 229] (Duration Calculus), Live Sequence Charts [63, 102, 126],
Message Sequence Charts [118, 119, 120], RAISE [85, 87, 33, 34, 35, 84, 41]
(RSL), Petri nets [124, 173, 185, 184, 186], Statecharts [98, 99, 101, 103, 100],
Temporal Logic of Reactive Systems [149, 150, 165, 180], TLA+ [131, 132,
155, 156] (Temporal Logic of Actions), VDM [44, 45, 78, 77], and Z [203,
204, 226, 108, 107]. Techniques for integrating “different” formal techniques
are covered in [13, 91, 51, 49, 193]. The recent book on Logics of Specification
Languages [43] covers ASM, B/event B, CafeObj, CASL, DC, RAISE, TLA+,
VDM and Z.
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Indexes

B.1 Index of Concepts

abstract, 259
data

type, 259
syntax, 259
type, 259

abstraction, 192, 196, 199, 259
function, 199, 200, 259

accessibility, 139, 140
acquirer, 259
acquisition, 259

domain, 53
of domain knowledge, 57

action, 34, 260
active, 260
actuator, 260
adaptive, 260

maintenance, 260
adaptive maintenance, 143
adequacy, 192, 202
agent, 260
algorithm, 260
algorithmic, 261
ambiguous, 261
analysis, 261

fault, 147
fault tree, 147
objectives of domain, 61

of domain, 61
appearance

of vehicle, event, 341
application, 261

domain, 4, 52, 261
function, 37

applicative, 261
programming, 261

language, 261
arc, 13

label, 13
architecture, 261

software, 188
argument, 37
artefact, 261
artifact, 261
ASM, 229
assertion, 261
atomic, 262
attribute, 262

of a development, 15
attributed

software development graph, 15
authorised user, 141
availability, 139, 140
axiom, 262

system, 262
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axiomatic
specification, 262

b, 262
B, 41, 229
behaviour, 34, 39–41, 138, 263, 341

communicating, 40
concurrent, 40
human, 121
project designator, 13

Boolean, 263
connective, 263

BPR, 263
breakdown

of link, event, 341
brief, 263
business

process, 263
engineering, 263
reengineering, 121, 263

business process, 62

C++, 287
C#, 287
calculus, 263
capture, 263
Cartesian, 263
channel, 263
chaos, 264
class, 264
clause, 264
client, 264
code, 146, 264
coding, 264
communicating

behaviour, 40
communication, 264
component, 264

arbiter, 182
client, 176
client multiplexor, 181
client queue, 184
client staff queue, 184
client/staff multiplexor, 181
design, 264

domain requirements, 176
staff, 176
timetable, 176

composite, 264
composition, 264
compositional, 264

documentation, 265
comprehension, 265
computation, 265
compute, 265
computer science, 265
computing

science, 265
system, 265

concept, 265
formation, 265

concrete, 265
syntax, 266
type, 266

concurrency, 266
concurrent, 266

behaviour, 40
conflict

of a set of domain description
units, 60

connector, 186
consistency

of domain description units, 60
contract, 19

informative document, 19
contradiction, 60
correct, 266
corrective

maintenance, 266
corrective maintenance, 143
correctness, 192, 202, 203, 266
CSP, 266
customer, 266

data, 266
abstraction, 267
invariant, 267
refinement, 189, 190, 204, 267
reification, 190, 267
structure, 267
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transformation, 190, 267
type, 267

database, 267
schema, 267

DC
duration calculus, 229, 369, 370

decidable, 267
declaration, 267
decomposition, 267
definiendum, 267
definiens, 267
definite, 267
definition, 268

set, 268
demonstration platform

requirements, 146
demonstration platform require-

ments, 145
denotation, 268
denotational, 268

semantics, 268
denote, 268
dependability, 137, 138, 268

attribute, 139
requirements, 268
tree, 139

describe, 268
description, 27, 268

domain, 5, 379
design, 269

brief, 19, 23
informative document, 23

of software, 5
software, 5

design, software, 379
designate, 269
designation, 269
designator

of project behaviour, 13
deterministic, 269
developer, 269
development, 269

attribute, 15
document, 146
formal, 32, 33

formal, technique, 32
graph, software, 13
informal, 32
logbook, 146
of software, 5
phase, 4
platform requirements, 145
rigorous, 33
software, 299
stage, 6
step, 6, 189, 196
stepwise, 190, 192
systematic, 33

development phase, 5
diagram, 269
dialogue, 269
dictionary, 269
didactics, 269
directed

graph, 269
directory, 269
disappearance

of vehicle, event, 341
discrete, 269
disjunction, 269
document, 269

analysis, 26
domain, 27
requirements, 27

domain, 31
informative

assumptions and dependen-
cies, 11

budget, 16
concepts and facilities, 10
contract, 19
contracts and design briefs, 19
current situation, 9
design brief, 23
implicit/derivative goals, 12
logbook, 23
needs and ideas, 9
other estimates, 16
project name and dates, 8
project partners, 8
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project places, 8
resource allocation, 15
scope and span, 11
software development graph,

13
standards compliance, 16
synopsis, 13

modelling
domain, 25
requirements, 25

requirements, 31
software, 30

system, 31
software design, 31

documentation
requirements, 146, 270

domain, 3, 4, 52, 270
acquisition, 53, 270
analysis, 61, 270
analysis objectives, 61
capture, 270
description, 5, 146, 270, 379

unit, 270
description unit

conflict, 60
consistency, 60
relative completeness, 60

determination, 270
development, 270
document, 31
engineer, 270
engineering, 5, 270
extension, 271
facet, 271
fitting, 271
idea, 10
initialisation, 271
instantiation, 271
intrinsics, 121
knowledge, 271
knowledge acquisition, 57
of application, 4, 52
projection, 271
requirements, 272, 379

component, 176

facet, 272
stakeholder, 56
validation, 272
verification, 272

edge, 13
label, 13

elaborate, 272
elaboration, 272
elicitation, 272
embedded, 273

system, 273
engineer, 273
engineering, 273

domain, 5
requirements, 5
rules and regulations, 124
software, 299

enrichment, 273
entity, 34–37, 273, 341

basic, 341
enumerable, 273
enumeration, 273
environment, 273
epistemology, 273
error, 137, 138, 274
evaluate, 274
evaluation, 274
event, 34, 39, 274, 341

external, 39
internal, 39

evolution, stagewise, 190
execution platform requirements, 145
expression, 274
extension, 274
extensional, 274

maintenance, 143, 144
external

event, 39

facet, 274
failure, 137, 138, 274
fault, 137–139, 275

analysis, 147
forecasting, 139
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prevention, 139
removal, 139
tolerance, 139
tree

analysis, 275
tree analysis, 147

finite, 275
flowchart, 275
formal, 275

definition, 275
description, 275
development, 32, 275

technique, 32
development technique, 33
method, 276
prescription, 276
specification, 276

formalisation, 276
function, 34, 37–38, 276, 341

abstraction, 202
activation, 276
application, 37, 277
definition, 277
invocation, 34, 277
signature, 277

functional, 276
programming, 277

language, 277
functional requirements, 379

generator
function, 277

glossary, 277
golden rule of requirements, 109
grand state, 277
graph

arc, 13
edge, 13
label, 13
software development, 13

grouping, 277

hardware, 278
HCI, 278
human

behaviour, 278
human behaviour, 121

reengineering, 126

idea, 10
domain, 10
requirements, 10
software design, 10

ideal rule of requirements, 109
identification, 278
identifier, 278
imperative, 27, 28, 278

programming, 278
language, 278

implementation, 278
relation, 278

incomplete, 278
incompleteness, 279
inconsistent, 279
indefinite, 279
indicative, 27, 28, 279
inert, 279
infinite, 279
informal, 279

development, 32
informatics, 279
information, 279

structure, 279
informative

document
contract, 19
design brief, 23

documentation, 279
infrastructure, 279
injection function, 200
input, 280
installation

manual, 146, 280
instance, 280
instantiation, 280
intangible, 280
integrity, 139, 141, 280
intension, 280
intensional, 280
interact, 280



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
248 B Indexes

interaction, 280
interface, 280

protocol, 188
requirements, 281

facet, 281
subsystem, 188
type, 188

internal
event, 39

interpret, 281
interpretation, 281
interpreter, 281
intrinsics, 281

domain, 121
requirements, 121
review and replacement, 123

invariance, well-formedness, 192
invariant, 281
invocation

of function, 34
iteration stagewise, 190

Java, 287

keyword, 282
knowledge, 282

label, 282
labelled

arc, 13
edge, 13
graph, 13
node, 13
vertex, 13

language, 282
law, 282
lemma, 282
linguistics, 282
link, 282
list, 282
literal, 282
Live Sequence Chart, 282
location, 282
logbook, 23
logic, 282

programming, 282
language, 283

loose
specification, 283

LSC
live sequence charts, 41, 229, 282,

369

machine, 283
requirements, 135, 283
service, 283

maintenance, 283
adaptive, 143
corrective, 143
extensional, 143, 144
logbook, 146
manual, 146
perfective, 143, 144
preventive, 143, 144
requirements, 143, 283

maintenance platform
requirements, 145

man-machine
dialogue, 284

requirements, 284
physiological

requirements, 284
management

and organisation, 121
reengineering, 124

management and organisation, 283
manual

installation, 146
maintenance, 146
training, 146
user, 146

map, 284
mereology, 284
Meta-IV, 284
metalanguage, 284
metalinguistic, 284
metaphysics, 285
method, 285
methodology, 285
model, 5, 285
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model-oriented, 285
modularisation, 285
module, 285

design, 286
monotonic, 286
MSC

message sequence charts, 41, 229,
369

multi-dimensional, 286
multimedia, 286

name, 286
naming, 286
narrative, 286
natural

language, 286
network, 286
node, 13, 286

label, 13
nondeterminate, 286
nondeterminism, 287
nondeterministic, 286
notation, 287
noun, 287

object, 287
object-oriented, 287
observer, 287

function, 287
ontology, 287
operation, 288

transformation, 288
operational, 288

abstraction, 288
semantics, 288

optative, 27, 28, 288
organisation, 288

and management, 121
reengineering, 124

organisation and management, 288
output, 288
overloaded, 288

paradigm, 289
parallel

programming
language, 289

perfective
maintenance, 289

perfective maintenance, 143, 144
performance, 289

requirements, 289
performance requirements, 135
Petri net, 41, 229, 369
phase, 289

of development, 4
state designator, 13, 14

phase of development, 5
phenomenology, 289
phenomenon, 289
platform, 289

requirements, 290
platform requirements, 145

demonstration, 145, 146
development, 145
execution, 145
maintenance, 145

portability, 290
post-condition, 290
postfix, 290
pragmatics, 290
pre-condition, 290
precedence

relation, 13
predicate, 290

logic, 290
prescription, 27, 291

of requirements, 5
prescription requirements, 379
presentation, 291
preventive

maintenance, 291
preventive maintenance, 143, 144
principle, 291
prioritisation of requirements, 188
procedure, 291
process, 291

business, 62
reengineering, 121

program, 291
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organisation, 291
programmable, 291
programmer, 291
programming, 291

language, 291
type, 292

project
behaviour designator, 13
partners, informative, 8
places, informative, 8

projection, 292
proof, 292

obligation, 292
rule, 292
system, 292

property, 292
property-oriented, 292
proposition, 292
protocol

interface, 188
pure functional

programming
language, 292

putative, 27, 28, 293

quality, 293
quantification, 293
quantifier, 293
quantity, 293

RAISE, 293
RAISE, 41, 229
range, 293

set, 293
reactive, 293

system, 293
real time, 293
reasoning, 293
reengineering, 294

business process, 121
human behaviour, 126
management and organisation,

124
rules and regulations, 125
script, 125

reference, 294
refinement, 294

data, 189, 190, 204
stepwise, 190

refutable
assertion, 294

refutation, 294
regulations

and rules, 121
reengineering, 124, 125

reification, 294
data, 190
stepwise, 190

reify, 294
relation

precedence, 13
relative completeness

of domain description units, 60
reliability, 139, 141, 294
renaming, 294
representation

abstraction, 294
requirements, 4, 52, 110, 294

acquisition, 295
analysis, 295
capture, 295
decomposition, 188
definition, 295
demonstration platform, 145, 146
development, 295

platform, 145
document, 31
documentation, 146
domain, 379

component, 176
elicitation, 295
engineer, 295
engineering, 5, 295
execution platform, 145
facet, 295
functional, 379
golden rule, 109
idea, 10
ideal rule, 109
intrinsics, 121
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machine, 135
maintenance, 143

platform, 145
performance, 135
platform, 145
prescription, 5, 146, 295, 379

unit, 295
prioritisation, 188
safety-criticality, 379
specification, 296
validation, 296

result
of function application, 37

retrieval, 296
retrieve

function, 296
retrieve function, 200
review and replacement

intrinsics, 123
support technology, 123

rigorous, 296
development, 296
development technique, 33

risk, 296
robustness, 139, 142, 296
root, 296
rough

sketch, 296
route, 296
routine, 296
RSL, 296
RSL, 41, 229
rule, 297
rules

and regulations, 121
reengineering, 124, 125

safety, 139, 141, 297
critical, 297
critical requirements, 379

science
computer, 265
computing, 265

scope, 11
script, 297

reengineering, 125
scripting, 121
secure, 297
security, 139, 142, 297
selector, 297
semantic

function, 297
type, 298

semantics, 297
(semantically), 13

semiotics, 298
sensor, 298
sentence, 298
sequential, 298

process, 298
set, 298

theoretic, 298
shared

data, 298
initialisation, 298
refreshment, 298

information, 298
phenomenon, 299

shared data
initialisation

requirements, 298
refreshment

requirements, 298
side effect, 299
sign, 299
signature, 299
soft

real time, 299
software, 4, 30, 52, 299

architecture, 188, 299
component, 299
design, 5, 146, 299, 379

document, 31
specification, 299

design idea, 10
development, 5, 299

graph, 13
project, 299

document, 30, 31
engineer, 299
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engineering, 299
subsystem, 188
system

document, 31
software development graph

attribute, 15
sort, 300

definition, 300
source

program, 300
span, 11, 300
specification, 27, 300

language, 300
spiralling, stagewise, 190
stage, 300

of development, 6
state designator, 13, 14

stagewise
evolution, 190
iteration, 190
spiralling, 190

stakeholder, 56, 301
general application domain, 56
perspective, 301

state, 301
of phase designator, 13, 14
of stage designator, 13, 14
of step designator, 13, 14
transition designator, 13, 14

Statechart, 41, 229, 301, 369
statement, 301
step, 301

of development, 6
state designator, 13, 14

stepwise
development, 189, 190, 192, 301
refinement, 190, 301
reification, 190
transformation, 190

structure, 301
subentity, 302
subsystem

design, 188
interface, 188

subtype, 302

sufficiency, 192, 202, 203
support

document, 146
technology, 121, 302

support technology
review and replacement, 123

synopsis, 13, 302
syntax, 302

(syntactically), 13
system, 302

decomposition, 188
design, 188
software

document, 31
subsystem, 188

systematic
development, 302
development technique, 33

systems
engineering, 302

taxonomy, 302
technique, 302
technology, 303

support, 121
temporal, 303

logic, 303
term, 303
terminal, 303
termination, 303
terminology, 63, 303
test, 303

document, 146
testing, 303
theorem, 303

prover, 303
proving, 303

theory, 303
thesaurus, 304
time, 304

continuum theory, 309–310
TLA+, temporal logic of actions, 229,

369
token, 304
tool, 304
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training
manual, 304

training manual, 146
transaction, 304
transformation, 304

data, 190
stepwise, 190

transition, 304
between states designator, 13, 14
rule, 304

translate, 304
translation, 305
translator, 305
Tree

tree, 275
tree analysis, fault, 147
Triptych, 305
tuple, 305
type, 305

check, 305
constructor, 305
definition, 305
expression, 305
interface data, 188
name, 305

typing, 305

UML, 305
unauthorised user, 141
undecidable, 306
underspecify, 305
universe of discourse, 306

update, 306
problem, 306

user, 306
authorised, 141
manual, 146, 306
unauthorised, 141

user-friendly, 306

valid, 306
validation, 54, 306

document, 146
valuation, 307
value, 307
variable, 307
VDM, 307
VDM, 41, 229
VDM–SL, 307
verification, 307

document, 146
verify, 307
vertex, 13

label, 13

well-formedness, 308
well-formedness, invariance, 192
wildcar, 308
word, 308

yield, 37

z, 308
Z, 41, 229, 308

B.2 Index of Domain Terms

enter
vehicle, function, 341

hub
switch etc., intersection, 341

hub, entity, 341

insert

link, function, 341

leave
vehicle, function, 341

link
rail line, road segment, 341

link, entity, 341

movement, 341
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of vehicle, 341

net
development, behaviour, 341
maintenance, behaviour, 341
rail net, road net, 341

net, entity, 341

remove

link, function, 341

traffic, entity, 341
transport, 341

vehicle
journey, behaviour, 341
train, automobile, 341

vehicle, entity, 341

B.3 Index of Examples

Atomic Entities (Examp. 2), 35

Communicating Behaviours (Ex-
amp. 9), 40

Concurrent Behaviours (Examp. 8),
40

Events (Examp. 6), 39

Logbook (Examp. 1), 23

Simple Behaviours (Examp. 7), 40

Transport Net, A Formalisation (Ex-
amp. 4), 36

Transport Net, A Narrative (Ex-
amp. 3), 36

Well Formed Routes (Examp. 5), 38

B.4 Index of Definitions

Accessibility (Defn. 87), 140
Action (Defn. 39), 37
Adaptive Maintenance (Defn. 95),

143
Analysis (Defn. 18), 26
Annotation (Defn. 23), 30
Atomic Entity (Defn. 33), 34
Attribute (Defn. 34), 35
Availability (Defn. 88), 140

Business Process (Defn. 59), 62
Business Process Reengineering

(Defn. 72), 121

Communicating Behaviour (Defn. 45),
40

Composite Entity (Defn. 35), 35

Concept Formation (Defn. 19), 26
Concurrent Behaviour (Defn. 44), 40
Conflict (Defn. 55), 60
Consistency (Defn. 52), 60
Contract (Defn. 15), 19
Contradiction (Defn. 53), 60
Corrective Maintenance (Defn. 96),

143

Demonstration Platform Require-
ments (Defn. 105), 146

Dependability (Defn. 85), 138
Dependability Attribute (Defn. 86),

139
Design Brief (Defn. 16), 23
Development Platform Requirements

(Defn. 102), 145
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Documentation Requirements
(Defn. 106), 146

Domain (Defn. 1), 3
Domain Acquisition (I) (Defn. 46), 53
Domain Acquisition (II) (Defn. 50),

57
Domain Analysis, Aims (Defn. 56), 61
Domain Analysis, Objectives

(Defn. 57), 61
Domain Concept (Defn. 58), 61
Domain Description Unit (Defn. 51),

59
Domain Engineering (Defn. 2), 5
Domain Facet (Defn. 62), 65
Domain Intrinsics (Defn. 63), 65
Domain Management (Defn. 65), 73
Domain Organisation (Defn. 66), 80
Domain Regulation (Defn. 68), 81
Domain Rule (Defn. 67), 81
Domain Script (Defn. 69), 84

Error (Defn. 82), 138
Event (Defn. 42), 39
Execution Platform Requirements

(Defn. 103), 145
Extensional Maintenance (Defn. 99),

144

Failure (Defn. 81), 137
Fault (Defn. 83), 138
Formal (Formal) Development

(Defn. 31), 33
Formal Development (Defn. 27), 32
Formal Software Development Tech-

nique (Defn. 28), 32
Function (Defn. 38), 37
Function Description (Defn. 41), 38
Function Signature (Defn. 40), 38

General Application Domain Stake-
holder (Defn. 49), 56

Human Behaviour (Defn. 70), 100
Human Behaviour Reengineering

(Defn. 78), 126

Informal Development (Defn. 26), 32
Integrity (Defn. 89), 141
Intrinsics Review and Replacement

(Defn. 73), 123

Logbook (Defn. 17), 23

Machine (Defn. 20), 29
Machine Requirements (Defn. 79),

135
Machine Service (Defn. 84), 138
Maintenance Platform Requirements

(Defn. 104), 145
Maintenance Requirements (Defn. 94),

143
Management and Organisation

Reengineering (Defn. 75),
124

Mereology (Defn. 36), 35
Model (Defn. 5), 5

Narrative (Defn. 22), 30

Perfective Maintenance (Defn. 97),
144

Performance Requirements (Defn. 80),
135

Phase of Software Development
(Defn. 6), 5

Platform (Defn. 100), 145
Platform Requirements (Defn. 101),

145
Preventive Maintenance (Defn. 98),

144

Relative Completeness (Defn. 54), 60
Reliability (Defn. 90), 141
Requirements (Defn. 71), 110
Requirements Engineering (Defn. 3),

5
Rigorous (Formal) Development

(Defn. 30), 33
Robustness (Defn. 93), 142
Rough Sketch (Defn. 21), 30
Rules and Regulation Reengineering

(Defn. 76), 124
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Safety (Defn. 91), 141
Scope (Defn. 10), 11
Script Reengineering (Defn. 77), 125
Security (Defn. 92), 142
Simple Behaviour (Defn. 43), 39
Simple Entity (Defn. 32), 34
Software (Defn. 24), 30
Software Design (Defn. 4), 5
Software Development (Defn. 7), 5
Software Development Graph

(Defn. 13), 13
Software Development Graph At-

tribute (Defn. 14), 15
Software System (Defn. 25), 31
Span (Defn. 11), 11
Stage of Software Development

(Defn. 8), 6

Stakeholder (Defn. 48), 56
State (Defn. 37), 37
Step of Software Development

(Defn. 9), 6
Stepwise Development (Defn. 107),

190
Support Technologies (Defn. 64), 70
Support Technology Review and Re-

placement (Defn. 74), 123
Synopsis (Defn. 12), 13
Systematic (Formal) Development

(Defn. 29), 33

Term (Defn. 60), 63
Terminology (Defn. 61), 63

Validation (Defn. 47), 54

B.5 Index of Principles

“Narrow Bridge” (Prin. 3), 67

Component (Prin. 12), 188
Component Design (Prin. 13), 188
Component Development, Stepwise

Discovery, I (Prin. 14), 219
Component Development, Stepwise

Extension, II (Prin. 15), 219
Component Development, Stepwise

Refinement, III (Prin. 16),
219

Information Document Construction
(Prin. 1), 24

Information Documents (Prin. 2), 24

Requirements Adequacy (Prin. 7),
110

Requirements Engineering [1]
(Prin. 5), 109

Requirements Engineering [2]
(Prin. 6), 109

Requirements Implementability
(Prin. 8), 110

Requirements Verifiability and Valid-
ability (Prin. 9), 110

Software Architecture (Prin. 10), 187
Software Architecture Design

(Prin. 11), 187
Syntax and Semantics (Prin. 4), 68

B.6 Index of Techniques
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Architecture Design (Tech. 3), 188

Component Development (Tech. 4),
220

Function Factoring (Tech. 2), 68

Information Document Construction
(Tech. 1), 24

B.7 Index of Tools

Information Document Construction
(Tool. 1), 24

B.8 Index of Symbols

Literals , 512–525
Unit, 525
chaos, 512, 514, 515
false, 504, 506, 507
true, 504, 506, 507

Arithmetic Constructs, 507–508
ai*aj , 508
ai+aj , 508
ai/aj , 508
ai=aj , 507, 508
ai≥aj , 507, 508
ai>aj , 507, 508
ai≤aj , 507, 508
ai<aj , 507, 508
ai 6=aj , 507, 508
ai−aj , 508

Cartesian Constructs, 509, 513
(e1,e2,...,en) , 509

Combinators, 520–523
... elsif ... , 521
case be of pa1 → c1, ... pan → cn end

, 521, 523
do stmt until be end , 523
for e in listexpr • P(b) do stm(e) end

, 523
if be then cc else ca end , 521, 523

let a:A • P(a) in c end , 520
let pa = e in c end , 520
variable v:Type := expression , 523
while be do stm end , 523
v := expression , 523

Function Constructs, 519
post P(args,result), 519
pre P(args), 519
f(args) as result, 519
f(a), 517
f(args) ≡ expr, 519
f(), 522

List Constructs, 509, 513–515
<Q(l(i))|i in<1..lenl> •P(a)> , 509
<> , 509
ℓ(i) , 513
ℓ′ = ℓ′′ , 513
ℓ′ 6= ℓ′′ , 513
ℓ′̂ℓ′′ , 513
elems ℓ , 513
hd ℓ , 513
inds ℓ , 513
len ℓ , 513
tl ℓ , 513
e1 <e2,e2,...,en > , 509

Logic Constructs, 506–507
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bi ∨ bj , 506
∀ a:A • P(a) , 507
∃! a:A • P(a) , 507
∃ a:A • P(a) , 507
∼ b , 506
false, 504, 506, 507
true, 504, 506, 507
bi ⇒ bj , 506
bi ∧ bj , 506

Map Constructs, 510, 515–517

mi ◦ mj , 516

mi ΓE30F mj , 516

mi / mj , 516
dom m , 515
rng m , 515
mi = mj , 516
mi ∪ mj , 515
mi † mj , 515
mi 6= mj , 516
m(e) , 515
[ ] , 510
[u1 7→v1,u2 7→v2,...,un 7→vn] , 510
[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)]

, 510

Process Constructs, 524–525
channel c:T , 524
channel {k[i]:T•i:KIdx} , 524
c ! e , 524
c ? , 524
k[i] ! e , 524
k[i] ? , 524
pi⌈⌉⌊⌋pj , 524
pi⌈⌉pj , 524
pi‖pj , 524
pi–‖pj , 524
P: Unit → in c out k[i] Unit , 525
Q: i:KIdx → out c in k[i] Unit,

525

Set Constructs, 508, 510–512

∩{s1,s2,...,sn} , 511
∪{s1,s2,...,sn} , 511
card s , 511
e∈s , 510
e 6∈s , 510
si=sj , 511
si∩sj , 511
si∪sj , 510
si⊂sj , 511
si⊆sj , 511
si 6=sj , 511
si\sj , 511
{} , 508
{e1, e2, ..., en} , 508
{Q(a)|a:A•a∈s∧P(a)} , 508

Type Expressions, 503–505
(T1×T2×... ×Tn) , 504
Bool, 503
Char, 503
Int, 503
Nat, 503
Real, 503
Text, 503
Unit, 522
mk id(s1:T1,s2:T2,...,sn:Tn) , 504
s1:T1 s2:T2 ... sn:Tn , 504
T∗ , 504
Tω , 504
T1 × T2 × ... × Tn , 504
T1 | T2 | ... | T1 | Tn , 504
Ti →m Tj , 504

Ti
∼
→Tj , 504

Ti→Tj , 504
T-infset, 504
T-set, 504

Type Definitions, 505–506
T = Type Expr, 505
T={| v:T′• P(v)|} , 505, 506
T==TE1 | TE2 | ... | TEn , 505
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C

Glossary

C.1 Categories of Reference Lists

On Glossaries, Dictionaries, Encyclopædia, Ontologies,
Taxonomies, Terminologies and Thesauri

An important function of glossaries, dictionaries, etc., is to make sure that
terms that may seem esoteric do not remain so.

Esoteric: designed for or understood by the specially initiated alone,
of or relating to knowledge that is restricted to a small group,

limited to a small circle

Merriam–Webster’s Collegiate Dictionary [209]

C.1.1 Glossary

According to [140] a gloss is “a word inserted between the lines or in the
margin as an explanatory rendering of a word in the text; hence a similar
rendering in a glossary or dictionary. Also, a comment, explanation, interpre-
tation.” Furthermore according to [140] a glossary is therefore “a collection of
glosses, a list with explanations of abstruse, antiquated, dialictical, or technical
terms; a partial dictionary.” [50] provides a Glossary of Z Notation.

C.1.2 Dictionary

According to [140] a dictionary is “a book dealing with the words of a lan-
guage, so as to set forth their orthography, pronunciation, signification, and
use, their synonyms, derivation, history, or at least some of these; the words
are arranged in some stated order, now, usually, alphabetical; a word book,
vocabulary, lexicon. And, by extension: A book on information or reference,
on any subject or branch of knowledge, the items of which are arranged al-
phabetically.” Standard dictionaries are [209, 210, 140].
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C.1.3 Encyclopædia

According to [140], an encyclopædia is “a circle of learning, a general course
of instruction. A work containing information on all branches of knowledge,
usually arranged alphabetically (1644). A work containing exhaustive infor-
mation on some one art or branch of knowledge, arranged systematically.”
[208] is, perhaps, the most “famous” encyclopædia.

C.1.4 Ontology

By ontology is meant [140]: “the science or study of being; that department of
metaphysics which relates to the being or essence of things, or to being in the
abstract.” By an ontology we shall mean a document which, in a systematic
arrangement explains, in a logical manner, a number of abstract concepts.

C.1.5 Taxonomy

By taxonomy is meant [140]: “classification, especially in relation to its general
laws or principles; that department of science, or of a particular science or
subject, which consists in or relates to classification.”

C.1.6 Terminology

By a term is here meant [140]: “a word or phrase used in a definite or precise
sense in some particular subject, as a science or art; a technical expression.”
More widely: “Any word or group of words expressing a notion or concep-
tion, or denoting an object of thought.” By terminology is meant [140]: “the
doctrine or scientific study of terms; the system of terms belonging to a sci-
ence or subject; technical terms collectively; nomenclature.” [133] provides a
terminology of Dependable Computing and Fault Tolerance: Concepts and
Terminology.

C.1.7 Thesaurus

By thesaurus is, in general, meant [140]: “a ‘treasury’ or ‘storehouse’ of knowl-
edge, as a dictionary, encyclopædia or the like. (1736)” The thesaurus [192]
has set a unique standard for and “the” meaning, now, of the term ‘thesaurus’.

C.2 Typography and Spelling

Some comments are in order:

• A term definition consists of two or three parts.
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⋆ The first part consists of a natural (the index) number, the term being
defined and a colon (:). The term subpart is the definiendum.

⋆ The second part is the term definition body, the definiens.
⋆ Optional third parts — in parentheses — expand on the definiens,

contrast it to other terms, or other.
• The definiendum is a one, two or three word boldfaced term.
• The definiens consists of free text which may contain uses of (other, or the

same) defined terms.
• Terms written in sans serif italicized font stand for defined terms.
• Definiens (second part) text ending with [209] (or [140]) represents quotes.
• For reasons of cross-referencing we have spelled the terms α, β and λ as

Alpha (alpha), Beta (beta) and Lambda (lambda).
• And we have rewritten the technical terms α-renaming, β-reduction and

λ-calculus, conversion and expression (etc.) into Alpha-renaming, Beta-
reduction and Lambda-expression, etc., while keeping the hyphens.

C.3 The Glosses

A

1 Abstract: Something which focuses on essential properties. Abstract is
a relation: something is abstract with respect to something else (which
possesses — what is considered — inessential properties).

2 Abstract data type: An abstract data type is a set of values for which
no external world or computer (i.e., data) representation is being defined,
together with a set of abstractly defined functions over these data values.

3 Abstraction: ‘The art of abstracting. The act of separating in thought;
a mere idea; something visionary.’

4 Abstraction function: An abstraction function is a function which ap-
plies to values of a concrete type and yields values of — what is said to be
a corresponding — abstract type. (Same as retrieve function.)

5 Abstract syntax: An abstract syntax is a set of rules, often in the form
of an axiom system, or in the form of a set of sort definitions, which de-
fines a set of structures without prescribing a precise external world, or a
computer (i.e., data) representation of those structures.

6 Abstract type: An abstract type is the same as an abstract data type,
except that no functions over the data values have been specified.

7 Acquirer: The legal entity, a person, an institution or a firm which or-
ders some development to take place. (Synonymous terms are client and
customer .)

8 Acquisition: The common term means purchase. Here we mean the col-
lection of knowledge (about a domain, about some requirements, or about
some software). This collection takes place in an interaction between the
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developers and representatives of the client (users, etc.). (A synonym term
is elicitation.)

9 Action: By an action we shall understand something who potentially
changes a state.

10 Active: By active is understood a phenomenon which, over time, changes
value, and does so either by itself, autonomously, or also because it is
“instructed” (i.e., is “bid” (see biddable), or “programmed” (see pro-
grammable) to do so). (Contrast to inert and reactive.)

11 Actuator: By an actuator we shall understand an electronic, a mechani-
cal, or an electromechanical device which carries out an action that influ-
ences some physical value. (Usually actuators, together with sensors, are
placed in reactive systems, and are linked to controllers. Cf. sensor .)

12 Adaptive: By adaptive we mean some thing that can adapt or arrange
itself to a changing context, a changing environment.

13 Adaptive maintenance: By adaptive maintenance we mean an update,
as here, of software, to fit (to adapt) to a changing environment. (Adaptive
maintenance is required when new input/output media are attached to the
existing software, or when a new, underlying database management system
is to be used (instead of an older such), etc. We also refer to corrective
maintenance, perfective maintenance, and preventive maintenance.)

14 Agent: By an agent we mean the same as an actor — a human or a
machine (i.e., robot). (The two terms actor and agent are here considered
to be synonymous.)

15 Algorithm: The notion of an algorithm is so important that we will
give a number of not necessarily complementary definitions, and will then
discuss these.
• By an algorithm we shall understand a precise prescription for carrying

out an orderly, finite set of operations on a set of data in order to calcu-
late (compute) a result. (This is a version of the classical definition. It
is compatible with computability in the sense of Turing machines and
Lambda-calculus. Other terms for algorithm are: effective procedure,
and abstract program.)

• Let there be given a possibly infinite set of states, S, let there be
given a possibly infinite set of initial states, I, where I ⊆ S, and
let there be given a next state function f : S → S. (C, where C =
(Q, I, f) is an initialised, deterministic transition system.) A sequence
s0, s1, . . . , si−1, si, . . . , sm such that f(si−1) = si is a computation. An
algorithm, A, is a C with final states O, i.e.: A = (Q, I, f, O), where
O ⊆ S, such that each computation ends with a state sm in O. (This
is basically Don Knuth’s definition [127]. In that definition a state
is a collection of identified data, i.e., a formalised representation of
information, i.e., of computable data. Thus Knuth’s definition is still
Turing and Lambda-calculus “compatible”.)

• There is given the same definition as just above with the generalisation
that a state is any association of variables to phenomena, whether
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the latter are representable “inside” the computer or not. (This is
basically Yuri Gurevitch’s definition of an algorithm [94, 187, 188]. As
such this definition goes beyond Turing machine and Lambda-calculus
“compatibility”. That is, captures more!)

16 Algorithmic: Adjective form of algorithm.
17 Ambiguous: A sentence is ambiguous if it is open to more than one

interpretation, i.e., has more than one model and these models are not
isomorphic .

18 Analysis: The resolution of anything complex into simple elements. A de-
termination of proper components. The tracing of things to their sources;
the discovery of general principles underlying concrete phenomena [140].
(In conventional mathematics analysis pertains to continuous phenomena,
e.g. differential and integral calculi. Our analysis is more related to hy-
brid systems of both discrete and continuous phenomena, or often to just
discrete ones.)

19 Application: By an application we shall understand either of two rather
different things: (i) the application of a function to an argument, and (ii)
the use of software for some specific purpose (i.e., the application). (See
next entry for variant (ii).)

20 Application domain: An area of activity which some software is to
support (or supports) or partially or fully automate (resp. automates).
(We normally omit the prefix ‘application’ and just use the term domain.)

21 Applicative: The term applicative is used in connection with applicative
programming. It is hence understood as programming where applying
functions to arguments is a main form of expression, and hence desig-
nates function application as a main form of operation. (Thus the terms
applicative and functional are here used synonymously.)

22 Applicative programming: See the term applicative just above. (Thus
the terms applicative programming and functional programming are here
used synonymously.)

23 Applicative programming language: Same as functional programming
language.

24 Architecture: The structure and content of software as perceived by
their users and in the context of the application domain. (The term ar-
chitecture is here used in a rather narrow sense when compared with the
more common use in civil engineering.)

25 Artefact: An artificial product [140]. (Anything designed or constructed
by humans or machines, which is made by humans.)

26 Artifact: Same term as artefact.
27 Assertion: By an assertion we mean the act of stating positively usually

in anticipation of denial or objection. (In the context of specifications
and programs an assertion is usually in the form of a pair of predicates
“attached” to the specification text, to the program text, and expressing
properties that are believed to hold before any interpretation of the text;
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that is, “a before” and “an after”, or, as we shall also call it: a pre- and
a post-condition.)

28 Atomic: In the context of software engineering atomic means: A phe-
nomenon (a concept, an entity , a value) which consists of no proper sub-
parts, i.e., no proper subphenomena, subconcepts, subentities or subvalues
other than itself. (When we consider a phenomenon, a concept, an entity,
a value, to be atomic, then it is often a matter of choice, with the choice
reflecting a level of abstraction.)

29 Attribute: We use the term attribute only in connection with values of
composite type. An attribute is now whether a composite value possesses
a certain property, or what value it has for a certain component part.
(An example is that of database (e.g., SQL) relations (i.e., tabular data
structures): Columns of a table (i.e., a relation) are usually labelled with a
name designating the attribute (type) for values of that column. Another
example is that, say, of a Cartesian: A = B×C×D. A can be said to have the
attributes B, C, and D. Yet other examples are M = A →m B, S = A-set and
L = A∗. M is said to have attributes A and B. S is said to have attribute A.
L is said to have attribute A. In general we make the distinction between
an entity consisting of subentities (being decomposable into proper parts,
cf. subentity), and the entities having attributes. A person, like me, has a
height attribute, but my height cannot be “composed away from me”!)

30 Axiom: An established rule or principle or a self-evident truth.
31 Axiomatic specification: A specification presented, i.e., given, in terms

of a set of axioms. (Usually an axiomatic specification also includes defi-
nitions of sorts and function signatures.)

32 Axiom system: Same as axiomatic specification.

B

33 B: B stands for Bourbaki, pseudonym for a group of mostly French math-
ematicians which began meeting in the 1930s, aiming to write a thor-
ough unified set-theoretic account of all mathematics. They had tremen-
dous influence on the way mathematics has been done since. (The found-
ing of the Bourbaki group is described in André Weil’s autobiography,
titled something like “memoir of an apprenticeship” (orig. Souvenirs
D’apprentissage). There is a usable book on Bourbaki by J. Fang. Liliane
Beaulieu has a book forthcoming, which you can sample in “A Parisian
Cafe and Ten Proto-Bourbaki Meetings 1934–1935” in the Mathematical
Intelligencer 15 no. 1 (1993) 27–35. From http://www.faqs.org/faqs/-

sci-math-faq/bourbaki/ (2004). Founding members were: Henri Car-
tan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean Dieudonné,
Charles Ehresmann, René de Possel, Szolem Mandelbrojt, André Weil.
From: http://www.bourbaki.ens.fr/ (2004). B also stands for a model-
oriented specification language [4].)
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34 Behaviour: By behaviour we shall understand the way in which some-
thing functions or operates. (In the context of domain engineering be-
haviour is a concept associated with phenomena, in particular manifest
entities. And then behaviour is that which can be observed about the value
of the entity and its interaction with an environment.)

35 Boolean: By Boolean we mean a data type of logical values (true and
false), and a set of connectives: ∼, ∧, ∨, and ⇒. (Boolean derives from
the name of the mathematician George Boole.)

36 Boolean connective: By a Boolean connective we mean either of the
Boolean operators: ∧, ∨, ⇒ (or ⊃), ∼ (or ¬).

37 BPR: See business process reengineering
38 Brief: By a brief is understood a document, or a part of a document which

informs about a phase , or a stage , or a step of development. (A brief thus
contains information.)

39 Business process: By a business process we shall understand a behaviour
of an enterprise, a business, an institution, a factory. (Thus a business
process reflects the ways in which a business conducts its affairs, and
is a facet of the domain. Other facets of an enterprise are those of its
intrinsics, management and organisation (a facet closely related, of course,
to business processes), support technology , rules and regulations, and human
behaviour .)

40 Business process engineering: By business process engineering we shall
understand the design, the determination, of business processes. (In doing
business process engineering one is basically designing, i.e., prescribing
entirely new business processes.)

41 Business process reengineering: By business process reengineering we
shall understand the redesign, the change, of business processes. (In do-
ing business process reengineering one is basically carrying out change
management.)

C

42 Calculus: A method of computation or calculation in a special notation.
(From mathematics we know the differential and the integral calculi, and
also the Laplace calculus. From metamathematics we have learned of the
λ-calculus. From logic we know of the Boolean (propositional) calculus.)

43 Capture: The term capture is used in connection with domain knowledge
(i.e., domain capture) and with requirements acquisition. It shall indicate
the act of acquiring, of obtaining, of writing down, domain knowledge,
respectively requirements.

44 Cartesian: By a Cartesian is understood an ordered product, a fixed
grouping, a fixed composition, of entities. (Cartesian derives from the
name of the French mathematician René Descartes.)

45 Channel: By a channel is understood a means of interaction, i.e., of com-
munication and possibly of synchronisation between behaviours. (In the
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context of computing we can think of channels as being either input, or
output, or both input and output channels.)

46 Chaos: By chaos we understand the totally undefined behaviour : Any-
thing may happen! (In the context of computing chaos may, for example,
be the designation for the never-ending, the never-terminating process.)

47 Class: By a class we mean either of two things: a class clause, as in RSL,
or a set of entities defined by some specification, typically a predicate.

48 Clause: By a clause is meant an expression, designating a value, or a state-
ment, designating a state change, or a sentential form, which designates
both a value and a state change. (When we use the term clause we mean
it mostly in the latter sense of both designating a value and a side effect.)

49 Client: By a client we mean any of three things: (i) The legal body (a
person or a company) which orders the development of some software,
or (ii) a process or a behaviour which interacts with another process or
behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com-
puting system). (We shall normally use the term customer in the first or
in the second sense (i, ii).)

50 Code: By code we mean a program which is expressed in the machine
language of a computer.

51 Coding: By coding we shall here, simply, mean the act of programming
in a machine, i.e., in a computer-close language. (Thus we do not, except
where explicitly so mentioned, mean the encoding of one string of char-
acters into another, say for communication over a possibly faulty commu-
nication channel (usually with the decoding of the encoded string “back”
into the original, or a similar string).)

52 Communication: A process by which information is exchanged between
individuals (behaviours, processes) through a common system of symbols,
signs, or protocols.

53 Component: By a component we shall here understand a set of type
definitions and component local variable declarations, i.e., a component
local state, this together with a (usually complete) set of modules, such
that these modules together implement a set of concepts and facilities,
i.e., functions, that are judged to relate to one another.

54 Component design: By a component design we shall understand the
design of (one or more) components. (We shall refer to 32829 for “our
story” on component design.)

55 Composite: We say that a phenomenon, a concept, is composite when it
is possible, and meaningful, to consider that phenomenon or concept as
analysable into two or more subphenomena or subconcepts.

56 Composition: By composition we mean the way in which a phenomenon,
a concept, is “put together” (i.e., composed) into a composite phenomenon,
resp. concept.

57 Compositional: We say that two or more phenomena or concepts are
compositional if it is meaningful to compose these phenomena and/or
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concepts. (Typically a denotational semantics is expressed compositionally:
By composing the semantics of sentence parts into the semantics of the
composition of the sentence parts.)

58 Compositional documentation: By compositional documentation we
mean a development, or a presentation (of that development), of, as here,
some description (prescription or specification), in which some notion of
“smallest”, i.e., atomic phenomena and concepts are developed (resp. pre-
sented) first, then their compositions, etc., until some notion of full, com-
plete development (etc.) has been achieved. (See also composition, compo-
sitional and hierarchical documentation.)

59 Comprehension: By comprehension we shall here mean set, list or map
comprehension, that is, the expression, of a set, a list, respectively a map,
by a predicate over the elements of the set, list or pairings of the map,
that belong to the set, list, respectively the map.

60 Computation: See calculation.
61 Compute: Given an expression and an applicable rule of a calculus, to

change the former expression into a resulting expression. (Same as calcu-
late.)

62 Computer Science: The study and knowledge of the phenomena that
can exist inside computers.

63 Computing Science: The study and knowledge of how to construct
those phenomena that can exist inside computers.

64 Computing system: A combination of hardware and software that to-
gether make meaningful computations possible.

65 Concept: An abstract or generic idea generalised from phenomena or
concepts. (A working definition of a concept has it comprising two com-
ponents: The extension and the intension. A word of warning: Whenever
we describe something claimed to be a “real instance”, i.e., a physical
phenomenon, then even the description becomes that of a concept, not of
“that real thing”!)

66 Concept formation: The forming, the enunciation, the analysis, and
definition of concepts (on the basis, as here, of analysis of the universe of
discourse (be it a domain or some requirements)). (Domain and require-
ments concept formation(s) is treated in Vol. 3, Chaps. 13 (Domain Anal-
ysis and Concept Formation) and 21 (Requirements Analysis and Concept
Formation).)

67 Concrete: By concrete we understand a phenomenon or, even, a concept,
whose explication, as far as is possible, considers all that can be observed
about the phenomenon, respectively the concept. (We shall, however, use
the term concrete more loosely: To characterise that something, being
specified, is “more concrete” (possessing more properties) than something
else, which has been specified, and which is thus considered “more ab-
stract” (possessing fewer properties [considered more relevant]).)
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68 Concrete syntax: A concrete syntax is a syntax which prescribes actual,
computer representable data structures. (Typically a BNF Grammar is a
concrete syntax.)

69 Concrete type: A concrete type is a type which prescribes actual, com-
puter representable data structures. (Typically the type definitions of pro-
gramming languages designate concrete types.)

70 Concurrency: By concurrency we mean the simultaneous existence of
two or more behaviours, i.e., two or more processes. (That is, a phenomenon
is said to exhibit concurrency when one can analyse the phenomenon into
two or more concurrent phenomena.)

71 Concurrent: Two (or more) events can be said to occur concurrently,
i.e., be concurrent, when one cannot meaningfully describe any one of
these events to (“always”) “occur” before any other of these events. (Thus
concurrent systems are systems of two or more processes (behaviours)
where the simultaneous happening of “things” (i.e., events) is deemed
beneficial, or useful, or, at least, to take place!)

72 Correct: See next entry: correctness.
73 Correctness: Correctness is a relation between two specifications A and

B: B is correct with respect to A if every property of what is specified in
A is a property of B. (Compare to conformance and congruence.)

74 Corrective maintenance: By corrective maintenance we understand a
change, predicated by a specification A, to a specification, B′, resulting in
a specification, B′′, such that B′′ satisfies more properties of A than does
B′. (That is: Specification B′ is in error in that it is not correct with respect
to A. But B′′ is an improvement over B′. Hopefully B′′ is then correct
wrt. A. We also refer to adaptive maintenance, perfective maintenance, and
preventive maintenance.)

75 CSP: Abbreviation for Communicating Sequential Processes. (See [110,
194] and Chap. 21. Also, but not in this book, a term that covers constraint
satisfaction problem (or programming).)

76 Customer: By a customer we mean either of three things: (i) the client,
a person, or a company, which orders the development of some software,
or (ii) a client process or a behaviour which interacts with another process
or behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com-
puting system). (We shall normally use the term customer in the third
sense (iii).)

D

77 Data: Data is formalised representation of information. (In our context
information is what we may know, informally, and even express, in words,
or informal text or diagrams, etc. Data is correspondingly the internal
computer, including database representation of such information.)
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78 Database: By a database we shall generally understand a large collection
of data. More specifically we shall, by a database, imply that the data
are organised according to certain data structuring and data query and
update principles. (Classically, three forms of (data structured) databases
can be identified: The hierarchical , the network , and the relational database
forms. We refer to [64, 65] for seminal coverage, and to [31, 30, 46, 47] for
formalisation, of these database forms.)

79 Database schema: By a database schema we understand a type definition
of the structure of the data kept in a database.

80 Data abstraction: Data abstraction takes place when we abstract from
the particular formal representation of data.

81 Data invariant: By a data invariant is understood some property that
is expected to hold for all instances of the data. (We use the term ‘data’
colloquially, and really should say type invariance, or variable content in-
variance. Then ‘instances’ can be equated with values. See also constraint.)

82 Data refinement: Data refinement is a relation. It holds between a pair
of data if one can be said to be a “more concrete” implementation of the
other. (The whole point of data abstraction, in earlier phases, stages and
steps of development, is that we can later concretise, i.e., data refine.)

83 Data reification: Same as data refinement. (To reify is to render some-
thing abstract as a material or concrete thing.)

84 Data structure: By a data structure we shall normally understand a
composition of data values, for example, in the “believed” form of a linked
list, a tree, a graph or the like. (As in contrast to an information structure,
a data structure (by our using the term data) is bound to some computer
representation.)

85 Data transformation: Same as data refinement and, hence, data reifica-
tion.

86 Data type: By a data type is understood a set of values and a set of
functions over these values — whether abstract or concrete.

87 Decidable: A formal logic system is decidable if there is an algorithm
which prescribes computations that can determine whether any given sen-
tence in the system is a theorem.

88 Declaration: A declaration prescribes the allocation of a resource of the
kind declared: (i) A variable, i.e., a location in some storage; (ii) a channel
between active processes; (iii) an object, i.e., a process possessing a local
state; etc.

89 Decomposition: By a decomposition is meant the presentation of the
parts of a composite “thing”.

90 Definiendum: The left-hand side of a definition, that which is to be
defined.

91 Definiens: The right-hand side of a definition, that which is defining
“something”.

92 Definite: Something which has specified limits. (Watch out for the four
terms: finite, infinite, definite and indefinite.)



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
270 C Glossary

93 Definition: A definition defines something, makes it conceptually “mani-
fest”. A definition consists of two parts: a definiendum, normally considered
the left-hand part of a definition, and a definiens, normally considered the
right-hand part (the body) of a definition.

94 Definition set: By a definition set we mean, given a function, the set of
values for which the function is defined, i.e., for which, when it is applied
to a member of the definition set yields a proper value. (Cf., range set.)

95 Denotation: A direct specific meaning as distinct from an implied or
associated idea [209]. (By a denotation we shall, in our context, associate
the idea of mathematical functions: That is, of the denotational semantics
standing for functions.)

96 Denotational: Being a denotation.
97 Denotational semantics: By a denotational semantics we mean a se-

mantics which to atomic syntactical notions associate simple mathematical
structures (usually functions, or sets of traces, or algebras), and which to
composite syntactical notions prescribe a semantics which is the functional
composition of the denotational semantics of the composition parts.

98 Denote: Designates a mathematical meaning according to the principles
of denotational semantics. (Sometimes we use the looser term designate.)

99 Dependability: Dependability is defined as the property of a machine
such that reliance can justifiably be placed on the service it delivers [182].
(See definition of the related terms: error , failure, fault and machine ser-
vice.)

100 Dependability requirements: By requirements concerning dependabil-
ity we mean any such requirements which deal with either accessibility
requirements, or availability requirements, or integrity requirements, or re-
liability requirements, or robustness requirements, or safety requirements,
or security requirements.

101 Describe: To describe something is to create, in the mind of the reader,
a model of that something. The thing, to be describable, must be either
a physically manifest phenomenon, or a concept derived from such phe-
nomena. Furthermore, to be describable it must be possible to create, to
formulate a mathematical, i.e., a formal description of that something.
(This delineation of description is narrow. It is too narrow for, for exam-
ple, philosophical or literary, or historical, or psychological discourse. But
it is probably too wide for a software engineering , or a computing science
discourse. See also description.)

102 Description: By a description is, in our context, meant some text which
designates something, i.e., for which, eventually, a mathematical model
can be established. (We readily accept that our characterisation of the
term ‘description’ is narrow. That is: We take as a guiding principle, as
a dogma, that an informal text, a rough sketch, a narrative, is not a de-
scription unless one can eventually demonstrate a mathematical model
that somehow relates to, i.e., “models” that informal text. To further
paraphrase our concern about “describability”, we now state that a de-
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scription is a description of the entities, functions, events and behaviours
of a further designated universe of discourse: That is, a description of
a domain, a prescription of requirements, or a specification of a software
design.)

103 Design: By a design we mean the specification of a concrete artefact, some-
thing that can either be physically manifested, like a chair, or conceptually
demonstrated, like a software program.

104 Designate: To designate is to present a reference to, to point out, some-
thing. (See also denote and designation.)

105 Designation: The relation between a syntactic marker and the semantic
thing signified. (See also denote and designate.)

106 Deterministic: In a narrow sense we shall say that a behaviour, a process,
a set of actions, is deterministic if the outcome of the behaviour, etc., can
be predicted: Is always the same given the same “starting conditions”, i.e.,
the same initial configuration (from which the behaviour, etc., proceeds).
(See also nondeterministic .)

107 Developer: The person, or the company, which constructs an artefact,
as here, a domain description, or a requirements prescription, or a software
design.

108 Development: The set of actions that are carried out in order to con-
struct an artefact.

109 Diagram: A usually two-dimensional drawing, a figure. (Sometimes a
diagram is annotated with informal and formal text.)

110 Dialogue: A “conversation” between two agents (men or machines). (We
thus speak of man-machine dialogues as carried out over CHI s (HCI s).)

111 Dictionary: See Sect. C.1.2
112 Didactics: Systematic instruction based on a clear conceptualisation of

the bases, of the foundations, upon which what is being instructed rests.
(One may speak of the didactics of a field of knowledge, such as, for exam-
ple, software engineering. We believe that the present three volume book
represents such a clearly conceptualised didactics, i.e., a foundationally
consistent and complete basis.)

113 Directed graph: A directed graph is a graph all of whose edges are
directed, i.e., are arrows.

114 Directory: A collection of directions. (We shall here take the more limited
view of a directory as being a list of names of, i.e., references to resources.)

115 Discrete: As opposed to continuous: consisting of distinct or unconnected
elements [209].

116 Disjunction: Being separated, being disjoined, decomposed. (We shall
mostly think of disjunction as the (meaning of the) logical connective
“or”: ∨.)

117 Document: By a document is meant any text, whether informal or for-
mal , whether informative, descriptive (or prescriptive) or analytic . (De-
scriptive documents may be rough sketches, terminologies, narratives, or
formal . Informative documents are not descriptive. Analytic documents
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“describe” relations between documents, verification and validation, or de-
scribe properties of a document.)

118 Documentation requirements: By documentation requirements we
mean requirements which state which kinds of documents shall make up
the deliverable, what these documents shall contain and how they express
what they contain.

119 Domain: Same as application domain; hence see that term for a charac-
terisation. (The term domain is the preferred term.)

120 Domain acquisition: The act of acquiring, of gathering, domain knowl-
edge, and of analysing and recording this knowledge.

121 Domain analysis: The act of analysing recorded domain knowledge in
search of (common) properties of phenomena, or relating what may be
considered separate phenomena.

122 Domain capture: The act of gathering domain knowledge, of collecting
it — usually from domain stakeholders.

123 Domain description: A textual, informal or formal document which
describes the domain. (Usually a domain description is a set of documents
with many parts recording many facets of the domain: The intrinsics,
business processes, support technology , management and organisation, rules
and regulations, and the human behaviours.)

124 Domain description unit: By a domain description unit we understand
a short, “one- or two-liner”, possibly rough-sketch description of some prop-
erty of a domain phenomenon, i.e., some property of an entity , some prop-
erty of a function, of an event, or some property of a behaviour . (Usually
domain description units are the smallest textual, sentential fragments
elicited from domain stakeholders.)

125 Domain determination: Domain determination is a domain require-
ments facet. It is an operation performed on a domain description cum
requirements prescription. Any nondeterminism expressed by either of these
specifications which is not desirable for some required software design
must be made deterministic (by this requirements engineer performed op-
eration). (Other domain requirements facets are: domain projection, domain
instantiation, domain extension and domain fitting . )

126 Domain development: By domain development we shall understand
the development of a domain description. (All aspects are included in de-
velopment: domain acquisition, domain analysis, domain model ling, domain
validation and domain verification.)

127 Domain engineer: A domain engineer is a software engineer who per-
forms domain engineering . (Other forms of software engineers are: require-
ments engineers and software designers (cum programmers).)

128 Domain engineering: The engineering of the development of a domain
description, from identification of domain stakeholders, via domain acqui-
sition, domain analysis and domain description to domain validation and
domain verification.
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129 Domain extension: Domain extension is a domain requirements facet.
It is an operation performed on a domain description cum requirements
prescription. It effectively extends a domain description by entities, func-
tions, events and/or behaviours conceptually possible, but not necessarily
humanly feasible in the domain. (Other domain requirements facets are:
domain projection, domain determination, domain instantiation and domain
fitting .)

130 Domain facet: By a domain facet we understand one amongst a finite
set of generic ways of analysing a domain: A view of the domain, such
that the different facets cover conceptually different views, and such that
these views together cover the domain. (We consider here the following
domain facets: business process, intrinsics, support technology , management
and organisation, rules and regulations, and human behaviour .)

131 Domain fitting: Domain fitting is a domain requirements facet. It is
an operation performed on a domain description cum requirements pre-
scription. It effectively combines one domain description (cum domain re-
quirements) with another [domain description, respectively domain require-
ments]. (Other domain requirements facets are: domain projection, domain
determination, domain instantiation and domain extension.)

132 Domain initialisation: Domain initialisation is an interface require-
ments facet. It is an operation performed on a requirements prescrip-
tion. For an explanation see shared data initialisation (its ‘equivalent’).
(Other interface requirements facets are: shared data refreshment, computa-
tional data+control , man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.)

133 Domain instantiation: Domain instantiation is a domain requirements
facet. It is an operation performed on a domain description (cum require-
ments prescription). Where, in a domain description certain entities and
functions are left undefined, domain instantiation means that these en-
tities or functions are now instantiated into constant values. (Other re-
quirements facets are: domain projection, domain determination, domain
extension and domain fitting .)

134 Domain knowledge: By domain knowledge we mean that which a par-
ticular group of people, all basically engaged in the “same kind of activ-
ities”, know about that domain of activity, and what they believe that
other people know and believe about the same domain. (We shall, in our
context, strictly limit ourselves to “knowledge”, staying short of “beliefs”,
and we shall similarly strictly limit ourselves to assume just one “actual”
world, not any number of “possible” worlds. More specifically, we shall
strictly limit our treatment of domain knowledge to stay clear of the (al-
beit very exciting) area of reasoning about knowledge and belief between
people (and agents) [109, 76].)

135 Domain projection: Domain projection is a domain requirements facet.
It is an operation performed on a domain description cum requirements
prescription. The operation basically “removes” from a description defini-
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tions of those entities (including their type definitions), functions, events
and behaviours that are not to be considered in the requirements. (The
removed phenomena and concepts are thus projected “away”. Other do-
main requirements facets are: domain determination, domain instantiation,
domain extension and domain fitting .)

136 Domain validation: By domain validation we rather mean: ‘validation
of a domain description’, and by that we mean the informal assurance
that a description purported to cover the entities, functions, events and
behaviours of a further designated domain indeed does cover that domain
in a reasonably representative manner. (Domain validation is, necessarily,
an informal activity: It basically involves a guided reading of a domain
description (being validated) by stakeholders of the domain, and ends in
an evaluation report written by these domain stakeholder readers.)

137 Domain verification: By domain verification we mean verification of
claimed properties of a domain description, and by that we mean the
formal assurance that a description indeed does possess those claimed
properties. (The usual principles, techniques and tools of verification apply
here.)

138 Domain requirements: By domain requirements we understand such
requirements — save those of business process reengineering — which can
be expressed solely by using professional terms of the domain. (Domain re-
quirements constitute one requirements facet. Others requirements facets
are: business process reengineering , interface requirements and machine re-
quirements.)

139 Domain requirements facet: By domain requirements facets we under-
stand such domain requirements that basically arise from either of the
following operations on domain descriptions (cum requirements prescrip-
tions): domain projection, domain determination, domain extension, domain
instantiation and domain fitting .

E

140 Elaborate: See next: elaboration.
141 Elaboration: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term elaboration in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to pairs of states and values.

142 Elicitation: To elicit, to extract. (See also: acquisition. We consider elici-
tation to be part of acquisition. Acquisition is more than elicitation. Elic-
itation, to us, is primarily the act of extracting information, i.e., knowl-
edge. Acquisition is that plus more: Namely the preparation of what and
how to elicit and the postprocessing of that which has been elicited — in
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preparation of proper analysis. Elicitation applies both to domain and to
requirements elicitation.)

143 Embedded: Being an integral part of something else. (When something is
embedded in something else, then that something else is said to surround
the embedded thing.)

144 Embedded system: A system which is an integral part of a larger system.
(We shall use the term embedded system primarily in the context of the
larger, ‘surrounding’ system being reactive and/or hard real time.)

145 Engineer: An engineer is a person who “walks the bridge” between sci-
ence and technology: (i) Constructing, i.e., designing, technology based
on scientific insight, and (ii) analysing technology for its possible scien-
tific content.

146 Engineering: Engineering is the design of technology based on scientific
insight, and the analysis of technology for its possible scientific content.
(In the context of this glossary we single out three forms of engineering:
domain engineering , requirements engineering and software design; together
we call them software engineering . The technology constructed by the do-
main engineer is a domain description. The technology constructed by the
requirements engineer is a requirements prescription. The technology con-
structed by the software designer is software.)

147 Enrichment: The addition of a property to something already existing.
(We shall use the term enrich in connection with a collection (i.e., a RSL

scheme or a RSL class) — of definitions, declaration and axioms — being
‘extended with’ further such definitions, declaration and axioms.)

148 Entity: By an entity we shall loosely understand something fixed, immo-
bile, static — although that thing may move, but after it has moved it is
essentially the same thing, an entity. (We shall take the narrow view of
an entity, being in contrast to a function, and an event, and a behaviour ;
that entities “roughly correspond” to what we shall think of as values, i.e.,
as information or data. We shall further allow entities to be either atomic
or composite, i.e., in the latter case having decomposable subentities (cf.
subentity). Finally entities may have nondecomposable attributes.)

149 Enumerable: By enumerable we mean that a set of elements satisfies a
proposition, i.e., can be logically characterised.

150 Enumeration: To list, one after another. (We shall use the term enu-
meration in connection with the syntactic expression of a “small”, i.e.,
definite, number of elements of a(n enumerated) set, list or map.)

151 Environment: A context, that is, in our case (i.e., usage), the (“more
static”) part of a configuration in which some syntactic entity is elaborated,
evaluated, or interpreted. (In our “metacontext”, i.e., that of software
engineering, environments, when deployed in the elaboration (etc.) of,
typically, specifications or programs, record, i.e., list, associate, identifiers
of the specification or program text with their meaning.)

152 Epistemology: The study of knowledge. (Contrast, please, to ontology .)
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153 Error: An error is an action that produces an incorrect result. An error is
that part of a machine state which is “liable to lead to subsequent failure”.
An error affecting the machine service is an indication that a failure occurs
or has occurred [182]. (An error is caused by a fault.)

154 Evaluate: See next: evaluation.
155 Evaluation: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term evaluation in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to values.

156 Event: Something that occurs instantaneously. (We shall, in our context,
take events as being manifested by certain state changes, and by certain
interactions between behaviours or processes. The occurrence of events may
“trigger” actions. How the triggering, i.e., the invocation of functions are
brought about is usually left implied, or unspecified.)

157 Expression: An expression, in our context (i.e., that of software engi-
neering), is a syntactical entity which, through evaluation, designates a
value.

158 Extension: We shall here take extension to be the same as enrichment.
(The extension of a concept is all the individuals falling under the concept
[166].)

159 Extensional: Concerned with objective reality [209]. (Please observe a
shift here: We do not understand the term extensional as ‘relating to, or
marked by extension in the above sense, but in contrast to intensional .)

F

160 Facet: By a facet we understand one amongst a finite set of generic ways
of analysing and presenting a domain, a requirements or a software design:
a view of the universe of discourse, such that the different facets cover
conceptually different views, and such that these views together cover
that universe of discourse. (Examples of domain facets are intrinsics, busi-
ness processes, support technology , management and organisation, rules and
regulations and human behaviour . Examples of requirements facets are
business process reengineering , domain requirements, interface requirements
and machine requirements. Examples of software design facets are software
architecture, component design, module design, etc.)

161 Failure: A fault may result in a failure. A machine failure occurs when
the delivered machine service deviates from fulfilling the machine function,
the latter being what the machine is aimed at [182]. (A failure is thus
something relative to a specification, and is due to a fault. Failures are
concerned with such things as accessibility , availability , reliability , safety
and security .)
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162 Fault: The adjudged (i.e., the ‘so judged’) or hypothesised cause of an
error [182]. (An error is caused by a fault, i.e., faults cause errors. A
software fault is the consequence of a human error in the development of
that software.)

163 Fault tree: A fault tree is a tree with nodes of alternating kinds: event
and logic nodes. The fault tree root is an event node and so are all the leaf
nodes. Event nodes label (undesirable) events (or states of a computing
system). Logic nodes designate combinators like conjunction, disjunction,
etc. (See the definitions of branch, event, fault, node, root, state and tree
[items 88, 270, 276, 464, 614, 679, 750, Appendix B, Vol. 1].)

164 Fault tree analysis: A form of safety analysis that assesses computing
systems safety to provide failure statistics and sensitivity analyses that
indicate the possible effect of critical failures. (In the technique known as
fault tree analysis, an undesired effect is taken as the root (“top event”) of
a tree of logic. Then, each situation that could cause that effect is added to
the tree as a series of logic expressions. When fault trees are labelled with
actual numbers about failure probabilities, which are often in practice
unavailable because of the expense of testing, computer programs can
calculate failure probabilities from fault trees. See the definition of hazard
analysis.)

165 Finite: Of a fixed number less than infinity, or of a fixed structure that
does not “flow” into perpetuity as would any information structure that
just goes on and on. (Watch out for the four terms: finite, infinite, definite
and indefinite.)

166 Flowchart: A diagram (a chart), for example of circles (input, output),
annotated (square) boxes, annotated diamonds and infixed arrows, that
shows step by step flow through an algorithm.

167 Formal: By formal we shall, in our context (i.e., that of software engi-
neering), mean a language, a system, an argument (a way of reasoning), a
program or a specification whose syntax and semantics is based on (rules
of) mathematics (including mathematical logic).

168 Formal definition: Same as formal description, formal prescription or for-
mal specification.

169 Formal development: Same as the standard meaning of the composi-
tion of formal and development. (We usually speak of a spectrum of devel-
opment modes: systematic development, rigorous development, and formal
development. Formal software development, to us, is at the “formalistic”
extreme of the three modes of development: Complete formal specifica-
tions are always constructed, for all (phases and) stages of development;
all proof obligations are expressed; and all are discharged (i.e., proved to
hold).)

170 Formal description: A formal description of something. (Usually we use
the term formal description only in connection with formalisation of do-
mains.)
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171 Formalisation: The act of making a formal specification of something
elsewhere informally specified; or the document which results therefrom.

172 Formal method: By a formal method we mean a method whose tech-
niques and tools1 are formal ly based. (It is common to hear that some
notation is claimed to be that of a formal method — where it then turns
out that few, if any, of the building blocks of that notation have any for-
mal foundation. This is especially true of many diagrammatic notations.
UML is a case in point — much is presently being done to formalise subsets
of UML [168].)

173 Formal prescription: Same as formal definition or formal specification.
(Usually we use the term formal prescription only in connection with
formalisation of requirements.)

174 Formal specification: A formalisation of something. (Same as formal def-
inition, formal description or formal prescription. Usually we use the term
formal specification only in connection with formalisation of software de-
signs.)

175 Function: By a function we understand something which when applied to
a value, called an argument, yields a value called a result. (Functions can
be modelled as sets of (argument, result) pair — in which case applying
a function to an argument amounts to “searching” for an appropriate
pair. If several such pairs have the same argument (value), the function
is said to be nondeterministic . If a function is applied to an argument for
which there is no appropriate pair, then the function is said to be partial;
otherwise it is a total function.)

176 Function activation: When, in an operational, i.e., computational (“me-
chanical”) sense, a function is being applied, then some resources have to
be set aside in order to carry out, to handle, the application. This is
what we shall call a function activation. (Typically a function activation,
for conventional block-structured languages (like C#, Java, Standard ML

[106, 197, 97]), is implemented by means (also) of a stack-like data struc-
ture: Function invocation then implies the stacking (pushing) of a stack
activation on that stack, i.e., the activation stack (a circular reference!).
Elaboration of the function definition body means that intermediate val-
ues are pushed and popped from the topmost activation element, etc.,
and that completion of the function application means that the top stack
activation is popped.)

177 Functional: A function whose arguments are allowed themselves to be
functions is called a functional. (The fix point (finding) function is a func-
tional.)

1 Tools include specification and programming languages as such, as well as all
the software tools relating to these languages (editors, syntax checkers, theorem
provers, proof assistants, model checkers, specification and program (flow) anal-
ysers, interpreters, compilers, etc.).



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
C.3 The Glosses 279

178 Functional programming: By functional programming we mean the
same as applicative programming : In its barest rendition functional pro-
gramming involves just three things: definition of functions, functions
as ordinary values, and function application (i.e., function invocation).
(Most current functional programming languages (Haskell, Miranda,

Standard ML) go well beyond just providing the three basic building
blocks of functional programming [216, 217, 160].)

179 Functional programming language: By a functional programming
language we mean a programming language whose principal values are
functions and whose principal operations on these values are their creation
(i.e., definition), their application (i.e., invocation) and their composition.
(Functional programming languages of interest today, 2005, are (alpha-
betically listed): CAML [57, 55, 56, 224, 138], Haskell [216], Miranda [217],
Scheme [1, 92, 75] and SML (Standard ML) [160, 97]. LISP 1.5 was a first
functional programming language [154].)

180 Function application: The act of applying a function to an argument
is called a function application. (See ‘comment’ field of function activation
just above.)

181 Function definition: A function definition, as does any definition, con-
sists of a definiens and a definiendum. The definiens is a function signature,
and the definiendum is a clause, typically an expression. (Cf. Lambda-
functions.)

182 Function invocation: Same as function application. (See parenthesized
remark of entry 176 (function activation).)

183 Function signature: By a function signature we mean a text which
presents the name of the function, the types of its argument values and
the type(s) of its result value(s).

G

184 Generator function: To speak of a generator function we need first
introduce the concept of a sort “of interest”. A generator function is a
function which when applied to arguments of some kind, i.e., types, yields
a value of the type of the sort “of interest”. (Typically the sort “of interest”
can be thought of as the state (a stack, a queue, etc.).)

185 Glossary: See Sect. C.1.1.
186 Grand state: “Grand state” is a colloquial term. It is meant to have the

same meaning as configuration. (The colloquialism is used in the context
of, for example, praising a software engineer as “being one who really
knows how to design the grand state for some universe of discourse” being
specified.)

187 Grouping: By grouping we mean the ordered, finite collection, into a
Cartesian, of mathematical structures (i.e., values).

H
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188 Hardware: By hardware is meant the physical embodiment of a com-
puter: its electronics, its boards, the racks, cables, button, lamps, etc.

189 HCI: Abbreviation for human computer interface. (Same as CHI , and
same as man-machine interface.)

190 Human behaviour: By human behaviour we shall here understand the
way a human follows the enterprise rules and regulations as well as in-
teracts with a machine: dutifully honouring specified (machine dialogue)
protocols, or negligently so, or sloppily not quite so, or even criminally not
so! (Human behaviour is a facet of the domain (of the enterprise). We shall
thus model human behaviour also in terms of it failing to react properly,
i.e., humans as nondeterministic agents! Other facets of an enterprise are
those of its intrinsics, business processes, support technology , management
and organisation, and rules and regulations.)

I

191 Identification: The pointing out of a relation, an association, between an
identifier and that “thing”, that phenomenon, it designates, i.e., it stands
for or identifies.

192 Identifier: A name. (Usually represented by a string of alphanumeric
characters, sometimes with properly infixed “-”s or “ ”s.)

193 Imperative: Expressive of a command [209]. (We take imperative to
more specifically be a reflection of do this, then do that. That is, of the
use of a state-based programming approach, i.e., of the use of an imperative
programming language. See also indicative, optative, and putative.)

194 Imperative programming: Programming, imperatively, “with” refer-
ences to storage locations and the updates of those, i.e., of states. (Im-
perative programming seems to be the classical, first way of programming
digital computers.)

195 Imperative programming language: A programming language which,
significantly, offers language constructs for the creation and manipulation
of variables, i.e., storages and their locations. (Typical imperative pro-
gramming languages were, in “ye olde days”, Fortran, Cobol, Algol

60, PL/I, Pascal, C, etc. [153, 151, 17, 152, 17, 125]. Today program-
ming languages like C++, Java, C#, etc. [213, 197, 106] additionally offer
module cum object “features”.)

196 Implementation: By an implementation we understand a computer pro-
gram that is made suitable for compilation or interpretation by a machine.
(See next entry: implementation relation.)

197 Implementation relation: By an implementation relation we understand
a logical relation of correctness between a software design specification and
an implementation (i.e., a computer program made suitable for compilation
or interpretation by a machine).

198 Incomplete: We say that a proof system is incomplete if not all true
sentences are provable.
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199 Incompleteness: Noun form of the incomplete adjective.
200 Inconsistent: A set of axioms is said to be inconsistent if, by means of

these, and some deduction rules, one can prove a property and its negation.
201 Indefinite: Not definite, i.e., of a fixed number or a specific property,

but it is not known, at the point of uttering the term ‘indefinite’, what
that number or property is. (Watch out for the four terms: finite, infinite,
definite and indefinite.)

202 Indicative: Stating an objective fact. (See also imperative, optative and
putative.)

203 Inert: A dynamic phenomenon is said to be inert if it cannot change
value of its own volition, i.e., by itself, but only through the interaction
between that phenomenon and a change-instigating environment. An inert
phenomenon only changes value as the result of external stimuli. These
stimuli prescribe exactly which new value they are to change to. (Contrast
to active and reactive.)

204 Infinite: As you would think of it: not finite! (Watch out for the four
terms: finite, infinite, definite and indefinite.)

205 Informal: Not formal! (We normally, by an informal specification mean
one which may be precise (i.e., unambiguous, and even concise), but which,
for example is expressed in natural, yet (domain specific) professional
language — i.e., a language which does not have a precise semantics let
alone a formal proof system. The UML notation is an example of an informal
language [168].)

206 Informatics: The confluence of (i) applications, (ii) computer science, (iii)
computing science [i.e., the art [127, 128, 129] (1968–1973), craft [190]
(1981), discipline [71] (1976), logic [104] (1984), practice [105] (1993–2004),
and science [90] (1981) of programming], (iv) software engineering and (v)
mathematics.

207 Information: The communication or reception of knowledge. (By infor-
mation we thus mean something which, in contrast to data, informs us. No
computer representation is, let alone any efficiency criteria are, assumed.
Data as such does, i.e., bit patterns do, not ‘inform’ us.)

208 Information structure: By an information structure we shall normally
understand a composition of more “formally” represented (i.e., structured)
information, for example, in the “believed” form of table, a tree, a graph,
etc. (In contrast to data structure, an information structure does not nec-
essarily have a computer representation, let alone an “efficient” such.)

209 Informative documentation: By informative documentation we un-
derstand texts which inform, but which do not (essentially) describe that
which a development is to develop. (Informative documentation is bal-
anced by descriptive and analytic documentation to make up the full doc-
umentation of a development.)

210 Infrastructure: According to the World Bank: ‘Infrastructure’ is an um-
brella term for many activities referred to as ‘social overhead capital’ by
some development economists, and encompasses activities that share tech-
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nical and economic features (such as economies of scale and spillovers from
users to nonusers). We shall use the term as follows: Infrastructures are
concerned with supporting other systems or activities. Computing sys-
tems for infrastructures are thus likely to be distributed and concerned in
particular with supporting communication of information, control, people
and materials. Issues of (for example) openness, timeliness, security, lack
of corruption, and resilience are often important. (Winston Churchill is
quoted to have said, during a debate in the House of Commons, in 1946:
. . . The young Labourite speaker that we have just listened to, clearly
wishes to impress upon his constituency the fact that he has gone to Eton
and Oxford since he now uses such fashionable terms as ‘infra-structures’.)

211 Input: By input we mean the communication of information (data) from
an outside, an environment, to a phenomenon “within” our universe of
discourse. (More colloquially, and more generally: Input can be thought
of as value(s) transferred over channel(s) to, or between processes. Cf.
output. In a narrow sense we talk of input to an automaton (i.e., a finite
state automaton or a pushdown automaton) and a machine (here in the
sense of, for example, a finite state machine (or a pushdown machine)).)

212 Instance: An individual, a thing, an entity . (We shall usually think of an
‘instance’ as a value.)

213 Instantiation: ‘To represent (an abstraction) by a concrete instance’
[209]. (We shall sometimes be using the term ‘instantiation’ in lieu of
a function invocation on an activation stack .)

214 Installation manual: A document which describes how a computing sys-
tem is to be installed. (A special case of ‘installation’ is the downloading
of software onto a computing system. See also training manual and user
manual .)

215 Intangible: Not tangible.
216 Integrity: By a machine having integrity we mean that that machine

remains unimpaired, i.e., has no faults, errors and failures, and remains so
even in the situations where the environment of the machine has faults,
errors and failures. (Integrity is a dependability requirement.)

217 Intension: Intension indicates the internal content of a term. (See also
in intension. The intension of a concept is the collection of the properties
possessed jointly by all conceivable individuals falling under the concept
[166]. The intension determines the extension [166].)

218 Intensional: Adjective form of intension.
219 Interact: The term interact here addresses the phenomenon of one be-

haviour acting in unison, simultaneously, concurrently, with another be-
haviour, including one behaviour influencing another behaviour. (See also
interaction.)

220 Interaction: Two-way reciprocal action.
221 Interface: Boundary between two disjoint sets of communicating phe-

nomena or concepts. (We shall think of the systems as behaviours or pro-
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cesses, the boundary as being channels, and the communications as inputs
and outputs.)

222 Interface requirements: By interface requirements we understand the
expression of expectations as to which software-software, or software-
hardware interface places (i.e., channels), inputs and outputs (including
the semiotics of these input/outputs) there shall be in some contemplated
computing system. (Interface requirements can often, usefully, be classified
in terms of shared data initialisation requirements, shared data refreshment
requirements, computational data+control requirements, man-machine dia-
logue requirements, man-machine physiological requirements and machine-
machine dialogue requirements. Interface requirements constitute one re-
quirements facet. Other requirements facets are: business process reengi-
neering , domain requirements and machine requirements.)

223 Interface requirements facet: See interface requirements for a list
of facets: shared data initialisation, shared data refreshment, computa-
tional data+control , man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.

224 Interpret: See next: interpretation.
225 Interpretation: The three terms elaboration, evaluation and interpreta-

tion essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term interpretation in the
more narrow sense of designating, or yielding functions from syntactical
items to functions from configurations to states.

226 Interpreter: An interpreter is an agent, a machine, which performs in-
terpretations.

227 Intrinsics: By the intrinsics of a domain we shall understand those phe-
nomena and concepts of a domain which are basic to any of the other
facets, with such a domain intrinsics initially covering at least one specific,
hence named, stakeholder view. (Intrinsics is thus one of several domain
facets. Others include: business processes, support technology , management
and organisation, rules and regulations, and human behaviour .)

228 Invariant: By an invariant we mean a property that holds of a phe-
nomenon or a concept, both before and after any action involving that
phenomenon or a concept. (A case in point is usually an information or a
data structure: Assume an action, say a repeated one (e.g., a while loop).
We say that the action (i.e., the while loop) preserves an invariant, i.e.,
usually a proposition, if the proposition holds true of the state before and
the state after any interpretation of the while loop. Invariance is here seen
separate from the well-formedness of an information or a data structure. We
refer to the explication of well-formedness!)

K
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229 Keyword: A significant word from a title or document. (See KWIC .)
230 Knowledge: What is, or what can be known. The body of truth, infor-

mation, and principles acquired by mankind [209]. (See epistemology and
ontology . A priori knowledge: Knowledge that is independent of all partic-
ular experiences. A posteriori knowledge: Knowledge, which derives from
experience alone.)

L

231 Label: Same as named program point.
232 Language: By a language we shall understand a possibly infinite set

of sentences which follow some syntax , express some semantics and are
uttered, or written down, due to some pragmatics.

233 Law: A law is a rule of conduct prescribed as binding or enforced by a
controlling authority. (We shall take the term law in the specific sense
of law of Nature (cf., Ampére’s Law, Boyle’s Law, the conservation laws
(of mass-energy, electric charge, linear and angular momentum), Newton’s
Laws, Ohm’s Law, etc.), and laws of Mathematics (cf. “law of the excluded
middle” (as in logic: a proposition must either be true, or false, not both,
and not none)).)

234 Lemma: An auxiliary proposition used in the demonstration of another
proposition. (Instead of proposition we could use the term theorem.)

235 Link: A link is the same as a pointer , an address or a reference: something
which refers to, i.e., designates something (typically something else).

236 Linguistics: The study and knowledge of the syntax , semantics and prag-
matics of language(s).

237 List: A list is an ordered sequence of zero, one or more not necessarily
distinct entities.

238 Literal: A term whose use in software engineering, i.e., programming,
shall mean: an identifier which denotes a constant, or is a keyword. (Usu-
ally that identifier is emphasised. Examples of RSL literals are: Bool,
true, false, chaos, if, then, else, end, let, in, and the numerals
0, 1, 2., ..., 1234.5678, etc.)

239 Live Sequence Chart: The Live Sequence Chart language is a special
graphic notation for expressing communication between and coordination
and timing of processes. (See [63, 102, 126].)

240 Location: By a location is meant an area of storage.
241 Logic: The principles and criteria of validity of inference and deduction,

that is, the mathematics of the formal principles of reasoning. (We refer
to Vol. 1, Chap. 9 for our survey treatment of mathematical logic.)

242 Logic programming: Logic programming is programming based on an
interpreter which either performs deductions or inductions, or both. (In
logic programming the chief values are those of the Booleans, and the chief
forms of expressions are those of propositions and predicates.)
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243 Logic programming language: By a logic programming language is
meant a language which allows one to express, to prescribe, logic program-
ming . (The classical logic programming language is Prolog [142, 112].)

244 Loose specification: By a loose specification is understood a specifi-
cation which either underspecifies a problem, or specifies this problem
nondeterministically .

M

245 Machine: By the machine we understand the hardware plus software that
implements some requirements, i.e., a computing system. (This definition
follows that of M.A. Jackson [123].)

246 Machine requirements: By machine requirements we understand re-
quirements put specifically to, i.e., expected specifically from, the ma-
chine. (We normally analyse machine requirements into performance re-
quirements, dependability requirements, maintenance requirements, platform
requirements and documentation requirements.)

247 Machine service: The service delivered by a machine is its behaviour as
it is perceptible by its user(s), where a user is a human, another machine,
or a(nother) system which interacts with it [182].

248 Maintenance: By maintenance we shall here, for software, mean change
to software, i.e., its various documents, due to needs for (i) adapting that
software to new platforms, (ii) correcting that software due to observed
software errors, (iii) improving certain performance properties of the ma-
chine of which the software is part, or (iv) avoiding potential problems
with that machine. (We refer to subcategories of maintenance: adaptive
maintenance, corrective maintenance, perfective maintenance and preventive
maintenance.)

249 Maintenance requirements: By maintenance requirements we under-
stand requirements which express expectations on how the machine being
desired (i.e., required) is expected to be maintained. (We also refer to
adaptive maintenance, corrective maintenance, perfective maintenance and
preventive maintenance.)

250 Management and organisation: By management and organisation we
mean those facets of a domain which are representative of relations be-
tween the various management levels of an enterprise, and between these
and non-management staff, i.e., “blue-collar” workers. (As such, manage-
ment and organisation is about formulating strategical, tactical and oper-
ational goals for the enterprise, of communicating and “translating” these
goals into action to be done by management and staff, in general, and
to “backstop” when “things do not ‘work out’ ”, i.e., handling complaints
from “above” and “below”. Other facets of an enterprise are those of its
intrinsics, business processes, support technology , rules and regulations and
human behaviour .)
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251 Man-machine dialogue: By man-machinedialogues we understand ac-
tual instantiations of user interactions with machines, and machine in-
teractions with users: what input the users provide, what output the
machine initiates, the interdependencies of these inputs/outputs, their
temporal and spatial constraints, including response times, input/output
media (locations), etc. (

252 Man-machine dialogue requirements: By man-machine dialogue re-
quirements we understand those interface requirements which express ex-
pectations on, i.e., mandates the protocol according to which users are
to interact with the machine, and the machine with the users. (See
man-machine dialogue. For other interface requirements see computational
data+control requirements, shared data initialisation requirements, shared
data refreshment requirements, man-machine physiological requirements and
machine-machine dialogue requirements.))

253 Man-machine physiological requirements: By man-machine physi-
ological requirements we understand those interface requirements which
express expectations on, i.e., mandates, the form and appearance of ways
in which the man-machine dialogue utilises such physiological devices as vi-
sual display screens, keyboards, “mouses” (and other tactile instruments),
audio microphones and loudspeakers, television cameras, etc. (See also
computational data+control requirements, shared data initialisation require-
ments, shared data refreshment requirements, man-machine dialogue require-
ments and machine-machine dialogue requirements.)

254 Map: A map is like a function, but is here thought of as an enumerable
set of pairs of argument/result values. (Thus the definition set of a map is
usually decidable, i.e., whether an entity is a member of a definition set
of a map or not can usually be decided.)

255 Mereology: The theory of parthood relations: of the relations of part
to whole and the relations of part to part within a whole. (Mereology is
often considered a branch of ontology . Leading investigators of mereology
were Franz Brentano, Edmund Husserl, Stanislaw Lesniewski [199, 145,
159, 206, 207, 214] and Leonard and Goodman [137].)

256 Meta-IV: Meta-IV stands for the fourth metalanguage (for programing
language definition conceived at the IBM Vienna Laboratory in the 1960s
and 1970s). (Meta-IV is pronounced meta-four.)

257 Metalanguage: By a metalanguage is understood a language which is
used to explain another language, either its syntax , or its semantics, or its
pragmatics, or two or all of these! (One cannot explain any language using
itself. That would lead to any interpretation of what is explained being
a valid solution, in other words: Nonsense. RSL thus cannot be used to
explain RSL. Typically formal specification languages are metalanguages:
being used to explain, for example, the semantics of ordinary programming
languages.)

258 Metalinguistic: We say that a language is used in a metalinguistic man-
ner when it is being deployed to explain some other language. (And we
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also say that when we examine a language, like we could, for example,
examine RSL, and when we use a subset of RSL to make that analysis,
then that subset of RSL is used metalinguistically (wrt. all of RSL).)

259 Metaphysics: We quote from: http://mally.stanford.edu/: “Whereas
physics is the attempt to discover the laws that govern fundamental con-
crete objects, metaphysics is the attempt to discover the laws that system-
atize the fundamental abstract objects presupposed by physical science,
such as natural numbers, real numbers, functions, sets and properties,
physically possible objects and events, to name just a few. The goal of
metaphysics, therefore, is to develop a formal ontology, i.e., a formally
precise systematization of these abstract objects. Such a theory will be
compatible with the world view of natural science if the abstract objects
postulated by the theory are conceived as patterns of the natural world.”
(Metaphysics may, to other scientists and philosophers, mean more or
other, but for software engineering the characterisation just given suf-
fices.)

260 Method: By a method we shall here understand a set of principles for
selecting and using a number of techniques and tools in order to construct
some artefact. (This is our leading definition — one that sets out our
methodological quest: to identify, enumerate and explain the principles,
the techniques and, in cases, the tools — notably where the latter are
specification and programming languages. (Yes, languages are tools.))

261 Methodology: By methodology we understand the study and knowledge
of methods, one, but usually two or more. (In some dialects of English,
methodology is confused with method.)

262 Model: A model is the mathematical meaning of a description (of a do-
main), or a prescription (of requirements), or a specification (of software),
i.e., is the meaning of a specification of some universe of discourse. (The
meaning can be understood either as a mathematical function, as for a
denotational semantics meaning, or an algebra as for an algebraic semantics
or a denotational semantics meaning, etc. The essence is that the model is
some mathematical structure.)

263 Model-oriented: A specification (description, prescription) is said to be
model-oriented if the specification (etc.) denotes a model . (Contrast to
property-oriented .)

264 Model-oriented type: A type is said to be model-oriented if its specifi-
cation designates a model . (Contrast to property-oriented type.)

265 Modularisation: The act of structuring a text using modules.
266 Module: By a module we shall understand a clearly delineated text which

denotes either a single complex quantity, as does, usually, an object, or a
possibly empty, possibly infinite set of models of objects. (The RSL module
concept is manifested in the use of one or more of the RSL class (class ...
end), object (object identifier class ... end, etc.), and scheme (scheme
identifier class ... end), etc., constructs. We refer to [62, 61, 25] and to
[172, 171] for original, early papers on modules.)
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267 Module design: By module design we shall understand the design of
(one or more) modules.

268 Monotonic: A function, f : A → B, is monotonic, if for all a, a′ in the
definition set A of f , and some ordering relations, ⊑, on a and B, we have
that if a ⊑ a′ then f(a) ⊑ f(a′).

269 Multi-dimensional: A composite (i.e., a nonatomic) entity is a multi-
dimensional entity if some relations between properly contained (i.e., con-
stituent) subentities (cf. subentity) can only be described by both forward
and backward references, and/or with recursive references. (This is in con-
trast to one-dimensional entities.)

270 Multimedia: The use of various forms of input/output media in the man-
machine interface: Text, two-dimensional graphics, voice (audio), video,
and tactile instruments (like “mouse”).

N

271 Name: A name is syntactically (generally an expression, but usually it
is) a simple alphanumeric identifier. Semantically a name denotes (i.e.,
designates) “something”. Pragmatically a name is used to uniquely iden-
tify that “something”. (Shakespeare: Romeo: “What’s in a name?” Juliet
to Romeo: “That which we call a rose by any other name would smell as
sweet.”)

272 Naming: The action of allocating a unique name to a value.
273 Narrative: By a narrative we shall understand a document text which, in

precise, unambiguous language, introduces and describes (prescribes, spec-
ifies) all relevant properties of entities, functions, events and behaviours,
of a set of phenomena and concepts, in such a way that two or more
readers will basically obtain the same idea as to what is being described
(prescribed, specified). (More commonly: Something that is narrated, a
story.)

274 Natural language: By a natural language we shall understand a lan-
guage like Arabic, Chinese, English, French, Russian, Spanish, etc. — one
that is spoken today, 2005, by people, has a body of literature, etc. (In
contrast to natural languages we have (i) professional languages, like the
languages of medical doctors, or lawyers, or skilled craftsmen like car-
penters, etc.; and we have (ii) formal languages like software specification
languages, programming languages, and the languages of first-order pred-
icate logics, etc.)

275 Network: By a network we shall understand the same as a directed, but
not necessarily acyclic graph. (Our only use of it here is in connection with
network databases.)

276 Node: A point in some graph or tree.
277 Nondeterminate: Same as nondeterministic .
278 Nondeterministic: A property of a specification: May, on purpose, i.e.,

deliberately have more than one meaning. (A specification which is am-
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biguous also has more than one meaning, but its ambiguity is of overriding
concern: It is not ‘nondeterministic’ (and certainly not ‘deterministic’ !).)

279 Nondeterminism: A nondeterministic specification models nondetermin-
ism.

280 Notation: By a notation we shall usually understand a reasonably pre-
cisely delineated language. (Some notations are textual, as are program-
ming notations or specification languages; some are diagrammatic, as are,
for example, Petri nets, statecharts, live sequence charts, etc.)

281 Noun: Something, a name, that refers to an entity , a quality, a state, an
action, or a concept. Something that may serve as the subject of a verb.
(But beware: In English many nouns can be “verbed”, and many verbs
can be “nouned”!)

O

282 Object: An instance of the data structure and behaviour defined by the
object’s class. Each object has its own values for the instance variables of
its class and can respond to the functions defined by its class. (Various
specification languages, object Z [54, 72, 73], RSL, etc., each have their
own, further refined, meaning for the term ‘object’, and so do object-
oriented programming language (viz., C++ [213], Java [15, 89, 139, 223, 10,
197], C# [174, 158, 157, 106] and so on).)

283 Object-oriented: We say that a program is object-oriented if its main
structure is determined by a modularisation into a class, that is, a cluster of
types, variables and procedures, each such set acting as a separate abstract
data type. Similarly we say that a programming language is object-oriented
if it specifically offers language constructs to express the appropriate mod-
ularisation. (Object-orientedness became a mantra of the 1990s: Every-
thing had to be object-oriented. And many programming problems are
indeed well served by being structured around some object-oriented no-
tion. The first object-oriented programming language was Simula 67 [25].)

284 Observer: By an observer we mean basically the same as an observer
function.

285 Observer function: An observer function is a function which when “ap-
plied” to an entity (a phenomenon or a concept) yields subentities or at-
tributes of that entity (without “destroying” that entity). (Thus we do
not make a distinction between functions that observe subentities (cf.
subentity) and functions that observe attributes. You may wish to make
distinctions between the two kinds of observer function. You can do so
by some simple naming convention: assign names the prefix obs when
you mean to observe subentities, and attr when you mean to observe
attributes. Vol. 3 Chap. 5 introduces these concepts.)

286 Ontology: In philosophy: A systematic account of Existence. To us: An
explicit formal specification of how to represent the phenomena, concepts
and other entities that are assumed to exist in some area of interest (some
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universe of discourse) and the relationships that hold among them. (Fur-
ther clarification: An ontology is a catalogue of concepts and their rela-
tionships — including properties as relationships to other concepts. See
Sect. C.1.4.)

287 Operation: By an operation we shall mean a function, or an action (i.e.,
the effect of function invocation). (The context determines which of these
two strongly related meanings are being referred to.)

288 Operational: We say that a specification (a description, a prescription),
say of a function, is operational if what it explains is explained in terms of
how that thing, how that phenomenon, or concept, operates (rather than
by what it achieves). (Usually operational definitions are model oriented
(in contrast to property oriented).)

289 Operational abstraction: Although a definition (a specification, a de-
scription, or a prescription) may be said, or claimed, to be operational , it
may still provide abstraction in that the model-oriented concepts of the
definition are not themselves directly representable or performable by hu-
mans or computers. (This is in contrast to denotational abstractions or
algebraic (or axiomatic) abstractions.)

290 Operational semantics: A definition of a language semantics that is
operational . (See also structural operational semantics.)

291 Operation transformation: To speak of operation reification one must
first be able to refer to an abstract, usually property-oriented , specification
of the operation. Then, by operation transformation we mean a specification
which is, somehow, calculated from the abstract specification. (Three nice
books on such calculi are: [161, 24, 16].)

292 Optative: Expressive of wish or desire. (See also imperative, indicative,
and putative.)

293 Organisation: By organisation we shall here, in a narrow sense, only
mean the administrative or functional structure of an enterprise, a pub-
lic or private administration, or of a set of services, as for example in a
consumer/retailer/wholesaler/producer/distributor market, or in a finan-
cial services industry, etc.

294 Organisation and management: The composite term organisation and
management applies in connection with organisations as outlined just
above. The term then emphasises the relations between the organisation
and its management. (For more, see management and organisation.)

295 Output: By output we mean the communication of information (data) to
an outside, an environment, from a phenomenon “within” our universe of
discourse. (More colloquially, and more generally: output can be thought
of as value(s) transferred over channel(s) from, or between, processes. Cf.
input. In a narrow sense we talk of output from a machine (e.g., a finite
state machine or a pushdown machine).)

296 Overloaded: The concept of ‘overloaded’ is a concept related to function
symbols, i.e., function names. A function name is said to be overloaded
if there exists two or more distinct signatures for that function name.
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(Typically overloaded function symbols are ‘+’, which applies, possibly,
in some notation, to addition of integers, addition of reals, etc., and ‘=’,
which applies, possibly, in some notation, to comparison of any pair of
values of the same type.)

P

297 Paradigm: A philosophical and theoretical framework of a scientific
school or discipline within which theories, laws and generalizations and
the experiments performed in support of them are formulated; a philo-
sophical or theoretical framework of any kind. (Software engineering is
full of paradigms: Object-orientedness is one.)

298 Parallel programming language: A programming language whose ma-
jor kinds of concepts are processes, process composition [putting pro-
cesses in parallel and nondeterministic {internal or external} choice of
process elaboration], and synchronisation and communication between pro-
cesses. (A main example of a practical parallel programming language
is occam [116], and of a specificational ‘programming’ language is CSP

[110, 194, 196]. Most recent imperative programming languages (Java, C#,
etc.) provide for programming constructs (e.g., threads) that somehow
mimic parallel programming.)

299 Perfective maintenance: By perfective maintenance we mean an up-
date, as here, of software, to achieve a more desirable use of resources:
time, storage space, equipment. (We also refer to adaptive maintenance,
corrective maintenance and preventive maintenance.)

300 Performance: By performance we, here, in the context of computing,
mean quantitative figures for the use of computing resources: time, storage
space, equipment.

301 Performance requirements: By performance requirements we mean
requirements which express performance properties (desiderata).

302 Phase: By a phase we shall here, in the context of software development,
understand either the domain development phase, the requirements devel-
opment phase, or the software design phase.

303 Phenomenon: By a phenomenon we shall mean a physically manifest
“thing”. (Something that can be sensed by humans (seen, heard, touched,
smelled or tasted), or can be measured by physical apparatus: Electric-
ity (voltage, current, etc.), mechanics (length, time and hence velocity,
acceleration, etc.), chemistry, etc.)

304 Phenomenology: Phenomenology is the study of structures of conscious-
ness as experienced from the first-person point of view [227].

305 Platform: By a platform, we shall, in the context of computing, un-
derstand a machine: Some computer (i.e., hardware) equipment and some
software systems. (Typical examples of platforms are: Microsoft Windows
running on an IBM ThinkPad Series T model, or Trusted Solaris op-
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erating system with an Oracle Database 10g running on a Sun Fire E25K

Server.)
306 Platform requirements: By platform requirements we mean require-

ments which express platform properties (desiderata). (There can be sev-
eral platform requirements: One set for the platform on which software
shall be developed. Another set for the platform(s) on which software
shall be utilised. A third set for the platform on which software shall be
demonstrated. And a fourth set for the platform on which software shall
be maintained. These platforms need not always be the same.)

307 Portability: Portability is a concept associated with software, more
specifically with the programs (or data). Software is (or files, including
data base records, are) said to be portable if it (they), with ease, can be
“ported” to, i.e., made to “run” on, a new platform and/or compile with
a different compiler, respectively different database management system.

308 Post-condition: The concept of post-condition is associated with func-
tion application. The post-condition of a function f is a predicate pof

which expresses the relation between argument a and result r values that
the function f defines. If a represent argument values, r corresponding
result values and f the function, then f(a) = r can be expressed by the
post-condition predicate pof

, namely, for all applicable a and r the pred-
icate pof

expresses the truth of pof
(a, r). (See also pre-condition.)

309 Postfix: The concept of postfix is basically a syntactic one, and is asso-
ciated with operator/operand expressions. It is one about the displayed
position of a unary (i.e., a monadic) operator with respect to its operand
(expression). An expression is said to be in postfix form if a monadic
operator is shown, is displayed, after the expression to which it applies.
(Typically the factorial operator, say !, is shown after its operand expres-
sion, viz. 7!.)

310 Pragmatics: Pragmatics is the (i) study and (ii) practice of the factors
that govern our choice of language in social interaction and the effects
of our choice on others. (We use the term pragmatics in connection with
the use of language, as complemented by the semantics and syntax of
language.)

311 Pre-condition: The concept of pre-condition is associated with function
application where the function being applied is a partial function. That
is: for some arguments of its definition set the function yields chaos,
that is, does not terminate. The pre-consition of the function is then a
predicate which expresses those values of the arguments for which the
function application terminates, that is, yields a result value. (See weakest
pre-condition.)

312 Predicate: A predicate is a truth-valued expression involving terms over
arbitrary values, well-formed formula relating terms and with Boolean
connectives and quantifiers.

313 Predicate logic: A predicate logic is a language of predicates (given by
some formal syntax) and a proof system.
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314 Presentation: By presentation we mean the syntactic documentation of
the results of some development.

315 Prescription: A prescription is a specification which prescribes some-
thing designatable, i.e., which states what shall be achieved. (Usually the
term ‘prescription’ is used only in connection with requirements prescrip-
tions.)

316 Preventive maintenance: By preventive maintenance — of a machine
— we mean that a set of special tests are performed on that machine
in order to ascertain whether the machine needs adaptive maintenance,
and/or corrective maintenance, and/or perfective maintenance. (If so, then
an update, as here, of software, has to be made in order to achieve suitable
integrity or robustness of the machine.)

317 Principle: An accepted or professed rule of action or conduct, . . . , a
fundamental doctrine, right rules of conduct, . . . [211]. (The concept of
principle, as we bring it forth, relates strongly to that of method . The
concept of principle is “fluid”. Usually, by a method, some people under-
stand an orderliness. Our definition puts the orderliness as part of overall
principles. Also, one usually expects analysis and construction to be effi-
cient and to result in efficient artifacts. Also this we relegate to be implied
by some principles, techniques and tools.)

318 Procedure: By a procedure we mean the same as a function. (Same as
routine or subroutine.)

319 Process: By a process we understand a sequence of actions and events.
The events designate interaction with some environment of the process.

320 Program: A program, in some programming language, is a formal text
which can be subject to interpretation by a computer. (Sometimes we use
the term code instead of program, namely when the program is expressed
in the machine language of a computer.)

321 Programmable: An active dynamic phenomenon has the programmable
(active dynamic) attribute if its actions (hence state changes) over a future
time interval can be accurately prescribed. (Cf. autonomous and biddable.)

322 Programmer: A person who does software design.
323 Program organisation: By program organisation we loosely mean how

a program (i.e., its text) is structured into, for example, modules (eg.,
classes), procedures, etc.

324 Programming: The act of constructing programs. From [79]:
1: The art of debugging a blank sheet of paper (or, in these days
of on-line editing, the art of debugging an empty file). 2: A pas-
time similar to banging one’s head against a wall, but with fewer
opportunities for reward. 3: The most fun you can have with your
clothes on (although clothes are not mandatory).

325 Programming language: A language for expressing programs, i.e., a
language with a precise syntax , a semantics and some textbooks which
provides remnants of the pragmatics that was originally intended for that
programming language. (See next entry: programming language type.)
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326 Programming language type: With a programming language one can
associate a type. Typically the name of that type intends to reveal the
type of a main paradigm, or a main data type of the language. (Examples
are: functional programming language (major data type is functions, major
operations are definition of functions, application of functions and com-
position of functions), logic programming language (major kinds of expres-
sions are ground terms in a Boolean algebra, propositions and predicates),
imperative programming language (major kinds of language constructs are
declaration of assignable variables, and assignment to variables, and a
more or less indispensable kind of data type is references [locations, ad-
dresses, pointers]), and parallel programming language.)

327 Projection: By projection we shall here, in a somewhat narrow sense,
mean a technique that applies to domain descriptions and yields require-
ments prescriptions. Basically projection “reduces” a domain description
by “removing” (or, but rarely, hiding) entities, functions, events and be-
haviours from the domain description. (If the domain description is an
informal one, say in English, it may have expressed that certain enti-
ties, functions, events and behaviours might be in (some instantiations
of) the domain. If not “projected away” the similar, i.e., informal require-
ments prescription will express that these entities, functions, events and
behaviours shall be in the domain and hence will be in the environment
of the machine being requirements prescribed.)

328 Proof: A proof of a theorem, φ, from a set, Γ , of sentences of some formal
propositional or predicate language, L, is a finite sequence of sentences, φ1,
φ2, . . . , φn, where φ = φ1, where φn = true, and in which each φi is either
an axiom of L, or a member of Γ , or follows from earlier φj ’s by an inference
rule of L.

329 Proof obligation: A clause of a program may only be (dynamically) well-
defined if the values of clause parts lie in certain ranges (viz. no division by
zero). We say that such clauses raise proof obligations, i.e., an obligation
to prove a property. (Classically it may not be statically (i.e., compile
time) checkable that certain expression values lie within certain subtypes.
Discharging a proof may help ensure such constraints.)

330 Proof rule: Same as inference rule or axiom.
331 Proof system: A consistent and (relative) complete set of proof rules.
332 Property: A quality belonging and especially peculiar to an individual

or thing; an attribute common to all members of a class. (Hence: “Not a
property owned by someone, but a property possessed by something”.)

333 Property-oriented: A specification (description, prescription) is said to
be property-oriented if the specification (etc.) expresses attributes. (Con-
trast to model oriented .)

334 Proposition: An expression in language which has a truth value.
335 Pure functional programming language: A functional programming

language is said to be pure if none of its constructs designates side-effects.
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336 Putative: Commonly accepted or supposed, that is, assumed to exist or
to have existed. (See also imperative, indicative and optative.)

Q

337 Quality: Specific and essential character. (Quality is an attribute, a prop-
erty , a characteristic (something has character).)

338 Quantification: The operation of quantifying. (See quantifier . The x (the
y) is quantifying expression ∀x:X·P (x) (respectively ∃y:Y ·Q(y)).)

339 Quantifier: A marker that quantifies. It is a prefixed operator that binds
the variables in a logical formula by specifying their possible range of
values. (Colloquially we speak of the universal and the existential quan-
tifiers, ∀, respectively ∃. Typically a quantified expression is then of either
of the forms ∀x:X·P (x) and ∃y:Y ·Q(y). They ‘read’: For all quantities x
of type X it is the case that the predicate P (x) holds; respectively: There
exists a quantity y of type Y such that the predicate Q(y) holds.)

340 Quantity: An indefinite value. (See the quantifier entry: The quantities
in P (x) (respectively Q(y)) are of type X (respectively Y ). y is indefinite
in that it is one of the quantities of Y , but which one is not said.)

R

341 RAISE: RAISE stands for Rigorous Approach to Industrial Software
Engineering. (RAISE refers to a method, The RAISE Method [87], a speci-
fication language, RSL [85], and “comes” with a set of tools.)

342 Range: The concept of range is here used in connection with functions.
Same as range set. See next entry.

343 Range set: Given a function, its range set is that set of values which is
yielded when the function is applied to each member of its definition set.

344 Reactive: A phenomenon is said to be reactive if the phenomenon per-
forms actions in response to external stimuli. Thus three properties must
be satisfied for a system to be of reactive dynamic attribute: (i) An inter-
face must be definable in terms of (ii) provision of input stimuli and (iii)
observation of (state) reaction. (Contrast to inert and active.)

345 Reactive system: A system whose main phenomena are chiefly reactive.
(See the reactive entry just above.)

346 Real time: We say that a phenomenon is real time if its behaviour some-
how must guarantee a response to an external event within a given time.
(Cf. hard real time and soft real time.)

347 Reasoning: Reasoning is the ability to infer , i.e., to make deductions or
inductions. (Automated reasoning is concerned with the building and use
of computing systems that automate this process. The overall goal is to
mechanise different forms of reasoning.)
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348 Reengineering: By reengineering we shall, in a narrow sense, only con-
sider the reengineering of business processes. Thus, to us, reengineering
is the same as business process reengineering . (Reengineering is also used
in the wider sense of a major change to some already existing engineering
artefact.)

349 Reference: A reference is the same as an address, a link , or a pointer :
something which refers to, i.e., designates something (typically something
else).

350 Refinement: Refinement is a relation between two specifications: One
specification, D, is said to be a refinement of another specification, S,
if all the properties that can be observed of S can be observed in D.
Usually this is expressed as D ⊑ S. (Set-theoretically it works the other
way around: in D ⊇ S, D allows behaviours not accounted for in S.)

351 Refutable assertion: A refutable assertion is an assertion that might
be refuted (i.e., convincingly shown to be false). (Einstein’s theory of
relativity, in a sense, refuted Newton’s laws of mechanics. Both theories
amount to assertions.)

352 Refutation: A refutation is a statement that (convincingly) refutes an
assertion. (Lakatos [130] drew a distinction between refutation (evidence
that counts against a theory) and rejection (deciding that the original
theory has to be replaced by another theory). We can still use Newton’s
theory provided we stay within certain boundaries, within which that
theory is much easier to handle than Einstein’s theory.)

353 Reification: The result of a reify action. (See also data reification, opera-
tion reification and refinement.)

354 Reify: To regard (something abstract) as a material or concrete thing.
(Our use of the term is more operational : To take an abstract thing and
turn it into a less abstract, more concrete thing.)

355 Reliability: A system being reliable — in the context of a machine being
dependable — means some measure of continuous correct service, that is:
Measure of time to failure. (Cf. dependability [being dependable].) (Reli-
ability is a dependability requirement. Usually reliability is considered a
machine property. As such, reliability is (to be) expressed in a machine
requirements document.)

356 Renaming: By renaming we mean Alpha-renaming . (Renaming, in this
sense, is a concept of the Lambda-calculus.)

357 Representation abstraction: By representation abstraction of [typed]
values we mean a specification which does not hint at a particular data
(structure) model, that is, which is not implementation biased. (Usually a
representation abstraction (of data) is either property oriented or is model
oriented . In the latter case it is then expressed, typically, in terms of
mathematical entities such as sets, Cartesians, lists, maps and functions.)

358 Requirements: A condition or capability needed by a user to solve a
problem or achieve an objective [114].
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359 Requirements acquisition: The gathering and enunciation of require-
ments. (Requirements acquisition comprises the activities of preparation,
requirements elicitation (i.e. requirements capture) and preliminary require-
ments evaluation (i.e., requirements vetting).)

360 Requirements analysis: By requirements analysis we understand a
reading of requirements acquisition (rough) prescription units, (i) with
the aim of forming concepts from these requirements prescription units,
(ii) as well as with the aim of discovering inconsistencies, conflicts and in-
completenesses within these requirements prescription units, and (iii) with
the aim of evaluating whether a requirements can be objectively shown to
hold, and if so what kinds of tests (etc.) ought be devised.

361 Requirements capture: By requirements capture we mean the act of
eliciting, of obtaining, of extracting, requirements from stakeholders. (For
practical purposes requirements capture is synonymous with requirements
elicitation.)

362 Requirements definition: Proper definitional part of a requirements pre-
scription.

363 Requirements development: By requirements development we shall
understand the development of a requirements prescription. (All aspects are
included in development: requirements acquisition, requirements analysis,
requirements model ling, requirements validation and requirements verifi-
cation.)

364 Requirements elicitation: By requirements elicitation we mean the ac-
tual extraction of requirements from stakeholders.

365 Requirements engineer: A requirements engineer is a software engineer
who performs requirements engineering . (Other forms of software engineers
are domain engineers and software designers (cum programmer).)

366 Requirements engineering: The engineering of the development of a
requirements prescription, from identification of requirements stakeholders,
via requirements acquisition, requirements analysis, and requirements pre-
scription to requirements validation and requirements verification.

367 Requirements facet: A requirements facet is a view of the requirements
— “seen from a domain description” — such as domain projection, domain
determination, domain instantiation, domain extension, domain fitting or do-
main initialisation.

368 Requirements prescription: By a requirements prescription we mean
just that: the prescription of some requirements. (Sometimes, by require-
ments prescription, we mean a relatively complete and consistent specifi-
cation of all requirements, and sometimes just a requirements prescription
unit.)

369 Requirements prescription unit: By a requirements prescription unit
we understand a short, “one or two liner”, possibly rough sketch, prescrip-
tion of some property of a domain requirements, an interface requirements,
or a machine requirements. (Usually requirements prescription units are
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the smallest textual, sentential fragments elicited from requirements stake-
holders.)

370 Requirements specification: Same as requirements prescription — the
preferred term.

371 Requirements validation: By requirements validation we rather mean
the validation of a requirements prescription.

372 Retrieval: Used here in two senses: The general (typically database-
oriented) sense of ‘the retrieval [the fetching] of data (of obtaining infor-
mation) from a repository of such’. And the special sense of ‘the retrieval
of an abstraction from a concretisation’, i.e., abstracting a concept from a
phenomenon (or another, more operational concept). (See the next entry
for the latter meaning.)

373 Retrieve function: By a retrieve function we shall understand a function
that applies to values of some type, the “more concrete, operational” type,
and yields values of some type claimed to be more abstract. (Same as
abstraction function.)

374 Rigorous: Favoring rigor, i.e., being precise.
375 Rigorous development: Same as the composed meaning of the two

terms rigorous and development. (We usually speak of a spectrum of de-
velopment modes: systematic development, rigorous development and for-
mal development. Rigorous software development, to us, “falls” somewhere
between the two other modes of development: (Always) complete formal
specifications are constructed, for all (phases and) stages of development;
some, but usually not all proof obligations are expressed; and usually only
a few are discharged (i.e., proved to hold).)

376 Risk: The Concise Oxford Dictionary [140] defines risk (noun) in terms
of a hazard, chance, bad consequences, loss, etc., exposure to mischance.
Other characterisations of the term risk are: someone or something that
creates or suggests a hazard, and possibility of loss or injury.

377 Robustness: A system is robust — in the context of a machine being
dependable — if it retains all its dependability attributes (i.e., properties)
after failure and after maintenance. (Robustness is (thus) a dependability
requirement.)

378 Root: A root is a node of a tree which is not a subtree of a larger,
embedding (embedded) tree.

379 Rough sketch: By a rough sketch — in the context of descriptive software
development documentation — we shall understand a document text which
describes something which is not yet consistent and complete, and/or
which may still be too concrete, and/or overlapping, and/or repetitive
in its descriptions, and/or with which the describer has yet to be fully
satisfied.

380 Route: Same as path.
381 Routine: Same as procedure.
382 RSL: RSL stands for the RAISE [87] Specification Language [85]. ()
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383 Rule: A regulating principle. (We use the concept of rules in several
different contexts: rewrite rule, rule of grammar and rules and regulations.)

S

384 Safety: By safety — in the context of a machine being dependable —
we mean some measure of continuous delivery of service of either correct
service, or incorrect service after benign failure, that is, measure of time to
catastrophic failure. (Safety is a dependability requirement. Usually safety
is considered a machine property. As such safety is (to be) expressed in a
machine requirements document.)

385 Safety critical: A system whose failure may cause injury or death to
human beings, or serious loss of property, or serious disruption of services
or production, is said to be safety critical.

386 Script: By a domain script we shall understand the structured, almost,
if not outright, formally expressed, wording of a rule or a regulation (cf.
rules and regulations) that has legally binding power, that is, which may
be contested in a court of law.

387 Secure: To properly define the concept of secure, we first assume the
concept of an authorised user. Now, a system is said to be secure if an
un-authorised user, when supposedly making use of that system, (i) is
not able to find out what the system does, (ii) is not able to find out
how it does ‘whatever’ it does do, and (iii), after some such “use”, does
not know whether he/she knows! (The above characterisation represents
an unattainable proposition. As a characterisation it is acceptable. But it
does not hint at ways and means of implementing secure systems. Once
such a system is believed implemented the characterisation can, however
be used as a guide in devising tests that may reveal to which extent the
system indeed is secure. Secure systems usually deploy some forms of
authorisation and encryption mechanisms in guarding access to system
functions.)

388 Security: When we say that a system exhibits security we mean that
it is secure. (Security is a dependability requirement. Usually security is
considered a machine property. As such security is (to be) expressed in a
machine requirements document.)

389 Selector: By a selector (a selector function) we understand a function
which is applicable to values of a certain, defined, composed type, and
which yields a proper component of that value. The function itself is de-
fined by the type definition.

390 Semantics: Semantics is the study and knowledge [incl. specification] of
meaning in language [58]. (We make the distinction between the prag-
matics, the semantics and the syntax of languages. Leading textbooks on
semantics of programming languages are [67, 93, 191, 195, 215, 225].)

391 Semantic function: A semantics function is a function which when ap-
plied to syntactic values yields their semantic values.
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392 Semantic type: By a semantic type we mean a type that defines semantic
values.

393 Semiotics: Semiotics, as used by us, is the study and knowledge of prag-
matics, semantics and syntax of language(s).

394 Sensor: A sensor can be thought of as a piece of technology (an electronic,
a mechanical or an electromechanical device) that senses, i.e., measures,
a physical value. (A sensor is in contrast to an actuator .)

395 Sentence: (i) A word, clause, or phrase or a group of clauses or phrases
forming a syntactic unit which expresses an assertion, a question, a com-
mand, a wish, an exclamation, or the performance of an action, that in
writing usually begins with a capital letter and concludes with appropriate
end punctuation, and that in speaking is distinguished by characteristic
patterns of stress, pitch and pauses; (ii) a mathematical or logical state-
ment (as an equation or a proposition) in words or symbols [209].

396 Sequential: Arranged in a sequence, following a linear order, one after
another.

397 Sequential process: A process is sequential if all its observable actions
can be, or are, ordered in sequence.

398 Set: We understand a set as a mathematical entity, something that is
not mathematically defined, but is a concept that is taken for granted.
(Thus by a set we understand the same as a collection, an aggregation, of
distinct entities. Membership (of an entity) of a set is also a mathematical
concept which is likewise taken for granted, i.e., undefined.)

399 Set theoretic: We say that something is set theoretically understood or
explained if its understanding or explanation is based on sets.

400 Shared data: See shared phenomenon.
401 Shared data initialisation: By shared data initialisation we understand

an operation that (initially) creates a data structure that reflects, i.e., mod-
els, some shared phenomenon in the machine. (See also shared data refresh-
ment.)

402 Shared data initialisation requirements: Requirements for shared data
initialisation. (See also computational data+control requirements, shared
data refreshment requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require-
ments.)

403 Shared data refreshment: By shared data refreshment we understand
a machine operation which, at prescribed intervals, or in response to pre-
scribed events updates an (originally initialised) shared data structure.
(See also shared data initialisation.)

404 Shared data refreshment requirements: Requirements for shared data
refreshment. (See also computational data+control requirements, shared
data initialisation requirements, man-machine dialogue requirements, man-
machine physiological requirements, and machine-machine dialogue require-
ments.)

405 Shared information: See shared phenomenon.
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406 Shared phenomenon: A shared phenomenon is a phenomenon which is
present in some domain (say in the form of facts, knowledge or information)
and which is also represented in the machine (say in the form of data).
(See also shared data and shared information.)

407 Side effect: A language construct that designates the modification of the
state of a system is said to be a side-effect-producing construct. (Typical
side effect constructs are assignment, input and output. A programming
language “without side effects” is said to be a pure functional programming
language.)

408 Sign: Same as symbol .
409 Signature: See function signature.
410 Soft real time: By soft real time we mean a real time property where the

exact, i.e., absolute timing, or time interval, is only of loose, approximate
essence. (Cf., hard real time.)

411 Software: By software we understand not only the code that when “sub-
mitted” to a computer enables desired computations to take place, but
also all the documentation that went into its development (i.e., its do-
main description, requirements specification, its complete software design
(all stages and steps of refinement and transformation), the installation
manual , training manual , and the user manual).

412 Software component: Same as component.
413 Software architecture: By a software architecture we mean a first kind

of specification of software — after requirements — one which indicates
how the software is to handle the given requirements in terms of software
components and their interconnection — though without detailing (i.e.,
designing) these software components.

414 Software design: By software design we shall understand the determi-
nation of which components, which modules and which algorithms shall
implement the requirements — together with all the documents that usu-
ally make up properly documented software. (Software design entails pro-
gramming , but programming is a “narrower” field of activity than soft-
ware design in that programming usually excludes many documentation
aspects.)

415 Software design specification: The specification of a software design.
416 Software development: To us, software development includes all three

phases of software development: domain development, requirements devel-
opment and software design.

417 Software development project: A software development project is a
planning, research and development project whose aim is to construct
software.

418 Software engineer: A software engineer is an engineer who performs
one or more of the functions of software engineering . (These functions
include domain engineering , requirements engineering and software design
(incl. programming).)
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419 Software engineering: The confluence of the science, logic, discipline,
craft and art of domain engineering , requirements engineering and software
design.

420 Sort: A sort is a collection, a structure, of, at present, further unspecified
entities. (That is, same as an algebraic type. When we say “at present,
further unspecified”, we mean that the (values of the) sort may be subject
to constraining axioms. When we say “a structure”, we mean that “this
set” is not necessarily a set in the simple sense of mathematics, but may
be a collection whose members satisfy certain interrelations, for example,
some partially ordered set, some neighbourhood set or other.)

421 Sort definition: The definition of a sort. (Usually a sort definition consists
of the (introduction of) a type name, some (typically observer function and
generator function) signatures, and some axioms relating sort values and
functions.)

422 Source program: By a source program we mean a program (text) in some
programming language. (The term source is used in contrast to target: the
result of compiling a source text for some target machine.)

423 Span: Span is here used, in contrast to scope, more specifically in the
context of the degree to which a project scope and span extend: Scope
being the “larger, wider” delineation of what a project “is all about”, span
being the “narrower”, more precise extent.

424 Specification: We use the term ‘specification” to cover the concepts of
domain descriptions, requirements prescriptions and software designs. More
specifically a specification is a definition, usually consisting of many defi-
nitions.

425 Specification language: By a specification language we understand a
formal language capable of expressing formal specifications. (We refer to
such formal specification languages as: ASM [188], B & eventB [4, 5, 52],
CASL [23, 164, 163], CafeOBJ [68, 69], RSL [85, 86], VDM-SL [44, 78] and Z

[203, 205, 226, 108].)
426 Stage: (i) By a development stage we shall understand a set of develop-

ment activities which either starts from nothing and results in a complete
phase documentation, or which starts from a complete phase documen-
tation of stage kind, and results in a complete phase documentation of
another stage kind. (ii) By a development stage we shall understand a
set of development activities such that some (one or more) activities have
created new, externally conceivable (i.e., observable) properties of what
is being described, whereas some (zero, one or more) other activities have
refined previous properties. (Typical development stages are: domain in-
trinsics, domain support technologies, domain management and organisation,
domain rules and regulations, etc., and domain requirements, interface re-
quirements, and machine requirements, etc.)
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427 Stakeholder: By a domain (requirements, software design)2 stakeholder
we shall understand a person, or a group of persons, “united” somehow in
their common interest in, or dependency on the domain (requirements,
software design); or an institution, an enterprise, or a group of such,
(again) characterised (and, again, loosely) by their common interest in,
or dependency on the domain (requirements, software design). (The three
stakeholder groups usually overlap.)

428 Stakeholder perspective: By a stakeholder perspective we shall under-
stand the, or an, understanding of the universe of discourse shared by the
specifically identified stakeholder group — a view that may differ from
one stakeholder group to another stakeholder group of the same universe
of discourse.

429 State: By a state we shall, in the context of computer programs, under-
stand a summary of past computations, and, in the context of domains, a
suitably selected set of dynamic entities.

430 Statechart: The Statechart language is a special graphic notation for
expressing communication between and coordination and timing of pro-
cesses. (See [98, 99, 101, 103, 100].)

431 Statement: We shall take the rather narrow view that a statement is a
programming language construct which denotes a state-to-state function.
(Pure expressions are then programming language constructs which de-
note state-to-value functions (i.e., with no side effect), whereas “impure”
expressions, also called clauses, denote state-to-state-and-value functions.)

432 Step: By a development step we shall understand a refinement of a do-
main description (or a requirements prescription, or a software design
specification) module, from a more abstract to a more concrete descrip-
tion (or a more concrete requirements prescription, or a more concrete
software design specification).

433 Stepwise development: By a stepwise development we shall understand
a development that undergoes phases, stages or steps of development, i.e.,
can be characterised by pairs of two adjoining phase steps, a last phase
step and a (first) next phase step, or two adjoining stage steps.

434 Stepwise refinement: By a stepwise refinement we understand a pair of
adjoining development steps where the transition from one step to the next
step is characterised by a refinement. (Refinement is thus always stepwise
refinement.)

435 Structure: The term ‘structure’ is understood rather loosely. Normally
we shall understand a structure as a mathematical structure, such as an
algebra, or a predicate logic , or a Lambda-calculus, or some defined abstrac-
tion (a scheme or a class). (Set theory is a (mathematical) structure. So
are RSL’s Cartesian, list and map data types.)

2 These three areas of concern form three universes of discourse.
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436 Subentity: A subentity is a proper part of a (thus) non-atomic entity .
(Do not confuse a subentity of an entity with an attribute of that entity
(or of that subentity).)

437 Subtype: To speak of a subtype we must first be able to speak of a type,
i.e., colloquially, a (suitably structured) set of values. A subtype of a type
is then a (suitably structured) and proper subset of the values of the
type. (Usually we shall, in RSL, think of a predicate, p, that applies to all
members of the type, T , and singles out a proper subset whose elements
satisfy the predicate: {a | a : T · p(a)}.)

438 Support technology: By a support technology we understand a facet
of a domain, one which reflects its (current) dependency on mechanical,
electro-mechanical, electronic and other technologies (i.e., tools) in order
to carry out its business processes. (Other facets of an enterprise are those
of its intrinsics, business processes, management and organisation, rules and
regulations and human behaviour .)

439 Synopsis: By a synopsis we shall understand a composition of informative
documentation and rough-sketch description of some project.

440 Syntax: By syntax we mean (i) the ways in which words are arranged
to show meaning (cf. semantics) within and between sentences, and (ii)
rules for forming syntactically correct sentences. (See also regular syntax ,
context-free syntax , context-sensitive syntax and BNF for specifics.)

441 System: A regularly interacting or interdependent group of phenomena
or concepts forming a whole, that is, a group of devices or artificial objects
or an organization forming a network especially for producing something
or serving a common purpose. (This book will have its own characterisa-
tion of the concept of a system (commensurate, however, with the above
encircling characterisation); cf. Vol. 2, Sect. 9.5’s treatment of system.)

442 Systematic development: Systematic development of software is for-
mal development “lite”! (We usually speak of a spectrum of development
modes: systematic development, rigorous development, and formal develop-
ment. Systems software development, to us, is at the “informal” extreme
of the three modes of development: formal specifications are constructed,
but maybe not for all stages of development; and usually no proof obliga-
tions are expressed, let alone proved. The three volumes of this series of
textbooks in software engineering can thus be said to expound primarily
the systematic approach.)

443 Systems engineering: By systems engineering we shall here understand
computing systems engineering: The confluence of developing hardware
and software solutions to requirements.

T

444 Taxonomy: See Sect. C.1.5.
445 Technique: A procedure, an approach, to accomplish something.
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446 Technology: We shall in these volumes be using the term technology to
stand for the results of applying scientific and engineering insight. This,
we think, is more in line with current usage of the term IT, information
technology.

447 Temporal: Of or relating to time, including sequence of time, or to time
intervals (i.e., durations).

448 Temporal logic: A(ny) logic over temporal phenomena. (We refer to
Vol. 2, Chap. 15 for our survey treatment of some temporal logics.)

449 Term: From [140]: A word or phrase used in a definite or precise sense in
some particular subject, as a science or art; a technical expression. More
widely: any word or group of words expressing a notion or conception,
or denoting an object of thought. (Thus, in RSL, a term is a clause, an
expression, a statement, which has a value (statements have the Unit
value).)

450 Terminal: By a terminal we shall mean a terminal symbol which (in
contrast to a nonterminal symbol) designates something specific.

451 Termination: The concept of termination is associated with that of an
algorithm. We say that an algorithm, when subject to interpretation (col-
loquially: ‘execution’), may, or may not terminate. That is, may halt, or
may “go on forever, forever looping”. (Whether an algorithm terminates
is undecidable.)

452 Terminology: By terminology is meant ([140]): The doctrine or scientific
study of terms; the system of terms belonging to a science or subject;
technical terms collectively; nomenclature.

453 Test: A test is a means to conduct testing . (Typically such a test is a
set of data values provided to a program (or a specification) as values
for its free variables. Testing then evaluates the program (resp., interprets
(symbolically) the specification) to obtain a result (value) which is then
compared with what is (believed to be) the, or a, correct result. See Vol. 3,
Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the concept of test.)

454 Testing: Testing is a systematic effort to refute a claim of correctness of
one (e.g., a concrete) specification (for example a program) with respect
to another (the abstract) specification. (See Vol. 3, Sects. 14.3.2, 22.3.2,
and 29.5.3 for treatments of the concept of testing.)

455 Theorem: A theorem is a sentence that is provable without assumptions,
that is “purely” from axioms and inference rules.

456 Theorem prover: A mechanical, i.e., a computerised means for theorem
proving . (Well-known theorem provers are: PVS [169, 170] and HOL/Isa-

belle [167].)
457 Theorem proving: The act of proving theorems.
458 Theory: A formal theory is a formal language, a set of axioms and infer-

ence rules for sentences in this language, and is a set of theorems proved
about sentences of this language using the axioms and inference rules. A
mathematical theory leaves out the strict formality (i.e., the proof system)
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requirements and relies on mathematical proofs that have stood the social
test of having been scrutinised by mathematicians.

459 Thesaurus: See Sect. C.1.7.
460 Time: Time is often a notion that is taken for granted. But one may do

well, or better, in trying to understand time as some point set that satisfies
certain axioms. Time and space are also often related (via [other] physi-
cally manifest “things”). Again their interrelationship needs to be made
precise. (In comparative concurrency semantics one usually distinguishes
between linear time and branching time semantic equivalences [220]. We
refer to our treatment of time and space in Vol. 2 Chap. 5, to Johan
van Benthem’s book The Logic of Time [218], and to Wayne D. Blizard’s
paper A Formal Theory of Objects, Space and Time [48].)

461 Token: Something given or shown as an identity. (When, in RSL, we define
a sort with no “constraining” axioms, we basically mean to define a set of
tokens.)

462 Tool: An instrument or apparatus used in performing an operation. (The
tools most relevant to us, in software engineering, are the specification and
programming languages as well as the software packages that aid us in the
development of (other) software.)

463 Training manual: A document which can serve as a basis for a (possibly
self-study) course in how to use a computing system. (See also installation
manual and user manual .)

464 Transaction: General: A communicative action or activity involving two
agents that reciprocally influence each other. (Special: The term transac-
tion has come to be used, in computing, notably in connection with the
use of database management systems (DBMS, or similar multiuser sys-
tems): A transaction is then a unit of interaction with a DBMS (etc.). To
further qualify as being a transaction, it must be handled, by the DBMS
(etc.), in a coherent and reliable way independent of other transactions.)

465 Transformation: The operation of changing one configuration or ex-
pression into another in accordance with a precise rule. (We consider the
results of substitution, of translation and of rewriting to be transformations
of what the substitution, the translation and the rewriting was applied to.)

466 Transition: Passage from one state, stage, subject or place to another;
a movement, development, or evolution from one form, stage or style to
another [209].

467 Transition rule: A rule, of such a form that it can specify how any of a
well-defined class of states of a machine may make transitions to another
state, possibly nondeterministically to any one of a well-defined number of
other states. (The seminal 1981 report A Structural Approach to Oper-
ational Semantics, by Gordon D. Plotkin [176], set a de facto standard
for formulating transition rules (exploring their theoretical properties and
uses).)

468 Translate: See translation.
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469 Translation: An act, process or instance of translating, i.e., of rendering
from one language into another.

470 Translator: Same as a compiler .
471 Triptych: An ancient Roman writing tablet with three waxed leaves

hinged together; a picture (as an altarpiece) or carving in three panels side
by side [209]. (The trilogy of the phases of software development, domain
engineering , requirements engineering and software design as promulgated
by this trilogy of volumes!)

472 Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used ex-
tensively, at least in the early days, in the field of relational databases —
where a tuple was like a row in a relation (i.e., table).)

473 Type: Generally a certain kind of set of values. (See algebraic type, model-
oriented type, programming language type and sort.)

474 Type check: The concept of type check arises from the concepts of func-
tion signatures and function arguments. If arguments are not of the ap-
propriate type then a type check yields an error result. (By appropriate
static typing of declarations of variables of a programming language or a
specification language one can perform static type checking (i.e., at compile
time).)

475 Type constructor: A type constructor is an operation that applies to
types and yields a type. (The type constructors of RSL include the power
set constructors: -set and -infset, the Cartesian constructor: ×, the list
constructors: ∗ and ω, the map constructor: →m , the total and partial
function space constructors: → and

∼
→, the union type constructor: |, and

others.)
476 Type definition: A type definition semantically associates a type name

with a type. Syntactically, as, for example, in RSL, a type definition is
either a sort definition or is a definition whose right-hand side is a type
expression.

477 Type expression: A type expression semantically denotes a type. Syntac-
tically, as, for example, in RSL, a type expression is an expression involving
type names and type constructors, and, rarely, terminals.

478 Type name: A type name is usually just a simple identifier .
479 Typing: By typing we mean the association of types with variables. (Usu-

ally such an association is afforded by pairing a variable identifier with a
type name in the variable declaration. See also dynamic typing and static
typing .)

U

480 UML: Universal Modelling Language. A hodgepodge of notations for ex-
pressing requirements and designs of computing systems. (Vol. 2, Chaps. 10,
and 12–14 outlines our attempt to “UML”-ize formal techniques.)

481 Underspecify: By an underspecified expression, typically an identifier,
we mean one which for repeated occurrences in a specification text always
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yields the same value, but what the specific value is, is not knowable. (Cf.
nondeterministic or loose specification.)

482 Undecidable: A formal logic system is undecidable if there is no algo-
rithm which prescribes computations that can determine whether any given
sentence in the system is a theorem.

483 Universe of discourse: That which is being talked about; that which
is being discussed; that which is the subject of our concern. (The four
most prevalent universes of discourse of this book, this series of volumes
on software engineering, are: software development methodology , domains,
requirements and software design.)

484 Update: By an update we shall understand a change of value of a variable,
including also the parts, or all, of a database.

485 Update problem: By the update problem we shall understand that data
stored in a database usually reflect some state of a domain, but that
changes in the external state of that domain are not always properly,
including timely, reflected in the database.

486 User: By a user we shall understand a person who uses a computing
system, or a machine (i.e., another computing system) which interfaces
with the former. (Not to be confused with client or stakeholder .)

487 User-friendly: A “lofty” term that is often used in the following context:
“A computing system, a machine, a software package, is required to be
user-friendly” — without the requestor further prescribing the meaning of
that term. Our definition of the term user-friendly is as follows: A machine
(software + hardware) is said to be user-friendly (i) if the shared phenom-
ena of the application domain (and machine) are each implemented in a
transparent, one-to-one manner, and such that no IT jargon, but com-
mon application domain terminology is used in their (i.1) accessing, (i.2)
invocation (by a human user), and (i.3) display (by the machine); i.e., (ii)
if the interface requirements have all been carefully expressed (commen-
surate, in further detailed ways: ..., with the user psyche) and correctly
implemented; and (iii) if the machine otherwise satisfies a number of per-
formance and dependability requirements that are commensurate, in further
detailed ways: ..., with the user psyche.

488 User manual: A document which a regular user of a computing system
refers to when in doubt concerning the use of some features of that system.
(See also installation manual and training manual .)

V

489 Valid: A predicate is said to be valid if it is true for all interpretations. (In
this context think of an interpretation as a binding of all free variables of
the predicate expression to values; cf. satisfiable.)

490 Validation: (Let, in the following universe of discourse stand consistently
for either domain, requirements or software design.) By universe of dis-
course validation we understand the assurance, with universe of discourse
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stakeholders, that the specifications produced as a result of universe of dis-
course acquisition, universe of discourse analysis and concept formation,
and universe of discourse domain modelling are commensurate with how
the stakeholder views the universe of discourse. (Domain and requirements
validation is treated in Vol. 3, Chaps. 14 and 22.)

491 Valuation: Same as evaluation.
492 Value: From (assumed) Vulgar Latin valuta, from feminine of valutus,

past participle of Latin valere to be of worth, be strong [209]. (Commensu-
rate with that definition, value, to us, in the context of programming (i.e.,
of software engineering), is whatever mathematically founded abstraction
can be captured by our type and axiom systems. (Hence numbers, truth
values, tokens, sets, Cartesians, lists, maps, functions, etc., of, or over,
these.))

493 Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt
to vary; (iii) subject to variation or changes [209]. (Commensurate with
that definition, a variable, to us, in the context of programming (i.e.,
of software engineering), is a placeholder, for example, a storage location
whose contents may change. A variable, further, to us, has a name, the
variable’s identifier, by which it can be referred.)

494 VDM: VDM stands for the Vienna Development Method [44, 45]. (VDM-SL
(SL for Specification Language) was the first formal specification language
to have an international standard: VDM-SL, ISO/IEC 13817-1: 1996.

The author of this book coined the name VDM in 1974 while working with
Hans Bekič, Cliff B. Jones, Wolfgang Henhapl and Peter Lucas, on what
became the VDM description of PL/I. The IBM Vienna Laboratory, in Aus-
tria, had, in the 1960s, researched and developed semantics descriptions
[18, 19, 20, 144] of PL/I, a programming language of that time. “JAN”
(John A.N.) Lee [135] is believed to have coined the name VDL [136, 143]
for the notation (the Vienna Definition Language) used in those semantics
definitions. So the letter M follows, lexicographically, the letter L, hence
VDM.)

495 VDM–SL: VDM-SL stands for the VDM Specification Language. (See entry
VDM above. Between 1974 and the late 1980s VDM-SL was referred to by
the acronym Meta-IV: the fourth metalanguage (for language definition)
conceived at the IBM Vienna Laboratory during the 1960s and 1970s.)

496 Verification: By verification we mean the process of determining whether
or not a specification (a description, a prescription) fulfills a stated prop-
erty. (That stated property could (i) either be a property of the specifi-
cation itself, or (ii) that the specification relates, somehow, i.e., is correct
with respect to some other specification.)

497 Verify: Same, for all practical purposes, as verification.

W
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498 Well-formedness: By well-formedness we mean a concept related to
the way in which information or data structure definitions may be given.
Usually these are given in terms of type definitions. And sometimes it
is not possible, due to the context-free nature of type definitions. (Well-
formedness is here seen separate from the invariant over an information or
a data structure. We refer to the explication of invariant!)

499 Wildcard: A special symbol that stands for one or more characters.
(Many operating systems and applications support wildcards for iden-
tifying files and directories. This enables you to select multiple files with
a single specification. Typical wildcard designators are * (asterisk) and
(underscore).)

500 Word: A speech sound or series of speech sounds or a character or series
of juxtaposed characters that symbolizes and communicates a meaning
without being divisible into smaller units capable of independent use [209].

Z

501 Z: Z stands for Zermelo (Frankel), a set theoretician. (Z also stands for a
model-oriented specification language [203, 204, 226, 108, 107].)
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Time and Space “slide 971”

D.1 van Benthem’s Theory of Time

The following is taken from Johan van Benthem [218]: Let P be a point
structure (for example, a set). Think of time as a continuum; the following
axioms characterise ordering (<, =, >) relations between (i.e., aspects of)
time points. The axioms listed below are not thought of as an axiom system,
that is, as a set of independent axioms all claimed to hold for the time concept,
which we are encircling. Instead van Benthem offers the individual axioms as
possible “blocks” from which we can then “build” our own time system —
one that suits the application at hand, while also fitting our intuition.

“slide 972”

Time is transitive: If p<p′ and p′<p′′ then p<p′′. Time may not loop, that
is, is not reflexive: p 6< p. Linear time can be defined: Either one time comes
before, or is equal to, or comes after another time. Time can be left-linear,
i.e., linear “to the left” of a given time. One could designate a time axis as
beginning at some time, that is, having no predecessor times. And one can
designate a time axis as ending at some time, that is, having no successor
times. General, past and future successors (predecessors, respectively succes-
sors in daily talk) can be defined. Time can be dense: Given any two times
one can always find a time between them. Discrete time can be defined.

“slide 973”

axiom
[ TRANS: Transitivity ] ∀ p,p′,p′′:P • p < p′ < p′′ ⇒ p < p′′

[ IRREF: Irreflexitivity ] ∀ p:P • p 6< p

[ LIN: Linearity ] ∀ p,p′:P • (p=p′ ∨ p<p′ ∨ p>p′)

[ L−LIN: Left Linearity ]
∀ p,p′,p′′:P • (p′<p ∧ p′′<p) ⇒ (p′<p′′ ∨ p′=p′′ ∨ p′′<p′)
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[ BEG: Beginning ] ∃ p:P • ∼∃ p′:P • p′<p

[ END: Ending ] ∃ p:P • ∼∃ p′:P • p<p′

“slide 974”

[ SUCC: Successor ]
[ PAST: Predecessors ] ∀ p:P,∃ p′:P • p′<p
[ FUTURE: Successor ] ∀ p:P,∃ p′:P • p<p′

[ DENS: Dense ] ∀ p,p′:P (p<p′ ⇒ ∃ p′′:P • p<p′′<p′)

[ DENS: Converse Dense ] ≡ [ TRANS: Transitivity ]
∀ p,p′:P (∃ p′′:P • p<p′′<p′ ⇒ p<p′)

[ DISC: Discrete ]
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p<p′′ ∧ ∼∃ p′′′:P • (p<p′′′<p′′))) ∧
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p′′<p′ ∧ ∼∃ p′′′:P • (p′′<p′′′<p′)))

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF.
TRANS, IRREF and SUCC imply infinite models. TRANS and SUCC may
have finite, “looping time” models.

D.2 Blizard’s Theory of Time-Space “slide 975”

We shall present an axiom system (Wayne D. Blizard, 1980, [48]) which relates
abstracted entities to spatial points and time. Let A, B, . . . stand for entities,
p, q, . . . for spatial points; and t, τ for times. 0 designates a first, a begin time.
Let t′ stand for the discrete time successor of time t. Let N(p, q) express that
p and q are spatial neighbours. Let = be an overloaded equality operator
applicable, pairwise to entities, spatial locations and times, respectively. At

p

expresses that entity A is at location p at time t. We omit (obvious) typings of
A, B, P, Q, and T. The suffix prime, ′, designates the time successor function.
Thus t′ designates the next time after t.
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“slide 976”

(I) ∀A∀t∃p : At
p

(II) (At
p ∧ At

q) ⊃ p = q

(III) (At
p ∧ Bt

p) ⊃ A = B

(IV ) (At
p ∧ At′

p ) ⊃ t = t′

(V i) ∀p, q : N(p, q) ⊃ p 6= q Irreflexivity
(V ii) ∀p, q : N(p, q) = N(q, p) Symmetry
(V iii) ∀p∃q, r : N(p, q) ∧ N(p, r) ∧ q 6= r No isolated pts.

(V I i) ∀t : t 6= t′

(V I ii) ∀t : t′ 6= 0
(V I iii) ∀t : t 6= 0 ⊃ ∃τ : t = τ ′

(V I iv) ∀t, τ : τ ′ = t′ ⊃ τ = t

(V II) At
p ∧ At′

q ⊃ N(p, q)

(V III) At
p ∧ Bt

q ∧ N(p, q) ⊃ ∼ (At′

q ∧ Bt′

p )

• (II–IV,VII, VIII): The axioms are universally ‘closed’, that is, we have
omitted the usual ∀A, B, p, q, ts.

• (I): For every entity, A, and every time, t, there is a location, p, at which
A is located at time t.

• (II): An entity cannot be in two locations at the same time.
• (III): Two distinct entities cannot be at the same location at the same

time.
• (IV): Entities always move: An entity cannot be at the same location at

different times. This is more like a conjecture, and could be questioned.
• (V): These three axioms define N .
• (V i): Same as ∀p :∼ N(p, p). “Being a neighbour of”, is the same as “being

distinct from”.
• (V ii): If p is a neighbour of q, then q is a neighbour of p.
• (V iii): Every location has at least two distinct neighbours.
• (VI): The next four axioms determine the time successor function ′.
• (VI i): A time is always distinct from its successor: Time cannot rest. There

are no time fix points.
• (VI ii): Any time successor is distinct from the begin time. Time 0 has no

predecessor.
• (VI iii): Every nonbegin time has an immediate predecessor.
• (VI iv): The time successor function ′ is a one-to-one (i.e., a bijection)

function.
• (VII): The continuous path axiom: If entity A is at location p at time t,

and it is at location q in the immediate next time t′, then p and q are
neighbours.

• (VIII): No “switching”: If entities A and B occupy neighbouring locations
at time t the it is not possible for A and B to have switched locations at
the next time t′.

“slide 977”
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Discussion of the Blizard Model of Space/Time

Except for axiom (IV) the system applies to systems of entities that “some-
times” rest, i.e., do not move. These entities are spatial and occupy at least a
point in space. If some entities “occupy more” space volume than others, then
we may suitably “repair” the notion of the point space P (etc.), however, this
is not shown here.

D.3 Discussion “slide 978”
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II Volume II: Frontispiece

Document History

• Version 1 released March 26, 2008:
⋆ A first “vastly incomplete” draft of this document was conceived March

26, 2008 and essential parts of Appendices F–K and N–P were “lifted”
from [40].

• Version 2 released April 19, 2008:
⋆ On Sunday April 6, 2008, a complete reorganisation of the material

assembled and written and rewritten by then took place — resulting
in basically the current structure.

⋆ A week, April 6–11, 2008, was then spent on “fattening” the syntactic
structure of this textbook. The Pre- and Postlude appendices were
added to Parts V and VI.

⋆ “Serious”, tentatively “concluding draft” work on Chap. 1 started on
Saturday April 12, 2008.

⋆ Work on Chap. 1 and Appendix E progressed significantly during the
week of April 12–19, 2008.

• Version 3 released May 7, 2008:
⋆ Draft copy notice inserted.
⋆ Cross-referecing between Vol. 1 text and Vol. 1 slides pages.

So far no check has been made for “synchroneity”.
⋆ Thus Vol. 1 text margin numbers refer to Vol. 2 slide numbers.
⋆ Notes on ‘A Possible (12 week) Course Plan’ inserted into Preface,

pages 11–14.
⋆ Lecture plan inserted as first four slides: 2–6 incl.

• Version 6 released July 20, 2008:
⋆ Worked on Appendix H.
⋆ I am, as of today, July 20, 2008, not happy with Sect. H.2.
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⋆ I am starting on Sect. H.4 on page 399 tomorrow, July 21, 2008.
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Prelude Domain Engineering Actions “slide 980”

By ‘prelude domain engineering actions’ we mean those which precede do-
main modelling proper. That is establishment and initial editing of infor-
mative documents (Sect. E.1), stakeholder identification (and first contacts)
(Sect. E.2), domain acquisition (Sect. E.3), domain analysis and concept for-
mation (Sect. E.4), rough sketching of domain business processes (Sect. E.5),
and establishment and initial editing of domain terminology (Sect. E.6).

E.1 Informative Domain Documents “slide 981”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 1, Sect. 1.6 (Page 7).

Recall, from Page 7, that the information documents are composed from:

1 Project Name and Date Sect. E.1.1 on the following page
2 Project Place(s) (‘where’) Sect. E.1.2 on the next page
3 Partners (‘whom’) Sect. E.1.2 on the following page
4 Project: Background and Outlook

(a) Current Situation Sect. E.1.3 on page 319
(b) Needs and Ideas Sect. E.1.4 on page 320
(c) Concepts and Facilities Sect. E.1.5 on page 321
(d) Scope and Span Sect. E.1.6 on page 322
(e) Assumptions and Dependencies Sect. E.1.7 on page 323
(f) Implicit/Derivative Goals Sect. E.1.8 on page 324
(g) Synopsis Sect. E.1.9 on page 325 “slide 982”

5 Project Plan
(a) Software Development Graph Sect. 1.6.10 on page 13
(b) Resource Allocation Sect. E.1.11 on page 327
(c) Budget Estimate Sect. E.1.12 on page 328
(d) Standards Compliance Sect. E.1.13 on page 329

6 Contracts and Design Briefs Sect. E.1.14 on page 330
7 Logbook Sect. E.1.15 on page 331

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 1, Sect. 1.6 (Page 7). “slide 983”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
318 E Prelude Domain Engineering Actions

E.1.1 Project Name and Dates

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.1, Page 8.

Project Name and Dates

• Project Name: TransDOM: A model of a transport domain
• Dates: Summer 2008 – fall 2009

“slide 984”

E.1.2 Project Partners and Places

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.2, Page 8.

Project Partners and Places

The following information is purely speculative. It is, however, indicative of the
kind of partners that a project like A Model of A Transport Domain ought
engage.

• Client:
⋆ Institution: Vejdirektoratet (Directorate of Roads) vd@vd.dk,
⋆ Address: Niels Juels Gade 13, P.O.Box 9018, DK-1022 København K,

Denmark
Vejdirektoratet is part of the Danish ministry of transport

pg.:985

• Developer: DTU Transport, www.dtf.dtu.dk
⋆ Contact: Prof., Dr. Otto Anker Nielsen, oan@transport.dtu.dk
⋆ Institution: Bygningstorvet 116 Vest, Technical University of Denmark.
⋆ Address: DK-2800 Kgs. Lyngby

• Project Consultant:
⋆ Person: Dines Bjørner bjorner@gmail.com
⋆ Address: Fredsvej 11, DK-2840 Holte, Denmark

• Funding Agency: None.
pg.:986

• Project Audience:
⋆ ENPC:

· Institution: Ècole Nationale des Ponts et Chaussées
· Address: 6–8 Avenue Blaise Pascal, Cité Descartes, 77455

Champs-sur-Marne, Marne la Vallée, Cedex 2, France.
www.enpc.fr/english/int index.htm

⋆ BTAC:
· Institution: British Transport Advisory Commission
· Address: PO Box 9108, Maldon, Essex, CM9 5HG, UK.

www.btac.org.uk
pg.:987
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⋆ DLR:
· Contact Person: Dr.-ing. Michael Meyer zu Hörste
· Institution: Deutsches Zentrum für Luft- und Raumfahrt (DLR),
· Address: Lilienthalplatz 7, D-38108 Braunschweig, Germany.

www.dlr.de
⋆ SafeTRANS: (Safety in Transportation Systems) www.safetrans-de.org

· Contact Person: Prof. Dr. Werner Damm,
· Institution: CvO Universität Oldenburg ,
· Address: OFFIS, Escherweg 2, DE-26121 Oldenburg, Germany

“slide 988”

E.1.3 Current Situation

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.3, Page 9.

Current Situation

The current situation in the infrastructure of transportation (road, rail, air traffic
and, to some extent also shipping), can be summarised as follows:

• Congestion: Roads, rail tracks and air lanes are are rapidly reaching satu-
ration wrt. what current technology support can monitor and control.

pg.:989

• Interfaces: The interfaces between different kinds of person and freight
transport modes (road, rail, air, sea) are not well understood: transfers from
one mode to another mode is often a bottleneck for efficient transport time
and economic transitions.

pg.:990

• Training: Quality of training of new staff in the oftentimes intricate prop-
erties of transport systems is hap-hazard: trainers are usually second-rate
staff members of current transport sub-systems; their training material is in-
consistent and incomplete, lacks proper abstractions and must hence often
delve into far too concrete case studies; and new staff members drop out
and leave their working place to seek other vocations.

pg.:991

• Intelligent Transport: This, ‘intelligent transport’ is currently a buzzword.
It covers over real-time, “just-in-time” scheduling and allocation of trans-
port resources (roads, rail tracks, air lanes, and their vehicles (cars, trains,
aircraft)) and the monitoring and control of actual traffic. But too little is
known of the transport domain to assess whether proposals for software for
intelligent transport are feasible and will satisfy expectations.

pg.:992

• Safe Transport: Traffic signals, whether for road, rail or air traffic, are
oftentimes posing safety hazards: not only is the software development not
based on a sufficiently thorough knowledge of the domain, but the software
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is either not the right software for the problem at hand, or the software is
not right, i.e., is incorrect, or both !

pg.:993

• Confusion and Bewilderment: The sum total of the above and many other
facets not mentioned here, is that responsible management, who themselves
cannot be guaranteed to have an objective, clear understanding of their own
domain, is exposed: do not know whether they have to prerequisite knowl-
edge to make day-to-day operational, or tactical, or strategical decisions: how
to clearly formulate and manage the business processes and how to institute
necessary re-engineerings of these business processes including acquiring the
right software and get that software right !

“slide 994”

E.1.4 Needs and Ideas

Needs

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.4, Page 9.

Needs

There is thus a clear need to clarify what is meant by transportation:

• how the transport nets of different modality and capacity (roads, rail tracks,
air lanes, etc.), interact with their users (automobiles, trains, aircraft and
ships);

• how scheduling and allocation of one modality of transport resources interact
with other modalities of transport resources;

• how monitoring and control of one modality of traffic interact with other
modalities of traffic;

• etcetera.

“slide 995”

Ideas

Ideas

A clarification is hoped to be achieved:

• by conducting a research-oriented study of transportation in general;
• by augmenting this study with a number of studies of

⋆ road transportation (including road traffic),
⋆ rail transportation (i.e., railways, including train traffic),
⋆ air traffic (including the “the players”:

· airports,
· airlines,

· civil aviation authorities,
· GAO, etcetera.
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⋆ shipping, for example
· container line industry

· containers,
· container vessels,

· container terminal ports,
· shipping companies, etc.

· passenger and automobile boats and ferries, and
· pleasure cruise industry.

pg.:996

• and by letting these study projects be based on domain research and en-
gineering — along the lines suggested in this book (and previously in
[33, 34, 35]) —

• aimed at establishing
⋆ a generic domain model of conceptual transport as well as
⋆ instantiated domain models of each of the different transport modes
⋆ such that all models are both informally narrated,
⋆ formally specified, and
⋆ related to existing operations research models of transport.

“slide 997”

E.1.5 Concepts and Facilities

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.5, Page 10.

Concepts and Facilities

The following is a brief list of the facilities (observable phenomena) normally
considered when dealing with the transport infrastructure:

• The facilities of
⋆ road nets, rail nets, air lane and airline nets, and shipping nets
⋆ are “lifted” into concepts of

· hubs being road intersections, rail switches, crossovers, etc., airports
and harbours, and

· links being street segments, rail tracks, air and shipping lanes (all
between adjacent hubs).

pg.:998

• The facilities of
⋆ automobiles, trains, aircraft and vessels
⋆ are lifted into the concepts of vehicles.

pg.:999

• Etcetera for facilities and concepts such as:
⋆ monitoring and control of traffic and of traffic signals;
⋆ booking and tracing of transport (incl. passenger travel, ticketing and

freight transport);
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⋆ scheduling and allocation of resources (net, vehicle, passenger, freight);
⋆ monitoring and control of vehicles, individual, in traffic queues and in

convoys;
⋆ the loading and unloading of passengers or freight on and from vehicles

and the transfer of passengers or freight between vehicles;
⋆ etcetera, etcetera.

“slide 1000”

E.1.6 Scope and Span

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.6, Page 11.

Scope

The scope of the project is the entire transportation infrastructure:

• the public and private road system, from country lanes to freeways and
toll-roads, vehicles, drivers, signalling, toll plazas, etc.;

• the public and private rail system: the possibly (usually) shared net, the train
stations, trains, traffic, passengers, travel inquiries, ticketing, freight services
(including freight tracing), etc.;

• the public and private airline and (usually public) air traffic system, aircraft,
passengers, airports, luggage handling, etc.

• the public and private (line and tramp) shipping, vessels, containers, con-
tainer terminal ports, etc.

“slide 1001”

Span

• The span of the project is the transport net, vehicles and their traffic, but
restricted to
⋆ road and
⋆ rail
transport. Besides covering
⋆ freeways and toll-roads, vehicles, drivers, signalling, toll plazas, etc., and
⋆ shared net, the train stations, trains, traffic, passengers, travel inquiries,

ticketing, freight services (including freight tracing), etc.
• The span includes all the interfaces between road and rail transport:

⋆ roads connection to train stations,
⋆ same level rail track and road crossings,
⋆ combined ticket for road/rail (for example auto train) travel,
⋆ etcetera.

“slide 1002”
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E.1.7 Assumptions and Dependencies

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.7, Page 11.

Assumptions

The assumptions are that a domain knowledge reference group can be estab-
lished, that is, that there is, somewhere, the domain knowledge that can and
must be harnessed, that is:

• Accessibility: that the people with that knowledge can be accessed, i.e.,
that they are known, that is, identifiable. These people are from both the
client, the Danish ‘Directorate of Roads’ (DoR), from within the developer
‘DTU Transport’, and from amongst the ‘Project Audience’ (ENPC, BTAC,
DLR, SafeTRANS).

pg.:1003

• The Domain Stakeholder Reference Group: In particular the following
persons are identified:

3 DoR:
◦ Mr NN1

◦ Mrs NN2

◦ Miss NN3

3 DTU Transport:
◦ Mr NN4

◦ Mrs NN5

◦ Miss NN6

3 ENPC:
◦ Mr NN7

◦ Mrs NN8

◦ Miss NN9

3 BTAC:
◦ Mr NN10

◦ Mrs NN11

◦ Miss NN12

3 DLR:
◦ Mr NN13

◦ Mrs NN14

◦ Miss NN15

3 SafeTRANS:
◦ Mr NN16

◦ Mrs NN17

◦ Miss NN18

pg.:1004

• Availability: It must be guaranteed that these people are available on a
suitable basis — to be negotiated.

• Professionalism: As a group they represent or are aware of the essential
knowledge of the domain.

• Communicable: The domain engineers must be able to communicate with
this reference group, i.e., in own, natural languages.

• Cooperative: They must be co-operative.

A trial period of 2 months shall be set aside to check that the Domain Knowledge
reference group can be securely established.

“slide 1005”
The borderline between ‘assumptions’ and ‘dependencies’ is not sharp.

Dependencies

• Funding: The project cannot start without assured funding. See the budget
item Sect. E.1.12.

• Quality of R&D Staff: The involved developers and members of the domain
stakeholder reference group must be certified by their management and by
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the project board to possess both necessary and sufficient knowledge of their
respective domains.

• Stability of R&D Staff: The developer staff, the consultant and the domain
stakeholder reference group members must be stable throughout the entire
project period.

• Seriousness of Management: The TransDOM project management
must be guaranteed to set aside sufficient monthly monitoring review and
advisory time as well as dispatch their control in a regular and timely fashion.

“slide 1006”

E.1.8 Implicit/Derivative Goals

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.8, Page 12.

Implicit/Derivative Goals

• Improved Management: It is expected that the TransDOM project re-
sults, once studied by all relevant transportation infrastructure (tactical and
operational) management teams, will lead to a further professionalisation of
their management.

• Trained Staff: It is expected that the resulting TransDOMain description
can serve as a basis for developing educational, teaching and training mate-
rial (on-line demos and paper documents); that such material will be used
in future training courses for (possibly existing and) newly hired staff; and
that staff trained in this manner will improve the daily operations within the
transportation infrastructure.

pg.:1007

• Basis for (Software) Requirements: The existence of a TransDOMain
description does not imply any requirements prescriptions, but once such
a TransDOMain description exists one can more easily embark on any
number of specific software requirements prescriptions.
⋆ Software Product Family: So, a ‘normative’ TransDOMain descrip-

tion can give rise to a whole family of specific software requirements
prescriptions and requirements for specific optical/electromechanical and
electronic as well as requirements for other sensor and actor, equipment
related to the software requirements.

⋆ Open-endedness: Furthermore these requirements can be “fitted” to
one another so that they can eventually be interfaced with one another in
an all-encompassing system of software for the transportation infrastruc-
ture. They are open-ended in that new requirements can be developed
long time after completions of first software packages and still guaran-
teeing “fitness”.

pg.:1008
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• Improved Public Image: The image of a highly competent and sophisti-
cated transportation infrastructure industry should emerge from the Trans-

DOM during the project and for some time after its completion. This should
be the result of a carefully planned and executed information campaign in
a diversity of media: the press, radio, TV, at scientific and technological
events and at commercial exhibits trade shows and fairs. Such an improved
image should further the ease with which the transportation infrastructure
industry can recruit competent and motivated staff.

pg.:1009

• Input to ‘Normative Standardisation’ Agencies: Nationally, regionally
and internationally there are several transportation agencies:
⋆ The International Road and Transport Union www.iru.org
⋆ The International Union of Railways (Union Internationale des Chemins

de fer) www.uic.asso.fr
⋆ The International Union of combined Rail/Road transport companies

www.uirr.com
⋆ The International Maritime Organization (IMO), a UN body

www.imo.org
⋆ The International Civil Aviation Organization (ICAO) www.icao.int
⋆ The ISO: International Organisation for Standardization

www.iso.org/iso/home.htm
⋆ The CENELEC: European Committee for Electrotechnical Standardiza-

tion /www.cenelec.eu/Cenelec/Homepage.htm
⋆ Etcetera
It is hoped that the result of the TransDOM project can help these or-
ganisations attain a higher level of interaction — etcetera.

“slide 1010”

E.1.9 Synopsis

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.9, Page 13.

Synopsis

• Aims: The TransDOM project aims at researching and developing an as
complete, both informal and formal description of a, or “the”, road and rail
transportation domain.

pg.:1011

• Objectives: The TransDOM project objective is to establish a ‘normative’
model of the road and rail transportation domain, one
⋆ that can become an input to national, regional and international trans-

portation ‘bodies’ (, etcetera);



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
326 E Prelude Domain Engineering Actions

⋆ that can serve as a basis for training a largest variety of staff of the
transportation infrastructure (including its providers of transportation
equipment);

⋆ that can serve as a basis for operations analysis R&D into traffic models,
etcetera; and

⋆ that can serve as a basis for research and development of
· software for the support of transportation,and
· sensor and actuator equipment for vehicle and traffic monitoring and

control.
pg.:1012

• A Road and Rail Transportation Infrastructure Rough Sketch:
⋆ Some Entities: roads (street segments and intersections), rails (rail points

(switches, crossovers, etc.)), tracks between rail points, cities (stations),
vehicles (automobiles and trains), signal equipment, passengers, etc.

pg.:1013

⋆ Some Functions: insertion of new roads (or rail tracks), removal of old
roads (or rail tracks), setting of street intersection signals (rail switches),
insertion [removal] of vehicles into [from] the traffic, etc.

pg.:1014

⋆ Some Events: Road [rail track] breakdown (tantamount to, hopefully
temporary, road [rail track] removal), vehicle-to-vehicle crash (whether
automobile/automobile, automobile/train, or train/train), vehicle [auto-
mobile or train] entering or leaving the traffic, vehicle [automobile or
train] exceeding the speed limit, etc.

pg.:1015

⋆ Some Behaviours: A train ride: from entering the traffic, starting at train
station of origin, travelling down tracks, visiting other stations, finally ar-
riving at destination and being “removed” from the traffic. Similarly to
the above, but for automobiles. A passenger behaviour: planning a trip,
buying tickets, starting the trip, possibly changing reservations, finally
ending the trip. The life-time of a road segment: being inserted into
the transportation net, being trafficked, being serviced (maintained, re-
paired), being temporarily — or finally — taken out of service, etc.

pg.:1016

• Project Partners and Places: A summary is to be given here of the project
and partners of Sect. E.1.2 on page 318.

• Project Economy: A summary is to be given here of the budget estimate
of Sect. E.1.12 on page 328.

“slide 1017”
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E.1.10 Software Development Graphs

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.10, Page 13.

Software Development Graph

The basis for a software development graph for the TransDOM project is given
below.
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“slide 1018”
The above graph has been developed from the domain engineering process
graph of Fig. 2.3 on page 103. One way of understanding the task of de-
veloping a description of the transport domain is to describe the concrete
domains of road transport and of rail transport separately. Then “lift” these
descriptions into a a description of the abstract domain of transport. With
this interpretation of the task at hand we show three “concurrent”, Team 1
& 2 developments. “slide 1019”

Some, perhaps most, of the horisontal boxes (denoting development activ-
ities) of the above figure may be “blown up” to show details of precedence-
related sub-activities to be carried out by various project sub-groups and
between them. Such an (intermediate) expansion has been shown for the do-
main acquisition and the domain modelling actions, but they each need further
elaboration. “slide 1020”

E.1.11 Resource Allocation

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.11, Page 15.

Resource Allocation

The possibly expanded action boxes of the above software development graph
need now be attributed (cf. Defn. 14 on page 15). The vertical ‘informative
documentation’ box denotes a project-duration management activity and its re-
source consumption must be estimated. We give examples of resource estimates
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for a few activity attributes and for a few of the horisontal domain engineering
actions:

pg.:1021

• Stage Action: Stakeholder identification
⋆ Total Time Period: 2 months
⋆ Staff Requirements:

· Staff #1 and #2: domain engineers, full time
· Staff #3: admin. secr. part time, 1.5 hour per day, corresponding

to 1/5 full time
⋆ Equipment: two office modules (one , two laptop PCs

pg.:1022

• Stage Action: Domain acquisition
⋆ Total Time Period: 4 months
⋆ Staff Requirements:

· Staff #1, #2 and #3: domain engineers, full time
· Staff #4: admin. secr. part time, 1.5 hour per day, corresponding

to 1/5 full time
⋆ Equipment: three office modules, four laptop PCs, weekly full day access

to 8 person meeting room
pg.:1023

• Stage Action: Domain Analysis
⋆ Total Time Period: 4 months concurrent with domain acquisition,

Item E.1.11
⋆ Staff Requirements:

· Staff #1, #2 and #3: shared with staff #1, #2 and #3 of
Item E.1.11

· Staff #4: shared with staff #4 of Item E.1.11
⋆ Equipment: — multiple use of that of Item E.1.11

• Etcetera

E.1.12 Budget Estimate “slide 1024”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.12, Page 16.

Budget Estimate

We can only sketch, due to page limitations, how one might arrive at a budget
estimate:

• Stage Action: Stakeholder identification
⋆ Total Time Period: 2 months
⋆ Staff Costs:

· Staff #1 and #2: 2× (1× Snr.R&D Eng. + 1× Jnr.R&D Eng.)
monthly cost



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
E.1 Informative Domain Documents 329

· Staff #3: 1
5× Admin.Secr. monthly cost

⋆ Equipment:
· Office Space: 1 1

5× office module monthly cost
· Computers & Communication: 4×1+ 1

5 laptop + shared Internet
monthly cost

· Overhead: — corresponding to three staff members
pg.:1025

• Stage Action: Domain acquisition
⋆ Total Time Period: 4 months
⋆ Staff Costs:

· Staff #1, #2 and #3: 4× (1 × Snr.R&D Eng. + 2× Jnr.R&D
Eng.) monthly cost

· Staff #4: 4 × 1
5 Admin.Secr. monthly cost

⋆ Equipment:
· Office Space: 4 × 2 1

5 office module monthly cost
· Meeting Room: 4 × 1

5 meeting room monthly cost
· Computers & Communication: 4 × 2 1

5 lap top + shared Internet
monthly cost

· Overhead: — corresponding to four staff members
pg.:1026

• Stage Action: Domain Analysis
⋆ Total Time Period: 4 months concurrent with domain acquisition,

Item E.1.12
⋆ Staff Costs: shared with Item E.1.12
⋆ Equipment: shared with Item E.1.12
⋆ Overhead: shared with Item E.1.12

• Etcetera

“slide 1027”

E.1.13 Standards Compliance

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.13, Page 16.

Standards Compliance

There are no standards, recommendations or guidelines issued by ISO or IEEE
for the scientific and technical aspects of domain engineering. Existing ISO and
IEEE standards that appears to apply, more generally, and to be followed by
this project, are listed below. One should, however, keep in mind two things:
These standards, recommendations or guidelines are formulated in a context
which was unaware of the concept of domain engineering. They must therefor
be reinterpreted in this new light of domain engineering. This book sets it own
standards and they must be followed !

pg.:1028
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• ISO 9001: Quality Systems Model for quality assurance in design, devel-
opment, production, installation and servicing

• ISO 9000-3: Guidelines for the application of ISO 9001 to the development,
supply and maintenance of software

• ISO 12207: Software Life Cycle Processes http://www.12207.com

• IEEE Std 1058.101987, Standard for Software Project Management Plans
• IEEE Std 1074.1-1995, Guide for Developing Software Life Cycle Processes
• IEEE Std 730.1-1995, Guide for Software Quality Assurance Plans
• IEEE Std 1063-1987 (reaffirmed 1993), Standard for Software User Docu-

mentation
• Software Process Improvement Models and Standards, including SEI’s vari-

ous Capability Maturity Models

The TransDOM project is to first follow the principles and techniques laid
down in this book, then accommodate the above standards, recommendations
or guidelines wherever applicable.

“slide 1029”

E.1.14 Contract and Design Brief

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.14, Page 19.

Contract

We omit an example contract. Any subset example, however large, but still being
a subset fitting into this book’s page limitations, would not be a true example,
but only a “joke” !

“slide 1030”

Design Brief

The following documents can shall be developed, delivered on dates shown and
according to the principles and techniques of this book:

• Stakeholder Identification:
⋆ Delivered:
⋆ Status: Complete, final draft

• Road, Rail & Transport Domain Acquisition:
⋆ Delivered:
⋆ Status: Complete, final draft

• Road, Rail & Transport Domain Analysis:
⋆ Delivered:
⋆ Status: Complete, final draft

pg.:1031

• Domain Terminology:
⋆ Delivered:
⋆ Status: Complete, initial draft
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• Domain Business Process Rough Sketches:
⋆ Delivered:
⋆ Status: Initial draft

• Road, Rail & Transport Intrinsics:
⋆ Delivered:
⋆ Status: Complete, final draft

pg.:1032

• Road, Rail & Transport Support Technologies:
⋆ Delivered:
⋆ Status: Complete, final draft

• Road, Rail & Transport Mgt. & Org.:
⋆ Delivered:
⋆ Status: Complete, final draft

• Road, Rail & Transport Rules & Regs.:
⋆ Delivered:
⋆ Status: Complete, final draft

pg.:1033

• Road, Rail & Transport Human Behaviours:
⋆ Delivered:
⋆ Status: Complete, final draft

• Domain Validation:
⋆ Delivered:
⋆ Status: Complete, final draft

• Domain Terminology:
⋆ Delivered:
⋆ Status: Complete, final version

• Consolidated Domain Description:
⋆ Delivered:
⋆ Status: Complete, final version

“slide 1034”

E.1.15 Logbook

We omit an example logbook. Example 1 on page 23 should suffice.
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E.2 Stakeholder Identification “slide 1035”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.4 (Page 56).

Stakeholder Identification

Railways Roads

State Rail Authority Directorate of Roads
Exec.Mgt. Exec.Mgt.
Planners Planners

Rail Infrastructure Co. Regional Road Authority
Exec.Mgt. Exec.Mgt.
Planners Planners
Rail Engs. Road Engs.
Rail Wrkrs. Road Wrkrs.
Etcetera Etcetera

Rail Operators DSB, SJ, DB City Road Authority
Mgt. Exec.Mgt.
Planners Planners
Loco Drivers Road Engs.
Train Staff Road Wrkrs.
Ticket. Staff Trucking Companies
Train Maint. Mgt.
Etcetera Dispatchers

Passengers Drivers
Freight Companies Bus Companies pg.:1036

Travel Agencies Mgt.
Mgt. Dispatchers
Service Staff Drivers

Gasoline Companies
Taxi Companies
Private Drivers

Rail Regulatory Agency Road Regulatory Agency
Ministry of Transport Ministry of Transport

Rail Equipment Providers Road Equipment Providers
Politicians Politicians

Insurance Companies Insurance Companies
Etcetera Etcetera

E.3 Domain Acquisition “slide 1037”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.5 (Page 57).

We will present two examples: one for road transport, another for rail
transport. The examples are just very short. We do not exemplify all the in-
troductory aspects of solicitation and elicitation. Just resulting, slightly edited
domain acquisition units.
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E.3.1 Road Transport

The first example is that of road transport: entities, functions, events and
behaviours. “slide 1038”

Domain Acquisition Units: Road Transport

1 “A road net consists of roads.”
• Attributes:

⋆ Names: Road Net, Road
⋆ Kinds: Entities
⋆ Source: Mr. NN1

⋆ Date: DD1MM1YY1

2 “Roads consists of road segments and intersections.”
• Attributes:

⋆ Names: Road Segment, Intersection
⋆ Kinds: Entities
⋆ Source: Mrs. NN2

⋆ Date: DD2MM2YY2

3 “A road segment is connected to two intersections”
• Attributes:

⋆ Name: Road Segment, Intersection
⋆ Kinds: Entities
⋆ Source: Ms. NN3

⋆ Date: DD3MM3YY3

4 “Every intersection is connected to at least one segment”
• Attributes: Entities

⋆ Names: Intersection, Road Segment
⋆ Kinds: Entities
⋆ Source: Miss NN4

⋆ Date: DD4MM4YY4

pg.:1039

5 “One can enter an automobile onto a road.”
• Attributes:

⋆ Names: Enter, Automobile, Road
⋆ Kinds: Function (Enter), Entities (Automobile, Road)
⋆ Source: Ms. NN5

⋆ Date: DD5MM5YY5

6 “Two automobile may crash on a road.”
• Attributes:

⋆ Names: Automobile, Crash
⋆ Kinds: Entity, Event
⋆ Source: Mrs. NN6

⋆ Date: DD6MM6YY6

7 “One can Insert a new Road (Segment) between two new or existing Inter-
sections.”
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• Attributes:
⋆ Names: Insert, Road Segment, Intersection
⋆ Kinds: Function (Insert), Entities (Road Segment, Intersection)
⋆ Source: Mr. NN7

⋆ Date: DD7MM7YY7

8 “One can Remove an existing Road (Segment) between Intersections”
• Attributes:

⋆ Names: Remove, Road Segment, Intersection
⋆ Kinds: Function (Remove), Entities (Road Segment, Intersection)
⋆ Source: Miss NN8

⋆ Date: DD8MM8YY8

pg.:1040

9 “Intersections that become isolated when a Road Segment is Removed are
no longer part of the Road Net”
• Attributes:

⋆ Names: Intersection, Road Segment, Remove, Road Net
⋆ Kinds: Entities (Intersection, Road Segment, Road Net), Function

(Remove)
⋆ Source: Mr. NN9

⋆ Date: DD9MM9YY9

10 “A Road Segment may “Break Down”, that is, appear as having been Re-
moved”
• Attributes:

⋆ Names: Road Segment, “Break Down”, Remove
⋆ Kinds: Entity (Road Segment), Event (Road Segment Break Down).

Function (Remove)
⋆ Source: Mr. NN10

⋆ Date: DD10MM10YY10

11 “Road Traffic is the Movement of Automobiles along Roads.”
• Attributes:

⋆ Names: Road Traffic, Movement, Automobile, Road
⋆ Kinds: Behaviour
⋆ Source: Mr. NN11

⋆ Date: DD11MM11YY11

“slide 1041”

E.3.2 Rail Transport

The second example is that of rail transport: entities, functions, events and
behaviours.“slide 1042”

Domain Acquisition Units, Rail Transport

1 “A Rail Net consists of Rail Units.”
• Attributes:
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⋆ Names: Rail Net, Rail Unit
⋆ Kinds: Entities
⋆ Source: Mr. NNa

⋆ Date: DDaMMaYYa

2 “Rail Units are either Linear, or Simple Switches, or Switchable Crossovers
or Simple Crossovers.”
• Attributes:

⋆ Names: Rail Unit, Linear Rail Unit, Simple Switch Rail Unit, Switch-
able Crossover Rail Unit, Simple Crossover Rail Unit

⋆ Kinds: Entities
⋆ Source: Mrs. NNb

⋆ Date: DDbMMbYYb

3 “Linear Rail Units have two Connectors and a pair of Rails.”
• Attributes:

⋆ Name: Linear Rail Unit, Connector, Rail
⋆ Kinds: Entities
⋆ Source: Ms. NNc

⋆ Date: DDcMMcYYc

4 “Simple Switch Rail Units have three Connectors and a (... further defined
... structure) of Rails.”
• Attributes: Entities

⋆ Names: Simple Switch Rail Unit, Connector, ..., Rail
⋆ Kinds: Entities
⋆ Source: Miss NNd

⋆ Date: DDdMMdYYd

pg.:1043

5 “A Rail Line is a sequence of Connected Rail Units.”
• Attributes:

⋆ Names: Rail Line, Rail Unit, Connected
⋆ Kinds: Entities (Rail Line, Rail Unit), Function [Predicate] (Con-

nected)
⋆ Source: Ms. NNe

⋆ Date: DDeMMeYYe

6 “Train Traffic is the Movement of Trains along Rails.”
• Attributes:

⋆ Names: Train Traffic, Movement, Train, Rail
⋆ Kinds: Behaviour
⋆ Source: Mr. NNf

⋆ Date: DDfMMfYYf

7 “Two Trains may Crash on a Rail Line.”
• Attributes:

⋆ Names: Train, Train Crash, Rail Line
⋆ Kinds: Entities (Train, Rail Line), Event (Train Crash)
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⋆ Source: Mrs. NNg

⋆ Date: DDgMMfYYg

“slide 1044”

E.3.3 Review

The above two examples illustrate only a fragment of the work going into
domain acquisition. You have to imagine that literally thousands of domain
description units have to be collected and ascribed attributes. Clearly an ac-
tivity that need be supported by an appropriate (relational) database system.

E.4 Domain Analysis and Concept Formation “slide 1045”

E.4.1 Inconsistencies

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.6 (Page 60).

Domain Analysis, Inconsistencies

We present two examples of pairs of inconsistent domain description units:

1 • “A road segment is delimited by exactly two intersections.”
• “A road segment is delimited by exactly two distinct intersections.”

The first statement allows for non-distinct intersections.
2 • “An automobile can only enter the road net at any intersection.”
• “An automobile can only enter the road net at any intersection and

along any road segment.”
The first statement does not allow automobiles to enter along road
segments.

“slide 1046”

E.4.2 Incompleteness

Domain Analysis, Incompleteness

1 • “An automobile can enter the road net at any intersection.”
If the above is the only statement about where automobiles may enter
the net, then it is not clear whether automobiles may also enter the net
elsewhere.

“slide 1047”
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E.4.3 Concept Formation

Domain Concept Formation

1 Links
• We merge the phenomena of road segments and linear rail units
• into the concept of links.

2 Hubs
• We merge the phenomena of (road) intersections and switch and

crossover rail units
• into the concept of hubs.

E.5 P

rocesses]Domain [i.e., Business] Processes “slide 1048”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.7 (Page 62).

Business Processes

1 An Automobile Journey:Concerning the automobile journey route: it en-
ters the road net at a position porigin along a road segment, sj , moves

from there towards hub hk, and, in sequence traverses a number of pairs of
hubs and road segment, (hk, sk), (hℓ, sℓ), . . . , (hm, sm), to leave the road
net at a position pdestination along segment sm. Concerning the journey
dynamics: Along segment si, for j ≤ i ≤ m, the automobile travels at an
average velocity of vsi

kms/hour. In hub hi, for j ≤ i ≤ m, the automobile
travels at an average velocity of vhi

kms/hour. The automobile may have to
temporarily stop at some hubs due to red light signals. changes in velocity,
from vi to vj , are made at a constant acceleration (or deceleration) of aij

kms/second2.
pg.:1049

2 A Simple Road Net Topology “History”:Initially there is no road net.
A first action is to insert a segment and two connecting hubs. Following
actions are now a sequence of insertions and sometimes (usually only tem-
porary) removals of segments: Sometimes an inserted segment is between
two existing hubs, sometimes between one existing and one new (inserted)
hub, and sometimes between two new inserted hubs. Similarly for removals.
In-between these actions there may be occasional events: a road segment
may be closed as the result of some accident: a bridge falling down, or a
mud slide covering the road, or otherwise.

pg.:1050

3 A Train Journey:A train journey normally begins and ends at a station.
And a train journey normally is then a sequence of station visits between,
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but not including the begin and end stations. A station visit can be thought
of as a triple:the train journey along a rail line leading into a station, the
arrival, possible halt, and departure from the station, and the train journey
along a rail line leading out from the station. The train journey is normally
constrained by some timetable. A train timetable consists of a sequence
of two or more timetable-station-visits. A timetable-station-visit is a quin-
tuple:the arrival time at a designated station along a designated rail line,
followed by a departure time (from the station) along a designated rail line.

E.6 Domain Terminology “slide 1051”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.8 (Page 63).

Domain Terminology

1 [Rail Unit] Connector: A [rail unit] connector is a further undefined atomic
(entity) concept. Its purpose is to connect two rail units, i.e., provide an
interface between them.

2 Rail Unit: The purpose of a rail unit is to provide for train passage. A rail
unit is either a linear, or a switch, or a simple crossover, or a switchable
crossover unit.

3 Linear Rail Unit: A linear rail unit has two connectors c1, c2. Think of a
linear rail unit as shown in Fig. E.1 [upper left quadrant]. Its purpose is to
allow trains to pass through the unit from one end to the other (c1→c2),
or vice versa (c2→c1).

“slide 1052”

“slide 1053” Domain Terminology (Continued)

4 Simple Switch Rail Unit: A simple switch rail unit has three connectors:
c, c/, c |. Think of a simple switch rail unit as shown in Fig. E.1 [upper
right quadrant]. Its purpose is to allow trains to pass through the unit in
directions c→c | or opposite, or c1→c/ or opposite, as shown in Fig. E.2.

“slide 1054”

Domain Terminology (Continued)

5 Simple Crossover Rail Unit: A simple crossover rail unit has four connec-
tors: c1, c2, c3, c4. See Fig. E.1 [lower left quadrant]. Its purpose is to allow
trains to pass through the unit in directions c1→c2 or opposite, or c3→4.

6 Switchable Crossover Rail Unit: A switchable crossover rail unit has four
connectors: c1, c2, c3, c4. See Fig. E.1 [lower right quadrant]. Its purpose is
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c4

c1c1

c1 c2

c3

c2

c4

c3

c2

Track / Line / Segment
/ Linear Unit

Turnout / Point
/ Switch Unit

Switchable Crossover Unit
/ Double Slip

Simple Crossover Unit
/ Rigid Crossing

c c|

c/

Fig. E.1. Rail Units

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. E.2. 12 possible states of a simple rail switch

to allow trains to pass through the unit in directions c1→c2 or opposite, or
c3→4 or opposite, or c1→3 or opposite, or c2→4 or opposite.

pg.:1055

7 Rail Unit State: A rail unit state is a set of pairs of distinct connectors of
the rail units, namely those for which passage is possible. See Fig E.2 for
the maximal 12 states of a simple switch unit.

E.7 Review “slide 1056”

E.8 Exercises

Exercise 35. Domain Prelude 1:
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Solution 35 Vol. II, Page 536, suggests a way of answering this exercise.

Exercise 36. Domain Prelude 2:
Solution 36 Vol. II, Page 536, suggests a way of answering this exercise.

“slide 1057”
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F

Intrinsics “slide 1059”

F.1 An Essence of ‘Transport’

We exemplify a transportation domain. By transport we shall mean the
movement of vehicles from hubs to hubs along the links of a net.

F.2 Business Processes “slide 1060”

We re-sketch the Business processes of Appendix Sect. E.5.

Rough Sketching of Some Transport Processes

The basic entities of the transportation “business” are the (i) nets with their
(ii) hubs and (iii) links, the (iv) vehicles, and the (v) traffic (of vehicles on the
net). pg.:1061 The basic functions are
those of (vi) vehicles entering and leaving the net (here simplified to entering
and leaving at hubs), (vii) for vehicles to make movement transitions along
the net, and (viii) for inserting and removing links (and associated hubs) into
and from the net. pg.:1062 The basic events
are those of (ix) the appearance and disappearance of vehicles, and (x) the
breakdown of links. pg.:1063 And, finally, the basic behaviours of the
transportation business are those of (xi) vehicle journey through the net and
(xii) net development and maintenance including insertion into and removal
from the net of links (and hubs).

F.3 Simple Entities “slide 1064”

F.3.1 Basic Entities

Nets, Hubs and Links

Narrative
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5 There are hubs and links.
6 There are nets, and a net consists of a set of two or more hubs and one or

more links.

Formalisation

type
5 H, L,
6 N = H-set × L-set

axiom
6 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

RSL Explanation

• 5: The type clause type H, L, defines two abstract types, also called sorts,S.1.2

Pg.506
H and L, of what is meant to abstractly model “real” hubs and nets. H
and L are hereby introduced as type (i.e., sort) names.
(The fact that the type clause (5) is “spread” over two lines is immaterial.)

• 6: the type clause type N = H-set × L-set defines a concrete type N (of
what is meant to abstractly model “real” nets).
⋆ The equal sign, , defines the meaning of the left-hand side type name,

N, to be that of the meaning of
⋆ H-set×L-set, namely Cartesian groupings of, in this case, pairs of setsS.3.3

of hubs (H-set) and sets of links (L-set), that is,
Pg.504[9]

⋆ × is a type operator which, when infix applied to two (or more) type
expressions yields the type of all groupings of values from respective
types, and

⋆ -set is a type operator which, when suffix applied, to, for example H,Pg.504[7]

S.3.2
i.e., H-set, constructs, the type power-set of H, that is, the type of all
finite subsets of type H.

⋆ Similarly for L-set.
(The fact that type clause (6), as it appears in the formalisation, is not
preceded immediately by the literal type, is (still) immaterial: it is part
of the type clause starting with type and ending with the clause 6.)

• 6: The axiom axiom ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1S.2,S.3.6

Pg.512[30]
• Thus we see that a type clause starts with the keyword (or literal) type

and ends just before another such specification keyword, here axiom. That
is, a type clause syntactically consists of the keyword type followed by one
or more sort and concrete type definitions (there were three above).

• And we see that a fragment of a formal specification consists of either typeS.8

clauses, or axioms, or of both, or, as we shall see later, “much more” !
End of RSL Explanation

“slide 1065”

Hub and Link Identifiers

Narrative
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7 There are hub and link identifiers.
8 Each hub (and each link) has an own, unique hub (respectively link) iden-

tifiers (which can be observed from the hub [respectively link]).

Formalisation

type
7 HI, LI

value
8a obs HI: H → HI, obs LI: L → LI

axiom
8b ∀ h,h′:H, l,l′:L •

h 6=h′⇒obs HI(h)6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)

RSL Explanation

• 7: introduces two new sorts;
• 8a: introduces two new observer functions: S.4.5

⋆ → is here an infix type operators.
Pg.504[13]

⋆ Infixing L and LI it constructs the type of functions (i.e., function val-
ues) which apply to values of type L and yield values of type LI.

and
• 8b: expresses the uniqueness of identifiers.

End of RSL Explanation
“slide 1066”

In order to model the physical (i.e., domain) fact that links are delimited by
two hubs and that one or more links emanate from and are, at the same time
incident upon a hub we express the following:

Mutual Hub and Link Referencing

Narrative

9 From any link of a net one can observe the two hubs to which the link is
connected.
(a) We take this ‘observing’ to mean the following: From any link of a net

one can observe the two distinct identifiers of these hubs.
10 From any hub of a net one can observe the one or more links to which are

connected to the hub.
(a) Again: by observing their distinct link identifiers.

11 Extending Item 9: the observed hub identifiers must be identifiers of hubs
of the net to which the link belongs.

12 Extending Item 10: the observed link identifiers must be identifiers of links
of the net to which the hub belongs.

We used, above, the concept of ‘identifiers of hubs’ and ‘identifiers of links’ of
nets. We define, below, functions (iohs, iols) which calculate these sets.

pg.:1067
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Formalisation

value
9a obs HIs: L → HI-set,
10a obs LIs: H → LI-set,

axiom
9b ∀ l:L • card obs HIs(l)=2 ∧
10b ∀ h:H • card obs LIs(h)≥1 ∧
∀ (hs,ls):N •

9(a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

10(a) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

11 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
12 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

RSL Explanation

• 9a,10a: Two observer functions are introduced.
• 9b,10b: Universal quantification secure that all hubs and links have pre-S.2.3

requisite number of unique (reference) identifiers.
⋆ 9(a): We read ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒ ∃ l′:L • l′ ∈

ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′): For all hubs (h) of the net
(∀h:H•h∈hs) it is the case (⇒) that for all link identifiers (li) of that
hub (∀li:LI•li∈obs LIs(h)) it is the case that there exists a link of the
net (∃l′:L•l′∈ls) where that link’s (l′’s) identifier is li and the identifier
of h is observed in the link l′.

⋆ 10(a): We read ∀ l:L • l ∈ ls ⇒ ∃ h′,h′′:H • {h′,h′′} ⊆hs ∧ obs HIs(l) =
{obs HI(h′), obs HI(h′′)}: for all ... further reading is left as exercise to
the reader.

• 11: Reading is left as exercise to the reader.
• 12: Reading is left as exercise to the reader.
• iohs,iols: These two lines define the signature: name and type of two func-S.4.5

tions.
• iohs(hs) calculates the set ({...}) of all hub identifiers (obs HI(h)) for whichS.3.2

Pg.508
h is a member of the set, hs, of net hubs.

• iols(ls) calculates in the same manner as does iohs(hs).
S.3.2 We can read the set comprehension expression to the left of the definition

Pg.508
symbol ≡: “the set of all obs LI(l) for which (|) l is of type L and such that
(•) l is in ls”.

End of RSL Explanation
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“slide 1068”

F.3.2 Further Entity Properties

In the above extensive example we have focused on just five entities: nets,
hubs, links and their identifiers. The nets, hubs and links can be seen as
separable phenomena. The hub and link identifiers are conceptual models of
the fact that hubs and links are connected — so the identifiers are abstract
models of ‘connection’, or, as we shall later discuss it, the mereology of nets,
that is, of how nets are composed. These identifiers are attributes of entities.
In Exercise 6.1 (Page 364) we shall introduce further attributes and other
properties of hubs and links.1

“slide 1069”

F.3.3 Entity Projections

Links and hubs have been modelled to possess link and hub identifiers. A
link’s “own” link identifier enables us to refer to the link, A link’s two hub
identifiers enables us to refer to the connected hubs. Similarly for the hub and
link identifiers of hubs. “slide 1070”

Projection of Unique Identifiers

Narrative

13 Assume conceptual types of links and hubs such that such “pseudo” links
and hubs can be compared for equality where the comparison does not
include their own or their reference identifiers.

14 By a ‘link (hub) identifier reset’
(a) we understand a function, reset I which applies to links or hubs, and

results in a pseudo-link, respectively a pseudo-hub.
(b) For any pseudo-link (pseudo-hub), reset I applied to the result of apply-

ing restore I to that pseudo-link (pseudo-hub) results in that pseudo-link
(pseudo-hub).

15 By a ‘link (hub) identifier restore’
(a) we understand a function, restore I which applies to pseudo-links or

pseudo-hubs, and results in a link, respectively a hub.
(b) For any link (hub), restore I applied to the result of applying reset I to

that link (hub) results in that link (hub).
16 By an “other than identifier hub”, respectively “. . . link”, comparison’,

non I eq, we understand a predicate function which applies either to a pair
of hubs or pseudo-hubs or to a pair of links or pseudo-links and yields truth

1 Link attributes include link length, link name, link location, link units (where
links can be seen as sequences of units, from one hub to another, or vice versa),
etc. Hub attributes include hub name, hub location, etc. Link properties include
that they are composite, consisting of units (See Exercise 6.2 Page 364).
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value true, if the hubs or pseudo-hubs (links or pseudo-links) are “equal”
except for their identifiers.

17 That is, a hub (link) is non I equal to its reset version.

pg.:1071

Formalisation

type
13 pseudo H, pseudo L

value
14(a) reset I: (H → pseudo H) | (L → pseudo L)
15(a) restore I: (pseudo H → H) | (pseudo L → L)

axiom
14(b),15(b) ∀ h:H,l:L,ph:Pseudo H,pl:Pseudo H •

restore I(reset I(h))=h∧restore I(reset I(l))=l ∧
reset I(restore I(ph))=ph∧reset I(restore I(pl))=pl

value
16 non I eq: ((H|pseudo H)×(H|pseudo H)→Bool)

| ((L|pseudo L)×(L|pseudo L)→Bool)
axiom

17 ∀ h:H,l:L • non I eq(h,reset I(h)) ∧ non I eq(l,reset I(l)) etc.

RSL Explanation

• 13: pseudo H and pseudo L are further undefined types.
• 14(a): The type union (|) expression (H → pseudo H) | (L → pseudo L)Pg.505[16]

expresses that reset I either applies to hubs or to links.
• 15(a): Similar to reset I.
• 14(b),15(b),17: The axioms governing the pseudo H and pseudo L types

and the reset I and restore I functions
• 16: As for predicates reset I and restore I (line 14(a), respectively line

15(a)), the type of the postulated non I eq predicate function is of union
type.

End of RSL Explanation

F.4 Operations “slide 1072”

To illustrate the concept of operations2 on transport nets we postulate those
which “build” and “maintain” the transport nets, that is those road net or
rail net (or other) development constructions which add or remove links. (We
do not here consider operations which “just” add or remove hubs.) By an
operation designator we shall understand the syntactic clause whose meaning

2 We use the terms functions and operations synonymously.
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(i.e., semantics) is that of an action being performed on a state. The state is
here the net. We can also think of an operation designators as a “command”.

Initialising a net must then be that of inserting a link with two new hubs
into an “empty” net. Well, the notion of an empty net has not been defined.
The axioms, which so far determine nets and which has been given above,
appears to define a “minimal” net as just that: two linked hubs !

F.4.1 Syntax

First we treat the syntax of operation designators (“commands”).

Link Insertion and Removal

Narrative

18 To a net one can insert a new link in either of three ways:
(a) Either the link is connected to two existing hubs — and the insert

operation must therefore specify the new link and the identifiers of two
existing hubs;

(b) or the link is connected to one existing hub and to a new hub — and
the insert operation must therefore specify the new link, the identifier
of an existing hub, and a new hub;

(c) or the link is connected to two new hubs — and the insert operation
must therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of respec-
tive hubs.

19 From a net one can remove a link. The removal command specifies a link
identifier.

pg.:1073

Formalisation

type
18 Insert == Ins(s ins:Ins)
18 Ins = 2xHubs | 1x1nH | 2nHs
18(a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
18(b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
18(c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
18(d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧

∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

type
19 Remove == Rmv(s li:LI)

RSL Explanation
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• 18: The type clause type Ins = 2xHubs | 1x1nH | 2nHs introduces the type
name Ins and defines it to be the union (|) type of values of either of threePg.505[16]

types: 2xHubs, 1x1nH and 2nHs.
⋆ 18(a): The type clause type 2xHubs == 2oldH(s hi1:HI, s l:L, s hi2:HI)

defines the type 2xHubs to be the type of values of record typePg.505

2oldH(s hi1:HI,s l:L,s hi2:HI), that is, Cartesian-like, or “tree”-like val-
ues with record (root) name 2oldH and with three sub-values, like
branches of a tree, of types HI, L and HI. Given a value, cmd, of type
2xHubs, applying the selectors s hi1, s l and s hi2 to cmd yield the cor-
responding sub-values.

⋆ 18(b): Reading of this type clause is left as exercise to the reader.
⋆ 18(c): Reading of this type clause is left as exercise to the reader.
⋆ 18(d): The axiom axiom has three predicate clauses, one for each cat-

egory of Insert commands.
3 The first clause: ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs HIs(l) = {hi′,

hi′′} reads as follows:
◦ For all record structures, 2oldH(hi′,l,hi′′), that is, values of type

Insert (which in this case is the same as of type 2xHubs),
◦ that is values which can be expressed as a record with root

name 2oldH and with three sub-values (“freely”) named hi′, l
and hi′′

◦ (where these are bound to be of type HI, L and HI by the defi-
nition of 2xHubs),

◦ the two hub identifiers hi′ and hi′′ must be different,
◦ and the hub identifiers observed from the new link, l, must be

the two argument hub identifiers hi′ and hi′′.
3 Reading of the second predicate clause is left as exercise to the

reader.
3 Reading of the third predicate clause is left as exercise to the reader.

The three types 2xHubs, 1x1nH and 2nHs are disjoint: no value in one
of them is the same value as in any of the other merely due to the fact
that the record names, 2oldH, 1oldH1newH and 2newH, are distinct. This
is no matter what the “bodies” of their record structure is, and they are
here also distinct: (s hi1:HI,s l:L,s hi2:HI), (s hi:HI,s l:L,s h:H), respectively
(s h1:H,s l:L,s h2:H).

• 19; The type clause type Remove == Rmv(s li:LI)
⋆ (as for Items 18(b) and 18(c))
⋆ defines a type of record values, say rmv,
⋆ with record name Rmv and with a single sub-value, say li of type LI
⋆ where li can be selected from by rmv selector s li.

End of RSL Explanation

“slide 1074”
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F.4.2 Semantics

Then we consider the meaning of the Insert operation designators.

Semantic Well-formed of Insert Operations

Narrative

20 The insert operation takes an Insert command and a net and yields either
a new net or chaos for the case where the insertion command “is at odds”
with, that is, is not semantically well-formed with respect to the net.

21 We characterise the “is not at odds”, i.e., is semantically well-formed, that
is: pre int Insert(op)(hs,ls), as follows: it is a propositional function which
applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the
below relation between the command arguments and the net is satisfied.
Let (hs,ls) be a value of type N.

pg.:1075

1 If the command is of the form 2oldH(hi′,l,hi′) then
⋆1 hi′ must be the identifier of a hub in hs,
⋆s2l must not be in ls and its identifier must (also) not be observable in ls,

and
⋆3 hi′′ must be the identifier of a(nother) hub in hs.

2 If the command is of the form 1oldH1newH(hi,l,h) then
⋆1 hi must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in ls,

and
⋆3 h must not be in hs and its identifier must (also) not be observable in

hs.
3 If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),
⋆2 l — left to the reader as an exercise (see formalisation !), and
⋆3 h′′ — left to the reader as an exercise (see formalisation !).

pg.:1076

Formalisation Conditions concerning the new link (second ⋆s, ⋆2, in the above
three cases) can be expressed independent of the insert command category.

value

20 int Insert: Insert → N
∼
→ N

21′ pre int Insert: Ins → N → Bool
21′′ pre int Insert(Ins(op))(hs,ls) ≡

⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧
case op of

1) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
2) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h)6∈ iohs(hs),
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3) 2newH(h′,l,h′′) →
{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

RSL Explanation

• 20: The value clause value int Insert: Insert → N
∼
→ N names a value,

int Insert, and defines its type to be Insert → N
∼
→ N, that is, a partial

function (
∼
→) from Insert commands and nets (N) to nets.

(int Insert is thus a function. What that function calculates will be defined
later.)

• 21′: The predicate pre int Insert: Insert → N → Bool function (which is
used in connection with int Insert to assert semantic well-formedness) ap-
plies to Insert commands and nets and yield truth value true if the com-
mand can be meaningfully performed on the net state.

• 21′′: The action pre int Insert(op)(hs,ls) (that is, the effect of performing
the function pre int Insert on an Insert command and a net state is defined
by a case distinction over the category of the Insert command. But first
we test the common property:

• ⋆2: s l(op)6∈ls∧obs LI(s l(op))6∈iols(ls), namely that the new link is not an
existing net link and that its identifier is not already known.
⋆ 1): If the Insert command is of kind 2oldH(hi’,l,hi”) then {hi′,hi′′}∈

iohs(hs), that is, then the two distinct argument hub identifiers must
not be in the set of known hub identifiers, i.e., of the existing hubs hs.

⋆ 2): If the Insert command is of kind 1oldH1newH(hi,l,h) then ... exercise
left as an exercises to the reader.

⋆ 3): If the Insert command is of kind 2newH(h’,l,h”) ... exercise left as
an exercises to the reader. The set intersection operation is defined in
Sect. S.3.6 on page 510 Item 23 on page 511.

End of RSL Explanation

“slide 1077”

Some Auxiliary Functions: Hub and Link “Extraction”

Narrative

22 Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed
from some hub in the net, xtr H(hi)(hs,ls) extracts the hub with that iden-
tifier.

23 Given a net, (hs,ls), and given a link identifier, (li), which can be observed
from some link in the net, xtr L(li)(hs,ls) extracts the hub with that identi-
fier.

Formalisation

value

22: xtr H: HI → N
∼
→ H

22: xtr H(hi)(hs, ) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end
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pre hi ∈ iohs(hs)

23: xtr L: HI → N
∼
→ H

23: xtr L(li)( ,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end
pre li ∈ iols(ls)

RSL Explanation

• 22: Function application xtr H(hi)(hs, ) yields the hub h, i.e. the value h
of type H, such that (•) h is in hs and h has hub identifier hi. Pg.520

• 22: The wild-card, , expresses that the extraction (xtr H) function does
not need the L-set argument.

• 23: Left as an exercise for the reader.
End of RSL Explanation

“slide 1078”

Auxiliary Functions: Hub and Link Identifier “Updates”

Narrative

24 When a new link is joined to an existing hub then the observable link iden-
tifiers of that hub must be updated to reflect the link identifier of the new
link.

25 When an existing link is removed from a remaining hub then the observable
link identifiers of that hub must be updated to reflect the removed link
(identifier).

Formalisation

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

24: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

25: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

RSL Explanation

• 24: The add link identifier function aLI:
⋆ The function definition clause aLI(h,li) as h′ defines the application of

aLI to a pair (h,li) to yield an update, h′ of h.
⋆ The pre-condition pre li 6∈ obs LIs(h) expresses that the link identifier

li must not be observable h.
⋆ The post-condition post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

expresses that the link identifiers of the resulting hub are those of the
argument hub except (\) that the argument link identifier is not in the Pg.512[25]

resulting hub.
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• 25: The remove link identifier function rLI:
⋆ The function definition clause rLI(h′,li) as h defines the application of

rLI to a pair (h′,li) to yield an update, h of h′.
⋆ The pre-condition clause pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2 ex-

presses that the link identifier li must not be observable h.
⋆ post-condition clause post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

expresses that the link identifiers of the resulting hub are those of the
argument hub except that the argument link identifier is not in the
resulting hub.

End of RSL Explanation
“slide 1079”

Semantics of the Insert Operation

Narrative

26 If the Insert command is of kind 2newH(h’,l,h”) then the updated net of
hubs and links, has
• the hubs hs joined, ∪, by the set {h′,h′′} and
• the links ls joined by the singleton set of {l}.

27 If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net
of hubs and links, has
27.1 : the hub identified by hi updated, hi′, to reflect the link connected to

that hub.
27.2 : The set of hubs has the hub identified by hi replaced by the updated

hub hi′ and the new hub.
27.2 : The set of links augmented by the new link.

28 If the Insert command is of kind 2oldH(hi’,l,hi”) then
28.1–.2 : the two connecting hubs are updated to reflect the new link,
28.3 : and the resulting sets of hubs and links updated.

pg.:1080

Formalisation

int Insert(op)(hs,ls) ≡
⋆i case op of
26 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
27 1oldH1newH(hi,l,h) →
27.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
27.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
28 2oldH(hi′,l,hi′′) →
28.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
28.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
28.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
⋆j end
⋆k pre pre int Insert(op)(hs,ls)
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RSL Explanation

• ⋆i–⋆j: The clause case op of p1 → c1, p2 → c2, . . . pn → cn end is a
conditional clause.

• ⋆k: The pre-condition expresses that the insert command is semantically
well-formed — which means that those reference identifiers that are used
are known and that the new link and hubs are not known in the net.

• ⋆i + 26: If op is of the form 2newH(h′,l,h′′ then — the narrative explains
the rest;
else

• ⋆i + 27: If op is of the form 1oldH1newH(hi,l,h) then
⋆ 27.1: h′ is the known hub (identified by hi) updated to reflect the new

link being connected to that hub,
⋆ 27.2: and the pair [(updated hs,updated ls)] reflects the new net: the

hubs have the hub originally known by hi replaced by h′, and the links
have been simple extended (∪) by the singleton set of the new link;

else
• ⋆i + 28: 28: If op is of the form 2oldH(hi′,l,hi′′) then

⋆ 28.1: the first element of the set of two hubs (hsδ) reflect one of the
updated hubs,

⋆ 28.2: the second element of the set of two hubs (hsδ) reflect the other
of the updated hubs,

⋆ 28.3: the set of two original hubs known by the argument hub identifiers
are removed and replaced by the set hsδ;

else — well, there is no need for a further ‘else’ part as the operator can
only be of either of the three mutually exclusive forms !

End of RSL Explanation
“slide 1081”

Semantics of the Remove Operation

Narrative

29 The remove command is of the form Rmv(li) for some li.
30 We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a
link, l, in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.
(c) For each of these two hubs, say h, the following holds wrt. removal of

their connecting link:
i. If l is the only link connected to h then hub h is removed. This may

mean that
• either one
• or two hubs
are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified
to reflect that it is no longer connected to l.
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(d) The resulting net is that of the pair of adjusted set of hubs and links.

pg.:1082

Formalisation

value

29 int Remove: Rmv → N
∼
→ N

30 int Remove(Rmv(li))(hs,ls) ≡
30(a) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in
30(b) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in
30(c) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in
30(d) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end
30(a) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set
cond rmv(li,h,hs) ≡
30((c)i) if obs HIs(h)={li} then {}
30((c)ii) else {sLI(li,h)} end
pre li ∈ obs HIs(h)

RSL Explanation

• 29: The int Remove operation applies to a remove command Rmv(li) and
a net (hs,ls) and yields a net — provided the remove command is seman-
tically well-formed.

• 30: To Remove a link identifier by li from the net (hs,ls) can be formalised
as follows:
⋆ 30(a): obtain the link l from its identifier li and the set of links ls, and
⋆ 30(a): obtain the identifiers, {hi′,hi′′}, of the two distinct hubs to which

link l is connected;
⋆ 30(b): then obtain the hubs {h′,h′′} with these identifiers;
⋆ 30(c): now examine cond rmv each of these hubs (see Lines 30((c)i)–

30((c)ii)).
◦ The examination function cond rmv either yields an empty set or

the singleton set of one modified hub (a link identifier has been
removed).

◦ 30(c) The set, hs′, of zero, one or two modified hubs is yielded.
◦ That set is joined to the result of removing the hubs {h′,h′′}
◦ and the set of links that result from removing l from ls.
The conditional hub remove function cond rmv

⋆ 30((c)i): either yields the empty set (of no hubs) if li is the only link
identifier inh,

⋆ 30((c)ii): or yields a modification of h in which the link identifier li is
no longer observable.

End of RSL Explanation
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F.5 Events “slide 1083”

F.5.1 Some General Comments

First we remind the reader of our definition of what constitutes an event
(Sect. 1.12.3 on page 39).

This section shall be very brief. The reason is this: The concept of events
and their description is very important. But examples of event descriptions are
closely intertwined with examples of behaviour descriptions. We shall therefore
postpone the illustration of serious event descriptions till Sect. F.7. After “slide 1084”

some tiny examples of events and before example of behaviours we insert a
section, Sect. F.6, a section which introduces some concepts, like time and time
intervals, which are necessary to properly describe events and behaviours. “slide 1085”

But first we informally illustrate a number of event scenarios.

F.5.2 Transport Event Examples

(i) A link, for some reason “ceases to exist”; for example: a bridge link falls
down, or a level road link is covered by a mud slide, or a road tunnel is afire,
or a link is blocked by some vehicle accident. (ii) A vehicle enters or leaves
the net. (iii) A hub is saturated with vehicles. “slide 1086”

Relating the above three sets of examples of events to out “formal” defi-
nition of an event we have these remarks: (i) The state is the transport net
of hubs and links at the times observed. We can think of a “link ceasing to
exist” as an instantaneous event, i.e., ta = tb, or as an event that occurs over
some time, i.e., ta ≥ tb — in all cases σa 6= σb (see the int Remove function
definition Pages 355–357 and our ‘Net Behaviour’ example Pages 362–364). “slide 1087”

(ii) The state is the traffic at the times, ta, tb, observed. We would say
that ta = tb but that σa 6= σb (state σa is state σb “plus” or less the vehicle
— provided we consider just one vehicle). (iii) The state is the traffic at the
times observed. Times are different by a fraction: ta ≥ tb. States are different. “slide 1088”

F.5.3 Banking Event Examples

(i) Withdrawal of funds from an account (i.e., a certain action) leads to either
of two events: (i.A) either the remaining balance is above or equal to the credit
limit, (i.B) or it is not. In the latter case that event may trigger a corrective
action. (ii) A national (or federal) bank interest rate change is an action by
the the national (or federal) bank, but is seen as an event by any local bank,
and may cause such a bank to change (i.e., an action) its own interest rate.
(iii) A local bank goes bankrupt.

We leave it to the reader to comment on the time and state relations for
the above banking examples.
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F.6 Some Fundamental Modelling Concepts “slide 1089”

Before we illustrate formal examples of traffic events (Pages 364–364) we
must formalise concepts of vehicle (Pages 361–362) and net (Pages 362–364)
behaviours. But first we need introduce (and describe: narrate and formalise)
some further entities: time (Pages 358–359), time intervals (Pages 359–359),
link and hub positions (Pages 359–360), traffic (Pages 360–360) and various
notions of traffic well-formedness (meaningful net positions: Pages 361–361,
monotonic vehicle movements: Pages 361–362 and no erratic vehicle move-
ments: Pages ??–??).“slide 1090”

F.6.1 Time and Time Intervals

Time

Narrative

31 Time is here considered an ordered, infinite set of points
(a) such that for each time there is a unique next time.

32 A proper subset of Time
(a) is an ordered, possibly infinite set of Time points
(b) such that there is a minimum, i.e., a smallest, or begin time point and

a maximum, i.e., a largest, or an end time point and
(c) such that for each time in the proper subset, other than the end point

time, there is a unique next time.
33 Traffics are here considered to be discrete functions from a proper subset

of Time to pairs of nets and positions of vehicles.
34 Positions of vehicles are discrete functions from vehicles to positions.

pg.:1091

Formalisation

type
31 Time

value

31(a) next T: Time
∼
→ Time, pre pre next T(t)

31(a) pre next T: T → Bool
31(a) pre next T(t) ≡ ∼is end T(t)

type
32 PSoTime = {|tset:Time-set•wf PSoTime(tset)|}

value
32 wf PSoTime: Time-set → Bool
32 wf PSoTime(ts) ≡
32(a) is ordered(ts) ∧
32(b) ∃ t begin,t end:Time •

{t begin,t end}⊆ts ∧
∀ t:Time • t ∈ ts ⇒ t begin≤t≤t end ∧
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32(c) ∀ t:Time • t ∈ ts\{t end} • next T(t)∈ ts
type

33 V, P [ to be defined later, see Items 42–42 ]
[ and Items 43(a)–43(b), Page 359 ]

33 TF = Time →m N × VP
34 VP = V →m P

“slide 1092”

Time Intervals

Narrative

35 A time interval is a finite passage of time.
36 One cannot add two times, but one can subtract an earlier time from a later

time and obtain a time interval.
37 One can add (and subtract) two time intervals and obtain a time interval.
38 One can multiply a real with a time intervals and obtain a time interval.
39 One can divide a time interval by another time interval and obtain a real.
40 One can divide a time interval by a real and obtain a time interval.
41 One can compare pairs of times and pairs of time intervals for smaller than

or equal, smaller than, equality, inequality, larger than, or larger than or
equal.

We do not specify these operations.

Formalisation

type
35 TI

value
36 −: Time × Time → TI
37 ∗: Real × TI → TI
38 +,−: TI × TI → TI
39 /: TI × TI → Real
40 /: TI × Real → TI
41 ≤, <, =, 6=, >, ≥: (Time×Time)|(TI×TI) → Bool

We thus use the overloaded operators −, ∗, /, ≤, <, =, 6=, >, ≥ also for time
related functions.

“slide 1093”

F.6.2 Vehicles and Hub and Link Positions

Vehicles and Hub and Link Positions

Narrative

42 There are vehicles, and vehicles are further undefined.
43 There are positions, and a position is either on a link or in a hub.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
360 F Intrinsics

(a) A hub position is indicated just by a triple: the identifier of the hub in
question, and a pair of (from and to) link identifiers, namely of links
connected to the identified hub.

(b) A link position is identified by a quadruplet: The identifier of the link,
a pair of hub identifiers (of the link connected hubs), designating a
direction, and a real number, properly between 0 and 1, denoting the
relative offset from the from hub to the to hub.

pg.:1094

Formalisation

type
42 V
43 P = HP | LP
43(a) HP == hpos(s hi:HI,s fli:LI,s tli:LI)
43(b) LP == lpos(s li:HI,s fhi:LI,s tli:LI,s offset:Frac)
43(b) Frac = {|r:Real•0<r<1|}

F.7 Behaviours “slide 1095”

F.7.1 Traffic as a Behaviour

Traffic

Narrative

44 Traffic is a discrete function from a ‘Proper subset of Time’ to pairs of nets
and vehicle positions.

45 Vehicles positions is a discrete function from vehicles to vehicle positions.

We shall have much to say, later, on the well-formedness of traffics.
Formalisation

type
44 TF = PSoTime →m (N × VehPos′)
45 VehPos′ = V →m P

axiom

RSL Explanation

• 44 →m is an infix type operator. Applied to types PSoTime and VehPos′ itPg.504[12]

constructs the traffic type of all discrete maps (i.e., function) from values
of type PSoTime to values of type VehPos′.

• 45 As for 44.
End of RSL Explanation
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“slide 1096”

Traffic: Well-formedness, I, Positions

Narrative

46 All positions recorded in traffics must be positions of the net of the traffic.

Formalisation

value
46 wf TFc: TF → Bool

wf TFc(tf) ≡
∀ ((hs,ls),vp):(N × VehPos′) • ((hs,ls),vp) ∈ rng tf ⇒

∀ p:P • p ∈ rng vp ⇒
case p of

hpos(li′,hi,li′′) →
hi ∈ iohs(hs) ∧
let h=xtr H(hi,hs) in {li′,li′′}⊆obs HIs(h) end,

lpos(hi′,li,hi′′,f) →
li ∈ iols(ls) ∧
let l=xtr L(li,ls) in {hi′,hi′′}=obs LIs(l) end end

“slide 1097”

Traffic: Well-formedness, II, Monotonicity

Narrative

47 A traffic must satisfy the following well-formedness properties:
(a) If a vehicle is in the traffic at times t′ and t′′ then it is also in the traffic

at all times, t, between t′ and t′′.
(b) If a vehicle is in the traffic at time t and at position p and at time

next T (t), then its position at time next T (t) is next P (p) where
next P (p) is

i. either p (the vehicle has either not moved along a link, or is still at
a hub),

ii. or if p is a link position, lpos(li, fhj, thk, f), then next P (p)
A. is either a hub position (hpos(li, hj , lk)) provided f is infinitisi-

mally [or just very, very] close to 1,
B. or is a link position lpos(li, fhj, thk, f ′) where f ′ is f + δf , f +

δf < 1 where δf is a positive, very small real between 0 and 1.
(That is: the vehicle has moved, but just a little bit.)

iii. or if p is a hub position, hpos(li, hj , lk, f), then next P (p)
A. is either the same position p,
B. or is a link position lpos(hj , lk, hℓ, δf ) for the other hub identi-

fier, hℓ, of the link identified by lk.
(c) A vehicle behaviour, during some time interval, can be seen

i. either as a “degenerated” traffic of only one vehicle,
ii. or a a sequence of that vehicle’s positions.
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It follows from the above that vehicles cannot change direction of move-
ment. We can relax this constraint, but will not do so here.

pg.:1098

Formalisation

value
v in tf at time: V × TF × Time → Bool
v in tf at time(v,( ,tvp),t) ≡ t ∈ dom tf ∧ v ∈ dom tf(t)

47 wf TFa: (PSoTime→m VehPos) → Bool
wf TFa(tvp) ≡

47(a) ∀ t,t′:Time • {t,t′} ⊆ dom tvp ⇒
∀ v:V • v in tf at time(v,tvp,t) ∧ v in tf at time(v,tvp,t) ⇒

∀ t′′:Time • t<t′′<t′ ⇒ v in tf at time(v,tvp,t′′)

pg.:1099

value
44 tf:TF, v:V, ft,tt:Time

axiom
44 is in TF(v)(ft,tt)(tf)

value
⋆1 is in TF: V → (Time×Time) → TF → Bool
⋆1 is in TF(v)(ft,tt)(tf) ≡
⋆2 {ft,tt}⊆dom tf ∧
⋆3 assert {ft,tt}⊆dom tf ⇒ ∀ t:Time•ft<t<tt⇒t ∈ dom tf
⋆4 ∀ t:Time•ft<t<tt ⇒ v ∈ dom tf(t)

47((c)i) VehBehtf : V → (Time×Time) → TF
VehBehtf (v)(ft,tt)(tf) ≡ [ t 7→[ v7→((tf)(t))(v) ]|t:Time•ft<t<tt ]

pre is in TF(v)(ft,tt)(tf)

47((c)ii) VehBehseq : V → (Time×Time) → P∗

VehBehseq(v)(ft,tt)(tf) ≡ 〈((tf)(t))(v)|t:Time•t in {ft..tt}〉
pre is in TF(v)(ft,tt)(tf)

“slide 1100”

F.7.2 A Net Behaviour

A Net Behaviour

Narrative

48 Nets constantly undergo changes:
(a) New links are properly inserted.
(b) Old links are properly removed.
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(c) Links “suddenly” ceases to “function”, i.e., appears as having been
(improperly) removed.

pg.:1101

Formalisation

value
n:N

variable
net:N := n

type
Road Event == L Ev(s li:LI)|...

channel
rch:(Insert|Remove)
ech:Road Event

value
system: Unit → Unit
dept of publ works: Unit → out ch Unit
road net: Unit → in rch Unit
net events: Unit → out ech Unit

system() ≡ dept of publ works() ‖ road net() ‖ net events()

pg.:1102

dept of publ works() ≡
(.. ⌈⌉
let ins:Insert • pre int Insert(ins)(c net) in
ins!ch end
⌈⌉
let rem:Remove • pre int Remove(rem)(c net) in
ins!ch end
⌈⌉ ...); dept of publ works()

net events() ≡
(skip ⌈⌉
let Link Event(li):Road Event • li ∈ iols(c net) in
Link Event(li)!evc end); net events()

pg.:1103

road net() ≡
(... ⌈⌉⌊⌋
let cmd = (rch?‖ech?) in
case cmd of

48(a) Ins(ins) → net := int Insert(cmd)(c net),
48(b) Rmv(li) → net := int Remove(Rmv(li))(c net),
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48(c) L Ev(li) → net := int Remove(Rmv(li))(c net),
... → ...

end end); road net()

We model the net behaviour in terms of a system of concurrent behaviours:
that of a public works department which non-deterministically (⌈⌉) issues or-
ders to insert or remove links; that of a net events behaviour which non-
deterministically either does nothing or “signals” an appropriate breakdown
of a link; and that of the road net behaviour which (external) deterministically
reacts to the insert or remove orders or to the link breakdown.

Channels connect these subsidiary, recursive behaviours. A global variable
represents the net. It is initialised to some net.

F.8 Traffic Events “slide 1104”

“slide 1105”

F.9 Review “slide 1106”

F.10 Exercises

Exercise 37. Link and Hub Attributes: We extend the attribites of links
and hubs.

37.1 Links have names, locations and lengths. We do not further define a
notion of ‘location’.

37.2 At most two links connected to the same hub may have the same link
name.

37.3 If two links of a net have the same link name then there is a sequence
of links of which these two links are the first and the last and such that
intermediate links connect via hubs to these. (“Figure that one out !”)

37.4 A sequence of identically named links of a net is said to form a corridor
(thus of one or more links). Thus define a predicate which tests whether
a sequence of links are [hub] connected and are identically named.

37.5 Define a function which yields all corridors of a net.
37.5 Define a function which calculates the length of a corridor — where

“lengths” of connecting hubs are assumed 0 !
37.6 A corridor which is not a proper sub-corridor of another is called a line.

Define a function which yields all lines of a net.

Solution 37 Vol. II, Page 536, suggests a way of answering this exercise.

Exercise 38. Link Units: We now consider links to be composite entities.

38.1 There are units and units have unique unit identfiers, lengths and loca-
tions.
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38.2 Links consists of units.
38.3 No two links of a net share units, i.e., all units of a net are distinct.
38.4 Units also “record” the link of which they are units.
38.5 The units of links form sequences, one sequence when the link is observed

from one of its connecting hub identifiers to the other, the reverse sequence
when seen “the other way around” !

38.6 We leave it to the reader to define ‘reverse’.

Solution 38 Vol. II, Page 536, suggests a way of answering this exercise.

“slide 1107”
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Support Technologies “slide 1109”

In this Appendix we shall exemplify three sets of support technologies: hub
signalling (like semaphores), road-rail gates, sensors, signals, and rail switch-
ing.

G.1 Net Signalling “slide 1110”

In this example of a support technology we shall illustrate an abstraction of
the kind of semaphore signalling one encounters at road intersections, that
is, hubs. The example is indeed an abstraction: we do not model the actual
“machinery” of road sensors, hub-side monitoring & control boxes, and the
actuators of the green/yellow/red sempahore lamps. But, eventually, one has
to, all of it, as part of domain modelling. “slide 1111”

G.1.1 Intrinsic Concepts of States

To model signalling we need to model hub and link states.

Narrative

Link and Hub States

We claim that the concept of hub and link states is an intrinsics facet of
transport nets. We now introduce the notions of hub and link states and state
spaces and hub and link state changing operations. A hub (link) state is the “slide 1112”

set of all traversals that the hub (link) allows. A hub traversal is a triple of
identifiers: of the link from where the hub traversal starts, of the hub being
traversed, and of the link to where the hub traversal ends. A link traversal is
a triple of identifiers: of the hub from where the link traversal starts, of the
link being traversed, and of the hub to where the link traversal ends. “slide 1113”
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Link and Hub State Spaces and State-change Designators

A hub (link) state space is the set of all states that the hub (link) may be
in. A hub (link) state changing operation can be designated by the hub and
a possibly new hub state (the link and a possibly new link state).“slide 1114”

Formalisation

States

Syntactic Well-formedness Functions:

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′

• syn wf LΣ{lnkσ} |}
value

syn wf LΣ: LΣ′ → Bool
syn wf LΣ(lnkσ) ≡

∀ (hi′,li,hi′′),(hi′′′,li′,hi′′′′):L Trav • ⇒
({(hi′,li,hi′′),(hi′′′,li′,hi′′′′)} ∈ lnkσ ⇒ li = li′ ∧
hi′6=hi′′ ∧ hi′′′6=hi′′′′ ∧ {hi′,hi′′} = {hi′′′,hi′′′′})

“slide 1115”

type
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′

• wf HΣ{hubσ} |}
value

syn wf HΣ: HΣ′ → Bool
syn wf HΣ(hubσ) ≡

∀ (li′,hi,li′′),(li′′′,hi′,li′′′′):H Trav •

{(li′,hi,li′′),(li′′′,hi′,li′′′′)}⊆hubσ ⇒ hi = hi′

“slide 1116”

Syntactic and Semantic Well-formedness Functions: The above well-formedness
only checks syntactic well-formedness, that is well-formedness when only con-
sidering the traversal designator, not when considering the “underlying” net.
Semantic well-formedness takes into account that link identifiers designate
existing links and that hub identifiers designate existing hub.“slide 1117”

Semantic Well-formedness Functions:

value
sem wf LΣ: LΣ → N → Bool
sem wf HΣ: HΣ → N → Bool

sem wf LΣ(lnkσ)(ls,hs) ≡ lnkσ 6={}⇒
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∀ (hi,li,hi′): LΣ • (hi,li,hi′) ∈ lnkσ ⇒
∃ h,h′:H • {h,h′}⊆hs ∧ obs HI(h)=hi ∧ obs HI(h′)=hi′

∃ l:L • l ∈ ls ∧ obs LI(l)=li
pre syn wf LΣ(lnkσ)

sem wf HΣ(hubσ)(ls,hs) ≡ hubσ 6={}⇒
∀ (li,hi,li′): HΣ • (li,hi,li′) ∈ hubσ ⇒

∃ l,l′:L • {l,l′}⊆ls ∧ obs LI(l)=li ∧ obs LI(l′)=li′

∃ h:H • h ∈ hs ∧ obs HI(l)=hi
pre syn wf HΣ(hubσ)

“slide 1118”

Auxiliary Functions:

value
xtr LIs: HΣ → LI-set
xtr LIs(hubσ) ≡

{li,li′|(li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ}

xtr HI: HΣ → HI
xtr HI(hubσ) ≡

let (li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ in hi end
pre: hubσ 6={}

“slide 1119”

xtr LI: LΣ → LI
xtr LIs(lnkσ) ≡

let (hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ in li end
pre: lnkσ 6={}

xtr HI: LΣ → HI-set
xtr HI(lnkσ) as his
pre: lnkσ 6={}
post his={hi,hi′|(hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ}∧ card his=2

“slide 1120”

State Spaces

type
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
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chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

“slide 1121”

G.1.2 A Support Technology Concept of States

Narrative (I)

Well, so far we have indicated that there is an operation that can change
hub and link states. But one may debate whether those operations shown are
really examples of a support technology. (That is, one could equally well claim
that they remain examples of intrinsic facets.) We may accept that and then
ask the question: How to effect the described state changing functions ? In
a simple street crossing a semaphore does not instantaneously change from
red to green in one direction while changing from green to red in the cross
direction. Rather there is are intermediate sequences of, for example, not
necessarily synchronised green/yellow/red and red/yellow/green states to help
avoid vehicle crashes and to prepare vehicle drivers. Our “solution” is to“slide 1122”

modify the hub state notion.

Formalisation (I)

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡

{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

“slide 1123”

Narrative (II)

We consider the colouring, or any such scheme, an aspect of a support tech-
nology facet. There remains, however, a description of how the technology
that supports the intermediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of
“stable” (that is non-yellow coloured) hub states (hσi,hσf ) to well-ordered se-
quences of intermediate “un-stable’ (that is yellow coloured) hub states paired
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with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉
and so that each of these intermediate states can be set, according to the time
interval information,1 before the final hub state (hσf ) is set. “slide 1124”

Formalisation (II)

type
TI [ time interval ]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema, chg HΣ: H × HΣ → H, chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in
let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

“slide 1125”

G.1.3 Discussion

We have presented an abstraction of the physical phenomenon of a road in-
tersection semaphore. That abstraction has to be further concretised. The
electronic, electro-mechanical or other and the data communication monitor-
ing of incoming street traffic and the semaphore control box control of when
to start and end semaphore switching, etcetera, must all be detailed. “slide 1126”

For this one will undoubtedly need use other formalisms than the ones
mainly used in this book, for example: Message and Live Sequence Charts,
MSCs and LSCs [118, 119, 120] and [63, 102, 126], Petri nets [124, 173, 185,
184, 186], Statecharts [98, 99, 101, 103, 100], SCs, Duration Calculus [228, 229],
DC, Temporal Logic of Actions [131, 132, 155, 156], TLA+, Temporal Logic
of Reactive Systems [74, 149, 150, 165, 180], STeP, etcetera

In the next example, a road-rail level crossing, Sect. G.2, we shall illustrate
the use of a temporal logic, DC. The last example, a rail switch, Sect. G.3, we
shall, however briefly, hint at probabilistic behaviours of support technologies.

1 Hub state hσ′′ is set tδ′ time unites after hub state hσ′ was set.
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G.2 Road-Rail Level Crossing “slide 1127”

The presentation of this section (i.e., Sect. G.2) follows that of [200, Skakke-
bæk et al., 1992].

We have chosen a rather large example, but we will present it in parts.
In this way the reader can read the first example, or the first two, and so
on. The aim of bringing in the examples is, besides the main one of showing
aspects of the supporting technologies facet, also to illustrate some aspects of
the Duration Calculus [228, 229] specification language.2We refer to Fig. G.1
for a “picture” of a road-rail level crossing.“slide 1128”
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single rail track

approaching
train

rail
signal

gate passing zone

approaching zone

road

os−2os−1 os−3: optical sensor #3

area of crossing

road signal 1

road signal 2

gate 1

gate 2

traffic direction

Fig. G.1. A road-rail level hub (with adjoining links)

“slide 1129”

G.2.1 An Intrinsic Concept of Road-Rail Level State

We have already introduced an intrinsic notion of a hub state, namely as that
of a set of triples

{(lia, hik, lib), (lic, hik, lid), . . . , (lie, hik, lif)

of link, hub and link identifiers — where the hub identifiers in that set are
the same. We refer to Sect. G.1.1. We take that model of a hub state to be
interpreted as follows: The hub is the road-rail crossing area of Fig. G.1; the
four links are the rail tracks and the road segments on either side of the hub.“slide 1130”

We identify the hub by hi, and the four links by li1, li2, li3 and li4. Cf.
Fig. G.2 on the facing page.
The intended intrinsic hub state space is:

• {{(li1,hi,li2),(li2,hi,li1)},{(li3,hi,li4)}}
“slide 1131”

2 We are grateful to Dr. Jens Ulrik Skakkebæk and to Profs. Anders Peter Ravn
and Hans Rischel (and the publisher, the IEEE Computer Science Press) for
permission to bring in the extensive, albeit substantially edited examples.
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li1

li2

li3 li4

hi

Fig. G.2. Road-rail level hub and link identifiers

G.2.2 A Concrete Concept of Road-Rail Level State

We refer to Fig. G.1 on the preceding page. The concrete state we have in mind
for this road-rail level crossing consists of the following state components:
train position (osi, i : 1, 2, 3), rail signal (signal), two road signals (traffic) and
two gates (seen as one, gates). We shall later formalise these. “slide 1132”

G.2.3 Overview

We shall “chop” our presentation of the road-rail crossing example into five
parts: Sect. G.2.4 on the following page deals with the function and safety
expectations that one should have from a properly functioning road-rail level
crossing system. The next three examples deal with various assumptions about
the domain of road traffic, rail traffic, i.e., trains, and the optical/mechanical
[support technology] devices that are to assist the road-rail level crossing sys-
tem in achieving required safety and functionality. Section G.2.5 on page 378
deals with assumptions about road traffic. Section G.2.6 on page 379 deals
deals with assumptions about train traffic, and Sect. G.2.7 deals with as-
sumptions about the devices. Finally Sect. G.2.8 outlines the monitoring and
control strategy for the computing system, i.e., the machine design.

“slide 1133”

The set of five examples, Sects. G.2.4–G.2.8, (i) function and safety, (ii)
road traffic, (iii) train traffic, (iv) device characteristics, (v) and software
design, may be interpreted as also exemplifying phases and stages of devel-
opment: (i) requirements engineering; (ii–iv) domain engineering: (ii) road
traffic, (iii) train traffic and (iv) device characteristics; (v) and software de-
sign. Be that as it may, we can interpret all the five examples as reflecting
a domain which already has all the specified aspects of the road-rail level
crossing, including the software. “slide 1134”
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G.2.4 Function and Safety

Narrative

The problem is to describe the function and the safety of an optical-mechanical
traffic system. The problem, in this example, is not to specify how to achieve
function and safety, but only to specify what we mean by function and safety.
Thus the problem is more a domain and a requirements specification than a
computing systems design problem.

Consider a road-rail level crossing (Fig. G.1). All dimensions are rather
“out of scale”. The road-rail level crossing is for a single track rail with all
trains passing only in one direction (left to right on the figure). Many factors
determine the monitoring and control of road and rail traffic.“slide 1135”

(i) Road traffic is controlled by gates, one on either side of the track.
(ii) The gates close only when road traffic is not “stuck” in the crossing

area (shown dashed).
(iii) Road traffic is advised of approaching and crossing trains by road

signals, one on either side of the track. When the gates are to be lowered
these road signals are set to red (stop). When the gates have been fully
raised the road signals are set to green go.

(iv) Train traffic is controlled (i.e., advised) by a rail signal on the right
side of the track of approaching trains, well before the crossing area.

(v) The rail signal indicates either stop (red) or go (green) for oncoming
(i.e., approaching) trains.“slide 1136”

(vi) Optical sensors (os) monitor trains in the vicinity of the crossing area.
(vii) A sensor, os1, is placed at a reasonable distance from the rail signal

such that a train will reach this, the first sensor before it reaches the rail
signal.

(viii) A train enters the system whenever it is so determined by sensor os1.
(ix) A train has left the crossing whenever sensor os3 determines that the

rearend of the train has passed the crossing.
(x) When a train approaches the gates are to be closed — provided there

is no traffic “stuck” in the crossing area.“slide 1137”

(xi) The rail signal is (to be) set to go after the gates have closed.
(xii) When no trains are approaching or passing, the rail signal must be

set to stop and the gates are to be opened.
The main goal of the combination of optics and mechanics with a comput-

ing system monitoring the traffic and controlling the gates and the signal is
to ensure safety:

(xiii) The complete system (optics, mechanics, computing) must never
allow road and train traffic to pass the crossing area at the same time.

(xiv) Furthermore, the system must ensure that both road and rail traffic
are able to pass the crossing area within some reasonable time.

(xv) A train is passing whenever it is between sensors os2 and os3.“slide 1138”
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Formalisation

Let us refer to the required system as the Road-Rail Level Crossing System:
r2ℓcs.

The r2ℓcs accepts inputs from the optical and the gate sensors, and offers
output (commands) to the signals and the gates.

State Variables

The state consists of a number of variables: (a) one for the (rail) signal, (b)
one for the two gates, (c) one for the road traffic and (d) one for the rail
traffic. “slide 1139”

type
Rail Signal == stop | go
Gates == opening | open | closing | closed
Road Traffic == stopped | stuck in cross | free to cross

variable
signal:Rail Signal
gates:Gates
traffic:Road Traffic

Trains are either approaching or passing.

variable
approach: Nat-set
pass: Nat-set

“slide 1140”
That is, a train is identified by a unique, natural number, i. If some part of
train i is between the first two sensors (os1-os2), then train i is approaching,
i.e.,

approach := {i} ∪ approach ;

And, if some part of train i is between the last two sensors (os2-os3), then
train i is passing, i.e.:

pass := {i} ∪ pass ;
“slide 1141”

Trains are active (wrt. crossing) if either approaching or passing (or both).
One can define three state assertions concerning the state of trains:

value
passing: Unit → Bool
passing() ≡ pass 6= {}

approaching: Unit → Bool
approaching() ≡ approach 6= {}
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active: Unit → Bool
active() ≡ (approach ∪ pass) 6= {}

“slide 1142”

Properties

Now we are ready to express possible domain properties:

Prop ≡ 2(SafeProp∧FunProp1∧FunProp2∧FunProp3)

DC Explanation

• The Duration Calculus expression 2P, where P is an assertion over states,
expresses:
⋆ that P always holds,
⋆ that is, at any time from now on.

End of DC Explanation

It turns out that we can express the functional requirements in terms of three
state assertions.

Safety Properties: If the gates are not closed or road traffic is “stuck” in the
crossing, then the train must not pass:

SafeProp ≡ ⌈((gates 6=closed)∨(traffic=stuck))⌉ ⇒ ⌈∼passing()⌉

DC Explanation

• The Duration Calculus expression ⌈P⌉ expresses:
⋆ the state assertion P holds during some time interval.
⋆ ⌈(Q∨R)⌉⇒⌈S⌉ reads:

· during the interval (or duration) in which Q or R holds
· S also holds.

End of DC Explanation
“slide 1143”

Function Properties: There are three function requirements:

1 FunProp1: The road traffic should maximally be held back for a predefined
period of time tstop:

FunProp1 ≡ ⌈traffic=stopped⌉ ⇒ ℓ≤tstop

DC Explanation
• The Duration Calculus expression ℓ stands for a time interval.
• The Duration Calculus expression ⌈P⌉⇒ℓ≤t thus reads:

⋆ ℓ refers to the duration during which ⌈P⌉ holds;
⋆ that duration must, in this case, be less than or equal to t.

End of DC Explanation
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2 FunProp2: When all trains have left the crossing, the gates must be open
for at least time topen:

FunProp2 ≡ ⌈active()⌉;⌈∼active()⌉;⌈active()⌉ ⇒
∫

(gates=open)>topen

DC Explanation
• The Duration Calculus expression ⌈∼P⌉ ; ⌈P⌉ ; ⌈P⌉ reads:

⋆ A duration during which P holds is followed (“;”) by
⋆ a duration during which P dos not hold; which is then followed by
⋆ a duration during which P again holds.

• The Duration Calculus expression ⌈Q⌉⇒
∫
(R)>tgiven reads:

⋆ Q holding during a time interval implies
⋆ that the summing of the time, during that time interval, of when

R holds
⋆ is larger than some given time.

End of DC Explanation
3 FunProp3: Provided the road traffic is not stuck, a single train must be

able to pass within time tactive:

FunProp3 ≡ ⌈i ∈ approach ∪ pass∧(traffic 6=stuck)⌉ ⇒ ℓ≤tactive

“slide 1144”

What is Next ?

Section G.2.4 illustrated principles and techniques of prescribing requirements,
as they were decomposed into those of safety and those of functionality.

In the next three examples, Example G.2.5 on the next page to Exam-
ple G.2.7 on page 379. respectively, we “go backwards”, as it were, to record
the assumptions that any (later) design must (usually) make. That is, we
describe (some facets of) the (application) domain. Normally, according to “slide 1145”

our “dogma”, we first establish a domain description, before we, as we have
just done, produce a requirements prescription, and, certainly long before we
develop a software design specification. The design for the present problem
domain of railway level crossings is recorded in Example G.2.8.

We somewhat arbitrarily, it may seem, but pragmatically this is very
sound, decompose the domain description into three parts: Describing the
road traffic, i.e., Domain1, describing the train traffic, i.e., Domain2, and de-
scribing the supporting technology, i.e., the device technology, i.e., Domain3.
The relevant domain “theory” is the conjunction of these:

Domain ≡ 2

3∧

i=1

Domaini

DC Explanation
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• The conjunction predicate (and Duration Calculus) expression
∧n

i=1 Pi

expresses the same as the conjunction of the Pi expressions: P1∧P2∧ . . .∧
Pn.

End of DC Explanation
“slide 1146”

G.2.5 The Road Traffic Domain

We continue the railway level crossing example based on [200].
When running freely, i.e., without control, that is, without proper road

signaling and gate control, the road traffic may eventually either stop properly
in front of the gates, or get stuck in the crossing. Such stopped or stuck road
traffic may subsequently become free, i.e., neither stopped nor stuck:

RoadTrafficAssump1 ≡
a. (⌈traffic=stopped⌉→⌈traffic=free to cross⌉)
b. ∧ (⌈traffic=free to cross⌉→(⌈traffic=stopped⌉∨⌈traffic=stuck in cross⌉))
c. ∧ (⌈traffic=stuck in cross⌉→⌈traffic=free to cross⌉)

DC Explanation

• The Duration Calculus expression ⌈P⌉→⌈Q⌉ (or ⌈P⌉→(⌈Q⌉ ∨ ⌈R⌉)) ex-
presses:
⋆ after a duration during which P holds
⋆ follows a duration during which Q holds
⋆ (or a duration during which Q or a duration during which R holds).

a. (⌈traffic=stopped⌉→⌈traffic=free to cross⌉) reads: a time duration during
which road traffic was stopped leads to a time duration during which road
traffic is free to cross.

b. (⌈traffic=free to cross⌉→(⌈traffic=stopped⌉∨⌈traffic=stuck in cross⌉)) reads:
a time duration during which road traffic was free to cross leads to a time
duration during which the road traffic was either stopped or was stuck in
the crossing area.

c. (⌈traffic=stuck in cross⌉→⌈traffic=free to cross⌉) reads: a time duration dur-
ing which road traffic was stuck in the crossing area leads to a time duration
during which the road traffic is free to cross.

End of DC Explanation

Road traffic is stopped iff the gates are not open:

RoadTrafficAssump2 ≡ ⌈traffic=stopped⌉≡⌈gates 6=open⌉

In closing, we record:

Domain1 ≡ 2

2∧

i=1

RoadTrafficAssumpi

“slide 1147”
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G.2.6 The Train Traffic Domain

We continue the railway level crossing example based on [200].
Trains must only pass if the rail signal is set to go:

TrainTrafficAssump1 ≡ ⌈passing()⌉⇒⌈signal⌉

An active train travels in one direction only, i.e., initially approaches and
finally passes:

TrainTrafficAssump2 ≡
⌈i 6∈ approach ∪ pass⌉→⌈i ∈ approach ∧ i 6∈ pass⌉
∧ ⌈i ∈ approach ∧ i 6∈ pass⌉ → ⌈i ∈ pass⌉
∧ ⌈i ∈ pass⌉→⌈i 6∈ active⌉

“slide 1148”
The last train in a series of trains passes the crossing before leaving the cross-
ing:

TrainTrafficAssump3 ≡
(⌈∼active()⌉→⌈approaching()∧∼passing()⌉)
∧ (⌈approaching()∧∼passing()⌉→⌈passing()⌉)
∧ (⌈passing()⌉→(⌈∼active()⌉∨⌈active()⌉))
∧ (⌈active()⌉→⌈passing()⌉)

The trains do not hesitate when the rail signal is go:

TrainTrafficAssump4 ≡ ⌈signal=go∧active()⌉⇒ℓ≤Tsched
“slide 1149”

The railway lines are not overloaded with trains:

TrainTrafficAssump5 ≡
⌈active()⌉;⌈∼active()⌉;⌈active()⌉

⇒ ℓ>Tinactive+Twait+Tgate open+Topen

Assumptions 1, 2 and 4 are really just obvious domain facts.
In closing, we record:

Domain2 ≡ 2

5∧

i=1

TrainTrafficAssumpi

“slide 1150”

G.2.7 The Device Domain

We continue the railway level crossing example based on [200].
It takes, at most, time Tgate close for the gates to close if the road traffic

is not stuck in the crossing:

DeviceAssump1 ≡
⌈gates=closing∧traffic 6=stuck in cross⌉⇒ℓ≤Tgate close
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It takes, at most, time Tgate open for the gates to open:

DeviceAssump2 ≡
⌈gates=opening⌉⇒ℓ≤Tgate open

“slide 1151”
The physical properties of Gates constrain the value of gates to cycle: open,
closing, closed, opening, open, ... (in that order):

DeviceAssump3 ≡
(⌈gates=open⌉→⌈gates=closing⌉)
∧ (⌈gates=closing⌉→⌈gates=closed⌉)
∧ (⌈gates=closed⌉→⌈gates=opening⌉)
∧ (⌈gates=opening⌉→⌈gates=open⌉)

The rail signal switches between stop and go:

DeviceAssump4 ≡
(⌈signal=go⌉→⌈signal=stop⌉) ∧ (⌈signal=stop⌉→⌈signal=go⌉)

In closing, we record:

Domain3 ≡ 2

4∧

i=1

DeviceAssumpi

Finally we are ready to record the design decisions.“slide 1152”

G.2.8 The Software Design

We continue the railway level crossing example based on [200].
The software design was chosen by the system designers (Skakkebæk, Ravn

and Rischel) to facilitate a proof of correctness with respect to the require-
ments and the assumptions (i.e., the domain).

The design decisions now presented are a formalisation of a finite state
control, one that cycles through phases with inactive, approaching and passing
trains. The overall design specification predicate is:

Design ≡ 2(
3∧

i=1

ApproachTrainsi ∧
4∧

j=1

PassingTrainsj)

“slide 1153”

Approaching Trains

The gates will remain open when no trains are present:

ApproachTrains1 ≡ (⌈∼active()⌉ ∧ (⌈gates=open⌉ ; true)) ⇒ ⌈gates=open⌉

If trains are present, then the gates are open for at most Treact:
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ApproachTrains2 ≡ ⌈gates=open∧active()⌉⇒ℓ≤Treact

It takes, at most, Tnts before the rail signal is go when the gates have closed:

ApproachTrains3 ≡ ⌈signal=stop∧active()⌉⇒ℓ≤Tnts
“slide 1154”

Passing Trains

The gates remain closed as long as the rail signal is go:

PassingTrains1 ≡ ⌈signal=go⌉⇒⌈gates=closed⌉

The rail signal remains go while trains are present:

PassingTrains2 ≡ ⌈active()⌉ ∧ (⌈signal=go⌉ ; true) ⇒ ⌈signal=go⌉

The rail signal will only indicate go for at most Tinactive after the trains
have left:

PassingTrains3 ≡ ⌈∼active()∧signal=go⌉⇒ℓ≤Tinactive

The gates will remain closed for at most Twait after all trains have left:

PassingTrains4 ≡ ⌈(gates=closed)∧∼active()∧signal=stop⌉⇒ℓ≤Twait
“slide 1155”

G.2.9 Some Observations

Some observations — after a long series of detailed examples — may now be
in order:

(1) For the first time, perhaps, in this text books, we have sketched one
part of an entire, albeit small, development, reordering a bit: from domain
descriptions (in the form of assumptions about the environment in which a
software design is to serve), via requirements prescriptions, to software design. “slide 1156”

(2) The examples all focused, initially, on requirements. That is to be
expected, as real-time applications are typically those related to safety-critical
issues.

(3) And those examples have then shown requirements to be expressible
in two parts: safety-critical requirements issues, and functional requirements
issues. We have, in Chap. 3, called functional requirements for domain re-
quirements.

G.3 A Rail Switch “slide 1157”

Our third example is that of a rail switch. To illustrate that concept, let us
first exemplify the concept of rail units. Cf. Sect. E.3.2 on page 334.
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G.3.1 A Diagrammatic Rendering of Rail Units

We refer to Fig. E.1 on page 339.

G.3.2 Intrinsic Rail Switch States

We refer to Item 1 on page 338, Item 2 on page 338 and Item 4 on page 338.
With a rail unit we associate a concept of connectors. A rail unit connector“slide 1158”

is defined when two rail units are connected and is then the “point” at which
they are connected. Rail units can therefore be said to have two, three or four
distinct connectors. Rail switch units thus have three distinct connectors. A
path of a rail unit is a pair of connectors such that a train may pass in the
direction from one to the other connector. We abstract a rail unit state by
a set of such paths. Fig. E.2 on page 339 shows the 12 potentially possible
states of a switch unit. Many of these states are usually not provided for by
actual switch units. States that include paths along the straight direction of
the switch, that is, from C| to C, are usually not allowed in conjunction with
other paths in a state. This excludes the “last” five states of Fig. E.2 on
page 339, that is, the rightmost of the second row of states and all the four of
the last row of states.“slide 1159”

G.3.3 Rail Switching Support Technologies

Some examples of rail state changing technologies are given below. (i) In “ye
olde” days, rail switches were “thrown” by manual labour, i.e., by railway
staff assigned to and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers3

(and steel wires), switches were made to change state by means of “throwing”
levers in a cabin tower located centrally at the station (with the lever then
connected through wires etc., to the actual switch).

(iii) This partial mechanical technology then emerged into electromechan-
ics, and cabin tower staff was “reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a
station track, or from a station track to a station departure point, are set
and reset by means also of electronics, by what is known as interlocking (for
example, so that two different routes cannot be open in a station if they cross
one another). In any one rail net it is often seen that several such supports
exists simultaneously.“slide 1160”

“slide 1161” It must be stressed that the above is just a rough sketch. In a proper nar-
rative description the domain engineer must describe, in detail, the subsystem
of electronics, electromechanics and the human operator interface (buttons,
lights, sounds, etc.) of rail switches. An aspect of supporting technology in-
cludes recording the state-behaviour in response to external state switching
stimuli. We next give an example.“slide 1162”
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Fig. G.3. Rail Switches

G.3.4 Switches With Probabilistic Behaviour and Error States

Figure G.4 intends to model the probabilistic (erroneous and correct) be-
haviour of a switch when subjected to settings (to “switched” (s) state
(C↔C/)) and re-settings (to “direct” (d) state (C↔C|)). A switch may go
to the ‘switched’ state from the ‘direct’ state when subjected to a switch
setting s with probability psd. Etcetera. “slide 1163”

sed

sw/esd sw/ess

di/edd di/eds

di/1-pdd-edd

sw/psd

di/pds

sw/1-psd-esd

di/pdd

sw/pss

di/1-pds-eds

sw/1-pss-ess

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

 0 <= p.. <= 1

States:
s: Switched state

d: Direct (reverted) state

e: Error state

Fig. G.4. Probabilistic state switching

“slide 1164”

A rail switch equipment provider must thus furnish precise descriptions
of (i) the electronic and electro-mechanical means of switching the rails, that
is, of actuators and their timed behaviour; (ii) the sensing of their current
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positions; (iii) possible error states; (iv) of the probabilities of correct and
erroneous switching; (v) etcetera.

Using this information the domain engineer can now describe actual
switches using tools like RSL, MSC, LSC, Petri nets, SC, DC, TLA+ and
STeP cf. Sect. G.1.3 Page 371.

G.4 Discussion “slide 1165”

We have illustrated a few kinds of support technologies.
They were all characterised by notions of intrinsic versus concrete states

and state switching.
Our formalisations have been rather superficial. Enough, we believe, to

justify that the reader learns to see the need for first describing the intrinsics,
then describing the support technologies that help ‘implement’ the intrinsics.
This appendix has also shown the insufficiency of just using one formal de-
scription language: by showing the use of at least two other formal description
languages: the Duration Calculus and probabilistic finite state machines.

G.5 Exercises “slide 1166”

Exercise 39. Semaphore Technology:
Solution 39 Vol. II, Page 537, suggests a way of answering this exercise.

Exercise 40. Optical Gate Technology:
Solution 40 Vol. II, Page 537, suggests a way of answering this exercise.

Exercise 41. :
Solution 41 Vol. II, Page 537, suggests a way of answering this exercise.

“slide 1167”
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Management and Organisation “slide 1169”

In this appendix we illustrate three aspects of the management and organ-
isation facet. Two models suggest how “layers” of management collaborate
and in two different styles and at two different levels of detail: as a simple
functional model, Sect. H.1, and as a not quite so simple model based on
communicating sequential processes Sect. H.2. The two formal models share
the same basic narrative. That narrative is given in Sect. H.1.1. One model
illustrates organisational aspects (Sect. H.4).

H.1 A Simple, Functional Description of Management

“slide 1170”

By a functional description we mean a description which focuses on functions,
that is, which explains things in terms of functions. By a simple description
we mean a description which is is short. “slide 1171”

H.1.1 A Base Narrative

We think of (i) strategic, (ii) tactic, and (iii) operational managers as well as
(iv) supervisors, (v) team leaders and the rest of the (vi) staff (i.e., workers)
of a domain enterprise as functions. To make the description simple we think
of each of the six categories (i–vi) of personnel and staff as functions, that is,
there are six major domain functions related to management. “slide 1172”

Each category of staff, i.e., each function, works in state and updates that
state according to schedules and resource allocations — which are considered
part of the state.

To make the description simple we do not detail the state other than saying
that each category works on an “instantaneous copy” of “the” state. “slide 1173”

Now think of six staff category activities, strategic managers, tactical
managers, operational managers, supervisors, team leaders and workers as
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six simultaneous sets of actions. Each function defines a step of collective
(i.e., group) (strategic, tactical, operational) management, supervisor, team
leader and worker work. Each step is considered “atomic”.“slide 1174”

Now think of an enterprise as the “repeated” step-wise simultaneous per-
formance of these category activities. Six “next” states arise. These are, in the
reality of the domain, ameliorated, that is reconciled into one state. however
with the next iteration, i.e., step, of work having each category apply its work
to a reconciled version of the state resulting from that category’s previously
yielded state and the mediated “global” state. We refer to Sect. 2.9.6, Page 79
for a caveat: The doubly1 recursive definition of the enterprise function is a
pseudo-definition. It is not a mathematically proper definition.“slide 1175”

H.1.2 A Formalisation

type
0. Σ
value
1. str, tac, opr, sup, tea, wrk: Σ → Σ
2. ame s, ame t, ame o, ame u, ame e, ame w: Σ → Σ5 → Σ
3. objective: Σ6 → Bool
4. enterprise, ameliorate: Σ6 → Σ
5. enterprise(〈σs,σt,σo,σu,σe,σw〉) ≡
6. let σ′

s = ame s(str(σs))(〈σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉),
7. σ′

t = ame t(tac(σt))(〈σ
′
s,σ′

o,σ′
u,σ′

e,σ′
w〉),

8. σ′
o = ame o(opr(σo))(〈σ′

s,σ′
t,σ

′
u,σ′

e,σ′
w〉),

9. σ′
u = ame u(sup(σu))(〈σ′

s,σ′
t,σ

′
o,σ′

e,σ′
w〉),

10. σ′
e = ame e(tea(σe))(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
w〉),

11. σ′
w = ame w(wrk(σw))(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e〉) in

12. if objective(〈σ′
s,σ′

t,σ
′
o,σ′

u,σ′
e,σ′

w〉)
13. then ameliorate(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉)
14. else enterprise(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉)
end end

“slide 1176”

H.1.3 A Discussion of The Formal Model

A Re-Narration

0. Σ is a further undefined and unexplained enterprise state space. The var-
ious enterprise players view this state in their own way.

1 By doubly recursive we mean (i) that the enterprise function recurses and (ii)
that the definition of its next state transpires from a recursive set of local (let)
definitions.
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1. Six staff group operations, str, tac, opr, sup, tea and wrk, each act in the
enterprise state such as conceived by respective groups to effect a resulting
enterprise state such as achieved by respective groups.

2. Six staff group state amelioration functions, ame s,ame t, ame o, ame u,
ame e and ame w, each apply to the resulting enterprise states such as
achieved by respective groups to yield a result state such as achieved by
that group.

3. An overall objective function tests whether a state summary reflects that
the objectives of the enterprise has been achieved or not. “slide 1177”

4. The enterprise function applies to the tuple of six group-biased (i.e., ame-
liorated) states. Initially these may all be the same state. The result is an
ameliorated state.

5. An iteration, that is, a step of enterprise activities, lines 5.–13. proceeds
as follows:

6. strategic management operates
• in its state space, σs : Σ;
• effects a next (un-ameliorated strategic management) state σ′

s;
• and ameliorates this latter state in the context of all the other player’s

ameliorated result states. “slide 1178”

7.–11. The same actions take place, simultaneously for the other players: tac,
opr, sup, tea and wrk.

12. A test, has objectives been met, is made on the six ameliorated states.
13. If test is successful, then the enterprise terminates in an ameliorated state.
14. Otherwise the enterprise recurses, that is, “repeats” itself in new states.

“slide 1179”

On The Environment &c.

The model does not explicitly cover interaction with the enterprise customers,
suppliers, etc., the enterprise board and other such external domain “players”.

Either we can include those “players” as an additional number of actions
like those of str, tac, . . . , wrk, each with their states, or we can think of their
states and hence their state changes and interaction (communication — see
below) with the enterprise being integrated into the enterprise state. “slide 1180”

Thus the omission of the environment is not serious: its modelling is just
a simple extension to the given model. “slide 1181”

On Intra-communication

The model does not explicitly cover communication between different enter-
prise staff group members or between these and the environment. We claim
now that these forms of communication are modelled by the enterprise state: in
each atomic action step such intended communications are reflected in “mes-
sages” of the resulting state where these messages are, or are not handled by
appropriate other enterprise staff groups in some next atomic step. “slide 1182”
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On Recursive Next-state Definitions

Above, in Items 1.–14., we gave an intuition of the enterprise operating modes.
But we have left un-explained the non-traditional recursive definition and use
of mediated states of formula lines 6.–11. We now explain this unconventional
recursion.

Let us consider just two such group activities:

...
σ′

α =ameα(alpha(σα))(< σ′

β , σ′
γ , σ′

δ, σ
′
ǫ, σ

′

ζ >)
σ′

β =ameβ(beta(σβ))(< σ′
α, σ′

γ , σ′

δ, σ
′
ǫ, σ

′

ζ >)
...

“slide 1183”

We observe that the values σ′
α and σ′

β depend on each other. Thus formula
lines 6.–11. recursively defines six values. Mathematically such recursive defi-
nitions may have solutions. If so, then such solutions are said to be fix points
of the equations. In conventional computer science one normally seeks what
is called least fixed point solutions. Such demands are not necessary in the
domain. Mathematically one can explain a process that converges towards a
solution to the set of recursive equations as an iterative process. If some solu-
tion exists then the process converges and terminates in one atomic step. If it
does not exist then the process does not terminate — the enterprise is badly
managed and goes bankrupt !“slide 1184”

Summary

We have sketched a formal model. It captures some aspects of enterprise
management and work. It abstracts most of this management and work: there
is no hint at the nature of and differences between strategic, tactic, etc., work.
That is, we have neither narrate-described such work to a sufficiently concrete
level nor, obviously formalised it.

H.2 A Simple, Process Description of Management “slide

1185”

H.2.1 An Enterprise System

In this model we view the six “kinds” of manager and worker behaviours as
six “kinds” of processes centered around a shared state process.

There are any number,

• CARD StrIdx, of strategic,
• CARDTacIdx, of tactic and
• CARDOpeIdx, of operations man-

agers,

• CARD SupIdx, of supervisors,

• CARDTeaIdx, of team leaders and

• CARDWrkIdx, of workers
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CARDNameIdx expresses the cardinality of the set of further undefined in-
dexes in NameIdx. The staff index sets, StrIdx, TacIdx, OpeIdx, SupIdx, TeaIdx
and WrkIdx are pairwise disjoint. The single state process operates concur-
rently with all the concurrently operating manager, supervisor, team leader
and worker behaviours. “slide 1186”

H.2.2 States and The System Composition

type
Ω, IdxΩ = Idx →m Ω, value idxω:IdxΩ,
Σ, value σ:Σ

value
enterprise: Unit → Unit
enterprise() ≡ shared state(σ) ‖

‖ {strateg process(i)(idxω(i))|i:StrIdx} ‖ {tactic process(i)(idxω(i))|i:TacIdx}
‖ {operat process(i)(idxω(i))|i:OpeIdx} ‖ {superv process(i)(idxω(i))|i:SupIdx}
‖ {teamld process(i)(idxω(i))|i:TeaIdx} ‖ {worker process(i)(idxω(i))|i:WrkIdx}

The signature of these seven functions will be given shortly.

H.2.3 Channels and Messages

Staff interaction with one another is modelled by messages sent over channels.
Staff obtains current state from and “delivers” updated states to the state
process, also via channels, one for each staff process. “slide 1187”

We postulate a linear ordering, <, on indexes. Channels are bidirectional
— so there is only a need for n× (n− 1) channels to serve n staff behaviours.

type
Idx = StrIdx | TacIdx | OpeIdx | SupIdx | TeaIdx | WrkIdx

[ axiom : pairwise disjoint ]
[ StrIdx ∩ (TacIdx ∪ OpeIdx ∪ SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ TacIdx ∩ (OpeIdx ∪ SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ OpeIdx ∩ (SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ SupIdx ∩ (TeaIdx ∪ WrkIdx) = {} ]
[ TeaIdx ∩ WrkIdx = {} ]

channel
σ ch[ i|i:ChIdx ]: (get Σ|Σ),
staff ch[ i,j|i,j:ChIdx•j<i ]: Msg

type
Msg, get Σ

“slide 1188”
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H.2.4 Process Signatures

value
shared state: Σ → in, out σ ch[ j:Idx ] Unit
strateg process:

j:StrIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
tactic process:

j:TacIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
operat process:

j:OpeIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
superv process:

j:SupIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
teamld process:

j:TeaIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
worker process:

j:WrkIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit

“slide 1189”

H.2.5 The Shared State Process

The shared state process recurses around the following triplet of actions: wait-
ing for a get state (get Σ) message from any staff process, j; forwarding the
state, σ, to that staff process; waiting for an updated state to be returned
from staff process j.

value
shared state: Σ → in, out σ ch[ j:Idx ] Unit
shared state(σ) ≡

⌈⌉ {let msg = σ ch[ j ]? in
case msg of

req Σ → (σ ch[ j ]!σ ; shared state(σ ch[ j ]?)),
→ shared state(σ ch[ j ]?) end end | j:Idx}

From the definition of the enterprise and the staff processes one can prove that
the message, msg, is either the req Σ token or a state.“slide 1190”

H.2.6 Staff Processes

There are six different kinds of staff processes:

• strateg process,
• tactic process,

• operat process,
• superv process,

• teamld process and
• worker process.

We define a process, staff process, to generically model any of these six pro-
cesses.
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H.2.7 A Generic Staff Behaviour

We narrate the staff behaviour: (0.) We can model staff members as having
three “alternative” behaviours; (2.–4.) doing their own work; (5.–9.) taking an
initiative to act with other staff (i); and (10.–13.) being prompted by other
staff (i) to react. “slide 1191”

(0.) Each staff behaviour selects whether to “do own work”, to act, or to
react; select is assumed to internally non-deterministically (⌈⌉) choose “what
to do”.

(2.) Doing own work means to work on an “own state” (ω′). (3.) The
result, ω′′, is “merged” into the global state which is request-obtained from
the shared state. “slide 1192”

(5.) Acting means to act on the global state (σ); (6.) by performing some
“local” operations (staff actj(ω, σ)) (7.) which result in local and global state
changes (ω′, σ′) and the identification of another staff member from whom to
request some action (req) which then result in some new global state (σ′′) and
a “local” result (res). (8.) The new global state is updated “locally” (9.) as is
the local state. “slide 1193”

(10.) Reacting means to accept a request (req) from some other staff mem-
ber (i); (11.) to then perform some “local” operation (staff reactj(req, ω, σ))
which result in local and global state changes (ω′, σ′′) and some result (res)
(12.) The new global state is updated “locally” (13.) as is the local state.

(4., 9., 13.) The staff process iterates (by “tail-recursion”). “slide 1194”

value
0. staff process(j)(ω) ≡ let (ω′,wtd) = select wtd(ω) in
1. case wtd of
2. own → let ω′′ = own work(ω′) in
3. (σ ch[ j ]!σ updatej(ω′′,(σ ch[ j ]!get Σ ; σ ch[ j ]?)) ‖
4. staff process(j)(ω′′)) end
5. act → let σ = (σ ch[ j ]!get Σ ; σ ch[ j ]?) in
6. let (i,req,ω′′,σ′) = staff actj(ω′,σ) in
7. let (res,σ′′) = (staff ch[ j,i ]!(req,σ′) ; staff ch[ j,i ]?) in
8. (σ ch[ j ]!σ updatej(req,res,ω′′,σ′′) ‖
9. staff process(j)(ω updatej(req,res,ω′′))) end end end
10. react → let (i,req,σ′) = ⌈⌉{staff ch[ j,i ]?|i:Idx} in
11. let (res,ω′′,σ′′) = staff reactj(req,ω′,σ′) in
12. (̀ staff ch[ j,i ]!(res,σ updatej(req,res,ω′′,σ′′)) ‖
13. staff process(j)(ω updatej(req,res,ω′′))) end end end end

“slide 1195”

A Diagrammatic Rendition

Let us consider Fig. H.1 on the next page: The digits of Fig. H.1 on the follow-
ing page refer to the line numbers of the staff process definition (Page 393).
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The figure intends to show the trace of three processes: the shared state pro-
cess, staff process j serving in the own work work mode as well as in the active
work mode, and staff process i (serving in the reactive work mode).“slide 1196”

... ... ...
3.

4.

6.

7.

8.

9.

10.

0. 0. 0.

Staff  j Staff  j’ Staff  i

5.

staff_act

Staff  1 Staff  n

σ

Shared State

Σ

re
q_

re
q_

Σ Σ

µσ
σ

2. own work
{...|...}

13.

11. staff_react

12.
µσ

µµσ

µµµσ

case: own case: act case: react

≅

σ µσ σ µµµσ

Fig. H.1. Own and ‘action’-‘reaction’ process traces: µσ=σ′, µµσ=σ′′, µµµσ=σ′′′

“slide 1197”

Auxiliary Functions

A number of auxiliary functions have been used.

The select wtd (“select what to do”) clause

type
WhatToDo = own | act | react

value
select wtd: Ω → Ω × WhatToDo

internally, non-deterministically chooses one of the three WhatToDo alterna-
tives as also shown in Lines 2., 6. and 11 Page 393. The choice is based on the
local state (ω). The outcome of the choice, whether own, act or react, reflects,
we could claim, a priority need for either of these alternatives, or just reflects
human vagary! The choice is recorded in an update local state (ω′).“slide 1198”

The own work function

value own work: Ω → Ω

is “own” as it applies only to the local state (ω). The modelling idea is the
following: The ‘own work’, by any staff member, is modelled as taking place,
not on the global state, but the result is eventually (see Line 3. Page 393 and,



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
H.2 A Simple, Process Description of Management 395

next, the σ updatej) into the global state. This models, we claim, that staff
works locally on “copies” of the global state.“slide 1199”

The σ updatej function

value σ updatej : Ω × Σ → Σ

models the “merging” of a local state (ω) into the global state (σ). We do
not describe this ‘merging’. But such a description should be made, if need
be, separately, for each case of the own work (Line 3.), staff act (Line 8.) and
staff react (Line 12., Page 393) alternatives. “slide 1200”

The staff act function

type
Request = Req1 | Req2 | ... | Reqm

value
staff act: Ω × Σ → Idx × Request × Ω × Σ

applies to both the local and the global state. The purpose of the staff act
query is (line 6., Page 393) to determine with which other staff (i:Idx) the
current staff (j) need interact and for what purposes (req), The staff act query
updates both the local and the global states (ω′′, σ′). The staff act query is
assumed to take very little time. “slide 1201”

The ω update function (Lines 9. and 13., Page 393)

value ω update: Request × Result × Ω → Ω

updates the local state with the action request and result (req,res) being made
to and yielded by staff i. We do not describe this ‘merging’. But such a de-
scription should be made, if need be, separately, for each case of the staff act
(Line 9.) and staff react (Line 13., Page 393) alternatives. “slide 1202”

The staff reactj function is, for each j , a (usually large) set of functions:

type
Result = Res1 | Res2 | ... | Resm

value
staff reactj: Request × Ω × Σ → Result × Ω × Σ
staff reactj(req,ω,σ) ≡

(case req of r1→opj1(r1),r2→opj2(r2),...,rm→opjm
(rm) end)(ω,σ)

opji
: Reqi → Ω × Σ → Resi × Ω × Σ

Each of these operations are assumed to be of the kind: prepare for this
operation to be carried out when doing ‘own work’. We shall comment on
these operations below (Sect. H.2.8 [Pages 396–398]). “slide 1203”
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Assumptions

A number of assumptions have been made in expressing the staff process: The
time-duration of the inter-process communications and the ω and σ updates
are zero; and the time-durations of staff actj(ω, σ) and staff reactj(req, ω, σ))
operations are “near”-zero. These two functions do not cause any interaction“slide 1204”

with neither the shared state nor other staff processes.
The time-duration of the own work(ω) operation may be any length of

time.
(The real work is done during the local state change own work(ω) operation

and the result of this work is eventually “fed back into the global state”!)“slide 1205”

When offering to act or react the designated partner staff behaviour will
accept the offer and within a reasonably realistic time interval.

With these assumptions fulfilled it is acceptable to model global state
changes as non-interleaved.“slide 1206”

H.2.8 Management Operations

So, which are the functions opji
(ω, σ)? As is obvious from Sect. 2.9.6 there are

zillions of management operations. They are loosely suggested in Sect. 2.9.6,
Pages 73–79. Thus we shall not further define these here. But some comments
are in order.“slide 1207”

Focus on Management

We focus on management rather than on “workers”. Operations by workers,
say in a railway transport system, deal with: selling and cancelling tickets,
starting, driving and stopping trains, setting signals, laying down new and
maintaining rails, etcetera. Management operations are of two kinds: Own,
preparatory ‘work’ — that may take hours and days; and dispensing or re-
ceiving order — that may take “down to” fractions of minutes. This view of
‘management operations’ partly justifies our staff model.“slide 1208”

Own and Global States

Workers spend most, and managers some of their time on ‘own work’ —
and then apply the operations of that ‘own work’ to local states. Worker local
states are usually very clearly delineated “copies” of the global states somehow
made inaccessible to other staff while subject to ‘own work’. Manager local
states are usually not so clearly delineated. ‘Own work’ is “reflected back
into”, that is, updates, the global state (cf. Line 3. Page 393).“slide 1209”

State Classification

We have presented a notion of local (ω : Ω) global states (σ : Σ) without
really saying much about these. We may also have given the impression that
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these states were inert, that is, changed only when operated upon by the staff.
We now redress this impression, that is, we now make it clear that states may
have several components, and that some individual state components may
be (i) inert dynamic2, (ii) active dynamic3 comprising: (ii.1) autonomous ac-
tive dynamic4, (ii.2) biddable active dynamic5 and (ii.3) programmable active
dynamic6 and (iii) reactive dynamic7. “slide 1210”

Transport System States

In a transport system these are some of the state components.

Transport Net State Changes: (i) the transport net which changes state due
to (i.1) wear and tear of the net, (i.2) setting and resetting of signals, (i.3)
insertion and removal of links, etcetera. “slide 1211”

Net Traffic State Changes: (ii) the net traffic which changes state due to (ii.1)
vehicles entering, moving around, and leaving the net, (ii.2) vehicles accidents,
road/bridge/tunnel breakdowns, (ii.3) the state changes of the underlying net,
etcetera. “slide 1212”

Managed State Changes: (iii) management state changes due to (iii.1) changed
transport vehicle timetables being inserted, (iii.2) changed toll road fee sched-
ules being enacted, (iii.3) changed speed limits, (iii.4) changed signalling rules,
(iii.5) changed resource (incl. public vehicle) allocation, etcetera. “slide 1213”

H.2.9 The Overall Managed System

One can speak of an overall managed system which we consider as consisting
of all staff, all explicitly shared state components, and the more implicitly
observable state components of the environment. Figure H.2 on the next page
tries to conceptually “picture” such an overall managed system “slide 1214”

“slide 1215”In a domain model we try, to our best, to describe the n staff behaviours:
executive, strategic, tactic and operations managers, supervisors, team leader
and workers, and the various explicitly known state components of the domain,
whether only observable (that is: monitorable) or also controllable (that is:
generable). In a domain model we may have, through the modelling of the
state components, to thus implicitly model environment state concepts. “slide 1216”

2 An entity is inert dynamic if it never changes value of it own volition.
3 An entity is active dynamic if it changes value of it own volition.
4 An entity is autonomous active dynamic if it changes value only of it own volition.
5 An entity is biddable active dynamic if it can be advised to change state — but

it does not have to follow that advice, i.e., that control.
6 An entity is programmable active dynamic if its state changes, over some future

time interval, can be fully controlled.
7 An entity is reactive dynamic if it performs not necessarily fully predictable state

changes in response to external stimuli (i.e., control).
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... ... ...
Staff  1 Staff  n

...
Staff  i Staff  j Staff  k

Explicitly Monitored and Possibly Controlled State

Shared State

Environment which influences the State

Fig. H.2. Staff and explicit (shared) and implicit states

H.2.10 Discussion

Management Operations

We leave it to the reader to draw the necessary conclusions: (i) only some state
components are of concern to management, (ii) not all such state components
can be controlled by management, (iii) to model the all the system state
changes is thus not a concern of modelling management (and organisation),
and (iv) to model all management operations is not feasible.

We have, in other sections of this domain model development, i.e., Part V,
Appendices E–L, Pages 317–457, while covering other domain facets, illus-
trated many management operations.“slide 1217”

Managed States

H.3 Discussion of First Two Management Models “slide

1218”

H.3.1 Generic Management Models

The first two management models, Sects. H.1–H.2, Pages 387–398, the func-
tional, Sect. H.1, Pages 387–390, and the process descriptions, Sect. H.2,
Pages 390–398, really did not show any management aspects of transportation
systems.

The two models can be claimed to be generic. As such they apply to a
wide variety of domain management.“slide 1219”
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The two models can also be claimed to be one anothers’ “inverse”. The
process description, Sect. H.2, can be claimed to “implement” the functional
description, Sect. H.1; each “step” of the staff processes can be claimed to
correspond to an “iteration” of the “solving” of the recursive equations of
Lines 6.–11., Page 388. We leave it as a research challenge for the reader “clean-
up” the two formal definitions, that is, express them in a formalism, such that
a theorem expressing that the process model “implements” the functional,
doubly recursive model. Such a ‘clean-up’ might possibly involve rewriting the
functional, doubly recursive model into an imperative tail-recursive model. “slide 1220”

H.3.2 Management as Scripts

It was said, above, that management is manifested in “zillions” of actions,
some occurring concurrently, some occurring in strict sequence, etcetera. But
nothing was then said, above, of the order, if any, of these actions. Some
actions cannot be meaningfully applied before others have been applied. (i)
The management decision to remove a specific link, ℓ, must occur some time
after a (thus previous) management decision to insert that specific link, ℓ. (ii) “slide 1221”

The management decision to construct a (new) train timetable must not occur
before reasonable completion dates for the construction of the underlying rail
net, the purchase of required rolling stock, and the hiring of required net and
train operation staff have all been established. (iii) the management go-ahead
for the start of train traffic according to a new timetable must not occur
before the completion of the construction of a train (staff) rostering plan,
the construction of a train maintenance plan, and the rail net construction,
etcetera. “slide 1222”

One — not so extreme — interpretation of the above is that we cannot
meaningfully describe specific concurrent and sequential sets of management
actions but must basically, in most cases of systems, accept any such patterns
of actions.

Another — slightly less extreme — interpretation of the above is that we
can in some cases describe what we shall later define as a family of manage-
ment scripts Let that suffice for the time being.

H.4 Transport Enterprise Organisation “slide 1223”

Transportation is “home” to many different kinds of enterprises. Each of
these enterprises is concerned with relatively distinct and reasonably non-
overlapping issues: road (bridge, etc.) building, Erdb

, road (etc.) maintenance,
Erdm

, road & car traffic signaling, Erds
, bus sercies (i), Ebsi

, fire brigade, Efi,
police, Epo, rail building, Erlb , rail maintenance, Erlm , rail & train signaling,
Erls , train services (j), Etpj

, map making (k) Emmk
, etcetera. But they “share”

the transportation net. “slide 1224”
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H.4.1 Transport Organisations

Each kind of transportation enterprise, say Ei, covers a subset, say NET Ei
,

of the net, that is, not necessarily the entire net. For two or more i, j, i 6=j,
it may be that NET Ei

∩ NET Ej
6= {}. Each transportation enterprise has

its own distinct staff, that is, sets of strategics managers, ST REi
, tactics

managers, T ACEi
, operations managers, OPSEi

, supervisors, SUPEi
, team

leaders, T LDEi
, and workers, WRKEi

, For some managers, supervisors, team
leaders and workers the areas of the net for which they are responsible are
proper, disjoint subsets of the net.“slide 1225”

H.4.2 Analysis

To describe the transportation domain one has to model for each transporta-
tion enterprise, Ei, separate subsets of the net NET Erdb

, NET Erdm
, NET Erds

,
NET Ebpi

, NET Erlb
, NET Erlm

, NET Erls
, NET Etpt

, NET Efi
, NET Epo

, and
NET Emmk

; and, for each such transportation enterprise, one has to model
a number of separate enterprise structures: Erdb

, Erdm
, Erds

, Ebpi
, Erlb , Erlm ,

Erls , Etpt
, Efi, Epo, and Emmk

.“slide 1226”

H.4.3 Modelling Concepts

Net Kinds

In order to model the various nets, NET Ei
, given that we have a base model

N, we introduce a notion of ‘net kind’: one for each of the nets NET Erdb
,

NET Erdm
, NET Erds

, NET Ebpi
, NET Erlb

, NET Erlm
, NET Erls

, NET Etpt
,

NET Efi
, NET Epo

, NET Emmk
, etcetera. A ‘net kind’, k:K, is like a type des-

ignator

type
K = SimP|BusK|TrainK|MapMK
SimK == road b|road m|road s|rail b|rail m|rail s|fireb|police
BusK == bus p1|bus p2|...|bus pm
TrainK == train p1|train p2|...|trai pn
MapMK == map m1|map m2|...|map mo

“slide 1227”
To each hub and link in a net we then associate zero, one or more net kinds.
We then postulate an observer function:

value
obs K: (H|L) → K-set

Given a net kind we can then “extract” the net of hubs and links “carrying”
that net kind:
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value
xtr N: N × K → N

To guarantee that the extracted net is indeed a (well-formed) net we must
make sure that any assignment of net kinds to hubs and links results in well-
formed net kind nets:

value
wf NK: N → Bool

To express wf NK we define a function

value
xtr Ks: N → K-set

which collects all net kinds from all hubs and links of the net. “slide 1228”

value
xtr Ks(hs,ls) ≡

∪{obs Ks(h)|h:H•h ∈ hs} ∪ ∪{obs Ks(l)|l:L•l ∈ ls}

wf N′(hs,ls) ≡
∀ k:K • k ∈ xtr Ks(hs,ls) ⇒

wf N({h|h:H•h ∈ hs∧k ∈ obs Ks(h)},{l|l:L•l ∈ ls∧k ∈ obs Ks(l)})

The predicate wf N′ extends the predicate wf N which corresponds to the
satisfaction of all the axioms given in Sect. F.3, Pages 343–348.

xtr N((hs,ls),k) ≡
({h|h:H•h ∈ hs∧k ∈ obs Ks(h)},{l|l:L•l ∈ ls∧k ∈ obs Ks(l)})
pre k ∈ xtr Ks(hs,ls)

“slide 1229”

Enterprise Kinds

In order to model the various enterprises, Ei, given that we have a base model
for business staff, SIdx, we introduce a notion of ‘enterprise kind’: one for each
of the enterprise kind: Erdb

, Erdm
, Erds

, Ebpi
, Erlb , Erlm , Erls , Etpt

, Efi, Epo,
Emmk

, etcetera. A ‘enterprise kind’, b:B, is like a type designator

type
E = SimE|BusE|TrainE|MapMakE
SimE == road b|road m|road s|rail b|rail m|rail s|fireb|police
BusE == bus p1|bus p2|...|bus pm
TrainE == train p1|train p2|...|train pn
MapMakE == map m1|map m2|...|map mo

“slide 1230”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
402 H Management and Organisation

Staff Kinds

To each staff we then associate an enterprise kind.

value
obs B: SIdx → B

We may further have to impose that interaction between staff, viz.:

staff ch[ i,j ]

be subject to an “internal business constraint”:

obs B(i) = obs B(j)
“slide 1231”

Staff Kind Constraints

Narrative

The staff, Staff Ei
, of each transportation enterprise, Ei, can be roughly cate-

gorised into: strategic managers, ST REi
, tactics managers, T ACEi

, operations
managers, OPSEi

, supervisors, SUPEi
, team leaders, T LDEi

, and workers
WRKEi

, as already mentioned (Page 400). And each of these can be further
sub-categorised.“slide 1232”

Formalisation

We suggest the “beginnings” of a formalisation.

type
StaffK == stra|tac|ope|sup|tld|wrk

value
obs StaffK: SIdx → StaffK

A more realistic model, for a given enterprise, would provide a far more de-
tailed categorisation. Typically there might be several “layers” of strategic
and of tactic and of operations management. Similarly a model might detail
different kinds of supervisor, team leader and worker (“blue collar”) staff.“slide 1233”

Hierarchical Staff Structures

We refer to Fig. 2.1, Page 80.“slide 1234”
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Matrix Staff Structures
“slide 1235”

Net and Enterprise Kind Constraints

Narrative

A link (or a hub) is either a road or a rail link (hub). If a link is a road link
then the two hubs that it connects are road hubs. If a hub is a road hub then
all the links emanating from the hub are road links. If a link is a rail link then
the two hubs that it connects are rail hubs. If a hub is a rail hub then all the
links emanating from the hub are rail links. In consequence we may speak of
disjoint road nets and rail nets. The enterprises associated with a road [rail]
net must be road [rail] related (building, maintenance, signaling, bus [train]
services, police, etc.). “slide 1236”

Formalisation

type
NetK: road|rail|...

value
obs NetK: (H|L) → NetK

xtr L: LI → L-set → L,xtr H: HI → H-set → H
xtr L(li)(ls) ≡ ∃!l:L • l ∈ ls∧obs LI(l)=li
xtr H(hi)(hs) ≡ ∃!h:H • h ∈ hs∧obs HI(h)=hi

wf N′′: N → Bool
wf N′′(hs,ls) ≡

∀ h:H • h ∈ hs ⇒
∀ li:LI • li ∈ obs LIs(h) ⇒ obs NetK(xtr L(li)(ls))=obs NetK(h) ∧

∀ l:L • l ∈ ls ⇒
∀ hi:HI • hi ∈ obs HIs(l) ⇒ obs NetK(xtr H(hi)(hs))=obs NetK(l)

The predicate wf N′′ extends the predicate wf N′ given earlier (Page 401). “slide 1237”

value
netk: N → NetK-set
netk(hs,ls) ≡ {obs NetK(h)|h:H•h ∈ hs}∪{obs NetK(l)|l:L•l ∈ ls}

road k:NetK-set={road b,road m,road s,bus p1,bus p2,...,bus pm,fireb,police},
rail k:NetK-set={rail b,rail m,rail s,train p1,train p2,...,train pn,fireb,police}

wf N′′′: N → Bool
wf N′′′(hs,ls) ≡

let nks = netk(hs,ls) in
case nks of

{road} → xtr Ks(hs,ls)⊆road k,{rail} → xtr Ks(hs,ls)⊆rail k, → false
end end
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The predicate wf N′′′ extends wf N′′ given earlier (Page 403).“slide 1238”

H.4.4 Net Signaling

In the previous section on support technology we did not describe who or
which “ordered” the change of hub states. We could claim that this might
very well be a task for management.

(We here look aside from such possibilities that the domain being modelled
has some further support technology which advises individual hub controllers
as when to change signals and then into which states. We are interested in
finding an example of a management & organisation facet — and the upcoming
one might do!)“slide 1239”

Narrative

So we think of a ‘net hub state management’ for a given net. That manage-
ment is divided into a number of ‘sub-net hub state managements’ where the
sub-nets form a partitioning of the whole net. For each sub-net management
there are two kinds management interfaces: one to the overall hub state man-
agement, and one for each of interfacing sub-nets. What these managements
do, what traffic state information they monitor, etcetera, you can yourself
“dream” up. Our point is this: We have identified a management organisa-
tion.“slide 1240”

Formalisation

type
HIsLIs = HI-set × LI-set
MgtNet′ = HIsLIs × N
MgtNet = {| mgtnet:MgtNet′ • wf MgtNet(mgtnet)|}
Partitioning′ = HIsLIs-set × N
Partitioning = {| partitioning:Partitioning′ • wf Partitioning(partitioning)|}

value
wf MgtNet: MgtNet′ → Bool
wf MgtNet((his,lis),n) ≡

[ The his component contains all the hub ids. of links identified in lis ]
wf Partitioning: Partitioning′ → Bool
wf Partitioning(hisliss,n) ≡

∀ (his,lis):HIsLIs • (his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[ no sub−net overlap and together they ′′span′′ n ]
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H.5 Discussion “slide 1241”

“slide 1242”

“slide 1243” H.6 Exercises “slide 1244”

Exercise 42. 41:
Solution 42 Vol. II, Page 537, suggests a way of answering this exercise.

Exercise 43. 42:
Solution 43 Vol. II, Page 537, suggests a way of answering this exercise.

Exercise 44. 43:
Solution 44 Vol. II, Page 537, suggests a way of answering this exercise.

“slide 1245”
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Rules and Regulations “slide 1247”

For the motivation and the principles and techniques for carrying out this
stage of development of domain rules and regulations description we refer to
Sect. 2.9.7 (starting Page 80).

I.1 Two Informal Examples

Example. 28 – Trains at Stations: The “Available Station” Rule and Reg-
ulation:

• Rule: In China the arrival and departure of trains at, respectively from,
railway stations is subject to the following rule:

In any three-minute interval at most one train may either arrive to
or depart from a railway station.

• Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.

•
“slide 1248”

Example. 29 – Trains Along Lines: The “Free Sector” Rule and Regula-
tion:

• Rule: In many countries railway lines (between stations) are segmented into
blocks or sectors. The purpose is to stipulate that if two or more trains
are moving along the line, then:

There must be at least one free sector (i.e., without a train) between
any two trains along a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.
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•

The above incomplete regulation will be completed in Sect. I.2.2 on page 411.

I.2 Two Formal Examples “slide 1249”

We shall develop Example 29 on the previous page into a partial, formal
specification. That is, not complete, but “complete enough” for the reader to
see what goes on.“slide 1250”

I.2.1 The “Free Sector” Rule

Analysis of Informal “Free Sector” Rule Text

We start by analysing the text of the rule and regulation. The rule text:
There must be at least one free sector (i.e., without a train) between any two
trains along a line. contains the following terms: free (a predicate), sector (an
entity), train (an entity) and line (an entity). We shall therefore augment our
formal model to reflect these terms. We start by modelling sectors and sector
descriptors, lines and train position descriptors, we assume what a train is,,
and then we model the predicate free.“slide 1251”

Formalised Concepts of Sectors, Lines, and Free Sectors

type
Sect′ = H × L × H,
SectDescr = HI × LI × HI
Sect = {|(h,l,h′):Sect′ • obs HIs(l)={obs HI(h),obs HI(h′)}|}
SectDescr = {|(hi,li,hi′):SectDescr′ •

∃ (h,l,j′):Sect•obs HIs(l)={obs HI(h),obs HI(h′)}|}
Line′ = Sect∗,
Line = {|line:Line′•wf Line(line)|}
TrnPos′ = SectDescr∗

TrnPos = {|trnpos′:TrnPos′•∃ line:Line•conv Line to TrnPos(line)=trnpos′|}
value

wf Line: Line′ → Bool
wf Line(line) ≡

∀ i:Nat • {i,i+1}⊆inds(line) ⇒
let ( ,l,h)=line(i),(h′,l′, )=line(i+1) in h=h′ end

conv Line to TrnPos: Line → TrnPos
conv Line to TrnPos(line) ≡

〈(obs HI(h),obs LI(l),obs HI(h′))|1≤i≤len line∧line(i)=(h,l,h′)〉

“slide 1252”
The function lines yield all lines of a net.
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value
lines: N → Line-set
lines(hs,ls) ≡

let lns = {〈(h,l,h′)〉|h,h′:H,l:L•proper line((h,l,h′),(hs,ls))}
∪ {ln̂ln′|ln,l′:Line•{ln,ln′}⊆lns∧adjacent(ln,ln′)} in

lns end

The function lines makes use of an auxiliary function:

adjacent: Line × Line → Bool
adjacent(( ,l,h),(h′,l′, )) ≡ h=h′

pre {obs LI(l),obs LI(l′)}⊆ obs LIs(h)

“slide 1253”
We reformulate traffic in terms of train positions.

type
TF = T →m (N × (TN →m TrnPos))

We formulate a necessary property of traffic, namely that its train positions
correspond to actual lines of the net.

value
wf TF: TF → Bool
wf TF(tf) ≡

∀ t:T•t ∈ dom tf ⇒
let ((hs,ls),trnposs) = tf(t) in
∀ trn:TN • trn ∈ dom trnposs ⇒

∃ line:Line • line ∈ lines(hs,ls) ∧
trnposs(trn) = conv Line to TrnPos(line) end

Nothing prevents two or more trains from occupying overlapping train po-
sitions. They have “merely” – and regrettably – crashed. But such is the
domain. So wf TF(tf) is not part of an axiom of traffic, merely a desirable
property. “slide 1254”

value
has free Sector: TN × T → TF → Bool
has free Sector(trn,(hs,ls),t)(tf) ≡

let ((hs,ls),trnposs) = tf(t) in
(trn 6∈ dom trnposs ∨ (tn ∈ dom trnposs(t) ∧
∃ ln:Line • ln ∈ lines(hs,ls) ∧

is prefix(trnposs(trn),ln))(hs,ls)) ∧
∼∃ trn′:TN • trn′ ∈ dom trnposs ∧ trn′6=trn ∧

trnposs(trn′)=conv Line to TrnPos(〈follow Sect(ln)(hs,ls)〉)
end
pre exists follow Sect(ln)(hs,ls)
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is prefix: Line × Line → N → Bool
is prefix(ln,ln′)(hs,ls) ≡ ∃ ln′′:Line • ln′′ ∈ lines(hs,ls) ∧ ln̂ln′′=ln′

The test ln′′ ∈ lines(hs,ls) in the definition of is prefix is not needed for the
cases where that function is invoked as only shown here.

The function follow Sect yields the sector following the argument line, if
such a sector exists.

exists follow Sect: Line → Net → Bool
exists follow Sect(ln)(hs,ls) ≡

∃ ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls)
pre ln ∈ lines(hs,ls)

follow Sect: Line → Net
∼
→ Sect

follow Sect(ln)(hs,ls) ≡
let ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls) in hd ln′ end
pre line ∈ lines(hs,ls)∧exists follow Sect(ln)(hs,ls)

“slide 1255”

Formalisation of the “Free Sector” Rule

We doubly recursively define a function free sector rule(tf)(r). tf is that part
of the traffic which has yet to be “searched” for non-free sectors. Thus tf is
“counted” up from a first time t till the traffic tf is empty. That is, we assume
a finite definition set tf . r is like a traffic but without the net. Initially r is
the empty traffic. r is “counted” up from “earliest” cases of trains with no
free sector ahead of them. The recursion stops, for a given time when there
are no more train positions to be “searched” for that time; and when the
“to-be-searched” traffic is empty.“slide 1256”

type
TNPoss = T →m (TN → TrnPos)

value
free sector rule: TF × TF → TNPoss
free sector rule(tf)(r) ≡

if tf=[ ] then r else
let t:T•t ∈ dom tf∧smallest(t)(tf) in
let ((hs,ls),trnposs)=tf(t) in
if trnposs=[ ] then free sector rule(tf\{t})(r) else
let tn:TN•tn ∈ dom trnposs in
if exists follow Sect(trnposs(tn))(hs,ls)∧∼has free Sector(tn,(hs,ls),t)(tf)

then
let r′ = if t ∈ dom r then r else r ∪ [ t7→[ ] ] end in
free sector rule(tf†[ t7→((hs,ls),trnposs\{tn}) ])(r†[ t7→r(t)∪[ tn7→trnposs(tn) ] ]) end

else
free sector rule(tf†[ t7→((hs,ls),trnposs\{trn}) ])(r)

end end end end end end
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smallest(t)(tf) ≡ ∼∃ t′:T• t′isin dom tf∧t′<t pre t ∈ dom tf

“slide 1257”
The rule is obeyed for a traffic tf if free sector rule(tf)([])=[].

Please observe that the rule is obeyed if two or more trains occupy the
same sectors! If you do not like that, then you must state so. This is left as
an exercise! “slide 1258”

I.2.2 The “Free Sector” Regulation

Completion of the “Free Sector” Regulation

The “free sector” regulation read: If it is discovered that the above rule is
not obeyed, then there is some regulation which prescribes administrative or
legal management and/or staff action, as well as some correction to the railway
traffic. That regulation text must be made more precise. Some precisions could
be: (i) Administrative action: The railway regulatory agency must establish an
investigation seeking to uncover the reasons for the breach of the “free sector”
rule. (ii) Legal action: If the railway regulatory agency finds that a potentially “slide 1259”

punishable staff conduct has occurred then the public prosecutor must be
notified and given all investigation material. (iii) Current traffic correction: As
soon as it has been established that a train has progressed into a non-free
sector that train must be stopped and the train ahead of it must be informed
of the situation. (iv) Future traffic corrections: If the railway regulatory agency
finds that the ‘business processes’ could be improved then the rail and train
operators are asked to improve their train traffic handling procedures. Usually
all of these parts are present in the regulation. “slide 1260”

Analysis of the Completed “Free Sector” Regulation

The nature of part regulations (i, ii, iv) is such that they cannot be formalised.
Part regulation (iii) can be formalised: (iii.A) the offending, the “rear”, train
must be stopped, (iii.B) possible “follower” trains must presumably be in-
formed or stopped, and (iii.C) the “ahead” train must be informed. We omit
any formalisation. The regulation statements (iii.A–.C) amount to manage-
ment actions.

I.3 Review “slide 1261”

I.4 Exercises “slide 1262”

Exercise 45. 51:



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
412 I Rules and Regulations

Solution 45 Vol. II, Page 537, suggests a way of answering this exercise.

Exercise 46. 52:
Solution 46 Vol. II, Page 537, suggests a way of answering this exercise.

“slide 1263”
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For the motivation and the principles and techniques for carrying out this
stage of development of domain script description we refer to Sect. 2.9.8 (start-
ing Page 84).

J.1 Informal Examples

Example. 30 – Bus [Train] Timetables (Schedules): A bus [train] timetable
usually covers more than one bus [train] line. All bus [train] lines operate
within a named area. Each bus [train] line has a name and a list of list of bus
[train] ride descriptions. Each bus [train] ride description lists two or more
bus stop [station] visits. Each bus stop [station] visit lists the name of the bus
stop [station], and the approximate time of visit [the precise arrival and de-
parture times. The lists of bus stop [station] visits are ordered chronologically. “slide 1266”

The list of bus [train] ride descriptions are ordered chronologically. The bus
stops [stations] must be bus stops [stations] of the named area. Train timeta-
bles lists further information per train ride description: train type/classes,
train services: restaurant/bistro/..., wireless Internet, location of handicap
compartments, whether mandatory seat reservation, etcetera. •

We shall further explore the concept of timetables in Sect. J.2. “slide 1267”

Example. 31 – Aircraft Flight Simulator Script: The following is part of a
longer example of a script for an aircraft simulator:

1 Takeoff:
(a) Record time
(b) Release brakes and taxi onto runway 26L
(c) Advance power to “FULL”
(d) Maintain centerline of runway
(e) At 50 knots airspeed lift nose wheel off runway
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(f) At 70 knots ease back on the yoke to establish a 10 degree pitch up
attitude

(g) Maintain a climb AIRSPEED of 80 knots
(h) Maintain a climb AIRSPEED of 80 knots
(i) Raise Gear when there is no more runway to land on
(j) At “500” feet above the ground raise the FLAPS to “0”
(k) Reduce power to about “2300” RPM at “1000” feet above the ground

(AGL)“slide 1268”

2 Climb out:
(a) Maintain runway heading and climb to “2400” feet
(b) At “2400” feet start a climbing LEFT turn
(c) Start to roll out when you see “140” in the DG window
(d) Maintain a heading of “130”
(e) Watch your NAV 1 CDI, when the needle is three dots LEFT of center,

start your RIGHT turn to a heading of “164”
(f) Track outbound on the POMONA VOR 164 radial

3 Level off:
(a) Begin to level off when the altimeter reads “3900” feet
(b) Maintain “4000” feet
(c) Reduce power to about “2200” [2400] RPM“slide 1269”

4 Course change *1:
(a) Watch your NAV 2 CDI, when the needle is one dot LEFT of center,

start your RIGHT turn to a heading of “276”
(b) When your heading indicator reads “265” start to roll out
(c) After you have rolled out, press “P” to pause the simulation
(d) Record your: NAV, I, DME, DIST, ALTITUDE, AIRSPEED VSI,

GEAR, FLAPS, MAGS, STROBE, LIGHTS
(e) Press “P” to continue the simulation
(f) Track outbound on the PARADISE VOR 276 radial that your NAV

2 OBI is displaying
(g) Track outbound on the PARADISE VOR 276 radial that your NAV

2 OBI is displaying
(h) Switch ¿DME to “NAV 2”“slide 1270”

5 Altitude change:
(a) When the DME on NAV 2 reads “29.0”, press “P” to pause the sim-

ulation
(b) Record your: ALTITUDE, AIRSPEED, VSI, HEADING
(c) Press “P” to continue the simulation
(d) Tune NAV 1 to “113.1” and set radial “276” in the upper window
(e) Track inbound on the VAN NUYS VOR “096” radial (course 276)

that your NAV 1 OBI is displaying
(f) Switch DME to “NAV 1”

6 Etcetera.

•
“slide 1271”
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Example. 32 – Bill of Lading:

• B/L No.:
• Shipper:
• Reference No.:
• Consignee:
• Notify address:
• Vessel:
• Port of loading:
• Port of discharge:
• Shipper’s description of goods:

⋆ Gross weight:

· of which ... is on deck at
Shipper’s risk; the Carrier
not being responsible for
loss or damage howsoever
arising.

⋆ Measure:
⋆ Quality:
⋆ Quantity:
⋆ Condition:
⋆ Contents value unknown.

• SHIPPED at the Port of Loading in apparent good order and condition on
board the Vessel for carriage to the Port of Discharge or so near thereto
as she may safely get the goods specified above

• Freight payable as per: • Dated (by charter part: ):
“slide 1272”

• Freight Advance:
• Time used for loading:

⋆ Days:
⋆ Hours:

• Freight payable at:
• Place and date of issue:
• Signature:
• Number of original Bs:

Conditions:

• (1) All terms and conditions, liberties and exceptions of the Charter Party,
dated as overleaf, including the Law and Arbitration Clause, are herewith
incorporated.

• (2) General Paramount Clause.
⋆ (a) The Hague Rules contained in the International Convention for the

Unification of certain rules relating to Bills of Lading, dated Brussels
the 25th August 1924 as enacted in the country of shipment, shall apply
to this Bill of Lading. When no such enactment is in force in the country
of shipment, the corresponding legislation of the country of destination
shall apply, but in respect of shipments to which no such enactments
are compulsorily applicable, the terms of the said Convention shall
apply.

⋆ (b) Trades where Hague-Visby Rules apply. In trades where the Inter-
national Brussels Convention 1924 as amended by the Protocol signed
at Brussels on February 23rd 1968 - the Hague- Visby Rules - apply
compulsorily, the provisions of the respective legislation shall apply to
this Bill of Lading. “slide 1273”
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⋆ (c) The Carrier shall in no case be responsible for loss of or damage to
the cargo, howsoever arising prior to loading into and after discharge
from the Vessel or while the cargo is in the charge of another Carrier,
nor in respect of deck cargo or live animals.

• (3) General Average.
General Average shall be adjusted, stated and settled according to York-
Antwerp Rules 1994, or any subsequent modification thereof, in London
unless another place is agreed in the Charter Party. Cargo’s contribution
to General Average shall be paid to the Carrier even when such average
is the result of a fault, neglect or error of the Master, Pilot or Crew.
The Charterers, Shippers and Consignees expressly renounce the Belgian
Commercial Code, Part II, Art. 148.

• (4) New Jason Clause.
In the event of accident, danger, damage or disaster before or after the com-
mencement of the voyage, resulting from any cause whatsoever, whether
due to negligence or not, for which, or for the consequence of which, the
Carrier is not responsible, by statute, contract or otherwise, the cargo,
shippers, consignees or the owners of the cargo shall contribute with the
Carrier in General Average to the payment of any sacrifices, losses or ex-
penses of a General Average nature that may be made or incurred and
shall pay salvage and special charges incurred in respect of the cargo. If a
salving vessel is owned or operated by the Carrier, salvage shall be paid
for as fully as if the said salving vessel or vessels belonged to strangers.
Such deposit as the Carrier, or his agents, may deem sufficient to cover the
estimated contribution of the goods and any salvage and special charges
thereon shall, if required, be made by the cargo, shippers, consignees or
owners of the goods to the Carrier before delivery.“slide 1274”

• (5) Both-to-Blame Collision Clause.
If the Vessel comes into collision with another vessel as a result of the
negligence of the other vessel and any act, neglect or default of the Master,
Mariner, Pilot or the servants of the Carrier in the navigation or in the
management of the Vessel, the owners of the cargo carried hereunder will
indemnify the Carrier against all loss or liability to the other or non-
carrying vessel or her owners in so far as such loss or liability represents
loss of, or damage to, or any claim whatsoever of the owners of said cargo,
paid or payable by the other or non-carrying vessel or her owners to the
owners of said cargo and set-off, recouped or recovered by the other or non-
carrying vessel or her owners as part of their claim against the carrying
Vessel or the Carrier.
The foregoing provisions shall also apply where the owners, operators or
those in charge of any vessel or vessels or objects other than, or in addition
to, the colliding vessels or objects are at fault in respect of a collision or
contact.

•
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J.2 Timetable Scripts “slide 1275”

We shall view timetables as scripts.
In this section (that is, Pages 419–430) we shall first narrate and formalise

the syntax, including the well-formedness of timetable scripts, then we con-
sider the pragmatics of timetable scripts, including the bus routes prescribed
by these journey descriptions and timetables marked with the status of its
currently active routes, and finally we consider the semantics of timetable,
that is, the traffic they denote.

In the next section, Sect. J.3, on licenses for bus traffic, we shall assume
the timetable scripts of this section. “slide 1276”

We all have some image of how a timetable may manifest itself. Figure J.1
shows some such images.

Fig. J.1. Some bus timetables: Italy, India and Norway

What we shall capture is, of course, an abstraction of “such timetables”. We
claim that the enumerated narrative which now follows and its accompanying
formalisation represents an adequate description. Adequate in the sense that
the reader “gets the idea”, that is, is shown how to narrate and formalise
when faced with an actual task of describing a concept of timetables.

In the following we distinguish between bus lines and bus rides. A bus line
description is basically a sequence of two or more bus stop descriptions. A
bus ride is basically a sequence of two or more time designators.1 A bus line
description may cover several bus rides. The former have unique identifica-
tions and so has the latter. The times of the latter are the approximate times
at which the bus of that bus line and bus identification is supposed to be at
respective stops. You may think of the bus line identification to express some-
thing like “The Flying Scotsman”, and the bus ride identification something
like “The 4.50 From Paddington”. “slide 1277”

1 We do not distinguish between a time and a time description. That is, when we
say December 17, 2008, 15: 56 we mean it either as a description of the time
at which this text that you are now reading was LATEX compiled, and as “that
time !”.
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J.2.1 The Syntax of Timetable Scripts

49 Time is a concept covered earlier. Bus lines and bus rides have unique
names (across any set of time tables). Hub and link identifiers, HI, LI,
were treated from the very beginning.

50 A TimeTable associates to Bus Line Identifiers a set of Journies.
51 Journies are designated by a pair of a BusRoute and a set of BusRides.
52 A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more

intermediate Bus Stops and a destination Bus Stop.
53 A set of BusRides associates, to each of a number of Bus Identifiers a Bus

Schedule.
54 A Bus Schedule a triple of the initial departure Time, a list of zero, one

or more intermediate bus stop Times and a destination arrival Time.
55 A Bus Stop (i.e., its position) is a Fraction of the distance along a link

(identified by a Link Identifier) from an identified hub to an identified
hub.

56 A Fraction is a Real properly between 0 and 1.
57 The Journies must be well formed in the context of some net.

“slide 1278”

type
49. T, BLId, BId
50. TT = BLId →m Journies
51. Journies′ = BusRoute × BusRides
52. BusRoute = BusStop × BusStop∗ × BusStop
53. BusRides = BId →m BusSched
54. BusSched = T × T∗ × T
55. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
56. Frac = {|r:Real•0<r<1|}
57. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license.“slide 1279”

Well-formedness of Journies

58 A set of journies is well-formed
59 if the bus stops are all different2,
60 if a defined notion of a bus line is embedded in some line of the net, and
61 if all defined bus trips (see below) of a bus line are commensurable.

value
58. wf Journies: Journies → N → Bool
58. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡

2 This restriction is, strictly speaking, not a necessary domain property. But it
simplifies our subsequent formulations.
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59. diff bus stops(bs1,bsl,bsn) ∧
60. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
61. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

“slide 1280”

62 The bus stops of a journey are all different
63 if the number of elements in the list of these equals the length of the list.

value
62. diff bus stops: BusStop × BusStop∗ × BusStop → Bool
62. diff bus stops(bs1,bsl,bsn) ≡
63. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉)
of all bus stops as the bus line. “slide 1281”

64 To explain that a bus line is embedded in a line of the net
65 let us introduce the notion of all lines of the net, lns,
66 and the notion of projecting the bus line on link sector descriptors.
67 For a bus line to be embedded in a net then means that there exists a line,

ln, in the net, such that a compressed version of the projected bus line is
amongst the set of projections of that line on link sector descriptors.

value
64. is net embedded bus line: BusStop∗ → N → Bool
64. is net embedded bus line(bsl)(hs,ls)
65. let lns = lines(hs,ls),
66. cbln = compress(proj on links(bsl)(elems bsl)) in
67. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

“slide 1282”

68 Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a list of
Sector Descriptors ((hi,li,hi′))

69 we recursively unravel the list from the front:
70 if there is no front, that is, if the whole list is empty, then we get the

empty list of sector descriptors,
71 else we obtain a first sector descriptor followed by those of the remaining

bus stop descriptors.

value
68. proj on links: BusStop∗ → SectDescr∗

68. proj on links(bsl) ≡
69. case bsl of
70. 〈〉 → 〈〉,
71. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
71. end

“slide 1283”
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72 By compression of an argument sector descriptor list we mean a result
sector descriptor list with no duplicates.

73 The compress function, as a technicality, is expressed over a diminishing
argument list and a diminishing argument set of sector descriptors.

74 We express the function recursively.
75 If the argument sector descriptor list an empty result sector descriptor list

is yielded;
76 else
77 if the front argument sector descriptor has not yet been inserted in the

result sector descriptor list it is inserted else an empty list is “inserted”
78 in front of the compression of the rest of the argument sector descriptor

list.
“slide 1284”

72. compress: SectDescr∗ → SectDescr-set → SectDescr∗

73. compress(sdl)(sds) ≡
74. case sdl of
75. 〈〉 → 〈〉,
76. 〈sd〉̂sdl′ →
77. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
78. ̂compress(sdl′)(sds\{sd}) end

In the last recursion iteration (line 78.) the continuation argument sds\{sd}
can be shown to be empty: {}.“slide 1285”

79 We recapitulate the definition of lines as sequences of sector descriptions.
80 Projections of a line generate a set of lists of sector descriptors.
81 Each list in such a set is some arbitrary, but ordered selection of sector

descriptions. The arbitrariness is expressed by the “ranged” selection of
arbitrary subsets isx of indices, isx⊆inds ln, into the line ln. The “ordered-
ness” is expressed by making that arbitrary subset isx into an ordered list
isl, isl=sort(isx).

type
79. Line′ = (HI×LI×HI)∗ axiom ... type Line = ... Page 408
value
80. projs on links: Line → Line′-set
80. projs on links(ln) ≡
81. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

“slide 1286”

82 sorting a set of natural numbers into an ordered list, isl, of these is ex-
pressed by a post-condition relation between the argument, isx, and the
result, isl.

83 The result list of (arbitrary) indices must contain all the members of the
argument set;
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84 and “earlier”elements of the list must precede, in value, those of “later”
elements of the list.

value
82. sort: Nat-set → Nat∗

82. sort(isx) as isl
83. post card isx = lsn isl ∧ isx = elems isl ∧
84. ∀ i:Nat • {i,i+1}⊆inds isl ⇒ isl(i)<isl(i+1)

“slide 1287”

85 The bus trips of a bus schedule are commensurable with the list of bus
stop descriptions if the following holds:

86 All the intermediate bus stop times must equal in number that of the bus
stop list.

87 We then express, by case distinction, the reality (i.e., existence) and time-
liness of the bus stop descriptors and their corresponding time descriptors
– and as follows.

88 If the list of intermediate bus stops is empty, then there is only the bus
stops of origin and destination, and they must be exist and must fit time-
wise.

89 If the list of intermediate bus stops is just a singleton list, then the bus
stop of origin and the singleton intermediate bus stop must exist and
must fit time-wise. And likewise for the bus stop of destination and the
the singleton intermediate bus stop.

90 If the list is more than a singleton list, then the first bus stop of this list
must exist and must fit time-wise with the bus stop of origin.

91 As for Item 90 but now with respect to last, resp. destination bus stop.
92 And, finally, for each pair of adjacent bus stops in the list of intermediate

bus stops
93 they must exist and fit time-wise.

“slide 1288”

value
85. commensurable bus trips: Journies → N → Bool
85. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
86. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
87. case len til of
88. 0 → real and fit((t1,t2),(bs1,bs2))(hs,ls),
89. 1 → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧fit((til(1),t2),(bsl(1),bsn))(hs,ls),
90. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
91. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
92. ∀ i:Nat•{i,i+1}⊆inds til ⇒
93. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

“slide 1289”

94 A pair of (adjacent) bus stops exists and a pair of times, that is the time
interval between them, fit with the bus stops if the following conditions
hold:
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95 All the hub identifiers of bus stops must be those of net hubs (i.e., exists,
are real).

96 There exists links, l, l′, for the identified bus stop links, li, li′,
97 such that these links connect the identified bus stop hubs.
98 Finally the time interval between the adjacent bus stops must approximate

fit the distance between the bus stops
99 The distance between two bus stops is a loose concept as there may be

many routes, short or long, between them.
100 So we leave it as an exercise to the reader to change/augment the descrip-

tion, in order to be able to ascertain a plausible measure of distance.
101 The approximate fit between a time interval and a distance must build on

some notion of average bus velocity, etc., etc.
102 So we leave also this as an exercise to the reader to complete.

“slide 1290”

94. real and fit: (T×T)×(BusStop×BusStop) → N → Bool
94. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
95. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
96. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧
97. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
98. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

99. distance: BusStop × BusStop → N → Distance
100. distance(bs1,bs2)(n) ≡ ... [ left as an exercise ! ] ...

101. afit: TI → Distance → Bool
102. [ time interval fits distance between bus stops ]

“slide 1291”

J.2.2 The Pragmatics of Timetable Scripts

A main purpose of a timetable is to bring an order into the traffic, as seen
from the side of net operators (signalling etc.), train operators and passengers.
With a net which is owned by one enterprise, many different train operators on
that one net, and with cross-train passengers a consolidated timetable offers
a common, fixed interface.

Let us illustrate this point by two examples.“slide 1292”

Subset Timetables

The pragmatics of a timetable may include its decomposition into a number
of sub-timetables. When speaking of two timetables it is often convenient to
make sure that bus line identifiers occuring in both designate identical bus
routes.
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103 A bus line identifier occurring in two timetables is said to define compati-
ble bus rides in those two timetables provided the corresponding two bus
routes are identical.

103 have compatible BLIds: TT × TT → Bool
103 have compatible BLIds(tti,ttj) ≡
103 ∀ blid:BLId • blid ∈ dom tti ∩ dom ttj
103 ⇒ let (bri, )=tti(blid),(brj, )=ttj(blid) in bri=brj end

“slide 1293”

104 Two journies are similar if they have identical bus line identified bus
routes. Thus a bus line identified journey in one timetable can be sim-
ilar to a bus line identified journey in another or the same timetable if the
bus line identifiers are the same and the journies are the same.

105 A timetable, stt, is said to be a sub-timetable of a timetable, tt, if every
bus line identified bus ride of similar journies is also an identical bus line
identified bus ride of tt.

value
104 are similar Js: Journies × Journies → Bool
104 are similar Js((bri, ),(brj, )) ≡ bri=brj

105 is sub TT: TT × TT → Bool
105 is sub TT(stt,tt) ≡
105 ∀ sblid,blid:BLId•sblid=blid∧sblid ∈ dom stt∧blid ∈ dom tt
105 ⇒ ∀ (sbr,sbrs),(br,brs):Journies•(sbr,sbrs)=stt(sblid)∧(br,brs)=tt(blid)
105 ⇒ sbr=br ∧ ∀ bid:BId•bid ∈ dom sbrs ∩ dom br
105 ⇒ sbrs(bid)=brs(bid)
105 pre have compatible BLIds(stt,tt)

“slide 1294”

106 We can thus generate all sub-timetables of a timetable.

106 all sub TTs: TT → TT-set
106 all sub TTs(tt) ≡ {stt|stt:TT•is sub TT(stt,tt)}

107 Two timetables, stti and sttj , are said to be disjoint if they share no same
bus line identifier bus rides.

107 are disjoint TTs: TT × TT → Bool
107 are disjoint TTs(tti,ttj) ≡
107 ∀ blidi,blidj:BLId•blidj=blidj∧blidi ∈ dom tti∧blidj ∈ dom ttj
107 ⇒ dom tti(blidi) ∩ dom ttj(blidj) = {}
107 pre have compatible BLIds(tti,ttj)

So disjointness is purely a matter of whether two bus rides (of the same bus
route and bus line identifier) have different bus ride identifiers. The time
schedule is not considered. “slide 1295”
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108 Two timetables can be merged into one timetable provided they are dis-
joint.

109 Merging two disjoint timetables result in a timetable which has exactly
the bus line identified journies of either of the timetables.

108 can be merged TTs: TT × TT → Bool
108 can be merged TTs(tti,ttj) ≡ are disjoint TTs(tti,ttj)

109 merge TTs: TT × TT → TT
109 merge TTs(tti,ttj) as tt
109 pre are disjoint TTs(tti,ttj) [ i.e., have compatible BLIds(tti,ttj) ]
109 post is sub TT(tti,tt′)∧is sub TT(ttj,tt′)
109 ∧ dom tt = dom tti ∪ dom ttj
109 ∧ ∀ blid:BLId•blid ∈ dom tt ∧ blid ∈ dom tti ∪ dom ttj
109 ⇒ let ((br,brs),(bri,brsi),(brj,brsj)) = (tt(blid),tti(blid),ttj(blid)) in
109 dom brsi ∩ dom brsj = {} ∧ dom brsi ∪ dom brsj = dom brs
109 ∧ brs = brsi ∪ brsj end

“slide 1296”
From a timetable one can construct any number of sub-timetables.

110 Given a timetable, tt, and given a mapping of bus line identifiers, ex.,
blid, of tt into the set, bids, of bus ride identifiers of the bus rides of
tt(blid), construct, cons STT(tt,blid to bids map), the sub-timetable, stt,
of tt where stt exactly lists the so identified bus rides of tt.

value
110 cons STT: TT × (BLId →m BId-set) → TT
110 cons STT(tt,id map) ≡
110 [ blid 7→ (tt(blid))(bid)
110 | blid:BLId,bid:BId • blid ∈ dom id map ∧ bid ∈ id map(blid) ]
110 pre dom id map 6= {} ∧ dom id map ⊆ dom tt ∧
110 ∧ ∀ blid:BLId•blid ∈ dom(tt)
110 ⇒ id map(blid)6={}∧id map(blid)⊆rng tt(blid)

“slide 1297”

111 Given a timetable, tt, and given a mapping of bus line identifiers, ex., blid,
of tt into the set, bids, of bus ride identifiers of the bus rides of tt(blid),
construct, cons compl STT(tt,blid to bids map), the sub-timetable, stt, of
tt where stt exactly lists the other identified bus rides of tt.

111 cons compl STT: TT × (BLId →m BId-set) → TT
111 cons compl STT(tt,id map)
111 let idmap = [ blid 7→ bids | blid:BLId,bids:BId-set
111 • (blid ∈ dom tt \ dom id map ∧ bids=dom tt(blid))
111 ∨ blid ∈ dom tt ∩ dom id map ∧ bids=id map(blid) ]
111 construct STT(tt,idmap) end
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The following should be proven:

theorem:
∀ tt:TT, id map • pre construct STT(tt,id map) ⇒

merge TTs(cons STT(tt,id map),cons compl STT(tt,id map))
= tt =
merge TTs(cons compl STT(tt,id map),cons STT(tt,id map))

“slide 1298”
Some auxiliary functions might come in handy at a later stage.

112 Given a bus line identifier to inquire whether it is the bus line identifier
of a proper, non empty sets of bus rides in a given timetable.

113 Given a bus line identifier and a bus ride identifier to inquire whether they
together identify a proper bus ride of a given timetable.

114 Given a bus ride identifier and a time table to to inquire whether there is
a bus line identifier of that timetable for which the bus ride identifier is
defined.

115 Given a bus line identifier and a bus ride identifier to find, if it exists, the
bus route and ride schedule of that identification.

“slide 1299”

value
112. is def: BLId×TT→Bool,
112. is def(blid,tt) ≡ blid ∈ dom tt ∧ tt(blid)6=[ ]

113. is def: BLId×BId×TT→Bool,
113. is def(blid,bid,tt) ≡ dom tt ∧ bid ∈ dom tt(blid)

114. is def: BId×TT→Bool,
114. is def(bid,tt) ≡ ∃ blid:BLId • is def(blid,bid,tt)

115. inquire: BLId×BId×TT
∼
→(BusRoute×BusSched),

115. inquire(blid,bid,tt) ≡
115. let (br,brs)=tt(blid) in (br,brs(bid)) end
115. pre is def(blid,bid,tt)

“slide 1300”

Marked Timetables

By a marked timetable, MrkdTT, we mean a table whose journey and bus
stop entries may be annotated by a set of notes (JN respectively BSN). The
table is very similar to a bus timetable.

116 A MrkdTT associates to bus line identifiers, BLId, marked bus rides
(MrkdBusRides)

117 A MrkdBusRides associates to bus identifiers, BId, marked journies (MrkdJourney).
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118 A MrkdJourney consists of a pair: a set of zero one or more Journey Notes
(JN) and a mapping from BusStops to zero, one or more BusvStop Notes
(BSN).

119 A JN is either one of "commenced", "cancelled", "inserted" or other.
120 A BSN is either a quadruplet (or something else) where the quadruplet

records the arrival and departure times at and from the bus stop as well
as how many passengers alighted and board the bus at that bus stop.

“slide 1301”

type
116. MrkdTT = BLId →m MrkdBusRides
117. MrkdBusRides = BId →m MrkdJourney
118. MrkdJourney = JN-set × (BusStop →m BSN-set)
119. JN = ′′commenced′′ | ′′cancelled′′ | ′′inserted′′ | ...
120. BSN = mkBSN(s at:T,s dt:T,s pa:Nat,s pb:Nat) | ...

One can define a function which reconstruct time tables from marked timeta-
bles.

value

construct TT: MrkdTT
∼
→ TT

“slide 1302”

The Marking of Timetables

The marked timetables are updated whenever a ride is committed, cancelled
or a new inserted, or and whenever a bus “passes” a bus stop.

1 The JNmarkTT(jn,(bln,bn))(mtt) command results in a marked timetable
mtt′ updated with a journey note jn.

2 The updated line bln and bus ride bn must be in mtt.
3 All but the bln,bn entries must be unchanged in mtt′ (wrt. mtt).
4 The specific bln,bn entry must have only its journey note part updated.

value
1. JNmarkTT: JN × (BLId×BId) → MarkdTT → MrkdTT
1. JNmarkTT(jn,(bln,bn))(mtt) as mtt′

2. pre bln ∈ dom mtt ∧ bn ∈ dom mtt(bln)
3. post dom mtt = dom mtt′

3. ∧ ∀ blid:BLId•blid ∈ dom mtt•dom mtt(blid)=dom mtt′(blid)
3. ∧ ∀ blid:BLId•blid ∈ dom mtt\{bln}•mtt(blid)=mtt′(blid)
4. ∧ let (js,mbr)=(mtt(bln))(bn), (js′,mbr′)=(mtt′(bln))(bn) in
4. js′=js ∪{jn} ∧ mbr=mbr′ end

“slide 1303”

1 The BSNmarkTT((bs,bsn),(bln,bn))(mtt) command results in a marked
timetable mtt′ updated with a bus stop bs note bsn.

2 The updated line bln and bus ride bn must be in mtt.



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
J.2 Timetable Scripts 429

3 The updates bus stop bs must be in the bus ride and that entry must not
already have been updated.

4 All but the bln,bn entries must be unchanged in mtt′ (wrt. mtt).
5 The specific bln,bn entry must have only its bus ride note part updated

and only for the bs entry.

value
1. BSNmarkTT: (BusStop × BSN) × (BLId × BId) → MarkdTT → MrkdTT
1. BSNmarkTT((bs,bsn),(bln,bn))(mtt) as mtt′

2. pre bln ∈ dom mtt∧bn ∈ dom mtt(bln)
3. ∧ let ( ,mbr)=(mtt(bln))(bn) in bs ∈ dom mbr ∧ mbr(bn)={} end
4. post dom mtt = dom mtt′

4. ∧ ∀ blid:BLId•blid ∈ dom mtt•dom mtt(blid)=dom mtt′(blid)
4. ∧ ∀ blid:BLId•blid ∈ dom mtt\{bln}•mtt(blid)=mtt′(blid)
5. ∧ let (js,mbr) = (mtt(bln))(bn),(js′,mbr′) = (mtt′(bln))(bn) in
5. js′=js ∧ mbr′=mbr†[ bs 7→{bsn} ] end

“slide 1304”

J.2.3 The Semantics of Timetable Scripts

One form of timetable denotations is the bus traffic implied by a timetable.

Bus Traffic

121 We postulate a type of Buses.
122 From a bus one can observe the value of a number of attributes: cur-

rent number of passengers, identity of driver, number of passengers who
alighted and boarded at the most recent bus stop, etc. (We let X stand
for any one of these attributes.)

123 Bus traffic maps discrete times into the pair of a bus net and the positions
of buses. “slide 1305”

124 A bus positions is either at a hub, on a link or at a bus stop.
125 When a bus is at a hub we can also observe from which link it came and

to which link it proceeds.
126 When a bus is on a link we can observe how far it has progressed down

the link from one of the two hubs it connects.
127 When a bus is at a bus stop — which is like “on a link” — we can observe

that bus stop accordingly.
128 Fractions have also be described earlier.

“slide 1306”

type
121. Bus
value
122. obs X: Bus → X
type
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123. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
124. BPos = atHub | onLnk | atBS
125. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
126. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
127. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
128. Frac = {|r:Real•0<r<1|}

We omit detailing necessary well-formedness constraints – such as (i) all bus
positions being on the designated net, (ii) traffic moving monotonically, (iii)
no two buses of the same pair of bus line and bus identification at the same
time (or otherwise conflicting), (iv) no “ghost” busses, etcetera. .“slide 1307”

From a bus timetable we can generate the set of all bus traffics that satisfy
the bus timetable. (We have covered this notion earlier.)

value
gen BusTraffic: TT → BusTraffic-infset
gen BusTraffic(tt) as btrfs

post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

We leave it to the reader to define the on time predicate.“slide 1308”

J.2.4 Discussion

We have built the foundations for a theory of timetables. We have not yet
formulated theorems let alone proven any such.

J.3 A Contract Language “slide 1309”

J.3.1 Narrative

Preparations

In a number of steps (‘A Synopsis’, ‘A Pragmatics and Semantics Analysis’,
and ‘Contracted Operations, An Overview’) we arrive at a sound basis from
which to formulate the narrative. We shall, however, forego such a detailed
narrative. Instead we leave that detailed narrative to the reader. (The detailed
narrative can be “derived” from the formalisation.)“slide 1310”

A Synopsis

Contracts obligate transport companies to deliver bus traffic according to
a timetable. The timetable is part of the contract. A contractor may sub-
contract (other) transport companies to deliver bus traffic according to timeta-
bles that are sub-parts of their own timetable. Contractors are either public
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transport authorities or contracted transport companies. Contracted trans-
port companies may cancel a subset of bus rides provided the total amount
of cancellations per 24 hours for each bus line does not exceed a contracted
upper limit3. The cancellation rights are spelled out in the contract4. A sub-
contractor cannot increase a contracted upper limit for cancellations above
what the sub-contractor was told (in its contract) by its contractor5. Etcetera. “slide 1311”

A Pragmatics and Semantics Analysis

The “works” of the bus transport contracts are two: the timetables and, im-
plicitly, the designated (and obligated) bus traffic. A bus timetable appears to
define one or more bus lines, with each bus line giving rise to one or more bus
rides. We assume a timetable description along the lines of Sect. J.2. Noth-
ing is (otherwise) said about regularity of bus rides. It appears that bus ride
cancellations must be reported back to the contractor. And we assume that
cancellations by a sub-contractor is further reported back also to the sub-
contractor’s contractor. Hence eventually that the public transport authority
is notified. “slide 1312”

Nothing is said, in the contracts, such as we shall model them, about
passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be
paid back from a sub-contractor to the contractor. So we shall not bother,
in this example, about transport costs nor transport subsidies. But will leave
that necessary aspect as an exercise.

The opposite of cancellations appears to be ‘insertion’ of extra bus rides,
that is, bus rides not listed in the time table, but, perhaps, mandated by
special events6 We assume that such insertions must also be reported back to
the contractor. “slide 1313”

We assume concepts of acceptable and unacceptable bus ride delays. De-
tails of delay acceptability may be given in contracts, but we ignore further
descriptions of delay acceptability. but assume that unacceptable bus ride
delays are also to be (iteratively) reported back to contractors.

We finally assume that sub-contractors cannot (otherwise) change timeta-
bles. (A timetable change can only occur after, or at, the expiration of a
license.) Thus we find that contracts have definite period of validity. (Expired
contracts may be replaced by new contracts, possibly with new timetables.) “slide 1314”

Contracted Operations, An Overview

So these are the operations that are allowed by a contractor according to a
contract: (i) start: to perform, i.e., to start, a bus ride (obligated); (ii) cancel:

3 We do not treat this aspect further in this book.
4 See Footnote 3.
5 See Footnote 3.
6 Special events: breakdown (that is, cancellations) of other bus rides, sports event

(soccer matches), etc.
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to cancel a bus ride (allowed, with restrictions); (iii) insert: to insert a bus
ride; and (iv) subcontract: to sub-contract part or all of a contract.“slide 1315”

The Final Narrative

We leave, as an exercise, the expression of a complete narrative.
Instead we proceed directly to a formalisation.

J.3.2 A Formalisation

Syntax

We treat separately, the syntax of contracts (for a schematised example see
Page 432) and the syntax of the actions implied by contracts (for schematised
examples see Page 433).“slide 1316”

Contracts

An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (including
contracting) takes place and in which the implicit net is defined.“slide 1317”

129 contracts, contractors and sub-contractors have unique identifiers CId,
CNm, CNm.

130 A contract has a unique identification, names the contractor and the sub-
contractor (and we assume the contractor and sub-contractor names to be
distinct). A contract also specifies a contract body.

131 A contract body stipulates a timetable and the set of operations that are
mandated or allowed by the contractor.

132 An Operation is either a "start" (i.e., start a bus ride), a bus ride
"cancel"lation, a bus ride "insert", or a "subcontrat"ing operation.

“slide 1318”

type
129. CId, CNm
130. Contract = CId × CNm × CNm × Body
131. Body = Op-set × TT
132. Op == ′′start′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

An abstract example contract:
(cid,cnmi,cnmj ,({′′start′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

“slide 1319”
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Actions

Example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 432) shown earlier is almost like an action; here
is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

“slide 1320”

All actions are being performed by a sub-contractor in a context which defines
that sub-contractor cnm, the relevant net, say n, the base contract, referred
here to by cid (from which this is a sublicense), and a timetable tt of which tt′

is a subset. contract name cnm′ is new and is to be unique. The subcontracting
action can (thus) be simply transformed into a contract as shown on Page 432. “slide 1321”

type
Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,mkCon(cid′,({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 135 on the next page

“slide 1322”
We observe that the essential information given in the start, cancel and insert
action prescriptions is the same; and that the RSL record-constructors (mkSta,
mkCan, mkIns) make them distinct. “slide 1323”

Uniqueness and Traceability of Contract Identifications

133 There is a “root” contract name, rcid.
134 There is a “root” contractor name, rcnm.

value
133 rcid:CId
134 rcnm:CNm
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All other contract names are derived from the root name. Any contractor can
at most generate one contract name per time unit. Any, but the root, sub-
contractor obtains contracts from other sub-contractors, i.e., the contractor.
Eventually all sub-contractors, hence contract identifications can be referred
back to the root contractor.“slide 1324”

135 Such a contract name generator is a function which given a contract iden-
tifier, a sub-contractor name and the time at which the new contract
identifier is generated, yields the unique new contract identifier.

136 From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its cre-
ation.

value
135 gen CId: CId × CNm × Time → CId

136 obs CId: CId
∼
→ CIdL [ pre obs CId(cid):cid6=rcid ]

136 obs CNm: CId
∼
→ CNm [ pre obs CNm(cid):cid6=rcid ]

136 obs Time: CId
∼
→ Time [ pre obs Time(cid):cid6=rcid ]

“slide 1325”

137 All contract names are unique.

axiom
137 ∀ cid,cid′:CId•cid6=cid′⇒
137 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
137 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
137 ⇒ obs Time(cid)6=obs Time(cid′)

“slide 1326”

138 Thus a contract name defines a trace of license name, sub-contractor name
and time triple, “all the way back” to “creation”.

type
CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value
138 contract trace: CId → LCIdCNmTTrace
138 contract trace(cid) ≡
138 case cid of
138 rcid → 〈〉,
138 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
138 end

138 obs TraceTriple: CId → TraceTriple
138 obs TraceTriple(cid) ≡
138 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))
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The trace is generated in the chronological order: most recent contract name
generation times last.“slide 1327”

Well, there is a theorem to be proven once we have outlined the full formal
model of this contract language: namely that time entries in contract name
traces increase with increasing indices.

theorem
∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

“slide 1328”

Semantics

Execution State

Local and Global States: Each sub-contractor has an own local state and has
access to a global state. All sub-contractors access the same global state. The
global state is the bus traffic on the net. There is, in addition, a notion of
running-state. It is a meta-state notion. The running state “is made up” from
the fact that there are n sub-contractors, each communicating, as contractors,
over channels with other sub-contractors. The global state is distinct from
sub-contractor to sub-contractor – no sharing of local states between sub-
contractors. We now examine, in some detail, what the states consist of. “slide 1329”

Global State: The net is part of the global state (and of bus traffics). We
consider just the bus traffic.

type
55. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI) 420

123. BusTraffic = T →m (N × (BusNo →m (Bus × BPos))) 429
124. BPos = atHub | onLnk | atBS
125. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
126. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
127. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

We shall consider BusTraffic (with its Net) to reflect the global state. “slide 1330”

Local sub-contractor contract States: Semantic Types: A sub-contractor state
contains, as a state component, the zero, one or more contracts that the sub-
contractor has received and that the sub-contractor has sublicensed.

type
Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm →m (LicNm →m (Body×TT))
SubLicΣ = LeeNm →m (LicNm →m Body)
LorBusΣ ... [ see ′′Local sub-contractor Bus States: Semantic Types′′ next ] ...
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(Recall that LorNm and LeeNm are the same.)
In RecvLics we have that LorNm is the name of the contractor by whom

the contract has been granted, LicNm is the name of the contract assigned by
the contractor to that license, Body is the body of that license, and TT is that
part of the timetable of the Body which has not (yet) been sublicensed.

In DespLics we have that LeeNm is the name of the sub-contractor to whom
the contract has been despatched, the first (left-to-right) LicNm is the name
of the contract on which that sublicense is based , the second (left-to-right)
LicNm is the name of the sublicense, and License is the contract named by the
second LicNm.“slide 1331”

Local sub-contractor Bus States: Semantic Types: The sub-contractor state
further contains a bus status state component which records which buses are
free, FreeBusΣ, that is, available for dispatch, and where “garaged”, which
are in active use, ActvBusΣ, and on which bus ride, and a bus history for
that bus ride, and histories of all past bus rides, BusHistΣ. A trace of a bus
ride is a list of zero, one or more pairs of times and bus stops. A bus history,
BusHistory, associates a bus trace to a quadruple of bus line identifiers, bus
ride identifiers, contract names and sub-contractor name.7“slide 1332”

type
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId) →m (BNo×BusTrace)))

A bus is identified by its unique number (i.e., registration) plate (BusNo).
We could model a bus by further attributes: its capacity, etc., for for the
sake of modelling contracts this is enough. The two components are modified
whenever a bus is commissioned into action or returned from duty, that is,
twice per bus ride.“slide 1333”

Local sub-contractor Bus States: Update Functions:

value
update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡

let (blid,bid,licn,leen,trace) = actσ(bno) in
actσ†[ bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉) ] end
pre bno ∈ dom actσ

“slide 1334”

7 In this way one can, from the bus history component ascertain for any bus which
for whom (sub-contractor), with respect to which license, it carried out a further
bus line and bus ride identified tour and its trace.
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value
update FreeΣ ActΣ:

BNo×BusStop→BusΣ→BusΣ
update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡

let ( , , , ,trace) = actσ(b) in
let freeσ′ = freeσ†[ bs 7→ (freeσ(bs))∪{b} ] in
(freeσ′,actσ\{b}) end end
pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

“slide 1335”

value
update LorBusΣ:

LorNm×LicNm×lee:LeeNm×(BLId×BId)×(BNo×Trace)
→LorBusΣ→out {l to l[ leen,lorn ]|lorn:LorNm•lorn ∈ leenms\{leen}} LorΣ

update LorBusΣ(lorn,licn,leen,(blid,bid),(bno,tr))(lbσ) ≡
l to l[ leenm,lornm ]!Licensor BusHistΣMsg(bno,blid,bid,libn,leen,tr) ;
lbσ†[ leen7→(lbσ(leen))†[ licn7→((lbσ(leen))(licn))†[ (blid,bid)7→(bno,trace) ] ] ]
pre leen ∈ dom lbσ ∧ licn ∈ dom (lbσ(leen))

“slide 1336”

value
update ActΣ FreeΣ:

LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo
update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡

let bno:Bno • bno ∈ freeσ(bs) in
((freeσ\{bno},actvσ ∪ [ bno 7→(blid,bid,licnm,leenm,〈〉) ]),bno) end
pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ [ bs exists ... ]

“slide 1337”

Constant State Values: There are a number of constant values, of various
types, which characterise the “business of contract holders”. We define some
of these now.

139 For simplicity we assume a constant net — constant, that is, only with
respect to the set of identifiers links and hubs. These links and hubs ob-
viously change state over time.

140 We also assume a constant set, leens, of sub-contractors. In reality sub-
contractors, that is, transport companies, come and go, are established and
go out of business. But assuming constancy does not materially invalidate
our model. Its emphasis is on contracts and their implied actions — and
these are unchanged wrt. constancy or variability of contract holders.

141 There is an initial bus traffic, tr.
142 There is an initial time, t0, which is equal to or larger than the start of

the bus traffic tr.
143 To maintain the bus traffic “spelled out”, in total, by timetable tt one

needs a number of buses.
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144 The various bus companies (that is, sub-contractors) each have a number
of buses. Each bus, independent of ownership, has a unique (car number
plate) bus number (BusNo).
These buses have distinct bus (number [registration] plate) numbers.

145 We leave it to the reader to define a function which ascertain the minimum
number of buses needed to implement traffic tr.

“slide 1338”

value
139. net : N,
140. leens : LeeNm-set,
141. tr : BusTraffic, axiom wf Traffic(tr)(net)
142. t0 : T • t0 ≥ mindom tr,
143. min no of buses : Nat • necessary no of buses(itt),
144. busnos : BusNo-set • card busnos ≥ min no of buses

145. necessary no of buses: TT → Nat

“slide 1339”

146 To “bootstrap” the whole contract system we need a distinguished con-
tractor, named init leen, whose only license originates with a “ghost” con-
tractor, named root leen (o, for outside [the system]).

147 The initial, i.e., the distinguished, contract has a name, root licn.
148 The initial contract can only perform the "sublicense" operation.
149 The initial contract has a timetable, tt.
150 The initial contract can thus be made up from the above.

“slide 1340”

value
146. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
147. root licn : LicNm
148. iops : Op-set = {′′sublicense′′},
149. itt : TT,
150. init lic:License = (root licn,root leen,(iops,itt),init leen)

“slide 1341”

Initial sub-contractor contract States:

type
InitLicΣs = LeeNm →m LicΣ

value
ilσ:LicΣ=([ init leen 7→ [ root leen 7→ [ iln 7→ init lic ] ] ]

∪ [ leen 7→ [ ] | leen:LeeNm • leen ∈ leenms\{init leen} ],[ ],[ ])
“slide 1342”
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Initial sub-contractor Bus States:

151 Initially each sub-contractor possesses a number of buses.
152 No two sub-contractors share buses.
153 We assume an initial assignment of buses to bus stops of the free buses

state component and for respective contracts.
154 We do not prescribe a “satisfiable and practical” such initial assignment

(ibσs).
155 But we can constrain ibσs.
156 The sub-contractor names of initial assignments must match those of ini-

tial bus assignments, allbuses.
157 Active bus states must be empty.
158 No two free bus states must share buses.
159 All bus histories are void.

“slide 1343”

type
151. AllBuses′ = LeeNm →m BusNo-set
152. AllBuses = {|ab:AllBuses′•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
153. InitBusΣs = LeeNm →m BusΣ
value
152. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

153. ibσs:InitBusΣs
154. wf InitBusΣs: InitBusΣs → Bool
155. wf InitBusΣs(iσs) ≡
156. dom iσs = leenms ∧
157. ∀ ( ,abσ, ):BusΣ•( ,abσ, ) ∈ rng iσs ⇒ abσ=[ ] ∧
158. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

158. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
158. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)
158. ⇒ rng fbiσ ∩ rng fbjσ = {}
159. ∧ actiσ=[ ]=actjσ

“slide 1344”

Communication Channels: The running state is a meta notion. It reflects the
channels over which contracts are issued; messages about committed, cancelled
and inserted bus rides are communicated, and fund transfers take place.

Sub-Contractor↔Sub-Contractor Channels Consider each sub-contractor
(same as contractor) to be modelled as a behaviour. Each sub-contractor (li-
censor) behaviour has a unique name, the LeeNm. Each sub-contractor can
potentially communicate with every other sub-contractor. We model each such
communication potential by a channel. For n sub-contractors there are thus
n × (n − 1) channels.

channel { l to l[ fi,ti ] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi6=ti } LLMSG
type LLMSG = ...
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We explain the declaration: channel { l to l[ fi,ti ] | fi:LeeNm, ti:LeeNm • fi 6=ti
} LLMSG. It prescribes n × (n − 1) channels (where n is the cardinality of
the sub-contractor name sets). Each channel is prescribed to be capable of
communicating messages of type MSG. The square brackets [...] defines l to l
(sub-contractor-to-sub-contractor) as an array.

We shall later detail the BusRideNote, CancelNote, InsertNote and FundXfer
message types.“slide 1345”

Sub-Contractor↔Bus Channels Each sub-contractor has a set of buses.
That set may vary. So we allow for any sub-contractor to potentially commu-
nicate with any bus. In reality only the buses allocated and scheduled by a
sub-contractor can be “reached” by that sub-contractor.

channel { l to b[ l,b ] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

Sub-Contractor↔Time Channels Whenever a sub-contractor wishes to
perform a contract operation that sub-contractor needs know the time. There
is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[ l ] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

“slide 1346”

Bus↔Traffic Channels Each bus is able, at any (known) time to ascertain
where in the traffic it is. We model bus behaviours as processes, one for each
bus. And we model global bus traffic as a single, separate behaviour.

channel { b to tr[ b ] | b:BusNo • b ∈ busnos } LTrMSG
type

BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

Buses↔Time Channel Each bus needs to know what time it is.

channel { b to t[ b ] | b:BNo • b ∈ busnos } BTMSG
type

BTMSG ...

“slide 1347”

Run-time Environment: So we shall be modelling the transport contract do-
main as follows: As for behaviours we have this to say. There will be n
sub-contractors. One sub-contractor will be initialised to one given license.
You may think of this sub-contractor being the transport authority. Each
sub-contractor is modelled, in RSL, as a CSP-like process. With each sub-
contractor, li, there will be a number, bi, of buses. That number may vary
from sub-contractor to sub-contractor. There will be bi channels of commu-
nication between a sub-contractor and that sub-contractor’s buses, for each
sub-contractor. There is one global process, the traffic. There is one channel
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of communication between a sub-contractor and the traffic. Thus there are n
such channels.“slide 1348”

As for operations, including behaviour interactions we assume the follow-
ing. All operations of all processes are to be thought of as instantaneous, that
is, taking nil time ! Most such operations are the result of channel communi-
cations either just one-way notifications, or inquiry requests. Both the former
(the one-way notifications) and the latter (inquiry requests) must not be in-
definitely barred from receipt, otherwise holding up the notifier. The latter
(inquiry requests) should lead to rather immediate responses, thus must not
lead to dead-locks. “slide 1349”

The System Behaviour

The system behaviour starts by establishing a number of licenseholder and
bus ride behaviours and the single time clock and bus traffic behaviours “slide 1350”

value
system: Unit → Unit
system() ≡

licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})
‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)

| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})
‖ time clock(t0) ‖ bus traffic(tr)

“slide 1351”
The initial licenseholder behaviour states are individually initialised with ba-
sically empty license states and by means of the global state entity bus states.
The initial bus behaviours need no initial state other than their bus regis-
tration number, a “nil” route prescription, and their allocation to contract
holders as noted in their bus states.

Only a designated licenseholder behaviour is initialised to a single, received
license. “slide 1352”

Semantic Elaboration Functions

The Licenseholder Behaviour:

160 The licenseholder behaviour is a sequential, but internally non-deterministic
behaviour.

161 It internally non-deterministically (⌈⌉) alternates between
(a) performing the licensed operations (on the net and with buses),
(b) receiving information about the whereabouts of these buses, and in-

forming contractors of its (and its subsub-contractors’) handling of
the contracts (i.e., the bus traffic), and

(c) negotiating new, or renewing old contracts.
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160. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit
161. licenseholder(leen)(licσ,busσ) ≡
161. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

“slide 1353”

The Bus Behaviour:

162 Buses ply the network following a timed bus route description.
A timed bus route description is a list of timed bus stop visits.

163 A timed bus stop visit is a pair: a time and a bus stop.
164 Given a bus route and a bus schedule one can construct a timed bus route

description.
(a) The first result element is the first bus stop and origin departure time.
(b) Intermediate result elements are pairs of respective intermediate sched-

ule elements and intermediate bus route elements.
(c) The last result element is the last bus stop and final destination arrival

time.
165 Bus behaviours start with a “nil” bus route description.

“slide 1354”

type
162. TBR = TBSV∗

163. TBSV = Time × BusStop
value
164. conTBR: BusRoute × BusSched → TBR
164. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
164(a) 〈(dt,bs1)〉
164(b) ̂ 〈(til[ i ],bsl[ i ])|i:Nat•i:〈1..len til〉〉
164(c) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type
165. BRD == ′′nil′′ | TBR

“slide 1355”

166 The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

167 The bus repeatedly observes the time, t, and its position, po, in the traffic.
168 There are now four case distinctions to be made.
169 If the bus is idle (and a a bus stop) then it waits for a next route, brd′ on

which to engage.
170 If the bus is at the destination of its journey then it so informs its owner

(i.e., the sub-contractor) and resumes being idle.
171 If the bus is ‘en route’, at a bus stop, then it so informs its owner and

continues the journey.
172 In all other cases the bus continues its journey

“slide 1356”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
J.3 A Contract Language 443

value
166. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
166. in,out l to b[ leen,bno ], in,out b to tr[ bno ], in b to t[ bno ] Unit
166. bus ride(leen,bno)(licn,brd) ≡
167. let t = b to t[ bno ]? in
167. let (bus,pos) = (b to tr[ bno ]!reqBusAndPos(bno,t) ; b to tr[ bno ]?) in
168. case (brd,pos) of
169. (′′nil′′,mkAtBS( , , , )) →
169. let (licn,brd′) = (l to b[ leen,bno ]!reqBusRid(pos);l to b[ leen,bno ]?) in
169. bus ride(leen,bno)(licn,brd′) end
170. (〈(at,pos)〉,mkAtBS( , , , )) →
170s l to b[ l,b ]!BusΣMsg(t,pos);
170 l to b[ l,b ]!BusHistΣMsg(licn,bno);
170 l to b[ l,b ]!FreeΣ ActΣMsg(licn,bno) ;
170 bus ride(leen,bno)(ilicn,′′nil′′),
171. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS( , , , )) →
171s l to b[ l,b ]!BusΣMsg(t,pos) ;
171 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),
172. → bus ride(leen,bno)(licn,brd) end end end

“slide 1357”
In formula line 167 of bus ride we obtained the bus. But we did not use “that”
bus ! We we may wish to record, somehow, number of passengers alighting
and boarding at bus stops, bus fees paid, one way or another, etc. The bus,
which is a time-dependent entity, gives us that information. Thus we can revise
formula lines 170s and 171s:

Simple: 170s l to b[ l,b ]!BusΣMsg(pos);
Revised: 170r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

Simple: 171s l to b[ l,b ]!BusΣMsg(pos);
Revised: 171r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

type
Bus Info = Passengers × Passengers × Cash × ...

value
bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

It is time to discuss our description (here we choose the bus ride behaviour)
in the light of our claim of modeling “the domain”. These are our comments:

• First one should recognise, i.e., be reminded, that the narrative and formal
descriptions are always abstractions. That is, they leave out few or many
things. We, you and I, shall never be able to describe everything there is
to describe about even the simplest entity, operation, event or behaviour.

•
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•
•

“slide 1358”

The Global Time Behaviour:

173 The time clock is a never ending behaviour — started at some time t0.
174 The time can be inquired at any moment by any of the licenseholder

behaviours and by any of the bus behaviours.
175 At any moment the time clock behaviour may not be inquired.
176 After a skip of the clock or an inquiry the time clock behaviour continues,

non-deterministically either maintaining the time or advancing the clock!

value
173. time clock: T →
173. in,out {l to t[ leen ] | leen:LeeNm • leen ∈ leenms}
173. in,out {b to t[ bno ] | bno:BusNo • bno ∈ busnos} Unit
173. time clock:(t) ≡
175. (skip ⌈⌉
174. (⌈⌉⌊⌋{l to t[ leen ]? ; l to t[ leen ]!t | leen:LeeNm•leen ∈ leens})
174. ⌈⌉ (⌈⌉⌊⌋{b to t[ bno ]? ; b to t[ bno ]!t | bno:BusNo•bno ∈ busnos})) ;
176. (time clock:(t) ⌈⌉ time clock(t+δt))

“slide 1359”

The Bus Traffic Behaviour:

177 There is a single bus traffic behaviour. It is, “mysteriously”, given a con-
stant argument, “the” traffic, tr.

178 At any moment it is ready to inform of the position, bps(b), of a bus, b,
assumed to be in the traffic at time t.

179 The request for a bus position comes from some bus.
180 The bus positions are part of the traffic at time t.
181 The bus traffic behaviour, after informing of a bus position reverts to “it-

self”.

value
177. bus traffic: TR → in,out {b to tr[ bno ]|bno:BusNo•bno ∈ busnos} Unit
177. bus traffic(tr) ≡
179. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[ b ]? in assert b=bno
178. if time 6∈ dom tr then chaos else
180. let ( ,bps) = tr(t) in
178. if bno 6∈ dom tr(t) then chaos else
178. b to tr[ bno ]!bps(bno) end end end end | b:BusNo•b ∈ busnos} ;
181. bus traffic(tr)

“slide 1360”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
J.3 A Contract Language 445

License Operations:

182 The lic ops function models the contract holder choosing between and
performing licensed operations.
We remind the reader of the four actions that licensed operations may
give rise to; cf. the abstract syntax of actions, Page 433.

183 To perform any licensed operation the sub-contractor needs to know the
time and

184 must choose amongst the four kinds of operations that are licensed.
The choice function, which we do not define, makes a basically non-
deterministic choice among licensed alternatives. The choice yields the
contract number of a received contract and, based on its set of licensed
operations, it yields either a simple action or a sub-contracting action.

185 Thus there is a case distinction amongst four alternatives.
186 This case distinction is expressed in the four lines identified by: 186.
187 All the auxiliary functions, besides the action arguments, require the same

state arguments.
“slide 1361”

value
182. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
182. lic ops(leen)(licσ,busσ) ≡
183. let t = (time channel(leen)!req Time;time channel(leen)?) in
184. let (licn,act) = choice(licσ)(busσ)(t) in
185. (case act of
186. mkCon(blid,bid) → cndct(licn,leenm,t,act),
186. mkCan(blid,bid) → cancl(licn,leenm,t,act),
186. mkIns(blid,bid) → insrt(licn,leenm,t,act),
186. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

“slide 1362”

Bus Monitoring: Like for the bus ride behaviour we decompose the bus monitoring
behaviour into two behaviours. The local bus monitoring behaviour mon-
itors the buses that are commissioned by the sub-contractor. The licen-
sor bus monitoring behaviour monitors the buses that are commissioned by
sub-contractors sub-contractd by the contractor.

value
bus mon: l:LeeNm → (LicΣ×BusΣ)

→ in {l to b[ l,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
bus mon(l)(licσ,busσ) ≡

local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

“slide 1363”
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188 The local bus monitoring function models all the interaction between a
contract holder and its despatched buses.

189 We show only the communications from buses to contract holders.
190
191
192
193
194
195
196
197
198

“slide 1364”

188. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
189. → in {l to b[ leen,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
188. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
190. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[ l,b ]?)|b:BNo•b ∈ allbuses(leen)} in
194. let (blid,bid,licn,lorn,trace) = abσ(bno) in
191. case msg of
192. BusΣMsg(t,bs) →
196. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in
196. (licσ,(fbσ,abσ′,histσ)) end,
198. BusHistΣMsg(licn,bno) →
198. let lbσ′ =
198. update LorBusΣ(obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in
198. l to l[ leen,obs LorNm(licn) ]!Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
198. ((rlσ,slσ,lbσ′),busσ) end
197. FreeΣ ActΣMsg(licn,bno) →
198. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in
198. (licσ,(fbσ′,abσ′)) end
198. end end end

“slide 1365”

199
200
201
202
203

“slide 1366”

199. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
199. → in {l to l[ lorn,leen ]|leen:LeeNm•leen ∈ leenms\{lorn}} (LicΣ×BusΣ)
199. licensor bus mon(lorn)(licσ,busσ) ≡
199. let (rlσ,slσ,lbhσ) = licσ in
199. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))

= ⌈⌉⌊⌋{(leen′,l to l[ lorn,leen′ ]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in
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199. let lbhσ′ =
199. update BusHistΣ(obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in
199. l to l[ leenm,obs LorNm(licnm) ]!Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
199. ((rlσ,slσ,lbhσ′),busσ)
199. end end end

“slide 1367”

License Negotiation:

204
205
206
207
208
209
210
211
212
213
214
215

“slide 1368”

204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.

“slide 1369”

The Conduct Bus Ride Action:

216 The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that the timetable in the contract named ln does

indeed provide a journey, j, indexed by bli and (then) bi, and that that
journey starts (approximately) at time t′ which is the same as or later
than t.

(c) Being so the action results in the contractor, whose name is “embed-
ded” in ln, receiving notification of the bus ride commitment.
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(d) Then a bus, selected from a pool of available buses at the bust stop of
origin of journey j, is given j as its journey script, whereupon that bus,
as a behaviour separate from that of sub-contractor li, commences its
ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this is
reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ notifi-
cation, records the bus as no longer in actions but available at the
destination bus stop.

“slide 1370”

216.
216(a)
216(b)
216(c)
216(d)
216(e)
216(f)
216(g)

“slide 1371”

The Cancel Bus Ride Action:

217 The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First a check like that prescribed in Item 216(b) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the bus ride can-
cellation.
That’s all !

“slide 1372”

217.
217(a)
217(b)
217(c)

“slide 1373”

The Insert Bus Ride Action:

218 The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes place in
a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
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(b) First a check like that prescribed in Item 216(b) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the new bus ride
commitment.

(d) The rest of the effect is like that prescribed in Items 216(d)–216(g).
“slide 1374”

218.
218(a)
218(b)
218(c)
218(d)

“slide 1375”

The Contracting Action:

219 The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes
place in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that timetable tt is a subset of the timetable con-

tained in, and that the operations ops are a subset of those granted
by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,tt′),li′).
ln′ is a unique new contract name computed on the basis of ln, li, and
t. li′ is a sub-contractor name chosen by contractor li. tt′ is a timetable
chosen by contractor li. ops′ is a set of operations likewise chosen by
contractor li.

(d) This contract is communicated by contractor li to sub-contractor li′.
(e) The receipt of that contract is recorded in the license state.
(f) The fact that the contractor has sublicensed part (or all) of its obli-

gation to conduct bus rides is recorded in the modified component of
its received contracts.

“slide 1376”

219.
219(a)
219(b)
219(c)
219(d)
219(e)
219(f)

“slide 1377”
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J.3.3 Discussion

J.4 Review “slide 1378”

J.5 Exercises “slide 1379”

Exercise 47. 61:
Solution 47 Vol. II, Page 538, suggests a way of answering this exercise.

Exercise 48. 62:
Solution 48 Vol. II, Page 538, suggests a way of answering this exercise.

“slide 1380”



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008

“
s
l
id

e
1
3
8
1
”



invisible
Dines Bjorner: 9th DRAFT: October 31, 2008



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8

K

Human Behaviour “slide 1382”

K.1 A First, Informal Example: Automobile Drivers

K.1.1 A Narrative

We have already exemplified aspects of human behaviour in the context of the
transportation domain, namely vehicle drivers not obeying hub states. Other
example can be given: drivers moving their vehicle along a link in a non-open
direction, drivers waving their vehicle off and on the link, etcetera. Whether
rules exists that may prohibit this is, perhaps, irrelevant. In any case we can
“speak” of such driver behaviours — and then we ought formalise them ! “slide 1383”

K.1.2 A Formalisation

But we decide not to. For the same reason that we skimped proper formali-
sation of the violation of the “obey traffic signals” rule. But, by now, you’ve
seen enough formulas and you ought trust that it can be done.

off on link: Traffic → (T×T)
∼
→ (V →m VPos×VPos)

wrong direction: Traffic → T
∼
→ (V →m VPos)

“slide 1384”

K.2 A Second Example: Link Insertion

K.2.1 A Diligent Operation

The int Insert operation of Sect. F.4.2 Page 354 was expressed stating neces-
sary pre-conditions.

value
21′ pre int Insert: Ins → N → Bool
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21′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
1 2oldH(hi′,l,hi′′) → {hi′,hi′′}⊆iohs(hs),
2 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∧h6∈ hs∧obs HI(h)6∈ iohs(hs),
3 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

These must be carefully expressed and adhered to in order for staff to be said
to carry out the link insertion operation accurately.“slide 1385”

K.2.2 A Sloppy via Delinquent to Criminal Operation

We replace systematic checks (∧) with partial checks (∨), etcetera, and obtain
various degrees of sloppy to delinquent, or even criminal behaviour.

value
21′ pre int Insert: Ins → N → Bool
21′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
1 2oldH(hi′,l,hi′′) → hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),
2 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∨h6∈ hs∨obs HI(h)6∈ iohs(hs),
3 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

“slide 1386”

K.3 Review

K.4 Exercises “slide 1387”

Exercise 49. 71:
Solution 49 Vol. II, Page 538, suggests a way of answering this exercise.

Exercise 50. 72:
Solution 50 Vol. II, Page 538, suggests a way of answering this exercise.

“slide 1388”
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Postlude Domain Engineering Actions “slide 1390”

L.1 Domain Verification “slide 1391”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.10 (Page 102).

L.2 Domain Validation “slide 1392”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.11 (Page 102).

L.3 Towards a Domain Teory of Transportation “slide 1393”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 2, Sect. 2.13 (Page 102).

L.4 Review “slide 1394”

L.5 Exercises “slide 1395”

Exercise 51. 001:
Solution 51 Vol. II, Page 538, suggests a way of answering this exercise.

Exercise 52. 002:
Solution 52 Vol. II, Page 538, suggests a way of answering this exercise.

“slide 1396”
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Part VI

Requirements Engineering

Chapter 3 (Pages 109–166) covered methodology issues of requirements engi-
neering.

This paet cosists of Appendices M–Q (Pages 461–493):

• Appendix M covers initial stages of requirements engineering:

⋆ Informative Documents

⋆ Requirements Stakeholders

⋆ Requirements Acquisition

⋆ Requirements Analysis and Concept
Formation

⋆ Business Process Re-engineering
⋆ Requirements Terminology

• Appendices N–P cover requirements modelling in three stages:

⋆ Appendix N covers domain requirements,
⋆ Appendix O covers interface requirements, and
⋆ Appendix P covers machine requirements.

• Appendix Q covers concluding stages of requirements engineering:

⋆ Requirements Verification

⋆ Requirements Validation

⋆ Requirements Feasibility and Satisfi-
ability

⋆ (Towards a) Requirements Theory
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Prelude Requirements Engineering Actions “slide

1398”

M.1 Informative Requirements Documents “slide 1399”

Recall, from Page 7, that information documents include:

1 Project Name and Date Sect. M.1.1
2 Project Partners (‘whom’) and Place(s) (‘where’) Sect. M.1.2

⋆ Management ⋆ Developers ⋆ Client Staff ⋆ Consultants
3 Project: Background and Outlook

(a) Current Situation Sect. M.1.3
(b) Needs and Ideas Sect. M.1.4
(c) Concepts and Facilities Sect. M.1.5
(d) Scope and Span Sect. M.1.6
(e) Assumptions and Dependencies Sect. M.1.7
(f) Implicit/Derivative Goals Sect. M.1.8
(g) Synopsis Sect. M.1.10

4 Project Plan
(a) Software Development Graph Sect. M.1.11
(b) Resource Allocation Sect. M.1.12
(c) Budget Estimate Sect. M.1.13
(d) Standards Compliance Sect. M.1.14

5 Contracts and Design Briefs Sect. M.1.15
6 Logbook Sect. M.1.16

M.1.1 Project Name and Dates “slide 1400”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.1, Page 8.

Project Name and Dates

• Project Name: PtP TollRITS:
Requirements for a Point-to-Point Toll Road IT Support System

• Dates: Summer 2008 – fall 2009
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M.1.2 Project Partners and Places “slide 1401”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.2, Page 8.

PtP TollRITS: Project Partners and Places

• Client:
⋆ Institution: ...
⋆ Address: ...

• Developer:
⋆ Company: ...
⋆ Address: ...

M.1.3 Current Situation “slide 1402”

PtP TollRITS: Current Situation

• Currently the road net has no toll roads, but toll road systems are being
considered.

• Currently such tool roads are thought of as point-to-point, that is:
⋆ End points connect to an existing road net; and
⋆ between the two end-points there may be zero, one or more intermediate

connections to that existing road net.

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.3, Page 9.

M.1.4 Needs and Ideas “slide 1403”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.4, Page 9.

PtP TollRITS: Needs and Ideas

• Needs:
⋆ The needs are for such a toll road system to

· have a number of phenomema and concepts monitored and controlled
by an IT system, and

· have that IT system be domain described, requirements prescribed
and, eventually designed

· in a trustworthy manner.
• Ideas:

⋆ The idea, for this phase of requirements development.
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⋆ is to provide a requirements, “derived” from an existing domain descrip-
tion

⋆ according to the TripTych dogma.

M.1.5 Concepts and Facilities “slide 1404”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.5, Page 10.

To bring the concepts and facilities of the toll road system in context we
show and instance of such a toll road system in Fig. M.1.

tp1 tp2 tp3 tpntpn−1tpj

l12

l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

l21

l1 l2 l3 lj ln−1 ln

Fig. M.1. A simple, linear toll road net:
tpi: toll plaza i,
ti1, tin: terminal intersection k,
iik: intermediate intersection k, 1<k<n

ℓi: toll plaza link i,
lxy: tollway link from ix to iy , y=x+1 or y=x-1 and 1≤x<n.

“slide 1405”

PtP TollRITS: Concepts and Facilities

The concepts and facilities of the point-to-point toll road system being
contemplated should become clear from the Business Process Re-engineering
section, Sect. M.5 Pages 467–469, check with Fig. M.1 (Page 463)

Some (main) entities of the point-to-point toll road system are: (i) “tickets”,
(ii) toll plazas — toll plazas have one or more “ticket” issuing and one or more
“ticket” and, subsequently, fee collecting, i.e., (iii-iv) entry, respectively exit toll
booths, (v) terminal (end-point) intersections, (vi) intermediate (in-between)
intersections, (vii) toll plaza links, (viii) toll way links, etcetera.

pg.:1406

Some functions of the point-to-point toll road system are: (ix) outside car
enters toll road system by entering toll plaza entry booth, collects ticket, be-
comes inside car and enters toll plaza link; (x) inside car leaves toll plaza link
and enters intersections and toll ways; (xi) inside car leaves toll ways and in-
tersections and enters toll plaza link; and (xi) inside car leaves toll plaza link,
enters toll plaza exit booth and delivers ticket and fees, and leaves toll road
system, etcetera.

pg.:1407
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Some events of the point-to-point toll road system are: (xii) an outside car
appears at an entry booth, but is hindered to proceed onto the connecting toll
plaza link; (xiii) a car accepts an antry booth ticket and is allowed to proceed
onto the connecting toll plaza link; (xvi) a car leaves the entry booth and enters
the connecting toll plaza link; (xv) an inside car appears at an exit booth, but
is hindered to proceed beyond the toll road system; (xvi) an inside car presents
a “ticket” to the exit booth, but is still hindered in proceeding beyond the
toll road system; (xvii) an inside car is presented with a fee to pay, but is still
hindered in proceeding beyond the toll road system; (xviii) an inside car presents
an appropriate fee and is allowed to proceed beyond the toll road system; (xix)
an inside car leaves the exit booth and thus leaves the toll road system; etcetera.

pg.:1408

Some behaviours of the point-to-point toll road system are: (xx) a car enters
the toll road system, obtains a ticket; proceeds onto a connecting toll plaza
link, enters an intersection, proceeds onto a toll way link, and, in succession,
enters zero, one or more intermediate intersections and connected toll way links
until, at either an intermediate intersection or at an end intersection it enters
the connecting toll plaza link, presents the ticket at an exit booth, pays the
requested fee and leaves the toll road system.; (xxi) a toll plaza entry booth
successively alternates between issuing tickets, allowing a car to proceed at a
time and stopping cars from proceeding; (xxii) a toll plaza exit booth successively
alternates between acceptinh tickets, posting fees, accepting fees, allowing a car
to proceed at a time and stopping cars from proceeding; etcetera.

M.1.6 Scope and Span “slide 1409”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.6, Page 11.

PtP TollRITS: Scope

• The scope of the toll road system is that of the domain described road
transportation system.

PtP TollRITS: Span

• The span of the toll road system is a subset of the domain described road
transportation system — one that excludes insertion and removal of links,
transport timetables, and many other things.
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M.1.7 Assumptions and Dependencies “slide 1410”

PtP TollRITS: Assumptions

• There is an already existing, accessible road transport domain description,
and

• there is access to appropriate requirements stakeholders.

PtP TollRITS: Dependencies

•
•

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.7, Page 11.

to be written

M.1.8 Implicit/Derivative Goals “slide 1411”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.8, Page 12.

to be written

M.1.9 Concepts and Facilities “slide 1412”

M.1.10 Synopsis “slide 1413”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.9, Page 13.

to be written

M.1.11 Software Development Graphs “slide 1414”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.10, Page 13.

to be written

M.1.12 Resource Allocation “slide 1415”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.11, Page 15.

to be written
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M.1.13 Budget Estimate “slide 1416”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.12, Page 16.

M.1.14 Standards Compliance “slide 1417”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.13, Page 16.

to be written

M.1.15 Contracts and Design Briefs “slide 1418”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.14, Page 19.

to be written

M.1.16 Logbook “slide 1419”

For the motivation and the principles and techniques for carrying out this
step of development we refer to Chap. 1, Sect. 1.6.15, Page 23.

to be written

M.2 Requirements Stakeholder Identification “slide 1420”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.4 (Page 119).

to be written

M.3 Requirements Acquisition “slide 1421”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.5 (Page 119).

to be written
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M.4 Requirements Analysis and Concept Formation “slide

1422”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.6 (Page 121).

to be written

M.5 Business Process Re-engineering “slide 1423”

We omit frames around the “running” PtP TollRITS example.
For the motivation and the principles and techniques for carrying out this

stage of development we refer to Chap. 3, Sect. 3.7 (Page 121).

M.5.1 The Example Requirements

The domain was that of transportation. The requirements is now basically
related to the issuance of tickets upon vehicle entry to a toll road net1 and
payment of tickets upon the vehicle leaving the toll road net both issuance
and collection/payment of tickets occurring at toll booths2 which are hubs
somehow linked to the toll road net proper. Add to this that vehicle tickets
are sensed and updated whenever the vehicle crosses an intermediate toll road
intersection. “slide 1424”

tp1 tp2 tp3 tpntpn−1tpj

l12

l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

l21

l1 l2 l3 lj ln−1 ln

Fig. M.2. A simple, linear toll road net:
tpi: toll plaza i,
ti1, tin: terminal intersection k,
iik: intermediate intersection k, 1<k<n

lxy: tollway link from ix to iy , y=x+1 or y=x-1 and 1≤x<n.

“slide 1425”

Business process re-engineering (BPR) re-evaluates the intrinsics, support
technologies, management & organisation, rules & regulations, scripts, and
human behaviour facets while possibly changing some or all of these, that is,
possibly rewriting the corresponding parts of the domain description.

1 Toll road: in other forms of English; tollway, turnpike, pike or toll-pike, in French
péage.

2 Toll plazas, toll stations, or toll gates
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Re-engineering Domain Entities “slide 1426”

The net is arranged as a linear sequence of two or more (what we shall call)
intersection hubs. Each intersection hub has a single two-way link to (what
we shall call) an entry/exit hub (toll plaza); and each intersection hub has
either two or four one-way (what we shall call) tollway links: the first and the
last intersection hub (in the sequence) has two tollway links and all (what we
shall call) intermediate intersections has four tollway links. We introduce a
pragmatic notion of net direction: “up” and “down” the net, “from one end
to the other”. This is enough to give a hint at the re-engineered domain.

Re-engineering Domain Operations “slide 1427”

We first briefly sketch the tollgate Operations. Vehicles enter and leave the
tollway net only at entry/exit hubs (toll plazas). Vehicles collect and re-
turn their tickets from and to tollgate ticket issuing, respectively payment
machines. Tollgate ticket-issuing machines respond to sensor pressure from
“passing” vehicles or by vehicle drivers pressing ticket-issuing machine but-
tons. Tollgate payment machines accept credit cards, bank notes or coins in
designated currencies as payment and returns any change.

“slide 1428”

We then briefly introduce and sketch an operation performed when vehicles
cross intersections: The vehicle is assumed to possess the ticket issued upon
entry (in)to the net (at a tollgate). At the crossing of each intersection, by
a vehicle, its ticket is sensed and is updated with the fact that the vehicle
crossed the intersection.

The updated domain description section on support technology will detail
the exact workings of these tollgate and internal intersection machines and
the domain description section on human behaviour will likewise explore the
man/machine facet.

Re-engineering Domain Events “slide 1429”

The intersections are highway-engineered in such a way as to deter vehicle
entry into opposite direction tollway links, yet, one never knows, there might
still be (what we shall call ghost) vehicles, that is vehicles which have somehow
defied the best intentions, and are observed moving along a tollway link in
the wrong direction.

Re-engineering Domain Behaviours “slide 1430”

The intended behaviour of a vehicle of the tollway is to enter at an entry hub
(collecting a ticket at the toll gate), to move to the associated intersection,
to move into, where relevant, either an upward or a downward tollway link,
to proceed (i.e., move) along a sequence of one or more tollway links via
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connecting intersections, until turning into an exit link and leaving the net at
an exit hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed
to requirements prescription proper.

M.6 Requirements Terminology “slide 1431”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.8 (Page 127).

to be written

M.7 Exercises “slide 1432”

Exercise 53. Reqs. Prelude 1:
Solution 53 Vol. II, Page 538, suggests a way of answering this exercise.

Exercise 54. Reqs. Prelude 2:
Solution 54 Vol. II, Page 538, suggests a way of answering this exercise.

“slide 1433”
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N

Domain Requirements “slide 1435”

In this appendix we shall show examples of requirements for two transporta-
tion systems. Both are based on the domain model given in earlier appendices.
The two examples will intertwain in this appendix: a smaller example, always
shown in frames, RoMaS: Road Maintenance System, and a larger example,
not shown in frames, PtPToll: Point-to-Point Toll Road IT System. This
latter example was already strongly hinted at in Sect. M.5 (business process
reengineering).

N.1 Domain Projection “slide 1436”

N.1.1 RoMaS: A Road Maintenance System

Narrative

RoMaS: Road Maintenance System, Narrative

Instead of listing all the phenomena and concepts of the domain that are
“projected away”, we list those few that remain:

• hubs, links, hub identifiers and link identifiers;
• nets,
• corresponding observer functions, and
• corresponding axioms.

Formalisation1

RoMaS: Road Maintenance System, Formalisation

type

1
“slide 1437”
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5 on page 343: H, L,
6 on page 344: N = H-set × L-set

axiom
6 on page 344: ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

type
7 on page 344: HI, LI

value
8 on page 345a: obs HI: H → HI, obs LI: L → LI

axiom
8 on page 345b: ∀ h,h′:H, l,l′:L •

h 6=h′⇒obs HI(h)6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)
value

9 on page 345a: obs HIs: L → HI-set
10 on page 345a: obs LIs: H → LI-set

pg.:1438

9 on page 345b: ∀ l:L • card obs HIs(l)=2 ∧
10 on page 345b: ∀ h:H • card obs LIs(h)≥1 ∧
∀ (hs,ls):N •

9(a on page 345): ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

10(a on page 345): ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

11 on page 345: ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
12 on page 345: ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

N.1.2 PtPToll: Toll Road IT System “slide 1439”

Narrative

For the ‘Toll Road IT System’, in addition to what was projected for the
‘Road Management System’, the following entities and most related functions
are projected:

• hubs, links, hub identifiers and link identifiers;
• nets,
• hub state and hub state spaces and
• link states and link state spaces;
• corresponding observer functions and
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• corresponding axioms and syntactic and semantic wellformedness predi-
cates.

Formalisation2

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′

• syn wf LΣ{lnkσ} |}
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′

• wf HΣ{hubσ} |}
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΣ: H → HΣ, obs LΣ: L → LΣ
obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

For hubs, links, hub identifiers and link identifiers and nets see the above
RoMaS projection; and for the missing axioms and wellformedness predicates
see Sect. G.1 Pages 367–370.

N.2 Domain Instantiation “slide 1441”

N.2.1 RoMaS: Road Maintenance System

Narrative

RoMaS: Instantiation, Narrative

220 The road net consist of a sequence of one or more road segments.
221 A road segment can be characterised by a pair of hubs and a pair of links

conected to these hubs.
222 Neighbouring road segments share a hub.
223 All hubs are otherwise distinct.
224 All links are distinct.
225 The two links of a road segment connects to the hubs of the road segment.
226 We can show that road nets are specific instances of concretisations of the

former, thus more absttract road nets.

2
“slide 1440”
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Formalisation3

RoMaS: Instantiation, Formalisation

type
220 RN = RS∗,
221 RS = H × (L × L) × H
axiom

∀ rn:RN •

222 ∀ i:Nat • {i,i+1}⊆inds rn ⇒
let ( , ,h)=rn(i),(h′, , )=rn(i+1) in h=h′ end ∧

223 len rn + 1 = card{h,h′|h,h′:H•(h, ,h′)∈ elems rn} ∧
224 2∗(len rn) = card{l,l′|l,l′:L•( ,(l,l′), )∈ elems rn} ∧
225 ∀ (h,(l,l′),h′):RS •

(h,(l,l′),h′) ∈ elems rn ⇒
obs Σ(l)={(obs HI(h),obs HI(h′))} ∧
obs Σ(l′)={(obs HI(h′),obs HI(h))}

value
226 abs N: RN → N

abs N(rsl) ≡
({h,h′|(h, ,h′):RS • (h, ,h′) ∈ elems rsl},
{l,l′|( ,(,l,l′), ):RS • ( .(l,l′), ) ∈ elems rsl})

N.2.2 PtPToll: Toll Road IT System “slide 1443”

We omit frames around the ‘running’ PtPToll example:

Narrative

The 1st version domain requirements prescription is now updated with respect
to the properties of the toll way net: We refer to Fig. M.2 and the preliminary
description given in Sect. M.5.1. There are three kinds of hubs: tollgate hubs
and intersection hubs: terminal intersection hubs and proper, intermediate
intersection hubs. Tollgate hubs have one connecting two way link. linking
the tollgate hub to its associated intersection hub. Terminal intersection hubs“slide 1444”

have three connecting links: (i) one, a two-way link, to a tollgate hub, (ii) one
one-way link emanating to a next up (or down) intersection hub, and (iii) one
one-way link incident upon this hub from a next up (or down) intersection
hub. Proper intersection hubs have five connecting links: one, a two way“slide 1445”

link, to a tollgate hub, two one way links emanating to next up and down
intersection hubs, and two one way links incident upon this hub from next
up and down intersection hub. (Much more need be narrated.) As a result we
obtain a 2nd version domain requirements prescription.

3
“slide 1442”
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Formalisation4

type
TN = ((H × L) × (H × L × L))∗ × H × (L × H)

value
abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}
tn links: TN → L-set
tn links(hll, ,(ln, )) ≡

{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

“slide 1447”

ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk
lnk

lkn

thn

ln

hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. N.1. A simple, linear toll road net:
thi: toll plaza i,
h1, hn: terminal intersections,
h2, hj , h

′

j , hk: intermediate intersections, 1<j≤k, k=n-1
lxy, lyx: tollway link from hx to hy and from hy to hx, 1≤x<n.
lx−1x, lxx−1: tollway link from hx−1 to hx and hx to hx−1, 1≤x<n,
dashed links are not in formulas.

Formalisation of Well-formedness5

type

4
“slide 1446”

5
“slide 1448”
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LnkM == plaza | way
value

wf TN: TN → Bool
wf TN(tn:(hll,h,(ln,hn))) ≡

wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

“slide 1449”

value
wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool
wf Toll Ways(hll,h) ≡

∀ j:Nat • {j,j+1}⊆inds hll ⇒
let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),

( ,(hj′, , )) = hll(j+1) in
wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in
wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

“slide 1450”

value
wf Toll Lnk: (H×L×H) → LnkM → Bool
wf Toll Lnk(h,l,h′)(m) ≡

obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),
(obs HI(h′),obs LI(l),obs HI(h))} ∧

obs Σ(l) = case m of
plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

N.3 Domain Determination “slide 1451”

N.3.1 RoMaS: Road Management System

We shall, in this example, claim that the following items constitute issues of
more determinate nature for RoMaS. fixing the states of links and hubs; en-
dowing links and hubs with such attributes as road surface material (concrete,
asfalt, etc.), state of road surface wear-and-tear, hub and link areas, say in
m2, time units needed for and cost of ordinary cleaning of m2s of hub and
link surface; time units needed for and cost of ordinary repairs of m2s of hub
and link surface; etcetera.
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Narrative6

RoMaS: State Space Determination, Narrative

227 The two links of a road segment are open for traffic in one direction and in
opposite directions only.

228 Hubs are always in the same state, namely one that allows traffic from
incoming links to continue onto all outgoing links.

229 Hubs and Links have a number of attributes that allow for the monitoring
and planning of hub and link surface conditions, i.e., whether in ordinary or
urgent need of cleaning and/or repair.

Formalisation7

RoMaS: State Space Determination, Formalisation

axiom
∀ rn:RN •

227 ∀ (h,(l,l′),h′):RS • (h,(l,l′),h′) ∈ elems rn ⇒
obs LΣl(l) = {(obs HI(h),obs LI(l),obs HI(h′))} ∧
obs LΣl(l′) = {(obs HI(h′),obs LI(l′),obs HI(h))} ∧

228 ∀ i:Nat • {i,i+1}⊆inds rn •

let ((h,(l,l′),h′),(h′,(l′′,l′′′),h′′)) = (rn(i),rn(i+1)) in
case i of

1 → obs HΣ(h) = {(obs LI(l),obs HI(h),obs LI(l′))},
len rn → obs HΣ(h′) = {(obs LI(l′),obs HI(h′),obs LI(l))},

→ obs HΣ(h′) = {(obs LI(l),obs HI(h′),obs LI(l′)),(obs LI(l),obs HI(h′),obs LI(l′))}
end end

type
229 Surface, WearTear, Area, OrdTime, OrdCost, RepTime, RepCost, ...
value
229 obs Surface: (H|L)→Surface, obs WearTear: (H|L)→WearTear, ...

N.3.2 PtPToll: Toll Road IT System “slide 1454”

Narrative

We single out only two ’determinations’: The link state spaces. There is only
one link state: the set of all paths through the link, thus any link state space is

6
“slide 1452”

7
“slide 1453”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
478 N Domain Requirements

the singleton set of its only link state. The hub state spaces are the singleton
sets of the “current” hub states which allow these crossings: (i) from terminal
link back to terminal link, (ii) from terminal link to emanating tollway link,
(iii) from incident tollway link to terminal link, and (iv) from incident tollway
link to emanating tollway link. Special provision must be made for expressing
the entering from the outside and leaving toll plazas to the outside.

Formalisation8

wf State Spaces: TN → Bool
wf State Spaces(hll,hn,(thn,tln)) ≡

let ((th1,tl1),(h1,l12,l21)) = hll(1),
((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in
wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

“slide 1456”

wf Plaza(th,tl,h) ≡
obs HΣ(th) = [ crossings at toll plazas ]

{(′′external′′,obs HI(th),obs LI(tl)),
(obs LI(tl),obs HI(th),′′external′′),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th)={obs HΣ(th)} ∧
obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = [ crossings at 3−link end hubs ]

{(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

“slide 1457”

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

8
“slide 1455”
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Not all determinism issues above have been fully explained. But for now we
should — in principle — be satisfied.

N.4 Domain Extension “slide 1458”

N.4.1 RoMaS: Road Management System

Narrative

Formalisation9

N.4.2 PtPToll: Toll Road IT System “slide 1460”

Narrative

The domain extension is that of the controlled access of vehicles to and depar-
ture from the toll road net: the entry to (and departure from) tollgates from
(respectively to) an "an external" net — which we do not describe; the
new entities of tollgates with all their machinery; the user/machine functions:
upon entry: driver pressing entry button, tollgate delivering ticket; upon exit:
driver presenting ticket, tollgate requesting payment, driver providing pay-
ment, etc. “slide 1461”

One added (extended) domain requirements: as vehicles are allowed to
cruise the entire net payment is a function of the totality of links traversed,
possibly multiple times. This requires, in our case, that tickets be made such
as to be sensed somewhat remotely, and that intersections be equipped with
sensors which can record and transmit information about vehicle intersection
crossings. (When exiting the tollgate machine can then access the exiting
vehicles sequence of intersection crossings — based on which a payment fee
calculation can be done.)

All this to be described in detail — including all the thinks that can go
wrong (in the domain) and how drivers and tollgates are expected to react.

Formalisation10

We suggest only some signatures:

type
Mach, Ticket, Cash, Payment, Map TN

value
obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)

9
“slide 1459”

10
“slide 1462”



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
480 N Domain Requirements

calculate Payment: (HI×HI) → Map TN → Payment

press Entry: M → M × Ticket [ gate up ]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [ gate up ]

N.4.3 Discussion “slide 1463”

This example provides a classical requirements engineering setting for embed-
ded, safety critical, real-time systems, requiring, ultimately, the techniques
and tools of such things as Petri nets, statecharts, message sequence charts
or live sequence charts and temporal logics (DC, TLA+).

N.5 Requirements Fitting “slide 1464”

N.5.1 RoMaS & PtPToll Narrative

We postulate two domain requirements: We have outlined a domain require-
ments development, RoMaS, for software support for road maintenance; and
we have outlined a domain requirements development, for PtPToll, software
support for a toll road (IT) system. We can therefore postulate that there are
two domain requirements developments, both based on the transport domain:
one, drRoMaS

, for a toll road computing system monitoring and controlling
vehicle flow in and out of toll plazas, and another, drPtPToll

, for a toll link
and intersection (i.e., hub) building and maintenance system monitoring and
controlling link and hub quality and for development.“slide 1465”

The fitting procedure now identifies the shared of awareness of the net by
both drRoMaS

and drPtPToll
of nets (N), hubs (H) and links (L). We conclude

from this that we can single out a common requirements for software that
manages net, hubs and links. Such software requirements basically amounts
to requirements for a database system. A suitable such system, say a rela-
tional database management system, DBrel, may already be available with
the customer.“slide 1466”

In any case, where there before were two requirements (drRoMaS
, drPtPToll

)
there are now four: (i) d′rRoMaS

, a modification of drRoMaS
which omits the de-

scription parts pertaining to the net; (ii) d′rPtPToll
, a modification of drPtPToll

which likewise omits the description parts pertaining to the net; (iii) drnet
,

which contains what was basically omitted in d′rRoMaS
and d′rPtPToll

; and

(iv) dr
db:i/f

(for database interface) which prescribes a mapping between

type names of drnet
and relation and attribute names of DBrel.

Much more can and should be said, but this suffices as an example.
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N.5.2 RoMaS & PtPToll Formalisation “slide 1467”

We leave [lengthy] formalisation as an exercise !

N.6 Requirements Consolidation “slide 1468”

to be written

N.7 Exercises “slide 1469”

Exercise 55. 81:
Solution 55 Vol. II, Page 539, suggests a way of answering this exercise.

Exercise 56. 82:
Solution 56 Vol. II, Page 539, suggests a way of answering this exercise.

“slide 1470”
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Interface Requirements “slide 1472”

O.1 Shared Entities “slide 1473”

The main shared entities are the net, hence the hubs and the links. As domain
entities they continuously undergo changes with respect to the values of a
great number of attributes and otherwise possess attributes — most of which
have not been mentioned so far: length, cadestral information, namings, wear
and tear (where-ever applicable), last/next scheduled maintenance (where-
ever applicable), state and state space, and many others. “slide 1474”

We “split” our interface requirements development into two separate steps:
the development of drnet

(the common domain requirements for the shared

hubs and links), and the co-development of dr
db:i/f

(the common domain

requirements for the interface between drnet
and DBrel — under the as-

sumption of an available relational database system DBrel “slide 1475”

When planning the common domain requirements for the net, i.e., the
hubs and links, we enlarge our scope of requirements concerns beyond the
two so far treated (drtoll

, drmaint.
) in order to make sure that the shared

relational database of nets, their hubs and links, may be useful beyond those
requirements. We then come up with something like hubs and links are to
be represented as tuples of relations; each net will be represented by a pair
of relations a hubs relation and a links relation; each hub and each link may
or will be represented by several tuples; etcetera. In this database modelling
effort it must be secured that “standard” operations on nets, hubs and links
can be supported by the chosen relational database system DBrel. “slide 1476”

O.1.1 Data Initialisation

As part of drnet
one must prescribe data initialisation, that is provision for

an interactive user interface dialogue with a set of proper display screens,
one for establishing net, hub or link attributes (names) and their types and,
for example, two for the input of hub and link attribute values. Interaction
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prompts may be prescribed: next input, on-line vetting and display of evolving
net, etc. These and many other aspects may therefore need prescriptions.

Essentially these prescriptions concretise the insert link operation.“slide 1477”

O.1.2 Data Refreshment

As part of drnet
one must also prescribe data refreshment: an interactive

user interface dialogue with a set of proper display screens one for updating
net, hub or link attributes (names) and their types and, for example, two
for the update of hub and link attribute values. Interaction prompts may be
prescribed: next update, on-line vetting and display of revised net, etc. These
and many other aspects may therefore need prescriptions.

These prescriptions concretise remove and insert link operations.

O.2 Shared Operations “slide 1478”

The main shared operations are related to the entry of a vehicle into the toll
road system and the exit of a vehicle from the toll road system.“slide 1479”

O.2.1 Interactive Operation Execution

As part of drtoll
we must therefore prescribe the varieties of successful and

less successful sequences of interactions between vehicles (or their drivers) and
the toll gate machines.

The prescription of the above necessitates determination of a number of
external events, see below.

(Again, this is an area of embedded, real-time safety-critical system pre-
scription.)

O.3 Shared Events “slide 1480”

The main shared external events are related to the entry of a vehicle into the
toll road system, the crossing of a vehicle through a toll way hub and the exit
of a vehicle from the toll road system.

As part of drtoll
we must therefore prescribe the varieties of these events,

the failure of all appropriate sensors and the failure of related controllers: gate
opener and closer (with sensors and actuators), ticket “emitter” and “reader”
(with sensors and actuators), etcetera.

The prescription of the above necessitates extensive fault analysis.
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O.4 Shared Behaviours “slide 1481”

The main shared behaviours are therefore related to the journey of a vehicle
throw the toll road system and the functioning of a toll gate machine during
“its lifetime”. Others can be thought of, but are omitted here.

In consequence of considering, for example, the journey of a vehicle be-
haviour, we may “add” some further, extended requirements: (a) requirements
for a vehicle statistics “package”; (b) requirements for tracing supposedly
“lost” vehicles; (c) requirements limiting toll road system access in case of
traffic congestion; etcetera.

O.5 Exercises “slide 1482”

Exercise 57. 91:
Solution 57 Vol. II, Page 539, suggests a way of answering this exercise.

Exercise 58. 92:
Solution 58 Vol. II, Page 539, suggests a way of answering this exercise.

“slide 1483”
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P

Machine Requirements “slide 1485”

P.1 Performance Requirements “slide 1486”

“slide 1487”

P.1.1 Machine Storage Consumption
“slide 1488”

P.1.2 Machine Time Consumption
“slide 1489”

P.1.3 Other Resource Consumption
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P.2 Dependability Requirements “slide 1490”

“slide 1491”

P.2.1 Accesability Requirements
“slide 1492”

P.2.2 Availability Requirements
“slide 1493”

P.2.3 Integrity Requirements
“slide 1494”

P.2.4 Reliability Requirements
“slide 1495”

P.2.5 Safety Requirements
“slide 1496”

P.2.6 Security Requirements
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P.3 Maintenance Requirements “slide 1497”

“slide 1498”

P.3.1 Adaptive Maintenance Requirements
“slide 1499”

P.3.2 Corrective Maintenance Requirements
“slide 1500”

P.3.3 Perfective Maintenance Requirements
“slide 1501”

P.3.4 Preventive Maintenance Requirements
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P.4 Platform Requirements “slide 1502”

“slide 1503”

P.4.1 Development Platform Requirements
“slide 1504”

P.4.2 Execution Platform Requirements
“slide 1505”

P.4.3 Maintenance Platform Requirements
“slide 1506”

P.4.4 Demonstration Platform Requirements
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P.5 Development Documentation Requirements “slide 1507”

“slide 1508”

P.5.1 Informative Documents
“slide 1509”

P.5.2 Specification Documents
“slide 1510”

P.5.3 Analytic Documents:
“slide 1511”

P.5.4 Installation Documentation
“slide 1512”

P.5.5 Demonstration Documentation
“slide 1513”

P.5.6 User Documentation
“slide 1514”

P.5.7 Maintenance Documentation
“slide 1515”

P.5.8 Disposal Documentation

P.6 Summary “slide 1516”

P.7 Exercises “slide 1517”

Exercise 59. 101:
Solution 59 Vol. II, Page 539, suggests a way of answering this exercise.

Exercise 60. 102:
Solution 60 Vol. II, Page 539, suggests a way of answering this exercise.

“slide 1518”
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Q

Postlude Requirements Engineering Actions

“slide 1520”

Q.1 Requirements Verification “slide 1521”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.10 (Page 163).

Q.2 Requirements Validation “slide 1522”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.11 (Page 163).

Q.3 Requirements Satisfiability and Feasibility “slide 1523”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.12 (Page 163).

Q.4 Towards a Requirements Teory of Transportation

“slide 1524”

For the motivation and the principles and techniques for carrying out this
stage of development we refer to Chap. 3, Sect. 3.13 (Page 163).

Q.5 Review “slide 1525”

Q.6 Exercises “slide 1526”
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Exercise 61. Reqs. Postludium 1:
Solution 61 Vol. II, Page 539, suggests a way of answering this exercise.

Exercise 62. Reqs. Postludium 2:
Solution 62 Vol. II, Page 539, suggests a way of answering this exercise.

“slide 1527”
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R

Software Design “slide 1529”

R.1 Informative Software Design Documents “slide 1530”

R.1.1 Project Name and Dates “slide 1531”

R.1.2 Project Places “slide 1532”

R.1.3 Project Partners “slide 1533”

R.1.4 Current Situation “slide 1534”

R.1.5 Needs and Ideas “slide 1535”

R.1.6 Concepts and Facilities “slide 1536”

R.1.7 Scope and Span “slide 1537”

R.1.8 Assumptions and Dependencies “slide 1538”

R.1.9 Implicit/Derivative Goals “slide 1539”

R.1.10 Synopsis “slide 1540”

R.1.11 Software Development Graphs “slide 1541”

R.1.12 Resource Allocation “slide 1542”

R.1.13 Budget Estimate “slide 1543”

R.1.14 Standards Compliance “slide 1544”

R.1.15 Contracts and Design Briefs “slide 1545”

R.1.16 Logbook “slide 1546”
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R.2 Software Design Stakeholder Identification “slide 1547”

R.3 Software Design Acquisition “slide 1548”

R.4 Software Design Analysis and Concept Formation

“slide 1549”

R.5 Software Design “BPR” “slide 1550”

R.6 Software Design Terminology “slide 1551”

R.7 Software Design Modelling “slide 1552”

“slide 1553”

R.7.1 Architectural Design
“slide 1554”

R.7.2 Component Design
“slide 1555”

R.7.3 Module Design
“slide 1556”

R.7.4 Coding
“slide 1557”

R.7.5 Programming Paradigms
“slide 1558”

Extreme Programming
“slide 1559”

Aspect-oriented Programming
“slide 1560”

Intensional Programming
“slide 1561”

??? Programming
“slide 1562”

Version Control & Configuration Management
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R.8 Software Design Verification “slide 1563”

R.9 Software Design Validation “slide 1564”

R.10 Software Design Release, Transfer and

Maintenance “slide 1565”

“slide 1566”

R.10.1 Software Design Release
“slide 1567”

R.10.2 Software Design Transfer
“slide 1568”

R.10.3 Software Design Maintenance

R.11 Software Design Documentation “slide 1569”

“slide 1570”

R.11.1 Software Design Process Graph
“slide 1571”

R.11.2 Software Design Documents

R.12 Software Design “slide 1572”

R.13 Exercises “slide 1573”

Exercise 63. 111:
Solution 63 Vol. II, Page 540, suggests a way of answering this exercise.

Exercise 64. 112:
Solution 64 Vol. II, Page 540, suggests a way of answering this exercise.

“slide 1574”
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S

An RSL Primer “slide 1576”

This is an ultra-short introduction to the RAISE Specification Language, RSL.

S.1 Types

The reader is kindly asked to study first the decomposition of this section into
its sub-parts and sub-sub-parts.

S.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite
sets of values (of “that” type).

Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have
no proper constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken
apart”.

RSL has a number of built-in atomic types. There are the Booleans, inte-
gers, natural numbers, reals, characters, and texts. “slide 1577”

Basic Types

type
[ 1 ] Bool
[ 2 ] Int
[ 3 ] Nat
[ 4 ] Real
[ 5 ] Char
[ 6 ] Text
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Composite Types

Composite types have composite values. That is, values which we consider to
have proper constituent (sub-)values, i.e., can, to us, be meaningfully “taken
apart”.“slide 1578”

From these one can form type expressions: finite sets, infinite sets, Carte-
sian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

Composite Type Expressions

[ 7 ] A-set
[ 8 ] A-infset
[ 9 ] A × B × ... × C
[ 10 ] A∗

[ 11 ] Aω

[ 12 ] A →m B
[ 13 ] A → B

[ 14 ] A
∼
→ B

[ 15 ] (A)
[ 16 ] A | B | ... | C
[ 17 ] mk id(sel a:A,...,sel b:B)
[ 18 ] sel a:A ... sel b:B

The following are generic type expressions:

1 The Boolean type of truth values false and true.
2 The integer type on integers ..., –2, –1, 0, 1, 2, ... .
3 The natural number type of positive integer values 0, 1, 2, ...
4 The real number type of real values, i.e., values whose numerals can be

written as an integer, followed by a period (“.”), followed by a natural
number (the fraction).

5 The character type of character values ′′a′′, ′′b′′, ...
6 The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7 The set type of finite cardinality set values.
8 The set type of infinite and finite cardinality set values.
9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.
11 The list type of infinite and finite length list values.
12 The map type of finite definition set map values.
13 The function type of total function values.
14 The function type of partial function values.
15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type
expression kind 9,
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• or not to be the name of a built-in type (cf., 1–6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A →m B),
or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E →m F)), etc.

16 The postulated disjoint union of types A, B, . . . , and C.
17 The record type of mk id-named record values mk id(av,...,bv), where av,

. . . , bv, are values of respective types. The distinct identifiers sel a, etc.,
designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv,
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

“slide 1579”

S.1.2 Type Definitions

Concrete Types

Types can be concrete in which case the structure of the type is specified by
type expressions:

Type Definition

type
A = Type expr

“slide 1580”
Some schematic type definitions are:

Variety of Type Definitions

[ 1 ] Type name = Type expr /∗ without | s or subtypes ∗/
[ 2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[ 3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[ 4 ] Type name :: sel a:Type name a ... sel z:Type name z
[ 5 ] Type name = {| v:Type name′ • P(v) |}

“slide 1581”
where a form of [2–3] is provided by combining the types:

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)
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Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are
distinct and due to the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

“slide 1582”

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P , constitute the subtype A:

Subtypes

type
A = {| b:B • P(b) |}

“slide 1583”

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type
A, B, ..., C

S.2 The RSL Predicate Calculus “slide 1584”

S.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values (true or false [or chaos]). Then:

Propositional Expressions

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
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are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6=
are Boolean connectives (i.e., operators). They can be read as: not, and, or,
if then (or implies), equal and not equal. “slide 1585”

S.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values and
let i, j, . . ., k designate number values, then:

Simple Predicate Expressions

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions. “slide 1586”

S.2.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and
R(z) designate predicate expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds;

there exists (at least) one y (value in type Y ) such that the predicate Q(y)
holds; and there exists a unique z (value in type Z) such that the predicate
R(z) holds.

S.3 Concrete RSL Types: Values and Operations “slide 1587”

S.3.1 Arithmetic

Arithmetic

type
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Nat, Int, Real
value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

“slide 1588”

S.3.2 Set Expressions

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple
set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

“slide 1589”

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate.
It is abstract in the sense that it does not do so by following a concrete
algorithm.

Set Comprehension

type
A, B
P = A → Bool

Q = A
∼
→ B

value
comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

“slide 1590”
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S.3.3 Cartesian Expressions

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the
below expressions are simple Cartesian enumerations:

Cartesian Enumerations

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)

“slide 1591”

S.3.4 List Expressions

List Enumerations

Let a range over values of type A, then the below expressions are simple list
enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then
expresses the set of integers from the value of ei to and including the value of
ej . If the latter is smaller than the former, then the list is empty. “slide 1592”

List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

“slide 1593”
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S.3.5 Map Expressions

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T 2, respec-
tively, then the below expressions are simple map enumerations:

Map Enumerations

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [ u7→v ], ..., [ u1 7→v1,u2 7→v2,...,un7→vn ] ∀ ∈ M

“slide 1594”

Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type
U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool
value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]

“slide 1595”

S.3.6 Set Operations

Set Operator Signatures

Set Operations

value
19 ∈: A × A-infset → Bool
20 6∈: A × A-infset → Bool
21 ∪: A-infset × A-infset → A-infset
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22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool
27 ⊆: A-infset × A-infset → Bool
28 =: A-infset × A-infset → Bool
29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

“slide 1596”

Set Examples

Set Examples

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

“slide 1597”

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a
set.

20 6∈: The nonmembership operator expresses that an element is not a mem-
ber of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets,
the operator gives the set whose members are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.
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24 ∩: The prefix distributed intersection operator. When applied to a set of
sets, the operator gives the set whose members are in some of the operand
sets.“slide 1598”

25 \: The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.

26 ⊆: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

27 ⊂: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

28 =: The equal operator expresses that the two operand sets are identical.
29 6=: The nonequal operator expresses that the two operand sets are not

identical.
30 card: The cardinality operator gives the number of elements in a finite

set.
“slide 1599”

Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

“slide 1600”
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S.3.7 Cartesian Operations

Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

“slide 1601”

S.3.8 List Operations

List Operator Signatures

List Operations

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

“slide 1602”

List Operation Examples

List Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
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inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

“slide 1603”

Informal Explication

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in

a list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a

number of elements larger than or equal to i, gives the ith element of the
list.“slide 1604”

• ̂: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.
• 6=: The nonequal operator expresses that the two operand lists are not

identical.

The operations can also be defined as follows:“slide 1605”

List Operator Definitions

List Operator Definitions

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
S.3 Concrete RSL Types: Values and Operations 515

false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

“slide 1606”

S.3.9 Map Operations

Map Operator Signatures and Map Operation Examples

Map Operations

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [ domain of map ]
dom [ a1 7→b1,a2 7→b2,...,an7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [ a1 7→b1,a2 7→b2,...,an7→bn ] = {b1,b2,...,bn}

†: M × M → M [ override extension ]
[ a 7→b,a′7→b′,a′′7→b′′ ] † [ a′7→b′′,a′′7→b′ ] = [ a 7→b,a′7→b′′,a′′7→b′ ]

∪: M × M → M [ merge ∪ ]
[ a 7→b,a′7→b′,a′′7→b′′ ] ∪ [ a′′′ 7→b′′′ ] = [ a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]
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\: M × A-infset → M [ restriction by ]
[ a 7→b,a′7→b′,a′′7→b′′ ]\{a} = [ a′7→b′,a′′ 7→b′′ ]

/: M × A-infset → M [ restriction to ]
[ a 7→b,a′7→b′,a′′7→b′′ ]/{a′,a′′} = [ a′7→b′,a′′ 7→b′′ ]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [ composition ]
[ a 7→b,a′7→b′ ] ◦ [ b7→c,b′7→c′,b′′7→c′′ ] = [ a 7→c,a′7→c′ ]

“slide 1607”

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a

map.
• rng: Range/Image Set gives the set of values which are mapped to in a

map.
• †: Override/Extend. When applied to two operand maps, it gives the map

which is like an override of the left operand map by all or some “pairings”
of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these
maps. “slide 1608”

• \: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

• =: The equal operator expresses that the two operand maps are identical.
• 6=: The nonequal operator expresses that the two operand maps are not

identical.
• ◦: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, m1, to the range elements
of the right operand map, m2, such that if a is in the definition set of m1

and maps into b, and if b is in the definition set of m2 and maps into c,
then a, in the composition, maps into c.

“slide 1609”
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Map Operation Redefinitions

The map operations can also be defined as follows:

Map Operation Redefinitions

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

S.4 λ-Calculus + Functions “slide 1610”

S.4.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...
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“slide 1611”

S.4.2 Free and Bound Variables

Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

“slide 1612”

S.4.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P )) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

“slide 1613”

S.4.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M). We can rename the formal parameter of a λ-function
expression provided that no free variables of its body M thereby become
bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (λx•M)(N)
≡ subst([N/x]M)

“slide 1614”
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S.4.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: B×C → A

“slide 1615”

S.4.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value
f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

“slide 1616”
Or functions can be defined implicitly:

Implicit Function Definitions

value
f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for

all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.
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S.5 Other Applicative Expressions “slide 1617”

S.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

“slide 1618”

S.5.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

“slide 1619”

S.5.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

“slide 1620”
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S.5.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [ a 7→b ] ∪ m = map in ... end
let [ a 7→b, ] ∪ m = map in ... end

“slide 1621”

S.5.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

“slide 1622”
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S.5.6 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

S.6 Imperative Constructs “slide 1623”

S.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly
abstract-applicative constructs which, through stages of refinements, are
turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.

Statements and State Change

Unit
value

stmt: Unit → Unit
stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit → Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an

argument of type Unit.

“slide 1624”
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S.6.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

S.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement
having no value or side-effect.

Statement Sequences and skip

2. skip
3. stm 1;stm 2;...;stm n

S.6.4 Imperative Conditionals

Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

“slide 1625”

S.6.5 Iterative Conditionals

Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

S.6.6 Iterative Sequencing

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end
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S.7 Process Constructs “slide 1626”

S.7.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel
array indexes, then:

Process Channels

channel c:A
channel { k[ i ]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of commu-
nicating values of the designated types (A and B).“slide 1627”

S.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, thereby commu-
nicating over declared channels. Let P() and Q stand for process expressions,
then:

Process Composition

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice be-
tween two processes: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖)
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.“slide 1628”

S.7.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an
input, respectively “writes” an output.“slide 1629”
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S.7.4 Process Definitions

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

Process Definitions

value
P: Unit → in c out k[ i ]
Unit
Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

S.8 Simple RSL Specifications “slide 1630”

Often, we do not want to encapsulate small specifications in schemes, classes,
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, values (including functions), variables, channels and
axioms:

Simple RSL Specifications

type
...

variable
...

channel
...

value
...

axiom
...

“slide 1631”
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T

Solutions

T.1 Chapter 1: Introduction

Solution to Exercise 1. The Triptych Paradigm: The below forms an
answer to Exercise # 1 Vol. I, Page 44.

Cf. Sect. 1.2 on page 4:
Before software can be designed one must understand its requirements.
Before requirements can be expressed one must understand the application

domain.

Solution to Exercise 2. The Triptych Phases of Software Develop-
ment: The below forms an answer to Exercise # 2 Vol. I, Page 44.

Sect. 1.3.1 on page 4:
Software development ideally progresses in three phases: In the first phase,

‘Domain Engineering’, a model is built of the application domain. In the sec-
ond phase, ‘Requirements Engineering’, a model is built of what the software
should do (but not how it should that). In the third phase, ‘Software Design’,
the code that is subject to executions on computers is designed.

Solution to Exercise 3. Phases, Stages and Steps of Software Devel-
opment: The below forms an answer to Exercise # 3 Vol. I, Page 44.

By a phase of development we shall understand a set of development stages
which together accomplish one of the three major development objectives: a(n
analysed, validated, verified) domain model, a(n analysed, validated, verified)
requirements model, or a (verified) software design.

By a stage of development we mean a major set of logically strongly related
development steps which together solves a clearly defined development task.

By a step of development we mean iterations of development within a
stage such that the purpose of the iteration is to improve the precision or
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make the document resulting from the step reflect a more concrete description,
prescription or specification.

Solution to Exercise 4. Development Documents: The below forms an
answer to Exercise # 4 Vol. I, Page 44.

Cf. Sect. 1.5 Page 7:

• Informative Documents Sect. 1.6 (Page 7)
• Modelling Documents Sect. 1.7 (Page 25)
• Analysis Documents Sect. 1.8 (Page 26)

Solution to Exercise 5. Enumeration of Informative Documents: The
below forms an answer to Exercise # 5 Vol. I, Page 44.

1 Project Name and Date Sect. 1.6.1
2 Project Place(s) (‘where’) Sect. 1.6.2
3 Partners (‘whom’) Sect. 1.6.2

(a) Current Situation Sect. 1.6.3
(b) Needs and Ideas Sect. 1.6.4
(c) Concepts and Facilities Sect. 1.6.5
(d) Scope and Span Sect. 1.6.6
(e) Assumptions and Dependencies Sect. 1.6.7
(f) Implicit/Derivative Goals Sect. 1.6.8
(g) Synopsis Sect. 1.6.9

(a) Software Development Graph Sect. 1.6.10
(b) Resource Allocation Sect. 1.6.11
(c) Budget Estimate Sect. 1.6.12
(d) Standards Compliance Sect. 1.6.13

4 Contracts and Design Briefs Sect. 1.6.14
5 Logbook Sect. 1.6.15

Solution to Exercise 6. Descriptions, Prescriptions, Specifications:
The below forms an answer to Exercise # 6 Vol. I, Page 44.

Cf. Sect. 1.9:
(i) descriptions are of “what there is”, that is, descriptions are, in this book,

of domains, “as they are”; (ii) prescriptions are of “what we would like there
to be”, that is, prescriptions are, in this book, of requirements to software;
and (iii) specifications are of “how it is going to be”, that is, specifications
are, in this book, of software.

Solution to Exercise 7. Software: The below forms an answer to Exer-
cise # 7 Vol. I, Page 44.

Cf. Sect. 1.10: Software is, i.e., consists of the following documents:
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1 The domain development documents include
(a) the informative documents and
(b) the documents which record

i. stakeholder identification and relations,
ii. domain acquisition,

iii. domain analysis and concept formation,
iv. rough sketches of the business (i.e., domain) processes,
v. terminologies,

vi. domain description,
vii. domain verification (incl. model check and test),

viii. domain validation and
ix. domain theory formation
documents.

2 The requirements development documents include
(a) the informative documents and
(b) the documents which record

i. stakeholder identification and relations,
ii. requirements acquisition,

iii. requirements analysis and concept formation,
iv. rough sketches of the re-engineered business (i.e., new, revised

domain) processes,
v. terminologies,

vi. requirements description,
vii. requirements verification (incl. model check and test),

viii. requirements validation and
ix. requirements theory formation
documents.

(c) The software design development documents include
i. the informative documents,

ii. the documents which record
A. architectural designs (“how derived from requirements”) and

verifications (incl. model checks and tests),
B. component designs and verifications (incl. model checks and

tests),
C. module designs and verifications (incl. model checks and tests),
D. code designs and verifications (incl. model checks and tests),

iii. the actual executable code documents,
iv. as well as

A. demonstration (i.e., demo) manuals,
B. training manuals,
C. installation manuals,
D. user manuals,
E. maintenance manuals, and
F. development and maintenance logbooks.
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Solution to Exercise 8. Informal and Formal Software Development:
The below forms an answer to Exercise # 8 Vol. I, Page 44.

Cf. Sect. 1.11.1.
By informal development we understand a software development which

does not use formal techniques, see below; instead it may use UML and an
executable programming language.

By formal development we mean a software development which uses one
or more formal techniques, see below, and it may then use these in a spectrum
from systematically via rigorously to formally.

By formal development we mean, in this book, a software development
which uses both informal and formal techniques. By a formal development
technique we mean a software development in which specifications are ex-
pressed in a formal language, that is, a language with a formal syntax so that
all specifications can be judged well-formed or not; a formal semantics so that
all well-formed specifications have a precise meaning; and a (relatively com-
plete) proof system such that one may be able to reason over properties of
specifications or steps of formally specified developments from a more abstract
to a more concrete step. Additionally a formal technique may be a calculus
which allows developers to calculate, to refine “next”, formally specified de-
velopment steps from a preceding, formally specified step.

By a systematic use of a formal technique we mean a software development
which which formally specifies whenever something is specified, but which does
not (at least only at most in a minor of cases) reason formally over steps of
development.

By a rigorous use of formal techniques we mean a software development
which which formally specifies whenever something is specified, and which
formally express (some, if not all) properties that ought be expressed, but
which does not (at least only at most in a minor number of cases) reason
formally over steps of development, that is, verify these to hold, either by
theorem proving, or by model checking, or by formally based tests.

By formal use of a formal techniques we mean, in this book, a software
development which which formally specifies whenever something is specified,
which formally expresses (most, if not all) properties that ought be expressed,
and which formally verifies these to hold, either by theorem proving, or by
model checking, or by formally based tests.

Solution to Exercise 9. Entities and States, Functions and Actions,
Events and Behaviours: The below forms an answer to Exercise # 9 Vol. I,
Page 45.

Cf. Sect. 1.12 on page 34:
By an entity we mean something we can point to, i.e., something manifest,

or a concept abstracted from, such a phenomenon or concept thereof.
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By a domain state we shall understand a collection of domain entities
chosen by the domain engineer.

By a function we shall understand something which when applied to what
we shall call arguments (i.e., entities) yield some entities called the result of
the function (application).

By an action we shall understand the same thing as applying a state-
changing function to its arguments (including the state).

By an event we shall understand something that can be characterised by
a predicate, p and a pair of (“before”) and (“after”) of pairs of states and
times: p((tb, σb), (ta, σa)). Usually the time interval ta − tb is of the order
ta ≃ next(tb).

By a simple behaviour we understand a sequence, q, of zero, one or more
actions and/or events q1, q2, . . . , qi, qi+1, . . . , qn such that the state resulting
from one such action, qi, or in which some event, qi, occurs, becomes the state
in which the next action or event, qi+1, if it is an action, is effected, or, if it
is an event, is the event state. Etcetera for not so simple behaviours !

Solution to Exercise 10. Mereology, Atomic and Composite Entities:
The below forms an answer to Exercise # 10 Vol. I, Page 45.

Cf. Sect. 1.12 on page 34:
By mereology we understand a theory of part-hood relations. That is, of

the relations of part to whole and the relations of part to part within a whole
By an atomic entity we intuitively understand an entity which “cannot

be taken apart” (into other, the sub-entities) and which possess one or more
attributes.

By a composite entity we intuitively understand an entity (i) which “can be
taken apart” into sub-entities, (ii) where the composition of these is described
by its mereology, and (iii) which further possess one or more attributes

T.2 Chapter 2: Domain Engineering

Solution to Exercise 11. Route Type: The below forms an answer to
Exercise # 11 Vol. I, Page 104.

1
2
3
4
5

type
R =



invisible
D

in
es

 B
jo

rn
er

: 9
th

 D
R

A
FT

: O
ct

ob
er

 3
1,

 2
00

8
534 T Solutions

Solution to Exercise 12. Route Generation: The below forms an answer
to Exercise # 12 Vol. I, Page 104.

Solution to Exercise 13. Route Lengths: The below forms an answer to
Exercise # 13 Vol. I, Page 105.

Solution to Exercise 14. DE4: The below forms an answer to Exercise # 14
Vol. I, Page 105.

Solution to Exercise 15. DE4: The below forms an answer to Exercise # 15
Vol. I, Page 105.

Solution to Exercise 16. DE4: The below forms an answer to Exercise # 16
Vol. I, Page 105.

Solution to Exercise 17. DE4: The below forms an answer to Exercise # 17
Vol. I, Page 105.

Solution to Exercise 18. DE4: The below forms an answer to Exercise # 18
Vol. I, Page 105.

T.3 Chapter 3: Requirements Engineering

Solution to Exercise 19. kap3.xs.1: The below forms an answer to Exer-
cise # 19 Vol. I, Page 166.

Solution to Exercise 20. kap3.xs.2: The below forms an answer to Exer-
cise # 20 Vol. I, Page 166.

Solution to Exercise 21. kap3.xs.3: The below forms an answer to Exer-
cise # 21 Vol. I, Page 166.

Solution to Exercise 22. kap3.xs.4: The below forms an answer to Exer-
cise # 22 Vol. I, Page 166.
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Solution to Exercise 23. kap3.xs.5: The below forms an answer to Exer-
cise # 23 Vol. I, Page 166.

Solution to Exercise 24. kap3.xs.6: The below forms an answer to Exer-
cise # 24 Vol. I, Page 166.

Solution to Exercise 25. kap3.xs.7: The below forms an answer to Exer-
cise # 25 Vol. I, Page 166.

Solution to Exercise 26. kap3.xs.8: The below forms an answer to Exer-
cise # 26 Vol. I, Page 166.

T.4 Chapter 4: Software Design

Solution to Exercise 27. kap4.xs.1: The below forms an answer to Exer-
cise # 27 Vol. I, Page 221.

Solution to Exercise 28. kap4.xs.2: The below forms an answer to Exer-
cise # 28 Vol. I, Page 221.

Solution to Exercise 29. kap4.xs.3: The below forms an answer to Exer-
cise # 29 Vol. I, Page 221.

Solution to Exercise 30. kap4.xs.4: The below forms an answer to Exer-
cise # 30 Vol. I, Page 221.

Solution to Exercise 31. kap4.xs.5: The below forms an answer to Exer-
cise # 31 Vol. I, Page 222.

Solution to Exercise 32. kap4.xs.6: The below forms an answer to Exer-
cise # 32 Vol. I, Page 222.

Solution to Exercise 33. kap4.xs.7: The below forms an answer to Exer-
cise # 33 Vol. I, Page 222.

Solution to Exercise 34. kap4.xs.8: The below forms an answer to Exer-
cise # 34 Vol. I, Page 222.
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T.5 Appendix D: Prelude Domain Actions

Solution to Exercise 35. Domain Prelude 1: The below formalisation
forms an answer to Exercise # 35 Vol. II, Page 339.

Solution to Exercise 36. Domain Prelude 2: The below formalisation
forms an answer to Exercise # 36 Vol. II, Page 340.

T.6 Appendix E: Intrinsics

Solution to Exercise 37. Link and Hub Attributes: The below formal-
isation forms an answer to Exercise # 37 Vol. II, Page 364.

type
37.1
37.2
37.3
37.4
37.5
37.6

Solution to Exercise 38. Link Units: The below formalisation forms an
answer to Exercise # 38 Vol. II, Page 364.

type
38.1 U, UI, Len, Loc
value
38.1 obs UI: U → UI, obs Len: U → Len, obs Loc: U → Loc
38.2 obs Us: L → U-set
axiom
38.1 ∀ l:L • ∀ u,u′:U • {u,u′}⊆obs Us(l) ∧ u6=u′ ⇒ obs UI(u)6=obs UI(u′)
38.3 ∀ (hs,ls):N • ∀ l,l′:L • {l,l′}⊆ls ∧ l6=l′ ⇒ obs Us(l) ∩ obs Us(l′) = {}
value
38.4 obs LI: U → LI
axiom
38.4 ∀ l:L • ∀ u,u′:U • {u,u′}⊆obs Us(l) ⇒ obs LI(u)=obs LI(u′)
value

38.5 obs UQ: L × HI
∼
→ U∗

38.5 pre obs UQ(l,hi) ≡ hi ∈ obs HIs(l)
axiom
38.5 ∀ l:L • let {hi′,hi′′}=obs HIs(l) in
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elems obs UQ(l,hi′)=obs UQ(l,hi′′)=obs Us(l) ∧
obs UQ(l,hi′)=reverse(obs UQ(l,hi′)) end

value
38.6 reverse: U∗ → U∗

38.6 reverse(ul) ≡ if ul=〈〉 then 〈〉 else tl ul ̂ 〈hd ul〉 end

T.7 Appendix F: Support Technologies

Solution to Exercise 39. Semaphore Technology: The below formalisa-
tion forms an answer to Exercise # 39 Vol. II, Page 384.

Solution to Exercise 40. Optical Gate Technology: The below formal-
isation forms an answer to Exercise # 40 Vol. II, Page 384.

Solution to Exercise 41. : The below formalisation forms an answer to
Exercise # 41 Vol. II, Page 384.

T.8 Appendix G: Management and Organisation

Solution to Exercise 42. 41: The below formalisation forms an answer to
Exercise # 42 Vol. II, Page 405.

Solution to Exercise 43. 42: The below formalisation forms an answer to
Exercise # 43 Vol. II, Page 405.

Solution to Exercise 44. 43: The below formalisation forms an answer to
Exercise # 44 Vol. II, Page 405.

T.9 Appendix H: Rules and Regulations

Solution to Exercise 45. 51: The below formalisation forms an answer to
Exercise # 45 Vol. II, Page 411.

Solution to Exercise 46. 52: The below formalisation forms an answer to
Exercise # 46 Vol. II, Page 412.
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T.10 Appendix I: Scripts

Solution to Exercise 47. 61: The below formalisation forms an answer to
Exercise # 47 Vol. II, Page 450.

Solution to Exercise 48. 62: The below formalisation forms an answer to
Exercise # 48 Vol. II, Page 450.

T.11 Appendix J: Human Behaviour

Solution to Exercise 49. 71: The below formalisation forms an answer to
Exercise # 49 Vol. II, Page 454.

Solution to Exercise 50. 72: The below formalisation forms an answer to
Exercise # 50 Vol. II, Page 454.

T.12 Appendix K: Postlude Domain Actions

Solution to Exercise 51. 001: The below formalisation forms an answer to
Exercise # 51 Vol. II, Page 457.

Solution to Exercise 52. 002: The below formalisation forms an answer to
Exercise # 52 Vol. II, Page 457.

T.13 Appendix L: Prelude Requirements Actions

Solution to Exercise 53. Reqs. Prelude 1: The below formalisation forms
an answer to Exercise # 53 Vol. II, Page 469.

Solution to Exercise 54. Reqs. Prelude 2: The below formalisation forms
an answer to Exercise # 54 Vol. II, Page 469.
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T.14 Appendix M: Domain Requirements

Solution to Exercise 55. 81: The below formalisation forms an answer to
Exercise # 55 Vol. II, Page 481.

Solution to Exercise 56. 82: The below formalisation forms an answer to
Exercise # 56 Vol. II, Page 481.

T.15 Appendix N: Interface Requirements

Solution to Exercise 57. 91: The below formalisation forms an answer to
Exercise # 57 Vol. II, Page 485.

Solution to Exercise 58. 92: The below formalisation forms an answer to
Exercise # 58 Vol. II, Page 485.

T.16 Appendix O: Machine Requirements

Solution to Exercise 59. 101: The below formalisation forms an answer to
Exercise # 59 Vol. II, Page 491.

Solution to Exercise 60. 102: The below formalisation forms an answer to
Exercise # 60 Vol. II, Page 491.

T.17 Appendix P: Postlude Requirements Actions

Solution to Exercise 61. Reqs. Postludium 1: The below formalisation
forms an answer to Exercise # 61 Vol. II, Page 494.

Solution to Exercise 62. Reqs. Postludium 2: The below formalisation
forms an answer to Exercise # 62 Vol. II, Page 494.
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T.18 Appendix Q: Software Design

Solution to Exercise 63. 111: The below formalisation forms an answer to
Exercise # 63 Vol. II, Page 499.

Solution to Exercise 64. 112: The below formalisation forms an answer to
Exercise # 64 Vol. II, Page 499.


