Editors: Dines Bjgrner and Martin Pé&nicka

Towards a TRain Book

— for The RAilway DomalN

August 5, 2004

Springer

Berlin Heidelberg New York
Hong Kong London
Milan Paris Tokyo

II

©: All authors & editors, 2004

0

Editorial Remarks

Dines Bjgrner

Contents
0.1 State of Documentiiiiiititinnttneeenereneeeneeanennn 111
0.2 Editor & Author Affiliations ittt iinennnannn II1
0.3 Chapter Acknowledgementsoiiiiiiiiiinnerreennnnnns 111

0.1 State of Document

This document contains an assortment of draft chapters around the abstract modelling of
various aspects of the railway domain.

The chapters all have different groupings of authors.

Authorships are noted on the first page of each chapter.

The document is issued, for the first time, on the occasion of the Topic Session: TRain: The
Railway Domain held as part of the IFIP World Computer Congress in Toulouse, France, 23-27
August 2004, http://wuw.wcc2004.org/congress/topical_days/topll.htm.

It is expected that subsequent editions of this document will be distributed at the FORMS/-
FORMAT’2004 event, Braunschweig, Dec. 2-3, 2004, http://www.forms-2004.de/.

0.2 Editor & Author Affiliations

Dines Bjgrner: School of Computing, Department of Computer Science, National University
of Singapore, 3 Science Drive 2, Singapore 117543, bjorner@comp.nus.edu.sg

Chris George: UNU-IIST (UN University’s Intl. Inst. f. Software Technology), P.O.Box 3058,
Macau SAR, China, cwg@iist.unu.edu

Li Yang Fang: School of Computing, Department of Computer Science, National University
of Singapore, 3 Science Drive 2, Singapore 117543, liyf@comp.nus.edu.sg

Martin Pénicka: Faculty of Transportation Sciences, Czech Technical University, Na Florenci
25, CZ-11000 Prague 1, The Czech Republic, penicka@fd.cvut.cz

Sgren Prehn: Terma Inc., Vasekeer 12, DK-2730 Herlev, Denmark, spn@terma.com
Albena Strupchanska: Linguistic Modelling Department, Central Laboratory for Parallel
Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 25A, 1113 Sofia, Bul-
garia, albena@lml.bas.bg

0.3 Chapter Acknowledgements

2. Railway Net: This chapter has evolved over the last 10 years. This is reflected, not only in the

co—authorships, but also in the cryptic “&c.”: Reflecting that many students, too numerous,
and otherwise, to list by names. The chapter is believed to form a viable basis for a proper
domain model of railway nets.

I\Y

0 Editorial Remarks

Modelling Rail Nets and Time Tables using OWL: This chapter is a draft. As its
contents reveal, there is much work needed to be done. We include it so that no—one can come
and say: “Aha ! All very good and well, but you really are building an ontology, and ought do
so (also) in the proper tradition of knowledge representation, cum ontology languages.” We
are doing so.

Rolling Stock Maintenance: This chapter represents work partially sponsored by the EU
IST Research Training Network AMORE: Algorithmic Models for Optimising Railways in Eu-
rope: http://www.inf.uni-konstanz.de/algo/amore/. Contract no. HPRN-CT-1999-00104, Pro-
posal no. RTN1-1999-00446. It was done during several stays, by the first two authors, at the
Institute for Informatics and Mathematical Modelling at the Technical University of Denmark
during 2002 and 2003.

The chapter is a slightly revised version of the published conference paper [43] for FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. Published by
L’Harmattan Hongrie. Conf. held at Techn.Univ. of Budapest, Hungary, May 2003.
Rostering: This chapter represents work partially sponsored by the EU IST Research Training
Network AMORE: Algorithmic Models for Optimising Railways in Europe: http://www.inf.uni-
-konstanz.de/algo/amore/. Contract no. HPRN-CT-1999-00104, Proposal no. RTN1-1999-
00446. It was done during several stays, by the first two authors, at the Institute for Informatics
and Mathematical Modelling at the Technical University of Denmark during 2002 and 2003.
The chapter is a slightly revised version of the published conference paper [49] for FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. Published by
L’Harmattan Hongrie. Conf. held at Techn.Univ. of Budapest, Hungary, May 2003.

Station Interlocking: This chapter represents work partially sponsored by FET, the Fu-
ture and Emerging Technologies arm of the IST Programme, FET-Open scheme, as part of
CoLogNET, the Computational Logic Network.

This chapter will be part of Martin Pénicka’s forthcoming PhD Thesis. A precursor was pub-
lished as part of [9] and presented by Dines Bjgrner at INT 2004: Third International Work-
shop on Integration of Specification Techniques for Applications in Engineering at ETAPS,
Barcelona, Spain, March 2004.

Signalling on Lines: This chapter represents work partially sponsored by FET, the Fu-
ture and Emerging Technologies arm of the IST Programme, FET-Open scheme, as part of
CoLogNET, the Computational Logic Network.

This chapter will be part of Martin Pénicka’s forthcoming PhD Thesis. A precursor was pub-
lished as part of [9] and presented by Dines Bjgrner at INT 2004: Third International Work-
shop on Integration of Specification Techniques for Applications in Engineering at ETAPS,
Barcelona, Spain, March 2004.

Line Direction Agreement: This chapter represents work partially sponsored by FET, the
Future and Emerging Technologies arm of the IST Programme, FET-Open scheme, as part of
CoLogNET, the Computational Logic Network.

This chapter will be part of Martin Pénicka’s forthcoming PhD Thesis. A precursor was pub-
lished as part of [9] and presented by Dines Bjgrner at INT 2004: Third International Work-
shop on Integration of Specification Techniques for Applications in Engineering at ETAPS,
Barcelona, Spain, March 2004.

Towards a Formal Model of CyberRail: The work reported here was in response to
Takahiro Ogino’s extensive and exciting work on a concept of ubiquitous computing & com-
munication in the context of passenger railway service. Our presentation here marks the first

semi—public appearance of our model.
| — B\@@a _—
6]

National University of Singapore, August 5, 2004

Contents

Editorial Remarks 111
0.1 State of Document 111
0.2 Editor & Author AflIations 111
0.3 Chapter Acknowledgementsttt e 111

Part I Opening

1 Introduction 3

Part II Basic Railway Domain Model

2 Railway Neto 7
2.1 Basic Static Attributes 7
2.2 Further Static Attributes 10
2.3 Basic Dynamic Attributesst 18
2.4 Further Dynamic Attributes 20
2.5 Dynamical Units: Continuity e 26
2.6 Discussion of the Continuous Model 31
3 Modelling Rail Nets and Time Tables using OWL 33
3.1 Some Introductory Remarks 33
3.2 On Notation . ..ottt 34
3.3 Nt .ot 34
3.4 Time Table 36
3.5 Some Remarkso 37

Part IIT Allocation & Scheduling

4 Rolling Stock Maintenance it 41
4.1 INTRODUCGCTION ..o e e e e e e e e e e e e e 41
4.2 FORMAL MODEL . ..o e e e e e e 43
4.3 PLANNING .o e 48
4.4 SUMM A R Y .t 52
5 ROStering 53
5.1 INTRODUCTION . .o e e e e e e e e e 53
5.2 NETS, STATIONS AND DEPOTS e e e e 54
5.3 STAFF MEMBERS ... e e e e e 55
5.4 SCHEDULE, JOURNEYS AND TRIPSo 56

5.5 ACTIONS AND DUTIES ..ottt e e e e e 59

VI Contents

5.6 ROSTERS AND STAFF MEMBERS e 63

Part IV Train Monitor & Control

6 Station Interlocking 71
6.1 Route Descriptions e 71
6.2 Petri Net for a Unit. 71
6.3 Petri Net for a Switch 72
6.4 Petri Net for a Signal 72
6.5 Constructing the Petri Net for a Route 73
6.6 DISCUSSION . . ot 73
7 Signalling on Lines 75
7.1 NaAITative . . oo e 75
7.2 State Charts 7
7.3 DISCUSSION . . ot 78
8 Line Direction Agreement i 79
8.1 NaITative . . oo 79
8.2 State Charto e 80
8.3 Live Sequence Charts 80
8.4 DISCUSSION . . ot 81

Part V The CyberRail Concept

9 Towards a Formal Model of CyberRail 85
9.1 Background 85
9.2 A Rough Sketch Formal Modelo e 85
9.3 CONCIUSION . .ottt e e e e e e e e e e 90
9.4 A CyberRail Bibliography 90

Part VI Closing

10 Conclusion 95

Part VII Appendices

An RSL Primero 99
AL D DS ettt 100
A.2 The RSL Predicate Calculust e 101
A3 Concrete RSL TyPes. . oottt et 102
A.4 Lambda-Calculus + Functions i i 107
A.5 Other Applicative EXPressionsiuoniininn i 109
A6 Imperative Constructsttt e 110
AT Process COnStIUCES . ..o vttt ettt e e e e e e 111
A.8 Simple RSL Specifications oottt 112

References 113

Part I

Opening

1

Introduction

Dines Bjgrner

The aim of collecting the documents, that appear in this “compendium”, is to demonstrate the
conjecture: “It appears highly plausible that one can develop major parts of a set of formal
descriptions of a domain — such as, for example, the railway domain.”

We have elsewhere, www.RailwayDomain.org, outlined a Grand Challenge for computing sci-
ence, namely that of developing, over the next N years, where N may be 20 or so, a comprehensive
and reasonably complete set of commensurate, ie., integrated formal models of “All things Rail-
ways !”

The present document shall serve to make this claim plausible, shall serve to indicate what
might me meant by such a set of comprehensive and reasonably complete set of commensurate,
ie., integrated formal models.

It is hope that the mere, somewhat inofficial appearance of this compendium — and its limited
physical distribution together with its Internet posting, search under www.RailwayDomain.org’s
Repository entry — will help us all better find out what it really is we want !

Most of the chapters of this compendium make use of

e the RAISE Specification Language, RSL, well documented in several books: [10, 16, 17].

A brief primer on RSL is given in Appendix A.
References to other formalisms are given in [6].
Some of these, as directly built upon in some chapters of the present compendium are:

Petri Nets [44, 31, 45, 46, 48],
Statecharts [18, 19, 22, 21, 24, 26], and
Live Sequence Charts [11].

Part 11

Basic Railway Domain Model

2

Railway Net
Dines Bjgrner, Chris George, Sgren Prehn, et al.

Contents
2.1 Basic Static Attributes i i i e 7
2.2 Further Static Attributes i i i il 10
2.2.1 Networks . ..o 10
2.2.2 Lines and Stations i 11
2.2.3 Unit Attributes 13
2.2.4 Path .. 14
2.2.5 Routes 16
2.3 Basic Dynamic Attributess...........ciiiii i it 18
2.4 Further Dynamic Attributes i, 20
2.4.1 Path: Open and Closed i 20
2.4.2 Routes: Openand Closed i, 20
2.4.3 Train Routes. 21
244 Managed Rail Nets 22
2.4.5 Stable, Transition and Re—organisation States 23
2.4.6 Time and State Durationso, 23
2.4.7 Stable States. 24
2.4.8 Transition States i 25
2.4.9 Reconfiguration States i 25
2.5 Dynamical Units: Continuityttt 26
2.5.1 Timed Units 27
2.5.2 Operations on Timed Units 27
2.5.3 State SeqUenCesv i 28
2.5.4 Dynamical Nets i 29
2.5.5 Timed Netso 29
2.5.6 Relations between Timed Nets and Timed Units................. 29
2.5.7 Selecting Timed Units. 30
2.5.8 Operations on Timed Nets i ... 30
2.6 Discussion of the Continuous Modelo, 31
2.6.1 Why no Unique Unit Identification 7 31
2.6.2 Is it the Right Model of Timing ?7......... 31
2.6.3 Possible Relations to Control Theory.............. 32

2.1 Basic Static Attributes

We introduce the phenomena of railway nets, lines, stations, tracks, (rail) units, and connectors. We
designate such components of the rail net which can be physically demonstrated, but we abstract
from number of physical attributes at the moment — they can be always be simply “added” later

on.

This description is “top-down”: most composite notions are mentioned first, and defined in
terms of successively less composite quantities.
Our natural, professional railway language description proceeds as follows:

8 2 Railway Net
1. A railway net consists of one or more lines and two or more stations.
2. A railway net consists of rail units.
3. A line is a linear sequence of one or more linear rail units.
4. The rail units of a line must be rail units of the railway net of the line.
5. A station is a set of one or more rail units.
6. The rail units of a station must be rail units of the railway net of the station.
7. No two distinct lines and/or stations of a railway net share rail units.
8. A station consists of one or more tracks.
9. A track is a linear sequence of one or more linear rail units.
10. No two distinct tracks share rail units.
11. The rail units of a track must be rail units of the station (of that track).
12. A rail unit is either a linear, or is a switch, or a is simple crossover, or is a switchable crossover.
13. A rail unit has two or more connectors.
14. A linear rail unit has two distinct connectors, a switch rail unit has three distinct connectors,
crossover rail units have four distinct connectors (whether simple or switchable), etc.
15. For every connector there are at most distinct two rail units which have that connector in
common.
16. Every line of a railway net is connected to exactly two, distinct stations of that railway net.
17. A linear sequence of (linear) rail units is a non-cyclic sequence of linear units such that neigh-
bouring units share connectors.
18. A path, p : P, is a pair of connectors, (¢, ¢’),
19. which are distinct,
20. and of some unit.
21. A state, o : X, of a unit is the set of all possible paths of that unit (at the time observed).
22. A route is a sequence of pairs of units and paths —
23. such that the path of a unit/path pair is a possible path of some state of the unit, and such
that “neighbouring” connectors are identical.
type
N, L, S, Tr, U, C
18. PP=CxC
19. P ={| (¢,c'):P" » c£’ |}
21. Y = P-set
22. R'=(U x P)*
23. R ={|:R" « wf_R(1) |}
value
1. obs_Ls: N — L-set,
1. obs_Ss: N — S-set,
2. obs_Us: N — U-set,
3. obs_Us: L — U-set,
5. obs_Us: S — U-set,
8. obs_Trs: S — Tr-set,
9. obs_Us: Tr — U-set,
12. is_Linear: U — Bool,
12. is_Switch: U — Bool,
12. is_Simple_Crossover: U — Bool,
12. is_Switchable_Crossover: U — Bool,
13. obs_Cs: U — C-set,
17. lin_seq: U-set — Bool

lin_seq(us) =
V wU « u € us = is_Linear(u) A
3 q:U* e len q = card us A elems q = us A

2.1 Basic Static Attributes
V i:Nat « {i,i+1} C inds q = 3 c:C »
obs_Cs(q(i)) N obs_Cs(q(i+1)) = {c} A

leng>1=
obs_Cs(q(i)) N obs_Cs(q(len q)) = {}

21. obs_ X: U — X

Some formal axioms are now given:

axiom
1.V w:N « card obs_Ls(n) > 1,

1.V n:N « card obs_Ss(n) > 2,
3.V N, LL « 1 € obs_Ls(n) = lin_seq(obs_Us(1))
4.V n:N, I.L 1 € obs_Ls(n) = obs_Us(l) C obs_Us(n)
5.V N, s:S ¢ s € obs_Ss(n) = card obs_Us(s) > 1
6.V :N, s:S « s € obs_Ls(n) = obs_Us(s) C obs_Us(n)
7.V n:N, LI"L »
{LI'} C obs_Ls(n) A1#1
= obs_Us(1) N obs_Us(l') = {}
7.V N, LL, s:S »
1 € obs_Ls(n) A s € obs_Ss(n)
= obs_Us(1) N obs_Us(s) = {}
7.V :N, s,58":S o
{s,8'} C obs_Ss(n) A s#s’
= obs_Us(s) N obs_Us(s') = {}
8.V s:S « card obs_Trs(s) > 1

9.V N, s:S, t:Tr
s € obs_Ss(n) A t € obs_Trs(s) = lin_seq(obs_Us(t))

10. V m:N; s:S, t,t":Tr o
s € obs_Ss(n) A {t,t'} C obs_Trs(s) At #t
= obs_Us(t) N obs_Us(t') = {}

11. ¥V s:S, t:Tr, w:U » u € obs_Us(t) A t € obs_Trs(s) = u € obs_Us(s)
13. ¥V uw:U « card obs_Ls(n) > 2
14. V u:U «

is_Linear(u) = card obs_Cs(u) = 2,

is_Switch(u) = card obs_Cs(u) = 3,

is_Simple_Crossover(u) = card obs_Cs(u) = 4,

is_Switchable_Crossover(u) = card obs_Cs(u) = 4

15. VN eV c:C »

10 2 Railway Net

c €J{obs_Cs(u) | w:U «u € obs_Us(n) }
= card{ u | wU « u € obs_Us(n) A ¢ € obs_Cs(u) } <2
16. ¥V n:N, I.L « | € obs_Ls(n) =
J5,8":S « {s,8'} C obs_Ss(n) A s#s’ =
let sus = obs_Us(s), sus’ = obs_Us(s'), lus = obs_Us(1) in
JwU «u € sus, u:U « v € sus’, u”/ ;0”0 « {u" 0"} Clus »
let scs = obs_Cs(u), scs’ = obs_Cs(u’), les = obs_Cs(u”), les’ = obs_Cs(u””’) in
Jle,d:Cec#c AsesNles = {c} Asces’ Nles’ = {¢'} end end

20. V wU » let w = obs_f2(u), 0 = obs_X(u) in
o €wAV (c,d):P e (c,d) € Jw = {c,c} C obs_Cs(u) end

23. wf_R: R" — Bool
wiR(r) =
lenr >0 A
V i:Nat + i € inds r let (u,(c,c’)) = r(i) in
(c,c') € J obs_2(u) A i+l € inds 1t = let (_,(c”,_)) = r(i+1) in ¢’ = ¢” end end

2.2 Further Static Attributes

2.2.1 Networks

A network is build from units. Not any composition of units is allowed though. A connector can
never connect more than two units. Also, two units of a network share no paths. These rules
express how one may compose units into networks. For example the unit compositions of figure
2.1 will not be legal in any network.

cA c6
.
e
@ @
cl c2 c3 c5
Fig. 2.1. Illegal compositions of units
type
N
value
obs_Us: N — U-set
axiom

/* In a network, a connector connects no more than two units */
VuNeVe:CecelJ{obs—Cs(u) | w:U «u € obs_Us(n) }
= card{u | wU « u € obs_Us(n) A ¢ € obs_Cs(u)} < 2

/* In a network, two units do not contain the same path =/
/* Needs to bee fixed */
V N, u,u’:U «

{u,u’} C obs_Us(n) A u#u’ = obs_X(u) N obs_X(v') = {}

2.2 Further Static Attributes 11
2.2.2 Lines and Stations

A network consists of lines and stations. That is, the units of a network can be decomposed into
those belonging to stations and those belonging to lines. A line is a linear sequence of linear units.
A station is any set of units, including linear, junctions (switches), crossovers and switchable cross-
overs. Two lines meeting in a junction thus gives rise to a station. This station may just consist of
that one junction though. The sets of units of a station can be decomposed into those belonging
to tracks, that is routable sequences of linear units, and the rest. Part of tracks form platforms,
sidings, etc. A line always connects exactly two distinct stations.

Line

Station B . StationC

Fig. 2.2. A network of lines and stations

If it is possible to find a route from a unit « to another unit u’, possibly via other units, then
u can reach u’. Reachability extends, mutually, to lines, tracks and stations. Given a line and a
station (to a unit of which some [end] line [unit] is connectable) it is possible to identify exactly
which tracks of the station can be reached from the line; and given a track of a station it is likewise
possible to identify the lines that can be reached from the track.

type
N, L, S, Tr

value
obs_Ls: N — L-set,
obs_Ss: N — S-set,
obs_Us: L — U-set,
obs_Us: S — U-set,
obs_Us: Tr — U-set,
obs_Trs: S — Tr-set,

/* Examine if a line connects to a station */
LS_Connection: N x L x S — Bool
LS_Connection(n,l,s) =
Ju,u:U « u € obs_Us(l) A u’ € obs_Us(s) A
3 ¢:C « obs_Cs(u) N obs_Cs(u') = {c}
prel € obs_Ls(n) A s € obs_Ss(n)

/* Examine if two stations are connected via a line x/

12 2 Railway Net

SLS_Connection: N x S x L x S — Bool
SLS_Connection(n,s,l,s") =
LS_Connection(n,l,s) A LS_Connection(n,l,s’),

/* Examine if a line connects to a track in a station x*/
LTr_Connection: N x L x S x Tr — Bool
LTr_Connection(n,l,s,t) =
3 q:U* « Vi:Nat « {i,i+1} C inds q =
3 ¢:C « obs_Cs(q(i)) N obs_Cs(q(i+1)) = {c} A
q(1) € obs_Us(l) A g(len(q)) € obs_Us(t) A
V w:U « u elems tl g = u € obs_Us(s)
prel € obs_Ls(n) A s € obs_Ss(n) A t € obs_Trs(s),

/* All lines that can be reached directly from
a given track in a given station x/

TrLs: N x S x Tr = L-set

TrLs(n,s,t) =
{1] L «1 € obs_Ls(n) A LTr_Connection(n,l,s,t)}
pre t € obs_Trks(s) A s € obs_Ss(n),

/* All tracks in a given station that can be reached
directly from a given line */

LTrs: N x L x S = Trk-set

LTrs(n,l,s) =
{t | t:Tr « t € obs_Trs(s) A LTr_Connection(n,l,s,t)}
pre 1l € obs_Ls(n) A s € obs_Ss(n),

/+ Examine if a set of units is part of some network */
IsInNet: U-set — Bool
IsInNet(us) = 3 n:N « us C obs_Us(n),

axiom
vV N, L1:L, s,8":S, t,t":Tr, c:C, w:U «

/* Lines are part of some network */
IsInNet(obs_Us(1)),

/x Lines consist only of linear units */
u € obs_Us(l) = is_Linear(u),

/* Tracks are part of some station */
3 s:S « obs_Us(t) C obs_Us(s),

/* Tracks consist of linear units */
u € obs_Us(t) = is_Linear(u),

/x Tracks of a station do not intersect */
{t,t'} C obs_Trs(s) A
t#t" = obs_Us(t) N obs_Us(t') = {},

/* Lines in a network do not intersect x/
{1I'} C obs_Ls(n) A I#l' =
obs_Us(1) N obs_Us(l") = {},

/* Stations are part of some network =/
IsInNet(obs_Us(s)),

/* Stations in a network do not intersect */
{s,8'} C obs_Ss(n) A s#s’ =
obs_Us(s) N obs_Us(s") = {},

/* Lines and stations do not intersect */
1 € obs_Ls(n) A s € obs_Ss(n) =
obs_L_Us(l) N obs_S_Us(s) = {},

/* Lines connect exactly two stations */
1 € obs_Ls(n) =
Is,8:S
s#s’ A {s,s'} C obs_Ss(n) A
SLS_Connection(n,s,1,s"),

/* Stations do not have common connectors */
{s,8'} C obs_Ss(n) A s#s’ =
Us_Cs(obs_Us(s)) N Us_Cs(obs_Us(s)) = {}

2.2 Further Static Attributes

13

Stations have names (or identifiers). No two stations share the same name, though, and no
station has two names. From a network, a map from station names to stations can be extracted.

type

Sn

value

obs_SnSm: N — (Sn - S),

Sns: N — Sn-set
Sns(n) = dom obs_SnSm(n)

axiom

2.2.3 Unit Attributes

¥V n:N « obs_Ss(n) = rng obs_SnSm(n) A card obs_Ss(n) = card Sns(n)

With units we can associate a large variety of attributes (types), and for each attribute a range
of values. Examples are:

1.
2.

Lengths: The lengths, say in meters, of a unit, may be given as a map from paths to lengths.
Topology: The topology, from which we could derive the lengths, of a unit, describes — for
example as a sequence of Bezier curve triples — the three dimensional layout of the unit:
its co-ordinates so-to-speak. Included would also be additional information on the relative

“tilting” of rails in curves, etc.

Context: The context of a unit tells us whether it is positioned on a bridge, in a tunnel, along
a platform, along a quay, etc. Context information may determine maximum and minimum

train speeds.
Ee.

14 2 Railway Net
2.2.4 Path

A path (through a unit) is a pair of connectors. A path designates a possible direction of train
traffic through a unit.

The physical state of a unit is a set of paths. The state contains all the paths, that are possible
directions of travel through the unit.

Every unit has a set of possible (physical) states, the state space. These possible states are
determined by for instance the shape and physical layout of the unit. The set of possible states
may also contain states that are not intended and should never appear on the rail net. These may
include situations of broken switchpoints etc. Never the less, these states may occur and should
therefore be included in the intrinsic model.

type

P=CxC,

) = P-set,
value

obs_Y: U — X

/* All physically possible paths through a unit */
U_Ps: U — P-set
U_Ps(u) =
{p|lpPeTo:X-
o € obs_U_2(u) Ap €Eo

2

/* All connectors of a set of units */
Us_Cs: U-set — C-set
Us_Cs(us) =
{c]cC-
JuwUeue€usAc € obs_U_Cs(u)
}

axiom
/* The physical state is in the set of all states x/
¥V w:U « obs_U_Physical_X(u) € obs_U_£2(u),

/* All connectors of paths in states are connectors of the unit */
VuU, o:%, (c,c):P e

o € obs_U_Q(u) A (c,c') € 0 =

{c,c'} C obs_U_Cs(u),

A linear unit, with connectors ¢, ¢’ will usually only have one possible physical state:

{(e,), (¢ o)}

The unit gives rise to potentially four different managed states:

{}7 {(07 cl)}7 {(0/7 c)}7 {(07 cl)7 (clv C)}

' cE c ¢ Ec’ cE Ec’

c c

Fig. 2.3. States of a linear unit

2.2 Further Static Attributes

15

In the last state the unit is open for traffic in both directions!
There are several kinds of junction units. A certain junction unit, u, with connectors ¢/, ¢’ at
one end and connector ¢ at the other end may for instance have three possible physical states:

{(c';), (

s o)} {(e,), (¢ e)fand{(c, ¢”), (",)}

The unit potentially has eight possible managed states:

right fork)
8. a7 :{(c, "), (", c)} (open in two directions, from left fork to “tongue” and from “tongue” to
left fork)

1. 09 : {} (closed),

2. o1:{(c,c)} (open in one direction, from “tongue” to left fork),

3. g2 : {(c, ")} (open in one direction, from “tongue” to right fork),

4. o3 : {(c, c)} (open in one direction, from left fork to “tongue”),

5. 04 :{(",¢)} (open in one direction, from right fork to “tongue”),

6. 05 :{(c,¢),(c",¢c)} (open in two directions, from either fork to “tongue”)
7. J¢6 -

{(e,), (c, c)} (open in two directions, from right fork to “tongue” and from “tongue” to

There are also several kinds of crossover units. A crossover unit with connectors ¢, ¢’ and ¢”,
""" at respective ends may for instance have only one possible physical state:

{(c,), (", ¢), (¢, ¢"), (", ¢)}

The unit will have 16 possible managed states.

closed: {}

four open in one direction:

{(e, 1AL,

)b {(c',)} A",)}

six open in two directions:

{(C7 C/N) (/N

)b (e, "), (",)} {le,), (¢

four open in three directions:

{(C7 C/N)7 (C/N7 C)7 (C/7 CN)}7 {(C7 C/N)7 (C/N7

c), (¢,

and one open in four directions:

{(C7 C/N)7 (C/N7 C), (C/7 CN)7 (CN7 C/)}
Etcetera for other forms of units.

Using the possible states of units, one can put further constraints on different kinds of units.
For instance, there should be a physical state of any linear unit, such that it is open from one end
to the other. For a junction, travel should be possible from or to both forks and travel should not
be possible between forks.

axiom

VuU e
is_Linear_U(u) = U_Ps(u

)74}

is_Junction_U(u) =
3 ¢1,¢2,e3:C » card {cl,c2,c3} =3 A

{(c1,c2),(c2,c1)} N U_Ps(u) # {} A
{(c1,e3),(c3,c1)} N U_Ps(u) # {} A
{(c2,¢3),(c3,c2)} N U_Ps(u) = {},

is_Crossover_U(u) =
3 cl,¢2,e3,c4:C » card {cl,c2,c3,c4} =4 A

{(cl,c4),(c4,c1)} N U_Ps(u) # {} A
{(c2,¢3),(c3,c2)} N U_Ps(u) # {} A
{(c1,3),(c3,c1)} N U_Ps(u) = {} A
{(c2,c4),(c4,c2)} N U_Ps(u) = {}

A,

E A) (

)(II

A,), (e,)AL), (¢ 0)}

C//7 C/)7 (C7 CIII)}7 {(C’, CN)7 (CN7 C/)7 (C/N7 C/)}

16 2 Railway Net
2.2.5 Routes

The concept of routes play an important role in speaking about train journies. A route is a sequence
of connectors. The connectors of a route designate paths in some network. That is, directions of
travel.

A route is feasible in a network, if the route describes only possible paths though units of the
network.

The rule that two units of a network share no paths ensures that a feasible route of a network
describes a unique sequence of unit-paths through the network. That is, given a feasible route of
a network, it is possible to find the units of the route in that network.

A routable set of units is a set of units, such that there is a route through the units that
includes all units in the set. That is, it is physically possible to travel along a route through the
units, though it may not be allowed by the current states of the units of the route.

A route is cyclic in a network if it contains two or more paths through the same unit, such
that these paths end in the same connector. That is an acyclic route may very well contain several
paths through the same unit, as long as the exit-connectors of these paths are distinct.

c3 U5
U2 c7 c6
[° °
cl U1l c2 c4 U3 ¢ U4 8
Units without cyclic route Units with cyclic route

Fig. 2.4. Cyclic and acyclic routes

This means that in figure 2.4, the route
(cl,c2,c3,cl)
is an acyclic route, while the route

(¢4,c5,c6,c7,c5,c8)

is cyclic.
type

Rt' = C*,

Rt = {| rt:Rt’ » wf_Rt(rt) |}
value

/* Wellformed routes have lenght at least two and
are feasible in some network */

wf_Rt: Rt — Bool

wi_Rt(rt) = len rt > 2 A 3 :N « feasible_Rt(rt,n),

/* A route is feasible wrt a network if the route designates
possible paths in the network and the route does not
designate two succesive paths through the same unit */

feasible_Rt: Rt’ x N — Bool

feasible_Rt(rt,n) =

Rt_possible_paths(rt,n) A
let ul = Rt_Ul(rt,n) in
~3J i:Nat « {i,i+1} C inds ul A ul(i)=ul(i+1)

2.2 Further Static Attributes

end
pre len rt > 2

/* Route describes possible paths of units in a network =/
Rt_possible_paths: Rt’ x N — Bool
Rt_possible_paths(rt,n) =
V i:Nat « {i,i+1} C inds rt =
FwU e« u € obs_N_Us(n) A (rt(i),rt(i+1)) € U_Ps(u),

/* The list of units designated by a route x/
Rt_Ul: Rt x N = U*
Rt_Ul(rt,n) as ul
post
len ul = (len rt)—1 A
elems ul C obs_N_Us(n) A
V i:Nat « {i,i+1} C inds rt = (rt(i),rt(i+1)) € U_Ps(ul(i))
pre Rt_possible_paths(rt,n) A len rt > 2,

/* The list of paths designated by a route */
Rt_Pl: Rt — P*
Rt_Pl(rt) = ((rt(i),rt(i+1)) |iin (1 .. (lenrt)—1)),

/* All units of a route x/

Rt_Us: Rt x N 5 U-set
Rt_Us(rt,n) = elems Rt_Ul(rt,n)
pre feasible_Rt(rt,n),

/* The first connector of a route */
Rt_firstC: Rt — C
Rt_firstC(rt) = hd rt,

/* The last connector of a route */
Rt_lastC: Rt = C
Rt_lastC(rt) = rt(len rt),

/* The first unit of a route */
Rt_firstU: Rt x N 5 U
Rt_firstU(rt,n) = hd Rt_Ul(rt,n)
pre feasible_Rt(rt,n),

/* The last unit of a route */

Rt_lastU: Rt x N 5 U

Rt_lastU(rt,n) = let ul = Rt_Ul(rt,n) in ul(len ul) end
pre feasible_Rt(rt,n),

/* All feasible routes of a network =/
N_Rts: N — Rt-set
N_Rts(n) = { rt | rt:Rt « feasible_Rt(rt,n) },

/* A route does not go through the same unit twice x/
Rt_DisjUs: Rt x N = Bool

Rt_DisjUs(rt,n) = card Rt_Us(rt,n) = len Rt_Ul(rt,n)
pre feasible_Rt(rt,n),

17

18 2 Railway Net

/* Two routes are disjoint */

Rt_Disj: Rt x Rt x N = Bool

Rt_Disj(rt,rt’,n) = Rt_Us(rt,n) N Rt_Us(rt',n) = {}
pre feasible_Rt(rt,n) A feasible_Rt(rt’,n),

/* All possible routes through a set of units */
Us_Rts: U-set = Rt-set
Us_Rts(us) =
{rt|rt:Rt »
In:N
us C obs_N_Us(n) A
feasible_Rt(rt,n) A
Rt_Us(rt,n) C us
}

pre net_Us(us),

/x All possible routes that use all units in a set */
Us_complete_Rts: U-set > Rt-set
Us_complete_Rts(us) =
{rt]|rt:Rt »
In:N e
rt € N_Rts(n) A
feasible_Rt(rt,n) A
Rt_Us(rt,n) = us
}

pre net_Us(us),

/* There is a route through all units in a set */
is_RoutableUs: U-set — Bool
is_RoutableUs(us) = Us_complete_Rts(us) # {}
pre net_Us(us),

/* Route is cyclic */
is_Cyclic_Rt: Rt x N — Bool
is_Cyclic_Rt(rt,n) =
31j:Nat « {i,i+1,j,j+1} C inds rt A ij A
(Rt_Ul(rt,n)(i),rt(i+1)) = (Rt_Ul(rt,n)(§),rt(j+1))
pre feasible_Rt(rt,n)

2.3 Basic Dynamic Attributess

We introduce defined concepts such as paths through rail units, state of rail units, rail unit state
spaces, routes through a railway network, open and closed routes, trains on the railway net, and

train movement on the railway net.
1

1. A unit may, over its operational life, attain any of a (possibly small) number of different states
w, 2.

! A path of a unit designate that a train may move across the unit in the direction from c to ¢’. We say
that the unit is open in the direction of the path.

2.
3.
4.

2.3 Basic Dynamic Attributess 19

An open route is a route such that all its paths are open.

A train is modelled as a route.

Train movement is modelled as a discrete function (ie., a map) from time to routes such that
for any two adjacent times the two corresponding routes differ by at most one of the following;:

a) a unit path pair has been deleted (removed) from one end of the route;

b) a unit path pair has been deleted (removed) from the other end of the route;

¢) a unit path pair has been added (joined) from one end of the route;

d) a unit path pair has been added (joined) from the other end of the route;

e) a unit path pair has been added (joined) from one end of the route, and another unit path
par has been deleted (removed) from the other end of the route;

f) a unit path pair has been added joined) from the other of the route, and another unit path
par has been deleted (removed) from the one end of the route;

g) or there has been no changes with respect to the route (yet the train may have moved);

and such that the new route is a well-formed route.

We shall arbitrarily think of “one end” as the “left end”, and “the other end”, hence, as the “right
end” — where ‘left’, in a model where elements of a list is indexed from 1 to its length, means the
index 1 position, and ‘right” means the last index position of the list.

type

1. 2 = XY-set

3. Trn = R

4. Mov' =T + Tm

4. Mov = {| m:Mov’ « wf_Mov(m) |}
value

1. obs_$2: U — 2

axiom

2. open_R: R — Bool

4.

4a.
4b.
4c.
4d.
4e.

4f.

4g.

open_R(r) =
V (u,p):UxP « (u,p) € elems r A p € obs_X¥(u)

wif_Mov: Mov — Bool
wi_Mov(m) = card dom m > 2 A
Vit Tett' ecdommAt <t
A adjacent(t,t') =
let (r1r') = (m(t),m(t’))
(1,p):UxP « p € U obs_2(u) in
(Ld(rx'(u.p)) v
r_d(r,r’,(u,p)) V
La(r,r’,(u,p)) V
r_a(r,r’,(u,p)) V
Ld_r_a(r,r’,(u,p)) V
r_d_La(r,r’,(u,p)) V
r=r’)
end

The last line’s route well-formedness ensures that the type of Move is maintained.

value

adjacent: T x T — Bool
adjacent(t,t’) = ~F t"' T+ t" € domm At <t <t/

ld,r_d,l_a,r_a,l dr_ar_dla: R xR x P — Bool

20 2 Railway Net

Ld(r,t’,(u,p)) =1’ = tl r pre len r>1
r_d(r,r’,(u,p)) =1’ = fst(r) pre len r>1
La(er (up)) = ' = {(wp)) T

a(er (np)) = 1’ = r{(wp))
ld_r_a(r,r’,(u,p)) =1’ = tl v ((u,p))
r_d_La(r,r,(u,p)) = ' = ((u,p)) fst(r)
fst: R = R’

fst(r) = (r(i) |iin (1..lenr—1))

If r as argument to fst is of length 1 then the result is not a well-formed route, but is in R’.

2.4 Further Dynamic Attributes

2.4.1 Path: Open and Closed

A path through a unit is physically open, if it is in the physical state of the unit. If not in the
state, the path is physically closed.

The managed state of a unit is a subset of the paths in the physical state of the unit. The
managed state contains the paths that are intended directions of travel through the unit. That
is, the rail net management only allow traffic to use paths in the managed states of units. The
managed state will for instance depend on states of light signals, laws of traffic, signs at the rail
ete.

A path through a unit is managed open if it is in the managed state of the unit. If not in the
managed state, the path is managed closed.

An empty managed state designates a closed unit. That is, no traffic is intended through the
unit.

The managed state of a unit depends on management decisions. The position of the unit in
the network will often have effect on the managed state. For instance, units before the hump of a
marshalling yard are typically only open in the direction of the hump, and after the hump away
from the hump. The managed states of units in the network are known to the rail net management.

type
P=CxC,
Y = P-set,
2 = X-set
value

obs_U_: U — (2,
obs_U_Physical_Y: U — X,
obs_U_Managed_3": U — X/,

axiom
/+ Managed states are subsets of Physical states */
¥V w:U « obs_U_Managed_X(u) C obs_U_Physical _X'(u)

2.4.2 Routes: Open and Closed

A route is physically open in a given network, if the connectors of the route designate physically
open paths in units of the network. That is, the units are open in direction of the route.

A route is managed open in a given network, if the connectors of the route designate managed
open paths in units of the network.

2.4 Further Dynamic Attributes 21

type

Rt' = C*,

Rt = {| rt:Rt’ » wf_Rt(rt) |}
value

/* Examine if a route is physically open */
is_Physical_OpenRt: Rt x N = Bool
is_Physical_OpenRt(rt,n) =
V i:Nat « {i,i+1} C inds rt =
(rt(i),rt(i+1)) € obs_U_Physical X (Rt_Ul(rt,n)(i))
pre feasible_Rt(rt,n),

/* Examine if a route is managed open */
is_Managed_OpenRt: Rt x N = Bool
is_Managed_OpenRt(rt,n) =
V i:Nat « {i,i+1} C inds rt =
(rt(i),rt(i+1)) € obs_U_Managed_X'(Rt_Ul(rt,n)(i))
pre feasible_Rt(rt,n),

2.4.3 Train Routes

A train route is a route. The intuition behind a train route is that a train occupies exactly the
units designated by its train route in some network.

A wellformed move of a train route is that of not changing the route, adding a connector to the
end of the route, removing a connector from the beginning of the route or simultaniously adding
a connector to the end and removing a connector from the beginning of the route. Thus, a train
route may only be moved in the “forward” direction.

type
TR = Rt
value
wi_TR_move: TR x TR — Bool
wf_TR_move(tr,tr’) =
tr'=tr v
tr'=tl tr v
3 e:C » tr'=tr"(c) V tr'=(tl tr)"(c)

It is possible to determine, if a train is in a given station or at a given track. This can be done
by inspecting the train route that contains the train.

value
TR_at_S: TR x S — Bool
TR_at_S(tr,s) = tr € S_Rts(s),

TR_at_Trk: TR x Trk — Bool
TR_at_Trk(tr,trk) = tr € Trk_Rts(trk),

TR_at_Stalrk: TR x S — Bool
TR_at_StaTrk(tr,s) =
3 trk:Trk « trk € obs_S_Trks(s) A TR_at_Trk(tr,trk)

22 2 Railway Net
2.4.4 Managed Rail Nets

A managed rail net “snap shot”, i.e. a managed rail net state, is a rail net such that all units are
in each their own state.

We do not, in this description of the ’intrinsics’, define what sets and changes the state. But we
prepare the reader for it: it is, of course, the combined setting of junctions (switches), light signals
(semaphores) and conventions, that determine the state. Take a line, as an example, It may be
subdivided into segments or blocks, each consisting, say, of one unit, and each such segment or
block being delineated by a signal. (That is: the signal is at or about the point where two segments
(units) are connected.) A green signal means that the segment right after that signal is open.
Etcetera!

Since rail nets are regularly being updated: new line and station units are added, old removed
entirely, or put under repair, etc., we have that a managed rail net is a function from time to rail
net states.

Since changes (extensions, reductions) to the rail net are incremental: most of a rail net remains
unchanged while a “small” part undergoes change, we impose some reasonable rule of monotonicity
of managed rail nets. To define the monotonicity concept for managed rail nets we introduce the
concept of a rail net change.

A simple change may remove a proper subset of (closed) units, or may insert, i.e. connect a
new set of (initially closed) units:

e A simple removal involves the proper closing of all affected units: those to be removed and
possibly also all immediately connected (i.e. neighbouring) units, followed by removal.
(After removal previously neighbouring units may be reopened.)

e A simple insertion involves a sequence of up to four rail net actions: closing of some units, their
removal, insertion of a set of new, but closed units, and the possible opening of these (new)
units.

The set of units removed and the set of units inserted usually have no units in common. For a
unit to be inserted it must share a number of connectors with already existing rail net units.

Given two successive managed rail net states, there is a finite, possibly empty set of rail net
removal and insertion changes, each change defined in terms of rail net closing, removal, insertion
and opening actions.

T7

MR =T - N,

MR = {| mr:MR’ « wf_MR(mr) |}
value

wf_MR: MR’ — Bool

wi_MR(mr) =

Vt:T e It"T e« t'>t A
V1" T » t<t”"<t’ = MoN(mr(t),mr(t")),

MoN: N x N — Bool,

/* Removed or inserted stations contain only closed units */
rem_ins_S_closed: N x N — Bool
rem_ins_S_closed(n,n’) =
vV s:S e
s € (obs_N_Ss(n)\obs_N_Ss(n’)) U (obs_N_Ss(n")\obs_N_Ss(n)) =
managed_closed_Us(obs_S_Us(s)),

/* Removed or inserted lines contain only closed units %/
rem_ins_L_closed: N x N — Bool
rem_ins_L_closed(n,n’) =

2.4 Further Dynamic Attributes 23

V LL .
1 € (obs_N_Ls(n)\obs_N_Ls(n)) U (obs_N_Ls(n")\obs_N_Ls(n)) =
managed_closed_Us(obs_L_Us(1)),

managed_closed_Us: U-set — Bool
managed_closed_Us(us) =
V w:U ¢ u € us = obs_U_Managed_X'(u) = {}
axiom
vV n,n:N « MoN(n,n') =
rem_ins_S_closed(n,n’) A
rem_ins_L_closed(n,n”)

2.4.5 Stable, Transition and Re—organisation States

A unit is at any one time either in a stable state, or in a transition state, or in a reconfiguration
state. A rail unit event is one where a rail unit changes from one kind of state to another. In all:
Three kinds of states and four kinds of events.

We have decided to model “transitions” from stable states to stable states as not taking place
instantaneously, but having some time duration. During that time of change we say that the rail
unit is in a transition state.

Reconfiguration states are like transition states, but, in addition, the rail units changes basic
characteristics.

2.4.6 Time and State Durations

Units remain in stable, transition and reconfiguration states “for some time” ! We decide to endow
each unit with possibly different minimum stable state, and maximum transition and reconfigu-
ration state durations: A unit, irrespective of its state, must remain in any stable state for a
minimum duration of time. A unit, irrespective of its state, at most remains in any transition
state for a maximum duration of time. A unit, irrespective of its state, at most remains in any
reconfiguration state for a maximum duration of time. The stable state minimum duration is (very
much) larger than the maximum re—configuration duration, which again is (very much) larger than
the maximum transition duration.

type
T /+ T is some limited, dense time range */
A /% 6: A is some time duration */
SA=AtA=ArA=A
value
loT: U —-T
obs_(_T: U — T
obs_sA: U — sA,
obs_tA: U — tA,
obs_rA: U —» rA
<, <,>>: A x A — Bool
<, <,>>: T x T — Bool
+,—TxA—-T
x: A x Real - A pre §*r: r>0
axiom
VuU e
obs_sA(u)>obs_rA(u)>obs_tA(u),
YV 16,20:A »
16<«20=10<20 A 163>25=16>20

24 2 Railway Net
2.4.7 Stable States

A stable state (of a unit) is a possibly empty set of pairs of connectors of that unit. At any one time,
when in a stable state, a unit is willing to be in any one of a number of states, its (current) state
space. If a pair of connectors is in some stable state then that means that a train can move across
the unit in the direction implied by the pairing: from the first connector to the second connector.
A unit in a stable state has been so for a duration — which we assume can be observed.

Figure 2.4.7 shows two kinds of rail units and the possible stable states they may ‘occupy’.

v (" v v v (% v v

Closed Open: Cto C’ Open: C'to C Bidirectionally Open

States of a Linear Unit

C ¢ Cc ¢ Cc (/_ ¢ C ; ¢
Closed C” c” c” c”
(o C C (o3
C i’ Cc (/_’ C !i C 1

c” c” c” c”

¢

c 7

o

(%) States of a Switch Unit

The arrows of Figure 2.4.7 shall designate possible (“open”) directions of (allowed, “free”)
movement. To be able to compare units, and to say that a unit at one time, in some state, “is
the same” as a unit, at another time, in another state, we introduce a “normalisation” function:

nor_X. It behaves as if it “resets” the current state of a unit to the empty state, and as if the

elapsed time is “zero” — leaving all else unchanged. 2
type

PS = P-set

s = PS
value

is_s): U — Bool

obs_sX: U S sX

obs_sf2: U — sf?

obs_A: U — A

obs_sA: U — sA

nor_3: U — U

axiom
VuwU .
is_sX(u) =

obs_sX(u) € obs_sf2(u) A
obs_sX(u) C obs_Ps(u) A
obs_sX(nor_Y(u)) = {}

2 The latter is, however, not formalised. But ought be.

2.4 Further Dynamic Attributes 25

Misc.

Misc.

Out

%) Miscellaneous Sidings

2.4.8 Transition States

When a unit is in a transition state it is making a transition from one stable state to another.

We now make the following crucial modelling decision: Since we are dealing, throughout, with
man—-made phenomena, with entities most of whose properties we “design into” these physical
“gadgets” we can assume the following: That we can observe from the rail units “their intention”:
Namely, in this case, that they are to make a transition from one, known, stable state to another,
known, stable state, and that, at any one time of observing such a transition, we can also observe
the elapsed time duration since the start of a transition.

type
tX={|(s'0,s"0):(sX¥ xsX)es'oc#s"o|}
t2 = tX-set

value

is_.t2: U — Bool
obs_tX: U — tX
obs_tf2: U — tf2

obs_A: U — A
obs_tA: U — tA
axiom

VuwUgsos'o:X «
is_tX(u) = (s'0,8"0) = obs_tX(u) =
(s'o,8"0) € obs_t2(u)A{s'c,s"0} Cobs_s2(u)

The dynamics of this change will be elaborated upon later. Suffice it to hint that the change
from a stable state to the “beginning” of a transition state is an event, likewise is the change from
a transition state to the stable state, and the stable state of the unit “just” before the transition
state must be the same as the first stable state of the pair of the transition state, while the stable
state of the unit “just” after the transition state must be the same as the second stable state of
the pair of the transition state.?

2.4.9 Reconfiguration States

A rail unit may be subject to reconfiguration: In a net some existing (ie., “old”) rail units need be
“changed” by allowing “additional”, or dis—allowing “previously valid” paths, hence changing the
state space, or by allowing new kinds of transitions, or both. Reconfiguration additionally permits
new units to be “connected” to existing units’ “dangling” connectors.

A rail unit reconfiguration thus changes its state space — from a past to a future state space,
and therfore also by changing into a future transition state space, while possibly changing the
unit from one stable state (of the past state space) to another (of the future state space) — where
we impose the seemingly arbitrary constraint that the transition state (ie., the pair of before and
after stable states) must be in both the “old” and the “new” set of transition states.

3 We allow this seeming redundancy of representation in order to simplify some subsequent formalisations.

26 2 Railway Net

type
1Y = (s2xsXXt02)x (t02xsX xs82)
Y ={| roxrX « wtrX(ro) |}
value
wirX: 13X — Bool
wirX((s'w,s'o t'w),(t"w,s"os"w)) =
soeswAns’oeswA
(s'o,s"0) € twnt'w A
Us'w U Us"wCobs_Ps(u) A
Y (sao,sbo):tX «
(sac,sbo) € t'w = {sac,sbo} C s'w A
(sao,sbo) € t""w = {sao,sbo} C s"w
is_.12: U — Bool
obs_rX: U 5 r¥
obs_A: U — A
obs_rA: U — rA

We thus see that a reconfiguration state embodies also a transition state. And thus we inherit
many of the constraints expressed earlier. Now they are part of the well-formedness of any re-
configuration state. For the other state types sorts were constrained via the axioms. A number
of decisions have been made: We have decided, in this model, to maintain “redundant” “informa-
tion”: The before and after stable state spaces, as well as transition state spaces. And we have
decided to impose a further “commonality” constraint: The actual state transition taken (“under-
gone”) during reconfiguration must be one that was allowed before, as well as being allowed after,
reconfiguration.

2.5 Dynamical Units: Continuity

A railway net of many units, all timed to the same clock and time period, can be considered ideally
an programmed, dynamic active system, less ideally, a dynamic reactive system.

These terms ‘programmed, dynamic active system’, respectively ‘dynamic reactive system’ are,
for the realm of computing science and software engineering, that is: Programming methodology,
described in [30].

In this section we shall consider railway nets to be ‘programmed’. That is: It is us, the managers
of railway nets, who control the time—wise behaviour of the net — to a first approximation.
To a second approximation, when ordering the rail units to undergo a reconfiguration and/or
a transition, such changes may involve a time duration, such as modelled above. During those
durations the rail units behave reactively: Over the time period of the duration they “switch
state” in reaction to a control signal.

Although we shall thus primarily consider railway nets as programmed, active dynamic sys-
tems, we shall bring a model which appears to model railway nets as more general dynamic, active
systems. But one should understand these models appropriately: As reflecting what can be ob-
served from outside the system of railway nets plus their control. We shall subsequently review
the above distinctions.

The behaviour of a unit, as seen from outside the railway net and its control, is that it changes
from being in stable states and making transitions between these. A state transition is from the
stable state before to the stable state after the transition. The stable state components of transition
states must be in the current state space. A reconfiguration state transition has its stable states
be in the intersection of, ie., in both, the before and after stable state spaces. (This constraint has
already been formally expressed.)

2.5 Dynamical Units: Continuity 27
2.5.1 Timed Units

We now “lift” a unit to be a timed unit: That is, a function from time, in some dense interval, to
“almost the same” unit | We assume that we can delimit time intervals so that each timed unit is
described as from some lower (lo_T) time upwards !

type
T /+ T dense, with lower boun */
TU=T—-10U
value
loT: TU - T
(_T: (TUU) - T
axiom
V tw:TU « unique_TU(tu)
value

unique_TU: TU — Bool
unique_TU(tu) = V t,t":T « {t,t'}CDtu
A no_r Xs(tu)(t,t")=-same_Us({tu(t),tu(t’)})

no_rYs: TU — (T x T) — Bool
no_rXs(tu)(t,t') = is_sX(tu(t)) A is_sX(tu(t))
A ~F T o t<t”’<t’ A is_r X (tu(t”))

same_Us: U-set — Bool

same_Us(us) = V u,u":U » us C obs_s2(u)

A obs_sX¥(nor_U(u)) = obs_sX(nor_U(u’))
assert: V u”:Usu” € us = us C obs_sf2(u”)

tu:TUs are continuous functions over their lower limited, although infinite definition set of
times.

2.5.2 Operations on Timed Units

In the following we will abstract from the two operations that are implied by the transition state,
and the reconfiguration state. That is: We think, now, of these states as having been brought
about by controls, ie., by external events and communication between an environment and the net
(or, as in the case of timed rail units, between an environment and respective units).

So an operation on a timed unit is something that takes place, at some time, say 7, and
which involves an operator. The meaning of the operator is what we model, not the syntax that is
eventually needed in order to concretely implement the operation. And that meaning we take to
involve the following entities: A function, ¢, which is like a timed unit, except that its lower time
limit is like “0”. And a time duration, od, for the operation.

The idea is now that applying an operation ¢ at time 7, means that the timed unit function,
tu, is “extended” by “ glueing” the operation function ¢ to tu “chopped” at 7. After the operation
has completed, at time 7+0d, the unit remains in the state it was left in by ¢ at the end of its
completion.

value

lo_d:A, hi_§:A
axiom

[1o_6 “behaves like zero”]
type

o6

&=0dA - U

28 2 Railway Net

/x ®A: continuous relative time interval */
DA = {106..hid}
value
obs_®: @ —
obs_0A: © — {hi_J .. lo_d}
OP:0 - TU - T — TU
OP(0)(tu)(r) =
let ¢ = obs_P(0),
00 = obs_0A(f) assert: od=hi_d—lo_0,
lo_t = lo_T(tu) in
A t:T « if t<lo_t then chaos
elsif lo_t<t<7 then tu(t)
elsif T7<t<7+40d then ¢(t—7)
elsif t>7+00 then ¢(0d) end end

In the above — generalised — formulation of the effect of operations on timed units we have
abstracted from whether these “stood” for state transitions or state reconfigurations. We have
alkso made a number of general assumptions. These we now describe and formalise: The initial
unit of the operation must be compatible with (for simplicity we here take it to be: the same as)
the unit of the timed unit at the time the operations is applied.

OP(0)(tu)(7) = ...
pre obs_&(6)(lo_d) = tu(r)

One can think of the following constraint being already “syntactically” expressed in the speci-
fication of transition and reconfiguration states. We refer to Section 2.4.8 and Section 2.4.9. These
state change specifications (“redundantly”) specified the “before” and “after” states, where spec-
ifying the “after”, ie., the final state, would have sufficed.

We leave it to another occassion to provide a proper linkage between specifying the syntactics
of the operations and the already specified state change types.

2.5.3 State Sequences

In the previous section we view timed units as something that changed only as the result of
applying operations to the (timed) units. In this section we shall revert to looking at timed units
as entities which have observable behaviour — ie., which can be observed from a vantage point
“outside” the units and the “control machinery” that effects the operations.

Any one unit resides in a sequence of “adjacent” states: (i) For some time in a stable state,
¥, (ii) then, perhaps for a short time in a transation state: ¢ — ¢’, (iii) then, as (i-ii): for some
time in ¢, then ¢' — ", etc.: (iv) ¥, " — " " " — " etcetera. Maybe after a very
long time compared to the time span from stable state 1) to stable state "”--.", the unit goes
into a reconfiguration state. Whereupon (i-iv) is repeated, for a possibly other stable state and
transition state sequence. One constraint that rules state changes with respect to state transitions
(and, of course, stable states) is expressed below:

axiom
vV tw:TU »
VtT et e Dtu=
is_tX(tu(t)) =
is_sX (tu(t—obs_tA(tu(t)))) A
is_s X (tu(t+obs_tA(tu(t)))) A
let (s'c,s"0) = obs_tX(tu(t)) in
s'c = obs_sX(t—obs_tA(tu(t))) A
s"o = obs_sX(t+obs_tA(tu(t))) A

2.5 Dynamical Units: Continuity 29

{s'os"0} C obs_Q2(tu(t))
/* last property follows */
/* from earlier axiom */
end

We can formalise a similar constraint for the dynamic behaviour of units before and after
undergoing, ie., residing in, reconfiguration states. We will leave that as an exercise.

2.5.4 Dynamical Nets

Railway nets consists of units — and otherwise possess many other properties. We now “lift” the
conglomeration of all timed units to one timed net. This has to be understood as follows: Not only
does the thus timed net consist of timed units but also of other “things”.

2.5.5 Timed Nets

Railway nets consists of units (and possibly more). A timed net is now a continuous function from
time to nets. From a timed net (as from units and timed units) we can observe “its” lowest (its
“begin” or “start”) time.

type
N, U, T
TU=T—-1TU
TN=T—= N
value

lo_T: (UTU|TN) - T
obs_Us: N — U-set

For the purposes of our ensuing discussion we make the following simplifying, but not substan-
tially limiting assumptions: For a given timed net, at any time after its “begin” time, it contains
the same units as when first “started”.

assume: TN — T — Bool
assume(tn)(7) = V t:Telo_T(tn)<t<t
= nor_Us(tn(lo_T(tn)))=nor_Us(tn(t))

nor_Us: N — U-set
nor_Us(n)={nor_U(u)|u:Ueu € obs_Us(n)}

nor_Us: TN — U-set
nor_Us(tn)=|J{nor_Us(tn(t))|t: Telo_T (tn) <t <7}

nor_Us defines an equivalence class over any set of “different” units.

2.5.6 Relations between Timed Nets and Timed Units

From a timed net we can “construct” a set of timed units reflecting the timed behaviour of all the
units of the timed net.

value
TN_2_TUs: TN — TU-set
TN_2_TUs(tn) =
{ A t:T « if t<lo_T(tu) then chaos
else capture_U(tn)(u)(t) end

30 2 Railway Net

| wU » u € obs_Us(tn(lo_T(u))) }
pre V t:T ¢ t>lo_T(tn) assume(tn)(t)

capture_U: TN - U —-T — U
capture_U(tn)(u)(t) =
let n’ = tn(t) in
let us’ = obs_Us(n’) in
let u":U « v’ € us’ A nor_U(u’)=nor_U(u)
in W end end end

We can not, alas, define the inverse function:

value
TUs_2_TN: TU-set —» TN
conjecture:
Vtn:TN ¢ V £:T ¢ t>lo_T(tn) assume(tn)(t)
= TUs_2_TN(TN_2_TUs(tn)) = tn

The reason is that the net is more than the sum of all its units. Had we defined a net to just
be the set of all units, then a TUs_2_TN could be defined which satisfies the conjecture. Why is a
net more than the sum total of all its units 7

The answer to that question can, for example, be found in [5] We also wish to be able to
observe, from a net, The delineations between lines and stations, the embedding, within stations,
of tracks within the units of the stations, &c.

2.5.7 Selecting Timed Units

Given a timed net and a “prototype” rail unit, that is, a normalised rail unit, we sometimes have
a need to find that unit in the net, or, rather, to find “its” timed version:

value
select_TU: TN - U 5 TU
select_TU(tn)(u) =
let tus = TN_2_TUs(tn) in
if 3twTU « tu € tus A
nor_U(tu(lo_T(tu)))=nor_U(u)
then
let tu:TU « tu € tus A
nor_U(tu(lo_T(tu)))=nor_U(u) in
tu end
else chaos end end

2.5.8 Operations on Timed Nets

We have, in Section 2.5.2, defined the general idea of operations on timed units. We now wish to
examine what the meaning of these operations are in the context of timed nets. Suppose we could
say: Performing an operation on a timed unit of a timed net only affects that timed unit, and not
any of the other timed units of the timed net, then performing “that same” operation, somehow
identifying the unit, would have to express the above, as is done below:

type
C)

value

2.6 Discussion of the Continuous Model 31

OP:0 - (INx U) - T - TN
OP.®—-TU—-T —TU

OP(0)(tn,u)(r) as tn’
pre 3u:U »
u’ € obs_Us(tn(7))Anor_U(u’)=nor_U(u)
post let tuw:U = select_TU(tn)(u) in
tus = TN_2_TUs(tn),
tus’ = TN_2_TUs(tn’) in
tus\tus'=tus"\tus={OP () (tu)(7)}
A ... end

The A ... part of the above pre/post characterisation of operations on timed units of a timed
net refers to the fact that the whole is more than the sum of its parts, that is: There may be
aspects of the net which are affected by an operation, but not captured by the individual rail
units.

2.6 Discussion of the Continuous Model

A model of certain aspects of a railway net has been presented. We could have chosen many
different ways of formulating this model.

Next we shall discuss two aspects: Why we have not spoken about the unique identification of
units. And whether the model of time (and timing) is the right model.

2.6.1 Why no Unique Unit Identification ?

Perhaps most controversially is our tacit decision not to endow rail units with a unique identi-
fication. It is indeed true that each rail unit is unique. It is unique simply by the choice of its
connectors. We never made that explicit. But it is indeed contained in the model of railway nets
we referred to earlier. See [5]. We could have instead endowed each unit with a unique identifier,
but then we would have to express a lot of “book—keeping” constraints to secure that the already
existing uniqueness of rail units was not being interfered with by the additional “unique” identifier.

2.6.2 Is it the Right Model of Timing ?

When time is involved in a phenomenon, a good advice, in computing science circles, is usually not
to introduce time explicitly in the model till the latest possible step of development — if at all !
It is obviously not an advice we have followed. So: Why not ? For two reasons: The first is, that
we would otherwise have modelled timing by means of some combination [51, 27] of RSL, as we
have used it, [16, 17], and explicit timing constructs of an extended RSL [51], or, [27], of any one,
or more, of the Duration Calculi [53, 55, 56, 54, 52]. Either approach might have “complicated”
the presentation of the notations — which we have kept as Annotations in footnotes. So — in
anticipation of such a possible complication — we have “cowardly” refrained. The other reason for
not choosing to also use the above mentioned blends of RSL and either explicit RSL extending timing
constructs, or one or more of the Duration Calculi, is that we wish, in a separate publication to
perform those experiments: Of using exactly such “extensions”, and then compare the two—three
approaches.

In other words: It may not be the right model that we have presented in the current paper.
“Time (1) will tell ” (Pun intended.)

32 2 Railway Net
2.6.3 Possible Relations to Control Theory

The whole purpose of Section 2.5.4 has been to present a model of a domain that is of interest to
both software engineering and control engineering. We have presented “one side of the coin”, the
computing science facets of the models of such domains. It now remains to put forward, informally,
some ideas that might relate to control theory, and to suggest that classical ideas of control theory,
or just plain, simple calculus (ie., the differential and integral calculi) — that ideas from these
disciplines — might be of use in further extending the computational models that are encountered
when developing software.

The crucial phenomenon that forces us, so to speak, to raise the issue of possible relations —
as far as the domain of transport goes — between computing science and control engineering is
that of our model of traffic: Let us take a look at the concept of train traffic:

type
Train, Pos
TF =T — (N x (Train + Pos))

where T is time, N is the time—varying net, Train stands for trains, and Pos is the position of
trains. The timed net follows from traffic:

value
timed_net: TF — TN
timed_net(tf)=At:Telet (n,tps)=tf(t) in n end

In control engineering we are used to monitor and control the net and the trains. Here they
are brought together in one model. Something that can be done by means of the techniques of
computing science, but something that does not seem to be so easy, as here, to express in usual
control theoretic ways.

For a given train, say of identity tn:Tn, we may wish to observe its dynamics:

type

Tn

TRAIN = T — (N x Train x Pos)

value

obs_Tn: Train — Tn

monitor_Train: Tn — TF — TRAIN

monitor_Train(tn)(tf) =

At:Te(let (n,tps) = tf(t) in

let (trn,pos) = select(tn)(tps(t)) in
(n,trn,pos) end end)

select: Tn — (Train - Pos) — (Train x Pos)
select(tn)(tps) =
let trn:Trainetrn € dom tpsAobs_Tn(trn)=tn
in (trn,tps(trn)) end

3

Modelling Rail Nets and Time Tables using OWL

Yuan Fang Li and Dines Bjgrner

Contents
3.1 Some Introductory Remarkso, 33
3.2 (@ 3 T\ [0 7= 7 (') ¢ NP 34
3.3 =Y 7= P 34
3.3.1 Lane . 34
3.3.2 SEAbION . . oo 34
3.3.3 Unit .o e 35
3.3.4 CONNeCtOT .« .\ttt e 35
3.3.5 Path .. e 36
3.3.6 Route 36
3.3.7 12 6 PPt 36
3.4 Time Tablecouiiiii ittt itteiteeeeoeeroeeeonenananas 36
3.4.1 An RSL Model e 37
3.4.2 An OWL Model e 37
3.5 Some RemarKkscoiiiiiiiiiiiintiineeieeeeeeeronenonenananas 37

3.1 Some Introductory Remarks

This chapter is but a very first draft.

In this chapter we present another model of what has earlier, in Sect. 2.1 been presented as a
model of rail nets: Nets, lines, stations, units, connectors, paths, routes, etc.

This other, the present model, is expressed in OWL, the Web Ontology Language'. OWL is a
semantic markup language for publishing and sharing ontologies on the World Wide Web.

The aim of the draft work presented here is severalfold:

e To create a semantic web ontology for railways. Initially for nets and time tables. An ontology
that could spur railway infrastructure owners and train operators to endow the Internet with
near—exhaustive information on their nets and train time tables. This might facilitate the
automatic extraction of such information as could help train traffic planning across national
borders, across continents, on one hand, and, on the other hand, help passengers plan detailed,
complex train travels — supported by more—or—less automated tools.

e This automation is predicated upon the assumption that the language, here OWL, is decidable.
The “subset” of RSL used in Sect. 2.1 is not decidable. Expressing a model of rail nets, lines,
stations, units, connectors, paths and routes, in OWL should thus, potentially lead to automatic
verification of a number of properties of nets and time tables. Such automation could help in
the design and further (evolutionary) development of models like those in this section and in
Sect. 2.1.

! nttp://www.w3.org/TR/owl-ref/

34 3 Modelling Rail Nets and Time Tables using OWL

e Further aims are more on the scientific side: To develop semantic models, in one and the same
“third” specification language, viz.: Z, of the subsets of RSL and of OWL used in the mutual
descriptions of rail nets, lines, stations, units, connectors, paths and routes — to show that
they are equivalent. Also to show that alternative ways of modelling rail nets etc., in either of
the two styles, are either equivalent, or lead to weaker, or stronger models.

3.2 On Notation

Table 3.1. Legend

C Denotes “sub class of” relationship.

= Denotes “equivalent class” relationship.
Time The data type representing time.

u Denotes “class union” relationship.

Denotes “For a given domain value, the
Pr > (<, =)n|property Pr maps it to at least (at most,
exactly) n range values.

3.3 Nets

A Net is a railway net.

Net : Class

3.3.1 Line
A Net consists of one or more Lines.

Line : Class

ConsistsOf : ObjectProperty
domain(ConsistsOf Net)
range(ConsistsOf Line)
Net E ConsistsOf > 1

The last statement above states that Net must have at least one Line.

3.3.2 Station
Stations are linked by Lines. A Line has exactly 2 Stations.

Station : Class

Links : ObjectProperty
domain(Links Line)
range(Links Station)
Line C Links = 2

It is, at the moment of writing this, August 5, 2004, strongly believed that one must also
express the property that nets consists of stations.

3.3 Nets 35
3.3.3 Unit

Unit is a class of basic railway units that cannot be further divided. It is the super class of 4 sub
classes, which are pair-wise disjoint. Unit is equivalent as the union of the four disjoint classes.

Unit : Class

LinearUnit : Class

Switch : Class
SwitchableCrossover : Class
Crossover : Class

LinearUnit T Unat

Switch T Unit

SwitchableCrossover & Unit

Crossover T Unit

Unit = LinearUnit U SwitchU
SwitchableCrossover L Crossover

disjoint With(LinearUnit Switch)
disjoint With(LinearUnit Switchable Crossover)
disjoint With(LinearUnit Crossover)

disjoint With(Switch SwitchableCrossover)
disjoint With(Switch Crossover)

disjoint With(Switchable Crossover Crossover)

We need to specify that any Line should have at least one Unit.

HasUnit : ObjectProperty
domain(HasUnit Line)
range(HasUnit Unit)
Line © HasUnit > 1

It is, at the moment of writing this, August 5, 2004, strongly believed that one must also
express the property that stations have units, and that units of lines and stations are disjoint and
are part of the net.

3.3.4 Connector

A number of (2, 3 or 4) Connectors terminate a railway Unit. Any Connector can only terminate
at most 2 Units.

Connector : Class
HasConnector : ObjectProperty

domain(HasConnector Unit)
range(HasConnector Connector)
Unit C (HasConnector > 1) M (HasConnector < 4)

Terminates : ObjectProperty
domain(Terminates Connector)
range(Terminates Unit)

Connector C Terminates < 2
inverseOf (HasConnector Terminates)

Every Unit has a status associated with it.

36 3 Modelling Rail Nets and Time Tables using OWL

3.3.5 Path

A Path is a state that a particular railway Unit could be in at any given time point. This state
can be characterized using the two connectors terminating the unit. The constraint that a path
should have distinct connectors cannot be captured by OWL (but maybe SWRL [29])!

Path : Class
HasConnectors, FirstConnector,
SecondConnector : ObjectProperty

domain(HasConnectors Path)
range(HasConnectors Connector)
Path T HasConnectors = 2

domain(FirstConnector Path)
range(FirstConnector Connector)
domain(SecondConnector Path)
range(SecondConnector Connector)

3.3.6 Route

A Route is a sequence of Paths through Units such that adjacent Units are connected. The
connectedness of Paths cannot be specified by OWL!

Route : Class

PathUnit : Class
RoutePath : ObjectProperty
domain(RoutePath Route)
range(RoutePath PathUnit)
Route C RoutePath > 0

RPPath : ObjectProperty
domain(RPPath RoutePath)
range(RPPath Path)
RoutePath & RPPath =1

RPUnit : ObjectProperty
domain(RPUnit RoutePath)
range(RPUnit Unit)
RoutePath T RPUnit = 1

3.3.7 Train

Each Train occupies some Route.

Train : Class

Occupy : ObjectProperty
domain(Occupy Train)
range(Occupy Route)
Train C© Occupy = 1

3.4 Time Table

A Timetable contains a number of records of train names and train journeys. Each train journey
consists of an ArrivalTime, a DepartureTime and a Station.

3.4.1 An RSL Model

type
TT =Tn —m—-72TJ
TJ = Sv*

TJ = {| tj:TJ" + len tj > 2 A no_repeat_visits(tj) |
SV=T xS xT

value
no_repeat_visits: TJ' — Bool

3.4.2 An OWL Model

Timetable : Class

HasEntry : ObjectProperty
domain(HasEntry Timetable)
range(HasEntry TrainEntry)
Timetable © HasEntry > 1

TrainEntry : Class

HasTrain : ObjectProperty
domain(HasTrain TrainEntry)
range(HasTrain Train)
TramEntry © HasTrain = 1

HasJourney : ObjectProperty
domain(HasJourney TrainEntry)
range(HasJourney TrainJourney)
TrainEntry C HasJourney =1

TrainJourney : Class

HasSJourney : ObjectProperty
domain(HasSJourney TrainJourney)
range(HasSJourney SingleJourney)
TrainJourney © HasSJourney > 1

3.5 Some Remarks

3.5 Some Remarks

}

SingleJourney : Class

HasATime : DatatypeProperty
domain(HasATime SingleJourney)
range(HasATime Time)
SingleJourney C HasATime = 1

HasDTime : DatatypeProperty
domain(HasD Time SingleJourney)
range(HasD Time Time)
SingleJourney T HasDTime = 1

HasStation : ObjectProperty
domain(HasStation SingleJourney)
range(HasStation Station)
SingleJourney C HasStation = 1

37

We pointed out, in two places, that the above OWL model need be carefully validated. We are

sure much more work has to be done !

Part III

Allocation & Scheduling

4

Rolling Stock Maintenance
Martin Pénicka, Albena Strupchanska and Dines Bjgrner

Contents
4.1 INTRODUCTION ...t iitiittiitiittitttiineeneeneneeanens 41
4.1.1 SYIOPSIS . « ettt e e 41
4.1.2 The Major Functions. i 42
4.1.3 Requirements and Software Design................ 43
4.1.4 Chapter Structureot 43
4.2 FORMAL MODEL ... ittt iiiiiiiiiiininnennens 43
4.2.1 Nets, Lines, Stationst 43
4.2.2 Time & Dateo 44
4.2.3 Trains and Assemblies. 44
4.2.4 Traffic Schedule 45
4.2.5 Maintenance e 46
4.3 PLANNING ...ttt ittt ittt iittetiinenenneanens 48
4.3.1 Generation of Rolling Stock Roster Changes 49
4.3.2 Generating changes i 51
4.4 SUMMARY ittt ittt ittt ittt 52

4.1 INTRODUCTION

Railway planners handle time—consuming tasks of railway operations. There are a number of tasks
which can be solved by computers using operation research algorithms. These tasks are mainly
being solved separately without any relations or integrations between them. We would like to focus
not only at their integration, but we would like to find some common parts of these tasks already
during the software development stages.

This is the main reason for presenting, in this paper, a formal methods approach to one of
the railway optimisation problems — train maintenance routing. Formal methods approaches
to crew rostering is presented in Chapter 5, and to optimal train length/train composition and
decomposition respectively in a forthcoming report.

In future, this approach should lead to much deeper, better and easier integration of railway
applications in and among all tasks of the railway monitoring, control and planning processes.

4.1.1 Synopsis

Each railway company operating trains deals with the problem of maintenance of their rolling
stock. By a circulation plan we shall understand a schedule of sequences of station visits. Each
train is composed of carriages, which, according to a circulation plan, can be grouped into in—
divisible parts — called assemblies. In other words, an assembly is one ore more carriages that
have the same circulation plan. We do not discuss how to device circulation plans for assemblies
in this paper. This is a task of rolling stock rostering and of optimal train length determination.

42 4 Rolling Stock Maintenance

In this paper we define notions of rolling stock rosters and of maintenance events, and we
show how maintenance events can be added into rolling stock rosters. By maintenance we do not
mean only regular check of all systems (assemblies, etc.) in the depot, but we present maintenance
in a more general sense. We understand maintenance as all activities, which must be done with
rolling stock, regularly according to some rules, and which should be planned in advance except
for the operation of rolling stock itself. That is the reason, why we also include outside and inside
cleaning of carriages, refuelling diesel engines, refilling supplies into restaurant carriages, water
and oil refilling, etc.

Each carriage, according to its type, has associated certain types of maintenance tasks. Each
task has a defined frequency of necessary handling of this task upon the carriage. The frequency can
be expressed by the elapsed number of kilometer or operating house since a previous maintenance,
ie., are intervals, for which maintenance need be done.

Basically there are two different ways on how to add maintenance to the rolling stock plans.

Rostering with Maintenance is the first possible way. Maintenance is planned already in the
rolling stock roster planning process (maintenance is seen just as a one of the tasks in the roster).
All maintenance actions for all rolling stock are planned in advance. This approach seems to be
appropriate for long—distance trains and also for maintenance types that have to be done quite
often (eg., inside cleaning, diesel fuelling, etc.).

Maintenance Routing is the second possible way. In this case, the rolling stock roster has
several maintenance opportunities only. That means, that not all carriages have maintenance
in their plans. In this approach it is necessary to have on-line statistics about actually elapsed
kilometers and operating hours for all assemblies. Later, during train operation, maintenance
checks are planned for those assemblies which are close to reach a given kilometer or time limit. It
is done by modifying previous plans in such a way, that all assemblies are routed to maintenance
stations. These modifications are called night and day exchanges or empty rides between stations.
Maintenance routing better fits short-distance trains, typically trains “around” big cities, and also
for those types of maintenance, where irregularities can be expected. For example, a broken engine
must be routed to the maintenance station immediately, with no care about kilometer distance
for which it was slated at the time of the breakdown event.

In this paper we deal only with the second approach — maintenance routing. This means
that our input is a rolling stock roster with several maintenance opportunities (not assigned to
concrete assemblies yet). For all assemblies in the network we can find their position in the network
according to the schedule at a given time, number of kilometers and hours elapsed from the most
recent maintenance checks. Certain events (like breakdowns) must be recorded and taken into
account as well.

Output from the maintenance routing planning is a list of changes in rolling stock roster for
the next few days. Once a day, changes and recorded events are applied to the current rolling stock
roster plan and are used as input for the following day’s maintenance routing planning.

4.1.2 The Major Functions

Given a railway net, N, a traffic schedule TS, and a planning period (from day-time, DT, to day-
time, DT) the job is to formally characterize and generate all the possible sets of changes, CS,
necessary and sufficient to secure finely maintenance. What we understand by terms net, traffic
schedule and sets of changes can be found further on in the paper.

type
N, TS, DT, CS
value
gen_Changes: N x TS x (DT x DT) & CS-set

Given these possible change sets, one is selected and applied to the traffic schedule to generate
a new traffic schedule for a given period.

4.2 FORMAL MODEL 43

value
ApplyChanges: TS x CS x (DT x DT) — TS

4.1.3 Requirements and Software Design

We emphasis that we formally characterize schedules, assembly plans and maintenance changes
— such as they are “out there”, in realty, not necessarily as we wish them to be. On the basis of
such formal domain specifications we can then express software requirements, ie., such as we wish
schedules, assembly plans and maintenance changes to be.

The actual software design relies on the identification of suitable operation research techniques
(ie., algorithms), that can provide reasonably optimal solutions and at reasonable computing times.

It is not the aim of this paper to show such operations research algorithms. Instead we refer
to [33, 34, 38].

4.1.4 Chapter Structure

The chapter is divided into two main parts. In the first part (Section 2) we give a full description of
those railway domain terms that are relevant to the problem at hand. We start with a description
of railway nets, lines and stations. Then it is explained what we mean by trains and assemblies.
Further we explain the concept of traffic schedules and describe some functions on such schedules.
The last part of Section 2 presents a detailed description of maintenance.

The second main part is Section 3: Planning. In it we explain the necessary and sufficient
changes to rolling stock rosters, introducing the concepts of day and night changes and of empty
rides. We explain their generation, as well as the application of these changes to the new traffic
schedule.

4.2 FORMAL MODEL

In this section we introduce the actual domain phenomena and concepts of railway nets, trains,
schedules, rolling stock rosters and maintenance, and we build a domain model in a ‘formal meth-
ods’ approach — step—by—step.

First we define the concept of railway nets. We describe railway nets as a set of lines and a set
of stations and all properties, which belongs to these concepts.

4.2.1 Nets, Lines, Stations

In the first part basic concepts of railway net, lines and stations are described. We present it in
natural English description as well as in RSL.

Narrative

Each net (N) is composed from two main parts: stations (S) and lines (L). Stations and lines can
be observed from the net. Axioms (ie., constraints) are:

There are at least two stations and one line in a net (ay).
Each line connects exactly two distinct stations (as).
Each station is connected at least to one line (asg).

Each line has no zero length (ay).

Formal Model

44 4 Rolling Stock Maintenance

scheme NETWORK_S =
class
type N, L, S, KM

value
zero_km : KM,
> : KM x KM — Bool,
obs_S : N — S-set,
obs_L : N — L-set,
obs_S : L — S-set,
obs_Length : L - KM

axiom

4.2.2 Time & Date

Narrative

(1) Vn:N-
card obs_S(n) > 2 A
card obs_L(n) > 1,
(a2) Vn:N, & Le
¢e obs_L(n) =
card obs_S(¢) = 2,
(as3)Vn:N,s:Ses € obsS(n) =
34 L =s € obs_S(¢)
(ag) ¥ n i N, £L:Lin «
¢e obs_L(n) =
obs_Length(¢) > zero_km
end

In this part, basic functions about date (D), time (T) and time intervals (TI) are presented. Since
it is not the main subject of this paper, no detailed description is given.

Formal Model

scheme TIME_S =
class
type T, Tl

value

T xTl—T,
TIlx T—T,
T x Tl — TI,
T xTlI—T,
T x Tl — TI,

: T x T — Bool,
: Tl x TI = Bool,
: T x T — Bool,
: Tl x TI — Bool

L+ +

NNV V

end

scheme DATE_S =
class

type
D,
Day,
Month,
Year,

4.2.3 Trains and Assemblies

Narrative

WD == mo | tu | we | th | fr | sa | su

value
obs_Day : D — Day,
obs_Month : D — Month,
obs_Year : D — Year,
obs_WeekDay : D — WD
end

scheme TIME_DATE_S =
extend TIME_S, DATE_S with
class
type DT =D x T

value
+:DT x Tl — DT,
+: Tl x DT — DT,
—:DT x Tl — DT,
—:TIx Tl—=TI,
> : DT x DT — Bool,
< : DT x DT — Bool,
end

There are trains (TR) travelling in the network from station to station. Each train has a train
number (TRNo) and a train name (TRNa). Each train is composed of an ordered list of assemblies

4.2 FORMAL MODEL 45

(A). In a real world assembly can be composed of cars, but in this task, the assembly is always the
smallest part of the train and can never be divided into pieces.

Each assembly has its unique identification number (AID). There is a kilometer distance, which
each assembly has run in total at certain time. There are several different types of assemblies
(AT) operated by railway companies. These type could be passenger or cargo car, diesel or electric
engine, double decker or sprinter unit, etc.

Since each train is a ordered list of assemblies, we can easily find out the position (POS) of
an assembly in a train. In our case, we just distinguish, if an assembly is first, last or properly
internal. If the train is composed of one assembly, then it is called solo.

There are some axioms: Each train is composed of least one assembly («s). Each assembly has
its unique identification number (c).

Formal Model

scheme TRAIN_S = obs_Km : A x DT — KM,
extend TIME_DATE_S with Position : TR x A — POS
class Position(trn, a) =
type case obs_Asml(trn) of
TR, (a) — sol
A, (a) " asl — fir
TRNo, asl 7 (a) — las
TRNa, asl 7 (a) " asm’ — mid
AlID, __— non
AT == el_loko | di_loko | cargo_car end
POS == fir | mid | las | sol | non
axiom
value (as) Vtrn: TR »
obs_TrnNa : TR — TRNa, len obs_Asml(trn) > 1
obs_TrnNo : TR — TRNo, (ag) Va:Ae~TFa e
obs_Asml : TR — A*, a#a A
obs_Ald : A — AID, obs_Ald(a) = obs_Ald(a’)
obs_AType : A — AT, end

4.2.4 Traffic Schedule

Traffic schedules together with network topologies and train descriptions are the main inputs into
our application.

Narrative

Each railway company which operates trains needs to deal with schedules (SCH) from which traffic
schedule (TS) can be extracted. Traffic schedules assign journies (J) to each train number and date
. A journey is a sequence of rides (R). A ride is composed of departure time and station, arrival
time and station, and the train, that serves the ride. Sequence of rides served always by the same
assembly is called an assembly roster or an assembly plan (AP).

The function (APlan) extracts the assembly plan for a given assembly identification from
given traffic schedule and in a given time interval. Function (AIDL) returns a list of assembly
identifications from a given ride. Function (ActAsms) extracts the set of assemblies which are
active according to a given traffic schedule in a given time interval.

There are other axioms. Each traffic schedule has at least one journey («7). In each ride, the
arrival station is different from the departure station and the arrival time is “later” than the
departure time («g). The train number is the same for all rides of a journey. The arrival station
of any ride in a journey is equal to the departure station of the next ride in that journey (ayg).

46 4 Rolling Stock Maintenance

Formal Model

scheme SCHEDULE_S = JSet : TS — J-set,
extend TRAIN_S with JSet(ts) =
class U{rngtn |tn: (DT & J)-
type tn € rng ts}
SCH,
TS = TRNo # (DT = J), DepS: R — S
J=R"*, DepS(r) =
R=(DT xS) x (S x DT) x TR, let (_,s,_,_,_)=sinsend,
AP = R*
DepT : R = DT
value DepT(r) =
obs_TraSCH : SCH — TS, let (t, _, _,_,_)=rintend,
APlan : Arr'S: R =S
TS x AID x (DT x DT) — AP ArrS(r) =
APlan(ts, aid, (t, t')) as rl post let (_, _,s,_,_)=rinsend,
Vi:Nat e« {i, i+1} Cindxrl =
aid € elems AIDL(rl(i)) A ArrT : R — DT
aid € elems AIDL(rl(i+1)) A ArrT(r) =
{rl(i), rI(i+1)} C JSet(ts) A let (_,_, _,t _)=rintend,
DepS(rl(i+1)) = ArrS(rl(i)) A
t < DeptT(rl(i)) < axiom
DepT(rl(i+1)) < t, (a7) ¥ ts : TS » card JSet(ts) > 1,
(awg) V r : Ride «
AIDL : R — AID* let ((dt, ds), (ast, ast), _) =
AIDL(r) = in ds # ad A dst < ast end,
let(, _, _,_,tm)=r, (o) Vj:J,i:Nat e
a = obs_Asml(trn) in {i, i+1} € inds j =
(aid | aid in let (t1, _, s, t2, trn) = j(i),
(obs_Ald(hd a)..obs_Ald(a(len a)))) (t1, ', _, 2/, trn") = j(i+1)
end in
obs_TrnNa(trn)=obs_TrnNa(trn")A
ActAsms : TS x (DT x DT) — A-set obs_TrnNo(trn)=obs_TrnNo(trn’) A
ActAsms(ts, (t, t')) = tl<t2<tl’'<t2’ As =5
{aJ]a:A- end
len APlan(ts, a, (t, t')) > 0}, end

4.2.5 Maintenance
Narrative

We extend the general model of railway network. First we define different types of maintenance
(MT). Some possible maintenance types can be:

Regular operation check: Each engine and carriage — according to given rules and safety regu-
lations — must be checked regularly. There is a limited number of stations where this maintenance
can be made (usually just one for each train type).

Inside cleaning is the most common maintenance operation for passenger carriages. It can be
done at nearly every station, without additional shunting demands and costs.

Outside cleaning is also common maintenance, but usually not all stations in the network have
required equipment.

Diesel engine refuel and Water/sand/oil refill are other examples of maintenance types.

4.2 FORMAL MODEL 47

We next define maintenance plans. They, (MNTPLAN,) are lists of actions (ACTION), which
are temporally ordered. These action could be: “Working Ride’ (WR), ‘Empty Ride’ (ER), and
‘Maintenance Check’ (MNT).

Each assembly type has defined certain maintenance types that have to be done (REQMNT).
There are also given upper limits (MNTLIM) for each assembly and maintenance type. These limits
are given either in or kilometer or in time intervals. According to the position of a given assembly
(in a train) and of its assembly type, we can find out how difficult it is to exchange the assembly
in the train with another assembly of the same type (EXDIF). Each station in the set has defined
costs (COST) and required time for each maintenance type (MNTDUR).

For each assembly and maintenance type one can observe where and when that assembly was
last maintained according to that type. Different topologies and shunting possibilities of each
station allow or does not allow exchange of two assemblies within certain time limits. This time
need not be the same for nights and for days.

The functions below are explained, ie., narrated, after their definition.

Formal Model

extend SCHEDULE_S with obs_ExNCost: S x DT = COST,

class obs_MntCost: NxATxMTxSxDT=>COST,
type
IMP, <:IMP x IMP — Bool,
DIF, < : DIF x DIF — Bool,
COST,
MT == RemDist : A x MT x DT — KMS

regular_check | out_clean |
in_clean | diesel_fuel,

RemDist(a, mt, t) =
obs_LastMnt(a, mt) +
mnt_lim(obs_AType(a), mt) —

ACTION == WR | ER | MNT, obs_Km(a, t),
WR = R, RemTime : A x MT x DT — TI
ER =R, RemTime(a, mt, t) =

MNT = DT x S x DT x MT, obs_LastMnt(a, mt) +

mnt_lim(obs_AType(a), mt) — t,
MNTPLAN = ACTION*,

REQMNT = AT - MT-set,
MNTLIM =

(AT x MT) = (TI| KMS)
MNTIMP = (AT x MT) - IMP,
MNTDUR = AT o (MT 7 (S = T1)),
EXDIF = (AT x POS) -+ DIF

value
max_imp : IMP,
reg_mnt : REQMNT,
mnt_lim : MNTLIM,
mnt_imp : MNTIMP,
mnt_dur : MNTDUR,
exc_dif : EXDIF,

obs_LastMnt: A x MT — (TI|KMS),
obs_MinExDTime: S x DT— TI,
obs_MinExNTime: S x DT — TI,
obs_ExDCost: S x DT = COST,

MStas : N x AT x MT — Sta-set
MStas(n, at, mt) =
{s|s:Sta-
s € obs_Sta(n) A
s € dom mnt_dur(at)(mt)},

MTypes : N x S x AT — MT-set
MTypes(n, s, at) =
{mt | mt : MType «
mt € dom mnt_dur(at) A
s € dom mnt_dur(at)(mt) A
s € MStas(n, at, mt)},

isMPos : N x AP x AT x MT — Bool
isMPos(n, p, at, mt) =
Jds:S,i:Nat e«
s € MSta(n, at, mt) A
{i, i+1} Cinds p A
s = ArrS(p(i)) A

48

4 Rolling Stock Maintenance

ArrT(p(i)) +
mnt_dur(at)(mt)(s) <
DepT(p(i+1)),

isinSta: AP x S x DT — Bool
islnSta(p, s, t) =
Ji:Nat
{i, i+1} Cinds p =
ArrT(p(i)) <t <
DepT(p(i+1)) A
s = ArrS(p(i)) = DepS(p(i+1)),

DisToMS:
N x AP x AT x MT 5 (TI|KMS)
DisToMS(n, p, at, mt) =
if DepS(hd p) € MStas(n, at, mt)
then 0

end

TMax : TS — DT
TMax(ts) as tmax post
Vij:J,i:Nat-
j € JSet(ts) Ai € inds j =
ArrT(j(i)) < tmax

axiom
(a10) Vi IMP « i < max_imp,
(a11) ¥ n o N, at:AT
ds:S, mt: MT =
s € obs_S(n) A
mt € MTypes(n, s, at) A
s € MStas(n, at, mt),
(a12) ¥ at : AT, mt : MT
mt € req_mnt(at) =

else 0 < mnt_imp(at, mt) <

RideDis(hd p) + max_imp,
DisToMS(n, tl p, at, mt) (c13) V at : AT, mt : MT -
end, mt ¢ req_mnt(at) =

mnt_imp(at, mt) = 0,

MntUrg : A x MT x DT — IMP (a14) V at : AT

MntUrg(a, mt, t) = exc_dif(at, sol) <
if RemDist(a, mt, t) <0 exc_dif(at, las) <
then max_imp exc_dif(at, fir) <
else exc_dif(at, mid),

mnt_imp(obs_AType(a), mt) / end

RemDist(a, mt, t)

We now explain the above planning functions.

(RemDist) and (RemTime) calculate remaining distance to the maintenance of a given type
either in kilometers or in time interval, for a given assembly at a given time. (MStas) yields the
set of stations that are maintenance stations for a given assembly and maintenance type, and in
a given network. (MTypes) yields all maintenance types, which a given assembly can undergo at
a given station. (isMPos) checks if there is a maintenance opportunity in a given plan, for given
assembly and maintenance types. (isInSta) checks if, according to a given plan, a given assembly
is at a given station and at a given time. (DisToMS) espresses the “distance” to a maintenance
opportunity, in a given plan for a given assembly and maintenance type. (MntUrg) expresses the
importance of undergoing maintenance of a given type at a given time for a given assembly. (TMax)
expresses the total time horizon of a given traffic schedule.

4.3 PLANNING

Every day, last-moment changes and updates must be applied to the previously planned rolling
stock roster. In this section we describe two basic functions for rolling stock maintenance routing:
Generation of changes to a rolling stock roster and application of changes to a roster.

4.3 PLANNING 49
4.3.1 Generation of Rolling Stock Roster Changes

Given a rolling stock roster and a net we can express sets of necessary rolling stock roster changes.
An example of rolling stock roster for several consecutive days is shown in figure 1.

Maintenance . . .
Station 1 Al [LA i :'—A
Station 2 L) = et | _(C
G
L E || | _IF
Station 3 F \ \/ E
Station 4 “F—| — —
- (\l) <+
% Dayl |&| Day2 |5 Day3 |&
%] = = = =l Fig. 1: The Original Plan

Each change set is composed from three different types of changes. They are called: Day Change,
Night Change and Empty Ride.

Day Change is composed of two assemblies, of a station and a time, where and when the inter-
change between these two assemblies takes place. Day change may occur when the first assembly
is an ‘urgent’ assembly (needs to undergo maintenance check in couple of days) and the second
assembly has a maintenance station in the plan, and when both assemblies are in the same station
at the same time, during a day time, and there is enough time to interchange them.

In Figure 2 the assembly ”C” is exchanged at station 1 with the assembly ”G” — designated,
thus, to reach the maintenance station in two days.

Maintenance . . .
Station 1 ’u_ = A
Station 2 CL — — —g
. E F
Station 3 F i \./ E
Station 4 Cf— — —
— ~) <+
S| Day 1 | Day2 |& Day3 |&
1% = 2] 2] =l Fig. 2: Example of ‘Day Change’

Night Change is quite similar to the day change. The main difference is in the time when
this change is applied. Night changes may occur when the first assembly is an ‘urgent’ assembly
and the second assembly has a maintenance station in the plan, and when both assemblies are in
the same depot or station during the same night. It is the least expensive way in which to add
maintenance into the assembly plan.

In Figure 3 the assembly "D” is exchanged at station 3 with the assembly ”G” — designated,
thus, to reach the maintenance station the second night.

Maintenance .l_ .l_ .l_
Station 1 & . ho— A
Station 2 - T \ \] C
. E F
Station 3 F \ s
Station 4 “f— — Uy o

— o o <

S| Day ! || Day2 |& Day3 |

1%}]]] 2l Fig. 3. Example of ‘Night Change’

50 4 Rolling Stock Maintenance

Empty Ride is the last possible change that can be applied to the rolling stock roster. This
change must be applied, when there is no day or night change possible (ie., when there is no such
situation in the rolling stock roster where two assemblies are in the same station and time during
their operations). In that case, two additional rides have to be added into the plan. An ‘Empty
Ride’ is composed of two assemblies and two additional rides for these assemblies. In general, an
‘Empty Ride’ is always possible, but it has the highest cost.

In Figure 4 the assembly ”B” is routed from station 2 to station 3 and the assembly "G” in
opposite direction.

Maintenance . . .

Station 1 A {5 R

Station 2 CL C
\ AL IF

. E A |
Station 3 F _\ \]\ _/ E
Station 4

., } ‘

7-

— (o o <
5| Day | [§| Day2 [§ Day3 |5
%) =l =] =] =l Fig. 4. Example of Empty Ride
Formal model
scheme CHANGES_S = end
extend MAINTENANCE_S
class CT:C— DT
type CT(c) =
C==DC|NC|ER case c of
DC == mkDC(al:A,a2:A,t:DT,s:S) mkDC(_,_,t,_) — t,
NC == mkNC(al:A,a2:A,t:DT,s:S) mkNC(_,_,t_) — t,
ER == mkER(al:A,a2:A r1:R,r2:R) mkER(_,_r._) —
CS = C-set let ((_,_).(_t).)=r
int end
value end
NPlan:
TS x C x (DT x DT) — A CS:C—S
NPlan(ts,c,(t,t) = CS(c) =
APlan(ts,UAID(c),(t,CT(c))) case c of
“APlan(ts,SAID(c),(CT(c),t)) mkDC(_,_,_s) —'s
mkNC(_,_,_,s) — s,
UAID: C — AID mkER(_,_,r._) —
UAID(c) = let ((_.s).(_._)._)=r
case c of in s end
mkDC(a,_,_,) — obs_AsmlID(a), end
mkNC(a,_,_,_) — obs_AsmlID(a),
mkER(a,_,_,_) — obs_AsmID(a) MinExT: C — TI
end MinExT(c) =
case c of
SAID: C — AID mkDC(_ _ t;s) —
SAID(c) = obs_MinExDTime(s,t)
case c of mkNC(_,_,t;s) —
mkDC(_,a,__,_) — obs_AsmlID(a), obs_MinExNTime(s,t)
mkNC(_,a,_ _) — obs_AsmID(a), mkER(_,_,r,_) —

mkER(_,a,_,) — obs_AsmID(a) let ((_,s),(_,t),_)=r

4.3 PLANNING 51

in obs_MinExDTime(s,t) end
end end

4.3.2 Generating changes

We now present the main function of this paper: (gen_Changes). This function expresses all
possible sets of changes from a given net, traffic schedule and planning period. These change sets
are limited by several constraints (ie., post conditions). All changes which are in the generated set
must be possible, necessary and sufficient.

The ‘possible’ condition checks whether two assemblies are of the same type and whether these
two assemblies are active assemblies in a given time period. Then it is checked if it is a case that
both assemblies are in the same station at the same time for a long enough period according to
their plans.

The change is ‘necessary’ when remaining distance to becoming an ‘urgent’ assembly is smaller
than the distance to the maintenance station in the plan of this assembly.

The ‘sufficiency’ condition checks if an ‘urgent assembly’ can arrive at its maintenance station
before exceeding its (time or kilometer) limit according to the new plan.

scheme PLANNING_S = |s|nSta(AP|an(ts UAID(c),
extend CHANGES_S (t, t), CS(c), CT(c) +

class MinExTU(c)) A
type isInSta(APIan(ts SAID(C),
value (t, t)). CS(c), CT(c)) A
gen_Chgs: NxTSx(DT xDT)>CS-set |sInSta(APIan(ts SA|D(C)v
gen_Chgs(n, ts, (t, t')) as css (t, t')), CS(c), CT(c) +

pre MinExTU(c)),

da: A mt: MT e«
DisToMS(APlan(ts, obs_AlD(a),

(t, t')), obs_AType(a), mt) isNecessary:
> RemDis(a, mt, t) TS x C x (DTxDT) — Bool
post isNecessary(ts, ¢, (t, t')) =
Ves:CS,c:Cec Imt: M e
€ cs A cs € css DisToMS(APlan(ts,
= isPossible(ts, c, (t, t')) A UAID(c), (t, t)),
isNecessary(ts, c, (t, t')) A obs_AType(UA(a)), mt) >
isSufficient(ts, ¢, (t, t')) RemaDist(a, mt, t),
isPossible:
TS x C x (DTxDT) — Bool isSufficient:
isPossible(ts, c, (t, t')) = TS x C x (DTxDT) — Bool
obs_AType(UA(c)) = isSufficient(ts, c, (t, t')) =
obs_AType(SA(c)) A vV mt: MT -
{UA(c), SA(c)} C mt € req_mnt(obs_AType(a))
ActAsms(ts, (t, t')) A =
MntUrg(UA(c), mt, t') > DisToMS(NPlan(ts, c, (t, t')),
MntUrg(SA(c), mt, t') A obs_AsmType(UA(c)), mt) <
isinSta(APlan(ts, UAID(c), RemaDist(UA(c), mt, t)
(t, t')), CS(c), CT(c)) A end

Applying changes: Once a day, specified changes are applied to the rolling stock roster traffic
schedule. We get a new traffic schedule, which is used as an input to next day’s operations. There
can be only one difference between the old and the new traffic schedule: some trains in the new

52 4 Rolling Stock Maintenance

schedule can be served by different assemblies of the same type. That means, that assembly plans
are modified as shown on Figure 5.

Original plan for

e W [W[ElW w [w] w]

Original plan for

secondassenbly . (CW) (W)W) BC WMD)

New plan for

Arssnlssently . QTS TR EEDEW (MW)

New plan for

1%/ Changing time Fig. 5: Plan modification

The correct solution is when all assemblies which require maintenance in the given period, after
application of calculated changes in the new traffic schedule can reach the maintenance station in
the remaining distance.

scheme UPDATE_S = APlan(ts, aidl, (CT(c), t')) =
extend PLANNING_S APlan(ts’, aid2, (t, t'))
class end
value A
AppChgs: TSxCSx(DTxDT)—TS YV a: A, mt: MT, cs: CS
AppChgs(ts, cs, (t, t')) as ts' a € ActAsms(ts, (t, t')) A
post mt € req_mnt(obs_AType(a)) A
Ve CeccEces= MntUrgency(a, mt, t) > 0 =
let aid1 = UAID(c), JcCe
aid2 = SAID(c) cecsAha=UA(c) A
in DisToMS(APlan(ts’,
APlan(ts, aidl, (t, CT(c))) ~ obs_Ald(a), (t, t')),
APlan(ts, aid2, (CT(c), t')) = obs_AType(a),mt) <
APlan(ts’, aidl, (t, t')) RemDis(a, mt, t)

A end
APlan(ts, aid2, (t, CT(c))) ~

4.4 SUMMARY

A formal model of maintenance routing have been shown. The task was divided into two basic
steps:

e generation of possible, necessary and sufficient changes of the traffic schedule
e application of these changes to the traffic schedule

We emphasize that we formally characterized schedules, assembly plans and changes in the plan
to meet maintenance demands. On the basis of such formal space software we can now prescribe
requirements.

In the future, this formal approach, we claim, should lead to deeper, better and easier integra-
tion of all railway optimization applications in all the tasks of railway planning, monitoring and
control processes.

5

Rostering
Albena Strupchanska, Martin Péni¢ka and Dines Bjgrner

Contents
5.1 INTRODUCTION ...ttt ittititeeteneneneasonsesoeenaaanas 53
5.1.1 SYIOPSIS .« « ettt et 53
5.1.2 The Major Functions......... 54
5.1.3 Requirements and Software Design................ 54
5.1.4 Paper Structure 54
5.2 NETS, STATIONS AND DEPOTSciiuiiiitiiininnnannnns 54
5.2.1 Narrativeo 54
5.2.2 Formal Model 55
5.3 STAFF MEMBERSt iiiittitittttteernneronenananas 55
5.3.1 Narrative e 55
5.3.2 Formal Model 55
5.4 SCHEDULE, JOURNEYS AND TRIPS0ttt 56
5.4.1 Narrativeo 56
5.4.2 Formal Model e 57
5.5 ACTIONS AND DUTIES ...ttt ittt iteiteeetneeeonenananas 59
5.5.1 Narrative 59
5.5.2 Formal Model 60
5.6 ROSTERS AND STAFF MEMBERSciiiiiiiiiiieennn. 63
5.6.1 Narrativeo 63
5.6.2 Formal Model 64

5.1 INTRODUCTION

5.1.1 Synopsis

Staff planning is a typical problem arising in the management of large transport companies, in-
cluding railway companies. It is concerned with building the work schedules (duties and rosters)
for staff members needed to cover a planned timetable. Each work schedule is built concerning a
given staff type (engine men, conductors, cater staff, etc.).

There are two types of staff planning: long-term planning and short-term planning. We will
be interested in long term planning. Normally the long term planning task is separated into two
stages: staff scheduling and staff rostering. Staff scheduling is concerned with building short-term
working schedules, called duties, for staff members such that they satisfy schedule demands. After
this stage it is easy to determine the global number of staff members needed to hire such that
the working schedules could be performed. Staff rostering is concerned with ordering of duties
into long-term working schedules, called base rosters, and assignment of specific staff members to
them such that each staff member performs a roster. During the stage of rostering we have the
assumption that we have enough hired staff members such that we could assign rosters to them.

In this paper we will try to explain and analyze first informally and then formally the problem.
Using a formal methods approach and RAISE Specification Language we will present a formal
model of the domain of staff rostering.

54 5 Rostering

5.1.2 The Major Functions

Given a schedule, a staff type, a depot and rules the task is to produce a set of rosters. What we
understand in terms of schedule, depot and rules can be found further in the paper.

gen_sross: SCH x StfTp x Dep x eRS — Ros

The function above produces all the rosters for a staff type per depot. Usually rosters are
generated per depot and we have the assumption that after the staff scheduling stage all duties
generated per depot are shifted to the depot. If this is not the case we propose a function that
integrates the two stages in staff rostering into one. So given a schedule, a staff type, set of depots
and rules we produce all rosters per each depot for this staff type.

obtain_ross: SCH x StfTp x Dep-set x eRS —
Ros-set

5.1.3 Requirements and Software Design

We emphasis that we formally characterized schedules, duties and rosters to meet staff rostering
demands. On the basic of such formal characterization we can now express software requirements.
The actual software design relies on identification of suitable operation research techniques,
that can provide reasonable optimal solution at reasonable computing times.
It is not the aim of this paper to show such operation research algorithms. Instead we formalize
the domain of railway staff rostering such that later we could apply to it operation research
techniques discovered in further research work done within AMORE group.

5.1.4 Paper Structure

The paper consists of five sections. Each section consist of formal description of the problem
(narrative) and formalization of it (formal model). The first section introduces the topology of
the railway net from staff management perspective. The second one introduces the notion of a
staff member and related to it characteristics taken into account in the early stage of planning.
And finally the last three sections are the ones which gradually show the creation of rosters from
a schedule, a set of depots and rules. The first of them is concerned of separating the journeys
observed from a schedule into trips. The notions of journey and trip are introduced there. The
second one introduces the notion of a duty and produces the set of duties per each depot. Finally
the third one introduces more characteristics of staff members and the notion of rosters. It generates
the rosters for staff members too.

5.2 NETS, STATIONS AND DEPOTS

In this section we will introduce the notions of nets, stations and depots which are related to the
topology of the railway net from a staff manager point of view.

5.2.1 Narrative

We take as base concept for the railway net the topology of that net. From a railway net (Net)
we can observe stations (Sta) and depots (Dep). Depots are personnel bases i.e places where staff
members are located. The notion of staff member will be introduced in more details in the next
section. From a station we can observe a set of depots to which the station can belong. From a
depot we can observe a set of stations from which it is easy to reach the depot. Given a depot and
a station we can observe the distance in time (TInt) between them. We will be interested in these
stations and depots which are ’close’ to each other.

There are at least two stations in a net («y). There is at least one depot in a net (az). The
set of depots observed from a station consists of depots of the same railway net (as). The set of
stations observed from a depot consists of stations of the same railway net (o).

5.3 STAFF MEMBERS 55
5.2.2 Formal Model

We first state some abstract types, ie. sorts, and some observer functions.

scheme NETWORK = We will then illustrate some axioms:
class .
. . >
type Net, Sta, Dep, Tint, StaNm, DepNm (1) axiom V n : Net « card obs_Stas(n) > 2
value

obs_Stas - Net — Sta-set (a2) axiom V n : Net « card obs_Deps(n) > 1

obs_StaNm : Sta — StaNm,

obs_Deps : Net — Dep-set,

obs_DepNm : Dep — DepNm,

obs_StaDeps: Sta — Dep-set,

obs_DepStas: Dep — Sta-set,

obs_StDepDistance : Sta x Dep — Tlnt
end

(a3) axiom V n: Net Vs : Sta e
s € obs_Stas(n) = (V d : Dep *
d € obs_StaDeps(s) = d € obs_Deps(n))

(aq) axiom V n: Net »V d : Dep «
d € obs_Deps(n) = (Vs : Sta .
s € obs_DepStas(d) = s € obs_Stas(n))

5.3 STAFF MEMBERS

We introduce the notions of staff members and related to them attributes according to a staff
manager stake-holder’s perspective.

5.3.1 Narrative

We call staff all those people who are employed in a railway company and who could perform some
actions in order to fulfill a schedule demands.

At the first stage of staff rostering - staff scheduling we will be interested in a part of the
characteristics that can be related to staff members. Staff members are exchangeable at staff
scheduling stage that is why we will call them anonymous staff members (AnonStfMbr). From
anonymous staff member we could observe his/her home depot (obs_SMDep). A home depot of
some staff member is the depot of the railway net from where he/she starts and finishes his/her
sequence of actions. There is a notion of a staff type (StfTp). Some possible staff types are:
engine men (engS), conductors (condS), cater staff (catS) etc. From anonymous staff member we
could observe his/her staff type (obs_SMStfTp). The set of anonymous staff members we will call
anonymous staff (AnonStaff).

At the second stage of staff rostering we will take into account all the characteristics that can
be related to a staff member. We assume that staff member’s personal information makes him
distinguishable from other staff members. So we will call specific staff member (SpecStfMbr) an
anonymous staff member with added personal information. From a specific staff member we can
observe his personal information as well as home depot and staff type.

From anonymous and specific staff member we can observe staff member’s name. It makes the
relation between two abstractions of a staff member - anonymous and specific.

Given a staff type we can observe all the depots which are home depots for staff members of
a given staff type (function deps_staff below). Given a staff type and a depot we can observe all
anonymous staff members at this depot of this staff type and respectively their number (functions
dstft and dstft_num below).

5.3.2 Formal Model

We first state some types and some observer functions.

56 5 Rostering

scheme STAFF = SpecStfMbr « obs_Name(asm) =
extend NETWORK with obs_Name(ssm)
class
type axiom V ssm, ssm’: SpecStfMbr « ssm # ssm’
AnonStfMbr, Name, = proj_SpecAnonStfMbr(ssm) =
SpecStfMbr, Persinfo, proj_SpecAnonStfMbr(ssm’)
StfTp == engS | condS | catS,
AnonStaff = Name + AnonStfMbr, value
Staff = Name + SpecStfMbr depStfMbrs : Dep — AnonStaff
depStfMbrs(d) as astf
value post (¥ asm: AnonStfMbr «
obs_Name: AnonStfMbr — Name, astf = [obs_Name(asm) + asm] A
obs_Name: SpecStfMbr — Name, obs_SMDep(asm) = d),
obs_SMStfTp : AnonStfMbr — StfTp,
obs_SMStfTp: SpecStfMbr — StfTp, deps_staff : StfTp — Dep-set
obs_SMDep : AnonStfMbr — Dep, deps_staff(stft) =
obs_SMDep: SpecStfMbr — Dep, {d | d:Deps+ 3 asm : AnonStfMbr «
obs_PersInfo: SpecStfMbr — PerslInfo obs_SMStfTp(asm) = stft A
end obs_SMDep(asm) = d},

We will then illustrate some axioms and et - Dep x StfTp — AnonStaff
functions: dstft(d, stft) as astf
proj_SpecAnonStfMbr: SpecStfMbr — post (V asm: AnonStfMbr

AnonStfMbr « astf = [obs_Name(asm) — asm] A
proj—SpecAnonStfMbr(ssm) as asm obs_SMDep(asm) = d

kwpost obs_SMStfTp(ssm) = obs_SMStfTp(asm) A obs_SMStfTp(asm) = stft),
A obs_SMDep(ssm) = obs_SMDep(asm),
dstft_num : Dep x StfTp — Nat
proj_AnonSpecStfMbr: AnonStfMbr x PersInfo dstft_num(d, stft) = card dom dstft(d, stft),
— SpecStfMbr

proj—AnonSpecStfMbr(asm, pinf) as ssm dsstft_grs : Dep-set x StfTp —

post obs_Name(asm) = obs_Name(ssm) A (Dep x Nat)-set
obs_PersInfo(ssm) = pinf A dsstft_grs(ds, stft) = {(dep, n) | dep : Dep,
obs_SMStfTp(asm) = obs_SMStfTp(ssm) A n: Nat « dep € ds A
obs_SMDep(asm) = obs_SMDep(ssm), n = dstft_num(dep, stft)}

axiom VYV asm: AnonStfMbr « 3! ssm:

5.4 SCHEDULE, JOURNEYS AND TRIPS

In this section we will explain the notions of schedule, journeys and trips that help us to introduce
further the notion of duties.

5.4.1 Narrative

Schedule and Exchange stations: A schedule includes information about all train journeys such
that each train journey is uniquely determined by a train number and a date and time. A train
number is a unique identifier of a train which remains the same from the first to the last station of
its journey. We don’t consider train names here as not all the trains in a railway net have names.

Some of the stations in the net are special from staff management perspective because it is
possible either to exchange staff members or a staff member to start or to finish his work there.
We will call such stations exchange stations. From a station we could observe all the staff types

5.4 SCHEDULE, JOURNEYS AND TRIPS 57

for which this station is an exchange station (obs_ExchgStas). Given a station and a staff type we
could check if the station is an exchange station or not for this staff type (is_exchgst). Exchange
stations are located near the depots in the railway net.

Journeys and Trips: Staff members are responsible for performing some actions in order to fulfill
the schedule demands. Some of the actions are related to train journeys. Train journeys could be
both actual journeys with passengers or freights or empty trains journeys. A train journey is a
sequence of rides with the same train number. A ride is characterized by a departure station, a
departure time, an arrival station, an arrival time and a train between these two stations. Given
a schedule we can extract a set of train journeys (journ_set).

There are some restrictions about the maximal working time for a staff member without a
rest. Taking into account these restrictions it is natural to divide a journey into an indivisible
pieces of work for staff members. That is why we introduce the notion of a trip. A trip is a
sequence of rides of a train journey such that the first and the last station of a trip are exchange
stations and the duration of a trip is less or equal to maximal allowed uninterrupted working time
(maxUnIntWrkHr). Each trip is characterized by a train, a departure time, a departure station, an
arrival time, an arrival station and possibly additional attributes. From a trip we can observe train
characteristics for instance kind of the engine, staff types and their numbers needed to perform a
trip etc.

5.4.2 Formal Model

First we will state some types(abstract and concrete) and some observer functions.

NETWORK, STAFF trnchr: Ride — TrnChar,

scheme SCHEDULE = stfchr: TrnChar — StfTp + Nat,

extend STAFF with obs_ExchgStas: Sta = StfTp-set,

class techTime: Sta x Trn x StfTp — Tlnt,

type maxUnIntWrkHr: StfTp — Tlnt,
Date, Hour, Trn, Trnld, LongDistance, /x from a staff type (rules taken into account
Urban, ICE, TGV, StfAttr, NoStf, implicitly) we can observe the maximal
TrnChar = LongDistance| Urban| ICE| TGV, permitted working time in minutes without
DateTime = Date x Hour, a rest x/

Ride’ == rd(sta: Sta, dt: DateTime,
nsta: Sta, at: DateTime, trn: Trn),

Ride = {|rd: Ride’ » wf_rd(rd)|},

Journey’ = Ride*,

Journey = {|j: Journey’ * wf_journ(j)|},
Trip = Ride",

TrpAttr == Overnight|Other,

SCH= Trnld = (DateTime = Journey)

value

< : DateTime x DateTime — Bool,
/* DateTime < DateTimex/

<: TInt x Tint — Bool, /*TInt< TlIntx/
— : DateTime x DateTime — Tlnt,

— : TInt x TInt — Tlnt,

<: DateTime x DateTime — Bool,

>: TInt x TInt — Bool,

consec_intime: DateTime x DateTime —
Bool,

obs_Trnld: Trn — Trnld,

maxWrkHr: StfTp — Tlnt,

/x from a staff type (rules taken into account
implicitly) we can observe

the maximal permitted working timex/
tripAttr: Trip — TrpAttr,

wf_rd : Ride’ — Bool
wi_rd(rd) = dt(rd) < at(rd),

wf_journ: Journey’ — Bool
wf_journ(j) =
(Vi:Nat«{i,i+ 1} Cindsj=
obs_Trnld(trn(j(i))) = obs_Trnld(trn(j(i+1)))
A nsta(j(i)) = sta(j(i+))

consec_intime(at(j(i)), dt(j(i+1)))),

journ_set: SCH — Journey-set

journ_set(sc) = {j| j: Journey *(V trnid: Trnld,
timdat: DateTime ¢ trnid € dom sc A timdat
€ dom sc(trnid)= j=sc(trnid)(timdat))},

58 5 Rostering

journ_setl: SCH — Journey-set
journ_setl(sc) = U {rng tn| tn:

(DateTime + Journey) « tn € rng sc}
end

Each train journey is divided into trips with subject to a staff type. The following is a function

that divides a journey into trips.

trip_list : Journey x StfTp — Trip*

trip_list(j, stft) as trpl

post (Vi: Nat i € inds trpl =
wf_stft_trip(trpl(i), stft)) A
check_separation(trpl, stft),

A trip is well formed if it consists of consecutive rides, the first and the last stations of a trip
are exchangeable stations and the train during the trip has the same characteristics from a staff

member perspective.

wif_stft_trip: Trip x StfTp — Bool
wi_stft_trip(trp , stft) =
is_exchgst(trip_fsta(trp), stft) A
is_exchgst(trip_Ista(trp), stft) A
~(possible_exchg_inside(trp, stft)) A
trip_fnT(trp) — trip_stT(trp) <
maxUnIntWrkHr(stft) A same_trn(trp, stft),

is_exchgst: Sta x StfTp — Bool
is_exchgst(s, stft) = stft € obs_ExchgStas(s),

possible_exchg_inside: Trip x StfTp — Bool

possible_exchg_inside(trp, stft) =

(Vi: Nat «ie€ {l.lentrp -1} =

if is_exchgst(nsta(trp(i)), stft) then
dt(trp(i + 1)) — at(trp(i)) >
tech_time(trp(i), stft) else false end),

same_trn: Trip x StfTp — Bool
same_trn(trp, stft) =

(Vi:Nat e« {i,i + 1} C inds trp =
same_trnchr(trnchr(trp(i)),
trnchr(trp(i + 1)), stft)),

same_trnchr: TrnChar x TrnChar x StfTp —
Bool,

/*checks if two trains are with the same
characteristics from the staff point of views/

check_separation: Trip* x StfTp — Bool
check_separation(trpl, stft) =

(Vi:Nat e« {i,i+ 1} C inds trpl =
coincident_sta(trpl(i), trpl(i + 1)) A
div_sta(trpl(i), trpl(i + 1), stft)),

coincident_sta: Trip x Trip — Bool
coincident_sta(trpl, trp2) =
trip_Ista(trpl) = trip_fsta(trp2),

On the station where we separate the train journey there should be enough time for exchanging
the staff members or a staff member to change a train. The time interval between departure and
arrival time of a train at this station should be greater or equal to the technical time. Technical
time is the smallest interval of time for which it is possible to exchange staff members or a staff
member to change a train.

div_sta: Trip x Trip x StfTp— Bool
div_sta(trpl, trp2, stft) =
trip_stT(trp2) — trip_fnT(trpl) >
tech_time(last(trpl), stft),

techTime(sta(rd), trn(rd), stft),

last: Trip = Ride
last(trp) = trp(len trp)

pre len trp > 1,
tech_time: Ride x StfTp — Tint
tech_time(rd, stft) =

Finally given a schedule and a staff type we produce the trip set such that each journey that
can be extracted from a schedule is divided into trips.

5.5 ACTIONS AND DUTIES 59

gen_tripss: SCH x StfTp — Trip-set gen_trips : SCH x StfTp — Trip-set
gen_tripss(sc, stft) = U {trips| trips: Trip-set « gen_trips(sc, stft) as trps
trips = gen_trips(sc, stft)}, post (V j: Journey « j € journ_set(sc) =
trps = elems trip_list(j, stft))

The following are some functions that extract some characteristics of a trip.

trip_stT: Trip — DateTime trip_trn: Trip — Trn

trip_stT(trp) = dt(hd trp), trip_trn(trp) = trn(hd trp),

trip_fnT: Trip — DateTime trip_trnchr: Trip — TrnChar

trip_fnT(trp) = at(last(trp)), trip_trnchr(trp) = trnchr(hd trp),

trip_fsta: Trip — Sta trip_stfchr: Trip — StfTp » Nat
trip_fsta(trp) = sta(hd trp), trip_stfchr(trp) = stfchr(trip_trnchr(trp)),
trip_Ista: Trip — Sta trip_WrkTm: Trip — Tlnt

trip_Ista(trp) = nsta(last(trp)), trip_WrkTm(tp) = trip_fnT(tp) — trip_stT(tp)

5.5 ACTIONS AND DUTIES

5.5.1 Narrative

Actions: Each staff member performs some actions. Actions could be sequence of trips, rests and
some human resource activities. Rests could be rest between trips, meal rests, rests away from
home depot including sleeping in dormitories (external rest) etc. By human resource activities we
mean activities performing from a staff member in order to increase his qualification (seminars,
courses etc.).

The sequence of trips is characterized with a start time, an end time and a list of rides. A
rest is characterized by a start and an end time, station name and also some attributes. We will
assume that a rest starts and ends at the same station. Human resource activities has the same
characteristics as rests.

Duties: Each staff member is related to a given depot, home depot, in a railway net, which
represents starting and ending point of his work segments. A natural constraint imposes that
each staff member must return to his home depot within some period of time. This leads to the
introduction of the concept of duty as a list of actions spanning L. consecutive days such that its
start and end actions are related to the same depot. A duty conforms to some rules and satisfy
some requirements like continuance, working hours per duty etc. Each duty is concerned with
members of the same staff type. From a duty we can observe duty attributes for example: ’duty
with external rest’, ’overnight duty’, ’heavy overnight duty’, 'long duty’ etc. Also each duty has
some characteristics as:

e Start time: it is given explicitly when the first action of a duty is either rest or human resource
activity; in case of a trip it is defined as the departure time of its first ride minus the sum of
technical departure time and briefing time,

e End time: it is given explicitly when the last action of a duty is either rest or human resource
activity; in case of a trip it is defined as the arrival time of its last ride plus the sum of technical
arrival time and debriefing time,

Paid time: it is defined as the elapsed time from the start time to the end time of the duty,
Working time: it is defined as the duration of the time interval between the start time and the
end time of the duty, minus the external rest, if any.

60 5 Rostering

Mentioned above characteristics are common for every duty. There are other possible character-
istics of a duty but they strictly depend on a staff type. For instance taking into account engine
men staff type we could observe:

e Driving time: it is defined as the sum of the trip durations plus all rest periods between
consecutive trips which are shorter than M minutes e.g. 30 minutes,

Duties attributes and characteristics are taken into account in scheduling process while selecting
feasible, efficient and acceptable duties per each depot and in sequencing duties into rosters. This
will be introduced in the next sections.

Given the schedule, staff type, set of depots and rules we can generate duty sets per each depot.

5.5.2 Formal Model

scheme DUTY = DuR = Duty x StfTp — Bool,
extend SCHEDULE with DuRS = DuR -set,
class DepR = Dep x Duty-set x StfTp— Bool,
type DepRS = DepR-set,
RestAttr, HRAttr, DtChar, OvDR = (Duty-set)-set x StfTp — Bool,
Ac == mk_trip(st: DateTime, tripl: Trip*, OvDRS = OvDR-set,
et: DateTime)| RS == check_acr(ar: AcRS)|
mk_rest(sr: DateTime, rsta: Sta, check_dur(dur: DuRS)|
ratt: RestAttr, er: DateTime)| check_dpr(dpr: DepRS))|
mk_hra(sh: DateTime, hsta: Sta, check_ovdsr(ovdsr: OvDRS)
hatt: HRAttr, eh: DateTime), value
Duty = Ac*, dt_maxlenght: StfTp — Tlnt,
DtAttr==ExtRest|Long|Overnight]| dt_char: Duty — DtChar,
HeavyOvernight, dt_attr: Duty — DtAttr
AcR = Ac x StfTp — Bool, end

AcRS = AcR-set,

Each duty is generated taking into account some depot and some staff type. The following is
a function which generates a duty set for a depot. It generates all possible duties for the depot.

gendep_dutys : Trip-set x StfTp x Dep x RS
— Duty-set
gendep_dutys(trps, stft, dep, rs) as ds
post (Vd: Duty «d € ds =
d = gen_duty(trps, stft, dep, rs)) A
~(3d": Duty » d’' =
gen_duty(trps, stft, dep, rs) A d’ & ds),

Each duty has to start and to end at the same depot and has to conform some rules. Rules are
related to the sequence of actions in a duty, maximal number of actions with a given characteristics,
rest time between actions, overall rest time, overall working time etc. These rules we will call rules
at a duty level. Given a trip set, a staff type, a depot and rules we can generate a duty for the depot.
The function below generates a duty such that its fist and its last action starts and respectively
finishes at the depot, the depot is a home depot for staff members of the given staff type and the
duty satisfy the rules.

gen_duty : Trip-set x StfTp x Dep x RS — Duty
gen_duty(trps, stft, dep, srs) as d
post is_wfd(d, stft, srs) A ac_dep(hd d, stft) = dep A
dt_endt(d) — dt_startt(d) < dt_maxlenght(stft) A
(3 trpl : Trip* -

5.5 ACTIONS AND DUTIES 61
belong(trpl, d) = trip_stft(trpl, stft, dep)),

is_wfd: Duty x StfTp x RS — Bool

is_wfd(dt, stft, rs) =
ac_dep(hd dt, stft) = ac_dep(dt(len dt), stft) A
comp_dtTrips(dt, stft) A conf_dt_rules(dt, stft, rs),

ac_dep : Ac x StfTp = Dep
ac_dep(ac, stft) as dep
post (3 dep”:Dep »
case ac of
mk_trip(st, tripl, et) —
dep € st_stftdep(sta(hd (hd tripl)), stft),
mk_rest(sr, rsta, ratt, er) —
dep € st_stftdep(rsta, stft),
mk_hra(sh, hsta, hatt, eh) —
dep € st_stftdep(hsta, stft)
end
A dep = dep’),

st_stftdep: Sta x StfTp — Dep-set

st_stftdep(st, stft) =

{dep| dep: Dep « dep € obs_StaDeps(st)A
is_exchgst(st, stft)},

/* checks if all the trips in a duty has the same characteristics from staff point of view x/
comp_dtTrips: Duty x StfTp — Bool
comp_dtTrips(dt, stft) =
(Vi: Nat « i € inds dt =
case dt(i) of
mk_trip(sti, tripli, eti) —
(Vji:Natejeindsdt Aj#i=
case dt(j) of
mk_trip(stj, triplj, etj) —
same_trpchr(hd tripli, hd triplj, stft)
end)
end),

same_trpchr: Trip x Trip x StfTp — Bool
same_trpchr(trpl, trp2, stft) =
same_trnchr(trip_trnchr(trpl), trip_trnchr(trp2), stft),

conf_dt_rules: Duty x StfTp x RS — Bool
conf_dt_rules(dt, stft, rs) = satf(dt, stft, rs) A
(Vi:Nat «i€ inds dt = conf_ac(dt(i), stft, rs)),

conf_ac: Ac x StfTp x RS — Bool
conf_ac(ac, stft, rs) =
case rs of
check_acr(acrs) —
(V acr: AcR « acr € acrs = acr(ac, stft))
end,

62 5 Rostering

/* checks if the rules for sequencing x/
/* actions in a duty are satisfied */
satf: Duty x StfTp x RS — Bool
satf(dt, stft, rs) =
case rs of

check_dur(durs) —

(V dur:DuR « dur € durs = dur(dt, stft))

end,

belong: Trip* x Duty — Bool
belong(tpl,dt) = (3 ac: Ac * ac € elems dt A
case ac of
mk_trip(st,tpl,et) — true
end),

trip_stft: Trip* x StfTp x Dep — Bool
trip_stft(trpl, stft, dep) =

let stfm = trip_stfchr(hd trpl) in

stft € dom stfm A dstft_num(dep, stft) > 0 end,

The set of all duties for a depot has to obey to some rules too. The rules/restrictions could be
related to a maximal number of duties with specific characteristics per depot, maximal number of
duties per depot etc. We will call these rules rules on a depot level.

The function below selects a subset of a duty set, generated on previous stage, such that it satisfies
the rules on the depot level and there is enough staff at the depot to perform the duty set.

seldep_dutys : Trip-set x StfTp x Dep x RS end,
— Duty-set
seldep_dutys(trps, stft, dep, rs) as ds enough_staff: Duty-set x StfTp x Dep —
post let dsl = gendep_dutys(trps, stft, dep, rs) Bool
inds C dsl A enough_staff(ds, stft, dep) =
conf_dts_deprules(dep, ds, stft, rs) A dutys_staff_numb(ds, stft) <
enough_staff(ds, stft, dep) end, dstft_num(dep, stft),
conf_dts_deprules: Dep x Duty-set x StfTp dutys_staff_numb: Duty-set x StfTp — Nat,
x RS — Bool /«the number of people should be equal to
conf_dts_deprules(dep,ds,stft, rs) = the number of duties, but in case of a
case rs of conductor staff type the number of people
check_dpr(dprs) — (V dpr: DepR « dpr € may be more than the number of duties as two
dprs = dpr(dep, ds, stft)) conductors may have the same dutiesx/

Finally given a trip set, a staff type, a depot set and rules we can generate a set of duties per
each depot.

gen_dutys : Trip-set x StfTp x Dep-set x RS (3! dep: Dep » dep € deps A
— (Duty-set)-set ds = seldep_dutys(trps, stft, dep, rs))) A
gen_dutys(trps, stft, deps, rs) as dss card dss = card deps,

post (V ds: Duty-set « ds € dss =

The union of generated sets of duties per each depot has to conform to some overall rules e.g.
the number of duties as a whole with a given characteristics not to exceed some defined number
etc. Also the generated duties as a whole has to cover all the trips that can be observed from
a schedule. Finally given a schedule, a staff type, set of depots and rules we can generate set of
duties per each depot such that the mentioned above constraints are satisfied.

5.6 ROSTERS AND STAFF MEMBERS 63

sel_dutyss : SCH x StfTp x Dep-set x RS —

(Duty-set)-set dt_lIsta: Duty — Sta
sel_dutyss(sc, stft, deps, rs) as dss dt_lIsta(dt) =
post let trps = gen_tripss(sc, stft) in case dt(len dt) of
dss = gen_dutys(trps, stft, deps, rs) A mk_trip(_, tripl, _) — trip_fsta(hd tripl),
cover(dss, trps) A conf_dts_ovr(dss, stft, rs) mk_rest(_, rsta, _, _) — rsta,
end, mk_hra(_, hsta, _, _) — hsta
end,

cover : (Duty-set)-set x Trip-set — Bool,
dt_starttime: Duty — DateTime
conf_dts_ovr: (Duty-set)-set x StfTp x RS — dt_starttime(dt) =

Bool case hd dt of

conf_dts_ovr(dss, stft, rs) = mk_trip(st, tripl, et) — st,
case rs of mk_rest(sr, rsta, ratt, er) — sr,
check_ovdsr(ovdsrs) — (V ovdsr: OvDR mk_hra(sh, hsta, hatt, eh) — sh
ovdsr € ovdsrs = ovdsr(dss, stft)) end,

end,

dt_endtime: Duty — DateTime
The following are some functions concerning 4i endtim e(dt) =

a duty and its characteristics. case dt(len dt) of
duty_dep: Duty x StfTp — Dep mk_trip(st, tripl, et) — et,
duty_dep(dt, stft) as dep mk_rest(sr, rsta, ratt, er) — er,
post dep € st_stftdep(dt_fsta(dt),stft), mk_hra(sh, hsta, hatt, eh) — eh
end,
dt_fsta: Duty — Sta
dt_fsta(dt) = duty_stft_num: Duty — StfTp - Nat
case hd dt of duty_stft_num(dt) as stfm
mk_trip(_, tripl, _) — trip_fsta(hd tripl), post (3 trpl: Trip* « belong(trpl, dt) =
mk_rest(_, rsta, _, _) — rsta, stfm = trip_stfchr(hd trpl))
mk_hra(_, hsta, _, _) — hsta
end,

5.6 ROSTERS AND STAFF MEMBERS

In this section we will explain the notion of a roster and how it is related to staff members.

5.6.1 Narrative

Rosters: During the second stage of staff rostering the duties generated at previous stage are
ordered in rosters which are long term working schedules assigned to specific staff members.
For each depot in a depot set, a separate staff rostering problem is solved considering only the
corresponding duties. We will introduce two help notions in order to explain the concept of roster
and its stages of generation.

A plan roster is a sequence of duties generated for anonymous staff members of the same staff
type. A base roster is a cyclic sequence of a plan roster such that it spans trough a planning
period determined by a schedule. In other words, a plan roster is that part of the base roster
which is repeated several times and a base roster is just a cyclic sequence of duties. Each base
roster has to satisfy some rules. The rules are about the order of duties in a consecutive days and
their attributes. Also there are some constraints concerning number of duties in a base roster with
determined attributes. These rules we will call conventionally rules at the roster level.

So given a schedule, a staff type, a depot and rules we can generate base rosters for the given
depot. These base rosters have to cover all the duties corresponding to this depot and have to

64 5 Rostering

conform to some rules. The rules at this level we will call conventionally rules at the overall roster
level.

All the duties in a base roster has to be performed by a specific staff member. We will call
roster a cyclic sequence of duties (base roster) for a specific staff member such that he/she could
perform them. So from a base roster and a staff type we can generate rosters. The number of staff
members assigned to the base roster is equal to the length of the plan roster. All staff members
perform the base roster but starting at a different day.

Staff Members:

During the assignment of duties in a base roster to staff members we consider specific staff mem-
bers. At this stage we are working with specific staff members as we are interested in their personal
information. From a staff member personal information we could observe his/her private infor-
mation (obs_PrInf) as date of birth, place of living, address etc. Also we could observe his qual-
ification (obs_Qual), special work requirements (obs_SpWrkReq) and the list of his/her previous
duties (obs_PrevDuty).

Given a base roster and a staff member we can observe his roster which is considered to his/her
attributes.

5.6.2 Formal Model

scheme ROSTER = value

extend DUTY with f:eRS — RS,

class obs_PrInf : Persinfo — Info,

type obs_SpWrkReq : Persinfo — WrkReq,
Info, WrkReq, Qualification, obs_PrevDuty : Persinfo — Duty*,
PIRos = Duty*, obs_PostDuty : Persinfo — Duty™,
BRos = PIRos x Nat, obs_Qualf : Persinfo — Qualification,
RoR = PIRos x StfTp — Bool, obs_PIPer : SCH — Nat,
RoRS = RoR-set,
OvR = BRos x StfTp — Bool, bros_length : BRos — Nat
OvRS = OvR-set, bros_length(bros) =
eRS == RS | check_ror(rrs : RoRS) | let (plros, rnumb) = bros in

check_ovrs(ovrs : OVRS), len plros end

Ros = SpecStfMbr + BRos end

The following function generates all possible base rosters for a given duty set (related to a
depot).

gen_dep_bross : SCH x StfTp x Dep x eRS — BRos
— BRos-set genbros_dep(sc, stft, dep, rs) as bros post
gen_dep_bross(sc, stft, dep, rs) as bross let ds = dep_dutyset(dep, stft) in
post (¥ bros : BRos « cover_rds(bros, ds)
bros € bross = end A wf_bros(bros, sc, stft, rs),
bros = genbros_dep(sc, stft, dep, rs)) A
~(3 bros’ : BRos ¢ cover_rds : BRos x Duty-set — Bool,
bros’ = genbros_dep(sc, stft, dep, rs) A
bros’ & bross), wf_bros : BRos x SCH x StfTp x eRS
— Bool

genbros_dep : SCH x StfTp x Dep x eRS wf_bros(bros, sc, stft, rs) =

let (plros, rnumb) = bros in
same_qualific(plros, stft) A
conform_cplrosrs(plros, stft, rs) A
len plros * rnumb = obs_PIPer(sc)
end,

same_qualific : PIRos x StfTp — Bool

same_qualific(plros, stft) =

(Vi:Nat e« {i,i+ 1} C inds plros =
sm_qual(plros(i), plros(i + 1))),

sm_qual : Duty x Duty — Bool,

conform_cplrosrs : PIRos x StfTp x eRS
— Bool

5.6 ROSTERS AND STAFF MEMBERS 65

conform_cplrosrs(plros, stft, rs) =
conform_plrosrs(plros, stft, rs) A
let cycros = (plros(len plros)) ~
(hd plros) in
conform_plrosrs(cycros, stft, rs)
end,

conform_plrosrs : PIRos x StfTp x eRS
— Bool
conform_plrosrs(plros, stft, rs) =

case rs of

check_ror(rrs) —

(Y rr: RoR » rr € rrs = rr(plros, stft))
end,

The generated, on previous stage, set of base rosters has to conform to some rules as maximal
percentage of base rosters with particular characteristics etc.

sel_dep_bross: SCH x StfTp x Dep x eRS
— BRos-set
sel_dep_bross(sc, stft, dep, rs) as bross
post let brossl = gen_dep_bross(sc, stft,
dep, rs) in bross C brossl A
conform_bros_rules(bross, stft, rs)
end,

conform_bros_rules : BRos-set x StfTp x eRS

— Bool
conform_bros_rules(bross, stft, rs) =
(V bros: BRos * bros € bross =
case rs of

check_ovrs(ovrs) —

(V ovr : OVR «

ovr € ovrs = ovr(bros, stft))

end),

Having a base roster and a staff type and a depot we can produce rosters for the specific staff

members of the given staff type.

gen_ssmros : BRos x StfTp x Dep — Ros
gen_ssmros(bros, stft, dep) as ros
post let sms = dstft_gr(dep, stft) in
ros = assignment(bros, sms) A
card dom ros = bros_length(bros)
end,

dstft_gr : Dep x StfTp — Staff
dstft_gr(dep, stft) =
let anstaff = dstft(dep, stft) in

get_staff(anstaff)
end,

get_staff: AnonStaff — Staff
get_staff(anstaff) as staff
post (V asm: AnonStfMbr « asm €
rng anstaff =
(3! ssm: SpecStfMbr « ssm € rng staff A
obs_Name(asm) = obs_Name(ssm)))

Given a base roster and staff we assign specific staff members to the base roster such that we
receive a set of rosters. The number of rosters is equal to the length of the base roster. All the
rosters are permutations of the base roster. So at this stage of planning we assign specific staff
members to duties in the plan roster (cyclic part of the base roster).

assignment : BRos x Staff — Ros

assignment(bros, staff) as ros

post (V dt : Duty « duty_in_bros(dt, bros)=
(3! ssm : SpecStfMbr « ssm € dom ros A
dt = first_bros_duty(ros(ssm)) A
conform_rsm(ros(ssm),ssm) A

permutation(ros(ssm), bros)))
pre card rng staff > bros_length(bros),

duty_in_bros: Duty x BRos — Bool
duty_in_bros(dt, bros) =
let (plros, rnumb) = bros in

66 5 Rostering

dt € elems plros end, first_bros_duty(bros) =
let (plros, rnumb) = bros in
first_bros_duty: BRos — Duty hd plros end,

Each roster is assigned to a specific staff member according to his/her qualification, special
work requirements and previous duties such that he/she could perform it.

conform_rsm : BRos x SpecStfMbr — Bool obs_SpWrkReq(obs_PersInfo(ssm))),

conform_rsm(bros, ssm) =

satisfy_qual(bros, satisfy_qual : BRos x Qualification — Bool,
obs_Qualf(obs_PersInfo(ssm))) A satisfy_predt : BRos x Duty* — Bool,
satisfy_predt(bros, satisfy_swr : BRos x WrkReq — Bool,
obs_PrevDuty(obs_PersInfo(ssm))) A

satisfy_swr(bros, permutation: BRos x BRos — Bool,

Finally we generate the rosters for the given depot and staff type such that for each base roster
generated at the previous stage we generate rosters.

gen_sross : SCH x StfTp x Dep x eRS — Ros (V bros : BRos ¢ bros € bross =
gen_sross(sc, stft, dep, rs) as ros ros = gen_ssmros(bros, stft, dep))
post let bross = end,

sel_dep_bross(sc, stft, dep, rs) in

All rosters are generated taking into account a staff type. So using the function above we can
generate all rosters per depot for all staff types related to this depot. In this case to generate
rosters per depot we will need only the schedule, the depot and the rules.

dep_rosters : SCH x Dep x eRS — A card dep_stftypes(dep) =
StfTp - Ros card dom stft_ross,
dep_rosters(sc, dep, rs) as stft_ross
post (3! stft : StfTp « dep_stftypes : Dep — StfTp-set
stft € dep_stftypes(dep) = dep_stftypes(dep) = {stft| stft: StfTp »
let rset = gen_sross(sc, stft, dep, rs) in 3 ssm: SpecStfMbr o
stft_ross = [stft — rset] end) obs_SMDep(ssm) = dep},

Base rosters and respectively rosters are generated per depot and we have the assumption that
after the staff scheduling stage all duties generated per depot are shifted to the depot. If this is not
the case we could observe all the duties generated in staff scheduling stage per depot (dep_dutyset)
which will help us to integrate the two stages in staff planning into one. So given a schedule, a
staff type, a set of depots and rules we will produce all rosters per each depot in the depot set for
the given staff type.

obtain_ross : SCH x StfTp x Dep-set x eRS dep_dutyset(dep, stft) € dtss)) end A
— Ros-set card rosset = card deps,
obtain_ross(sc, stft, deps, rs) as rosset
post let dtss = sel_dutyss(sc, stft, deps, f(rs)) dep_dutyset: Dep x StfTp — Duty-set
in (V ross : Ros ¢ ross € rosset = dep_dutyset(dep, stft) =
(3! dep : Dep « dep € deps = {dt| dt: Duty * dep = duty_dep(dt, stft)}
ross = gen_sross(sc, stft, dep, rs) A

The rest is a small part of the possible functions for operating with staff members in depots.

hire_sm: SpecStfMbr x Staff = Staff
hire_sm(ssm, stf) = stf U
[obs_Name(ssm) +— ssm |
pre (V ssm”: SpecStfMbr « ssm’ € rng stf =
obs_Name(ssm’) # obs_Name(ssm)) A
ssm ¢ rng stf,

fire_sm: SpecStfMbr x Staff = Staff
fire_sm(ssm, stf) = stf \ {obs_Name(ssm)}
pre obs_Name(ssm) € dom stf,

hired_sm: SpecStfMbr x Staff — Bool
hired_sm(ssm, stf) = ssm € rng stf,

add_specsm: AnonStfMbr x Persinfo x Name
— SpecStfMbr
add_specsm(asm, pinf, nm) as ssm

5.6 ROSTERS AND STAFF MEMBERS 67

post obs_Name(asm) = nm A
obs_SMStfTp(asm) = obs_SMStfTp(ssm) A
obs_SMDep(asm) = obs_SMDep(ssm) A
obs_PersInfo(ssm) = pinf,

get_specsm : AnonStfMbr x Persinfo

— SpecStfMbr

get_specsm(asm, pinf) as ssm

post obs_Name(asm) = obs_Name(ssm) A
obs_PersInfo(ssm) = pinf,

dep_staff : Dep — Staff

dep_staff(dep) =

let anstaff = depStfMbrs(dep) in
get_staff(anstaff)

end

Part IV

Train Monitor & Control

6

Station Interlocking
Martin Pénicka and Dines Bjgrner

Contents
6.1 Route Descriptionsciiiiiiiiiiiiiiiiiiiiiiinniennns 71
6.2 Petri Net for a Unitiiiiiiiiniiiiinnnneeeeennnnaaannas 71
6.3 Petri Net for a Switchottt ittt 72
6.4 Petri Net foraSignal...........iuiiiiiiiiiiiiiiieiiiinnnnnns 72
6.5 Constructing the Petri Net for a Route 73
6.6 DISCUSSION .ottt i ittt ittt tneeeeeereeonneeeeesoennnnaaannas 73

6.1 Route Descriptions

Routes are described in terms of Units, Switches, Signals and Interlocking tables. In the previous
section 6.1 in paragraphs 23 and 24 the route is defined as a sequence of pairs of units and paths,
such that the path of a unit/path pair is a possible path of some state of the unit, and such that
”neighboring” connector are identical. There can be many such routes in the station. We are only
interested in routes which start at the signal and end either at the track or on the line. In the
example station in Figure 6.1 you can find 16 such routes.

-Bs
/-sam 3 Sig>L3 N\)
—X,—P 2t -4 1 p——5- «—v-
SigiL v Ps sigr1 sigt P4 SigR
—Xy—pm L —q 2 _
17l sig2L Ps SigR2 SigL2

Fig. 6.1. Example Station.

All routes for each station are written in Interlocking tables. For each route inside the station
the required setting of each switch and signal in the station are written in the Interlocking table.
If there are no requirements on the setting, it is marked with —.

In paragraph 25 in section 6.1 you can find that route can be open or close. The route can be
open only when all requirement for the route in the Interlocking table are full-filled.

The Interlocking table for the example station in Figure 6.1 is shown in Table 6.1.

We can now start to construct Petri Net for the interlocking routes inside the station. We build
this Petri Net from for subparts: for a Unit, for a Switch and for a Signal.

6.2 Petri Net for a Unit

The Petri Net for a Unit is extremely simple — it consists of a single place. If the place is marked,
the Unit is free, otherwise it is either blocked or occupied. A unit is free if and only if it is not
part of a route.

72 6 Station Interlocking

Requirements: Switches Signals
Routes pl p2 p3 p4 p5 p6|SiglL Sig2l, Sigl.1 Sigl.2 Sigl.3 SigR SigR1 SigR2 SigR3
1. SiglL —1 S-S -8 -] G — — — - R - R
2. SiglL — 3 S-S -T -] G — — — — R - R
3. Sig2L — 1 T -T - S -| R G - - - R R R
4. Sig2L — 2 S - S - - —-| - G — - - - R -
5. Sig2L — 3 T-T-T -] R G — — — — R R R
6. SigLl — Y - S-S -S| - - G R R R - - -
7. Sigl2 —Y - T -S - S| - — R G R R - -
8. Sigl3 —Y - - -T -T| - — R R G R - -
9. SigR — 1 - S-S -S| - — R R R G - - -
10. SigR — 2 - T - S - S| - — R R R G - - -
11. SigR — 3 - - -T - T - - R R R G - - -
12. SigR1 — X3 S-S -S -| R - - G — R
13. SigRl— X, |T - T - S —-| R R — — G R R
14. SigR2 — X, S - S - - -] - R - - - - G -
15. SigR3 — Xu S - S -T -] R — — — — R — G
16. SigR3— X, |T — T - T —-| R R — — — — R R G

Table 6.1. Interlocking table for routes through the example station.

6.3 Petri Net for a Switch

A typical switch has two settings: Straight and Turn. A switch may be required to be set in certain
position in two ways: as a direct part of the route, or because it must be set for side protection.
In the both cases, the switch is blocked. A blocked switch may not change setting.

The Petri Net for a switch has two places representing the two settings Straight and Turn. The
initial marking consists of n tokens at the Straight place, where n is the number of routes which
require setting of that switch. The switch can change state if and only if all n tokens are available.
With the example in Figure 6.1 and its Interlocking table (Table 6.1), one finds that for switch p1,
n=10, for switch p2, n=4, etc. If less than n tokens are available, the Switch is blocked. This will
ensure that the switch can only change when no route that requires a particular setting is active,
but still the switch can be part of several routes, as long as these routes require the switch to be
in the same setting. These requirements are captured by the Petri Net in Figure 6.2(a).

m m
Red Green
n n m m

(a) & (b) &

Fig. 6.2. (a) Petri Net for a Switch, (b) Petri Net for a Signal

6.4 Petri Net for a Signal

The Petri Net for a signal also has two places representing the two settings Green and Red!. The
initial marking consists of m tokens at the Red place, where m is the number of routes which
require setting of that signal. The signal can only change state if all m tokens are available. With
the example 6.1 and its Interlocking table 6.1 one can easily find that for signal Sigl L, m = 8, for

! This is a simplistic view — a real signal is able to indicate the speed with which it may be passed.

6.6 Discussion 73

signal Sig2L, n = 6, etc. The signal can only change setting if all m tokens are available. This will
ensure that it can only change when no route that require a particular setting is active, but still
the signal can be part of several routes, as long as these routes require the signal to be in the same
setting. These requirements are captured by the Petri Net in Figure 6.2(b).

6.5 Constructing the Petri Net for a Route

The Petri Net for a route also has two places representing the two states: Open and Closed. The
initial marking consists of one token at the Closed place. The basic Petri Net for a route is shown
in Figure 6.3(a). This corresponds to the route that has no requirements on switches, signals or

units.
1 1 1
1
RClose ROpen Free ¥ Close #
o oW
WQ! ®ey O
l 1 I 1) 1 Il
(b) @ >

Fig. 6.3. Additions for (a) Petri Net for a Route , (b) Additions for unit requirement

(a) @

The route can be open, when all units that the route is composed of, are not occupied by train
or blocked by another route in the station. Figure 6.3(b) shows how to add this unit requirement.

For each switch requirement it must be ensured that the switch cannot change setting while the
route is open. This requirement is captured in the Petri Net in Figure 6.4. Note, that in the figure
it is assumed the route requires the switch to be set to Turn. The case for Straight is obvious.

n I n
Straight
e
5« Turn
n I n

Fig. 6.4. Additions for (a) switch requirement (b) signal requirement

(a) @

Figure 6.4(b) illustrates adding a signal requirement. The Figure illustrates the situation where
the signal is required to be Red. The case for Green is obvious.

6.6 Discussion
Elsewhere it is shown how to formally integrate specifications expressed in RSL with such which are

expressed, as in this chapter, using Petri Nets [37, 36, 9]. Chapters 12 of Vol. 2 of [10] consolidates
the above.

7

Signalling on Lines
Martin Pénicka and Dines Bjgrner

Contents
Tl Narrative ..ot i i it ittt ittt ittt ittt 75
7.1.1 General Line Segment i 76
7.1.2 First Line Segment 76
7.1.3 Last Line Segment 7
7.2 State Chartsoiutiiiiiiiii ittt ittt 77
7.2.1 General Model 7
7.2.2 First, General and Last Segments................. 7
7.2.3 Line with one Segment 7
7.2.4 The line with two segments 7
7.3 Discussionuiiiiiiiiiiiiiii i i i i it e e 78

The problem with high train speed and low coefficient of friction between train wheels and
track is that the drivers cannot stop their trains within sighting distance of another train or within
sighting distance of a signal. This is the reason why automatic signaling is used on some lines. If
there are junctions or turnouts then ’semi-automatic signalling’ is required. Station interlocking
systems are described in chapter 6.

In this chapter we first describe in natural language (as apposed to formal description) the prin-
ciple of automatic line signalling. Then we give formal description examples using State Charts [18]
of what we have described. Finely we give precise formal description of the charts and description
of the State Charts in RAISE ([16]).

7.1 Narrative

Lines are usually divided into segments [= (s1, $2, ..., $i—1, Si, Sit1, ---, Sn.). Line [connects exactly
two stations - staA and staB. A line can be in one of three possible states: ‘OpenAB’, ‘OpenBA’
and ‘Close’. These states and their possible transition are described in detail in chapter 8 on Line
Direction Agreement.

1 sigBA | sigBA. sigBAy sigBA |
StaA I T sigAB., lsigdB, lsigdB,., | oo IsigaB, ! StaB
(%] Ay Si-1 S; Siv1 S

Fig. 7.1. Automatic Line Signalling

Each segment can be in two states: ‘segFree’ and ‘segOccupied’. Segment s; is in ‘segFree’ when
no train is detected in the segment. Segment s; is in ‘segOccupied’ when a train is detected in the
segment.

76 7 Signalling on Lines
7.1.1 General Line Segment

For each inner segment s;, where ¢ = (2,...,n — 1), there are two signals sigAB; and sigBA; (one
in each direction of travel).
With each signal we associate four possible states: ‘sigOnRed’, ‘sigOnYellow’, ‘sigOnGreen’

and ‘sigOff’.

Signal sigAB; is in

‘sigOnRed’ state, when line [is in ‘OpenAB’ state and segment s; is in ‘segOccupied’ state,

‘sigOnGreen’ state, when line [is in ‘OpenAB’ state and both segment s; and s;11 are in ‘segFree’
state,

‘sigOn Yellow’ state, when line [is in ‘OpenAB’ state and segment s; is in ‘segFree’ and segment
si+1 are in ‘segOccupied’ state,

‘sigOff’ state, when line [is in ‘OpenBA’ or ‘Closed’ state.

Signal sigBA; is in

‘sigOnRed’ state, when line [is in ‘OpenBA’ state and segment s; is in ‘segOccupied’ state,

‘sigOnGreen’ state, when line [is in ‘OpenBA’ state and both segment s; and s;_; are in ‘segFree’
state,

‘sigOnYellow’ state, when line [is in ‘OpenBA’ state and segment s; is in ‘segFree’ and segment

si—1 are in ‘segOccupied’ state,

state, when line [is in ‘OpenAB’ or ‘Closed’ state.

‘sigOff’

sigOnGreen

sigOnYellow

sigOnRed

%)

Fig. 7.2. Possible transmissions of signal states

Each segment has two signals, each signal can be in four states. One can calculate total number
of 16, but possible combinations are:

sigAB; sigBA;
‘sigOnRed’ ‘sigOff’
‘sigOnYellow’| ‘sigOff’
‘sigOnGreen’ ‘sigOff’
‘sigOff’ ‘sigOff’
‘sigOff’ ‘sigOnRed’
‘sigOff’ |‘sigOnYellow’
‘sigOff’ ‘sigOnGreen’

7.1.2 First Line Segment

For segment s; there is only only one signal sigBA;, for segment s,, there is only one signal sigA B,
(see figure 7.1). The signals in the opposite directions (sigA By and sigBA,,) are controlled manually
in the stations. The details description of the station interlocking is given in chapter 6.

7.1.3 Last Line Seg

To increase the total capacity of line these states can be extended by one more state.

7.2 State Charts

In this section, we show how description of automatic line signalling can be expressed by using

state charts [18].

ment

7.2.1 General Model

7.2 State Charts

'AUTOMATIC LINE SIGNALLING

SEGMENT(1) SEGMENT() SEGMENT(n)

SIGNAL n BA-DIRECTION SIGNALInAB-DIRECTION | SIGNAL n BADIRECTION 'SIGNALin AB-DIRECTION
OFF. OFF OFF OFF

soomishl Repiecema sovreciontl Moo seoeea] R e

SIGNALON

SIGNAL ON

SIGNALON

SIGNALON

1%}

Fig. 7.3. General State Charts for Automatic Line Signalling

7.2.2 First, General and Last Segments

SEGMENT(1)

BA-

fa M

OFF
LINE

Fig. 7.4. First, General and Last Segments

DIRECTION

7.2.3 Line with one Segment

%)

SEGMENT()

AB-DIRECTION

@, [SiohA
OFF

SetDrecions

BA-DIRECTION

SIGNALON

2906

i)
S
SIGNAL
RED

SEGMENT(n)

There are no signals to be controlled automatically.

7.2.4 The line with two segments

We refer to Fig. 7.5 on the following page.

L]
o

AB-DIRECTION

swienore]

OFF
LINE

o ——

7

78 7 Signalling on Lines

AUTOMATIC LINE SIGNALLING
SEGMENT(1) SEGMENT(2)
SIGNAL in BA-DIRECTION SIGNAL in AB-DIRECTION
e, A AEET
OFF
Frn— i S,
SIGNALON
SIGNAL
GREEN

SIGNAL
YELLOW

(Gl
YELLOW

ot

oo

SIGNAL
RED

Fig. 7.5. Two Segments

7.3 Discussion

Elsewhere it is shown how to formally integrate specifications expressed in RSL with such which are
expressed, as in this chapter, using Statecharts [37, 36, 9]. Chapter 14 of Vol. 2 of [10] consolidates
the above.

8

Line Direction Agreement
Martin Pénicka and Dines Bjgrner

Contents
8.1 Narrative . . ov ittt ittt ittt et tie ettt teneeaeeeeneeanenas 79
8.2 State Charto vttt ittt ittt ittt teneeoneeeneeanenas 80
8.3 LiveSequence Charts..........c.iuiuiiiiiiiiiiinnnnneesononnnnns 80
8.4 DiSCUSSION & ittt ittt it ittt e ittt ettt 81

In this chapter we first describe in natural language the principle of Line Direction Agreement
Device. Then we give formal description examples using State-Charts and using Live Sequence
Charts of what we have described. Finely we give precise formal description of the charts and
description of the State-Charts and Live Sequence Charts in RAISE ([16]).

Each line connects exactly two stations. At any point in time, the line can be open in at most
one direction. This is to protect head-on train crashes on the line.

In the old days, a sheet of paper was used and only that station, which had the sheet, could
send trains to the line. The sheet was sent by trains between stations. Later on, the sheet of paper
was replaced by abstract token transited electronically (Electric Token Block or Radio Electronic
Token Block).

8.1 Narrative

The Line Direction Agreement System (LDAS) is a device that is responsible for fail-safe commu-
nication (token transition) and train direction control on the line between two stations.

Let us have a line [that connects two stations - called staA and staB. The line can be in either
of three states: ‘OpenAB’, ‘OpenBA’ and ‘Close’. On that line LDAS device is installed.

AgreeA
DisagreeA
AskChangeA

AgreeB
DisagreeB
AskChangeB

Sta B C‘/%

Fig. 8.1. Comunication with LDAS

Both stations communicate with the LDAS (see figure 8.1). From the first station Sta4 to LDAS
there are three types of commands, which can be sent: ‘AskChangeA’, ‘AgreeA’ and ‘ DisagreeA’.
From the second station StaB to LDAS there are three types of commands, which can be sent:
‘AskChangeB’, ‘AgreeB’ and ‘DisagreeB’. LDAS sends either of three different commands ‘Open’,
‘Close’ or ‘AskChange’.

80 8 Line Direction Agreement

8.2 State Chart

The behavior of the LDAS in response to internal and external stimuli depends on the state(s)
it is currently in. That is the reason, why we for graphical representation of internal behavior
introduce StateChart [18]. StateCharts are represented graphically as so-called higraphs. Complete
StateChart that represent internal behavior of LDAS is shown in Fig. 8.2.

LDAS can be either one of several states during its operation. The five most important states
are ‘LockedAB’, ‘LockedBA’, ‘AskedAB’, ‘ AskedBA’ and ‘Dead’. All possible transmissions between
these states are shown as an arrow with a label.

(" LpAs ™

(" ON-LINE N

AB-DIRECTION BA-DIRECTION

Agreeh |

AgreeB
<

AgreeB #Fa"“’e AgreeA

(" OFF-LINE R

INIT !’ DEAD INIT
L AB IntAB TniBA BA

Fig. 8.2. LDAS - State Chart

8.3 Live Sequence Charts

In this section possible scenarios of communications be graphical representation of LDAS is de-
scribed. All possible scenarios can be expressed by Live Sequence Charts. In total, there are eight
possible scenarios, four in each direction. These scenarios

A station receiving ‘Open’ command for line [from LDAS is thus told that the line [is open
from that station (trains can travel from that station to the line).

A station receiving ‘Close’ command for line ! from LDAS is thus told means, that the line is
close from that station (no train is allowed to leave from that station to the line).

A station receiving ‘AskChange’ command for line [from LDAS is thus told that the line is
open from that station but that other station is asking for direction change. A reply is expected.

SA LDAS SB
SA LDAS SB I___I I___I
D e N e\ T T - AN
/ LDAS OFF)\ 7 '(_LoAs oFF N
< \ 7/
AN InitAB 7 N InitBA ,
N . N ,
AskChangeA AskChangeB
Wailing for Walting for
ation managey tation managey

Fig. 8.3. Initializations to AB- and BA-Direction

LDAS ON; Direction BA, Line Free

AskChangeA

AskChangeA

Watftit

tation managey

g or

LDAS ON; Direction AB, Line Free

AskChangeB

AskChangeB

Walting for
tation manager/

Fig. 8.4. Change Direction Requests

% SA LDAS sB SA
//—_ ______ g _ Wating for _>\\
station managey \
N Agree i
. ;
AgreeA
Close Open
[%)
Fig. 8.5. Change Direction Approvals
% SA LDAS SB
% Tttt aiting for \“\
, ation manager/) '\
AN Disagree ,/
N ,
DisagreeA
Close
%)
SA LDAS sB
/T Waingtor \ |
7 \dation managey
\ Disagree
AY
DisagreeB
Close
%)

8.4 Discussion

8.4 Discussion 81

LDAS sB %
//'(Waiting for \ > _______ N
7/ \Mtation managey
<

\

\ ’

Open

AgreeB

Close

Fig. 8.6. Change Direction Disapprovals

Elsewhere it is shown how to formally integrate specifications expressed in RSL with such which
are expressed, as in this chapter, using Statecharts and Live Sequence Charts [37, 36, 9]. Chapters
13 and 14 of Vol. 2 of [10] consolidates the above.

Part V

The CyberRail Concept

9

Towards a Formal Model of CyberRail

Dines Bjgrner et al.!

Contents
9.1 Background............i i i i i e e 85
9.2 A Rough Sketch Formal Model oo iiiiiiinnnn.. 85
9.2.1 An Overall CyberRail System o i .. 85
9.2.2 Travellerso 86
9.2.3 Cyber . 88
9.3 Conclusionoviiiiiiiiiiiiiiiiiiiiiiiiii ittt it i i 920
9.4 A CyberRail Bibliographyttt 920

9.1 Background

Based on a number of reports and publications, primarily by Takahiko Ogino [39], [40], [41] (in
these proceedings), and [42], on the emerging concept of CyberRail, we attempt to show what
a formal domain model of CyberRail might look like, and what benefits one might derive from
establishing and having such a formal model.

The background for the work reported in this chapter is threefold: (i) Many years of actual
formal specification as well as research into how to engineer such formal specifications, by the first
author, of domains, including the railway domain [1] [2] [3] [4] [5] [8] [6] [7] [9] — using abstraction
and modelling principles and techniques extensively covered in three forthcoming software engi-
neering textbooks [10]. (ii) A term project with four MSc students. And (iii) Some fascination as
whether one cold formalise an essence of the novel ideas of CyberRail. We strongly believe that we
can capture one crucial essence of CyberRail — such as this paper will show.

The formalisation of CyberRail is expressed in the RAISE [17] Specification Language, RSL [16].
RAISE stands for Rigorous Approach to Industrial Software Engineering. In the current abstract
model we especially make use of RSL’s parallel process modeling capability. It builds on, ie., borrows
from Tony Hoare’s algebraic process concept of Communicating Sequential Processes, CSP [28].

9.2 A Rough Sketch Formal Model

9.2.1 An Overall CyberRail System

CyberRail consists of an index set of traveller behaviours and one cyber behaviour “running” in
parallel. Each traveller behaviour is uniquely identified, p:Tx. Traveller behaviours communicate

! Work done together with students: Peter Chiang, Morten S.T. Jacobsen, Jens Kielsgaard Hansen,
and Michael P. Madsen, Section of Computer Science and Engineering, Institute of Informatics and
Computer Engineering, Technical University of Denmark, DK—2800 Kgs.Lyngby, Denmark, and with
Martin Pénicka

86 9 Towards a Formal Model of CyberRail

with the cyber behaviour. We abstract the communication medium as an indexed set of channels,
ct[p], from the cyber behaviour to each individual traveller behaviour, and tc[p], from traveller
behaviours to the cyber behaviour. Messages over channels are of respective types, CT and TC.
The cyber behaviour starts in an initial state w;, and each traveller behaviour, p, starts in some
initial state mo;(p).

type
Tx, ¥, 2, CT, TC
MY =Tx & X

channel

{ct[p]:CT,tc][p |:TC|p:Tx}, cr:CR, rc:RC
value

mo;: MY, w;:2

cyberrail_system: Unit — Unit
cyberrail_system() = || { traveller(p)(mo,(p)) | p:Tx } || cyber(w)

cyber: 2 — in {tc[p]|p:Tx},cr out {ct[p]|p:Tx},rc Unit
cyber(w) =
cyber_as_server(w) [] cyber_as_proactive(w) [| cyber_as_co_director(w)

traveller: p:Tx — X — in ct[p] out tc[p] Unit
traveller(p) (o) = active_traveller(p)(o) [] passive_traveller(p)(o)

The cyber behaviour either acts as a server: Ready to engage in communication input from
any traveller behaviour; or the cyber behaviour acts pro—actively: Ready to engage in performing
output to one, or some traveller behaviours; or the cyber behaviour acts in consort with the
“rest” of the transportation market (including rail infrastructure owners, train operators, etc.), in
improving and changing services, and in otherwise responding to unforeseen circumstances of that
market.

Similarly any traveller behaviour acts as a client: Ready to engage in performing output to the
cyber behaviour; or its acts passively: Ready to accept input from the cyber behaviour.

9.2.2 Travellers
Active Travellers

Active traveller behaviours alternate internally non—deterministically, ie., at their own choice,
between start (travel) planning st_pl, select (among suggested) travel plan(s) se_pl, change (travel)
planning ch_pl, begin travel be_tr, board train bo_tr, leave train Iv_tr, ignore train ig_tr, cancel
travel ca_tr, seeking guidance se_gu, notifying cyber no_cy, entertainment ent, deposit resource
de_re (park car, ...), claim resource cLre (retreive car, ...), get resource ge_re (rent a car, ...),
return resource re_re (return rent-car, ...), going to restaurant rest (or other), change travel
ch_tr, interrupt travel in_tr, resume travel re_tr, leave train le_tr, end travel en_tr, and many
other choices. Each of these normally entail an output communication to the cyber behaviour, and
for those we can assume immediate response from the cyber behaviour, where applicable.

value
active_traveller: p:Tx — X — out t¢[p] in ct[p] Unit
active_traveller(p)(o) =
let choice = st_pl [] ac_pl [| chopl [] en_tr [] ... [] le_tr [] te_tr in
let o/ = case choice of
st_pl — start_planning(p)(o),
se_pl — select_travel plan(p)(o),
ch_pl — change_trael_plan(p)(o),

9.2 A Rough Sketch Formal Model 87

be_tr — begin_travel(p)(o),
bo_tr — board_train(p)(o),
-y

le_tr — leave_train(p)(o),
en_tr — end_travel(p)(o),
=

end in
traveller(p)(c’) end end

start_planning: p:Tx — X — out t¢[p] in ct[p] ¥
start_planning(p)(o) =

let (¢/,plan) = magic_plan(o) in

tc[p]!plan;

let sps = ct[p]? in updateX'((plan,sps))(c’) end end

updateX’: Update — X — X

type
Update == mkInP1Res(ip:InitialPlan,ps:Plan-set) | ...

Passive Travellers

When not engaging actively with the cyber behaviour, traveller behaviours are ready to accept
any cyber initated action. The traveller behaviour basically “assimilates” messages received from
cyber — and may make use of these in future.

value
passive_traveller: p:Tx — X — in ct[p] out tc[p] Unit
passive_traveller(p)(c) = let res = ct[p]? in updateX(res)(o) end

Active Traveller Actions

The active_traveller behaviour performs either of the internally non—deterministically chosen
actions: start_planning, select_travel plan, change_travel _plan, begin_travel, board_train, ...,
leave_train, or end_travel. They make use only of the “sum total state” (o) that that traveller
behaviour “is in”. Each such action basically communicates either of a number of plans (or parts
thereof, here simplified into plans). Let us summarise:

type
Plan
Request = Initial Plan | Selected_Plan | Change_Plan | Begin_Travel
| Board_Train | ... | Leave_Train | End_Travel | ...
Initial Plan == mkIniP1(pl:Plan)
Selected_Plan == mkSelP1(pl:Plan)
Change_Plan == mkChgP1(pl:Plan)
Begin_Travel == mkBTrav(pl:Plan)
Board_Train == mkBTrai(pl:Plan)

Leave_Train == mkLeTr(pl:Plan)

End_Travel == mkEnTr(pl:Plan)
value

vV f: pTx = X — out tc[p] ¥

magic_f: 3 — X' x Request

f(p)(o) = let (0’,req) = magic_f(o) in tc[p]lreq;o’ end

88 9 Towards a Formal Model of CyberRail

The magic_functions access and changes the state while otherwise yielding some request. They
engage in no events with other than the traveller state. There are the possibility of literally
“zillions” such functions, all fitted into the above sketched traveller behaviour.

9.2.3 cyber
cyber as Server

cyber is at any moment ready to engage in actions with any traveller behaviour. cyber is assumed
here to respond immediately to “any and such”.

value
cyber_rail_as_server: 2 — in {tc[p]|p:Tx} out {ct[p]|p:Tx} Unit

cyber_rail_as_server(w) =
[] {let req = tc[p]? in cyber(serve_traveller(p,req)(w)) end | p:Tx}

serve_traveller: p:Tx x Req — 2 — in {tc[p]|p:Tx} out {ct[p]|p:Tx} 2
serve_traveller(p,req)(w) =
case req of
mkIniPl(pl) —
let (w',pls) = sugg_pls(p,pl)(w) in ct[p]!pls;cyberrail(w’) end
mkSelPl(pl) —
let (w’,res) = res_pl(p,pl)(w) in ct]p]'book;cyberrail(w’) end
mkChgPl(pl) —
let (w',pl’) = chg_pl(p,pl)(w) in ct[p]!pl;cyberrail(w’) end
mkBTrav(pl) — ...
mkBTrai(pl) — ...

mkLeTr(pl) — ...
mkEnTr(pl) — ...
end

cyber as Pro—Active

cyber, on its own volition, may, typically based on its accumulated knowledge of traveller be-
haviours, engage in sending messages of one kind or another to selected groups of travellers.
Section 9.2.3 rough sketch—formalises one of these.

type
CR_act == gu_tr | no_tr | co_tr | wa_tr | ...
value
cyber_as_proactive: {2 — out {ct[p]|p:Tx} Unit
cyber_as_proactive(w) =
let cho = gu_tr [] no_tr [] co_tr [| wa_tr [| ... in
let w’ = case cho of gu_tr — guide_traveller(w),
no_tr — notify_traveller(w),
co_tr — commercial to_travellers(w),
wa_tr — warn_travellers(w),
..— ...end in

cyber(w’) end end

9.2 A Rough Sketch Formal Model 89
cyber as Co—Director

We do not specify this behaviour. It concerns the actions that cyber takes together with the
“rest” of the transportation market. One could mention input from cyber_as_co_director to the
train operators as to new traveller preferences, profiles, etc., and output from the rail (ie., net)
infrastructure owners or train operators to cyber_as_co_director as to net repairs or train shortages,
etc. The decomposition of CyberRail into cyber and the “rest”, may — to some — be articificial,
namely in countries where there is no effective privatisation and split—up into infrastructyre owners
and train operators. But it is a decomposition which is relevant, structurally, in any case.

cyber Server Actions

We sketch:

value
sugg_plans: p:Tx x Plan — 2 — 2 x Plan-set
res_pl: p:Tx x Plan — 2 — 2 x Plan
chg pl: p:Tx x Plan — 2 — 2 x Plan

There are many other such traveller instigated cyber actions.

Pro—Active cyber Actions

We rough sketch just a single of the possible “dozens” of cyber inititated actions versus the
travellers.

value
guide_traveller: 2 — out {ct[p]|p:Tx} 2
guide_traveller(w) =
let (w',(ps,guide)) = any_guide(w) in broadcast(ps,guide) ; w’ end

any_guide: 2 — {2 x (Tx-set x Guide)

notify_traveller: {2 — out {ct[p]|p:Tx} 2
commercial_to_travellers: 2 — out {ct[p]|p:Tx} 2
warn_traveller: 2 — out {ct[p]|p:Tx} 2

broadcast: Tx-set x CT — Unit
broadcast(ps,msg) =
case ps of {}—skip,{p}U ps'—ct[p]'msg;broadcast(ps’,;msg) end

type
CT = Guide | Notification | Commercial | Warning | ...
Guide == mkGui(...)
Notification == mkNot(...)
Commercial == mkComy(...)
Warning == mkWar(...)

90 9 Towards a Formal Model of CyberRail
9.3 Conclusion

A formalisation of a crucial aspect of CyberRail has been sketched. Namely the interplay between
the roles of travellers and the central CyberRail system.

Next we need analyse carfully all the action functions with respect to the way in which they use
and update the respective states (o : X) of traveller behaviours and the cyber behaviour (w : £2).
At the end of such an analysis one can then come up with precise, formal descriptions, including
axioms, of what the title of [41] refers to as the Information Infrastructure. We look forward to
report on that in a near future.

The aim of this work is to provide a foundation, a domain theory, for CyberRail. A set of models
from which to “derive”, in a systematic way, proposals for computing systems, including software
architectures.

9.4 A CyberRail Bibliography

1. Takahiko Ogino: "Advanced Railway Transport Systems and ITS”, RTRI Report Vol 13, No. 1, January
1999 (in Japanese)
2. Takahiko Ogino, Ryuji Tsuchiya: " CyberRail: A Probable Form of ITS in Japan”, RTRI Report Vol 14, No.
7, July 2000 (in Japanese)
3. Takahiko Ogino: "CyberRail: An Enhanced Railway System for Intermodal Transportation”, Quarterly
Report of RTRI, Vol 42, No. 4, November 2001
4. Takahiko Ogino: "When Train Stations become cyber Stations”, Japanese Railway Technology Today, pp
209-219, December 2001
5. Takahiko Ogino: " CyberRail Study Group Activities and Achievements’, RTRI Report Vol 16, No.11,
November 2002 (in Japanese)
6. Takahiko Ogino, Ryuji Tsuchiya, Akihiko Matsuoka, Koichi Goto: " A Realization of Information and Guid-
ance function of cyber”, RTRI Report Vol 17, No. 12, December 2003 (in Japanese)
7. Takahiko Ogino:" CyberRail - In search of IT infrastracture in intermodal transport”, JREA, Vol.45., No.1
(2002) (in Japanese)
8. Ryuji Tsuchiya, Koichi Goto, Akihiko Matsuoka, Takahiko Ogino, " CyberRail and its significance in the
coming ubiquitous society”, Proc. of the World Congress on Railway Research 2003 (2003-9) (in Japanese)
9. Takashi Watanabe, :"Experiment ofCyberRail Passenger guidance using Bluetooth”, Preprint of RTRI
Annual Lecture Meeting in 2000 (in Japanese)
10. Takashi Watanabe, et. al.: "Personal Navigation System Using Bluetooth”, Technical Report of ITS-
SIG,IPSJ(2001-1TS-4), p.55 (in Japanese)
11. Ryuji Tsuchiya, Koichi Goto, Akihiko Matsuoka, Takahiko Ogino, " Deriving interoperable traveler support
system specification through requirements engineering process”, Proc. of the 7th World Multiconference
on Systemics, Cybernetics and Informatics (July, 2003)
12. Ryuji Tsuchiya, Takahiko Ogino, Koichi Goto, Akihiko Matsuoka, "Personalized Passenger Information
Services and cyber”, Technical Report of SIG-IAC, IPSJ (2002-1AC-4), p15 (in Japanese)
13. Akihiko Matsuoka, Ryuji Tsuchiya: " Current Status of cyber SIG", Technical Report of SIG-ITS, IPSJ, p.45
(2002-1TS-11) (in Japanese)
14. Akihiko Matsuoka, Koichi Goto, Ryuji Tsuchiya, Takahiko Ogino: " CyberRail and new passengers informa-
tion services”, IEE Japan, TER-03-22 (2003-6) (in Japanese)
15. Yuji Shinoe, Ryuji Tsuchiya, "Personalized Route Choice Support System for Railway Passengers”, Tech-
nical Report of SIG-ITS, IPSJ (2001-1TS-6), p.23 (in Japanese)
16. Hiroshi Matsubara, Noriko Fukasawa, Koichi Goto, "Development of Interactive Guidance System for
Visually Disabled”, Technical Report of SIG-ITS, IPSJ (2001-1TS-6), p.75 (in Japanese)
17. Ryuji Tsuchiya, Takahiko Ogino, Koichi Goto, Akihiko Matsuoka, " Location-sensitive Itinerary-based Pas-
senger Information System”, Technical Report of ITS-SIG, IPSJ, p.85 (2003-1TS-6) (in Japanese)
18. Ryuji Tsuchiya, Kiyotaka Seki, Takahiko Ogino, Yasuo Sato: " User services ofCyberRail - toward system
architecture of future railway-", Proc. of the World Congress on Railway Research 2001 (2001-11)
19. Takahiko Ogino, Ryuji Tsuchiya, Kiyotaka Seki, Yasuo Sato: " CyberRail - information infrastructure for
intermodal passengers-", Proc. of the World Congress on Railway Research 2001 (2001-11)
20. Kiyotaka Seki, Ryuji Tsuchiya, Takahiko Ogino, Yasuo Sato: " Construction of future railway system utilizing
information and telecommunication technologies”, Proc. of the World Congress on Railway Research 2001
(2001-11)

21.

22.

23.

9.4 A CyberRail Bibliography 91

Ryuji Tsuchiya, Akihiko Matsuoka, Takahiko Ogino, Kouich Goto, Toshiro Nakao, Hajime Takebayashi: " Ex-
perimental system for CyberRail passenger information providing and guidance”, 40th Railway-Cybernetics
Symposium (2003-11) (in Japanese)

Akihiko Matsuoka, Ryuji Tsuchiya, Takahiko Ogino, Toshio Hirota: " CyberRail System Architecture”, 40th
Railway-Cybernetics Symposium (2003-11) (in Japanese)

Ryuji Tsuchiya, Akihiko Matsuoka, Takahiko Ogino, Kouich Goto, Toshiro Nakao, Hajime Takebayashi:
"Location-sensitive Itinerary-based Passenger Information System”, Applying to IEE Journal (in Japanese)

Part VI

Closing

10

Conclusion

Dines Bjgrner

e In addition to the chapters of this compendium, we can refer to published papers which cover additional
aspects of the railway domain:

1.

6.

J.U.Skakkebaek, A.P.Ravn, H.Rischel, and Zhou Chaochen. Specification of embedded, real-time sys-
tems. Proceedings of 1992 Euromicro Workshop on Real-Time Systems, pages 116-121. IEEE Computer
Society Press, 1992.

. C.W. George. A Theory of Distributing Train Rescheduling. In FME'96: Industrial Benefits and Advances

in Formal Methods, proceedings, LNCS 1051,

Anne Haxthausen and Jan Peleska, Formal Development and Verification of a Distributed Railway
Control System, |EEE Transaction on Software Engineering, 26(8), 687-701, 2000

Morten Peter Lindegaard and Peter Viuf and Anne Haxthausen, Modelling Railway Interlocking Systems,
Eds.: E. Schnieder and U. Becker, Proceedings of the 9th IFAC Symposium on Control in Transportation
Systems 2000, June 13-15, 2000, Braunschweig, Germany, 211-217, 2000

A. E. Haxthausen and J. Peleska, A Domain Specific Language for Railway Control Systems, Sixth
Biennial World Conference on Integrated Design and Process Technology, (IDPT2002), Pasadena,
California, Society for Design and Process Science, P.O.Box 1299, Grand View, Texas 76050-1299,
USA, June 23-28, 2002

A. Haxthausen and T. Gjaldbak, Modelling and Verification of Interlocking Systems for Railway Lines,
10th IFAC Symposium on Control in Transportation Systems, Tokyo, Japan”, August 4—6, 2003

e And we can refer to the papers which are to be/were presented August 26, 2004, as Topic 11: TRain: The
Railway Domain — A Grand Challenge for Computing Science: Towards a Domain Theory for Transportation,
during the IFIP World Computer Congress, 2004, at Toulouse:

1.

Dines Bjrner: TRain: The Railway Domain — A “Grand Challenge” for Computing Science and Trans-
portation Engineering.
Sets the stage for the TRain effort.

. Denis Sabatier: Reusing Formal Models: Domain capitalization via formalization.

A careful discussion is presented of the benefits of developing, studying and using formal models. After
a careful analysis of two kinds of uses, a discussion follows of how to reuse and (thus) capitalize on
formal models.

. Alistair A. McEwan and J.C.P.Woodcock: A calculated, refinement-based approach to building fault-

tolerance into a railway signaling device.

Exemplifies the concept of integrating formal techniques in the provably correct development of software
for a railway real-time embedded system.

Martin Penicka: From Railway Resource Planning to Train Operation.

Illustrates, in survey fashion, a number of railway models: From nets, via scheduling and allocation of
resources (net development, time tables, rolling stock deployment, staff rostering, rail car maintenance
planning, to station interlocking, line direction monitoring & control, automatic line signaling.
Wolfgang Reif: Integrated Formal Methods for Safety Analysis of Train Systems.

An approach is shown in which correct functioning, analysis of failures and their effects, and quantitative
analyses of the risks of systems and subsystems, all based on formal techniques, are applied, in a coherent
fashion, to a railway example.

Theo C. Giras and Zhongli Lin: Stochastic Train Domain Theory Framework.

The axiomatic safety—critical assessment process (ASCAP) is briefly analysed as a stochastic, Monte
Carlo simulation model. The rail line taxonomy is thus characterised as a stochastic domain that provides
for either a design—for—safety, or a risk—assessment framework — and these are seen as dual. The need
for formal validation, verification and certification is presented.

96

10 Conclusion

7. Takahiko Ogino: CyberRail: Information Infrastructure for New Intermodal Transport Business Model.
Outlines dramatic new paradigms for passenger transport.
Chapter 9 is based on the above paper.

Together: With the above—referenced papers, with the papers referenced in those (above referenced) papers,
and with the chaptyers of this compendium, we can claim that there exists a beginning of what could evolve
into contributions to a Domain Theory of Railways.

Much remains to be done. We mention but a few, and obvious:

— Other Railway Domain Facets: The papers presented at IFIP WCC'2004, and listed above, as well
as an additional presentation, not yet documented, by Eckehard Schnieder, points to several further
aspects of the railway domain — some in need of precise description, some in need of further research,
and some already yilding quite exciting results.

We have, independently, worked out material for some, and we would like to see (some, perhaps,

mundane) research & development of further railway facets:
Net Planning: Given a map of a region (a metropolitan area, a province, a country, a sub—continent,
etc.), and given seasonal statistics (obtained by inquiry or otherwise), say hour—by—hour, of how
many passengers would like to travel from some point to some other point, describe the planning
of optimal nets to serve such transportation. From, and intertwined with that:
Time Tabling: Develop, probably jointly with Net Planning describe the planning of optimal time
tables to serve the traffic implied by the statistics. From, and intertwined with that:
Train Composition & Decomposition: Develop, probably jointly with Net Planning and Time
Tabling, describe the planning of optimal ways of composing and decomposing trains from and
into carriages.

- Etecetera, etcetera, etc. !

— Integrating Formal Techniques: As was evident from Chaps. 6, 7, and 8, combining one form of formal
specification (viz.: RSL) with other forms (viz.: Petri Nets, Live Sequence Charts, Statecharts, Duration
Calculus, etc.), is “a must”. Integrating Formal Techniques is currently the focus of many research
groups worldwide.

— Models of Agent Behaviours: So much (of what is going on) in the railway domain is governed by

human behaviours. Studies into modelling human behaviours, agents, their speech acts, their knowledge
& belief, their promise & commitment, is needed.
Etecetera, etcetera, etc. !

1%&%@ _—

August 5, 2004

%)

Part VII

Appendices

A

An RSL Primer

Dines Bjgrner

Contents
N I I o T P 100
A1l Type EXPressionsouveuiiin i 100
A.12 TypeDefinitions. ... 101
A.2 TheRSL Predicate Calculus...........ciiiiiiiiiiiiiiiiinnnnnn. 101
A21 Propositional Expressions. i i 101
A2.2 Simple Predicate Expressions 102
A.2.3 Quantified Expressions i 102
A.3 Concrete RSL TyPeS . vttt innnnnseeessonssssssssssnnsnsns 102
A3.1 Set Enumerations. i 102
A.3.2 Cartesian Enumerations 102
A.3.3 List Enumerationsiiiiii 103
A3.4 Map Enumerationsoiiiiiiiii 103
A3.5 Set Operationsouiui i 103
A3.6 Cartesian Operationsoiiiiiniinii ... 105
A3.7 List Operationsttt 105
A3.8 Map Operationsvuntu ittt 106
A.4 Lambda—Calculus + Functionscciiiiiitiniineneenenean 107
A.4.1 The Lambda—Calculus Syntax.............ccooviiiiiiiio... 108
A.4.2 Free and Bound Variables 108
A.4.3 Substitution 108
A44 oa-Renaming and f-Reduction oL 108
A.4.5 Function Signatures.ooeiuninininiinnan. 108
A.4.6 Function Definitions 109
A.5 Other Applicative EXpressionsccciitiiiiiieerennnnns 109
A.5.1 Let EXPressionsiuiiniiin i 109
AB5.2 ConditionalSttt 110
A5.3 Operator/Operand EXpressions.oooeiiiiiinennn... 110
A.6 Imperative Constructsccoitiiiitiiiiiiiiiiiiinneennns 110
A.6.1 Variables and Assignmentiiiiiiiiiiia.. 111
A.6.2 Statement Sequences and skip L oL 111
A.6.3 Imperative Conditionals 111
A.6.4 Tterative Conditionals i, 111
A.6.5 Tterative SequUenCingoeuiiiiniiiniinie. 111
A.7T Process Constructscovuiiiiitiiiii it iiiniiiinneeennns 111
A.7.1 Process Channels 111
A.7.2 Process Composition 111
A.7.3 Input/Output Events i 112
A.7.4 Process Definitions 112
A.8 Simple RSL Specifications...........coiiiiiiiiiiiiiiiiiiiienns 112

This is an ultra—short introduction to The RAISE Specification Language.

100

A.

A An RSL Primer

1 Types

The reader is kindly asked to study first the decomposition of this section into its subparts and sub-subparts.

A.1.1 Type Expressions

RSL

has a number of built—in types.

There are the Booleans, integers, natural numbers, reals, characters, and texts.

From these one can form type expressions: Finite sets, infinite sets, Cartesian products, lists, maps, etc.
Let A, B and C be any type names or type expressions, then:

*

A
AUJ

A = B
A—B
ASB
(A)
A|B]..|C
mk_id(sel_a:A,...,sel_b:B)
sel_a:A ... sel_b:B

(save the [i] line numbers) are generic type expressions:

il

©o N O

11.
12.
13.
14.
15.

16.
17.

18.

The Boolean type of truth values false and true.

The integer type on integers ..., -2, -1, 0, 1, 2, ...

The natural number type of positive integer values 0, 1, 2, ...

The real number type of real values, i.e., values whose numerals can be written as an integer, followed by

a period (“."), followed by a natural number (the fraction).

The character type of character values "a", "b", ...

The text type of character string values "aa", "aaa”, ..., "abc”, ...

The set type of finite set values, see below.

The set type of infinite set values.

The Cartesian type of Cartesian values, see below.

The list type of finite list values, see below.

The list type of infinite list values.

The map type of finite map values, see below.

The function type of total function values, see below.

The function type of partial function values.

In (A) A is constrained to be:

e either a Cartesian B x C x ... x D, in which case it is identical to type expression kind 9,

e or not to be the name of a built—in type (cf., 1-6) or of a type, in which case the parentheses serve as
simple delimiters, eg: (A = B), or (A*)-set, or (A-set)list, or (A|B) = (C|D|(E = F)), etc.

The (postulated disjoint) union of types A, B, ..., and C.

The record type of mk_id—-named record values mk_id(av,...,bv), where av, ..., and bv, are values of
respective types. The distinct identifiers sel_a, etc., designate selector functions.

The record type of unnamed record values (av,...,bv), where av, ..., and bv, are values of respective types.

The distinct identifiers sel_a, etc., designate selector functions.

A.2 The RSL Predicate Calculus 101
A.1.2 Type Definitions
Concrete Types:

Types can be concrete in which case the structure of the type is specified by type expressions:

type
A = Type_expr

Some schematic type definitions are:

[1] Type_name = Type_expr /* without |s or sub—types */
[2] Type_name = Type_expr_1 | Type_expr_2 | ... | Type_expr_n
[3] Type_name ==

mk_id_1(s_al:Type_name_al,...,s_ai: Type_name_ai) |

mk_id_n(s_z1:Type_name_z1,...,s_zk: Type_name_zk)
[4] Type_name :: sel_a:Type_name_a ... sel_z:Type_name_z
[5] Type_name = {| v:Type_name’ « P(v) |}

where a form of [2-3] is provided by combining the types:

Type_name =A|B|..|Z
A == mk_id_1(s_al:A_1,...,s_ai:A_i)
B == mk_id_2(s_b1:B_1,...,s_bj:B_j)

Z == mk_id_n(s_z1:Z_1,...,s_zk:Z_k)

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set of
values b which has type B and which satisfy the predicate P, constitute the sub—type A:

type
A={ bBe+P(b)|}

Sorts (Abstract Types)
Types can be sorts (abstract) in which case their structure is not specified:

type
A B, .. C

A.2 The RSL Predicate Calculus

A.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., ¢ designate Boolean values. Then:

false, true
a, b, .. c
~a, aAb, aVb, a=-b, a=b, a#b

are propositional expressions having Boolean values. ~, A, V, =, and = are Boolean connectives (i.e., opera-
tors). They are read: not, and, or, if-then (or implies), equal and not-equal.

102 A An RSL Primer

A.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., ¢ designate Boolean values, let x, vy, ..., z (or term
expressions) designate non—Boolean values, and let i, j, ..., k designate number values, then:

false, true

a, b, .., c

~a, aAb, aVb, a=-b, a=b, a#b

X=Y, XAY,

i<j, i<j, i>j, i>], ...

are simple predicate expressions.

A.2.3 Quantified Expressions

Let X, Y, ..., C be type names or type expressions, and let P(z), Q(y) and R(z) designate predicate expressions
in which z,y, and z are free. Then:

vV x:X ¢ P(x)
Fy:Y » Q(y)
31 zZ « R(z)

are quantified expressions — also being predicate expressions. They are “read” as: For all z (values in type X)
the predicate P(z) holds; there exists (at least) one y (value in type Y') such that the predicate Q(y) holds;
and: there exists a unique z (value in type Z) such that the predicate R(z) holds.

A.3 Concrete RSL Types

A.3.1 Set Enumerations

Let the below as denote values of type A, then the below designate simple set enumerations:

{{}, {a}, {a1,22,--..am}, ...} € A-set
{{}. {a}, {a1,22,....am}, ..., {a1,22,...}} € A-infset

The expression, last line below, to the right of the =, expresses set comprehension. The expression “builds” the
set of values satisfying the given predicate. It is highly abstract in the sense that it does not do so by following
a concrete algorithm.

type
A B
P = A — Bool
Q=A5B
value

comprehend: A-infset x P x Q — B-infset
comprehend(s,P,Q) = { Q(a) |a:AcacsAP(a) }

A.3.2 Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, ..., C (allowing indexing for solving ambiguity),
then the below expressions are simple Cartesian enumerations:

type
A B, .. C
AxBx..xC
value
... (el,e2,...;en) ...

A.3 Concrete RSL Types 103

A.3.3 List Enumerations

Let a range over values of type A (allowing indexing for solving ambiguity), then the below expressions are
simple list enumerations:

{0, @), ..., (al,a2,...,am), ...} € A"
{(), (a), ..., (al,a2,...,.am), ..., (al,a2,....am,...), ...} € A¥

(ei.g)

The last line above assumes e; and e; to be integer valued expressions. It then expresses the set of integers
from the value of e; to and including the value of ;. If the latter is smaller than the former then the list is
empty.

The last line below expresses list comprehension.

type
A/ B,P=A—>Bool,Q=A5B
value
comprehend: A“ x P x Q & B¥
comprehend(lst,P,Q) =
(Q(Ist(i)) | i in (1..len Ist) « P(Ist(i)))

A.3.4 Map Enumerations

Let a and b range over values of type A and B, respectively (allowing indexing for solving ambiguity); then
the below expressions are simple map enumerations:

type
A B
M=A » B
value
a,al,a2,...,a3:A, b,bl,b2,...,.b3:B

[1. [a—b], ..., [al—bl,a2—b2,...,a3—b3]V € M

The last line below expresses map comprehension:

type
A B, C, D
M=A » B
F=ASC
G=B3D
P = A — Bool
value

comprehend: MxFxGxP — (C » D)
comprehend(m,F,G,P) =
[F(a) = G(m(a)) | a:A «a € dom m A P(a)]

A.3.5 Set Operations

value
€: A x A-infset — Bool
Z: A x A-infset — Bool
U: A-infset x A-infset — A-infset
U: (A-infset)-infset — A-infset
N: A-infset x A-infset — A-infset
N: (A-infset)-infset — A-infset

104 A An RSL Primer

\: A-infset x A-infset — A-infset
C: A-infset x A-infset — Bool
C: A-infset x A-infset — Bool
=: A-infset x A-infset — Bool
#: A-infset x A-infset — Bool
card: A-infset = Nat

examples
a € {a,bc}
a¢g{} ag{bc}
{a,b,c} U {a,b,d,e} = {a,b,c,de}
u{{a}.{a,b}.{ad}} = {abd}
{a,b,c} N {c.d,e} = {c}
Nn{{a}{a b} {ad}} = {a}
{ab.c} \ {c.d} = {ab}
{a,b} C {a,b,c}
{a,b,c} C {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} # {a,b}
card {} =0, card {a,b,c} =3

€ The membership operator expresses that an element is member of a set.
¢: The non-membership operator expresses that an element is not member of a set.
U The infix union operator. When applied to two sets, the operator gives the set whose members are in
either or both of the two operand sets

e N The infix intersection operator. When applied to two sets, the operator gives the set whose members are
in both of the two operand sets.

e \ The set complement (or set subtraction) operator. When applied to two sets, the operator gives the set
whose members are those of the left operand set which are not in the right operand set.

e C The proper subset operator expresses that all members of the left operand set are also in the right
operand set.

e C The proper subset operator expresses that all members of the left operand set are also in the right
operand set, and that the two sets are not identical.
= The equal operator expresses that the two operand sets are identical.
The non—equal operator expresses that the two operand sets are not identical.
card The cardinality operator gives the number of elements in a (finite) set.

The operations can be defined as follows:

value
sus’'={alaAcacsvacs}
sns’={alaAsacs rnacs}
s\s'={alaAcacs nags}
sCsd' =vVaAsaesd =acs
scs'=dCs"AJaAcacs Nags
s=¢d'=VaAeacs =aecs =sCs A5Cs
sA£ ' =dns" £}
card s =

if s = {} then 0 else
let aAea€esinl+ card (s \ {a}) end end
pre s /x is a finite set */

card s = chaos /x tests for infinity of s %/

A.3.6 Cartesian Operations

type
A B, C
g0: GO =A
gl: G1 = (
g2: G2 = (
g3: G3=A
value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):GO,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (al,bl,cl) = g0,
(al’,bl’,cl/) =gl in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

A.3.7 List Operations

value
hd: A 5 A
tl: A 5 A¥
len: A 5 Nat
inds: A — Nat-infset
elems: AY — A-infset
() A¥ x Nat = A
TUAY X AY 5 AY
=: AY x A” — Bool
#: A¥ x A” — Bool

examples
hd(al,a2,...,am)=al
tl(al,a2,...,am)=(a2,...,am)
len({al,a2,....am)=m
inds(al,a2,...,am)={1,2,....m}
elems(al,a2,....am)={al,a2,....am}
(al,a2,...,am)(i)=ai
{a,b,c)"(a,b,d) = (a,b,c,a,b,d)
(a,b,c)=(a,b,c)
(a,b,c) # (a,b,d)

A.3 Concrete RSL Types

e hd Head gives the first element in a non—empty list.
e tl Tail gives the remaining list of a non—empty list when Head is removed.
e len Length gives the number of elements in a finite list.
[]
the empty set as well.
e elems Elements gives the possibly infinite set of all distinct elements in a list.
[]

105

inds Indices gives the set of indices from 1 to the length of a non—empty list. For empty lists, this set is

£(i) Indexing with a natural number, i larger than 0, into a list £ having a number of elements larger than
or equal to i, gives the i'th element of the list.

e 7 Concatenates two operand lists into one. The elements of the left operand list are followed by the elements

of the right. The order with respect to each list is maintained.

106 A An RSL Primer

e = The equal operator expresses that the two operand lists are identical.
e # The non—equal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

value
is_finite_list: AY — Bool

len q =
case is_finite_list(q) of
true — if g = () then 0 else 1 + len tl q end,
false — chaos end

inds q =
case is_finite_list(q) of
true —» {i|iiNats1<i<lengq},
false — { i | i:Nat * i#0 } end

elems q = { q(i) | :Nat i € inds q }

q(i) =
if i=1
then
if g7 ()
then let a:A,q":Q » g=(a)"q in a end
else chaos end
else q(i—1) end
fq " ig =

(if 1 < i < len fq then fq(i) else iq(i — len fq) end
| i:Nat e if len iq#chaos then i < len fq+len end)
pre is_finite_list(fq)

- - 1
Iq =1q =
inds iq’ = inds iq” AV i:Nat « i € inds iq’ = iq’(i) = iq”(i)

iq' #iq" = ~(id" = iq")

A.3.8 Map Operations

value
m(a): M = A 5 B, m(a) =b

dom: M — A-infset [domain of map]
dom [al—bl,a2—b2,...,an—bn] = {al,a2,...,an}

rng: M — B-infset [range of map]
rng [al—bl,a2—b2,...,.an—bn] = {b1,b2,....bn}

t: M x M — M [override extension |
[amsb,a/sb,a” b] 1 [2o’] = [amsba/oob,a"osb]

UM x M — M [merge U]

[a—b,a’=b’,a" b] U [a”=b"'] = [arsb,a’isb,a" b " b]

\: M x A-infset — M [restriction by]
[arb,a'—b ,a"—=b"\{a} = [a'—b,a"—b"]

A .4 Lambda—Calculus + Functions 107

/: M x A-infset — M [restriction to]
[a—b,a'—b a"—b"]/{a’ "} = [a'—ba"—b"]

=,#: M x M — Bool

(A m B) x (B w» C) = (A = C) [composition]
[ab,a'=b'] ° [b=c,b'—d b =] = [amc,a’—c]

m(a) Application gives the element of which a maps to in the map m

dom Domain/Definition Set gives the set of values which maps to in a map.

rng: Range/Image Set gives the set of values which are mapped to in a map.

1 Override/Extend. When applied to two operand maps, it gives the map which is like an override of the

left operand map by all or some “pairings” of the right operand map,

U Merge. When applied to two operand maps, it gives it gives a merge of these maps.

e \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand
map to the elements that are not in the right operand set

e / Restriction. When applied to two operand maps, it gives the map which is a restriction of the left operand

map to the elements of the right operand set.

= The equal operator expresses that the two operand maps are identical.

The non—equal operator expresses that the two operand maps are not identical.

° Composition. When applied to two operand maps, it gives the map from definition set elements of the left

operand map, mi, to the range elements of the right operand map, mg, such that if a, in the definition set

of m1 and maps into b, and if b is in the definition set of mg2 and maps into ¢, then a, in the composition,

maps into c.

The map operations can also be defined as follows:

value
rngm={m(a) | azA+sacdomm}

ml {m2=
[a—b|a:AbB
a € dom ml \ dom m2 A b=ml(a) V a € dom m2 A b=m2(a)]

mlUm2=]a—b|aAbB:
a € dom ml A b=ml1(a) V a € dom m2 A b=m2(a) |

[a—m(a) |a:Asacdomm)\s |
a—m(a) |asAsaedommns |

m\s
m/s
ml=m2=

dom ml = dom m2 AV a:A » a € dom ml = ml(a) = m2(a)
ml # m2 = ~(ml = m2)
m°n =

[a—c|aAcCea e dommAc=n(m(a))]
pre rng m C dom n

A.4 Lambda—Calculus 4+ Functions

RSL supports function expressions for A—abstraction.

108 A An RSL Primer
A.4.1 The Lambda—Calculus Syntax

type /* A BNF Syntax: x/
(L) 5= (V) (P | (A) | ((A))
(V) ::= /x variables, i.e. identifiers */
(F) 2= AV) = (L)
(A) == (L))
value /+ Examples */
(L): e f, a, ...
(V): %, ...
(F: Ax e, ..
(A): f a, (f a), f(a), (f)(a), ...

A.4.2 Free and Bound Variables

Let z, y be variable names and e, f be A-expressions.

e (V): Variable z is free in =
e (F):zisfreein Ay ecif z # y and z is free in e.
e (A): zisfreein f(e) if it is free in either f or e (i.e., also in both).

A.4.3 Substitution

In RSL, the following rules for substitution apply:

e subst([N/x]x) = N;
e subst([N/xJa) = a,
for all variables a# x;
subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q));
subst([N/x](AzsP)) = X y*P;
subst([N/x](\ ysP)) = X y* subst([N/x]P),
if x7£y and y is not free in N or x is not free in P;
e subst([N/x](Ay*P)) = Azesubst([N/z]subst([z/y]P)),
if y#£x and y is free in N and x is free in P
(where z is not free in (N P)).

A.4.4 a—Renaming and 8—Reduction

e a-renaming: Ax*M
If x y are distinct variables then replacing x by y in Ax*M results in Ayesubst([y/x]M): We can rename the
formal parameter of a A-function expression provided that no free variables of its body M thereby become
bound.

e [B-reduction: (Ax*M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free variables of N thereby
become bound in the result.
(Ax*M)(N) = subst([N/x]M)

A.4.5 Function Signatures

For some functions, we want to abstract from the function body:

value
obs_Pos_Aircraft: Aircraft — Pos,
move: Aircraft x Dir — Aircraft,

A.5 Other Applicative Expressions 109
A.4.6 Function Definitions

Functions — with body — can be defined explicitly:

value
ffAXxBxC—=D
f(a,b,c) = Value_Expr

g: B-infset x (D -» C-set) — A*
g(bs,dm) = Value_Expr
pre P(dm)
or implicitly:
value
ffAXxBxC—=D
f(a,b,c) as d
post P1(d)
g: B-infset x (D = C-set) = A*
g(bs,dm) as al

pre Pa(dm)
post Ps(al)

The symbol = indicates that the function is partial and thus not defined for all arguments. Partial functions
should be assisted by pre—conditions stating the criteria for arguments to be meaningful to the function.

A.5 Other Applicative Expressions

A.5.1 Let Expressions

Simple (i.e., non—recursive) let expressions:

let a = &, in &y(a) end
is an “expanded” form of:
(Ma.&p(a))(€a)
Recursive let expressions are written as:
let f = Xa:A « E(f) in B(f,a) end
is “the same” as:
let f = YF in B(f,a) end
where:
F = AgeAa*(E(g)) and YF = F(YF)
Predicative let expressions:
let a:A « P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body B(a).

Patterns and Wild Cards can be used:

110 A An RSL Primer

let {a} Us =set in ... end
let {a,_} Us=setin .. end

let (a,b,....c) = cart in ... end
let (a,_,....c) = cartin ... end

let (a)"¢ = list in ... end
let (a,_,b)"¢ =list in ... end

let [a—b]Um =mapin ... end
let [a—b,_] Um = map in ... end

A.5.2 Conditionals

Various kinds of conditional expressions are offered by RSL:

if b_expr then c_expr else a_expr end

if b_expr then c_expr end = /* same as: */
if b_expr then c_expr else skip end

if b_expr_1 then c_expr_1
elsif b_expr_2 then c_expr_2
elsif b_expr_3 then c_expr_3
elsif b_exprt_n then c_expr_n end
case expr of
choice_pattern_1 — expr_1,

choice_pattern_2 — expr_2,

choice_pattern_n_or_wild_card — expr_n
end

A.5.3 Operator/Operand Expressions

(Expr) ==
(Prefix_Op) (Expr)
| (Expr) (Infix_Op) (Expr)
| (Expr) (Suffix_Op)
(Prefix_Op) ::=
—|~]U|N|card | len | inds | elems | hd | t] | dom | rng
(Infix_Op) ==
=|#I=l+-1x[T]/I<[<[Z2]>[|A[V]=
lelglulnlNfclCl22]7It]°
(Suffix_Op) =1

A.6 Imperative Constructs

Often, following the RAISE method, software development starts with highly abstract—applicative which,
through stages of refinements, are turned into concrete and imperative. Imperative constructs are thus in-
evitable in RSL.

A.7 Process Constructs 111
A.6.1 Variables and Assignment

0. variable v: Type := expression
1. v := expr

A.6.2 Statement Sequences and skip

Sequencing is done using the ';" operator. skip is the empty statement having no value or side—effect.

2. skip
3. stm_1;stm_2;...;stm_n

A.6.3 Imperative Conditionals

4. if expr then stm_c else stm_a end
5. case e of: p_1—S_1(p_1),...,p—n—S_n(p_n) end

A.6.4 Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

A.6.5 Iterative Sequencing

8. for b in list_expr « P(b) do S(b) end

A.7 Process Constructs

A.7.1 Process Channels

Let A, B and Kldx stand for a type of (channel) messages, respectively; then:

channel c:A
channel { k[i]:B « i:Kldx }

declare a channel, ¢, and a set of channels, k]i], able of communicating values of the designated types.

A.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in
input and/or output events, thereby communicating over declared channels.
Let P() and Q(i) stand for process expressions, then:

P() || Q(i Parallel composition

P() [] Q(i) Non—deterministic External Choice (either/or)
P() [Q(i) Non—deterministic Internal Choice (either/or)
PO # Q() Interlock Parallel composition

express the parallel (||) of two processes, the non—deterministic choice between two processes: Either external
() or internal ([]). The interlock () composition expresses that the two processes are forced to communicate
only with one another, until one of them terminates.

112 A An RSL Primer
A.7.3 Input/Output Events

Let c, k[i] and e designate a channels of type A and B, respectively; then:

c? k[i]? Input
cle k[i]!e Output

expresses the willingness of a process to engage in an event that “reads” an input, and respectively “writes”

an output.

A.7.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in their
signature via which channels they wish to engage in input and output events.

value
P: Unit — in c out k[i] Unit
Q: i:Kldx — out c in k[i] Unit

P()
Q(i)

Lc? . kli]le..
. k[i]?..cle..

The process function definitions (i.e., their bodies) express possible events.

A.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects; as often done in
RSL. an RSL specification is simply a sequence of one or more types, values (including functions), variables,
channels and axioms:

type
var.i;ble
chz;r.mel
Val‘l.l‘e

axiom

References

10.

11.

Dines Bjrner, Dong Yu Lin, and S. Prehn. Domain Analyses: A Case Study of Station Management. In
KICS'94: Kunming International CASE Symposium, Yunnan Province, P.R.of China. Software Engineering
Association of Japan, 1620 November 1994.

. Dines Bjrner, CW. George, and S. Prehn. Scheduling and Rescheduling of Trains, chapter 8, pages 157—

184. Industrial Strength Formal Methods in Practice, Eds.: Michael G. Hinchey and Jonathan P. Bowen.
FACIT, Springer—Verlag, London, England, 1999.

. Dines Bjrner, Sren Prehn, and Chris W. George. Formal Models of Railway Systems: Domains. FME Rail

Workshop on Formal Methods in Railway Systems, FM'99 World Congress on Formal Methods, France.

. Dines Bjrner, Sren Prehn, and Chris W. George. Formal Models of Railway Systems: Requirements.

FME Rail Workshop on Formal Methods in Railway Systems, FM'99 World Congress on Formal Methods,
France.

. Dines Bjgrner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th

IFAC Symposium on Control in Transportation Systems, pages 1-12, Technical University, Braunschweig,
Germany, 13-15 June 2000. VDI/VDE-Gesellschaft Mess— und Automatisieringstechnik, VDI-Gesellschaft
fiir Fahrzeug— und Verkehrstechnik. Invited talk.

. Dines Bjrner. New Results and Trends in Formal Techniques for the Development of Software for Trans-

portation Systems. In FORMS2003: Symposium on Formal Methods for Railway Operation and Control
Systems. 2003. Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany.

Dines Bjrner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK,
August 4-6 2003. Elsevier Science Ltd.

Dines Bjrner, Chris W. George, and Sren Prehn. Computing Systems for Railways — A Réle for Domain
Engineering. Relations to Requirements Engineering and Software for Control Applications. In Integrated
Design and Process Technology. Editors: Bernd Kraemer and John C. Petterson, 24-28 June 2002. Society
for Design and Process Science.

. Dines Bjgrner, Chris George, Anne E. Haxthausen, Christian Krog Madsen, Steffen Holmslykke, and Martin

Péni¢ka. “UML"—ising Formal Techniques. In INT 2004: Third International Workshop on Integration of
Specification Techniques for Applications in Engineering. Institut flir Softwaretechnik und Theoretische
Informatik, Sekr. FR 6-1, Techn.Univ. of Berlin, Franklinstrasse 28/29, D-10587 Berlin, Germany, 28
March 2004, ETAPS, Barcelona, Spain. To be published in INT-2004 Proceedings, Springer—Verlag.
Dines Bjgrner. Software Engineering, volume Vol. 1: Abstraction and Modelling, Vol. 2: Specification
of Systems and Languages, Vol. 3: Domains, Requirements and Software Design, Vol. 4: Management.
Springer—Verlag, 2005. Volumes 1-3 to be published early 2005; Volume 4 planned.

Werner Damm and David Harel. LSCs: Breathing life into Message Sequence Charts. Formal Methods
in System Design, 19:45-80, 2001. Early version appeared as Weizmann Institute Tech. Report CS98-
09, April 1998. An abridged version appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open
Object-based Distributed Systems (FMOODS'99), Kluwer, 1999, pp. 293-312While message sequence
charts (MSCs) are widely used in industry to document the interworking of processes or objects, they are
expressively quite weak, being based on the modest semantic notion of a partial ordering of events as
defined, e.g., in the CCITT standard. A highly expressive and rigorously defined MSC language is a must
for serious, semantically meaningful tool support for use-cases and scenarios. It is also a prerequisite to
addressing what we regard as one of the central problems in behavioral specification of systems: relating
scenario-based inter-object specification to state-machine intra-object specification. This paper proposes

114

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

References

an extension of MSCs, which we call live sequence charts (or LSCs), since one of our main extensions deals
with specifying “liveness”, i.e., things that must occur. In fact, LSCs allow the distinction between possible
and necessary behavior both globally, on the level of an entire chart and locally, when specifying events,
conditions and progress over time within a chart. We also deal with subcharts, synchronization, branching
and iteration. .

Caprara, A., M. Fischetti, P. Toth, D. Vigo and P.L. Guida, " Algorithms for Railway Crew Management”.
Publication in Mathematical Programming 79 (1997) 125-141.

Caprara, A., M. Fischetti, P.L. Guida, P. Toth and D. Vigo. Solution of Large-Scale railway Crew Planning
Problems: the [talian Experience, in N.H.M. Wilson (ed.) Computer-Aided Transit Scheduling, Lecture
Notes in Economics and Mathematical Systems 471, Springer-Verlag (1999) 1-18.

Caprara, A., M. Monaci and P. Toth. A Global Method for Crew Planning in Railway Applications, in J.
Daduna, S. Voss (eds.) Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical
Systems 505, Springer-Verlag (2001) 17-36.

Ernst, A., H. Jiang, M. Krishnamoorthy, H. Nott and D. Sier. Rail Crew Scheduling and Rostering: Opti-
misation Algorithms, CSIRO Mathematical and Information Sciences, Australia.

Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne, Claus Bendix Nielsen, Sgren
Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Sgren Prehn, and Jan Storbank Pedersen.
The RAISE Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.
David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231-274, 1987.

David Harel. On visual formalisms. Communications of the ACM, 33(5), 514-530 1988.

David Harel. The Science of Computing — Exploring the Nature and Power of Algorithms. Addison-Wesley,
April 1989.

David Harel and Eran Gery. Executable object modeling with Statecharts. IEEE Computer, 30(7):31-42,
1997.

David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sherman, Aharon Shtull-
Trauring, and Mark B. Trakhtenbrot. STATEMATE: A working environment for the development of complex
reactive systems. Software Engineering, 16(4):403-414, 1990.

David Harel and Rami Marelly. Come, Let's Play — Scenario-Based Programming Using LSCs and the
Play-Engine. Springer-Verlag, 2003.

David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology (TOSEM), 5(4):293-333, 1996.

David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology, 5(4):293-333, October 1996.

David Harel and Michael Politi. Modelling Reactive Systems with Statecharts: The Statemate Approach.
McGraw Hill, October 8 1998. 258 pages.

Anne Haxthausen and Xia Yong. Linking DC together with TRSL. In Proceedings of 2nd International Con-
ference on Integrated Formal Methods (IFM'2000), Schloss Dagstuhl, Germany, November 2000, number
1945 in Lecture Notes in Computer Science, pages 25-44. Springer-Verlag, 2000.

C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-
Hall International, 1985.

lan Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules language. In Proc. of the Thirteenth
International World Wide Web Conference (WWW 2004), pages 723-731, New York, USA, May 2004.
ACM. http://www.cs.man.ac.uk/~horrocks/DAML/Rules/.

Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prej-
udices. ACM Press. Addison-Wesley Publishing Company, Wokingham, nr. Reading, England; E-mail:
ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv 4+ 228 pages.

Kurt Jensen. Coloured Petri Nets, volume 1: Basic Concepts (234 pages + xii), Vol. 2: Analysis Methods
(174 pages + x), Vol. 3: Practical Use (265 pages + xi) of EATCS Monographs in Theoretical Computer
Science. Springer—Verlag, Heidelberg, 1985, revised and corrected second version: 1997.

Karras, P. and Bjgrner, D. (2002). Train composition and decomposition: From passenger statistics to
schedules. Technical report, Informatics and Mathematical Modelling, Building 322, Richard Petersens
Plads, Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark.

Kroon, L. and Fischetti, M (2000). Crew Scheduling for Netherlands Railways Destination: Customer.
ERIM Report Series: Research In Management, Netherlands.

Kroon, L. (2001). Models for rolling stock planning. Research report, Univ. of Utrecht, Netherlands.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

References 115

Lentink, R., M. Odijk and E.Rijn. Crew Rostering for the High Speed Train, ERIM Report Series Research
In Management, Netherlands, February 2002.

Christian Krog Madsen. Integration of Specification Techniques. Msc thesis report, Institute of Infor-
matics and Mathematical Modelling, Technical University of Denmark. Bldg.322, DK-2800 Kgs.Lyngby,
Denmark, November 30, 2003. (Statecharts and Live Sequence Charts: Their Glueing and Relation to
the RAISE Specification Language.) The goal of the project is to create an integrated formal method for
software engineering combining the strong sides of formal specification languages with those of graphical
notations. Formal specification languages provide precise descriptions of domains and requirements and
allow properties of such descriptions to be verified by formal proofs. Graphical notations are intuitively un-
derstandable and typically offer a hierarchical view of a system that allows major system parts to be easily
identified. As a preparation for the thesis | wrote a report, [37] in which the syntax and well-formedness
conditions of Message Sequence Charts, Statecharts and Petri Nets are formalised in RSL. The report also
presents three examples where a system is modelled in RSL and one of the graphical notations in parallel.
Christian Krog Madsen. Study of Graphical and Temporal Specification Techniques. Pre-msc thesis report,
Institute of Informatics and Mathematical Modelling, Technical University of Denmark. Bldg.322, DK-2800
Kgs.Lyngby, Denmark, 2 June, 2003. The syntax and well-formedness conditions of Message Sequence
Charts, Statecharts and Petri Nets are formalised in RSL. The report also presents three examples where
a system is modelled in RSL and one of the graphical notations in parallel. See follow—-on report[36].
Maréti, G. (2001). Maintenance Routing. Research report, CWI, Amsterdam and NS Reizigers, Utrecht,
Netherlands. The EU IST Research Training Network AMORE: Algorithmic Models for Optimising Railways
in Europe: www.inf .uni-konstanz.de/algo/amore/. Contract no. HPRN-CT-1999-00104, Proposal no.
RTN1-1999-00446

Takahiko Ogino. Aiming for Passenger Interoperability. Technical report, Railway Technical Research
Institute, Transport Information Technology Division, Railway Technical Research Institute, 2-8-38 Hikari-
cho, Kokubunji-shi, Tokyo, 185-8540 Japan, 2003.

Takahiko Ogino. CyberRail: For Urban Mobility Tomorrow. Technical report, Railway Technical Research
Institute, Transport Information Technology Division, Railway Technical Research Institute, 2-8-38 Hikari-
cho, Kokubunji-shi, Tokyo, 185-8540 Japan, 2004.

Takahiko Ogino. CyberRail: Information Infrastructure for New Intermodal Transport Business Model. In
Topical Days @ IFIP World Computer Congress 2004, IFIP Series. IFIP, Kluwer Academic Press, August
2004.

Takahiko Ogino, Koivhi Goto, Ryuji Tsuchiya, Kiyotaka Seki, and Akihiko Matsuoka. CyberRail and its
significance in the coming ubiquitous society. In , 2004.

Pénic¢ka, M., Strupchanska, A. K., and Bjgrner, D. (2003). Train maintenance routing. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. L'Harmattan Hongrie. Conf.
held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany.

Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical Computer
Science. Springer Verlag, May 1985.

Wolfgang Reisig. A Primer in Petri Net Design. Springer-Verlag, 1992.

Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis with Petri Nets. Springer
Verlag, December 1998. xi + 302 pages.

Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis with Petri Nets. Springer
Verlag, December 1998. 400 pages, Amazon price:US $42.95.

Wolfgang Reisig. The Expressive Power of Abstract-Sate Machines. Computing and Informatics, 22(1-2),
2003.

Strupchanska, A. K., Pé&ni¢ka, M., and Bjgrner, D. (2003). Railway staff rostering. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. L'Harmattan Hongrie. Conf.
held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany.

Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors. FM'99 — Formal Methods, volume 1709
of LNCS: Lecture notes in computer science. Springer—Verlag, 1999. This is volume Il of a two volume
proceedings from the first World Congress on Formal Methods in the Development of Computing Sys-
tems. Organised jointly by FME (Formal Methods Europe) and ONERA (The French Government'’s Space
Research Centre), Toulouse, France, Sept. 20-24, 1999.

Xia Yong and Chris W. George. An Operational Semantics for Timed RAISE. In Jeannette M. Wing, Jim
Woodcock, and Jim Davies, editors, FM'99 — Formal Methods, pages 1008-1027. FME, Springer—Verlag,
1999. Cf. [50].

Zhou Chaochen and Michael R. Hansen. Duration Calculus: A Formal Approach to Real-time Systems.
Monographs in Theoretical Computer Science. An EATCS Series. Springer—Verlag, 2004.

116

53.

54.

55.

56.

References

Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information Proc. Letters, 40(5),
1992.

Zhou Chaochen. Duration Calculi: An Overview. Research Report 10, UNU/IIST, P.O.Box 3058, Macau,
June 1993. Published in: Formal Methods in Programming and Their Applications, Conference Pro-
ceedings, June 28 — July 2, 1993, Novosibirsk, Russia; (Eds.: D. Bjgrner, M. Broy and I. Pottosin) LNCS
736, Springer-Verlag, 1993, pp 36-59.

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An Extended Duration Calculus for Real-time
Systems. Research Report 9, UNU/IIST, P.O.Box 3058, Macau, January 1993. Published in: Hybrid
Systems, LNCS 736, 1993.

Zhou Chaochen and Li Xiaoshan. A Mean Value Duration Calculus. Research Report 5, UNU/IIST,
P.O.Box 3058, Macau, March 1993. Published as Chapter 25 in A Classical Mind, Festschrift for C.A.R.
Hoare, Prentice-Hall International, 1994, pp 432—451.

