
Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 1

Where do Software Architectures come from ?
Systematic Development from Domains and Requirements

A Re-assessment of Software Engineering ?

Dines Bjørner
IT/DTU, Technical University of Denmark

Abstract

In this paper we show how details of a software design emerges in two steps: software
architecture and program organisation and from first having established careful de-
scriptions of the application domain and of functional and non-functional requirements.

A major aim & objective of this paper is a reassessment of software engineering in the
context of extensive use of formal techniques (formal methods: specification and calculi)
and programming methodological: to illustrate how software designs partially evolve from
careful (formal) requirements descriptions which themselves partially evolve from careful
(formal) application domain descriptions.
We believe that this paper covers some new concepts:

• the careful construction of informal as well as formal descriptions of application
domains without any reference to software (i.e. computing);

• the systematic (posit/invent & verify/prove) “derivation” of requirements from do-
main descriptions;

• and the separation of requirements and software design concerns:

– functional requirements as implemented through software architectures, and

– non-functional requirements as implemented through program organisations.

Contents

1 Introduction 2
1.1 A Software Development Paradigm . 2
1.2 Method & Methodology . 3

1.2.1 On Method . 3
1.2.2 On Methodology . 3

1.3 Domains, Requirements, Design . 4
1.4 Aims & Objectives of this Paper . 5
1.5 Message Delivery . 5
1.6 Overview of Paper . 6

2 Software Architectures 6
2.1 A Pre–view Architecture . 6

2.1.1 “What is an Architecture ?” — Proposal 1 . 6
2.1.2 “A Picture is Worth a Thousand Words!” . 7
2.1.3 “What is an Architecture ?” — Proposals 2–3 8
2.1.4 A Formalisation of a Software Architecture . 8
2.1.5 “Software Architectures: From Where?” . 10
2.1.6 A Domain . 10
2.1.7 Requirements . 13

2.2 A Software Architecture . 20

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 2

2.2.1 Analysis . 20
2.2.2 The System Process . 21
2.2.3 Channels — and some Design Analysis & Choices 22
2.2.4 Functional Requirements Projection . 23
2.2.5 A Client Process . 23
2.2.6 The Staff Process . 24
2.2.7 Time–table Process . 24

2.3 A Model–oriented Verification . 25
2.4 Conclusion . 26

3 Program Organisation 26
3.1 Characterisation . 27
3.2 Design Decisions . 27
3.3 The Time–table Example . 28

3.3.1 A Problem Analysis . 28
3.3.2 Design Decisions . 28
3.3.3 A Process Diagram . 29
3.3.4 A Formal Process Model — The System Process 29
3.3.5 A Formal Process Model — The Channel Declarations 31
3.3.6 A Formal Process Model — The Process Signatures 31

4 Concluding Remarks 31
4.1 Summary . 31
4.2 Acknowledgements . 31

5 Bibliographical Notes 32

1 Introduction

1.1 A Software Development Paradigm

We cover main notions of a rigorous software development paradigm. We propose the following
decomposition:

1. Software Engineering ≈

(a) Domain Engineering
√

(b) ⊕ Requirements Engineering
√

(c) ⊕ Software Design

i. Software Design ≈
ii. Software Architecture

√

iii. ⊕ Program Organisation
√

iv. ⊕ (Further) Refinement Steps

v. ⊕ Coding

2. Software Development ≈ All of the above!

We cover
√

using:use

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 3

• primarily Formal Specification.
√

• Indicatingand indicate Design Calculi.

• Thus the main subject is
Programming Methodology:
How to construct software

√

Thus we may be contributing to a partial reassessment of software engineering in the
two contexts outlined above: the “triptych” paradigm of domain engineering + requirements
engineering + software design, and the extensive, to us inescable, use of formal specification
and rigorous to formal reasoning.

1.2 Method & Methodology

1.2.1 On Method

• We take Method to mean :

– A set of Principles

– for Selecting and Applying

– Techniques and Tools

in order efficiently to:

– Analyse and

– Synthesise (i.e. construct)

efficient artefacts (here: software).

We will identify a number of such
principles, techniques and tools.

It is with some resignation that I lament the use of the term ‘formal methods’. In the
context of our definition of method above basically no method can be formal! One cannot
formalise the (analysis and selection) principles. But techniques and tools (like languages)
can be formal: based on mathematics, notably algebras and logic.

1.2.2 On Methodology

Since no one realistic piece of software technology can be developed strictly according to
one clearly inter-related set of principles (etc.), i.e. according to one method, but possibly
according to several such, we need define the notion of methodology:

• We take Methodology to mean:

– The the Study and Knowledge of Methods

Michael Jackson is exploring a concept of problem frames [1, 2]. Typical problem frames
are such which relate to (i) programming (and specification language) translation, (ii) reac-
tive (i.e. control) systems, (iii) information systems, (iv) workpiece systems, (v) transaction
processing, etc. [3].

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 4

1.3 Domains, Requirements, Design

We review and relate the three major components of our software engineering “triptych”:

• Software Design: S
Before we can design (structure, code) the software, i.e. how the software (i.e. the
machine) should operate, we must know what is should be doing, i.e. its requirements.

• Requirements: R
Before we can express the requirements we must “understand” the application domain.
This is so because functional requirements are expressed solely using professional terms
of that domain.

Requirements descriptions are validated by the stake-holders.

• Domain: D
We narrate, establish a terminology and, here, also formalise terms (viz.: nouns
and verbs) of the professional sub-language of the stake-holders (owners, managers,
workers, clients, etc.) of the application domain.

Domain descriptions are validated by the stake-holders.

Usually we describe far more of the domain than the environment needed for software
design verification.

• “Derivability”:

– Functional Requirements form an instantiation, a projection and possibly an
extension of of a possibly normative domain.

– Software architectures (grossly speaking) implement externally observable prop-
erties, i.e. the functional requirements.

Program organisations are otherwise “invented”!

– Software design in general proceed by stepwise transformations and/or verified
refinements.

• Correctness Verification:

Proofs (|=) of correctness of software S wrt. requirements R usually proceed by making
assumptions about the domain D:

D,S |= R

That is: Reference is often made to D when proving the entailment S |= R. Hence we include
it (D) to the left of |=.

This fact, that assumptions usually need be made about the environment — outside that
which is “immediately” part of the requirements model — further argues for a thorough
modelling of the application domain: beyond that of immediate concerns to requirements,
and normative rather than (just) instantiated domains.

Paraphrasing Barry W. Boehm:[4]

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 5

• Validation: Getting the Right Product

• Verification: Getting the Product Right

1.4 Aims & Objectives of this Paper

The goal of this paper is to broadly, and in a pedagogical clear and didactically “complete”
style, make the reader aware:

1. of the triptych/triple Paradigm:
Domain + Requirements + Software Design,

2. of Abstraction and

3. Modelling Techniques,

4. of Refinement concepts and

5. of Correctness concerns,

6. that Large–scale Development can be
tackled in a Trustworthy, Efficient manner,

7. of need for Formal Techniques and

8. that New Product Ideas can Arise
when using Formal Specification within the
Domain / Requirements / Software Design Paradigm

1.5 Message Delivery

• Question:
How will we deliver the message ?

• Answer:

– Through a “major” example.

– By exemplifying:

∗ principles and

∗ techniques,

– By Reading the example!

∗ Not teaching “how to write”.

∗ But “how to appreciate”.

∗ By telling you about Formal Specification.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 6

1.6 Overview of Paper

• Introduction 2–6, Sect.1

• The Example Development 6–34, Sect.2

– A Pre–view Architecture 6–10, Subsect.2.1

– “Software Architectures: From Where?” 10, Subsect.2.1.5

– Domain 10–13, Subsect.2.1.6

– Requirements 13–20, Subsect.2.1.7

– Software Architecture: 20–26, Subsect.2.2

Fct.Requirements, External Interfaces

– Program Organisation: 26–31, Subsect.3

Non–fct.Requirements, Internal Interfaces

• Summary 31, Sect.4.1

• Acknowledgements 31, Sect.4.2

2 Software Architectures

This section has several parts. First (Sect.2.1) we discuss briefly what an architecture is
and give — right-away — an example CSP-like [5, 6] “program” (i.e. specification) and the
annotation of an architecture for a “small” system. Then we ask the question:“where did this
architecture come from?”. Usually we are just presented with the architecture “program”.
We then propose an answer to the question: “the architecture came, partially, from a set of
requirements, and these came, partially, from a description of the application domain. We
therefore describe the example domain — that of an airline time-table and its users [prospec-
tive airline clients and airline staff] — (Sect.2.1.6) and we describe example requirements for
a computerised support for using the time-table (Sect.2.1.7). Then we “derive” a software
architecture, partially from those requirements (Sect.2.2). Since that software architecture
— in keeping with our proposed definition of what an architecture is — does not implement
the non-functional requirements, we finally “derive” a program organisation from the non-
functional requirements and the software architecture (Sect.3).

The example was first reported, in a rather more detailed (read: cumbersome) manner
in [7]. Then it became the subject of Mr. Crilles Jansen’s M.Sc. Thesis project [8, 9]. The
present version represents a significantly abstracted version of these reports — and should be
more accessible!

2.1 A Pre–view Architecture

2.1.1 “What is an Architecture ?” — Proposal 1

The concept of ‘software architecture’ is a pragmatic one. One can define it one way, or in
another way, or . . . ! With some background in the CMU ‘School’ (Garlan et. al) [10] we first
propose:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 7

• Basic Notions: There are some basic concepts that determine major characteristics
of an architecture:

– Types, Components, Ports, Glue, Connectors, i.e.: Value spaces, Processes, Chan-
nels.

– Events, Communication, i.e.: Input, Output, Rendez-vous.

• Configuration: The above basic concepts enter into configurations:

– A set of typed components: e.g. processes, parallel, non–deterministic alternatives.

– Each component with a set of typed ports.

– A set of typed connectors: e.g. channels, “fixed” at component ports.

– The ability to observe typed events at ports, that is: typed communication over
channels.

Perhaps an explanation is due:

• Since an architecture specification is generally one that describes a computable “thing”,
and since we wish to have (mental and mechanical) tools that support us in our writing
(conceptualisation) process, we naturally expect an architecture specification to evolve
around a type space, that is: A set of sets of values. The terms: Components, ports,
glue, connectors are mentioned from Garlan — but we “immediately translate” them
into notions of process algebras, notably CSP: Processes and channels.

For the components to interact (via channels) events signal communication, i.e.,
in the CSP “jargon”, the simultaneous “rendez–vous” (instantaneous “meeting”) of
respective output and input events together with their “transfer” of values from the
output (later designated by the “shriek”: !) to the input process (later designated by
the “question mark”: ?).

An architecture is now the configuration of components (processes) with internal
(component to component) and possibly also external channels (coming from, or leading
to an “outside”).

This characterisation is in terms of “implementation, construction”.

2.1.2 “A Picture is Worth a Thousand Words!”

Let us illustrate, by a diagram, an architecture of n+2 components: n client components
(processes), a staff component (process), and a time-table component (process). That is:
The architecture is apparently about clients, staff and time-tables! Let us assume that the
time-table is an airline time-table, that the clients are prospective passengers and that the
staff is that of an, or the, airline.

The rectangular boxes shall denote processes and the two-way arrows shall denote two-way
channels.

But such diagrams, as well as the first characterisation, leaves something to be desired:
“What is it all about?”.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 8

Figure 1: An Airline Time-table Software Architecture

Client

Client

Client

StaffTime-table

Domain: A Time-table with clients and staff

2.1.3 “What is an Architecture ?” — Proposals 2–3

We therefore “look behind” the mere syntax of boxes and arrows to ask for the meaning of
the configuration.

• An ‘ideal’ Software Architecture allows one to observe ‘exactly’ that some functional
requirements have been satisfied.1

• A Software Architecture reveals those, and only those (hence external) interfaces which
the user — here clients and staff — can observe (including manipulate).

Now we are getting to where we want to be!

2.1.4 A Formalisation of a Software Architecture

Yet, before we return to a more systematic treatment of the notions of domain and require-
ments, let us briefly state that the above diagram covers a distributed sofware “system” that
allows clients to query a time-table, and staff to operate upon this time-table (potentially
changing it). Now we can postulate a formal process (and channel, etc.) description which
details the above diagram.

The formal model outlines a type space, channels and values of query and update opera-
tions as well as of the client, staff and timetable processes. Without much further a-do:2

type
Index, TT, VAL, RES, Φ = TT→VAL, Ψ = TT→TT×RES

1The two terms ‘ideal’ and ‘exactly’ are “balanced”: either both are present, or both can be omitted —
yielding different meanings.

2In this paper we use a rather simplified version of RSL [11], the RAISE method [12] Specification Language.
In this simplified version we treat all channel and value definitions as those of objects (in the sense of RSL).

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 9

channel
ctt[i:Index]:Φ,ttc[i:Index]:VAL, stt:Ψ, tts:RES

value
φ1,φ2,..,φq:Φ, ψ1,ψ2,..,ψu:Ψ
cφ: Unit → Φ Unit, cφ() ≡ φ1⌈⌉φ2⌈⌉..⌈⌉φq
sψ: Unit → Ψ Unit, sψ() ≡ ψ1⌈⌉ψ2⌈⌉..⌈⌉ψu

client: i:Index → in ttc[i] out ctt[i] × Unit
client(i) ≡ (ctt[i]!cφ() ; ttc[i]? ; client(i))
staff: Unit → in tts out stt × Unit
staff() ≡ (stt!sψ() ; tts? ; staff())

timetable: TT → in ctt[i],stt out ttc[i],tts × Unit
timetable(tt) ≡ let tt′ =

⌈⌉⌊⌋ { let φ = ctt[i]? in ttc[i]!φ(tt) ; tt end | i:Index }
⌈⌉⌊⌋ let ψ = stt? in let (tt′,r) = ψ(tt) in tts!r ; tt′ end end
in timetable(tt′) end

system() ≡ ‖ { client(i) | i:Index } ‖ timetable(tt) ‖ staff()

Annotations:

• Index is a finitely enumerated type. Its elements indexes a finite set of clients.

• TT designates a set of time–tables.

• VAL designates a set of time–table query values.

• RES designates a set of time–table update responses.

• Φ designates a set of time–table query functions (from time-tables to values).

• Ψ designates a set of time–table update operations (from time-tables to new time-tables
and responses).

• ctt, ttc, stt, tts designate arrays of client channels to, resp. from time-tables, and a pair
of staff to, resp. from time-table channels.

(The previous two-way arrows have each been replaced by two one-way arrows.)

• φ1, φ2, .., φq stands for an arbitrary set of (pre-compiled) query functions as internal
non-deterministically chosen by the client query selection process cφ.

• ψ1, ψ2, .., ψu stands for an arbitrary set of (pre-compiled) update operations as internal
non-deterministically chosen by the staff update selection process sψ.

• client(i) designates an i’th client who, wrt. time-tables, can be modelled as issuing
query requests (via a client to time-table channel), awaiting results, whereupon the
client resumes activities.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 10

• staff designates a staffer who, wrt. time-tables can be modelled as issuing update requests
(via the staff to time-table channel), awaiting responses, whereupon the staffer resumes
activities.

• timetable designates the time-table which external non-deterministally awaits for action
requests from either one of a number of clients or from a staffer.

A client query is performed on the time-table, the result value communicated back
to that cleint, whereupon the unchanged time-table resumes activities.

A staff update is performed on the time-table, causing a possible change to the time-
table with a response sent back to the staffer, wereupon the possibly changed time-table
resumes activities.

• system is the (parallel) configuration of a number of clients, and a staffer around a
shared time-table.

2.1.5 “Software Architectures: From Where?”

Clearly, how do we know whether a proposed architecture actually solves a, or the, problem
as first posed? Not unless we have carefully recorded, written down, systematically developed
and analysed, relevant notions of both the application domain and the requirements. So,
instead of just postulating an

• Architecture

— as is too often done without much serious, recorded development work preceding its pre-
sentation — we propose, in line with our “triptych dogma”:

• via Requirements

• from Domains

With this we have completed our initial “analysis” of the problem whose general solution this
paper intends to illustrate.

There now follows two pre-cursor sections (Domain: 2.1.6, Requirements: 2.1.7) to the
systematic unfolding of an architecture.

2.1.6 A Domain

After having acquired knowledge about the application domain we write it down. The de-
scription usually has four parts of which we shall only show three — and then only rather
cursorily. The four parts are:

• A Synopsis:
A synopsis is a very brief characterisation of “what it is all about” — where ‘it’ here
refers to a, or the, domain!

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 11

• A Terminology:
A terminology defines, in concise, natural (national) language, all the professional terms
used in the synopsis, elsewhere in the terminology and in the narratives. For a domain
description the terms are those of the stake-holders of the application domain.

We shall not present the terminology in this paper since the example is drawn from
a domain familiar to most readers.

• Narratives:
Since there may be many stake-holders involved in any one software (to be developed)
there may be a need for several concordant narratives.

Each domain narrative is a (the stake-holder) professional language indicative (as it
is [1, 2]) description of the domain as seen from the side of that, or those, stake-holders.
The descriptions must only use such technical terms that are part of the stake-holder’s
professional language (whose terms are defined in the terminology). (Usually the narra-
tives also define these terms.) The narrative otherwise present all relevant designations,
definitions and refutable assertions — basically following Michael Jackson’s Principles
of Description [1, 2]. Basically a narrative narrates all the phenomena of the domain
believed to be of relevance to any software that might be required for that domain. The
domain narratives, as well as their formal counterparts, are here proposed described
normatively. That is: Generically — purportedly relevant to several distinct occur-
rences of the domain. Thus our normative description of the airline time-table system
should be “true” of “conceivably all” airlines’ time-tables! This is in contrast to an
instantiated domain description. The latter describes a specific instance, say for Japan
Airlines.

• Formal Models:
Each narrative is complemented with a formal model. Sometimes one model may cap-
ture several narratives. Sometimes parameter instantiations of a parameterised model
brings about desired stake-holder perspectives.

We otherwise refer to [13] for a more elaborate presentation of principles and techniques of
domain modelling.

Domain Synopsis

• The domain is that of airline time-tables being queried by clients and being updated by
staff.

Staff querying the time-table act as clients.

Domain Narrative

• Time–tables are further undefined.

• Operations on time-tables either leave the time-table unchanged (as for users), or
updates the time-table (as for staff).

• Client queries extract time-table information

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 12

• Responses inform staff on time-table update.

• Client queries (staff updates) are abstracted as functions φ (respectively operations ψ).

Comments: Nothing is said about whether there are just one, or several, clients. The
narrative is deliberately left under-specified.

No cause for ambiguity seems to arise — yet!
We also do not elaborate on specific query nor on specific update operations. That is: We

have deliberately chosen to ‘abstract’ these — as already hinted in the pre-view example!
Here we see, perhaps an extreme example of a normative domain description. We allow

for any range of operations as long as clients cannot change the time-tables. This allows us
great freedom — as we shall later see.

Domain Formalisation

type
TT, VAL, RES
Φ = TT → VAL
Ψ = TT → TT×RES

value
φ1,φ2,...,φq:Φ
ψ1,ψ2,...,ψu:Φ

client: TT → VAL
client(tt) ≡ let φ:Φ = φ1⌈⌉φ2⌈⌉...⌈⌉φq in φ(tt) end

staff: TT → TT×RES
staff(tt) ≡ let ψ:Ψ = ψ1⌈⌉ψ2⌈⌉...⌈⌉ψq in ψ(tt) end

Annotations:

• TT, VAL, RES designates sets of time-tables, query result values and update re-
sponses.

• Φ,Ψ designates sets of query functions, respectively update operations.

• φ,ψ designates archetypical query functions, respectively update operations.

• client designates that a client can perform (any one of a set of) queries on time-tables.

• staff designates that a staffer can perform (any one of a set of) updates on time-tables.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 13

Comment:

• That’s all!

• In this domain description, informal as well as formal, we “underspecify”: we do not,
for example, say whether there are many clients, but speak of an archetypical client,
and of archetypical query functions and update operations.

2.1.7 Requirements

Requirements express what the desired software should offer — which properties are deemed
desirable. Requirements, from partly a pragmatic point, can be “divided” into two sets: the
functional, resp. the non-functional requirements.

Functional Requirements

Functional requirements “derive” from, or as Michael Jackson and Pamela Zave [14] expresses
it: “resides in”, “the domain”. Constructing functional requirements, to us, include the
following techniques: Projection, instantiation and extension. These will now be illustrated.

We see the following general principles guiding our construction of functional requirements:

• Domain Projection:
In constructing requirements the requirements engineer must — together with other
stake-holders — decide on which segment of the (normative) domain will be referred to
in the requirements.

• Domain Instantiation:
And if the domain description was normative, it must now be instantiated to the par-
ticular properties and desirabilities of the specific customer’s domain.

• Domain Extension:
Once the completed software system is inserted in the domain it becomes part of that
(now new) domain. But this is not the “extension” that we here mean. Rather we
mean: provision of concepts and facilities that could have been part of the old domain
— for example if there had otherwise been sufficient supporting technology or human
resources available.

• Shared Phenomena: External ↔ Internal States
Some of the type space of the domain may be called its state. Determining the state
space of a domain is a, sometimes pragmatically determined, art! We are here referring
only to those parts of the domain whose values may change independently of what goes
on in the machine (i.e. in the sotware described computations)!
The shared phenomena issues of requirements are now: (i) how to initially input, i.e.
initialise the [machine] internal state, (ii) how to make sure that there is a reasonably
updated version of the external state in the machine, (iii) how to vet the state input
and updates, (iv) . . . , etc.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 14

We otherwise refer to [13] for a more elaborate presentation of principles and techniques of
requirements modelling.

• Projection:

We decide to maintain “all” of the domain types of time-tables, query & update oper-
ations, and values of and responses to such operations.

type TT, Φ, Ψ, VAL, RES

The client and the staff functions will, however, be redefined.

• Instantiation: Three parts. Part 1:

We decide, however, to instantiate time-tables, values and responses, to concrete types.
In doing so we shall introduce hitherto “hidden” types: Flight numbers, airport names
and (departure and arrival) times. And we shall likewise introduce a simple notion
of journey: namely that of a one or several “leg” trip with which a flight number is
associated in the time-table and which the flight is expected to travel.

– TT, RES, VAL: Concrete types:

type
Fn, An, T,
TT = Fn →m Journey
Journey′ = An →m (arrival:T × departure:T)
Journey = {| j:Journey′ • wf Journey(j) |}

value
wf Journey: Journey′ → Bool
wf Journey(j) ≡ ...

Ans: TT → An-set
Ans(tt) ≡ ∪ { dom tt(fn) | fn:Fn • fn ∈ dom tt }

type
RES == ok | nok | VAL
VAL = TT | Journey

So for each flight number a time-table records two or more airport names, and for each
of these the gate arrival and departure times. Well-formedness of a journey may, for
example, mean that for any given flight (number) no two distinct airport arrival and
departure times overlap, and that for a time-table, as a whole, for example, that for any
given airport no two flights take-off or land at the same time, or even “within prescribed
intervals”. The Ans function observes all the airport names mentioned in a time-table.
Responses to staff operations allow them to also act as clients.

• Instantiation Part 2:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 15

– Φ Specific Operation:

We now instantiate the query operations to a specific few: (i) browse time–table
(see it all, no argument) and (ii) display a specific (fn) journey:

type
Query == mk brws() | mk disp(fn:Fn)

value
type Mq: Query → Φ
Mq(q) ≡

case q of
mk brws()

→ λtt.tt,
mk disp(fn)

→ λtt.if fn ∈ dom tt
then tt(fn) else [] end

end

Mq applied to query “commands” yield denotations: functions from time-tables
to values.

The above semantics definition, M, is classical.

• Instantiation Part 3:

– Ψ Specific Operation:

Similarly the staff update operations are: (i) initialise (reset) to (pre-loaded) time–
table, tt:TT, (ii) add a “flight” (fn,j) to tt and (iii) delete a “flight” fn from tt —
with responses ok, or nok — in addition to the client queries.

type
Update == mk init() | mk add(fn:Fn,j:Journey)

| mk del(fn:Fn) | Query
value

ttinit : TT
type Mu: Update → Ψ
Mu(u) ≡ case u of:

mk init() → λtt.(ttinit,ok),
mk add(fn,j)

→ λtt.if fn ∈ dom tt
then (tt,nok) else (tt ∪ [fn 7→j],ok) end

mk del(fn)
→ λtt.if fn ∈ dom tt

then (tt \ {fn},ok) else (tt,nok) end
→ (tt,Mq(u))

end

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 16

Mu applied to update “commands” yield denotations: functions from time-tables
to pairs of time-tables and responses.

• Extension:

We now extend the domain by a query whose calculation usually is too cumbersome for
ordinary humans to carry out and with any assurance of having done it right!

– Additional Φ: inquire of an at most m:Nat flight change journey between two
given airports (fa,ta):An×An

type
Conn = Fn × (An × Fn)∗

VAL = TT | Journey | Conn-set
conn == mk conn(m:Nat,fa:An,ta:An)

value
Mq: conn → TT → Conn-set
Mq(mk conn(m,fa,ta))(tt) as conns

pre: ...
post: ...

We leave it to the reader to define appropriate pre/post conditions for this query which
is expected to calculate the (possibly empty set of) all the zero, one, two, etc., m stop-
over and flight change travels between two given airports. We also leave it to the reader
to decide whether circular trips are allowed, and, in general, what properties the result
should otherwise possess!

Non-functional Requirements

Constructing non-functional requirements, to us, include the following techniques: Initialisa-
tion, system configuration, dependability (accessability, availability, reliability, security and safety),
and CHI. Formalised techniques for handling some of these will now be illustrated. An illus-
trative list of kinds (and examples) of non-functional requirements include:

• Performance: “such and such” a function must execute in at most t seconds, or the
software must require at most k kilo bytes of storage.

• Dependability: This term is debatable, anyway:

– Availability: the software must provide “fair” access amongst multiple users
contending for access to shared resources . . .

– Reliability the software must not give rise to “down-times” of at most a total of
m minutes total over any d day period (interval).

– Accessability: provide simultaneity in use of resources where reasonable — in
order to make these accessible to a “largest number” of users concurrently.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 17

– Safety: the software must “guard against” (“such and such”) failures in the (sensor
and actuator) hardware technology to which the machine is attached — i.e. loss of
property and lives, due to software errors, must remain within legal limits during
the life-time of the system in which the software resides.

– Security: the software must secure that only “appropriately” authorised personnel
and/or “machinery” (agents) can cause software to respond in any way!3

• Maintainability: Maintenance has to do with regular or irregular changes to or in-
spection of the software. There seems to be at least three causes for maintenance:

– Perfective: improve response time, lower storage consumption, . . .

– Adaptive: change software so that the machine can be attached to new sensors,
actuators or other input/output.

– Corrective: the software must be “easy to debug”!

• Platform: Hardware/Software: the software must “execute” on “such & such”
platforms (IBM PC compatibles, Linux with CORBA (!), etc.).

• CHI: Computer/Human Interface: the resulting machine must be “user friendly”.

• &c.

Usually the exression (as well as a later software design [implementation]) of non-functional
requirements entail cumbersome, detailed pre-cautions and descriptions.
At the same time it is often difficult, with today’s known techniques, to describe suffi-
ciently precisely, including to formalise, many types of non-functional requirements (e.g.
“user-friendliness”). Even for some of the types (for example: maintainability and perfor-
mance) where one can indeed formalise, no techniques are yet known whereby one can argue
(e.g. prove) that such properties are indeed satisfied by the resulting sofware — other than
what “time will tell!”.

We continue or mixture of narrative and formal description.

• Initialisation: Provide for Initial time-table

We do not show formalisation — but could!

The requirements specification of this really amounts to a functional requirements but
for the systems facilities management personnel: “One person’s program organisation
is another person’s software architecture”.

Describing this aspect amounts to the specification of an entire “little sub-system”:
with own external data formats, data vetting, input (load) procedures, etc.

• System Configuration: Provide for n:Index Clients, one Staff and one Time-table

3Our favourite “definition” of what constitutes a secure system goes like: A system is secure if non-
-authorised agents while accessing (i.e. in contact with) the system (i) cannot ascertain which functional (or
other) properties it has, (ii) cannot ascertain the structure of the system, and (iii) does not know whether it
knows (i) and/or (ii)!

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 18

The specific property requirements for data communication cabling, data transfer, etc.,
form one part of this aspect. We abstract part of this and show the required configura-
tion in the architecture model.

• Availability: Provide “Fair” Service to Clients and Staff

The clients and the staff “share” the same time-table. Repeated requests for query,
respectively update operations by clients and staff must be handled such that neither
party is excluded from access indefinitely. We will informally suggest a solution to this
problem only after we have presented the software architecture.

• CHI: Icons, Prompt menu and Result windows

This particular requirement states that the user interface to the computer (i.e. the
machine) be effected through a display screen sub-system (for example with an ap-
propriately attached keyboard and mouse). That system can, as suggested here, be
decomposed into three parts: icons which are like clickable buttons — one for each of
the query and/or update operations (as appropriate), prompt fields where arguments
to respective operations (also as appropriate) can be provided by the user, and a result
window where query values or update responses are displayed.
We omit treatment of scrollability.

type
CHI = Icon × Prompt × Result
Icon = browse | display | connection

| init | add | delete | nil
Prompt == Query | Update | conn | nil
Result == VAL | RES

The seemingly one icon whose value can range over seven enumerated values, including
nil (which models “no setting” of the value), can be implemented for example by a
curtain icon with six fields, or by six distinct, labelled icons.

Perhaps this aspect of the computer-human interface (CHI) should be termed a
functional requirement. Since the suggested icon, menu and result window concepts are
usually part of a perceived solution to general “user-friendliness” we list it here.

Functional Requirements — “Wrap Up”

Till now we have refrained from re-describing the client and the staff functions described in
the domain. Now that we have described the CHI “state” — in terms of the icons, prompt
fields and the result/response window — we can finalise the requirements.

Redefinition of Client Function

We treat the CHI issue rather abstractly. Primarily we require that whatever that interface
was before the issuance of a query (update) operation by a client or staffer (respectively by
a staffer), after the requested operation has been obeyed that interface shall have its three
components suitably reflect the transaction.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 19

value
client: CHI → TT → CHI
client(,,)(tt) ≡

let icon = browse ⌈⌉ display ⌈⌉ connection in
case icon of:

browse
→ (browse,nil,Mq(mk brws())(tt)) end,

display
→ let fn:Fn • fn ∈ dom tt ∨ ... in

(display,
mk disp(fn),
Mq(mk disp(fn))(tt)) end,

connection
→ let m:Nat,da,ta:An • {da,ta} ⊆ Ans(tt) ∨ ... in

(connection,
mk conn(m,da,ta),
Mq(mk conn(m,da,ta))(tt)) end

end

Annotations:

• The client now also focus on the computer screen (CHI) with — as here: an abstraction
— of the icons, the prompt menu and the result window, and, as before, the time-table.

• The client internal (⌈⌉) non-deterministically issues either a browse, a display or a con-
nection request for query (by “clicking” an appropriate real, physical button).

• A browse request can be immediately served. The request results in a new ‘chi’ state
in which the icon button for browse is shown (depressed), in which there is no (hence
nil) prompt, and in which the result window shows the (possibly scrollable) time-table
— which should result from performing the browse φ function on the time table!

• A display request causes a prompt for an appropriate flight number. Either it is one
which is in the time-table, or (. . .) it is not such a one (the latter causing an empty
journey to be displayed!).4 Etcetera!

• A connection request causes a prompt for the client to submit a suitable (or, as it may
be, less suitable (. . .)) pair of (from and to) airport names. Etcetera!

In the above model, we have, for simplicity, omitted any description of any temporal sequence
that relates the three parts of the CHI interface. It may appear from the formalisation above
that the full triple is not presented before the entire operation has executed. One may,
however, take the liberty to interpret this specification as follows: first the icon part of the
CHI state is set, then the prompt part, and finally the result part.

4We do not deal with error diagnostics — the subject of another, proper paper!

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 20

Redefinition of Staff Function

Remarks similar to those stated above in connection with, and prior to the formal description
of client function can be repeated. So we omit those!

value
staff: CHI → TT → CHI × TT
staff(,,)(tt) ≡

let icon = init ⌈⌉add ⌈⌉ delete ⌈⌉ ... in
case icon of:

init
→ let (r,tt′) = Mu(mk init())(tt) in

((init,tt′,r),tt′) end,
add

→ let fn:Fn,j:Journey • fn 6∈ dom tt ∨ ... in
let (r,tt′) = Mu(mk add(fn,j))(tt) in
((add,mk add(fn,j),r),tt′) end end,

delete
→ let fn:Fn • fn ∈ dom tt ∨ ... in

let (r,tt′) = Mu(mk del(fn))(tt) in
((delete,mk del(fn),r),tt′) end end

→ ... see the client function, now using its
... alternatives and the Mq function!

end end

Remarks similar to those stated above in connection with, and subsequent to the formal
description of client function can be repeated. So we omit thos!

2.2 A Software Architecture

2.2.1 Analysis

So we have most pieces ready to start the design of a software architecture. What is the
problem and a possible solution?

• Problem:
No “sharing” of time-table among n users and one staff. The client and the staff function
descriptions of the requirements still refer to “own” copies of the time-table. Therefore:

• A Solution: System configured into concurrent client and staff processes interleaved
wrt. a time-table process

Thus we “lift” from the client and staff function descriptions on pages 19, respectively 20,
references to the time-table (tt) and “insert” in their place appropriate references to channels
and channel communications!

But before we go in detail, let us review the software architecture design issues confronting
us:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 21

• Software Architecture Design Issues:

* Requirements Analysis See above!

Basically done!

* Overall System Configuration

It was decided above to decompose the system into n client process, one staff
process and one time-table process. with appropriate channels.

* Functional Requirements Projection

A hint was also given above: of “lifting” time-table tt handling of the requirements
descriptions of the client and staff function descriptions (on pages 19, respectively
20) into channel declarations and communications.

* Component–by–Component Design

By this we mean the “tidying up” of left-over issues: the introduction of appropriate
new type spaces if required, etc.

2.2.2 The System Process

The system process is one which “puts” in parallel (‖) all the component processes and which
contains a number of channels between these.

Process/Channel Diagram

From the below diagram one can actually automatically generate the basic formalisation
which follows.

Figure 2: A Time-table Software Architecture

Architecture: A Time-table with clients and staff

ctt[1]
ttc[1]

stt

tts

Client

Client

Client

Staff
Time-

table

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 22

Formalisation

system() ≡ ‖ { client(i) | i:Index } ‖ timetable(tt) ‖ staff()

The formalisation describes that all the Index (i.e. n) client processes are put in parallel, and
these (in parallel) with the one time-table and the one staff process.

2.2.3 Channels — and some Design Analysis & Choices

But the formalisation above leaves out certain design decisions: Namely as to what to com-
municate over the channels.

From the “lifting” idea sketched above, we can conclude that when for example:

Mq(mk conn(m,da,ta))(tt)

is “lifted” from the connection alternative of the description of the client function, page 19,
then it must be replaced by an expression that:

• communicates an appropriate request

• to the time-table process,

• and is communicated a query value

• back from that time-table process.

Thus the (tt) argument in the referenced line gives rise to the specific mentioning of client to
time-table and time-table to client channels.

We can further ask: what about the input argument tt to the client function, page 19?
The answer — given the specificities of the specification language (RSL) used — is that we
remove the (tt) argument and replace it — in the type definition of the client function — by
appropriate references to the fact that the software architecture client function communicates
via specific channels with the timetable function. These channels we now define:

channel
ctt[i:Index]:Φ,
ttc[i:Index]:VAL,
stt:Ψ,
tts:RES

But how did we decide on what values to communicate to the time-table process?
Well there are basically two possibilities, and we naturally have to choose one. Either

we could output from the client (or the staff) process the syntactical value of the query
(respectively the update) request (i.e. the “raw” commands), or we could send their semantic
counterparts, the Φ (respectively Ψ) denotations. We choose the latter!

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 23

2.2.4 Functional Requirements Projection

Before we present our choices for the description of the software architecture client, staff and
time-table processes, let us review what we have projected from the requirements:

type
Fn, An
Journey = An →m (T×T),
TT = Fn →m (An →m Journey)
Φ = TT → VAL,
Ψ = TT → TT×RES
RES == ok | nok | VAL
VAL = TT | Journey | Conn-set
Conn = Fn × (An × Fn)∗

Query == mk brws() | mk disp(fn:Fn)
| mk conn(m:Nat,fa:An,ta:An)

Update == mk init(tt:TT) | mk add(fn:Fn,j:Journey)
| mk del(fn:Fn)

CHI = Icon × Prompt × Result
Icon = browse | display | connection | init | add | delete | nil
Prompt == Query | Update | nil
Result == VAL | RES

value
ok, nok
M

2.2.5 A Client Process

Based on the design decisions informally recorded above and the summary of the requirements
type space projected onto the software architecture description we can now present the three
component processes. First the client process:

value
client: i:Index CHI → out ctt[i] in ttc[i] × CHI × Unit
client(i,(,,)) ≡

let icon = browse ⌈⌉ display ⌈⌉ connection in
case icon of:

browse
→ (browse,

nil,
ctt[i]!Mq(mk brws()) ; tcc[i]?) end,

display
→ let fn:Fn • fn ∈ dom tt ∨ ... in

(display,
mk disp(fn),

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 24

ctt[i]!Mq(mk disp(fn)) ; tcc[i]?) end,
connection

→ let da,ta:An • {da,ta} ⊆ Ans(tt) ∨ ... in
(connection,

mk conn(m,fa,ta),
ctt[i]!Mq(mk conn(m,da,ta)) ; tcc[i]?) end

end

Note the fourth line from the connection alternative line in the client function definition. (This
is the last expression just above!) The description here expresses: on channel ctt[i] output
(!) denotation Mq(mk conn(m,da,ta)), then (;) input (?) a value from channel tcc[i]. This
is the replacement for Mq(mk conn(m,da,ta))(tt) in the requirements definition of the client
function on page 19.

Also note that the type definition specifies: out ctt[i] in ttc[i]. This is the replacement in
the requirements definition of the client function, and of that functions formal parameter (tt)
on page 19.

2.2.6 The Staff Process

Without much further a-do:

value
staff: CHI × TT → out stt in tts × CHI × TT
staff(,,)(tt) ≡

let icon = init ⌈⌉add ⌈⌉ delete in
case icon of:

init
→ (init,nil,(stt!Mu(mk init()) ; tts?)),

add
→ let fn:Fn,j:Journey • fn 6∈ dom tt ∨ ... in

(add,
mk add(fn,j),
stt!Mu(mk add(fn,j)) ; tts?) end,

delete
→ let fn:Fn • fn ∈ dom tt ∨ ... in

(delete,
mk del(fn),
stt!Mu(mk del(fn)) ; tts?) end

→ ...

end end

2.2.7 Time–table Process

The time–table process simply “listens” for input either from some client process or from the
staff process:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 25

value
ttinit : TT
timetable: TT → in {ctt[i]|i:Index},stt

out {ttc[i]|i:Index},tts × Unit
timetable(tt) ≡

let tt′ =
⌈⌉⌊⌋ { let φ = ctt[i]? in

ttc[i]!φ(tt) ;
tt end | i:Index }

⌈⌉⌊⌋ let η = stt? in
if η:Ψ [′′free notation

′′]
then

let (tt′′,r) = η(tt) in
tts!r ;
tt′′ end

else [assert: η:Φ]
tts!η(tt);
tt

end end
in timetable(tt′) end

An input from any client process is always a query denotation, i.e. of type Φ. An input from
a staff process is a denotation, either of an update, i.e. type Ψ, or of a query, i.e. of type Φ.

2.3 A Model–oriented Verification

We can argue, along the lines itemised below, that the client process of the architecture
implements the client function of the requirements:

1. Basis:

(a) Case: ‘connection’

(b) Requirements client line: page 19
(connection,mk conn(m,da,ta),Mq(mk conn(m,da,ta))(tt))

(c) Three Architecture client lines: page 24
(connection,mk conn(m,da,ta),ctt[i]!Mq(mk conn(m,da,ta)));tcc[i]?

(d) Architecture timetable lines: page 25

i. let φ = ctt[i]? in

ii. ttc[i]!φ(tt)

2. Proof Procedure:

(a) φ, item 1(d)i, is φ in item 1(d)ii, and is the Mq(mk conn(m,da,ta)), item 1c;

(b) Therefore replace φ, item 1(d)ii, with Mq(mk conn(m,da,ta)), item 1c;

(c) insert it in lieu of tcc[i]? in item 1c;

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 26

(d) cancel its first part ctt[i]!Mq(mk conn(m,da,ta)) (since it has been “used”);

(e) and you get third part of item 1b.

(f) QED

2.4 Conclusion

We have presented a cursory development: Systematic, not rigorous, let alone formal! We have
“massaged” three variants of client functions (Domain, Requirements, respectively Software
architecture). We have shown a development of a domain description, of a requirements
from that domain description, and of a software architecture from the requirements. And
we have shown how all functional and some non-functional (CHI) requirements have been
“implemented” — albeit abstractly.

Next we show how a program organisation “implements” remaining non-functional require-
ments.

3 Program Organisation

The concept of program organisation is a pragmatic one. We make the distinction — which
the literature on Software Architecture seemingly does not make — that a software architec-
ture exposes those interfaces (hence external) which “primary” users see: can observe and/or
manipulate. It is as such that we say the a software architecture implements the functional
requirements. In contrast, a program organisation exposes the internal interfaces between
such components which “secondary” users can see. “Primary” users are those for which the
functional requirements were first intended. In the example, of sections 2 and 3, those users
are the clients and the staff. “Secondary” users are those for which the non-functional require-
ments were then intended. Examples of such users are those, typically facilities management
personnel, who have been charged with the installation and maintenance of the delivered
software. Typically internal interface allow these users to observe and tune performance in-
dicators (perfective maintenance), to replace some components with other components for
adaptive purposes or for corrective purposes.

Our distinction between software architecture and program organisation has its source
in the similar terms: ‘computer architecture’ and ‘machine organisation’ as they were more
or less explicit in [15]. That paper spoke of the IBM System/360 architecture in terms of
what the assembler language level programmer ought to know about the bit, byte, halfword,
word, double word and variable field length, as well as the channel data structures, and in
terms of the instruction repertoire and channel commands that the IBM/360 “possessed”.
This architecture was shared across a very large spectrum of machine organisations as these
were exemplified in the IBM/360 models 30, 40, 50, 65, 70, etc. The machine organisa-
tions of these computers went from 8 bit via 16 and 32 bit to 64 bit data flows, from simple,
micro-programmed control (without caches) to highly complex, pipelined and logical circuitry
controlled machines (the latter with elaborate caches).

We suggest to follow, wrt. software terminology, 35 years of established hardware termi-
nology practice — when, as here, there are ‘corresponding’ terms!

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 27

3.1 Characterisation

We therefore propose the following “soft” characterisation of what constitutes a program
organisation, namely:

• A decomposition of a Software Architecture

• into further Components with

– (own) State Spaces, Types

– Predicates, Functions, Operations

– Channels, Communication (Events)

• with Internal Interfaces

– to one another

• for purposes of

• satisfying Non–functional Requirements

• and usually not observable by the (casual) user.

The characterisation is “soft” since it is hard to draw a precise line between “primary
(causal)” and “secondary” users, and similarly — often — between functional and non-
functional requirements.
We shall anyway persist!

3.2 Design Decisions

We can structure initial program organisation design work as follows:

• Major Design Decisions:

– Which Non-functional Requirements to Prioritise

• Consequential Design Decisions:

– Decomposition: Components/Interfaces

– Distribution & Concurrency

– Connectors, Glue, Ports &c.

– &c.

The above considerations often — and naturally — occur in connection with the software
architecture design decision work. Hence a review is needed of non–functional requirements:

• Performance

• Dependability:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 28

* Accessability * Avaliability * Reliability * Security

• CHI

• Maintainability:

* Adaptive * Perfective * Corrective

• Devt. & Execution Platforms

• &c.

We already covered a list of non-functional requirements in section 2.1.7.

3.3 The Time–table Example

For the specific case example at hand we first restate the problem before suggesting a solution.

3.3.1 A Problem Analysis

We re–list some of the non-functional requirements wrt. how the current software architecture
presently handles the issue:

• Availability: The timetable process does not guarantee “fair” choice between handling
input from clients and staff processes. Cf. non-det. choice (⌈⌉⌊⌋), page 25.

The non–deterministic choice that we are referring to above is that between time-table
process’ handling of the n:Index client process inputs and its handling of the staff process
inputs (page 25).

• Accessability:

The current softare architecture can be said to prescribe strict, mutually exclusive
serialisation of client and staff processes wrt. timetable process — OK for zero time pro-
cessing, not OK for time-consuming time-table operations (like for example connection
queries)! “Small, quick” query processing, such as journey, could be interleaved with
the processing of “large, time-consuming” queries, such as connections.

• Maintainability:

Adaptive:
Cf. direct channels between timetable and the client and staff processes. These direct
connections, if also implemented “ad verbatum”, might hinder the development (i.e.
refinement) of several distinct implementations of the client process.

3.3.2 Design Decisions

The design decisions include a prioritisation of which non-functional requirements shall first,
then subsequently, determine program organisation design decisions. Our example choice is:

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 29

• Availability:

Insert an arbiter between client and staff processes.

This arbiter shall secure a “more fair” choice — perhaps “less non-deterministic” —
between the two categories of users.

A solution could be to have an internal clock (or “bit”) secure alternate sampling of
client, respectively staff inputs to the time-table process.

• Accesability:

Interleave of user and/or staff processing — implies the passing of user index even to
the timetable process, a less than ideal solution when it comes to design for example a
time-table process which is as general as possible!

We decide here to make sure that two or more client processes can be serviced in
parallel. This will be effected by a multiplexor process (mpx) inserted between the client
processes and the arbiter.

A journey query handling by the time-table process could thus be interleaved with
the handling of a connection query from another client. The former may “arrive” at
the timetable process before the latter, but that process may decide to first service the
latter.

• Maintainability:

Connectors between client, staff, multiplexor, arbiter and timetable processes.

To secure that the developer does not take “white box” advantage of knowledge of how
the client, staff and timetable processes are implemented, it is suggested to insert connec-
tors between these and the (newly introduced) arbiter process. The existence of these
connectors force a “standard” (“black box”) interface between connected processes.

These were the elements of a “mosaic” of design choices.

3.3.3 A Process Diagram

Now we piece the design choice “mosaic” elements together. First diagrammatically:

3.3.4 A Formal Process Model — The System Process

Then we “convert” the diagram prescription into a system process definition:

value
systemπ() ≡

‖ { clientπ(i) | i:Index }
‖ cm cπ()
‖ mpxπ()
‖ mq cπ()
‖ arbiterπ() ‖ at cπ() ‖ timetableπ(tt)
‖ as cπ()
‖ staffπ()

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 30

Figure 3: A Time-table Program Organisation

queue

connector connector

connector

client

client

client

client

queue

arbiter

queue

connector

arbiter

arbiter

staff

timetable

arbiter

timetable

staff

Program Organisation with Clients, Queue, Arbiter, Staff, Timetable, Connectors and Channels

client

c_o
c_i

aq_o

q_cc_i aq_i as_o s_i

s_oas_i

at_o at_i

tt_i tt_o

q_ac_iq_cc_o

q_ac_o

• Annotations:

– Connectors basically pass information on, in both directions.

– Arbiter process:

∗ interleave requests from clients and staff

∗ and re-distributes timetable returned results to client, resp. staff processes (de-
pending on types)

– Multiplexor process multiplexes between users:

∗ accepting query requests from users before “earlier” such requests have been
concluded,

∗ maintains internal records of outstanding requests — for audit purposes (a
non-functional benefit only mentioned now)

∗ and returns query results to users — but not necessarily in the order of their
original issuance.

We leave it to the reader to define the client, mpx, arbiter, staff, timetable and the five connector
processes.

We note that the multiplexor/arbiter, the staff/arbiter and the timetable/arbiter con-
nector processes are basically identical modulo names of channels, but that the clients/multi-
plexor connector process is materially different.

We also observe that the connector processes are rather independent, in their abstracted
behaviour, of the ‘semantics’ of the processes they connect. Thus only two connector processes
need be implemented, the n : 1 and the 1 : 1 connectors — with their specification being
parameterised, and their instantiation being provided, with the information needed in order
to match channel types.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 31

3.3.5 A Formal Process Model — The Channel Declarations

channel
c o[i:Index]:Φ, c i[i:Index]:VAL,
q cc i:(Φ×Index), q cc o:(VAL×Index),
q ac o:(Φ×Index), q ac i:(VAL×Index),
aq i:(Φ×Index), aq o:(VAL×Index),
at o:((Φ×Index)|Ψ), at i:((VAL×Index)|RES),
as i:Ψ, as o:RES,
tt i:((Φ×Index)|Ψ), tt o:((VAL×Index)|RES),
s o:Ψ, s i:RES

3.3.6 A Formal Process Model — The Process Signatures

value
systemπ: Unit → Unit
clientπ: i:Index → out c o[i] in c i[i] × Unit
cq cπ: Unit → out c i[i],q cc i in c o[i],q cc o × Unit
queueπ: Unit → out q ac o,q cc o in q cc i,q ac i × Unit
aq cπ: Unit → out aq i,q ac i in q ac o,aq o × Unit
arbiterπ: Unit → out aq o,as o,at o in aq i,as i,at i × Unit
at cπ: Unit → out tt i,at i in tt o,at o × Unit
timetableπ: Unit → out tt o in tt i × Unit
as cπ: Unit → out as i,s i in s o,as o × Unit
staffπ: Unit → out s o in s i × Unit

4 Concluding Remarks

4.1 Summary

We have shown major stages in a development from domains, via functional and non-functional
requirements to software architecture and program organisation.

We have shown this development in a style that alternates between design analysis and
decisions, on one hand, and writing informal and formal descriptions, on the other hand. At
all stages.

The latter: formalising all descriptions, from earliest conception to final code, is, despite
25 years of practice, still not generally appreciated.

We — perhaps not so modestly — suggest that the approach taken here constitutes:

• a Reassessment of Software Engineering ! (?)

4.2 Acknowledgements

I gratefully acknowledge Mr. Crilles Jansen, my M.Sc. Thesis student during the spring of
1998, for our joint work on software architectures, my colleagues at UNU/IIST and at my

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 32

current place of work (since 1976), and my Hong Kong and Macau colleagues for allowing me
to present this paper.

5 Bibliographical Notes

Since this paper was first written its author has written and/or published a few other papers
that expand on the general themes of domain and requirements engineering and on software
architecture and program organisation: [16, 17, 18, 19]. Currently the author is in the process
of wrting up the following more lecture note oriented documents: [20, 21, 22]

References

[1] Michael Jackson. Software Requirements & Specifications: a lexicon of practice, princi-
ples and prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham, nr.
Reading, England; E-mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv +
228 pages.

[2] Michael Jackson. Software Hakubutsushi: Sekai to Kikai no Kijutsu (Software Require-
ments & Specifications: a lexicon of practice, principles and prejudices). Toppan Com-
pany, Ltd., 2-2-7 Yaesu, Chuo-ku, Tokyo 104, Japan, 1997. In Japanese. Translated by
Tetsuo Tamai (Univ. of Tokyo, tamai@graco.c.u-tokyo.ac.jp) and Hiroshi Sako; ISBN
4-8101-8098-0; xxv + 267 pages.

[3] Dines Bjørner, Souleimane Koussobe, Roger Noussi, and Georgui Satchok. Michael Jack-
son’s Problem Frames: . In Li ShaoQi and Michael Hinchley, editors, ICFEM’97: Intl.
Conf. on Formal Engineering Mehtods, Los Alamitos, CA, USA, 12–14 November 1997.
IEEE Computer Society Press.

[4] B.W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ.,
USA, 1981.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[6] A.W. Roscoe. Theory and Practice of Concurrency. Prentice–Hall, 1997.

[7] Dines Bjørner. From Domain Engineering via Requirements to Software. Formal Speci-
fication and Design Calculi. Research, Department of Information Technology, Software
Systems Section, Technical University of Denmark, DK–2800 Lyngby, Denmark, Novem-
ber 1997. Paper published in SOFSEM’97 Proceedings, Springer-Verlag, Lecture Notes
in Computer Science.

[8] Crilles Jansen and Dines Bjørner. Software Architectures and Program Organisation
— A Case Study. Research, Department of Information Technology, Software Systems
Section, Technical University of Denmark, DK–2800 Lyngby, Denmark, March 1998.

[9] Crilles Jansen. Software Architectures and Program Organisation. M.sc. thesis, De-
partment of Information Technology, Software Systems Section, Technical University of
Denmark, DK–2800 Lyngby, Denmark, August 1998.

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 33

[10] G.D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions
of software architecture. ACM Transactions on Software Engineering and Methodology,
4(4):319–364, Oct 1995. .

[11] The RAISE Language Group. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[12] The RAISE Method Group. The RAISE Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

[13] Dines Bjørner. Domains as a Prerequisite for Requirements and Software — Domain
Perspectives & Facets, Requirements Aspects and Software Views. Research, Department
of Information Technology, Software Systems Section, Technical University of Denmark,
DK–2800 Lyngby, Denmark, 1997–1998. This report is included in the Springer-Verlag
LNCS published proceedings from a US Office of Army Research sponsored workshop
on ‘Requirements Targeted Software and Systems Engineering. The workshop was held
at Bernried am Starnberger See, Bavaria, Germany, 12–14 October, and was locally
organised by Institute of Informatics, Technical University of Munich, Germany. Editor:
Manfred Broy.

[14] P. Zave and M. Jackson. Four dark corners of Requirements Engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1):1–30, January 1997. .

[15] Gene Amdahl, Gerrit Blaauw, and Frederik Brooks. The IBM System/360 Architecture.
IBM Systems Journal, 1964.

[16] Dines Bjørner and Jorge R. Cuéllar. Software Engineering Education: Rôles of for-
mal specification and design calculi. Annals of Software Engineering, 6:365–410, 1998.
Published April 1999.

[17] Dines Bjørner. Domain Modelling: Resource Management Strategics, Tactics & Op-
erations, Decision Support and Algorithmic Software. In J.C.P. Woodcock, editor,
Festschrift to Tony Hoare. Oxford University and Microsoft, September 13–14 1999.

[18] Dines Bjørner. A Triptych Software Development Paradigm: Domain, Requirements
and Software. Towards a Model Development of A Decision Support System for Sus-
tainable Development. In ErnstRüdiger Olderog, editor, Festschrift to Hans Langmaack.
University of Kiel, Germany, October 1999.

[19] Dines Bjørner. Pinnacles of Software Engineering: 25 Years of Formal Methods. Annals
of Software Engineering, 1999. Eds. Dilip Patel and Wang

[20] Dines Bjørner. Domain Engineering, Elements of a Software Engineering Methodology —
Towards Principles, Techniques and Tools — A Study in Methodology. Research report,
Dept. of Computer Science & Technology, Technical University of Denmark, Bldg. 343,
DK–2800 Lyngby, Denmark, 2000. One in a series of summarising research reports
[21, 22].

April 30, 2000, 06:20 c© Dines Bjørner, 1999

Systematic Development from Domains and Requirements, Hong Kong & Macau, May 2000 34

[21] Dines Bjørner. Requirements Engineering, Elements of a Software Engineering Method-
ology — Towards Principles, Techniques and Tools — A Study in Methodology. Research
report, Dept. of Computer Science & Technology, Technical University of Denmark, Bldg.
343, DK–2800 Lyngby, Denmark, 2000. One in a series of summarising research reports
[20, 22].

[22] Dines Bjørner. Software Design: Architectures and Program Organisation, Elements of
a Software Engineering Methodology — Towards Principles, Techniques and Tools —
A Study in Methodology. Research report, Dept. of Computer Science & Technology,
Technical University of Denmark, Bldg. 343, DK–2800 Lyngby, Denmark, 2000. One in
a series of summarising research reports [20, 21].

April 30, 2000, 06:20 c© Dines Bjørner, 1999

