
Domain Engineering∗

Dines Bjørner†

Department of Computer Science and Engineering,

Institute of Informatics and Mathematical Modelling,

Technical University of Denmark,

DK-2800 Kgs. Lyngby, Denmark‡

bjorner@gmail.com, www.imm.dtu.dk/~db

June 1, 2007

Abstract

These lecture notes are primarily about domain modelling and only secondarily how to
transform domain models into domain and interface requirements. The following facets of
domain modelling will be covered: business processes, intrinsics, support technologies, man-
agement and organisation, rules and regulations, scripts, and human behaviour. The lectures
will exemplify excerpts of models of container shipping, financial services, etcetera. We shall
relate two (of three) parts of requirements models to domain models: the domain require-
ments - which are the requirements that can be expressed solely in terms of the terms of the
domain models, and the interface requirements - which are those requirements that can only
be expressed using terms both of the domain and the machine: the hardware and software
being required.

For domain requirements we briefly sketch the domain-to-requirements “algebra” of pro-
jection, instantiation, determination, extension and fitting.

For interface requirements we briefly sketch the domain & machine issues of shared entities
(bulk data input and refreshments), shared functions, shared events, and shared behaviours.

1 Introduction

A domain is a universe of discourse.
Examples of domains are: airport, air traffic, container line industry, financial service industry,

health care, the market and transportation.
By a domain description we understand a precise specification, informal as well as formal of

the domain: what there is, not what we would like it to be, not requirements to software to serve
in the domain, and certainly not a specification of the software, i.e., the code.

We shall discuss domains and domain engineering in more detail in Sects. 3 — so that we now
can first overview the structure of the lecture notes and then “jump right into” a large example
of a domain description

We structure the rest of the paper as follows:
In On The Example: The Container Line Industry, Sect. 2, we discuss, briefly, the extensive

example presented in Appendix A. We assume that the reader has first studied this appendix. In
Domain Engineering Issues, Sect. 3, we outline a number of domain engineering stages: identification
of stakeholders, domain acquisition, domain analysis, domain modelling, verification, validation
and domain theory. We then cover a number of Domain Facets: Intrinsicsin Sect. 4.3, Support

∗Lecture notes for the 19th International School for Computer Science Researchers, Lipari, Italy, July 9–3, 2007
http://lipari.cs.unict.it/LipariSchool/CS/

†Prof. Emeritus
‡Fredsvej 11, DK-2840 Holte, Denmark

1

Dines Bjørner: Domain Engineering — Lipari, 2007 2

Technology in Sect. 4.4, Management & Organisation in Sect. 4.5, Rules & Regulations in Sect. 4.6
Scripts in Sect. 4.7 and Human Behaviour in Sect. 4.8. Then follows a brief summary of principles
and techniques of Domain and Interface Requirements in Sect. 5. We close with a Review of Research
Issuesin Sects. 6–8.

2 On the Example: The Container Line Industry

Appendix A brings a relatively large example of a domain description. We assume, in the following,
that the reader has studied this example.

The purpose of that example is to serve as a background for the rest of this paper. In discussing
several, if not most aspects of what we cover of domain engineering, we shall tacitly relate to this
example. The purpose of the example is also to indicate, to the reader, that domain descriptions
are usually rather large.

The example, as noted in Appendix Sect. A.1, covers a sizable and representative part of, in
this case, the domain of the container line industry.

2.1 Overview of The Container Line Industry

We shall consider only the following phenomena and concepts of a basically shipping and logistics
industry concerned with — the acceptance, transport over large distances, possibly by means of
more than one voyage, and then possibly with temporary storage and final delivery — of containers.

We shall consider major phenomena and concepts of this industry to include (i) containers,
(ii) container vessels incl. container stowage, (iii) container terminal ports with (iii.1) quays, (iii.2)
container stacks, (iii.3) transfer area, (iii.4) cranes and (iii.5) vehicles, (iv) nets of sea lanes,
(v) container lines, (vi) container bill-of-ladings and (vii) container logistics – the allocation and
scheduling of containers to container ships and container terminal ports.

2.2 Some Observations and Remarks

We shall here prefix your study of Appendix A with the following remarks and observations:

1. The domain description is experimental. It is far from being a finished domain description. It
presents some concepts and some abstractions that are only suggested. As an experiment we
think that the domain description serves its purpose well. Not only as a background for the
rest of this paper, but also as indicative of what a domain description might contain, and of
the style of presentation, of alternation between informal narrative and formal specification,
as well as many other things commented on later in this paper.

2. The domain description, to the novel reader, may seem large and complex. Be that as it may.
It is at least approaching something believable. We claim that it is worthwhile publishing
such a domain description: there are not very many reasonably sized domain descriptions
around; and the present one may be used as a reference to enterprises within the container
line industry for them to see what can be done — say for purposes of an industry standard,
for example for “this” or “that” aspect of the container processes; etc.

3. The domain description encompasses several what we might wish to call sub-domains. One
could claim that the following were such sub-domains: containers, container vessels, stowage
of containers on vessels and in stacks, container terminal ports, net of sea lanes, i.e., “the
high seas”, container lines, bill of ladings, container transport logistics, and the customer
interface to the container line industry.

4. When placed in the context of other domain descriptions, in fact just domains, one may see
that for example that part of the present domain which we refer to as ‘net of sea lanes’ shares
almost all its “features” (i.e., phenomena and concepts) with, for example, the transportation

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 3

domain mentioned briefly (late on). This is unavoidable: that seemingly separate domains
share “interfaces”.

5. The importance of such a possible decomposition (cf., Item 3 on the preceding page) of the
container line industry into separate sub-domains could be the following: different groups of
one or more domain engineers could then work on separate sub-domains, in parallel, with
possibly overlapping groups of stakeholders, provided that clear interfaces between the sub-
domains have first been established. Such interfaces can first be tentatively established one
a large scale experiment, such as reported in Appendix A has been carried out. The quality
of a set of such sub-domain interfaces can be “measured” by the frequency with which an
interface has to be adjusted: a low frequency seems to show a high quality.

3 Encircling Some Domain Engineering Issues

3.1 The Triptych Dogma

3.1.1 The Dogma

First the dogma: Before software can be designed its requirements must be understood. Before
requirements can be prescribed the application domain must be understood.

3.1.2 The Consequences

Then the “idealised” consequences: In software development we first describe the domain, then
we prescribe the requirements, and finally we design the software. As we shall see: major parts of
requirements can be systematically “derived”1 from domain descriptions. In engineering we can
accommodate for less idealised consequences, but in science we need investigate the “ideals”.

3.1.3 The Triptych Verification

A further consequence of this triptych development is that

D,S |= R,

which we read as: in order to prove that Software implements the Requirements the proof often
has to make assumptions about the Domain.

3.1.4 Full Scale Development: A First Suggested ℜesearch Topic

Again, presupposing much to come we can formulate a first research topic.

ℜ 1. The D,S |= R Relation: Assume that there is a formal description of the Domain, a
formal prescription of the Requirements and a formal specification of the Software design.
Assume, possibly, that there is expressed and verified a number of relations between the
Domain description and the Requirements prescription. Now how do we express the as-
sertion: D,S |= R — namely that the software is correct? We may assume, without loss
of generality, that this assertion is in some form of a pre/post condition of S — and that
this pre/post condition is supported by a number of assertions “nicely spread” across the
Software design (i.e., the code). The research topic is now that of studying how, in the
pre/post condition of S (the full code) and in the (likewise pre/post condition) assertions
“within” S, the various components of R and D “appear”, and of how they relate to the full
formal pre- and descriptions, respectively.

1By “derivation” we here mean one which is guided by humans (i.e., the domain and requirements engineers in
collaboration with the stakeholders).

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 4

3.2 Preliminary Discussion of Domain Engineering

3.2.1 Archetypal Examples

Lest we loose contact with reality it is appropriate here, however briefly, to give some examples of
(application) domains.

Air Traffic: A domain description includes descriptions of the entities, functions, events and
behaviours of aircraft, airports (runways, taxi-ways, apron, etc.), air lanes, ground, terminal,
regional, and continental control towers, of (national [CAA, CAAC, FAA, SLV, etc.] and interna-
tional [JAA, CAO]) aviation authorities, etc.

Airports: A domain description includes descriptions of the flow of people (passengers, staff),
material (catering, fuel, baggage), aircraft, information (boarding cards, baggage tags) and control;
of these entities, of the operations performed by or on them, the events that may occur (cancellation
or delay of flights, lost luggage, missing passenger), and, hence, of the many concurrent and
intertwined (mutually “synchronising”) behaviours that entities undergo.

Container Line Industry: A domain description includes descriptions of containers, container
ships, the stowage of containers on ships and in container stacks, container terminal (ports), the
loading and unloading of containers between ships and ports and between ports and the “hinter-
land” (including cranes, port trucking and feeder trucks, trains and barges), the container bills of
lading (or way bills), the container transport logistics, the (planning and execution, scheduling and
allocation) of voyages, the berthing (arrival and departure) of container ships, customer relations,
etc.

Financial Service Industry: A domain description includes descriptions of banks (and bank-
ing: [demand/deposit, savings, mortgage] accounts, [opening, closing, deposit, withdrawal, trans-
fer, statements] operations on accounts), insurance companies (claims processing, etc.), securities
trading (stocks, bonds, brokers, traders, exchanges, etc.), portfolio management, IPOs, etc.

Health care: A domain description includes descriptions of the entities, operations, events and
behaviours of healthy people, patients and medical staff, of private physicians, medical clinics,
hospitals, pharmacies, health insurance, national boards of health, etc.

The Internet: The reader is encouraged to fill in some details here!
Manufacturing: Machining & Assembly: The reader is encouraged to also fill in some details

here!
“The” Market: A domain description includes descriptions of the entities, operations, events

and behaviours of consumers, retailers, wholesalers, producers, the delivery chain and the payment
of (or for) merchandise and services.

Transportation: A domain description includes descriptions of the entities, functions, events
and behaviours of transport vehicles (cars/trucks/busses, trains, aircraft, ships), [multimodal]
transport nets (roads, rail lines, air lanes, shipping lanes) and hubs (road intersections [junctions],
stations, airports, harbours), transported items (people and freight), and of logistics (scheduling
and allocation of transport items to transport vehicles, and of transport vehicles to transport nets
and hubs). Monomodal descriptions can focus on just air traffic or on container shipping, or on
railways.

The Web: The reader is encouraged to “likewise” fill in some details here!
There are many “less grand” domains: railway level crossings, the interconnect cabling between

the oftentimes dozens of “boxes” of some electronic/mechanical/acoustical measuring set-up, a gas
burner, etc. These are all, rather one-sidedly, examples of what might be called embedded, or real-
time, or safety critical systems.

We can refer to several projects at UNU-IIST which have produced domain specifications for
railway systems (China), ministry of finance (Vietnam), telephone systems (The Philippines),
harbours (India), etc.; and to dozens of MSc projects which have likewise produced domain spec-
ifications for airports, air traffic, container shipping, health care, the market, manufacturing, etc.
I give many, many references in [1]. I also refer the reader to http://www.railwaydomain.org/ for
documents, specifically http://www.railwaydomain.org/book.pdf for domain models of railway
systems.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 5

3.2.2 Some Remarks

A point made by listing and explaining the above domains is the following: They all display a
seeming complexity in terms of multitude of entities, functions, events and interrelated behaviours;
and they all focus on the reality of “what is out there”: no mention is (to be) made of requirements
to supporting computing systems let alone of these (incl. software).

3.2.3 Domains: Suggested ℜesearch Topics

From the above list we observe that the ‘transportation item’ “lifts” those of ‘air traffic’ and
‘container shipping’. Other examples could be shown. This brings us, at this early stage where
we have yet to really outline what domain engineering is, to suggest the following research topics:

ℜ2. Lifted Domains and Projections: We observe, above, that the ‘transportation’ domain
seems to be an abstraction of at least four more concrete domains: road, rail, sea and air
transportation. We could say that ‘transportation’ is a commensurate “lifting” of each of
the others, or that these more concrete could arise as a result of a “projection” from the
‘transportation’ domain. The research topic is now to investigate two aspects: a comput-
ing science cum software engineering aspect and a computer science aspect. The former
should preferably result in principles, techniques and tools for choosing levels of “lifted”
abstraction and “projected” concretisation. The latter should study the implied “lifting”
and “projection” operators.

ℜ3. What Do We Mean by an Infrastructure ? We observe, above, that some of the
domains exemplify what is normally called infrastructure2 components. According to the
World Bank: ‘Infrastructure’ is an umbrella term for many activities referred to as ‘social
overhead capital’ by some development economists, and encompasses activities that share
technical and economic features (such as economies of scale and spillovers from users to
nonusers). The research is now to study whether we can reformulate the sociologically vague
World Bank definition in precise mathematical terms.

ℜ4. What Is an Infrastructure Component ? We observe, above, that not all of the domains
exemplified are what is normally called infrastructure components.3 The research is now to
study whether we can formulate and formalise some “tests” which help us determine whether
some domain that we are about to model qualifies as part of one or more infrastructure
components.

We bring these early research topic suggestions so that the reader can better judge whether
domain engineering principles and techniques might help in establishing a base for such research.
Throughout the lecture notes we shall “spice it” with further suggestions of research topics.

• • •

We do not cover the important methodological aspects of stakeholder identification and liaison,
domain acquisition and analysis, domain model verification and validation. For that we refer to
Vol. 3 Chaps. 9–10 and 12–14 [1].

2Winston Churchill is quoted to have said, during a debate in the House of Commons, in 1946: . . . The young
Labourite speaker that we have just listened to, clearly wishes to impress upon his constituency the fact that he
has gone to Eton and Oxford since he now uses such fashionable terms as ‘infra-structures’. [I have recently been
in communication with the British House of Commons information office enquiries manager, Mr. Martin Davies in
order to verify and, possibly pinpoint, this statement. I am told that “as the Hansard debates in question are not
available electronically, it could only be found via a manual search of hard copy Hansard”. So there it stands.]

3‘Manufacturing’ and ‘The Market’ appear, in the above list to not be infrastructure components, but, of course,
they rely on the others, the infrastructure components.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 6

3.2.4 How Is It in Other Branches of Engineering ?

Classical Engineers Practice Their Domains !. A reputable telecommunications company,
hiring engineers for the design of mobile telephony radio communications equipment would hire a
person who was well acquainted with Maxwell’s Equations — and expect that engineering to con-
duct design in the context of those equations! The point being made above is that electro magnetic
wave propagation is the domain for the radio communications engineer. Similar for aeronautics
engineers and aerodynamics, for electronics chip designer and plasma physics. Etcetera.

Do Software Engineers Practice Their Application Domains ?. Does the software engi-
neer who is designing software for the container line industry know much about container shipping ?
We doubt, and we doubt very much so ! Does the software engineer who is designing software for
the railway industry know much about railways ? We doubt, and we doubt very much so ! Does
the software engineer who is designing software for the financial service sector know much about
banking, securities instruments, the stock exchange, etc. ? We doubt, and we doubt very much
so !

Is this acceptable ? Well, it is not professional, cf. D,S |= R !

3.3 Stages of The Domain Engineering Phase

By domain development we mean a process, consisting of a number of reasonably clearly separable
stages which when properly conducted leads to a domain description, i.e., a domain model. We
claim that the following are meaningful and necessary domain development stages of development,
each with their attendant principles, techniques and tools: (i) identification of stakeholders,
(ii) rough sketching, (iii) domain acquisition, (iv) analysis of rough domain description units,
(v) domain modelling, (vi) domain verification, (vii) domain validation and (viii) domain theory
formation. We shall focus on domain modelling emphasising the modelling concept of domain
facets.

3.3.1 Domain Development Stages: Suggested ℜesearch Topic:

ℜ5. Sufficiency of Domain Development Stages: We suppose that the reader is aware of
the “contents” of each of these stages. Is the set of domain development stages listed above
sufficient ? Could the composition of eight stages be done differently, with fewer or more
“orthogonal” stages ? To perform such a study and to answer such questions, in our mind,
requires that a number of reasonably distinct domain developments are first undertaken.

3.3.2 Stakeholders

By a domain stakeholder we mean a person, or a group of persons, or an enterprise (private or
public institution), or a group of enterprises united in — for all practical purposes — a common
interest in the domain such that other stakeholders have discernably different interests while
(obviously) sharing some, but not all such concerns.

Example. 1 – Stakeholders: For the domain of, for example, railway systems the following
stakeholders are included amongst those of that domain: owners (stock owners), board (etc.),
executive management, tactical management, operational management, (blue collar) workers, pas-
sengers (and their family), suppliers, national railway board, transport safety board, ministry of
transport and politicians “at large”. •

The Pragmatics:. The idea of stakeholders is to involve “an as full complement” of these
in the subsequent domain development stages (i.e., processes). Involvement means that each
stakeholder is liaised with regularly. This liaison and the particulars of the domain development
stages shall help the domain engineer identify and model the separate but commensurate interests
of all stakeholders.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 7

Domain Stakeholders: Suggested ℜesearch Topic:.

ℜ6. Stakeholder Separation: Given that each stakeholder view is reflected in reasonably
separable parts of a formal domain description can we arrive at a formal characterisation of
“stakeholder-hood” ?

3.3.3 Rough Sketching

Based on literature studies, talks with a few stakeholders, perhaps WWW studies, the domain
engineer should be able to rough sketch a domain description. The main example of these lecture
notes in fact represents such a rough sketc. A rough sketch enables better planning of susequent
stages, communication with domain stakeholders, specifically the preparation of questionnaire
material for domain acquisition. A rough sketch is like a proper domain description but it is not
claimed final, it may not have desirable abstractions, and it will certainly not be compelete. Other
than these cursory remarks we shall not cover ‘rough sketching’ further.

3.3.4 Domain Acquisition

By domain acquisition we mean the gathering, by domain engineers, of domain description units
from the literature (Web etc.), own physical study of the domain, stakeholders and possibly from
existing descriptions

The “new” thing here is the concept of a domain description unit. Vol. 3 [1] presents a number
of principles and techniques, but no tools, for domain acquisition. We are skeptic about such tools
(also the “corresponding” requirements acquisition “tools”).

The Reality:. But the reality remains: the domain engineers, together with the stakeholders,
must express “bit and pieces” of domain knowledge informally, and we call such “tidbits” domain
description units.

Domain Acquisition: Suggested ℜesearch Topic:.

ℜ7. Domain Description Units (I): It may be that the current author has reservations about
a domain specific language of domain description units. Be that as it may. Assume n of set
domain description units, DS1

, . . . ,DSn
in natural language L. Assume existence of 1 + n

formalisable sub-languages of L: LM and LDi
(for n ∈ {1..n}) such that the sets of domain

description units DS1
, . . . ,DSn

can be expressed in respective sub-languages. What of Di

cannot be described in LM + LDi
? Is what cannot be described sufficiently small, tiny, so

as to warrant a mechanisation of these sub-languages, even for n = 1 ? That’s the research
topic !

3.3.5 Domain Analysis

By domain analysis we mean a study of a set of domain description units with the aim of discovering
inconsistencies, undesirable incompleteness and suitable abstractions: concepts whose use may
improve a domain description.

Why Domain Analysis ?. Well, the above explains it. We do not want to create domain
models which are inconsistent nor have unwanted gaps, and we want domain models which build
on pleasing abstractions.

How (to Perform) Domain Analysis ?. Proper domain (description unit) analysis can, in
our view, only be performed if the set of domain description units can be formalised. And then
the analysis can be carried out by now more-or-less “standard” formal verification techniques and
tools.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 8

Domain Analysis: Suggested ℜesearch Topic:.

ℜ8. Domain Description Units (II): One research topic would be to investigate whether
existing techniques for analysing requirements prescription units apply to the analysis of
domain description units.

3.3.6 Domain Modelling

By domain modelling we mean the construction of both an informal, narrative and a formal domain
description.

We claim that the following identified facets (i.e., “steps”) (later to be briefly explained) are
necessary parts of the domain modelling process: (i) intrinsics, (ii) support technologies, (iii)
management and organisation, (iv) rules and regulations, (v) scripts and (vi) human behaviour.
Ideally speaking one may proceed with these “steps” in the order listed. Engineering accommo-
dates for less ideal progressions. Each “step” produces a partial domain description. Subsequent
“steps” ‘extend’ partial descriptions into partial or even (relative) complete descriptions.

Sect. 4 will cover domain modelling in some detail.

3.3.7 Domain Verification

Why Verification ? There are two answers to this question: (i) We really cannot claim to
have understood a domain unless we have a domain theory, with proven propositions, lemmas
and theorems. (ii) We must make sure we are getting the domain description right, as opposed
to the right description, see ‘validation’ next, that is, that what is described possesses the right
properties.

How Verification ? The answer to this question is: First we must assume that there is also
a formalisation of our domain description, not just an informal, yet precise narrative. Then we
assume that the formal specification language has a proof system — and proof tool support. With
that we can — hopefully (and laboriously) — prove properties of the formal descriptions and claim
these to be properties of the domain !

We return to the issue of domain verification when we cover the notion of ‘domain theory’, see
below.

3.3.8 Domain Validation

Why Validation ? We must make sure we are getting the right domain description, as opposed
to getting the description right (see ‘verification’ just above), that is, what is described is what
the stakeholders can accept.

How Validate ? Since what the stakeholders can relate to must necessarily be the informal
description — one cannot assume that they in general can read formal descriptions there is a
double validation problem: (i) First there is stakeholder validation: the careful “walk through”, by
domain engineers and stakeholders, reading and agreeing on every line of the narrative description.
(ii) Then there is the domain engineer validations: the careful “walk through”, by mutually “buddy
checking” domain engineers, reading and agreeing that every line of the narrative description has
been properly formalised, and that every line of the formalisation is covered by the narrative.

Domain Validation: Suggested ℜesearch Topic.

ℜ9. Domain Validation: The research called for here is more of the engineering and method-
ology kind than of the computer science kind ! To do meaningful and relevant research in
this area it seems that a number of issues must first be settled. These could, illustratively,
be:An informal language, L, for expressing domain description units, need probably be identified,
and, for it, two formalisable subsets, LDi

and LM — such as suggested in ℜesearch Topic 7.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 9

Then a number of case studies, for distinct domains, Di, Dj , . . . , Dk can be made of how the
two kinds of validation outlined above actually proceeds. From such studies one might possibly
be able to draw some general conclusions as to engineering practices etc. !

3.3.9 Domain Theories

• By a domain theory we shall understand a domain description together with lemmas, proposi-

tions and theorems that may be proved about the description — and hence can be claimed to

hold in the domain.

To create a domain theory the specification language must possess a proof system. It appears
that the essence of possible theorems of — that is, laws about — domains can be found in laws
of physics. For a delightful view of the law-based nature of physics — and hence possibly also of
man-made universes we refer to Richard Feynman’s Lectures on Physics [2].

Example Theorem of Railway Domain Theory. Let us hint at some domain theory the-
orems: Kirchhoff’s Law for Railways: Assume regular train traffic as per a modulo κ hour
time table. Then we have, observed over a κ hour period, that the number of trains arriving at a
station minus the number of trains ending their journey at that station plus the number of trains
starting their journey at that station equals the number of trains departing from that station.

Why Domain Theories ? Well, it ought be obvious ! We need to understand far better the
laws even of man-made systems.

Domain Theories: Suggested ℜesearch Topics:.

ℜ10. Domain Theories: We need to experimentally develop and analyse a number of suggested
theorems for a number of representative domains in order to possibly ‘discover’ some meta-
theorems: laws about laws !

4 Domain Modelling

By domain modelling we mean the construction of both informal, narrative, and formal domain
descriptions. Many aspects of modelling are usually of concern to the domain engineer: expressing
the appropriate entities, functions. events and behaviours of the domain, and expressing the
appropriate temporal and static, contextual and state, dimensionality, and many, many other
attributes. We will, in these lecture notes only look at the issue of domain facets. My book
[3, 4, 1] covers all of this and more !

4.1 Business Processes

To guide the stakeholders and the domain engineers into proper domain facet modelling we suggest
that rough sketches (as well as terminology construction) of the domain business processes (with
their entities, functions and events) precede proper domain facet modelling. By a ‘business process’
we shall understand a sequence of domain actions (i.e., function applications) and domain events
involving domain entities. where that business process is a characteristic of the domain.

From a set of such rough sketches of business processes whose construction resulted from the
analysis of a number of domain description units one is now in a better situation to systematically
construct a domain terminology and systematically describe the domain facets.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 10

4.1.1 Two Examples: Some Container Shipping Business Processes

An Example: A Harbour Visit. A container vessel announces (an event) its imminent arrival
at a container terminal port to that ports harbour master. The harbour master allocates (an
action) a berth at a container quay to that vessel and informs the vessel (another action). The
vessel docks (an event) at the allocated berth. First the vessel may undergo an iterative unloading
process: all import containers are transferred via cranes to quay and stack area vehicles, and these
vehicles move and transfer the import containers to stacks (or, in some cases to transfer area
trucks, trains or barges). Several quay cranes, and hence several quay and stack area vehicles may
be involved in the usually highly interleaved set of simultaneous ship to stack behaviours. Then
the vessel may undergo an iterative loading process: basically the reverse of the above transfer
and move & transfer stack to ship behaviours After completion of loading (or just unloading, if
no loading) the vessel interacts with the harbour master and leaves the container terminal port.

An Example: Container Shipping. A customer interacts with a shipper: requesting the
shipment of a (or more) container(s), hands over this or these container(s), and receives, in return,
a copy of the appropriate bills of lading. The shipper, who has interacted with a container
line concerning this shipment while also interacting with the customer, hands over this or these
container(s) and to the designated container terminal port of origin, at its transfer area from
where it is stacked. A container vessel is loaded with the container(s). The container vessel sails
to the port of destination. (We ignore possible intermediate harbour visits. And we simplify the
container shipping “story”: no intermediate transfers from one vessel via stacks to other vessels.)
The container(s) is (are) unloaded. They may temporarily be stacked. And finally they are moved
and transferred to the transfer area where they are delivered to the receiver of the container(s).

4.2 The Facets

We claim that the following identified facets (i.e., “steps”) (later to be briefly explained) are
necessary parts of the domain modelling process: (i) intrinsics, (ii) support technologies, (iii)
management and organisation, (iv) rules and regulations, (v) scripts and (vi) human behaviour.
Ideally speaking one may proceed with these “steps” in the order listed. Engineering accommo-
dates for less ideal progressions. Each “step” produces a partial domain description. Subsequent
“steps” ‘extend’ partial descriptions into partial or even (relative) complete descriptions.

4.3 Intrinsics

4.3.1 Introduction

By the intrinsics of a domain we shall understand those phenomena and concepts, that is, those
entities, functions, events and behaviours in terms of which all other facets are described.

The choice as to what constitutes the intrinsics of a domain is often determined by the views
of the stakeholders. Thus it is a pragmatic choice, and the choice cannot be formalised in the form
of an is intrinsics predicate that one applies to phenomena and concepts of the domain.

4.3.2 Intrinsics Example: Railway Units

We may consider rail units as atomic entities from which rail nets are composed by connecting
the units. For simplicitiy we need only think of linear, switch and possibly switchable crossover
units. From a rail unit we can observe its connectors: linear units have two, switches have three
and crossovers have four connectors. A path (that a train may travel through a unit) can be
conceptualised as a pair of suitable connectors of the unit.

type
U, C
P = {|(c,c′):C×C • c 6=c′|}

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 11

value
obs Cs: U → C-set, obs Ps: U → P-set
is LinU, is SwiU, is CroU: U → Bool

axiom
∀ u:U • let n = card obs Cs(u) in

n=2 ⇒ is LinU(u) ∧ n=3 ⇒ is SwiU(u) ∧ n=4 ⇒ is CroU(u) end ∧
is SwiU(u) ⇒

∃ c,c′,c′′:C • obs Ps(u)={(c,c′),(c,c′′),(c′,c),(c′′,c)} ∧ ...

In switch and crossover units not all pairings of their connectors designate proper paths A state
of a unit is the set of paths of that unit open for train travel. Figure 1 illustrates the 12 possible
states of a normal switch unit.

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Figure 1: Possible states of a rail switch

.

type
Σ = P-set, Ω = Σ-set

value
obs Σ: U → Σ, obs Ω: U → Ω

axiom
∀ u:U • obs Σ(u)⊆obs Ps(u) ∧ obs Σ(u) ∈ obs Ω(u)

The state space, here called ω, of a unit is the set of all possible states of that unit.

4.3.3 Intrinsics Example: Container Shipping

We give an number of alternative suggestions of intrinsics for the container shipping domain and
as seen from different domain stakeholders.

Customer Intrinsics. (i) Seen from the point of view of customers who is having a container
shipped these are the intrinsic entities: customers, containers, shippers, possibly container lines,
container terminal ports, i.e., harbours, and bills of lading. We say ‘possibly’ as all the customer
really needs are shippers at ports of origin and destination. The customers rely on shippers, we
assume, to deliver and receive containers to — respectively at — ports of origin, respectively ports
of destination.

Container Line Intrinsics. (ii) Seen from the point of view of container lines these are the
intrinsic entities: containers, container lines, shippers, container vessels and stowage plans, bills
of lading, and container terminal ports with quays, quay cranes, and stacks. One can argue
whether the container line needs to be concerned with transfer areas, container terminal port
vehicles, and stack cranes.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 12

Container Terminal Port Intrinsics. (iii) Seen from the point of view of container terminal
ports these are the intrinsic entities: containers, container vessels, container lines, the(ir) container
terminal port: quays, stacks, and transfer areas, quay, stack, and transfer area cranes, vehicles,
ship and stack stowage planes, crane split plans, in-port container transport job plans, as well as
bills of lading, transfer area trucks, trains and barges, truck, train and barge owners, and shippers.

4.3.4 Compositionality of ‘Intrinsics’ Models

Thus, dependent on the scope and span of a domain one may choose a narrow span, or one
may choose an intermediate span, or one may choose a widest reasonable span — where ‘one’
is a combination of stakeholders and domain engineers. In any case the domain engineer need
be careful in choosing appropriate means of modularity so that ‘widest possible’ models can be
reasonably easily presented to different stakeholders as ‘narrow’ or ‘intermediate’ models.

4.3.5 Intrinsics: Suggested ℜesearch Topic

ℜ11. Intrinsics: We refer to Sect. 11.3 in [1]. The study here is of at least two kinds. (i) There
is a programming methodological study of principles and techniques for “merging” different
stakeholder views of intrinsics, that is, of possible modularisation principles and techniques.
(ii) And there is a study of a more fundamental kind namely of what “really” do we mean
by ‘intrinsics’.

4.4 Support Technology

By a support technology of a domain we shall understand either of a set of (one or more) alternative
entities, functions, events and behaviours which “implement” an intrinsic phenomenon or concept.
Thus for some one or more intrinsic phenomena or concepts there might be a technology which
supports those phenomena or concepts.

4.4.1 Example Rail Switch Technology

(i) In “ye olde” days rail switches were “thrown” manually. (ii) Later, but it was a long time ago,
mechanics allowed rail cabin “throwing” of switches via wires and pullers. (iii) Later the rail cabin
“throwing” of switches was supported by electro-mechanics. (iv) And later again this ((iii)) was
supported by electronics. (v) Today groups of switches (and switchable crosseovers) are controlled
by electronics in what is called ‘interlocking’.

4.4.2 Sampling Behaviour of Support Technologies

Let us consider intrinsic Air Traffic as a continuous function (→) from Time to Flight Locations:

type
T, F, L
iAT = T → (F →m L)

But what is observed, by some support technology, is not a continuous function, but a discrete
sampling (a map →m):

sAT = T →m (F →m L)

There is a support technology, say in the form of radar which “observes” the intrinsic traffic and
delivers the sampled traffic:

value
radar: iAT → sAT

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 13

4.4.3 Probabilistic cum Statistical Behaviour of Support Technologies

But even the radar technology is not perfect. Its positioning of flights follows some probabilistic
or statistical pattern:

type
P = {|r:Real • 0≤r≤1|}
ssAT = P →m sAT-infset

value

radar′: iAT
∼
→ ssAT

The radar technology will, with some probability produce either of a set of samplings, and with
some other probability some other set of samplings, etc.4

An Example Probabilistic Rail Switch. Figure 2 intends to model the probabilistic (erro-
neous and correct) behaviour of a switch when subjected to settings. A switch may go to the
switched state from the direct [switched] state (d, resp. s) when subjected to a ‘switch’ setting
with probability psd [pss]. A switch may go to the direct state from the switched [direct] state
when subjected to a ‘direct’ setting with probability pds [pdd]. A switch may go to a “hung
up” erroneous state, e, when otherwise directed (with probabilities ess, esd, edd, eds). A switch
may remain in its present state when signalled to change (with probabilities 1-psd-ess, 1-pdd-edd,
1-pss-ess, 1-pds-eds).

sed

sw/esd sw/ess

di/edd di/eds

di/1-pdd-edd

sw/psd

di/pds

sw/1-psd-esd

di/pdd

sw/pss

di/1-pds-eds

sw/1-pss-ess

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

 0 <= p.. <= 1

States:
s: Switched state

d: Direct (reverted) state

e: Error state

Figure 2: Probabilistic state switching

Example Container Shipping Support Technologies. We mention a few support technolo-
gies relevant to our “running” example.

(i) Seen from the point of view of customer or shipper stateholders container terminal cranes
and vehicles are support technologies.

(ii) Seen from the point of view of container terminal port management automatically guided
vehicles (AGVs) is a support technology.

4Throughout this paper we omit formulation of type well-formedness predicates.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 14

(iii) Seen from the point of view of container line management GPS systems, wherever otherwise
located, is a support technology helping them to track containers.

4.4.4 Support Technology Quality Control, a Sketch

How can we express that a given technology delivers a reasonable support ? One approach is to
postulate intrinsic and technology states (or observed behaviours), Θi,Θs, a support technology
τ and a “closeness” predicate:

type
Θ i, Θ s

value
τ : Θ i → P →m Θ s-infset
close: Θ i × Θ s → Bool

and then require that an experiment can be performed which validates the support technology.
The experiment is expressed by the following axiom:

value
p threshhold:P

axiom
∀ θ i:Θ i •

let pθ ss = τ(θ i) in
∀ p:P • p>p threshhold ⇒
θ s:Θ s • θ s ∈ pθ ss(p) ⇒ close(θ i,θ s) end

The p threshhold probability has to be a-priori determined as one above which the support tech-
nology renditions of the intrinsic states (or behaviours) are acceptable.

4.4.5 Support Technologies: Suggested ℜesearch Topics

ℜ12. Probabilistic and/or Statistical Support Technologies: Some cases should be studied
to illuminate the issue of probability versus statistics. More generally we need more studies
of how support technologies “enter the picture”, i.e., how “they take over” from other facet.
And we need to come up with precise modelling concepts for probabilistic and statistical
phenomena and their integration into the formal specification approaches at hand.

ℜ13. A Support Technology Quality Control Method: The above sketched a ‘support
technology quality control’ procedure. It left out the equally important ‘monitoring’ as-
pects. Develop experimentally two or three distinct models of domains involving distinct
sets of support technologies. Then propose and study concrete implementations of ‘support
technology quality monitoring and control’ procedures.

4.5 Management & Organisation

By the management of an enterprise (an institution) we shall understand a (possibly stratified, see
‘organisation’ next) set of enterprise staff (behaviours, processes) authorised to perform certain
functions not allowed performed by other enterprise staff (behaviours, processes) and where such
functions involve monitoring and controlling other enterprise staff (behaviours, processes). By
organisation of an enterprise (an institution) we shall understand the stratification (partitioning)
of enterprise staff (behaviours, processes) with each partition endowed with a set of authorised
functions and with communication interfaces defined between partitions, i.e., between behaviours
(processes).

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 15

4.5.1 Examples: Container &c. Management & Organisation

We give some examples of management & organisation from the “running” main example of
container line industry.

(i) Seen from the view of a container line the management & organisation concerns include:
the strategic management of buying up other container industry enterprises, of fleet renewal, and
of long term relations to container terminal ports; the tactical management of setting rates, of
deciding on vessel routes and frequency, and of optimising relevant container transport and storage
processes; and the operational management of monitoring & controlling all profit/loss container
transport and storage processes, i.e., of issues related to day-to-day scheduling & allocation. The
organisational concerns follow the above decomposition into a usually geographically widely spread
strategic, tactical and operational management.

(ii) Seen from the view of a container terminal port the management & organisation concerns
include: the strategic management of relations to container lines and port workers, and of port
layout: up- or downgrading of port facilities; the tactical management (planning) of stowage
optimisation in stacks, of crane splits, and of container loading and unloading jobs; the operational
management of monitoring & controlling the actual loading and unloading of vessels and of stack
usage. The organisational concerns follow the above decomposition into a usually locally, yet
spread strategic, tactical and operational management.

(iii) Seen from the view of customers sending (or receiving containers) the management &
organisation concerns include: the operational management of the interface between the customer
and the shipper, and the geographical organisation into ports of origin and destination.

4.5.2 An Abstraction of Management Functions

Let E designate some enterprise state concept, and let stra mgt, tact mgt, oper mgt, wrkr
and merge designate strategic management, tactical management, operational management and
worker actions on states such that these actions are “somehow aware” of the state targets of
respective management groups and or workers. Let p be a predicate which determines whether
a given target state has been reached, and let merge harmonise different state targets into an
agreeable one. Then the following behaviour reflects some aspects of management.

type
E

value
stra mgt, tact mgt, oper mgt, wrkr, merge: E×E×E×E → E
p: E∗ → Bool
mgt: E → E
mgt(e) ≡

let e′ = stra mgt(e,e′′,e′′′,e′′′′),
e′′ = tact mgt(e,e′′,e′′′,e′′′′),
e′′′ = oper mgt(e,e′′,e′′′,e′′′′),
e′′′′ = wrkr(e,e′′,e′′′,e′′′′) in

if p(e,e′′,e′′′,e′′′′)
then skip
else mgt(merge(e,e′′,e′′′,e′′′′))

end end

The recursive set of e
′..′ = f(e, e′′, e′′′, e′′′′) equations are “solved” by iterative communication

between the management groups and the workers. The arrangement of these equations reflect the
organisation and the various functions, stra mgt, tact mgt, oper mgt and wrkr reflect the
management. The frequency of communication between the management groups and the workers
help determine a quality of the result.

The above is just a very crude, and only an illustrative model of management and organisation.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 16

We could also have given a generic model, as the above, of management and organisation but
now in terms of, say, CSP processes. Individual managers are processes and so are workers. The
enterprise state, e : E, is maintained by one or more processes, separate from manager and worker
processes. Etcetera.

4.5.3 Process Model of Manager-Staff Relations

Modelling only one neighbouring group of a manager and the staff working for that manager we
get a system in which one manager, mgr, and many staff, stf, coexist or work concurrently, i.e., in
parallel. The mgr operates in a context and a state modelled by ψ. Each staff, stf(i) operates in
a context and a state modelled by sσ(i).

type
Msg, Ψ, Σ, Sx
SΣ = Sx →m Σ

channel
{ ms[i]:Msg | i:Sx }

value
sσ:SΣ, ψ:Ψ

sys: Unit → Unit
sys() ≡ ‖ { stf(i)(sσ(i)) | i:Sx } ‖ mgr(ψ)

In this system the manager, mgr, (1) either broadcasts messages, msg, to all staff via message
channel ms[i]. The manager’s concoction, mgr out(ψ), of the message, msg, has changed the
manager state. Or (2) is willing to receive messages, msg, from whichever staff i the manager
sends a message. Receipt of the message changes, mgr in(i,msg)(ψ), the manager state. In both
cases the manager resumes work as from the new state. The manager chooses — in this model —
which of thetwo things (1 or 2) to do by a so-called nondeterministic internal choice (⌈⌉).

mgr: Ψ → in,out { ms[i] | i:Sx } Unit
mgr(ψ) ≡

(1) (let (ψ′,msg) = mgr out(ψ) in
‖ { ms[i]!msg | i:Sx } ; mgr(ψ′) end)

⌈⌉
(2) (let ψ′ = ⌈⌉⌊⌋ {let msg = ms[i]? in

mgr in(i,msg)(ψ) end | i:Sx } in mgr(ψ′) end)

mgr out: Ψ → Ψ × MSG,
mgr in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg, from the manager,
and then to change, stf in(msg)(σ), state accordingly, or (2) to concoct, stf out(σ), a message, msg
(thus changing state) for the manager, and send it ms[i]!msg. In both cases the staff resumes work
as from the new state. The staff member chooses — in this model — which of thetwo “things” (1
or 2) to do by a nondeterministic internal choice (⌈⌉).

stf: i:Sx → Σ → in,out ms[i] Unit
stf(i)(σ) ≡

(1) (let msg = ms[i]? in stf(i)(stf in(msg)(σ)) end)
⌈⌉

(2) (let (σ′,msg) = stf out(σ) in ms[i]!msg; stf(i)(σ′) end)

stf in: MSG → Σ → Σ,
stf out: Σ → Σ × MSG

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 17

Both manager and staff processes recurse (i.e., iterate) over possibly changing states. The man-
agement process nondeterministically, external choice, “alternates” between “broadcast”-issuing
orders to staff and receiving individual messages from staff. Staff processes likewise nondeter-
ministically, external choice, alternate between receiving orders from management and issuing
individual messages to management.

The conceptual example also illustrates modelling stakeholder behaviours as interacting (here
CSP-like [5, 6, 7, 8]) processes.

4.5.4 Management and Organisation: Suggested ℜesearch Topics

ℜ 14. Strategic, Tactical and Operation Management: We made no explicit references to
such “business school of administration” “BA101” topics as ‘strategic’ and ‘tactical’ man-
agement. Study Example 9.2 of Sect. 9.3.1 of Vol. 3 [1]. Study other sources on ‘Strategic
and Tactical Management’. Question Example 9.2’s attempt at delineating ‘strategic’ and
‘tactical’ management. Come up with better or other proposals, and/or attempt clear, but
not necessarily computable predicates which (help) determine whether an operation (above
they are alluded to as ‘stra’ and ‘tact’) is one of strategic or of tactical concern.

ℜ 15. Modelling Management and Organisation: Applicatively or Concurrently: The
abstraction of ‘management and organisation’ on Page 15 was applicative, i.e., a recursive
function — whose auxiliary functions were hopefully all continuous. Suggest a CSP rendition
of “the same idea” ! Relate the applicative to the concurrent models. Hint: Perhaps a notion
of non-interference may be useful in achieving a congruence proof between applicative and
concurrent models. Non-interference is satisfied if two concurrently operating behaviours
access distinct, non-overlapping parts of a system state.

4.6 Rules & Regulations

Rules guide staff and govern equipment behaviour. Regulations advice on what to do when rules
have been found violated.

Some rules apply to humans and other rules apply to equipment. In the following we focus on
human-oriented rules & regulations.

4.6.1 Example Container Stowage Rules and Regulations

Some simple rules are: (i) heavier containers must not be stowed on top of lighter containers, (ii)
heavier containers must be stowed near the vessel center of gravity, and (iii) reefer containers must
be stowed near electric outlets. A corresponding simple regulation may be: (iv) when the above
rules (i-ii-iii) have indeed been found violated, then this must be reported.

4.6.2 Example Railway Rules and Regulations

(i) In the Chinese Railway system there is the rule governing trains arrivals at train stations that
at most one train may arrive in any three minuter interval, and the regulation that if this rule is
found violated that the perpetrators be punished !

(ii) Around the world there is the rule governing train travel along segmented lines between
stations that there — typically — must be an empty segment between any two trains along the
line, and the regulation that if this rule is found violated that an auditor (a commission) be set up
to decide who was at fault, and then, for those found at fault, the regulations stipulate appropriate
administrative actions.

4.6.3 Definition of What Are Rules & Regulations

By a rule of an enterprise (an institution) we understand a syntactic piece of text whose meaning
apply in any pair of actual present and potential next states of the enterprise, and then evaluates

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 18

to either true or false: the rule has been obeyed, or the rule has been (or will be, or might be)
broken. By a regulation of an enterprise (an institution) we understand a syntactic piece of text
whose meaning, for example, apply in states of the enterprise where a rule has been broken, and
when applied in such states will change the state, that is, “remedy” the “breaking of a rule”.

4.6.4 Abstraction of Rules and Regulations

Stimuli are introduced in order to capture the possibility of rule-breaking next states.

type
Sti, Rul, Reg
RulReg = Rul × Reg
Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool
REG = Θ → Θ

value
meaning: Sti → STI, Rul → RUL, Reg → REG
valid: Sti × Rul → Θ → Bool
valid(sti,rul)θ ≡ (meaning(rul))(θ,meaning(sti)θ)

axiom
∀ sti:Sti,(rul,reg):RulReg,θ:Θ •

∼valid(sti,rul)θ ⇒ meaning(rul)(θ,meaning(reg)θ)

4.6.5 Quality Control of Rules and Regulations

The axiom above presents us with a guideline for checking the suitability of (pairs of) rules and
regulations in the context of stimuli: for every proposed pair of rules and regulations and for every
conceivable stimulus check whether the stimulus might cause a breaking of the rule and, if so,
whether the regulation will restore the system to an acceptable state.

4.6.6 Rules and Regulations Suggested ℜesearch Topic:

ℜ16. A Concrete Case: The above sketched a quality control procedure for ‘stimuli, rules and
regulations’. It left out the equally important ‘monitoring’ aspects. Develop experimentally
two or three distinct models of domains involving distinct sets of rules and regulations.
Then propose and study concrete implementations of procedures for quality monitoring and
control of ‘stimuli, rules and regulations’.

4.7 Scripts

By a domain script we shall understand the structured, almost, if not outright, formally expressed,
wording of a rule or a regulation that has legally binding power, that is, which may be contested
in a court of law.

Scripts are like programs. They are expected to prescribe step-by-step actions to be applied in
order to determine whether a rule should be applied, and, if so, exactly how it should be applied.

4.7.1 An Example Script Language

A Casually Described Bank Script. The problem area is that of how repayments of mortgage
loans are to be calculated. At any one time a mortgage loan has a balance, a most recent previous
date of repayment, an interest rate and a handling fee. When a repayment occurs, then the
following calculations shall take place: (i) the interest on the balance of the loan since the most
recent repayment, (ii) the handling fee, normally considered fixed, (iii) the effective repayment —

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 19

being the difference between the repayment and the sum of the interest and the handling fee —
and the new balance, being the difference between the old balance and the effective repayment.

We assume repayments to occur from a designated account, say a demand/deposit account.
We assume that bank to have designated fee and interest income accounts.

(i) The interest is subtracted from the mortgage holder’s demand/deposit account and added
to the bank’s interest (income) account. (ii) The handling fee is subtracted from the mortgage
holder’s demand/deposit account and added to the bank’s fee (income) account. (iii) The effective
repayment is subtracted from the mortgage holder’s demand/deposit account and also from the
mortgage balance. Finally, one must also describe deviations such as overdue repayments, too
large, or too small repayments, and so on.

The idea about scripts is that they can somehow be objectively enforced: that they can be
precisely understood and consistently carried out by all stakeholders, eventually leading to com-
puterisation. But they are, at all times, part of the domain.

In the next example we systematically describe a bank, informally and formally. The formal
description is in the classical style of semantics. Each formal description is followed by an informal,
almost rough-sketch description. You may consider the latter to be in some casual script language.

The State of a High Street Bank. Without much informal explanation, i.e., narrative, we
define a small bank, small in the sense of offering but a few services. One can open and close
demand/deposit accounts. One can obtain and close mortgage loans, i.e., obtain loans. One
can deposit into and withdraw from demand/deposit accounts. And one can make payments on
the loan. In this example we illustrate informal rough-sketch scripts while also formalising these
scripts.

The bank state is now described: there are clients (c:C), account numbers (a:A), mortgage
numbers (m:M), account yields (ay:AY) and mortgage interest rates (mi:MI). The bank registers,
by client, all accounts (ρ:A Register) and all mortgages (µ:M Register). To each account number
there is a balance (α:Accounts). To each mortgage number there is a loan (ℓ:Loans). To each loan
is attached the last date that interest was paid on the loan.

type
C, A, M
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′

• wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

There are clients (c:C), account numbers (a:A), mortgage number (m:M), account yields (ay:AY),
and mortgage interest rates (mi:MI). The bank registers, by client, all accounts (ρ:A Register) and
all mortgages (µ:M Register). To each account number there is a balance (α:Accounts). To each
mortgage number there is a loan (ℓ:Loans). To each loan is attached the last date that interest
was paid on the loan.

Wellformedness of the Bank State.

value
ay:AY, mi:MI

wf Bank: Bank → Bool

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 20

wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ai<mi

We assume a fixed yield, ai, on demand/deposit accounts, and a fixed interest, mi, on loans. A
bank is well-formed if all accounts named in the accounts register are indeed accounts, and all
loans named in the mortgage register are indeed mortgages. No accounts and no loans exist unless
they are registered.

Syntax of Client Transactions.

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

The client can issue the following commands: Open Account, Close Account, Deposit monies (p:P),
Withdraw monies (p:P), Obtain loans (of size p:P) and Pay installations on loans (by transferring
monies from an account). Loans can be Closed when paid down.

Semantics of Loan Payment Transaction. To pay off a loan is to pay the interest on the
loan since the last time interest was paid. That is, interest, i, is calculated on the balance, b, of
the loan for the period d′−d, at the rate of mi. (We omit defining the interest computation.) The
payment, p, is taken from the client’s demand/deposit account, a; i is paid into a bank (interest
earning account) ai and the loan is diminished with the difference p − i. It is checked that the
client is a bona fide loan client and presents a bona fide mortgage account number. The bank
well-formedness condition should be made to reflect the existence of account ai.

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

ℓ′ = ℓ † [m7→ℓ(m)−(p−i)]
α′ = α † [a 7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Loan Payment Transaction. From the informal/formal bank script
descriptions we systematically “derive” a script in a possible bank script language. The derivation,
for example, for how we get from the formal descriptions of the individual transactions to the
scripts in the “formal” bank script language is not formalised. In this example we simply propose
possible scripts in the formal bank script language.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 21

routine pay loan(c in ′′client′′,m in ′′loan number′′,p in ′′amount′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that account a is registered with client c ;
check that account a has p or more balance ;
if

checks fail
then return NOT OK to client c
else

do
compute interest i for loan m on date d ;
subtract p−i from loan m ;
subtract p from account a ;
add i to account bank’s interest
return OK to client c ;

end fi end

4.7.2 More on Script Development

This ends our example development of a script language. Details of the full — and further —
development is given over 20 pages in Vol. 3, Chap. 11, Sect. 11.7.1 of [1].

4.7.3 Script Methodology: Suggested ℜesearch Topics

ℜ17. License Languages: We refer to a draft document available from the Internet: A Family
of License Languages, incimplete R&D notes, March 4, 2007 at www.imm2.dtu.dk/˜db/5-
lectures/license-languages.pdf. Here is a fascinating fertile area of research.

4.8 Human Behaviour

By human behaviour we understand a “way” of representing entities, performing functions, causing
or reacting to events or participating in behaviours. As such a human behaviour may be charac-
terisable on a per phenomenon or concept basis as lying somewhere in the “continuous” spectrum
from (i) diligent: precise representations, performances, event (re)actions, and behaviour interac-
tions; via (ii) sloppy: occasionally imprecise representations, performances, event (re)actions, and
behaviour interactions; and (iii) delinquent: repeatedly imprecise representations, performances,
event (re)actions, and behaviour interactions; to (iv) criminal: outright counter productive, dam-
aging representations, performances, event (re)actions, and behaviour interactions.

4.8.1 An Example: Ideal versus Human Behaviour

The bank script language of Sect. 4.7.1 gave us a semantics to the mortgage calculation request
(i.e., command) as would a diligent bank clerk be expected to perform it. To express, that is, to
model, how sloppy, delinquent, or outright criminal persons (staff?) could behave we must modify
the int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) definition (see Page 20).

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/

then
let i = f1(interest(mi,b,d′−d)),

ℓ′ = ℓ † [m7→f2(ℓ(m)−(p−i))],
α′ = α † [a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 22

a“staff” 7→f“staff”(α(ai)+i)] in
((ρ,α′,µ,ℓ′),ok) end

else ((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P

The predicate q and the functions f1, f2, f3, f4 and f“staff” are deliberately left undefined. They
are being defined by the “staffer” when performing (incl., programming) the mortgage calculation
routine.

The point of this example is that one must first define the mortgage calculation script precisely
as one would like to see the diligent staff (prgrammer) to perform (incl., correctly program) it
before one can “pinpoint” all the places where lack of diligence may “set in”. The invocations of
q, f1, f2, f3, f4 and f“staff” designate those places.

4.8.2 Abstraction of Human Behaviour

We extend the formalisation of rules and regulations.
Human actions (ACT) lead from a state (Θ) to any one of possible successor states (Θ-infset)

— depending on the human behaviour, whether diligent, sloppy, delinquent or having criminal
intent. The human interpretation of a rule (Rul) usually depends on the current state (Θ) and
can be any one of a possibly great number of semantic rules (RUL). For a delinquent (...) user
the rule must yield truth in order to satisfy “being delinquent (...)”.

type
ACT = Θ → Θ-infset

value
hum int: Rul → Θ → RUL-infset
hum behav: Sti × Rul → ACT → Θ → Θ-infset
hum behav(sti,rul)(α)(θ) as θs

post θs = α(θ) ∧
∀ θ′:Θ • θ′ ∈ θs ⇒

∃ se rul:RUL • se rul ∈ hum int(rul)(θ) ⇒ se rul(θ,θ′)

Human behaviour is thus characterisable as follows: It occurs in a context of a stimulus, a rule,
a present state (θ) and (the choice of) an action (α:ACT) which may have either one of a number
of outcomes (θs). Thus let θs be the possible spread of diligent, sloppy, delinquent or outright
criminal successor states. For each such successor states there must exist a rule interpretation
which satisfies the pair of present an successor states. That is, it must satisfy being either diligent,
sloppy, delinquent or having criminal intent and possibly achieving that!

4.8.3 Human Behaviour Suggested ℜesearch Topics:

Section 11.8 of Vol. 3 [1] elaborates on a number of ways of describing (i.e., modelling) human
behaviour.

ℜ 18. Concrete Methodology: Based on the abstraction of human behaviour given earlier, one
is to study how one can partition the set, α(θ), of outcomes of human actions into ‘diligent’,
‘sloppy’, ‘delinquent’ and ‘criminal’ behaviours — or some such, perhaps cruder, perhaps
finer partitioning — and for concrete cases attempt to formalise these for possible interactive
“mechanisation”.

ℜ 19. Monitoring and Control of Human Behaviour: Based on possible solutions to the
previous research topic one is to study general such interactive “mechanisation” of the mon-
itoring and control of human behaviour.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 23

4.9 Domain Modelling: Suggested ℜesearch Topic

ℜ 20. Sufficiency of Domain Facets: We have covered five facets: intrinsics, support tech-
nology, management and organisation, rules and regulations and human behaviour. The
question is: are these the only facets, i.e., views on the domain that are relevant and can
be modelled? Another question is: is there an altogether different set of facets, “cut up”,
so-to-speak, “along other lines of sights”, using which we could likewise cover our models of
domains?

One might further subdivide the above five facets (intrinsics, support technology, management
and organisation, rules and regulations and human behaviour) into “sub”-facets. A useful one
seems to be to separate out from the facet of rules and regulations the sub-facet of scripts.

5 From Domains to Requirements

5.1 What Is Required ? — The Machine !

Requirements prescribe what “the machine”, i.e., the hardware + software is expected to deliver.
In Vol. 3, Part V, Chaps. 17–24 we present a through coverage of requirements engineering, and
Chap. 19, Sects. 19.4–19.5 we show how to construct, from a domain description, in collaboration
with the requirements stakeholders, the domain (i.e., functional) requirements, and the interface
(i.e., user) requirements.

5.2 Three Kinds of Requirements

The way I see it, there are only three kinds of requirements: (i) domain requirements — which
are those requirements which can be expressed sôlely using ordinary language and professional
terms from the domain; (ii) interface requirements — which are those requirements which can be
expressed sôlely using ordinary language and professional terms from the domain and from the
machine (i.e., both); and (iii) machine requirements — which are those requirements which can
be expressed sôlely using ordinary language and professional terms from the machine — no terms,
ideally speaking, from the domain ! We shall only cover domain and interface requirements —
since only they involve domain descriptions.

5.3 Domain Requirements

To construct the domain requirements is, logicaly speaking, very straightforward. There are basi-
cally five steps in the process of “turning” a domain description into a requirements prescription.
All steps are conducted jointly by the domain engineer together with the requirements stakehold-
ers. In all steps they together “read” the domain description, “line-by-line” — performing, in five
rounds, these domain-to-requirements transformations, i.e., these requirements engineering steps:

1. projection — should a what is described in a description line become a property “carried
over” into the prescription, i.e., of the required software;

2. instantiation — should a generality of what might be described be instantiated to special
cases, and, if so, then refine possible types, functions and axioms;

3. determination — should what may be nondeterministically described be made mor deter-
ministic, and, if so, then refine possible types, functions and axioms;

4. extension — are there possible phenomena or concepts that were excluded from the do-
main description because they were infeasible in the domain which are now computationally
tractable; and

5. fitting — are there developments of other requirements with which the present one can be
“interfaced”, i.e., fitted ?

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 24

5.3.1 Example Projections: Container Line Industry

We suggest two distinct projections. (p1) Bill of Lading Requirements: net of sea lanes,
container liners, bill of ladings and logistics. (p2) Ship Stowage Requirements: container
vessel stowage and bill of ladings.

5.3.2 Example Instantiations: Container Line Industry

We suggest two distinct instantiations. (i1) Ship Stowage Requirements: To be instantiated
to Maersk Line: container vessel stowage, bill of ladings and container lines. (i2) Container
Vessel Scheduling Requirements: To be instantiated to Maersk Line: container vessels,
container lines, bill of ladings and net of sea lanes instantiated to Europe and Asia.

5.3.3 Example Determinations: Container Line Industry

We suggest two distinct determinations. (d1) Ship Stowage Requirements: bay, row and tier
identifiers are natural numbers and — via a map — designate ordered physical vessel locations;
and preference is to be given to stowage priority of “favoured” customers and then stowage priority
of intra-Asia transports. (d2) Crane Split Requirements: Preference is to be given to: crane
allocation to largest container vessels and then crane allocation to two-continent transports.

5.3.4 Example Extensions: Container Line Industry

We suggest two distinct extensions. (e1) Ship Stowage Requirements: near optimal stowage
with minimum interaction with human stowage planners. (e2) Vehicle Job Task Planning
Requirements: near optimal stowage with minimum interaction with human job task planners.

5.3.5 Example Fittings: Container Line Industry

We suggest two distinct fittings. (f1) Database Requirements: shared database for all the
container related requirements mentioned so far. (f2) Crane-splitting and Vehicle Job Task
Planning Requirements: obvious !

5.4 Interface Requirements

By ‘interface’ we shall understand that which is shared between the domain and the machine:
entities, functions, events and behaviours.

So in constructing the interface requirements we perform the following requirements engineering
steps:

1. entity sharing: which is the information (i.e., the date) that need be initially input to and
regularly refreshed by, or in, the machine (and how) — thus leading to prescriptions of bulk
data initialisation and more-or-less regular data refreshment;

2. function sharing: which are the functions that need be performed both by man and machine
(and how) — leading to prescriptions of man-machine dialogues for interactive computing;

3. event sharing: which are the external, non-machine generated events that need be commu-
nicated to the machine and which are the internal, machine generated events that need be
communicated to environment (and how); and

4. behaviour sharing: which are the domain behaviours that are to be ‘mimicked’ by the ma-
chine (and how).

5.4.1 Example: Shared Container Line Industry Entities

We can trivially identify the following shared entities — depending, of course, on the specific
requirements being established: the net of sea lanes, container vessels, containers, etcetera.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 25

5.4.2 Example: Shared Container Line Industry Functions

We can trivially identify the following shared functions — depending, of course, on the specific re-
quirements being established: transfer of containers, whether between ship and vehicle or between
vehicle and stack, etc., shipping of a container: sending off and delivery, etcetera.

5.4.3 Example: Shared Container Line Industry Events

We can trivially identify the following shared events — depending, of course, on the specific
requirements being established: arrival and departure of ship to, respectively from a container
terminal port, the beginnings and ends of unloading and loading, etcetera.

5.4.4 Example: Shared Container Line Industry Behaviours

We can trivially identify the following shared events — depending, of course, on the specific
requirements being established: the behaviour of a ship while at port, the behaviour of a container
from being unloaded from a ship till being transferred to an inland truck, etc. etcetera.

6 Requirements-Specific Domain Software Development Mod-

els

A long term, that one: ‘requirements-specific domain software development models’ ! The term is
explained next.

6.1 Software “Intensities”

One can speak of ‘software intensity’. Here are some examples. Compilers represent ‘transla-
tion’ intensity. ‘Word processors’, ‘spread sheet systems’, etc., represent “workpiece” intensity.
Databases represent ‘information’ intensity. Real-time embedded software represent ‘reactive’
intensity. Data communication software represent connection intensity. Etcetera.

6.2 “Abstract” Developments

Let ′′R′′ denote the “archetypal” requirements for some specific software ‘intensity’. Many different
domains {D1,D2, . . . ,Di, . . . ,Dj , . . .} may be subject to requirements ′′R′′-like prescriptions. For
each such a set of possible software may result. The “pseudo-formula” below attempts, albeit
informally, to capture this situation:






D1

D2

. . .
Di

. . .
Dk

. . .






∼ ′′R′′ 7→





{S11
,S12

, . . . ,S1j1
, . . .}

{S11
,S12

, . . . ,S1j2
, . . .}

. . .
{Si1 ,Si2 , . . . ,Siji

, . . .}
. . .

{Sk1
,Sk2

, . . . ,Skjk
, . . .}

. . .





Several different domains, to wit: road nets and railway nets, can be given the “same kind” of
(road and rail) maintenance requirements leading to information systems. Several different do-
mains, to wit: road nets, railway nets, shipping lanes, or air lane nets, can be given the “same
kind” of (bus, train, ship, air flight) monitoring and control requirements (leading to real-time em-
bedded systems). But usually the specific requirements skills determine much of the requirements
prescription work and especially the software design work.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 26

6.3 Requirements-Specific Devt. Models: Suggested ℜesearch Topics

ℜ 21j. Requirements-Specific Development Models, RSDMj : We see these as grand chal-
lenges: to develop and research a number of requirements-specific domain (software) devel-
opment models RSDMj .

The “pseudo-formal”
∏

(
∑...

i Di)
′′R′′

∑...

i,j Sij
expression attempts to capture an essence of such

research: The
∏

“operator” is intended to project (that is, look at only) those domains, Di, for
which ′′R′′ may be relevant. The research explores the projections

∏
, the possible ′′R′′s and the

varieties of software
∑...

i,j Sij
.

7 On Two Reasons for Domain Modelling

Thus there seems to be two entirely different, albeit, related reasons for domain modelling: one
justifies domain modelling on engineering grounds, the other on scientific grounds.

7.1 An Engineering Reason for Domain Modelling

In an e-mail, in response, undoubtedly, to my steadfast, perhaps conceived as stubborn insistence,
on domain engineering, Sir Tony Hoare summed up his reaction, in summer of 2006, to domain
engineering as follows, and I quote5:

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any good software design in
the area. They describe possible places to define the system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be made in any embedded
software design, especially one that is going to be formally proved.

3. They describe6 the7 whole range of possible designs for the software, and the whole range of
technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly independent of the
technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later in any design
project, and identify those that are independent and those that conflict. Late discovery of
feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in some depth, in Vol. 3 [1] of my three volume
book.

7.2 A Science Reason for Domain Modelling

So, inasmuch as the above-listed issues of Sect. 7.1, so aptly expressed in Tony’s mastery, also
of concepts (through his delightful mastery of words), are of course of utmost engineering impor-
tance, it is really, in our mind, the science issues that are foremost: We must first and foremost
understand. There is no excuse for not trying to first understand. Whether that understanding
can be “translated” into engineering tools and techniques is then another matter. But then, of
course, it is nice that clear and elegant understanding also leads to better tools and hence better
engineering. It usually does.

5E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006
6read: imply
7read: a

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 27

7.3 Domains Versus Requirements-Specific Development Models

Sir Tony’s five statements are more related, it seems, to the concept of requirements-specific do-
main software development models than to merely the concept of domain models. His statements
help us formulate the research programme ℜ 21 of requirements specific domain software develop-
ment models. When, in his statements, you replace his use of the term ‘models’ with our term
‘requirements-specific development models based on domain models’, then “complete harmony”
between the two views exists.

8 Conclusion

8.1 What Has Been Achieved ?

I set out to focus on what I consider the crucial modelling stage of describing domain facets and to
identify a number of their research issues. I’ve done that. Cursorily, the topic is “near-holistic”,
so an overview is all that can be done. The issue is that of that of a comprehensive methodology.
Hence the “holism” challenge.

8.2 What Needs to Be Achieved ?

Well, simply, to get on with that research. There are two sides to it: the 21 research topics
mentioned above, and the ones mentioned below. The latter serves as a carrier for the former
research.

8.3 Domain Theories: Grand Challenge ℜesearch Topics

The overriding research topic is that of:

ℜ 22i. Domain Models: Di: We see this as a set of grand challenges: to develop and research a
family of domain models Di.

8.4 What Have We Not Covered ?

Many things. Hence study Vol. 3 of my three volume book: Software Engineering, Domains,
Requirements and Software Design, Springer 2006 [1].

8.5 Acknowledgemenents

Thanks are due to Prof. Alfredo Ferro (University of Catania) and Prof. Egon Boerger (University
of Pisa), the co-chairs of this summer school for inviting me. Thanks are due to all the patient
summer school participants who “sat through” the “flasing” of many slides, etc.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 28

9 Bibliographical Notes

References

[1] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

[2] Richard Feynmann, Robert Leighton, and Matthew Sands. The Feynmann Lectures on

Physics, volume Volumes I–II–II. Addison-Wesley, California Institute of Technology, 1963.

[3] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006.

[4] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are
primarily authored by Christian Krog Madsen.

[5] Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985.

[6] A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer
Science. Prentice-Hall, 1997.

[7] Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series
in Computer Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19
1UD, England, January 2000.

[8] Tony Hoare. Communicating Sequential Processes. Published electronically: http://www.-

usingcsp.com/cspbook.pdf, 2004. Second edition of [5]. See also http://www.usingcsp.-

com/.

[9] Mordecai Avriel, Michal Penn, and Naomi Shpirer. Container ship stowage problem: com-
plexity and connection to the coloring of circle graphs. Discrete Applied Mathematics, 103(1–
3):271–279, 15 July 2000. Faculty of Industrial Engineering and Management, Technion,
Israel Institute of Technology, Haifa 3200, Israel. This paper deals with a stowage plan for
containers in a container ship. Since the approach to the containers on board the ship is only
from above, it is often the case that containers have to be shifted. Shifting is defined as the
temporary removal from and placement back of containers onto a stack of containers. Our
aim is to find a stowage plan that minimizes the shifting cost. We show that the shift problem
is NP-complete. We also show a relation between the stowage problem and the coloring of
circle graphs problem. Using this relation we slightly improve Unger’s upper bound on the
coloring number of circle graphs.

[10] Mordecai Avriel, Michal Penn, Naomi Shpirer, and Smadar Witteboon. Stowage planning
for container ships to reduce the number of shifts. Annals of Operations Research, 76(9):55–
71, January 1998. This paper deals with a stowage plan for containers in a container ship.
Containers on board a container ship are placed in vertical stacks, located in many bays.
Since the access to the containers is only from the top of the stack, a common situation is
that containers designated for port J must be unloaded and reloaded at port I (before J) in
order to access containers below them, designated for port I. This operation is called shifting.
A container ship calling at many ports may encounter a large number of shifting operations,
some of which can be avoided by efficient stowage planning. In general, the stowage plan
must also take into account stability and strength requirements, as well as several other
constraints on the placement of containers. In this paper, we only deal with stowage planning
in order to minimize the number of shiftings, without considering stability and several other
constraints. First, we briefly present a 0-1 binary linear programming formulation that can
find the optimal solution for stowage planning. However, finding the optimal solution using

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 29

this model is quite limited because of the large number of binary variables and constraints
needed for the formulation. Moreover, in [9] the stowage planning problem is shown to be
NP-complete. For these reasons, the Suspensory Heuristic Procedure was developed.

[11] Bureau Export. A-Z Dictionary of Export, Trade and Shipping Terms. www.exportbureau.-
com/trade shipping terms/dictionary.html, 2007.

[12] International Labour Organisation. Portworker Development Programme. www.ilo.org/pub-
lic/english/dialogue/sector/sectors/pdp/index.htm, April 2002.

[13] International Labour Organisation. Portworker Development Programme: PDP Units. The
PDP unit titles are listed next. Internet access to these are coded as: www.ilo.org/public/eng-
lish/dialogue/sector/sectors/pdp/l-δ-δ′.htm where the letter (l) and the digits (δ and δ′) are
shown as (l.δ.δ′) below:

Container terminal operations (c.1.1)
Container ship loading and discharging operations (c.1.2)
The container terminal quay transfer operation (c.1.3)
The container yard: the storage operation (c.1.4)
The container terminal receipt/delivery operation (c.1.5)
Container freight station operations (c.1.6)
Container ship construction (c.2.1)
Container ship stowage plans (c.2.2)
Container securing systems (c.2.3)
Container ship loading/discharge lists and workplans (c.2.4)
Container construction (c.3.1)
Container numbering and marking (c.3.2)
Container inspection (c.3.3)
Packing of goods in containers: 1. Principles and planning (c.3.4)
Packing of goods in containers: 2. Working practices (c.3.5)
Safe working on container terminals (c.4.1)
Safe working aboard container vessels (c.4.2)
The container terminal and international trade (c.6.1)
Measuring container terminal performance (c.6.2)
Analysis and review of container terminal performance (c.6.3)
Handling dangerous cargoes in ports (p.3.1)
The port supervisor: organizational status (s.1.1)
The port supervisor: tasks and duties (s.1.2)
The port supervisor: supervisory skills (s.1.3)
The port supervisor: personal attributes (s.1.4)
Supervision of container ship discharge and loading (s.2.1)
Supervision of the container terminal quay side transfer operation (s.2.2)
Supervision of container yard operations (s.2.3)
Supervision of the container terminal receipt/delivery operation (s.2.4)
Supervision of container freight stations (s.2.5)

, April 2002.

[14] Mordecai Avriel and Michal Penn. Exact and approximate solutions of the container ship
stowage problem. In C. Patrick Koelling, editor, Proceedings of the 15th annual conference on

Computers and industrial engineering, pages 271–274, Elmsford, NY, USA, September 1993.
Pergamon Press, Inc. Also published in: Computers and Industrial Engineering Volume 25
, Issue 1-4 Sept. 1993. This paper deals with a stowage plan for containers in a container
ship. Containers on board a container ship are placed in stacks, located in many bays. Since
the access to the containers is only from the top of the stack, a common situation is that
contianers designated for port J must be unloaded and reloaded at port I (before J) in order
to access containers below them, designated for port I. This operation is called shifting. A
container ship calling many ports, may encounter a large number of shifting operations, some
of which can be avoided by efficient stowage planning. In general, the stowage plan must also

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 30

take into account stability and strength requirements, as well as several other constraints on
the placement of containers. In this paper we deal with stowage planning in order to minimize
the number of shiftings, without considering stability constraints. First, a 0-1 binary linear
programming formulating is presented that can find the optimal solution for stowage in a
single rectangular bay of a vessel calling a given number of ports, assuming that the number
of constainers to ship is known in advance. This model was successfully implemented using
the GAMS software system. It was found, however, that finding the optimal solution using
this model is quite limited, because of the large number of binary variables needed for the
formulation. For this reason, several alternative heuristic algorithms were developed. The one
presented here is based on a reduced transportation matrix. Containers with the same source
and destination ports are stowed in full stacks as much as possible, and only the remaining
containers are allocated by the binary linear programming model. This approach often allows
the stowage planning of a much larger number of containers than using the exact formulation.

[15] Opher Dubrovsky, Gregory Levitin, and Michal Penn. A genetic algorithm with a compact
solution encoding for the container ship stowage problem. Journal of Heuristics, 8(6):585–
599, November 2002. The purpose of this study is to develop an efficient heuristic for solving
the stowage problem. Containers on board a container ship are stacked one on top of the
other in columns, and can only be unloaded from the top of the column. A key objective of
stowage planning is to minimize the number of container movements. A genetic algorithm
technique is used for solving the problem. A compact and efficient encoding of solutions
is developed, which reduces significantly the search space. The efficiency of the suggested
encoding is demonstrated through an extensive set of simulation runs and its flexibility is
demonstrated by successful incorporation of ship stability constraints.

[16] I.D. Wilson and P.A. Roach. Container stowage planning: a methodology for generating
computerised solutions. Journal of the Operational Research Society, 51(11):1248–1255, 1
November 2000. Palgrave Macmillan. University of Glamorgan, UK. The container stowage
problem concerns the suitable placement of containers in a container-ship on a multi-port
journey; it requires consideration of the consequences each placement has on decisions at
subsequent ports. A methodology for the automatic generation of computerised solutions to
the container stowage problem is shown; objective functions that provide a basis for evaluating
solutions are given in addition to the underlying structures and relationships that embody
this problem. The methodology progressively refines the placement of containers within the
cargo-space of a container ship until each container is specifically allocated to a stowage
location. The methodology embodies a two stage process to computerised planning, that of a
generalised placement strategy and a specialised placement procedure. Heuristic rules are built
into objective functions for each stage that enable the combinatorial tree to be explored in
an intelligent way, resulting in good, if not optimal, solutions for the problem in a reasonable
processing time.

[17] I.D. Wilson, P.A. Roach, and J. A. Ware. Container stowage pre-planning: using search
to generate solutions, a case study. Knowledge-Based Systems, 14(3–4):137–145, June 2001.
Container-ships are vessels possessing an internal structure that facilitates the handling of
containerised cargo. At each port along the vessel’s journey, containers destined for those
ports are unloaded and additional containers destined for subsequent ports are loaded. De-
termining a viable arrangement of containers that facilitates this process, in a cost-effective
way, constitutes the deep-sea container-ship stowage problem. This paper outlines a computer
system that generates good sub-optimal solutions to the stowage pre-planning problem. This
is achieved through an intelligent analysis of the domain allowing the problem to be divided
into sub-problems: a generalised placement strategy and a specialised placement procedure.
This methodology progressively refines the arrangement of containers within the cargo-space
of a container ship until each container is specifically allocated to a stowage location. Good, if
not optimal, solutions for the problem are obtained in a reasonable processing time through
the use of heuristics incorporated into objective functions for each stage.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 31

[18] Akio Imai, Kazuya Sasaki, Etsuko Nishimura, and Stratos Papadimitriou. Multi-objective
simultaneous stowage and load planning for a container ship with container rehandle in yard
stacks. European Journal of Operational Research, 171:373–389, 2006. imai@kobe-u.ac.jp.
Received 14 December 2002; accepted 27 July 2004. (1) Faculty of Maritime Sciences, Kobe
University, Fukae, Higashinada, Kobe 658-0022, Japan and (2) World Maritime University,
P.O. Box 500, S-201 24 Malmo, Sweden, and (3) c Department of Maritime Studies, University
of Piraeus, 80 Karaoli and Dimitriou Street, GR-185 32 Piraeus, Greece.
The efficiency of a maritime container terminal primarily depends on the smooth and orderly
process of handling containers, especially during the ship’s loading process. The stowage
and associated loading plans are mainly determined by two criteria: ship stability and the
minimum number of container rehandles required. The latter is based on the fact that most
container ships have a cellular structure and that export containers are piled up in a yard.
These two basic criteria are often in conflict. This paper is concerned with the ship’s container
stowage and loading plans that satisfy these two criteria. The GM, list and trim are taken
into account for the stability measurements. The problem is formulated as a multi-objective
integer programming. In order to obtain a set of noninferior solutions of the problem, the
weighting method is employed. A wide variety of numerical experiments demonstrated that
solutions by this formulation are useful and applicable in practice.

[19] K.V. Ramani. An interactive simulation model for the logistics planning of container op-
erations in seaports. SIMULATION, 66(5):291–300, 1996. Indian Institute of Management
Ahmedabad, India 380015. Today, more than 90 percent of international cargo moves through
seaports, and 80 percent of seaborne cargo moves in containers. It has thus become imperative
for major seaports to manage their container operations both effec tively and efficiently. We
have designed and developed an interactive computer simula tion model to support the logis-
tics planning of container operations. Logistics planning of container operations deals with
the assign ment and coordination of port equipments such as quay cranes, prime movers,
and yard cranes in the transportation of containers between the ship’s bay and the container
storage yards. This model provides estimates for port performance indicators such as berth
occupancy, ship outputs, and ship turnaround time for various operating strategies in the
logistics planning of container operations. The main objective of port management is to re-
duce the ship turnaround time by optimally utilizing the port resources. Reduced turn around
time encourages trade and improves the competitiveness of the port to provide efficient and
effective services at low cost.

[20] Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and opera-
tions research - a classification and literature review. OR Spectrum, 26(1):3–49, January 2004.
In the last four decades the container as an essential part of a unit-load-concept has achieved
undoubted importance in international sea freight transportation. With ever increasing con-
tainerization the number of seaport container terminals and competition among them have
become quite remarkable. Operations are nowadays unthinkable without effective and effi-
cient use of information technology as well as appropriate optimization (operations research)
methods. In this paper we describe and classify the main logistics processes and operations
in container terminals and present a survey of methods for their optimization.

[21] US DoD. Stability and Buoyancy Lessons: Surface Officer Warfare School Docu-
ments. Course notes: www.fas.org/man/dod-101/navy/docs/swos/dca/index.html. Course:
www.fas.org/man/dod-101/navy/docs/swos/dca/stg4-01.html covers Principles of ship sta-
bility.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 32

A An Example: A Container Line Industry

A.1 Overview of The Container Line Industry

We consider the following phenomena and concepts to be basic to the container line industry: the
acceptance, transport over large distances, possibly by means of more than one voyage, and then
possibly with temporary storage and final delivery of containers.

We shall consider major phenomena and concepts of this industry to include (i) containers, (ii)
container vessels, (iii) container vessel stowage, (iv) container terminal ports which includes (iv.1)
(berthed) vessels, (iv.2) quays, (iv.3) stacks, (iv.4) quay and stack cranes, (iv.5) vehicles, (iv.6)
transfer area and (iv.7) (”inland”) trucks, trains and barges, (iv) nets of sea lanes, (v) container
lines, (vi) bill-of-ladings and (vii) logistics.

A.2 Containers

By a container we understand an item of equipment as defined by the International Organisation
for Standardisation (ISO) for transport purposes. It must be of:

• a permanent character and accordingly strong enough to be suitable for repeated use,

• specially designed to facilitate the carriage of goods, by one or more modes of transport
without intermediate reloading,

• fitted with devices permitting its ready handling, particularly from one mode of transport
to another,

• so designed as to be easy to fill and empty,

• having an internal volume of 1m3 or more. The term container includes neither vehicles nor
conventional packing.

This definition is now “sharpened” to reflect current container shipping practices:

1. With any container we associate a unique identifier.

2. Containers have weights (from 0 up!).

3. Containers have same widths and heights, but any one of a few “standard” lengths. We shall
consider only 20′, 40′, and 45′ containers, usually measuring

(a) 20′ length: 5898 mm, width 2352 mm (W), and height 2393 mm (H), or

(b) 40′ length: 12032 mm, W, H, or

(c) 45′ length: 13556 mm, W, H.

4. We currently abstract from whether the container is of kind: a general purpose, a refrigerated,
a hanging garment, a reefer, an open top, a fantainer, or a flat rack container.

5. We shall in the following associate many additional properties with containers — such as
check digit, lease, load plan, manifest, number, owner, prefix, serial number, size code,
size/type, type code, etc.

For our purposes we shall model a container as a value c in C from which all its evolving properties
(static or dynamic) can be observed:

type
C, CId, W, Le, Wi, He
Kind == gepu | refr | haga | reef | opto | fata | ...

value
obs CNm: C → CNm, obs W: C → W

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 33

obs Le: C → Le, obs Wi: C → Wi, obs He: C → He
obs Kind: C → Kind

axiom
∀ c,c′:C • c 6=c′ ⇒

obs CNm(c)6=obs CNm(c′) ∧
obs Wi(c)=obs Wi(c′) ∧ obs He(c)=obs He(c′)

The8 axiom expresses that no two containers have the same unique container identifier, and that
all containers, as for cellular vessels (see below), have same width and height.

We show only this fragment of modelling containers here. Additional fragments will appear
later in this modelling of the domain of container shipping.

A.3 Container Vessels

A.3.1 Basics

By a container vessel we understand a ship that has own locomotive force, and which can move
(i.e., transport) freight (i.e., containers] across the open sea, from harbours (container terminal
ports) to harbours, through canals, along rivers, and across lakes, i.e., from location to location.

A.3.2 Container Bays, Rows, Tiers and Cells

With container ships we will in addition wish to associate a number of properties:

6. We shall restrict ourselves to cellular vessels, i.e., vessels specially designed and equipped for
the carriage of containers.

7. A cell, then, is a location on board of a container vessel where one container can be stowed.

8. A cell position is the location of a cell on board of a container vessel identified by a code for
successively the bay, the row, the tier and tier index position), indicating the position of a
container on that vessel.

9. A bay is a vertical division of a cellular vessel from stem to stern, used as a part of the
indication of a stowage place for containers. The numbers run from stem to stern; odd
numbers indicate a 20 foot position, even numbers indicate a 40 foot position. A bay
consists of one or more rows.

10. A bay plan is stowage plan which shows the locations of all the containers on the vessel.

11. A row is a vertical division of a vessel from starboard to port side, used as a part of the
indication of a stowage place for containers. The numbers run from midships to both sides.
A row consists of one or more tiers (containing a fixed number of tier cells.

8

We shall, laboriously, explain, by “reading”, the formal, mathematical specification language notation:
RSL.1: type A introduces a sort, i.e., a class of — at the moment — further undefined entities (though ‘of

type A’).
RSL.2: type B == nm1 | nm2 | ... | nmn introduces a variant class (of name B) whose atomic and distinct

elements appears to the right of the ==, i.e., nm1, nm2, ..., nmn.
RSL.3: value obs Y: X → Y introduces an observer function which applies to entities, x, of type X and yields

entities of type Y. These latter are said to be either attributes of or sub-entities contained in x.
RSL.4: axiom P expresses that a certain property, P holds over the entities mentioned in P.
RSL.5: ∀ x:X,y:Y,...,z:Z • p(x,y,...,z) expresses that the predicate p(x,y,...,z) is expected to hold for all entities

x of type X, entities y of type Y, etc.
RSL.6: p ∧ q expresses that both predicates p and q are expected to hold.
RSL.7: p ∨ q expresses that either predicate p is expected to hold or predicate q holds (or both holds).

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 34

12. A tier is a horizontal division of a vessel from bottom to top. The tier numbered positions
(tier indexes) run from bottom to deck and from deck upwards and are used as a part of the
indication of a stowage place for containers.

13. A cell is either empty or stows a container.

We thus abstract a container vessel as consisting, statically: of a number of identified bays, (for
each identified bay) of a number of identified rows, and (for each identified row) of a number of
identified tiers. That is, an identified bay and, within it, an identified row, and within it, an
identified tier defines a set of tier positions (or cells), and possessing the following overall static
properties (attributes): a container vessel unique name (CVNm), and a velocity profile which maps
the load profile onto a mean velocity. and the following overall dynamic properties (attributes): the
current load profile: which cells are occupied and then possibly with an estimated (total) weight,
the current direction, velocity and acceleration of the vessel and the current position on the high
seas or in some harbour. Three important quantities to be considered during load planning9

are the GM: distance between the ship’s center of gravity10 and the meta-center position11; the
current list: inclination of a ship to port or starboard caused by eccentric weights such as cargo
or ballast (same as ‘heel’); and the current trim: the difference between the forward and after
drafts12, in excess of design drag13.

We shall build on the below formalisation as the presentation unfolds.14

type
CV
B, R, T, Bi, Ri, Ti
Cell == mkC(c:C) | empty

value
obs Bs: CV → B-set, obs Rs: B → R-set, obs Ts: R → T-set
obs Bi: B → Bi, obs Ri: R → Ri, obs Ti: T → Ti
obs Ti Max: T → Nat, obs Cells: T → Cell∗

axiom [no un−occupied gaps]
∀ t:T • obs Ti Max(t)≥1

∧ let max=obs Ti Max(t), cells=obs Cells(t) in
len cells=max ∧ ∃ i:{1..max} •

cells(i)=empty ⇒ ∀ j:{i+1..max}•cells(j)=empty end

15We shall not build on the below formalisation as the presentation unfolds.

type
CVNm

9Load planning: determining which containers, from a container terminal port container stack, goes where on
a container vessel.

10Center of gravity: Point at which the entire weight of a body may be considered as concentrated so that if
supported at this point the body would remain in equilibrium in any position.

11As a ship is inclined through small angles of heel (listing), the lines of buoyant force intersect at a point called
the meta-center. As the ship is inclined, the center of buoyancy moves in an arc as it continues to seek the geometric
center of the underwater hull body. This arc describes the meta-centric radius.The meta-center is a fictitious point.
If the meta-centric height is zero or negative, the vessel will heel (list) or capsize.

12Draft: The number of feet that the hull of a ship is beneath the surface of the water.
13Design drag: A design feature where the draft aft is greater than the draft forward; assume 0.
14

RSL.8: A == mkB(b:B) | void expresses that A is a type consisting of the singleton, distinct and atomic element
void together with the class of all elements mkB(b) for all entities b in class B. Think of the mkB as “markings”
such that if A == mkB1(b:B) | mkB2(b:B) then for any entity b in class B, mkB1(b) is distinct from mkB2(b).

RSL.9: A-set is a type expression. It denotes the class whose elements are finite sets of entities of type A.
RSL.10: A∗ is a type expression. It denotes the class whose elements are finite lists (sequences) of entities of

type A.
RSL.11: Nat is a type literal, i.e., a type expression. It denotes the class of all natural numbers.

15

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 35

VelPro, LdPro, Pos, GM, List, Trim, FwdDrag, AftDrag
value

obs CVNm: CV → CVNm
obs LdPro: CV → LdPro
obs VelPro: CV → VelPro
obs Pos: CV → Pos
obs List: CV → List, obs Trim: CV → Trim,
obs FwdDrag: CV → FwdDrag, obs AftDrag: CV → AftDrag

axiom
∀ cv,cv′:CV • cv 6=cv′ ⇒ obs CVNm(cv)6=obs CVNm(cv′)

We have modelled bay, row and tier identifiers as arbitrary (albeit finite, enumerable) sets of
further unidentified tokens. This modelling choice allows us to implement these identifiers in any
way we so wish. For example as numbers (integers, or even natural numbers). But the modelling
choice begs an answer to the following question. On any one real container vessel these identifiers,
cum “numbers”, enjoy an ordering relation as well as there being first and last identifiers. The
question now is: How to model that ? To answer that we must first assume that all set of bays
and set of rows consists of uniquely identifier bays and rows.16

axiom
∀ b,b′:Bt • b6=b′ ⇒ obs Bi(b)6=obs Bi(b′)
∀ r,r′:R • r 6=r′ ⇒ obs Ri(r)6=obs Ri(r′)
∀ t,t′:T • t6=t′ ⇒ obs Ti(r)6=obs Ti(r′)

value
xtr Bis: B-set→Bi-set, xtr Ris: R-set→Ri-set, xtr Tis: T-set→Ti-set
xtr Bis(bs) ≡ {obs Bi(b)|b:B•b ∈ bs}
xtr Ris(rs) ≡ {obs Ri(r)|r:R•r ∈ rs}
xtr Tis(rs) ≡ {obs Ti(t)|t:T•t ∈ ts}

axiom
∀ bs:B-set,rs:R-set,ts:T-set •

card bs=card xtr Bis(bs) ∧ card rs=card xtr Ris(rs) ∧ card ts=card xtr Tis(ts)

The axiom above expresses that all bays and rows of respective sets of these are uniquely identified.

value

is LOC of CV: LOC × CV → Bool

is LOC of CV(bi,ri,ti)(cv) ≡
let bis = obs Bis(cv) in

if bi 6∈ bis then false else

let b = xtr B(bi)(cv) in

let ris = obs Ris(b) in

if ri 6∈ ris then false else

let r = xtr R(ri,b) in

let tis = obs Tis(r) in

if ti 6∈ tis then false else true end

end end end end end end end

select C: LOC → CV
∼
→ C | null

select C(bi,ri,ti)(cv) ≡
let bis = obs Bis(cv) in

if bi 6∈ bis then chaos else

Referring to the axiom on Page 34:
RSL.12: let a = expr1 in expr2 end introduces a local name a to have the value of expression expr1 such that

a can now be used in expression expr2 having that fixed value.
RSL.13: ∃ i:{1..max} • p(i) expresses that there should exist, in this case a natural number within the range

of 1 to max such that the predicate p(i) holds.
RSL.14: list(i) expresses that if list is indeed a list and i an index into that list, then the i’th list element is

yielded.

16

RSL.15: {f(x)|x:X•p(x)} comprehends the set consisting of all those f(x)’s such that x is of type X and the
predicate p(x) holds.

RSL.16: card s yields the cardinality, i.e., the number of zero, one or more elements in the finite set s. (If s is
infinite then card s yields chaos.)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 36

let b = xtr B(bi)(cv) in

let ris = obs Ris(b) in

if ri 6∈ ris then chaos else

let r = xtr R(ri,b) in

let tis = obs Tis(r) in

if ti 6∈ tis then chaos else

let t = xtr T(ti,r) in

case t of mkC(c) → c, → null end

end end end end end end end end end

We17 can now define a predicate which determines whether a cell, designated by a given location,
is occupied or not.

value

is occupied: LOC → CV
∼
→ Bool

is occupied(l)(cv) ≡ select C(l)(cv)6=null
pre is LOC of CV(l)(cv)

A.3.3 Vessels: Berths, Berth Positions, &c.

A CTP harbour consists of an ordered list of berth positions. We assume, without loss of generality,
all berth positions to “fill” some area, i.e., be of same depth, width and length. A vessel at a
specific harbour requires a (minimum) number of such berths. A vessel, independently has a
(static) length, (static) width and (dynamic) depth. Berth positions are, at any time, either free
or occupied. Vessels “occupy” consecutive berth positions.

type
a. Vessel, CTP Harbour, BPos, Berth, Depth, Length, Width
b. BPosL = BPos∗, BPosLs = BPosL-set
value
c. obs BPosL: (CTP Harbour|Vessel) → BPosL
d. calc #BPoss: Vessel × CTP Harbour → Nat
e. obs used BPosLs, obs free BPosLs: CTP Harbour → BPosL∗

f. obs Len: (Vessel|CTP Harbour|BPos) → Length
g. obs Wid: (Vessel|CTP Harbour|BPos) → Width
h. obs Dep: (Vessel|CTP Harbour|BPos) → Depth
i. is at Sea, is at CTP: Vessel → Bool
axiom
j. ∀ ctp h:CTP Harbour •

k. (elems obs used BPosLs(ctp h) ∩ elems obs free BPosLs(ctp h) = {} ∧
l. elems obs BPosLs(ctp h) = elems obs used BPosLs(ctp h) ∪ elems obs free BPosLs(ctp h) ∧
m. ∀ vessel:Vessel •

n. is at Sea(vessel) ∼≡ is at CTP(vessel) ∧
o. let nbps=calc #BPosL(vessel,ctp h) in obs Len(vessel)≤nbps∗obs Len(ctp h)∧
p. obs Wid(vessel)≤obs Wid(ctp h)∧obs Dep(vessel)≤obs Dep(ctp h) end)

Annotations: We18 “read” the above formulas.
17

RSL.17: if test then expr1 else expr2 end expresses the classical if-then-else.
RSL.18: chaos expresses the totally undefined value.
RSL.19: case expr 0 of expr 1 → expr a, of expr 2 → expr b, ..., → expr final end expresses a multiple choice:

if an expression expr 0 “matches” the value of an expression expr 1 then the value of expression expr a is yielded,
else ..., and finally the value of expression expr final is yielded.

18

RSL.20: type A, B, ..., C defines not necessarily disjoint classes of values of type A, B, ..., C, respectively.
RSL.21: obs B: A → B postulates the existence of a (not further defined) observer function which from type

A values observer their type B constituent values.
RSL.22: axiom ∀ a:A,b:B,...,c:C • P(a,b,...,c) expresses a property that is claimed to always hold for values

a,b,...,c such as constrained by the predicate P.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 37

• (a.) Vessels, CTP Harbours, Berth Positions, Depths, Lengths and Widths are
further undefined classes of values — to be constrained by the axioms (i.–p.).

• (b.) A sequence of berth positions form a berth position list.
Sets of berth position lists helps us model free and occupied berth positions.

• (c.) A harbour defines a sequence of (all) berth positions. (Some may be occupied,
some may be free.)
A vessel, when berthed, likewise defines a sequence of (hence occupied) berth
positions.

• (d.) Depending on the CTP harbour a vessel, when berthed, will occupy a certain
number of (fixed length) berth positions (of that harbour).

• (e.) At any one time zero, one or more berthed ships define as set of occupied
berth position lists and hence a set of free berth position lists.

• (f.-g.-h.) Vessels have lengths, so does the entire sequence of harbour berth posi-
tions, and these have lengths. Similar for allowable widths and depths of berthed
vessels and of vessels (depth is usually a dynamic attribute).

• (i., n.) A vessel is either at see or berthed at a CTP quay.

• (j.) For all CTP harbours the following predicates hold.

• (k.) The occupied berth positions share no positions with the free berth positions.

• (l.) The harbour berth positions are the same as collection of the occupied and
the free berth positions.

• (m.) For all vessels the following predicates hold (in the context of the ranged
harbour).

• (o.) The length of a vessel is not larger than the sum of the lengths of the berth
positions that it occupies.

• (p.) The vessel width and depth is not larger than those of (i.e., prescribed by)
the harbour.

A.3.4 Vessel Arrivals, Berthing and Departures

Container vessels ply the high seas, coastal areas, canals and, in cases, inland rivers. Container
vessels sail from container terminal port to port. Container vessels arrives at ports and departs
from port. Container vessels announce their imminent arrival to the CTP harbour master request-
ing permission to enter the port and request a berth position. The harbour master either grants
the request to enter and then assigns a berth position to the vessel or informs the vessel that it
must wait (say, outside the container terminal port area proper, say at a buoy). Eventually the
harbour master will grant the vessel permission to berth (at a specific position).

Vessel and CTP Interactions: Messages.

type
Ship CTP M = ReqBerth | BerthAsgn | PlsWait | ReqDept | OKDept
ReqBerth == mkReqBerth(est:Time,ℓ:Length)
BerthAsgn == mkBerthAsgn(jn:JobNm,bpl:BPosL)
PlsWait == mkPlsWait(jn:JobNm,est:Time)
ReqDept == mkReqDept(jn:JobNm)
OKDept == ok

Annotations:

• A ship, cvn, asks permission to enter and requests a berth position: mkReqBerth(cvn,est,ℓ);
the vessel estimates a time of arrival, and states its ℓength.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 38

• The CTP harbour (master) acknowledges receipt of the arrival notice and berth
request and responds positively, mkBerthAsgn(jn,bpl), by informing the vessel of
job name (for harbour visit) and assigning a sequence, bpl, of berth positions
(commensurate with the ship ℓength).

• Or the CTP harbour (master) acknowledges receipt of the arrival notice and berth
request and responds negatively, mkPlsWait(jn,est), by informing the vessel the
vessel of job name (for harbour visit) to wait up to an estimated time.

• A vessel requests permission, mkReqDept(jn), to depart, referring to the harbour
visit job number.

• The CTP harbour (master) acknowledges receipt of the departure request and
responds positively, oking the departure.

• The CTP harbour (master) may acknowledge receipt of the departure request by
responding negatively with a mkPlsWait(jn,est) response.

Vessel and CTP Interactions: Processes.

type
CVNm, CVΣ, CTPΣ

value
vns:CVNm-set
cvσs:(CVNm →m CVΣ)
ctpσ:CTPΣ

axiom
vns = domcvσs

channel
{ves ctp[i]|i:vns}:Ship CTP M

Annotations:

• CVNm designates the class of all vessel names. CVΣ designates the class of all
vessel states — and we can model a vessel just by modelling its state. CTPΣ
designates the class of all CTP states.

• vns designates a value of arbitrarily chosen vessel names.

• cvσs designates a value which to every arbitrarily chosen vessel name, vn in vns,
associates an arbitrarily chosen vessel state.

• ctpσ designates an arbitrarily chosen CTP state value.

• The axiom states that the definition set of cvσs must be the set, vns, of arbitrarily
chosen vessel names.

• There are cardinality vns channels, one for each vessel, whether at high sea or at
CTP, between vessels and the CTP.

value
vessel: cvn:CVNm × CVΣ → in,out ves ctp[cvn] Unit
vessel(cvn)(cvσ) ≡

...
⌈⌉ if is at sea(cvσ)

then
(vessel(cvn)(next cvσ(cvσ)) ⌈⌉ vessel arrives(cvn)(cvσ))

else
vessel(cvn)(next cvσ(cvσ)) end

⌈⌉ if is at CTP(cvσ)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 39

then
(vessel(cvn)(next cvσ(cvσ)) ⌈⌉ vessel departs(cvn)(cvσ))

else
vessel(cvn)(next cvσ(cvσ)) end

⌈⌉ ...

next cvσ: CVΣ → CVΣ

Annotations:

• The vessel is here modelled as non-deterministically “wavering” between being on
the high seas or in some CTP or ...

• If at sea then the vessel either remains at sea or enters a CTP.

• If at a CTP then the vessel either remains at that CTP or departs.

• There are other vessel behaviours, . . . , which we do not describe.

• The liberal use of non-deterministic choice, ⌈⌉, serves to model that the vessel
may decide to remain at sea or at harbour, or to do other things.

• The next cvσ function “increments” the state “one step” (whatever that is).

value
vessel arrives: cvn:CVNm × CVΣ → in,out ves ctp[cvn] Unit
vessel arrives(cvn)(cvσ) ≡

1. (let time = estimate arrival time(cvσ) in
2. ves ctp[cvn]!mkReqBerth(time,obs berthing Info(cvσ));
3. let m = ves ctp[cvn]? in
4. case m of
5. mkBertAsgn(jn,bpl) → vessel(cvn)(upd berth cvσ(jn,bpl)(cvσ)),
6. mkPlsWait(jn,est) → vessel(cvn)(upd wait cvσ(jn,est)(cvσ)),
7. → chaos

end end end)

8. obs berthing Info: CVΣ
9. estimate arrival time: CVΣ → Time
10 upd berth cvσ: JobNm × BPosL → CVΣ → CVΣ
11. upd wait cvσ: JobNm × Time → CVΣ → CVΣ

Annotations:

• (1.) An estimate19 is made as to when the vessel is expected to actually arrive at
the harbour.

• (2.) The ship informs the CTP harbour master of estimated time of arrival and
other such information that help determine whether and, and if so, where the
ship can berth.

• (3.) The ship receives a response, m, from the CTP harbour master.

19

The let a = E in C(a) end construct defines a to be bound to the value of expression E in the body C, that is, a
is free in C(a)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 40

• (4.-5.) If20 the response is an accept to berth then that response will also state a
job name, jn, for the ship at harbour and a direction as to to which berth position,
bpl, to dock. The ship will then go to dock, i.e., update its state accordingly.

• (6.) If the response is a deferral (i.e., to wait) then the ship will wait, i.e., update
its state accordingly.

• (7.) Any other, unexpected response will lead to chaos, i.e., is not further de-
scribed here.

• (8.–10.) The signatures of auxiliary behaviours are given, but the no further
definition is given.

value
vessel departs: cvn:CVNm × CVΣ → in,out ves ctp[cvn] Unit
vessel departs(cvn)(cvσ) ≡

1. (let jn = obs JobNm(cvσ) in
2. ves ctp[cvn]!mkReqDept(jn);
3. let m = ves ctp[cvn]? in
4. case m of
5. ok → vessel(cvn)(upd dept cvσ(cvσ)),
6. mkPlsWait(jn,est) → vessel(cvn)(upd wait cvσ(jn,est)(cvσ)),
7. → chaos

end end end)

8. obs JobNm: CVΣ → JobNm
9. upd dept cvσ: CVΣ → CVΣ
10. upd wait cvσ: JobNm × × Time → CVΣ → CVΣ

Annotations:

• (1.) As the vessel is about to depart it recalls the job name for the current harbour
visit

• (2.) and informs the CTP harbour master of its intention to depart.

• (3.) The vessel then awaits the harbour master response.

• (5.) If it is OK, then the vessel leaves, i.e., updates its state accordingly.

• (6.) If it is not OK to leave, but to wait further in harbour, then the vessel waits,
i.e., updates its state accordingly.

• (7.) Any other response is not expected.

• (8.–10.) The signatures of auxiliary behaviours are given, but the no further
definition is given.

value
ctp: CTPΣ → in,out ves ctp[∗] Unit
ctp(ctpσ) ≡
...

1. ⌈⌉ ⌈⌉⌊⌋{let m = ves ctp[cvn]? in
2. case m of
3. mkReqBerth(t,ℓ) → ctp berth(vn,t,ℓ)(ctpσ),
4. mkReqDept(jn) → ctp dept(vn,jn)(ctpσ) end end

20

The case a of pattern1 → C(p1), pattern2 → C(p2), . . . , patternn → C(pn) end construct examines the value a. If
it “fits” pattern1 then the value of clause C(p1) is yielded as the value of the entire s construct, else — and so on.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 41

5. | cvn:CVNm }
6. ⌈⌉

...

Annotations:

• (1.,6.) The CTP harbour master decides which next task to work on, i.e., inter-
nally non-deterministically alternates between, as shown in (1.)21 being willing to
“listen” to requests from approaching vessels, or, as shown in (6.) to do something
else.

• (3.) If an approaching vessel, cvn, requests a berthing then the CTP harbour
master will handle that request and then continue to be a harbour master.

• (4.) If a ship at harbour, (still) cvn, requests to depart, then the CTP harbour
master will handle that request and then continue to be a harbour master.

value
ctp berth: cvn:CVNm×Time×Info → CTPΣ → in,out ves ctp[cvn] Unit
ctp berth(cvn,t,ℓ)(ctpσ) ≡

1. let jn:JobNm • jn 6∈ job names(ctpσ) in
2. if is available BPosL(t,info)(ctpσ)
3. then
4. let bpl = allocate BPosL(t,info)(ctpσ) in
5. ves ctp[cvn]!mkBerthAssgn(jn,bpl);
6. vessel(cvn)(upd berth asgn(cvn,jn,bpl)(ctpσ)) end
7. else
8. let est = estimate berth avail(t,info)(ctpσ) in
9. ves ctp[cvn]!mkPlsWait(jn,est);
10. vessel(cvn)(upd berth avail(cvn,jn,est,bpl)(ctpσ)) end

end end

Annotations: The handling of requests, by approaching vessels, to enter barbour and
be berthed, are described by this behaviour definition.

• (1.) First the harbour master assigns a job name to the request.

• (2.) If, based on estimated time of arrival and other, ertinent vessel information,
the harbour master decides that a sequence of berth positions can be allocated,

• (3.) then allocation and notification is done:

– (4.) a suitable sequence of berth positions is selected,

– (5.) the vessel is so informed,

– (6.) and the harbour master reverts to being a harbour master;

• (7.) else deferral is adviced:

– (8.) a time is estimated for possible (later) arrival,

– (9.) the vessel is so informed,

– (10.) and the harbour master reverts to being a harbour master.

21

The clause ⌈⌉⌊⌋{ ... ch[i]? ... Ci | i:Idx } expresses externally driven, but still non-deterministic choice as to which
other process, indicated by cvn to interact with. Once chosen the behaviour Ci is “undergone”.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 42

job names: CTPΣ → JobNm
is available BPosL: Time × Length → CTPΣ → Bool
allocate BPosL: Time × Length → CTPΣ → BPosL
upd berth asgn: CVNm × JobNm × BPosL → CTPΣ → CTPΣ
estimate berth avail: Time × Length → CTPΣ → Time
upd berth avail: CVNm × JobNm × Time → CTPΣ → CTPΣ

Annotations:

• The signatures of auxiliary behaviours are given, but the no further definition is
given.

value
ctp dept: cvn:CVNm × JobNm → ctpΣ → in,out ves ctp[cvn] Unit
ctp dept(cvn,jn)(ctpσ) ≡ /∗ left as an assignment exercise ∗/

• • •

We show only this fragment of modelling container vessels here. Additional fragments will appear
later in this modelling of the domain of the container line industry.

The above and the following (i.e., the below) formalisations need be harmonised wrt. type
names. Above we have used one set. Below we may deviate from this set and, occasionally, use
other (synonym) type names. This is clearly not acceptable from a final document!

A.4 Container Vessel Stowage

“Containers22 on board a container ship are placed in container cells, that is, at locations made
up from bay and row identifiers and tier indexes. Since the access to the containers is only from
the top of the tier, a common situation is that containers designated for port J must be unloaded
and reloaded at port I (before J) in order to access containers below them, designated for port I.
This operation is called “shifting”. A container ship calling at many ports may encounter a large
number of shifting operations, some of which can be avoided by efficient stowage planning (*). In
general, the stowage plan must also take into account stability and strength requirements (*), as
well as several other constraints (*) on the placement of containers.

A.4.1 Physically Impossible Stowage

But let us not get derailed into stowage requirements such as expressed above wrt. avoidance of
“shifting” and satisfaction of the (*) marked requirements. In the domain all we have to secure is
that certain impossible situations are not represented in any container vessel: First we introduce,
as part of the concept of ‘stowage’, the phenomenon of a cell being “occupied”, that is, its location
“houses” a container. We have already defined that predicate (is occupied).

Then we must express the following physical impossibility:

14. In any tier (i.e., sequence of cells (tier positions), since containers are stowed from lower po-
sitions toward higher positions (and correspondingly unloaded from higher positions toward
lower positions), we have that there cannot be any empty cells between adjacent occupied
cells.

We have already ruled out the possibility of “empty gaps”. This was done in the formal axiom,
“no un-occupied gaps”, on Page 34.

22This slanted quote is edited from [10].

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 43

A.4.2 Stowage Properties

It may surprise the reader that this is all we need to say at this early stage about container on-
open-sea stowage. All other properties of stowage is here seen as requirements to proper storage.
Of course we can always, in the domain, speak of proper storage so let us define some predicates
that do not necessarily need to be satisfied of any actual stowage. Therefore we express these as
defined predicates rather than in the form of axioms. Each property, that is, each desirable form
of container stowage, is usually relative to a whole container vessel, and involves the container, i.e.,
its contents, its absolute cell position as well as its narrower or wider context of other occupied cell
positions (and their contents). Informally such properties are illustratively expressed as follows:

15. Heavier containers must not be stowed above lighter containers.

16. A container, c, at location cℓ must not have a contents which “disagrees” with the contents
of “nearby” containers.

17. Heavier containers should be stowed close to the ship center of gravity.

18. Containers should be stowed so as to minimize trim and list.

The variety of ‘disagreements’ and notions of ‘locations’ and ‘neighbourhood’ is rather large.
When abstractly formalising these variations, we therefore choose to not even detail them, but to
introduce un-interpreted sets of predicates. Examining the above four examples (Items 15–18) we
find that some involve basically one container versus “all other containers” and that others involve
“all containers”. But we “lift” even this distinction and let our un-interpreted predicates embody
this ‘one-versus-neighbours’, ‘one-versus-all-others’, ‘all’, etc.

type
P = CV → Bool

value
ps:P-set

axiom
∀ cv:CV,p:P • p ∈ ps ⇒ p(cv)

A.5 Container Terminal Ports

This section will first present a semi-structured narrative. It is in a form somewhere between rough
sketches and more “stricter” narratives. Then follows some analysis and sketch formalisations.
Based on that we suggest another form of formal modelling. But we do not bring a “strict”
narrative — and our formalisation is just sketchy.

A.5.1 Informal Rough Sketch cum Narrative Presentation

19. A container terminal consists of

(a) a quay23 where a varying number of ships can be berthed, with quay(s) “sandwiched”
between the ocean and the quay area,

(b) a therefrom physically separated container stack, which consists of a fixed number of
one or more container blocks (or container groups) where containers can be stored
(stowed),

(c) a quay area which is physically located properly between and separating the quay(s)
from the stack, and

23We abstract from whether we speak on one quay of some length, or a number of quays of the same total length.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 44

(d) a land side transfer area which is physically located properly between and separating the
stack from, or interfacing the container terminal with an inland from which containers
originate or are finally destined.

(e) The reason for the berthing of a varying number of ships is that the ships have possibly
differing lengths whereas the quay side length is fixed.

20. Ships

(a) arrive from and depart for the ocean

(b) and dock, respectively un-dock

(c) at berths which are positioned along the quay.

21. Further container terminal entities and some operations involve:

(a) Quay cranes which move along the quay(s),

i. lift (unload) containers from a berthed ship,

ii. and drop (load) them to container vehicles, respectively

iii. lift (unload) containers from these vehicles

iv. and drop (load) them onto a berthed ship.

v. We shall model the combined lift/drop as a composite transfer operation.

(b) Container vehicles (mentioned above)

i. which horisontally, two-dimensionally move

ii. along the quay(s) and in the quay and stack areas

iii. between ships and stacks.

(c) Stack cranes

i. which move within a very restricted area of a stack — usually only within a stack
group (or block) or just bay,

ii. and lift (and drop) containers from (respectively to) container vehicles

iii. to (respectively from) stack tiers.

iv. We shall model the combined lift/drop as a composite transfer operation.

(d) Each stack block (or group) is organised “like on a ship”: one or more bays, each bay
with one or more rows, each row with one or more tiers, and each tier with a maximum
number of containers (i.e., cells).

(e) Other (possibly different kinds of) container vehicles

i. likewise land-surface move

ii. in and between the container stack blocks (or stack groups)

iii. and the land side transfer area

iv. where containers may be transferred by transfer cranes

v. to and from inland trucks, trains or even barges.

(f) The transfer cranes move only in the transfer area.

(g) The trucks, trains and barges land surface (water surface) move between the land side
transfer area, through gates, and the inland.

(h) Gates separate the container terminal port from the inland

(i) just a ship berths separate the the container terminal port from the ocean.

(j) Finally we may introduce the explicit vehicle operation of waiting

i. at a CTP location

ii. for a specified interval of time,

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 45

iii. or until a specified clock time,

iv. or indefinitely.

22. A container undergoes the following four behaviours:

(a) The ship to stack container behaviour:

i. first a lift (unload) — by a crane — from a ship tier

ii. followed by a drop (load) — by the crane — to a container vehicle,

iii. then a transport by the moving vehicle from the quay area to the stack

iv. where the container is lifted (unloaded) — by a crane — from the vehicle

v. and dropped (loaded) — by the crane — onto a tier.

So a ship tier, a crane, a vehicle, another crane, and a stack tier was involved in the
ship to stack container behaviour, and in that order.

Now to a reverse behaviour of the above.

(b) The stack to ship behaviour:

i. first a lift (unload) — by a crane — from a stack tier

ii. followed by drop (load) — by the crane — to a container vehicle,

iii. then a transport by the moving vehicle from the stack area to the quay area

iv. where the container is lifted (unloaded) — by a crane — from the vehicle

v. and dropped (loaded) — by the crane — onto a ship tier.

So a ship tier, a crane, a vehicle, another crane, and a stack tier was involved in the
stack to ship container behaviour, but in the reverse order.

(c) The stack to transfer area (and inland) behaviour:

i. first a lift (unload) — by a crane — from a stack tier

ii. followed by drop (load) — by the crane — to a container vehicle,

iii. then a transport by the moving vehicle from the stack to the transfer area

iv. where the container is transferred — by a crane — from the vehicle

v. to an inland truck, train or barge.

Thus a stack tier, a crane, a vehicle, yet a crane and an inland truck, train or barge
were involved in this behaviour.

Now to a reverse behaviour of the above.

(d) the (inland and) transfer area to stack behaviour:

i. first a transfer — by a crane — from an inland truck, train or barge

ii. to a vehicle,

iii. then a transport by the moving vehicle from the transfer area to the stack area

iv. where the container is lifted — by a crane — from the vehicle

v. followed by a drop — by the crane — onto a stack tier.

Thus a stack tier, a crane, a vehicle, yet a crane and an inland truck, train or barge
were involved in this behaviour — but in the reverse order.

There is the possibility of having transfer areas in which containers may be temporarily stored
(“stowed”). We shall call such transfer area storage for buffers. In such cases we need augment
the four container behaviours with an additional two such. When dealing with a proper, full
scale description of the CTP domain we must provide for alternative transfer areas as well as
for alternative, or further abstracted any such areas within the CTP. We have not made any
distinction between various forms of quay cranes (gantry, single or dual trolley, etc., cranes),
various forms of CTP vehicles, and various forms of stack cranes, (rail mounted cranes, rubber
tired gantries, overhead bridge cranes, etc.). These rather technology-bound phenomena shall, of
course, be further detailed as part of the support technology domain facet. Presently we focus
on the intrinsics of cranes and vehicles: their ability to move, lift, drop and transfer, respectively
their ability to stock and move.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 46

A.5.2 Analysis of CTP and First Draft Formalisations

We observe that the container terminal port (CTP) can be physically characterised as a compo-
sition of a number of sea, land and possibly river/canal/coastal waters areas (i.e., entities). (i)
There is the ocean (which is adjacent to and interfacing with many harbours, i.e., CTPs). (ii) The
ocean is (for any particular CTP) adjacent to and interfacing with quays. (iii) A(ny) quay (iii.1)
is partly part of and partly adjacent to (interfacing with) the harbour basins (iii.2) and partly
part of and partly adjacent to (interfacing with) the quay area. (iii.3) That is: quays are partly
water partly land based. (iv) The quay area is wholly land based and “sandwiched” between the
quays and the stack. (v) The stack area contains container groups as properly “embedded” parts
of the stack. (vi) The transfer area which is “sandwiched” between the stack and the inland. (vii)
There is the inland which we consider to be outside the container terminal port — as is the ocean.
viii) Finally gates “connect” the transfer area and the inland.

type
Ocean, Onm [ocean name], Inland, Inm [inland name]
CTP, CTPnm [CTP name], Quay, QuayArea, Stack, Group, TransArea, Gate

value
obs CTPs: Ocean → CTP-set, obs CTPnm: CTP → CTPnm
obs Onm: CTP → Onm, obs Inm: CTP → Inm
obs Quay: CTP → Quay, obs QuayArea: CTP → QuayArea,
obs Stack: CTP → Stack, obs TransArea: CTP → TransArea,
obs Gates: (CTP|TransArea) → Gate-set

There seems to be a conceptual notion of ‘stock’ “buried” in the above description. By a stock
we mean a place where one or more containers may be (however temporarily) stored (“stowed”).
Examples of stocks are container vessels (bays, rows, tiers, cells), CTP vehicles (usually one or two
containers), stack groups (bays, rows, tiers, cells), transfer area (buffer [bays, rows, tiers, cells])
and transfer area to inland trucks, trains and barges. What characterises stocks is that containers
may be lifted from, dropped onto, or transferred between stocks.

Let us analyse the notions of crane and vehicle operations.

23. Container lift (unload), drop (load) and transfer operations can only be performed by cranes.

24. Movement of containers

(a) (i.e., transport)

(b) along a (CTP) route,

(c) between different locations within the CTP

i. can only be performed

ii. by container vessels

iii. and by some stack cranes.

25. Movement of containers

(a) (i.e., transport)

(b) along an (ocean) route,

(c) between different CTPs across the ocean

(d) can only be performed by container vessels.

So there are two conceptual notions of (CTP) routes and locations.

26. Consider a CTP as characterisable also

(a) in terms of a dense (possibly finitely enumerable) set of points,

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 47

(b) that is, a point can be said to be a “neighbour”, or “in the neighbourhood” of some
other point(s),

(c) and we can speak of two bordering sets of points sharing an interface line of points.24

27. Thus the quays, quay area, stack and transfer area can be said to be represented (also) by
bordering point sets.

28. A (CTP) location can then either be defined as a point or as a “small” dense set of points

(a) such that all points

(b) are proper points of the CTP.

29. A (CTP) route can then be defined as a sequence of (CTP) locations

(a) such that adjacent elements of the route sequence

(b) form bordering locations.

(c) The “size” of locations, i.e., their granularity, determines “smoothness” or a route.

30. A (CTP) transport route is a (CTP) route

(a) such that the pair of first and last element of the route designates

(b) quay, stack, or transfer crane positions cqp
, cyp

, or ctp

(c) and as follows: (cqp
, cyp

) or (cyp
, ctp

)

(d) or their reverses.

We are now ready to further characterise crane and vehicle operations. We do not model the
atomic crane operations of lift and drop. We model, instead the composite crane operations of lift
(of the container, by the crane spreader), crane trolley movement (with the container), and drop
(of the container, by the crane spreader), and we call this operation a/the transfer operation.

31. A crane operation is

(a) either a container transfer operation,

(b) or a crane movement operation.

32. A vehicle operation is

(a) either a move operation.

(b) or a wait operation.

33. To explain these operations let us introduce the notions of:

(a) container ship container location,

(b) stack container location, and

(c) transfer area container location.

They are definable as follows:

(d) A container ship container location embodies a bay and a row identifier as well as a
stack tier (i.e., stack index).

(e) A stack container location embodies a group (or block), a bay, a row, and a tier identifier
as well as a tier index.

(f) A transfer area container location is

24Let Ai and Aj be two such bordering sets of points. Let Lij be the (shared) interface line of points. Then
Ai \ Lij and Aj \ Lij are disjoint sets of points. Some points in Ai \ Lij are ‘adjacent’ to some points in Aj \ Lij .

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 48

i. either a buffer location which embodies a a row identifier and a stack tier (i.e.,
stack index),

ii. or it is a train, a truck or a barge position.

(g) We leave the characterisation of train, truck and barge positions to the interested reader.

34. The crane transfer operation has the following operation signatures:

(a) as input arguments:

i. crane (f.ex. referred to by a crane name),

ii. container (f.ex. referred to by a container identifier),

iii. and a to/from designation which is a pair of either

A. a ship container location and a vehicle name, or

B. a vehicle name and a ship container location, or

C. a stack container location and a vehicle name, or

D. a vehicle name and a stack container location, or

E. a transfer area container location and a vehicle name, or

F. a vehicle name and a transfer area container location, and

iv. a start time

v. and the CTP state;

(b) and as result values:

i. a possibly changed CTP state

ii. and a termination time.

(c) Some comments pertinent not just to the transfer operation, but to all container ship-
ping operations are in order.

i. All operations, also transfer, “take place” in the state of a specific CTP — and
potentially change the (CTP) state.

ii. And all operations take place in time:

A. They start at some time, t;

B. they “last”, i.e., take some time, τι;

C. and they therefore end, or terminate at some time, t′.

iii. The “times” t, τι and τ ′ are of types:

A. t and τ ′ are absolute times: Year, month, day, hour, minute, etc., while

B. τι is an interval time;

C. for the wait operation τι, however, may be indefinite .

(d) So absolute and/or interval times have to be added to the signature of all CTP opera-
tions.

type
T, TI
Pt, Loc, Vehicle, Vn [vehicle name], Cra, CraNm [crane name]
SLOC = LOC, YLOC = Gid × LOC, XLOC
Route = Loc∗

ToFro = ShVe | VeSh | YaVe | VeYa | VeXf | XfVe
ShVe == mkSV(sl:SLOC,v:Vn)
VeSh == mkVS(v:Vn,sl:SLOC)
YaVe == mkYV(yl:YLOC,vn:Vn)
VeYa == mkVY(vn:Vn,yl:YLOC)
XfVe == mkXV(xl:XLOC,vn:Vn)
VeXf == mkVX(vn:Vn,xl:XLOC)

value

xfer: CraNm × CId × ToFro → T → CTP
∼
→ CTP × T

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 49

25

(a) The crane move operation has the following operation signatures:

i. as input arguments:

A. the crane (f.ex. referred to by a crane name),

B. the crane ‘from’ position along the quay, and

C. the crane ‘to’ position along the quay,

D. the start time,

E. and the current CTP state;

ii. and as result values:

A. the end CTP state

B. and the termination time.

type
CraP

value
obs CraPs: Quay → CraP-set

move: CNm × CraP × CraP → T → CTP
∼
→ CTP × T

26

35. The vehicle move operation has the following operation signature:

(a) the input arguments:

i. a vehicle (f.ex. referred to by a vehicle name)

ii. a route,

iii. and an initial CTP state;

(b) and as result values:

i. a result CTP state

ii. and a termination time.

36. The vehicle wait operation has the following operation signature:

(a) the input arguments:

i. vehicle (f.ex. referred to by a vehicle name),

ii. location at which to wait, and

25

RSL.23: The ‘type definitions’:

type

A = B|C|...|D
B == mkX(...), C == mkY(...), ..., D == mkZ(...)

defines A to be the disjoint union of types B, C, etc., D. Disjointness is achieved solely through distinctness of all
mkX, mkY, etc., mkZ. That is, the ...’s “inside” the mkX(...) may be identical.

RSL.24: The ‘type expression’ mkE(s1:F1,s2:F2,...,sn:Fn) designates a type of ‘records’ (‘structures’) with n

‘fields’ of respective ‘types’ Fi whose ‘value’ in some e: mkE(f1,f2,...,fn) can be ‘selected’ by applying the ‘selector’
si to the ‘value’ e, i.e., si(e). mkE is called the ‘constructor’.

26

RSL.25: The signature f: A × B × C → D → E
∼
→ E × G “reads” ‘function application’ is expressed as some

f(a,b,c)(d)(e) and a yielded result can be expressed as some (e’,g). (The signature and hence function application

could have been expressed in a non-Curried form: f: A × B × C × D × E
∼
→ E × G, respectively f(a,b,c,d,e).)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 50

iii. optional waiting time.

(b) and as result values:

i. a result CTP state

ii. and a termination time.

type
Hour, Min
Time == mkT(t:T) | Indef
Wait = Interval | Clock | Indef
Intvl == mkIntvl(h:Hour,m:Min)
Clock == mkClock(h:Hour,m:Min)
Indef == indefinite
OptWait == empty | mkWait(i:Wait)

value

move: VeNm × Route → CTP → T
∼
→ CTP × T

wait: VeNm × Loc × OptWait → T → CTP
∼
→ CTP × Time

We shall now discuss the meaning of the lift, drop, transfer, move and wait operations.

37. The crane container xfer (transfer) operation:

value

xfer: CId × CraNm × ToFro → T → CTP
∼
→ CTP × T

xfer(ci,cn,(ℓ,ℓ′))(t)(σ) as (σ′,t′)

can27 be roughly described as follows:

(a) The transfer (xfer) operation

i. is performed in some initial CTP state σ,

ii. and starts at some time.

(b) The result of performing a transfer operation

i. is a possibly new CTP state σ′,

ii. and a termination time t′.

(c) The transfer (xfer) operation ends in chaos, that is, is undefined if one or more of the
following holds in state σ:

i. there is no container of identity ci at either location ℓ or ℓ′;

ii. there is no crane of name cn;

iii. if ℓ or ℓ′ designates a vehicle and there is no such named vehicle28 located at the
identified crane;

iv. if ℓ or ℓ′ intends to designate a container position on a ship

A. and either there is no such ship at the crane position,

B. or the ship which is there has no such container location,

C. or, if there is, that container location is not on top of a tier;

v. if ℓ or ℓ′ intends to designate a container position in a stack group (or block) or a
transfer area buffer,

27

RSL.26: The ‘function definition’ f(a,...,b) as r or f(a,...,b) as (c,...,d) “reads” as follows: Application f(a,...,b)
yields a result which can be expressed as r (or as a grouping (c,...,d).

28including transfer area trucks, trains and barges

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 51

A. and there is no such stack group (respectively transfer area buffer) container
location;

B. or, if there is, that location is not a tier top location;

(d) If the above listed pre conditions are satisfied then proper interpretation, i.e., crane
container transfer operation can be commenced.

i. The identified crane “grabs” (lifts), with its spreader,

ii. the identified and properly located container from that location (ℓ),

iii. moves the crane trolley appropriately, and

iv. the crane spreader “releases” (drops) the container

v. onto the identified and properly identified location (ℓ′).

Of the two locations

vi. one is a tier location:

A. either a ship bay/row/stack/tier and tier index position,

B. or a stack group/bay/row/stack/tier and tier index position,

C. or a transfer area buffer (bay/row/stack/tier position and tier index) location,

vii. and the other location is a vehicle name.

38. The crane move operation:

value

move: CNm × CraPos × CraPos → T → CTP
∼
→ CTP × T

move(cn,cp,cp′)(t)(σ) as (σ′,t′)

can be roughly described as follows:

(a) The crane move operation

i. is performed in some initial CTP state σ

ii. and starts at some time t.

(b) The result of performing a crane move operation

i. is a possibly next CTP state σ′

ii. and some termination time t′.

(c) The crane move operation ends in chaos, i.e., is undefined, if one or more of the
following holds in initial state σ:

i. there is no crane of name cn,

ii. there is no quay position cp,

iii. there is no quay position cp′, and/or

iv. the crane of name cn is not, in state σ, in position cp.

(d) If the above listed pre conditions are satisfied then proper interpretation, i.e., the crane
move operation can be commenced.

i. The crane, named cn starts moving from quay position cp,

ii. the crane, for some interval of time, continues moving “towards” quay position cp′,

iii. and the crane finally halts (ends it move) at quay position cp′.

39. The vehicle move operation:

value

move: VeNm × Route → T → CTP
∼
→ CTP × T

move(vn,rt)(t)(σ) as (σ′,t′)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 52

can be roughly described as follows:

(a) The vehicle move operation

i. is performed in some initial state σ

ii. and starts at some time t.

(b) The result of performing a vehicle move operation

i. is a possibly next CTP state σ′

ii. and some termination time t′.

(c) The vehicle move operation ends in chaos, i.e., is undefined, if one or more of the
following holds in initial state σ:

i. there is no vehicle of name vn,

ii. the route rt is not well-fined within the CTP.

(d) If the above listed pre conditions are satisfied then proper interpretation, i.e., the
vehicle move operation can be commenced.

i. The vehicle starts moving, from its current location,

ii. that is the origin,

iii. which is the first element location of the prescribed route,

iv. along the prescribed route,

v. until it reaches the destination location

vi. which is the last element location of the prescribed route.

vii. The time interval, τ , that it has taken to perform the entire move is added to the
absolute initial time t to yield the termination time t′.

40. The vehicle wait operation:

value

wait: VeNm × Loc × OptWait → T → CTP
∼
→ CTP × T

wait(vn,loc,owt)(t)(σ) as (σ′,t′)

can be roughly described as follows:

(a) The vehicle wait operation

i. is performed in some initial state σ

ii. and starts at some time t.

(b) The result of performing a vehicle wait operation

i. is a possibly next CTP state σ′

ii. and some termination time t′.

(c) The vehicle wait operation ends in chaos, i.e., is undefined, if one or more of the
following holds in initial state σ:

i. there is no vehicle of name vn and/or

ii. there is no proper location loc within the CTP.

(d) If the above listed pre conditions are satisfied then proper interpretation, i.e., the
vehicle wait operation can be commenced.

i. If the location loc is different from the current location of the vehicle,

A. then a vehicle move operation is first performed.

ii. Having possibly first had to properly move to location loc

iii. and assuming that the move has taken some time (interval) τ ′

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 53

iv. (τ ′ could be 0 if no move was necessary),

v. the vehicle stays at location loc till either of the following occurs:

A. either the wait has been prescribed as a relative interval mkIntvl(τ) in which
case the vehicle stays at location loc for τ − τ ′ — which, if negative, means
no wait and hence an abnormal termination (which we have yet to properly
describe),

B. or if the wait has been prescribed as a definite time interval, τ ′′, and τ ′ is less
than τ ′′ then the vehicle stays at location loc till time t+ τ ′′ − τ ′,

C. or if the wait has been prescribed as a definite time interval then the vehi-
cle stays at location loc indefinitely. What further happens is presently left
undefined.

A.5.3 Analysis of Draft Operation Descriptions

We now comment on the above informal and formal descriptions of the CTP operations.
(i) The descriptions are mostly idealised. We do define proper pre conditions for all opera-

tions, but we mostly neglect unforeseen adversary events: (i.1) breakdown of crane trolleys, (i.2)
breakdown of vehicles, (i.3) collision between two or more CTP vehicles “on the move” during
overlapping time intervals, etcetera; and we have not detailed (i.4) what happens if wait times are
in conflict, (i.5) what happens if the wait goes on indefinitely, that is, why the vehicle has to wait,
etc.

(ii) The descriptions focus on just one particular operation. No consideration is given to the
simultaneity of two or more CTP operations involving two or more cranes, or two or more vehicles,
or combinations of one or more cranes and one or more vehicles during overlapping time intervals.
Such as the above operation descriptions are given no allowance is made for two or more CTP
operations to occur during overlapping time intervals and that is certainly contrary to “the real”
domain !

(iii) The descriptions omitted detailing in which way the CTP states were updated. We now
remedy these omissions.

41. The final state after successful execution of a crane xfer operation records

(a) that a container has been transferred.

i. If it was lifted from vehicle then that container is no longer on that vehicle.

ii. If it was dropped onto a (ship or stack or buffer) tier then that container is now on
top of that tier. Reversely

iii. if it was lifted from (the top of a ship or stack or buffer) tier then that container is
no longer on that tier, and

iv. if it was dropped onto a (presumably empty) vehicle then that container is on that
vehicle

(b) (we do not specify what happens (to the state) if the vehicle is a two or more container
vehicle [the reader should be able to fill in such details]);

(c) and the time which it has taken

i. to perform the lowering of ,“grabbing” by, and raising of the crane spreader,

ii. to move the crane trolley,

iii. to perform the lowering of, “release” by, and raising of the crane spreader,

iv. on to move the crane trolley to an initial trolley position —

that time is reflected in the result time.

42. The final state after successful execution of a crane move operation records

(a) that the crane has been moved:

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 54

i. from one crane position along the quay

ii. to another crane position along the quay,

(b) and that the time it has taken to perform that move is reflected in the result time.

43. The final state after successful execution of a vehicle move operation records

(a) that the vehicle has been moved:

i. from one CTP location

ii. to another CTP location,

(b) and that the time it has taken to perform that move is reflected in the result time.

44. The final state after successful execution of vehicle wait operation records

(a) that the vehicle has possibly been moved, as for the vehicle move operation, to a wait
location,

(b) that is, that the vehicle now is in that wait location

(c) and that the time it move time plus the (possibly adjusted) wait time is reflected in
the result time.

Many other comments could be put forward.
The gist of these comments is that we cannot proceed with the draft formalisation as shown.

The current model basis was one of an applicative model for all CTP operations. Simultaneity of
many (thus concurrent) CTP operations means that state changes from different CTP operations
must be “merged”. We must formulate an altogether different model basis. It seems that a model
based on concurrency and shared state components is more appropriate. Let us try ! The above
negatively critical comments apply only to the draft formalisations not to the informal operation
descriptions — they are still valid !

A.5.4 A Resolution on Modelling CTPs and CTP Operations

In this section some modelling decisions. These are illustrative in the sense that other decompo-
sitions into process (crane, vehicle, ship, and stack) behaviours could be shown. The ones shown
are OK, but typically such modelling choices as we show should be the outcome of far more ex-
perimentation than we can afford in a presentation such as ours. So, without much “further ado”
we put forward a more realistic model basis.

45. We decompose entities of the CTP into behaviours as follows.

(a) For every ship there is a separately described behaviour

i. whether in harbour, at quay,

ii. or on the high seas.

That is, our model is going to assume a very large, fixed number of ship processes.

(b) For every CTP vehicle there is a separately described behaviour.

(c) For every quay crane in a CTP there is a separately described behaviour.

(d) For every stack crane in a CTP there is a separately described behaviour.

(e) For every transfer area crane in a CTP there is a separately described behaviour.

(f) For every (other) state component there are separately described behaviours:

i. For every separately quay crane-accessible (for example) ship bay, row and possibly
also tier there is a separately described behaviour.

ii. For every separately stack crane-accessible (for example) stack group, bay, row and
possibly also tier there is a separately described behaviour.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 55

iii. For every separately transfer area crane-accessible (for example) buffer bay, row
and possibly also tier there is a separately described behaviour.

(g) Thus we suggest

i. one behaviour for each container vessel and

ii. one separate, “embedded” behaviour for each separately quay crane-accessible (for
example) ship bay and row.

(h) We could suggest the same for a quay:

i. as one overall behaviour

ii. composed from a number of “embedded” behaviours,

iii. one for each quay crane, whether in use or idle.

We will not do so presently. But we may have to do that later !

(i) We shall, in later sections add additional CTP processes.

46. Each behaviour “possesses” an own state:

(a) The state of ship behaviours include information about the ship, including overall topo-
logical information about bays, rows and tiers.

(b) The state of ship bay/row behaviours include the local state of all tiers within the scope
of the bay/row behaviour.

(c) The state of stack group/bay/row behaviours include the local state of all tiers within
the scope of the group/bay/row behaviour.

(d) The state of transfer area buffer behaviours include the local state of all tiers within
the scope of the transfer area buffer behaviour.

(e) The state of CTP vehicle behaviours include the local state of the vehicle: its current
position, the zero, one or usually at most two containers that it might be transporting.

(f) Etcetera. We leave it to the reader to complete, if necessary, the description of the
state of the decomposed behaviours.

47. Two behaviours might need to synchronise and communicate.

48. Examples are

(a) the quay crane and ship bay/row behaviours,

(b) the quay crane and vehicle behaviours,

(c) the vehicle and stack crane behaviours,

(d) the stack crane and stack group/bay/row behaviours, and

(e) the stack crane and transfer area either

i. the transfer area buffer or behaviours, or

ii. the transfer area truck, train or barge behaviours.

(f) Their synchronisation and communication takes place when containers are being “handed
over”.

49. The behaviours will be modelled in terms of CSP-like processes.

50. The synchronisation and communication then takes place via and over CSP-like channels.

A.5.5 Sketches of Behaviour Formalisations

In this section (Sect. A.5.5) we shall further analyse the container line industry behaviour, more
specifically the ship (in port), quay crane and (CTP) vehicle behaviours. But we shall do so “from
the point of view” of abstract modelling ! That is, concerns of formal specification possibilities
will now play a not in-significant rôle in our choice also of informal narrative description ! So,
dear reader, please accept that considerations of formalisation “creep” into our informal narrative.
You should still be able to read just the informal text skipping the formulas !

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 56

Ship, Crane and Vehicle States. We model only position and container-related components
of respective states.

We leave (ship) quay, crane and vehicle positions undefined.
The container vessel, i.e., the ship, state reflects for every bay, row and tier identifier a list of

either empty cells or cells with containers, and the set of quay positions “from which” a crane can
“reach” the bay, row and tier.29

type
Quay Pos, Quay Cra Pos, Veh Pos
SBRΣ, = ((Bi×Ri×Ti) →m Cell∗ × Quay Pos-set) × ...
Cell == empty | mkC(c:C)

The quay crane state reflects the current position, along the quay, of the crane and whether it is
currently transferring a container (or two).

type
Quay CraΣ = Quay Cra Pos × optC × optC × ...
optC == empty | mkC(c:C)

The vehicle state reflects the current position, “around” the CTP, of the vehicle and whether it is
currently transporting a container (or two).

type
VehΣ = Veh Pos × optC × optC × ...

CTP, Ship, Crane and Vehicle Process Signatures. We shall present and discuss the
signatures of four behaviours: the CTP behaviour, ship behaviours indexed by vessel name and a
bay identifier — where that index shall indicate that there may be other ship behaviours “covering”
other same ship bay identifiers30; crane behaviours indexed by crane name; and vehicle behaviours
indexed by vehicle name. The CTP behaviour has no index: it serves all ship, crane and vehicle
behaviours. All processes “embodies an own” state, σ, here shown as a function (i.e., a function)
argument being iteratively passed on in some updated form (σ′).

value
ctp: CTPΣ → Unit
ctp(ctpσ) ≡ (... ctp(ctpσ′))

quay crane: CraNm → CraΣ → Unit
quay crane(cn)(cσ) ≡ (... quay crane(cn)(cσ′))

vehicle: VehNm → VehΣ → Unit
vehicle(vn)(vσ) ≡ (... vehicle(vn)(vσ′))

stack crane: StkCraNm → CraΣ → Unit
stack crane(scn)(scσ) ≡ (... stack crane(scn)(scσ′))

ship bay: CVNm × Bid → SBRΣ → Unit
ship bay(vn,bi)(sσ) ≡ (... ship bay row(vn,bi)(sσ′))

29

RSL.27: The type definition A = B →m C defines A to designate the class of all maps (i.e., finite, enumerable
domain functions) from B elements into C elements.

RSL.28: The suffix Σ is chosen (as a pragmatics) to indicate that AΣ designates a state component.

30Thus we simplify, without loss of generality, a crane to serve an entire bay — but the model allows several
cranes to serve the same bay !

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 57

We31 have just very crudely indicated that the “bodies” of the three process definitions “tail
recurse” (as in an iterative while true do loop), that is, that the CTP processes do not terminate
— hence the Unit clause.

CTP, Ship, Crane and Vehicle Channels. The idea is to model synchronisation and com-
munication between CTP and ships, cranes and vehicles informing — as possibly requested by —
them of details of their next actions, ship and crane processes (when lifting [dropping] containers)
and crane and vehicle processes (when dropping [resp. lifting] containers) by means of ‘messages’
sent across channels between these processes. Actual channels, at this level of exposition of the
container line domain, are:

type
a CVNm, QCraNm, SCraNm, VehNm, Gid, Bid
b M CTP Shp, M CTP QCra, M CTP Veh,
c M Shp QCra, M QCra Veh, M Veh SCra, M SCra Stk

value
d ss:(CVNm →m Bid-set),
e qcs:QCraNm−Set, vs:VehNm-set, scs:SCraNm-set
f stk:(Gid →m Bid-set)

channel
g {ctp shi[i]|i:dom ss}:M CTP Shp
h {ctp qcra[i]|i:qcs}:M CTP QCra,
i {ctp veh[i]|i:vs}:M CTP Veh
j {ctp scra[i]|i:qs}:M CTP QCra,
k {shi cra[i,j,k]|i:dom ss,j ∈ ss(i),k:qcs}:M Shp QCra,
l {qcra veh[i,j]|i:qcs,j:vs}:M QCra Veh,
m {scra veh[i,j]|i:scs,j:vs}:M SCra Veh,
n {scra stk[i,j,k]|i:scs,j:dom stk,k:stk(j)}:M Scra Stk

Annotations:

• (a) Names of container vessels, quay cranes, stack cranes, and vehicles, and iden-
tifiers of stack groups and stack bays.

• (b) Types of entities communicated between CTPs and vessels, CTPs and quay
cranes, CTPs and vehicles.

• (c) Types of entities communicated between vessels and quay cranes, quay cranes
and vehicles, vehicles and stack cranes and stack cranes and stacks.

• (d) There is a value, ss, which to every container vessel associates a set of bays,
hence bay identifiers.32

• (e) qcs, vs and scs defines a set of quay crane, vehicle, respectively stack crane
names.

• (f) The value stk which to every CTP stack group associates a set of bays (known
by their identifications). hence bay identifiers.

• (g) 33 There is a set of channels, ctp shp, which serve as means for synchronisa-
tion and communication between CTP and ship (vessel) behaviours. This set is
indexed by vessel names.

31

RSL.29: The Unit literal in the function f signature f: A → Σ → Unit designates that the function f is a
process that never terminates.

32

RSL.30: The value nm:Type clause defines nm to be an arbitrarily selected (or chose) value of type Type.

33

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 58

• (h-i-j) ctp qcra: CTP quay crane, ctp veh: CTP vehicle and ctp scra: CTP stack
crane channels.

• (k) The channels shi cra serve to synchronise and communicate between ship (i.e.,
vessel) and quay crane behaviours — hence the triple indexing over ship names,
their bay identifiers and quay crane names.

• (l-m) qcra veh: quay crane vehicle, scra veh: stack crane vehicle channels.

• (n) The channels scra stk serve to synchronise and communicate between stack
crane and stack group bay behaviours — hence the trip indexing over appropriate
names.

Channel Messages, I. Let us now analyse the interactions between the CTP, ship bay, crane
and vehicle behaviours. We focus on the transfer of containers between ships and vehicles. We
formulate this analysis in terms of archetypal behaviours.

First a crane requests and receives information from the CTP as to whether a container transfer
is from a ship to a vehicle or the reverse, or there is no job. and with this information follows
further, “as appropriate”, details. If a crane container transfer is from a ship to a vehicle: then
a crane (c) requests and (d) receives permission from a ship bay to “lift” a container from the
designated tier; then the crane, having obtained the container by applying its spreader to the top
of the designated tier, (e) requests and (f) receives permission to “drop” that container from the
designated vehicle; and finally the crane places the container on the vehicle. Similar for transfers
from vehicles to ships. This analysis gives rise to the following channel message types:

type
a. JobNm
b. BRT = Bid×Rid×Tid
c. M CTP Cra = Cra to CTP | CTP to Cra | ...
d. Cra to CTP == Req Job(cp:CraPos) | Fin Job(jn:JobNm)
e. CTP to Cra == Job SV(m:CTP Cra M) | Job VS(m:CTP Cra M) | ... | no job
f. CTP Cra M = JobNm×CVNm×QuayPos×BRT×Cn×VehNm
g. M Shp Cra = Cra to Shp | Shp to Cra
h. Cra to Shp == Req Lift(m:Cra Shp M,cn:Cn) | Lift(m:Cra Shp M,cn:Cn) |

Req Drop(m:Cra Shp M,cn:Cn) | Drop(m:Cra Shp M,c:C)
i. Cra Shp M = CVNm×QuayPos×BRT
j. Shp to Cra == ok lift | ok drop | not ok lift | not ok drop | mkC(c:C)
k. M Cra Veh = Cra to Veh | Veh to Cr
l. Cra to Veh == Req Lift(cn:Cn) | Lift(cn:Cn) | Req Drop(cn:Cn) | Drop(c:C)
m. Veh to Cra = Shp to Cra

Annotations: We loosly annotate annotate the above type definitions.

• (a.) JobNm designates a further unidentified class of job names. Each job, i.e.,
each task assigned by the CTP to either quay cranes, vehicles or stack cranes will
be given a unique job name.

• (b.) BRT designates the class of triplet indentifiers of Bays, Roes and Tiers.

• (c.) M CTP Cra designates the disjoint classes of quay crane to CTP messages,
Cra to CTP, and CTP to quay crane messages. CTP to Cra.

• (d.) Cra to CTP designates the disjoint classes of job requests, Req Job(cp:CraPos),
and job finished notifications, Fin Job(jn:JobNm).

RSL.31: The definition channel ch:M declares ch to be a channel, i.e., a means of synchronisation and commu-
nication of messages of type M between processes.

RSL.32: The definition channel {ch[i]|i:set}:M declares a number (cardset) of indexed channels of type M.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 59

• (e.) CTP to Cra designates the disjoint classes of container transfer from ship
to vehicle job assignments, Job SV(m:CTP Cra M), vehicle to ship assignments,
Job VS(m:CTP Cra M), etc.: . . . , and no job assignment.

• (f.) CTP Cra M designate the class of groupings (Cartesians) of job names,
JobNm, vessel names, CVNm, quay positions, QuayPos (not used in the below
model), bay-row-tier locators, BRT, container names, Cn, and vehicle names,
VehNm.

• (g.) M Shp Cra designates the disjoint classes of crane to ship, Cra to Shp, and
ship to crane, Shp to Cra, communications.

• (h.) The crane to ship, Cra to Shp, communications either (1) requests, Req Lift(m,cn),
through the m triplet of vessel name, sn:CVNm, quay position qp:QuayPos (not
used in this model), and bay, row and tier locator, brt:BRT, and a container
name, cn:Cn, that a container be lifted from the vessel, or (2) the communication:
Lift(m,cn) designates the actual lifting of the container from the vessel, or (3) re-
quests, Req Drop(m:Cra Shp M,cn:Cn), through the triplet of vessel name, CVNm,
quay position QuayPos (not used in this model), and bay, row and tier locator,
BRT, and a container name, cn:Cn, a container to be dropped, i.e., placed, onto
the vessel, or (4) the communication: Drop(m,c) designates the actual dropping
of the container onto the vessel.

• (i.) The crane to ship (as well as the crane to vehicle) lift and drop messages,
Cra Shp M, all contain the triplet information: vessel name, CVNm, (unused) quay
position, QuayPos, and bay-row-tier locator, BRT.

• (j.) The ship to crane “response”, Shp to Cra, is either an ok lift, an ok drop,
a not ok lift, a not ok drop, or it is the actual container, mkC(c:C). The same
response, see item (m.), is also that from vehicles to quay cranes.

• (k.) The interactione between quay cranes and vehicles, M Cra Veh, form two
disjoint classes of communications: Cra to Veh and Veh to Cr.

• (l.) The crane to vehicle communications, Cra to Veh, either (1) requests, Req Lift(cn:Cn)
(like in (h.1)) that a container be lifted from the vehicle, or (2) that it actu-
ally be lifted, Lift(cn:Cn), or (3) requests, Req Drop(cn:Cn), that a container to
be dropped, i.e., placed, onto the vehicle, or (4) that it actually be dropped,
Drop(c:C).

• (m.) For Veh to Cr see Item (j.) substituting, instead of ship, the term vehicle.

Ship, Crane and Vehicle Process Definitions: Interactions. We show only the CTP and
quay crane interaction:

value
ctp: CTPΣ → in,out ctp cra[∗] Unit
ctp(ctpσ) ≡

1. (let ctp cra fct(i)(m) =
2. cases m of
3. Req Job(cp) →
4. let (cra job,ctpσ′) = next cra job(i)(ctpσ) in
5. ctp cra[i]!cra job; ctp(ctpσ′) end,
6. Fin Job(jn) →
7. ctp(upd cra ctpσ fin(jn)(ctpσ)) end in
8. ⌈⌉⌊⌋ { let m = ctp cra[i]? in ctp cra fct(i)(m) end | i:QCraNm })
9. ⌈⌉ ...

next cra job: QCraNm → CTPΣ → CTP to Cra M × CTPΣ
upd cra ctpσ fin: Jn → CTPΣ → CTPΣ

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 60

Annotations:

• Line 8. expresses the main “loop” of the CTP behaviour wrt. cranes.

• Non-deterministically (⌈⌉⌊⌋) the CTP expresses willingness to engage with any crane,
eventually receiving a message from some crane i.

• Then the CPT performs some actions in preparing and possibly delivering a re-
sponse to the interacting crane.

• These actions are expressed in terms of the function invocation ctp fct(i)(m).

• The crane is either requesting a job (3.), or is informing that a job has been
completed (6.).

• If the crane is requesting a job then the CTP inquires its state for a next job for
that crane (4.).

• This inquiry yields basically what is expressed in a CTP to crane message: either
a ship to vehicle container transfer, or the reverse, or no job (4.).

• The inquiry on the state changes the state recording that an inquiry has been
made and that a certain response has likewise been made (4.).

• The CTP informs the crane of its response (5. first part).

• And the CTP reverts to “itself” — i.e., making itself ready to engage with other
behaviours (5. last part).

• If the crane is informing that a job has been completed then the CTP records
that event in its state — and reverts to “itself” (7.).

value
quay crane: qcn:QCraNm → CraΣ → out,in ctp cra[qcn] Unit
quay crane(qcn)(cσ) ≡

1. (ctp cra[qcn]!ReqJob(obs QuayPos(cσ));
2. let m = ctp cra[qcn]? in
3. case m of
4. Job SV(job) → fct sv(qcn)(job)(cσ),
5. Job VS(job) → fct vs(qcn)(job)(cσ),
6. ... → ...,
7. no job → quay crane(qcn)(cσ)
8. end end)
9. ⌈⌉

...

Annotations: The quay crane behaviour defines how a quay crane may abstractly
interact with the CTP and effect jobs involving container transfers between a ship bay
and a vehicle — in either direction.

• (1.) The quay crane behaviour inquires with the CTP: is there a next job for it,
and then which.

• (2.) The CTP behaviour responds with a message.

• (3.) If the nessage is

– (4.) a job description for a container transfer from a vessel to a vehicle then
that function, fct sv is performed; else if it is

– (5.) a job description for a container transfer from a vehicle to the vessel then
that function, fct vs is performed; else if

– (6.) ... (other jobs, like “move the crane”, etc., are not detailed here); else if
the job is

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 61

– (7.) a no job message, then the quay crane behaviour “reverts to itself”.

The fct sv and fct vs operations likewise revets to the quay crane behaviour.

• (9.) The quay crane behaviour may non-deterministically engage in other be-
haviours — but these are not detailed here.

value
fct sv: qcn:QCraNm→Cra Shp M→CraΣ→out,in shp cra[sn,∗,∗] out,in cra veh[qcn,∗] Unit
fct sv(qcn)(jn,sn, ,qcn,(bi,ri,ti),vn)(cσ) ≡

a. shp cra[sn,bi,qcn]!Req Lift(qp,(bi,ri,ti),cn);
b. let cσ′ =
c. if shp cra[sn,bi,qcn]?6=ok lift then chaos end;
d. shp cra[sn,bi,qcn]!Lift(qp,(bi,ri,ti),cn);
e. let c = shp cra[sn,bi,qcn]? in
f. cra veh[qcn,vn]!Req Drop(qp,cn);
g. if cra veh[qcn,vn]?6=ok drop then chaos end;
h. cra veh[qcn,vn]!Drop(c);
i. ctp cra[cn]!Fin Job(jn);
j. upd cσ on sv job(jn,sn, ,(bi,ri,ti),cn,vn)(cσ) in
k. quay crane(cn)(cσ′) end

Annotations: This behaviour describes how a quay crane interacts with a specific
ship sn bay (bi,ri,ti) and a specific vehicle vn to transfer a container (identified by vn)
from the ship to the vehicle.

• (a) The quay crane informs the ship that it wishes to lift container (identified by
cn) from tier (bi,ri,ti). (In this model we do not describe what happens if the quay
crane position, qp, does not “match up” with the ship’s bay/row/tier position.)

• (b) The entire transfer operation changes the quay crane state (to σ′).

• (c) The ship is expected to respond to the lift request. If it does not respond
then we do not describe, in this model, what then happens. If it responds,
shp cra[sn,bi,qcn]?, and the response is not an OK to the lift request then chaos
ensues, that is: we do not specify what happens !

• (d) Otherwise the quay crane operation proceeds with the actual lift.

• (e) The lift is now expected to result in a(n appropriately identifed) container, c.

• (f) The quay crane now moves across and requests permission from the designated
vehicle to drop a container.

• (g) If the vehicle responds that it is not OK to drop the container then chaos
ensues.

• (h) The quay crane then drops the container onto the vehicle,

• (i) and informs the CTP that its current job assignment has finished.

• (j) The quay crane then updates its local state and

• (k) reverts to itself in that updated state.

The ship or the vehicle may decide to respond with other than OK to lift, re-
spectively drop a located and designated container either because the designated
location (i.e., tier) does not have a container of the appropriate identity on it
current top, repectively because the vehicle is expecting another container.

fct vs: qcn:QCraNm→Cra Shp M→CraΣ→out,in shp cra[sn,∗] out,in cra veh[∗] Unit
fct vs(cn)(jn,sn, ,brt,cn,vn)(cσ) ≡ /∗ left to reader ∗/

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 62

value
ship bay: CVNm → SBRΣ → Unit
ship bay(cvnm)(sbrσ) ≡ /∗ exercise for the reader ∗/

Channel Messages, II. Let us now analyse the interactions between the CTP, vehicle and
stack behaviours. We focus on the transfer of containers between quay cranes and stacks or there
is no job. We formulate this analysis in terms of archetypal behaviours.

First a vehicle requests and receives information from the CTP as to whether a container
transfer is from a quay crane to a stack or the reverse, and with this information follows further,
“as appropriate”, details.

If the transfer is from a quay crane to a stack crane then the vehicle awaits request from a quay
crane to drop a container of the right identify and OKs that request whereupon the vehicle accepts
the container if it does indeed have the right identity. The vehicle then moves to an appropriately
identified stack crane position; requests that crane to lift the properly identified container; and
then delivers that container to the stack crane spreader. If any of the conditions implied above
fails then we leave it undefined as to what then happens !

type
SCraNm
M CTP Veh = Veh to CTP | CTP to Veh
Veh to CTP == Req Job(vp:VehPos) | Fin Job(jn:JobNm)
CTP to Veh == Job CS(j:CS Job) | Job SC(j:CS Job) | ... | no job
CS Job = JobNm×QCraNm×QCraPos×Cn×SCraNm×SCraPos
GBRTid = Gid×Bid×Rid×Tid
M Cra Veh = /∗ defined above ∗/ Page 58
M Veh Stk = Veh Stk | Stk Veh
Veh Stk == Req Lift(m:GBRTid,cn:Cn) | Lift(m:GBRTid,cn:Cn) |

Req Drop(m:GBRTid,cn:Cn) | Drop(m:GBRTid,c:C)
Stk Veh == ok lift | not ok lift | ok drop | not ok drop | mkC(c:C)

Crane, Vehicle and Stack Crane Process Definitions: Interactions. For the CTP we
show only the CTP and vehicle interaction:

value
ctp: CTPΣ → in,out ctp veh[∗] Unit
ctp(ctpσ) ≡
...
⌈⌉
(let ctp veh fct(i)(m) =
cases m of

Req Job(cp) →
let (veh job,ctpσ′) = next veh job(i)(ctpσ) in
ctp veh[i]!veh job; ctp(ctpσ′) end,

Fin Job(jn) →
ctp(upd veh cptσ fin(jn)(ctpσ)) end in

⌈⌉⌊⌋ { let m = ctp veh[i]? in ctp veh fct(i)(m) end | i:VehNm })
⌈⌉ ...

next veh job: CraNm → CTPΣ → CTP to Cra M × CTPΣ
upd veh cptσ fin: Jn → CTPΣ → CTPΣ

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 63

value
vehicle: vn:VehNm → VΣ → out,in ctp veh[vn] Unit
vehicle(vn)(vσ) ≡

(ctp veh[vn]!Req Job(obs VehPos(vσ));
let m = ctp veh[vn]? in
case m of

Job CS(job) → fct cs(vn)(job),
Job SC(job) → fct sc(vn)(job),
... → ...,
no job → vehicle(vn)(vσ)

end end)
⌈⌉
...

value
fct cs: vn:VehNm → CS Job → VΣ → in,out veh cra[vn,∗] Unit
fct cs(vn)(jn,qcn,qcp,cn,scn,scp,gbrti)(vσ) ≡

let vσ′ = move vehicle(obs VehPos(vσ),crapos) in
let m = qcra veh[qcn,vn]? in
case m of

Req Drop(qp,cn′) →
if qp=qcp ∧ cn′=cn then qcra veh[qcn,vn]!ok drop else chaos end;
if obs Cn(qcra veh[qcn,vn]?)6=cn then chaos end;
let vσ′′ = move vehicle(crapos,xtr Pos(stkcran,gbrti)) in
scra veh[scn,vn]!Req Lift(cn,gbrti);
if scra veh[scn,vn]?6=ok lift then chaos end;
scra veh[scn,vn]!Lift(cn,gbrti);
ctp veh[vn]!Fin Job(jn)
vehicle(vn)(vσ′′) end
→ chaos

end end end

A.5.6 Container Stack Stowage

More to come — before July 2007

A.6 Net of Sea Lanes

By a sea lane net we shall understand a set of CTPs and a set of sea lanes. By a sea lane we
shall understand the designation of a set of two distinct CTP names, possibly the coordinates of
positions on the high sea through which the lane “passes”, the length of the sea lane, and possibly
other things. A sea lane net must be well-formed: all sea lane CTP name designations must be
names of CTPs of the net

type
N, CTPNm, L, Len

value
obs CTPNms: (N|L) → CTPNm-set
obs Ls: N → L-set

axiom
∀ n:N • ∀ l:L • l ∈ obs Ls(n) ⇒

card obs CTPNms(l) = 2 ∧ obs CTPNms(l)⊆obs CTPNms(n)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 64

A.6.1 Sea Routes

A sea route of a given sea lane net is a sequence of two or more CTP names, such that pairwise
adjacent CTP names of the route correspond to a sea lane of the net.

type
SeaRt = {|sr:CTPNm∗•len sr≥2|}

value
is SeaRt: SeaRt → N → Bool
is SeaRt(sr)(n) ≡

∀ i:Nat • {i,i+1} ∈ inds sr ⇒
∃ l:L • l ∈ obs Ls(n) ∧ {sr(i),sr(i+1)}=obs CTPNms(l)

A.6.2 Sea Routes of a Net

A sea lane net gives rise to a set of sea routes: namely all those sequences of two or more CTP
names, such that pairwise adjacent CTP names of the route correspond to a sea lane of the net.

value
sea routes: N → SeaRt-set
sea routes(n) as srs

post ∀ sr:SeaRt • is SeaRt(sr)(n) ≡ sr ∈ srs

A.6.3 Connected CTPs

A pair of CTPs are connected if there is a sea route from one to the other.

value
is connected CTPp: CTPNm × CTPNm → B → Bool
is connected CTPp(hf,ht)(n) ≡

∃ sr:SeaRt • sr ∈ sea routes(n) ∧ hd sr=hf ∧ sr(len sr)=ht

A.7 Container Lines

51. A container line (CL) is an enterprise

(a) which operates (owns or [lease] rents) a number of container vessels (CV),

(b) where these vessels regularly, according to more-or-less fixed time tables (TT), serves
a number of container terminal ports (CTPs) along a (container line) route (CR),

(c) accepting export containers at these CTPs for carriage on their vessels and discharging
these containers at other CTPs along their route network,

(d) where such a network consists of all the (container line) routes.

(e) One or more line vessels may serve the same route, and then most likely at different
times.

type
CL, TT, CR, NW

value
obs CVs: CL → CV-set, obs TT: CL → TT,
obs NW: CL → NW, obs CRs: NW → CR-set
is connected:NW→Bool

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 65

52. The container line route network is usually a connected network, i.e., it is possible to reach
any CTP in the network from any other CTP in the same network via one or more container
line routes.

53. A container line route can be designated by a sequence of two or more container port visits.

54. A container port visit can be designated by a triple:

(a) an estimated time of arrival (Time),

(b) the name of the container terminal port (CTPNm), and

(c) an estimated time of departure (Time).

type
CR′ = CTP Visit∗

CR = {| cr:CR′
• is wf CR(cr′) |}

CTP Visit = Time × CTPNm × Time
value

is wf CR: CR′ → Bool
is wf CR(cr) ≡

len cr≥2 ∧
∀ i:inds cr • {i,i+1}⊆inds cr ⇒

let (,,dt) = cr(i), (ar′,,dt′) = cr(i+1) in
before(dt,ar′) ∧ before(ar′,dt′) end

before: Time × Time → Bool

ports visited: CR → CTPNm-set
ports visited(cr) ≡ {n|n:CTPNm•∃ (,n′,):CTP Visit•(,n′,) ∈ elems cr∧n=n′}

value
is connected: NW → Bool
is connected(nw) ≡

let crs = obs CRs(nw) in
∀ cr:CR • cr ∈ crs •

∀ n:CTPNm • n ∈ ports visited(cr) ⇒
∃ cr′:CR • n ∈ ports visited(cr′) end

55. The container line business consists of one or more container lines.

(a) Each container line has a unique container line name.

(b) Container vessels across all container lines have unique container vessel names.

(c) The container line networks are connected.

type
CLB, CLNm

value
obs CLs: CLB → CL-set, obs CLNm: CL → CLNm
is connected NWs: CLB → Bool
is connected NWs(clb) ≡

let cls = obs CLs(clb) in
∀ cl:CL • cl ∈ cls •

let ps = line ports(cl) on
∀ p:CTPn•p ∈ ps ⇒ ∃ cl′:CL•cl′ ∈ cls∧cl6=cl′⇒p′ ∈ line ports(cl′)

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 66

end end

line ports: CL → CTPNm-set
line ports(cl) ≡

let nw = obs NW(cl) in let crs = obs CRs(nw) in
∪{ports visited(cr)|cr:CR•cr ∈ crs} end end

A.8 Bill of Ladings

To explain the container line operations of the acceptance and discharge of a container that is, of
receiving from and delivering to a shipper a container (being shipped), we need to first introduce
the concepts of carrier, shipper and bill of lading (BoL).

56. A carrier is here taken to be the same as a container line.

57. A shipper is ([11]) the merchant (person) by whom, in whose name or on whose behalf a
contract of carriage of goods has been concluded with a carrier or any party by whom, in
whose name or on whose behalf the goods are actually delivered to the carrier in relation to
the contract of carriage.

type
Shipper, ShNm

value
obs ShNm: Shipper → ShNm
ship: ShNm × C × CLNm × BoL Info → BoL

58. A bill of lading (BoL) is document which evidences a contract of carriage by sea [11].

The document has the following functions:

(a) A receipt for goods, signed by a duly authorised person on behalf of the carriers, i.e.,
the container line.

(b) A document of title to the goods described therein.

(c) Evidence of the terms and conditions of carriage agreed upon between the two parties:
shipper and carrier.

59. At the moment 3 different kinds of bill of ladings are used [11]:

(d) A document for either Combined Transport or Port to Port shipments depending
whether the relevant spaces for place of receipt and/or place of delivery are indicated
on the face of the document.

(e) A classic marine Bill of Lading in which the carrier is also responsible for the part of
the transport actually performed by himself.

(f) Sea Waybill: A non-negotiable document, which can only be made out to a named
consignee. No surrender of the document by the consignee is required.

We shall, for illustration, model the classic marine Bill of Lading, Item 59e.

More to come — before July 2007

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 67

A.9 Logistics

More to come — before July 2007

A.10 Customer Interface to the Container Line Industry

More to come — before July 2007

A.11 Etcetera !

More to come — before July 2007

A.12 Open Issues of Requirements

We have modelled many parts of the container line industry. But professionals of that industry
will fail to read anything about most of things that are their daily concern. We are referring to
such obvious container line industry concerns as optimisation of stowage, optimisation od crane
split, optimisation of vehicle allocation to container jobs, the combined optimisation of stowage,
crane split, and vehicle allocation to container jobs, etc. Our obvious answer to this is, of course:
All those concerns, and many more belong to requirements to business processes as well as to
support software. As such it follows, according to our principles that we express each and every
one of these concerns after the domain engineering phase and as part of the business process
re-engineering and the software requirements development phase.

More to come — before July 2007

A.13 Domain Acquisition

Acquisition of information for the current domain modelling took place over the years. Apart
from general observations of containers, container vessels and container terminals ports — it is
hard to avoid observing these phenomena when living in or moving in and out, for many years, of
such ports (Hong Kong, Singapore) — special insight was most kindly provided by Maersk Line’s
Stowage Manager at Singapore and through visits to the huge container terminal port: PTP, Port
of Tanjung Pelepas, in Malaysia, but quite close to Singapore. Around 2004 I studied:

P&O Nedlloyd: A–Z Shipping Terms. Electronically, on the Web: http://www.ponl.com/-
topic/home page/language en/about us/useful information/az of shipping terms,
2004.

It seems that that URL has been replaced by the equally substantial [11]. We encourage the reader
to study [11].

General introductions, seen from the point of view of the training of port workers are provided
by the ILO’s (International Labour Organisation’s) Portworker Development Programme, see [12].
In a number of course units (The ILO PDP Units) guidance is given for the training of port workers
worldwide. For a list of these see [13].

The general issues of stowage are briefly covered in [14, 10, 9, 15], in [16, 17] and in [18].
The papers focuses on the requirements (not a domain) issue of optimal stowage. The reader is
encouraged to read the abstracts of these papers. See Sect. 9. The literature review, Sect. 2 of

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 68

[18], provides what appears to be quite a nice survey of several stowage-related papers including
the above referenced.

More general container port issues are covered in [19, 20]. [20] presents a particularly thorough
analysis of well-nigh all aspects of container terminal operations; it also provides a very thorough
literature review (212 cited papers !). The reader is encouraged to read these papers. See Sect. 9.

We refer the reader to [21] for information about the ship dynamics terms: center of gravity,
meta-centric height, list, rime, draft, drag, etc., and their calculations.

B An RSL Syntax & Abstraction Primer

We bring an ultra–short “recap” of RSL: its syntax and some of the abstraction ideas.
The recap is, alas, just an overview of the syntax of main aspects of RSL and an overview of

some abstraction, i.e., model choices made possible by, for example, RSL.
For proper explanation of the meaning (i.e., semantics), and, of course, the proper use (i.e.,

pragmatics) of this syntax, we refer to [3, 4, 1].

B.1 RSL Types

B.1.1 Type Expressions

Let A, B, and C be any type names or type expressions, then:
(save the [i] line numbers) exemply generic type expressions:

1. The Boolean type of truth values false and true.

2. The integer type on integers ..., -2, -1, 0, 1, 2, ...

3. The natural number type of positive integer values o, 1, 2, ...

4. The real number type of real values, i.e., valuse whose numerals can be written as an integer,
followed by a priod (“.”), followed by a natural number (the fraction).

5. The character type of character values ”a”, ”b”, ...

6. The text type of character string values ”aa”, ”aaa”, ..., ”abc”, ...

7. The set type of finite set values, see below.

8. The set type of infinite set values.

9. The Cartesian type of Cartesian values, see below.

10. The list type of finite list values, see below.

11. The list type of infinite list values.

12. The map type of finite map values, see below.

13. The function type of total function values, see below.

14. The function type of partial function values.

15. In (A) A is constrained to be

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind
9,

• or not to be the name of a built–in type (cf., 1–6) or of a type, in which case the
parentheses serve as simple delimiters, eg.: (A →m B), or (A∗)-set, or (A-set)list, or
(A|B) →m (C|D|(E →m F)), etc.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 69

16. The (postulated disjoint) union of types A, B, . . . , and C.

17. The record type of mk id–named record values mk id(av,...,bv), where av, . . . , and bv, are
values of respective types. The distinct identifiers sel a, etc., designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, . . . , and bv, are values of
respective types. The distinct identifiers sel a, etc., designate selector functions.

B.1.2 Type Definitions

Subtypes: The set of elements b of type B which satisfy the predicate P is a sub–type (of type
B):

Sorts or Abstract Types: Sorts (i.e., abstract types) A, B, ..., C are introduced when speci-
fying:

Concrete Types: Concrete types are introduced when specifying:

BNF Rule Right–hand Sides for Concrete Type Definitions: where a form of [2–3] is
provided by the combination:

B.2 The RSL Predicate Calculus

B.2.1 The RSL Proposional Expressions

Let identifiers (or propositional espressions) a, b, ..., c designate Boolean values. Then: are
propositional expressions, all having a Boolean value. ∼, ∧, ∨, ⇒, and = are Boolean connectives
(i.e., operators) and “read” as not, and, or, if-then (or implies), equal and not-equal.

B.2.2 The RSL Predicate Expressions

Simple RSL Predicate Expressions Let identifiers (or propositional espressions) a, b, ..., c
designate Boolean values, and let x, y, ..., z (or term expressions) designate other than Boolean
values, and let i, j, ..., k designate number values, then: are simple predicate expressions.

Quantified RSL Expressions Let X, Y, ..., C be type names or type expressions, and let P(x),
Q(y) and R(z) designate predicate expressions in which z, y, and z are free. Then: are quantified
expressions, are also predicate expressions, and are “read” as: For all x (values in type X) the
predicate P(x) holds; there exists (at least) one y (value in type Y) such that the predicate Q(y)
holds; and: there exists a unique z (value in type Z) such that the predicate R(z) holds.

B.3 RSL Sets, Cartesians, Lists, and Maps

B.3.1 RSL Set, Cartesian, List, and Map Enumerations

Sets: Let the below as denote values of type A, then the below designate simple set enumerations:
The expression, last line below, to the right of the ≡, expresses set comprehension.

comprehensionset@{ ◦ | ◦ : ◦ • ◦ }!set comprehension

Cartesians:

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 70

Lists: Simple enumerations:
The last line above assumes ei and ej to be integer valued expressions. It then expresses the set
of intergers from the value of ei to and including the value of ej . If the latter is smaller than the
former then the list is empty.

The last line below expresses list comprehension. comprehensionlist@〈 ◦ | ◦ in ◦ • ◦ 〉!list
comprehension

Maps: Simple map enumerations:
The last line below expresses map comprehension:

comprehensionmap@[◦ 7→ ◦ | ◦ : ◦ • ◦]!map comprehension

B.3.2 RSL Set Operations

• ∈: The membership operator (is an element member of a set, true or false?); ∈!set mem-
bership

• 6∈: The non-membership operator (is an element not a member of a set, true or false?);

• ∪: The infix union operator (when applied to two sets expresses the set whose members are
in either or both of the two operand sets); ∪!set union

• ∪: The distributed prefix union operator (when applied to a set of sets expresses the set
whose members are in some of the sets of the operand set);

• ∩: The infix intersection operator (expresses the set whose members are in both of the two
operand sets); ∩!set intersection

• ∩: The distributed prefix intersection operator (when applied to a set of sets expresses the
set whose members are in all of the sets of the operand set);

• \: The set complement (or set subtraction) operator (expresses the set whose members are
those of the first operand set which are not in the second operand set); /!set difference\!set
complement

• ⊂: The proper subset operator (are the members of the first operand set all members of the
second operand set, and are there members of the second operand set which are not in the
first operands set, true or false?); ⊂!proper subset

• ⊆: The subset operator (as for proper subset, but allows equality of the two operand set to
be true); ⊆!subset

• =(6=): The equal operator (are the two operand sets the same (different), true or false?);
and =!set equality 6=!set in–equality

• card: The cardinality operator (“counts” the number of elements card!set cardinalityin the
presumed finite operand set).

B.3.3 RSL Cartesian Operations

B.3.4 RSL List Operations

• hd: Head: Yield the head (i.e., first) element of non–empty lists. head@hd!list head

• tl: Tail: tail@tl!list tailYield the list of list elements other than the head of the argument
list (also only of non–empty lists) .

• len: Length: len@len!list lengththe length of a finite list.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 71

• inds: Indices, or index set: inds@inds!list indicesYield the index set, from 1 to the length
of the list (which may be empty in which case the index set is also empty, or may be infinite,
in which case the result is chaos).

• elems: Elements: elems@elems!list elementsYield the possibly infinite set of all distinct
elements of the list.

• ℓ(i): Indexing with a natural number, i, larger than 0 into a list ℓ larger than or equal to i
yields its i’th element.

• ̂: ̂!list concatenationConcatenate two operand lists into one list, first the elements of the
first, finite length operand list, and then the elements of the second, possibly infinite length
operand list, and in their respective order.

• = and 6=: equal@=!list equalitynotequal@ 6=!list inequalityCompare two operand lists for
equality, element–by–element, respectively for the occurrence of at least one deviation!

B.3.5 RSL Map Operations

• •(•): Application: map@◦(◦)!map applicationexpresses that functions and maps can be
applied to arguments.

• dom: Domain/Definition Set: domain@dom!map definition set (domain)denote “taking”
the definition set values of a map (the a values for which the map is defined).

• rng: Range/Image: range@rng!map rangedenote “taking” the range of a map (the corre-
sponding b values for which the map is defined).

• †: Override/Extend: override@†!map overridewhen applied to two operands denote the map
which is like an override of the first operand map by all or some “pairings” of the second
operand map,

• ∪: Merege: union@∪!map unionwhen applied to two operands denote the map which is the
merge of two such maps,

• \: Restriction: restriction@\!map restrictionthe map which is a restriction of the first
operand map to the elements that are not in the second operand set

• /: Restriction: restriction@/!map restrictionthe map which is a restriction of the first
operand map to the elements of the second operand set.

• =, 6=: Equal, Not–Equal: equal@=!map equalityequal@6=!map inequalitywhen applied to
two maps, compares these for equality, respectively inequality.

• ◦: Composition: composition@◦!map compositionThe map from definition set elements of
the first, left–operand map, m1, to the range elements of the second, right–operand map,
m2, such that if a, in the definition set of m1 and maps into b, and if b is in the definition
set of m2 and maps into c, then a, in the composition, maps into c.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 72

B.4 RSL λ–Calculus and Functions

B.4.1 The λ–Calculus Syntax

B.4.2 Free and Bound Variables

B.4.3 Substitution

B.4.4 α–Renaming and β–Reduction

B.4.5 The RSL λ–Notation

B.4.6 Function Signatures in RSL

B.4.7 Function Definitions in RSL

B.5 Applicative Constructs of RSL

B.5.1 The RSL let Constructs

General: Simple (i.e., non–recursive) let:
is an “expanded” form of:
Recursive let:

Predicative lets: expresses the selection of an a value of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

Patterns and Wild Cards: Some indicative examples:

B.5.2 The Applicative RSL Conditionals

B.5.3 Common Operator/Operand RSL Constructs

B.6 Imperative Constructs of RSL

B.6.1 Variables, Assignments and the Unit Value

B.6.2 Statement Sequence and skip

B.6.3 The Imperative RSL Conditionals

B.6.4 The Iterative RSL Conditionals

B.6.5 The Iterative RSL Sequencing

B.6.6 RSL Variable Expressions

B.7 RSL-CSP: Parallel Constructs of RSL

B.7.1 Process Channels

Let A, B and KIdx stand for a type of (channel) messages, respectively a (sort–like) index set over
channels, then: declare a channel, c, and a set of channels, k[i], which can communicate values
of the designated types.

B.7.2 Composition of Processes

Let P and Q stand for names of process functions, i.e., of functions which express willingness to
engage in input and/or output events, i.e., in communication over channels.

Let P() and Q(i) stand for process expressions, then:
express the parallel of two processes, respectively the non–deterministic choice between two pro-
cesses: Either external or internal.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 73

B.7.3 Process Input/Output

Let c, k[i] and e designate a channel, a channel and a type A, resp., type B valued expression.
Then:
expresses the willing of a process to engage in an event that reads an input, respectively that
writes an output.

B.7.4 Process Signatures and Definitions

The below signatures are just examples. They emphasise that process functions must somehow
express, in their signatyure via which channels they wish to engage in input and output events.
The process function definitions (i.e., their bodies) express possible events.

B.8 Simple RSL Specifications

Not using schemes, classes and objects — See Chap. ?? — an RSL specification is some sequence
one or more below type, zero, one or more variable, zero, one or more channel, one or more
value, and zero, one or more axiom clauses.

C RSL-CSP: More on the Parallel Constructs of RSL

C.1 Processes and Their Parallel Composition

The synchronisation of sender/receiver processes (s, r) and the communication between them is
modelled by what is called process input/output clauses.

The idea of these channels is that they serve as “carriers” of information, control or physical
entities between processes. We illustrate this conceptually:

type
M, SΣ, RΣ, Sx, Rx

channel
ch:M

value
σ s:SΣ, σ r:RΣ, xs:Sx, xr:Rx
update sσ: M → SΣ → SΣ, update rσ: M → RΣ → RΣ

s: Sx → SΣ out ch → Unit
s(sx)(sσ) ≡ (... ch!m ... s(sx)(update sσ(m)(sσ)))

r: Rx → RΣ in ch → Unit
r(rx)(rσ) ≡ (... let m=ch? in ... r(rx)(update rσ(m)(rσ)) end)

system: Unit → Unit
system() ≡ s(xs)(σ s)‖r(xr)(σ r)

Annotations: The above formalisation is of generic nature. It is not specific to the
container line industry example. The generic formulas are intended to illustrate the
issue of non-terminating behaviours and how they can be modelled as non-terminating
CSP-like processes.

• M, SΣ, RΣ, Sx, and Rx designate messages, sender behaviour states, receiver
behaviour states, sender behaviour names and receiver behaviour names.

• ch:M indicates that there is a channel intended, as we shall soon see, to synchronise
sender and receive processes and communicate entities between them.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 74

• σ s:SΣ, σ r:RΣ, xs:Sx, and xr:Rx designate arbitrarily chosen sender and receiver
states (σ), and sender and receiver behaviour names.

• update sσ: M → SΣ → SΣ, update rσ: M → RΣ → RΣ expresses the signature of
generalised sender and receiver state update functions.

• Sx → SΣ out ch → Unit expresses34 the signature of the indexed sender process,
s: every iteration of the process “starts” in a state sσ:SΣ, proceeds to output
synchronise over channel ch with whoever is willing to input synchronise over
that channel, and then proceeds to recurse from an “end” state which captures
the message m having been communicated over channel ch.

• Behaviour r (of signature Rx → RΣ in ch → Unit 35) is a process which can
synchronise and communicate with behaviour s.

• The system behaviour 36 is the parallel composition of the sender and receiver
behaviours.

C.2

34

RSL.33: The output clause ch!m of process (definition) s expresses that process s is willing to engage (synchronise)
with an input process on channel ch and, when such occurs, process s offers the value m to the willing input process.

35

RSL.34: The input clause let m=ch? in ... of process (definition) r expresses that process r is willing to engage
with an output process on channel ch and, when such occurs, process r accepts a (i.e., the output) value and
names it m.

36

RSL.35: The process clause p1‖p2 expresses that processes p1 and p2 are to proceed in parallel, i.e., concurrently
— possibly, as indicated above, “now-and-then” synchronising and communicating values.

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 75

Contents

1 Introduction 1

2 On the Example: The Container Line Industry 2

2.1 Overview of The Container Line Industry . 2
2.2 Some Observations and Remarks . 2

3 Encircling Some Domain Engineering Issues 3

3.1 The Triptych Dogma . 3
3.1.1 The Dogma . 3
3.1.2 The Consequences . 3
3.1.3 The Triptych Verification . 3
3.1.4 Full Scale Development: A First Suggested ℜesearch Topic . 3

3.2 Preliminary Discussion of Domain Engineering . 4
3.2.1 Archetypal Examples . 4
3.2.2 Some Remarks . 5
3.2.3 Domains: Suggested ℜesearch Topics . 5
3.2.4 How Is It in Other Branches of Engineering ? . 6

Classical Engineers Practice Their Domains !. 6
Do Software Engineers Practice Their Application Domains ?. 6

3.3 Stages of The Domain Engineering Phase . 6
3.3.1 Domain Development Stages: Suggested ℜesearch Topic: . 6
3.3.2 Stakeholders . 6

The Pragmatics:. 6
Domain Stakeholders: Suggested ℜesearch Topic:. 7

3.3.3 Rough Sketching . 7
3.3.4 Domain Acquisition . 7

The Reality:. 7
Domain Acquisition: Suggested ℜesearch Topic:. 7

3.3.5 Domain Analysis . 7
Why Domain Analysis ?. 7
How (to Perform) Domain Analysis ?. 7
Domain Analysis: Suggested ℜesearch Topic:. 8

3.3.6 Domain Modelling . 8
3.3.7 Domain Verification . 8

Why Verification ? . 8
How Verification ? . 8

3.3.8 Domain Validation . 8
Why Validation ? . 8
How Validate ? . 8
Domain Validation: Suggested ℜesearch Topic. 8

3.3.9 Domain Theories . 9
Example Theorem of Railway Domain Theory. 9
Why Domain Theories ? . 9
Domain Theories: Suggested ℜesearch Topics:. 9

4 Domain Modelling 9

4.1 Business Processes . 9
4.1.1 Two Examples: Some Container Shipping Business Processes . 10

An Example: A Harbour Visit. 10
An Example: Container Shipping. 10

4.2 The Facets . 10
4.3 Intrinsics . 10

4.3.1 Introduction . 10
4.3.2 Intrinsics Example: Railway Units . 10
4.3.3 Intrinsics Example: Container Shipping . 11

Customer Intrinsics. 11
Container Line Intrinsics. 11
Container Terminal Port Intrinsics. 12

4.3.4 Compositionality of ‘Intrinsics’ Models . 12
4.3.5 Intrinsics: Suggested ℜesearch Topic . 12

4.4 Support Technology . 12
4.4.1 Example Rail Switch Technology . 12
4.4.2 Sampling Behaviour of Support Technologies . 12
4.4.3 Probabilistic cum Statistical Behaviour of Support Technologies 13

An Example Probabilistic Rail Switch. 13
Example Container Shipping Support Technologies. 13

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 76

4.4.4 Support Technology Quality Control, a Sketch . 14
4.4.5 Support Technologies: Suggested ℜesearch Topics . 14

4.5 Management & Organisation . 14
4.5.1 Examples: Container &c. Management & Organisation . 15
4.5.2 An Abstraction of Management Functions . 15
4.5.3 Process Model of Manager-Staff Relations . 16
4.5.4 Management and Organisation: Suggested ℜesearch Topics . 17

4.6 Rules & Regulations . 17
4.6.1 Example Container Stowage Rules and Regulations . 17
4.6.2 Example Railway Rules and Regulations . 17
4.6.3 Definition of What Are Rules & Regulations . 17
4.6.4 Abstraction of Rules and Regulations . 18
4.6.5 Quality Control of Rules and Regulations . 18
4.6.6 Rules and Regulations Suggested ℜesearch Topic: . 18

4.7 Scripts . 18
4.7.1 An Example Script Language . 18

A Casually Described Bank Script. 18
The State of a High Street Bank. 19
Wellformedness of the Bank State. 19
Syntax of Client Transactions. 20
Semantics of Loan Payment Transaction. 20
Derived Bank Script: Loan Payment Transaction. 20

4.7.2 More on Script Development . 21
4.7.3 Script Methodology: Suggested ℜesearch Topics . 21

4.8 Human Behaviour . 21
4.8.1 An Example: Ideal versus Human Behaviour . 21
4.8.2 Abstraction of Human Behaviour . 22
4.8.3 Human Behaviour Suggested ℜesearch Topics: . 22

4.9 Domain Modelling: Suggested ℜesearch Topic . 23

5 From Domains to Requirements 23

5.1 What Is Required ? — The Machine ! . 23
5.2 Three Kinds of Requirements . 23
5.3 Domain Requirements . 23

5.3.1 Example Projections: Container Line Industry . 24
5.3.2 Example Instantiations: Container Line Industry . 24
5.3.3 Example Determinations: Container Line Industry . 24
5.3.4 Example Extensions: Container Line Industry . 24
5.3.5 Example Fittings: Container Line Industry . 24

5.4 Interface Requirements . 24
5.4.1 Example: Shared Container Line Industry Entities . 24
5.4.2 Example: Shared Container Line Industry Functions . 25
5.4.3 Example: Shared Container Line Industry Events . 25
5.4.4 Example: Shared Container Line Industry Behaviours . 25

6 Requirements-Specific Domain Software Development Models 25

6.1 Software “Intensities” . 25
6.2 “Abstract” Developments . 25
6.3 Requirements-Specific Devt. Models: Suggested ℜesearch Topics . 26

7 On Two Reasons for Domain Modelling 26

7.1 An Engineering Reason for Domain Modelling . 26
7.2 A Science Reason for Domain Modelling . 26
7.3 Domains Versus Requirements-Specific Development Models . 27

8 Conclusion 27

8.1 What Has Been Achieved ? . 27
8.2 What Needs to Be Achieved ? . 27
8.3 Domain Theories: Grand Challenge ℜesearch Topics . 27
8.4 What Have We Not Covered ? . 27
8.5 Acknowledgemenents . 27

9 Bibliographical Notes 28

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 77

A An Example: A Container Line Industry 32

A.1 Overview of The Container Line Industry . 32
A.2 Containers . 32
A.3 Container Vessels . 33

A.3.1 Basics . 33
A.3.2 Container Bays, Rows, Tiers and Cells . 33
A.3.3 Vessels: Berths, Berth Positions, &c. 36
A.3.4 Vessel Arrivals, Berthing and Departures . 37

Vessel and CTP Interactions: Messages. 37
Vessel and CTP Interactions: Processes. 38

A.4 Container Vessel Stowage . 42
A.4.1 Physically Impossible Stowage . 42
A.4.2 Stowage Properties . 43

A.5 Container Terminal Ports . 43
A.5.1 Informal Rough Sketch cum Narrative Presentation . 43
A.5.2 Analysis of CTP and First Draft Formalisations . 46
A.5.3 Analysis of Draft Operation Descriptions . 53
A.5.4 A Resolution on Modelling CTPs and CTP Operations . 54
A.5.5 Sketches of Behaviour Formalisations . 55

Ship, Crane and Vehicle States. 56
CTP, Ship, Crane and Vehicle Process Signatures. 56
CTP, Ship, Crane and Vehicle Channels. 57
Channel Messages, I. 58
Ship, Crane and Vehicle Process Definitions: Interactions. 59
Channel Messages, II. 62
Crane, Vehicle and Stack Crane Process Definitions: Interactions. 62

A.5.6 Container Stack Stowage . 63
A.6 Net of Sea Lanes . 63

A.6.1 Sea Routes . 64
A.6.2 Sea Routes of a Net . 64
A.6.3 Connected CTPs . 64

A.7 Container Lines . 64
A.8 Bill of Ladings . 66
A.9 Logistics . 67
A.10 Customer Interface to the Container Line Industry . 67
A.11 Etcetera ! . 67
A.12 Open Issues of Requirements . 67
A.13 Domain Acquisition . 67

B An RSL Syntax & Abstraction Primer 68

B.1 RSL Types . 68
B.1.1 Type Expressions . 68
B.1.2 Type Definitions . 69

Subtypes: . 69
Sorts or Abstract Types: . 69
Concrete Types: . 69
BNF Rule Right–hand Sides for Concrete Type Definitions: . 69

B.2 The RSL Predicate Calculus . 69
B.2.1 The RSL Proposional Expressions . 69
B.2.2 The RSL Predicate Expressions . 69

Simple RSL Predicate Expressions . 69
Quantified RSL Expressions . 69

B.3 RSL Sets, Cartesians, Lists, and Maps . 69
B.3.1 RSL Set, Cartesian, List, and Map Enumerations . 69

Sets: . 69
Cartesians: . 69
Lists: . 70
Maps: . 70

B.3.2 RSL Set Operations . 70
B.3.3 RSL Cartesian Operations . 70
B.3.4 RSL List Operations . 70
B.3.5 RSL Map Operations . 71

B.4 RSL λ–Calculus and Functions . 72
B.4.1 The λ–Calculus Syntax . 72
B.4.2 Free and Bound Variables . 72
B.4.3 Substitution . 72
B.4.4 α–Renaming and β–Reduction . 72
B.4.5 The RSL λ–Notation . 72

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

Dines Bjørner: Domain Engineering — Lipari, 2007 78

B.4.6 Function Signatures in RSL . 72
B.4.7 Function Definitions in RSL . 72

B.5 Applicative Constructs of RSL . 72
B.5.1 The RSL letConstructs . 72

General: . 72
Predicative lets: . 72
Patterns and Wild Cards: . 72

B.5.2 The Applicative RSL Conditionals . 72
B.5.3 Common Operator/Operand RSL Constructs . 72

B.6 Imperative Constructs of RSL . 72
B.6.1 Variables, Assignments and the UnitValue . 72
B.6.2 Statement Sequence and skip . 72
B.6.3 The Imperative RSL Conditionals . 72
B.6.4 The Iterative RSL Conditionals . 72
B.6.5 The Iterative RSL Sequencing . 72
B.6.6 RSL Variable Expressions . 72

B.7 RSL-CSP: Parallel Constructs of RSL . 72
B.7.1 Process Channels . 72
B.7.2 Composition of Processes . 72
B.7.3 Process Input/Output . 73
B.7.4 Process Signatures and Definitions . 73

B.8 Simple RSL Specifications . 73

C RSL-CSP: More on the Parallel Constructs of RSL 73

C.1 Processes and Their Parallel Composition . 73
C.2 . 74

June 1, 2007, 05:44, Domain Engineering c© Dines Bjørner 2007, Fredsvej 11, DK–2840 Holte, Denmark

