
Dines Bjørner

DOMAIN ENGINEERING
Technology Management, Research and Engineering

February 16, 2009

Author’s past affiliation

Dines Bjørner, Professor Emeritus
DTU Informatics

DK–2800 Kgs. Lyngby
Denmark

Home address

Dines Bjørner
Fredsvej 11

DK–2840 Holte
Denmark

Drs. Arimoto Yasuhito, Chen Xiaoyi and Xiang Jianwen were co-partners in the study
that led to Chap. 10.

Final edit: February 16, 2009, 16:58

Dedication

Joseph A. Goguen 1941–2006
Søren Prehn 1955–2006

Foreword

This book is a collection of works done by Professor Dines Bjørner during his
one year stay at JAIST’s Graduate School of Information Science. He stayed
at JAIST as an invited visiting professor of the 21st Century COE (Center of
Excellence) project Verifiable and Evolvable e-Society from January of 2006.

The JAIST COE project is an advanced and unique research project aiming
at applying computer science based approaches to analyses and designs of
such concepts as policies, laws, regulations and standards in our society. Our
current society is widely and heavily based on the world-wide network of
information systems, and it seems to be not only natural but also inevitable
to look into the fundamental structure of our society from the stand point of
computer/information science.

Professor Bjørner has long lasting and dominant research achievements in
software engineering. His recent research on formal descriptions of domains is
a most advanced and challenging topic in software engineering, and also the
most important foundation for Verifiable and Evolvable e-Society. Scientific
analysis and design of any kind of system in a domain should be based on
formal descriptions of basic facts and properties of the domain.

Formal description has been a main topic in formal methods, and has
formed an important area of formal specification languages. Formal descrip-
tion of domains is also a most important challenge in formal specification
languages and formal methods. During the one year stay of Professor Bjørner
at JAIST, several activities of developing formal descriptions of domains in
CafeOBJ formal specification language are started. These activities are based
on Professor Bjørner’s works contained in this volume. Domain descriptions
in CafeOBJ are executable and is better to be analysed and verified, and we
hope that these descriptions give new possibilities for domain engineering.

Kokichi FUTATSUGI
Professor

JAIST

Also by Dines Bjørner

Edited / Co-edited Books

• Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of LNCS. Springer–Verlag, 1978. This was the
first monograph on Meta-IV. DB contributions: .

• Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages
— see [71,90,95,101,120,132,176,184,214]. EATCS Monograph in Theoretical
Computer Science. Springer, Heidelberg, Germany, 2008.

• Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada,
volume 98 of LNCS. Springer–Verlag, 1980.

Authored / Co-authored Books

• Dines Bjørner and Cliff B. Jones. Formal Specification and Software Develop-
ment. Prentice-Hall, 1982.

• Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

• Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

• Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

• Dines Bjørner. Domain Engineering. JAIST Press, March 2009. This Research
Monograph is based on the following 2006 Technical Memoranda from JAIST
School of Information Science: [25,27–30,34,36–38,62]. This is a self-reference!

• Dines Bjørner. Software Engineering, Vol. I: The Triptych Approach, Vol. II:
A Model Development. To be submitted to Springer for evaluation in 2009,
Expected published 2010. Either this book ms. is submitted or that listed next
is submitted.

• Dines Bjørner. Domain Engineering. To be submitted to Springer for evaluation
in 2009, Expected published 2010. Either this book ms. is submitted or that
listed just above is submitted.

Preface

This monograph is basically about ‘Domain Engineering’, in the author’s opin-
ion, a significant phase of software engineering, a phase which precedes ‘Re-
quirements Engineering’. It is not a textbook. For textbooks we refer to [33,
Part IV, Chaps. 8–16] and the planned [44] or [43].

[1] On This Monograph

This monograph is based on a number of reports [25,27–30,34,36–38,62] that I
wrote during my one year sabbatical at JAIST’s School of Information Science
(IS) as the guest of Prof. Kokichi Futatsugi, February 7, 2006 to January 30,
2007. Electronic versions of all the memoranda have been available on the
Internet since their first writing http://www.jaist.ac.jp/˜bjorner/,

Several of these memoranda are in a rather rough state. I therefore wel-
comed the kind suggestion by Prof. Kokichi Futatsugi to assemble them all,
in a slightly more polished form in the present monograph.

The intention of the present monograph is therefore just that: to record
— more publicly — i.e., bear witness of the work of these memoranda, and
hence to one of the facets of the COE (Verifiable and Evolvable E-Society)
project at JAIST.

XII

[2] On Chapters and Appendices

[2.1] Technology Management

Chapters 1–2 [Part I]: On Domains and On Domain Engineering [28] and Pos-
sible Collaborative ‘Domain’ Projects [29] are intended for consumption by
an audience of software technology — from mid-level to high-level — man-
agers. [28, 29] were thus presented at meetings with such managers in Tokyo
during the Spring of 2006.

The aim of these memoranda and the presentations were to inform and
their objective were to engage selected Japanese software houses and JAIST
IS in joint R&D projects — á la those of the ESPRIT (European Strategic
Programme of Research in IT), ESPRIT BRA (Basic Research Auctions) and
the FP (Framework Programme) of the EU (European Union).1

Chapter 1 covers a lot of ground: sketches the new science and engineering
of software. Appendices A–E (originally part of [28]) provide experimental
evidence of domain engineering. Chapter 1 is a “bit longish” (Pages 3–38).

Chapter 2, in contrast, is relatively short (Pages 39–53) and less technical
than Chap. 1. Chap. 2 spells out the modalities (i.e., practicalities) of possible
joint industry/academia (JAIST) projects — such as seen from the academic
side.

[2.2] A Science & Engineering of Domain Models

Chapters 3–6 [Part II] covers issues of Domain Engineering that are not cov-
ered in [33, Part IV, Chaps. 8–16]. Thus they can be read as extending that
textbook bum monograph.

Chapter 3, The Rôle of Domain Engineering in Software Development [37]
was written for and presented as an invited talk at the October 2006 meeting
of the IPSJ (Information Processing Society of Japan) Software Engineering
Symposium 2006, Oct. 21, 2006, Tokyo. Chap. 3 gives a capsule, a summary,
view of Domain Engineering, a short view of Requirements Engineering — a
summary which emphasises how requirements prescriptions can be systemat-
ically “derived” from domain descriptions. This ‘derivation’ methodology is
new. It further supports the maturity of Domain Engineering.

Chapter 4, Verified Software for Ubiquitous Computing [34] was written for
and presented as an invited talk at the 29 October 2006 1AWCVS (First Asian
Working Conference on Verified Systems). The present Chap. 4 represents an
extended version of the talk as recorded on the 1AWCVS CD ROM.

Chapter 5, The Triptych Process Model [38], was written for and presented
as an invited talk at JASPIC 2006 (Japan Association for Software Process

1The current author has, since 1998 [16], encouraged Japan to pursue the ques-
tion of [Issues in Inter]National Cooperative Research — Why not [Far East] Asian,
African or Latin American ESPRITs ?

XIII

Improvement) meeting October 12-13, 2006 at Tsukuba. Chapter 5, for the
first time, represents software management principles, techniques and tools
for the Triptych approach put forward in [31–33].

Chapter 6, Domains and Problem Frames [27], was written for and presented
as an invited talk at IWAAPF (International Workshop on Advances and Ap-
plications of Problem Frames), a satellite event of ICSE 2006 (International
Conference on Software Engineering) Shanghai, May 2006. Chapter 6 investi-
gates possible relationships between Michael Jackson’s Problem Frame [147]
approach and that of the Triptych approach [31–33].

[2.3] Experimental Evidence

Chapters 7–10 [Part III] represent less polished material than Chaps. 7–10.
As the title of this part suggests they represent examples of the diversity of
applications to which Domain Engineering can be put.

Chapter 7, Documents — A Domain Analysis [25], is a torso. The chapter
suggests how a simple notion like ‘document’ can be subjected to precise
analysis — where the concept of ‘documents’ is viewed semantically (and
certainly not syntactically, as for the ODA (Open Document Architecture,
http://en.wikipedia.org/wiki/Open Document Architecture)).

Chapter 8, Public Government — A Domain Analysis [30] was first presented
at an E–Government conference, in Macau, organised by UNU–IST and the
Macau SAR Government in May 2006. It is still a torso. I consider it an impor-
tant example of how one may look at conventional public government to de-
rive inspiration to upcoming E–Government (http://www.egov.iist.unu.edu/).
The work of Chap. 8 was explained to Miss Chen Xiaoyi and it became the
basis for her PhD study.

Chapter 9: Towards a Model of IT Security — Security Rules & Regulations:
An Interpretation [36], arose as the result of a working group of colleagues from
JAIST IS and the IBM Tokyo Research Laboratory. This working group met a
number of times in the period from March 2006 to and including January 2007.
The current status of [36] as well as of Chap. 9 is still far from satisfactory.
But the ideas expressed: discussed and narrated, and also partly formalised,
are such, I strongly think, that the reader should find it worth a read.

Chapter 10, A Family of Script Languages [62], like Chapter 9 (i.e., like [36])
is also in a far from satisfactory state. Work on this topic started in February
2006 as the initial work of the JAIST COE Digital Rights: Consumers and
Producers in a Digital World project: http://www.ldl.jaist.ac.jp/drcp/. The
work three JAIST students: Mr. Arimoto Yasuhito (then an MSc student),
Miss Chen Xiaoyi (then a PhD student) and Mr. Xiang Jianwen (PhD, and
then a Postdoc student). We first studied a number of reports and published
papers [3,9,10,72,74–76,113,117,141,154,166,167,177,188,189,206,207,220].
We then selected [113] and [206, 207] and modelled these in RAISE and in
OTS/CafeOBJ. An example is Sect. H. We were all somewhat alarmed to find
that Gunter’s “formal–looking” model was fraught with errors. Imagine the

XIV

embarrassment that I had as a tutor of future researchers when having to
“gloss-over” the rather sloppy work of [113] (repeated inquiries with Prof.
Carl A. Gunter, IoIUC, have so far remained unanswered).

[2.4] Example Appendices

Appendices A, Business Processes (BP) and BP Reengineering (PBR), B, To-
wards a Domain Model of Transportation, C, Towards a Domain Model of Manu-
facturing, D, Towards a Model of CyberRail and E, Towards a Domain Model of
“The Market”, were part of [28] (On Domains and On Domain Engineering) but
were editorially moved to these Example Appendices. These appendices were
meant to “convince”, by example, readers of [28, 29] and now of Chaps. 1–2
that the idea of domain engineering is not just a “gleam in the eye” of Dines
Bjørner.

Appendix A illustrates some of the techniques that go into the domain
engineering modelling of business processes and the requirements engineering
of business process reengineering (BPR). The applications that are shown in
Appendix A are of “real”, very large systems

Appendix B is an example of a carefully worked–out model basic aspects
(i.e., the transport nets) of a general notion of transportation systems.

Appendix C is a sketch narrative and formalisation some work flow aspects
of machining and assembly manufacturing.

Appendix D is a sketch narrative and formalisation of Japanese technol-
ogy research done at RTRI, the Japan Railway Technical Research Institute,
notably by Dr. Takahiko Ogino of RTRI.

Appendix E, for which re-publication has been granted, attempts to model
a conventional notion of some aspect of the domain of the consumer to retailer
to wholesaler to producer market, all in preparation for work on E-market IT.

• • •
Since I left JAIST, at the end of January 2007, I have worked on further
domain models. I do so in order to “sharpen” the principles, techniques and
tools of the Domain Engineering method.

You can find these models through the Internet:

• A Container Line Industry: http://www2.imm.dtu.dk/˜db/container-
paper.pdf

• A Petroleum Industry: http://www2.imm.dtu.dk/˜db/de-p.pdf. This
document represents lecture notes and the petroleum industry example is
in Vol. II of that “book” [43].

• Transportation: http://www2.imm.dtu.dk/˜db/transport.ps
and http://www2.imm.dtu.dk/˜db/tseb.ps. The latter represents lecture
notes and the transportation example is in Vol. II of that “book” [44].

The resulting “sharpening” the principles, techniques and tools of the Domain
Engineering method has been published:

XV

• [39] Transportation Systems Development
• [35] Domain Theory: Practice and Theories, Discussion of Possible Re-

search Topics
• [42] Domain Engineering
• [40] Believable Software Management
• [41] From Domains to Requirements
• [48] Compositionality: Ontology and Mereology of Domains. Some Clari-

fying Observations in the Context of Software Engineering

[3] The Monograph: A Repository of Work in Progress

My work at JAIST was a bit too hectic for doing serious research. My as-
sistance was called for from many quarters. It was my assessment that if my
Japanese colleagues asked for this-and-that, then had had, I thought, consid-
ered their request rather seriously, discussed it with colleagues, etc. Therefore
it was difficult, if not impossible, to say no. I had hoped to work, in more
depth, on a few research issues. These became several research issues, too
many for serious consideration. In addition came many similarly requested
“speaking engagements”. For most of these I wrote a special paper. I do not
regret, at all, these debilitating “excursions”. All this to say that there is
“stuff”, in this Monograph, for many a research study.

[4] On Reading The Formalisations

This monograph contains a great number of formalisations. Each is accompa-
nied by mostly highly “stylised” narratives: That is, enumerated and tersely
formulated English descriptions with the formalisation line numbers referring
to lines of the narrative. The formalisations are, in this monograph, expressed
in the RAISE Specification Language RSL. Most of the formalisations could,
inter alia, have been rather similarly expressed in either of a number of other
model-oriented formal specification languages:

• Alloy [146],
• Event B [1, 71],

• VDM [55, 56, 95, 96],
• Z [132, 133,229,230,242]

combined, in several cases, with

• CSP [137, 138,218,222].

The monograph, after almost 30 years of frequent such formalisations —
widely published — assumes that the reader is reasonably professionally ed-
ucated, say in one of the above-mentioned model-oriented formal specifica-
tion languages as well as in CSP. Appendix!I does, however, provide a terse
overview of RSL. We can otherwise refer to the following three set of sections
for easy-to-grasp and short, “guided-tour-introductions” to RSL:

XVI

• Sects. 3.2.1–3.2.2 (Pages 58–60)
• Sect. 4.3.2 (Pages 86–90) and
• Sect. 6.2 (Pages 140–167).

Have fun!

[5] The Photos

I am grateful to the JAIST Press for their kind willingness to print, in colour,
77 photos that I took while at JAIST:

• Page V: A Kanazawa Temple
• Page VII: Fushimi Inari Shrine, Kyoto
• Page XI: Kanazawa telephone poles
• Page XVII: Train stations and flowers
• Page 1: Kanazawa houses
• Page 55: Kanazawa sushi places

• Page 177: Kanazawa &c. plans
• Page 329: Street art
• Page 443: Kanazawa fish market
• Page 471: Sakura + author in 2006
• Page 474: Kanazawa fireworks
• Page 493: Takayama lofts

[6] Summing Up

We emphasize that this monograph represents a snapshot of one year of work
at JAIST.

No attempt has been made to bring the chapters in line with one another.
Similarly for the example appendices

For textbooks on Domain Engineering we refer to [31–33] and to the forth-
coming [44].

[7] Acknowledgements

I thank DTU Informatics, The Technical University of Denmark, my former
work place, through Prof. Kaj Madsen, for allowing me a year’s sabbatical at
JAIST.

I thank prof. Kokichi Futatsugi (http://www.jaist.ac.jp/˜kokichi/) for
inviting me to be a visiting research professor at JAIST School of Informa-
tion Science’s Language Design Laboratory (http://www.ldl.jaist.ac.jp/index-
e.html) in the period February 7, 2006 to January 30, 2007; for providing com-
fortable conditions for work and for suggesting this monograph. I have known
Kokichi since the summer of 1984 when we first met at SRI Intl., Menlo
Park where he was working with the late Joseph A. Goguen on what became
known as OBJ–3. So to celebrate 25 years of fond memories we present this
monograph!

This acknowledgement also extends to Prof. Takuya Katayama, now Pres-
ident of JAIST (http://www.jaist.ac.jp/english/president/index.html). I first

met Katayama-san at Tokyo Institute of Technology more than 25 years ago!
Always a pleasant acquaintance.

To Dr. Kazuhiro Ogata I also extend warmest acknowledgements: You
helped make our stay in Kanazawa most pleasant, you helped me with our
students, introducing them, ever so gently, to OTS/CafeOBJ and you were
otherwise a most pleasant colleague in achieving this monograph.

I also acknowledge the pleasure of having worked with three very pleasant
JAIST students: Mr. Arimoto Yasuhito (MSc student, soon to get a PhD),
Miss Chen Xiaoyi (PhD student, now PhD) and Mr. Xiang Jianwen (PhD,
Postdoc student) on the JAIST COE Digital Rights: Consumers and Pro-
ducers in a Digital World project: http://www.ldl.jaist.ac.jp/drcp/. Our joint
work is reflected in Chap. 10,

Finally I acknowledge, with pleasure, the inspiration received daily, for 11
months in 2006, from Dr. René Vestergaard (http://www.jaist.ac.jp/˜vester/).

Fredsvej 11, DK–2840 Holte, Denmark, February 16, 2009

Contents

Dedication . VII

Foreword Kokichi Futatsugi IX

Preface . XI
[1] On This Monograph . XI
[2] On Chapters and Appendices . XII

[2.1] Technology Management . XII
[2.2] A Science & Engineering of Domain Models XII
[2.3] Experimental Evidence . XIII
[2.4] Example Appendices . XIV

[3] The Monograph: A Repository of Work in Progress XV
[4] On Reading The Formalisations . XV
[5] The Photos . XVI
[6] Summing Up . XVI
[7] Acknowledgements . XVI

Part I Technology Management

1 On Domains and On Domain Engineering 3
Prerequisites for Trustworthy Software
A Necessity for Believable Management
Preface . 4
1.1 FAQ: Domains and Domain Models . 4

1.1.1 Some Definitions . 5
1.1.2 What Is a Domain Description? 6
1.1.3 The Triptych Dogma . 8
1.1.4 Proper Software Development . 9
1.1.5 Business Process Engineering and Reengineering 10
1.1.6 Precise Narratives and Formal Specifications 11

XX Contents

1.2 FAQ: Domain Engineering . 11
1.2.1 With Whom to do Domain Models? 11
1.2.2 What Rôle “Business Process Engineering”? 12
1.2.3 Which Are the Facets of a Domain Model? 12
1.2.4 How to Acquire Domain Knowledge? 15
1.2.5 How to Validate a Domain Model? 16
1.2.6 How to Verify a Domain Model? 16

1.3 FAQ: Requirements from Domain Models? 17
1.3.1 With Whom to do Requirements Models? 17
1.3.2 What Role “Business Process Re-engineering”? 17
1.3.3 Which Are the Facets of a Requirements Model? 17
1.3.4 How to Acquire Requirements? 21
1.3.5 How to Validate a Requirements Model? 22
1.3.6 How to Verify a Requirements Model? 22
1.3.7 What About Satisfiability and Feasibility? 22

1.4 Conclusion . 23
1.4.1 Myths and Commandments of Formal Methods 23
1.4.2 FAQs: Frequently Asked Questions 28
1.4.3 Research and Tool Development 31
1.4.4 Application Areas . 34
1.4.5 Closing Remarks . 36

2 Possible Collaborative Domain Projects 39
A Management Brief
2.1 Background . 40
2.2 Prior Evidence . 40

2.2.1 Ministry of Finance, Vietnam. 40
2.2.2 Railway Computing Systems, China 43
2.2.3 Radio Communications, The Philippines 43

2.3 Possible Project Topics . 44
2.3.1 Administrative Forms Processing 45
2.3.2 Air Traffic . 45
2.3.3 Airports . 46
2.3.4 Financial Service Industry . 47
2.3.5 Health Care . 48
2.3.6 Manufacturing . 49
2.3.7 “The Market” . 49
2.3.8 Transportation . 50

2.4 Project Modalities . 53

Part II A Science & Engineering of Domain Models

Contents XXI

3 The Rôle of Domain Engineering in Software Development 57
3.1 Introduction . 57

3.1.1 Triptych Dogma . 57
3.1.2 Triptych of Software Development 57

3.2 An Example: Railway Nets . 58
3.2.1 Narrative . 58
3.2.2 Formalisation . 59
3.2.3 References . 60

3.3 Domains . 60
3.3.1 Examples of Domains . 60
3.3.2 Domain Description . 61
3.3.3 Domain Engineering . 62
3.3.4 Professionalism of SE . 64

3.4 “Deriving” Requirements . 64
3.4.1 “The Machine” . 64
3.4.2 Three Kinds of Requirements . 64
3.4.3 Further SE Professionalism . 65

3.5 Software Design . 66
3.6 Rôle of Domain Descriptions . 66

3.6.1 A Science Motivation . 66
3.6.2 A Engineering Motivation . 66
3.6.3 Conventional SE Paradigms . 67

3.7 Conclusion . 72
3.7.1 What Have We Achieved? . 72
3.7.2 What More Need be Achieved? 72

4 Verified Software for Ubiquitous Computing 73
A VSTTE/Ubiquitous Computing Project Proposal
4.1 The Backgrounds . 73

4.1.1 “A Gleam in the Eye” . 73
4.1.2 Grand Challenges of Informatics 74
4.1.3 VSTTE: Verified Software: Theories, Tools and

Experiments . 76
4.1.4 Ubiquitous Computing: The Automated Highway . . . 77
4.1.5 Domain Engineering . 83

4.2 The Triptych Dogma . 85
4.2.1 The Dogma . 85
4.2.2 Verification . 85
4.2.3 Decomposition of Project Effort 85

4.3 The Project Proposal . 86
4.3.1 Summary . 86
4.3.2 Domain Theories . 86
4.3.3 Requirements . 90
4.3.4 Software . 92
4.3.5 Overview of Project Components 92

XXII Contents

4.4 Challenges . 93
4.4.1 Commensurate Specifications . 93
4.4.2 Integrated Specifications . 93
4.4.3 Domain Theories . 94
4.4.4 Analysis Scripts: Proof Scores and Tactics 95
4.4.5 Ubiquity . 95
4.4.6 Compositionality . 96
4.4.7 Formalisation of Machine Requirements 96
4.4.8 Requirements to Domain Relations 96
4.4.9 Software Design to Requirements Relations 97
4.4.10 Annotation to Requirements and Domain Relations . 97

4.5 Some Observations . 97
4.5.1 Michael Jackson’s 22 March, 2006 Observations 98
4.5.2 Tony Hoare’s July 31, 2006 Observations 98
4.5.3 Robin Milner’s July 31, 2006 Observations 101

4.6 Project Management . 103
4.6.1 Self-funding . 103
4.6.2 A Patchwork of Overlapping, Individualistic

Contributions . 103
4.6.3 Project Plan . 104
4.6.4 Resource Requirements . 104
4.6.5 “Milestones” . 104
4.6.6 Project Board and Management 105

4.7 Conclusion . 105
4.8 Acknowledgements . 105

5 The Triptych Process Model . 107
Process Assessment and Improvement
5.1 The Triptych Dogma . 107

5.1.1 Background . 107
5.1.2 The Dogma . 108
5.1.3 New Aspects . 108

5.2 The Triptych Process Models and Documents 108
5.2.1 Common Aspects . 108
5.2.2 The Domain Engineering Process Model 110
5.2.3 The Requirements Engineering Process Model 113
5.2.4 The Software Design Process Model 115

5.3 Review of the Triptych Process . 118
5.3.1 The Process Model: Diagrams and Tables-of-content . 118
5.3.2 Process Model Semantics . 119
5.3.3 Informal versus Formal Development 120
5.3.4 Adherence to Phases, Stages and Steps 120

5.4 Process Assessment and Improvement Management 120
5.4.1 Notions of ‘Process Assessment’ and ‘Improvement’ . 120
5.4.2 The CMM: Capability Maturity Model 122

Contents XXIII

5.4.3 Process Models and Processes . 124
5.4.4 Proactive Measures . 127
5.4.5 Review of Process Assessment and Improvement

Issues . 133
5.4.6 Hindrances to Process Assessment and Improvement 135

5.5 Conclusion . 136
5.5.1 Summary . 136
5.5.2 Future . 136
5.5.3 Software Procurement . 137

6 Domains and Problem Frames . 139
The Triptych Dogma and M.A.Jackson’s PF Paradigm
6.1 Domains and Problem Frames . 139

6.1.1 Aims & Objectives . 140
6.1.2 Structure of Paper . 140

6.2 The Domain . 140
6.2.1 Net Topology . 140
6.2.2 Nets, Segments and Junctions . 140
6.2.3 Segment and Junction Identifications 142
6.2.4 Paths and Routes . 144
6.2.5 Segment and Junction Identifications of Routes 146
6.2.6 Circular and Pendular Routes . 147
6.2.7 Connected Nets . 149
6.2.8 Net Decomposition . 150
6.2.9 Multi-Modal Nets . 151
6.2.10 Sub-Junctions . 153
6.2.11 Segment and Junction Attributes 153
6.2.12 Road Nets . 158
6.2.13 Railway Nets . 160
6.2.14 Net Dynamics . 163
6.2.15 More on Net Dynamics: Traffic 165
6.2.16 Time Tables and Traffic . 166

6.3 And so on! . 167
6.4 A Set of Requirements . 167

6.4.1 Plan of Development of Requirements 167
6.4.2 ‘Net Maintenance’ Software . 168
6.4.3 ‘Traffic Control’ Software . 169
6.4.4 ‘Traffic Simulation’ Software . 171
6.4.5 ‘Transport Logistics’ Software . 172
6.4.6 Requirements Prescription of Shared Software 173

6.5 And So On — What Have we Covered . 174
6.6 The Triptych and the Problem Frame Approaches 174

6.6.1 General Observations . 174
6.6.2 Specific Observations . 175

6.7 Grand Challenges of Computing Science 175

XXIV Contents

6.7.1 The Grand Challenge of VSTTE 175
6.7.2 The Grand Challenge of Ubiquitous Computing 175

6.8 Conclusion . 175
6.9 Bibliographical Notes . 175

Part III Experimental Evidence

7 Documents . 179
A Rough Sketch Domain Analysis
7.1 Some Background Remarks . 180

7.1.1 A Source of Software Failures . 180
7.1.2 An Evolving Report . 180
7.1.3 Structure of This Chapter . 180

7.2 What Are Documents? . 180
7.2.1 Varieties of Documents . 180
7.2.2 On the Domain of Documents . 181
7.2.3 Semantics of a Document Concept 182
7.2.4 Syntax of Documents . 182
7.2.5 Structure of This Report . 182
7.2.6 On Reading This Report . 183

7.3 A Simple Model of Documents . 183
7.3.1 Originals, Copies and Versions . 183
7.3.2 Editing and Versions . 185
7.3.3 Document Traces . 186
7.3.4 Annotated Original Documents 188
7.3.5 Document Family Trees . 189
7.3.6 Document Family States . 193
7.3.7 Document Community . 194
7.3.8 Document Processing States . 195
7.3.9 Shortcomings of Model So Far . 195
7.3.10 A Basic Concrete Model of Time 196
7.3.11 A Concrete Model of Locations 197
7.3.12 Located and Timed Documents 198

7.4 Discussion . 199

8 Public Government . 201
A Rough Sketch Domain Analysis
8.1 An Informal View of Public Government 201
8.2 Flow of Documents in Public Administration 202

8.2.1 Between Citizens and Lawmakers 202
8.2.2 Between Lawmakers and Ministries and Local

Government . 203
8.2.3 Between Citizens and Local Government 203
8.2.4 Between Citizens and The Judiciary 203

Contents XXV

8.2.5 Summary of Documents . 204
8.3 Documents — A Closer Analysis . 205

8.3.1 Overview of Document Issues . 205
8.3.2 Actors: Citizens and Agents . 205
8.3.3 Document Operations . 206
8.3.4 Document Family and Document Versions 208
8.3.5 Document History . 208
8.3.6 Document Authorisation . 209
8.3.7 Special Edit Operations . 211
8.3.8 A Document Class Concept . 212
8.3.9 Document [Cross–]References . 213
8.3.10 Document Computations . 214
8.3.11 Summary of Document Attributes 214
8.3.12 Actor Attributes . 215

8.4 E2G: Essential E-Government . 215
8.4.1 The Meaning of E2G . 215
8.4.2 Summary of E2G . 219

8.5 Closing . 221
8.5.1 What Have We Covered? . 221
8.5.2 What Did We Try to Achieve? . 221
8.5.3 Relation to Chapters 7, 9 and 10 221
8.5.4 Towards a Theory of Documents 221

9 Towards a Model of IT Security . 223
The ISO Information Security Code of Practice
An Incomplete Rough Sketch Analysis

9.1 Introduction . 223
9.2 Our Methodological Approach . 224
9.3 An Example Set of IT System Codes of Practice 225

9.3.1 [6] Organisation of information security 225
9.3.2 [7] Asset management . 229
9.3.3 [8] Human resources security . 230
9.3.4 [9] Physical and environmental security 231
9.3.5 [10] Communications and operations management . . . 235
9.3.6 [11] Access control . 240
9.3.7 [13] Information security incident management 243

9.4 The ISO Standard ISO/IEC 17799 Table-of-Contents 243
9.5 An Analysis of the ISO/IEC 17799 Code of Practice 248

9.5.1 [6.1.1] Management commitment to information
security . 249

9.5.2 [9.1.1] Physical security perimeter 252
9.6 The Phenomena of IT Systems . 253

9.6.1 Simple Entities . 254
9.6.2 Functions . 257
9.6.3 Events . 259

XXVI Contents

9.6.4 Behaviours . 260
9.6.5 Discussion . 262

9.7 A Formal Model of IT Systems . 262
9.7.1 Ω: The “Grand” State . 262
9.7.2 ΦΘ: The Plant and Installations 263
9.7.3 A Formal Model of ΦΘ . 272
9.7.4 ΣΠℜ: Movable Resources . 274
9.7.5 Discussion . 275

9.8 A Formal Modal of IT Security Code of Practice 275
9.8.1 ΨSyntax . 276

9.8.2 ΨSemantics . 276
9.9 Making Use of The Formalisations . 278

9.9.1 Instatiating IT Security Predicates for Evaluation . . . 278
9.9.2 Evaluation . 279

9.10 Closing . 280
9.10.1 What is IT Security ? . 280
9.10.2 What Have We Achieved? . 280
9.10.3 Issues of Contention . 281
9.10.4 Future Work . 281

10 Towards a Family of Script Languages . 283
Licenses and Contracts — Incomplete Sketch
10.1 Introduction . 284

10.1.1 Computing Science cum Programming Methodology . 284
10.1.2 Caveats . 284
10.1.3 On Licenses . 285
10.1.4 What Kind of Science Is This? . 286
10.1.5 What Kind of Contributions? . 286

10.2 Pragmatics of Three License Languages 286
10.2.1 The Performing Arts: Producers and Consumers 286
10.2.2 Hospital Health Care: Patients and Medical Staff . . . 288
10.2.3 Public Government and the Citizens 288

10.3 The Semantic Intents of Licensor and Licensee Actions 290
10.3.1 Overview . 290
10.3.2 Licenses and Actions . 290
10.3.3 Sub-licensing, Scheme I . 291
10.3.4 Sub-licensing, Scheme II . 292
10.3.5 Multiple Licenses . 292

10.4 Syntax and Informal Semantics . 292
10.4.1 General Artistic License Language 293
10.4.2 Hospital Health Care License Language 297
10.4.3 Public Administration License Language 300
10.4.4 Discussion . 304

10.5 Formal Semantics . 305
10.5.1 A Model of Common Aspects . 305

Contents XXVII

10.6 A Transport Contract Language . 309
10.6.1 Narrative . 309
10.6.2 A Formalisation . 310
10.6.3 Discussion . 326

10.7 Conclusion . 326
10.7.1 Achievements . 327

Part IV Example Appendices

A Business Processes (BP) and BP Reengineering 331
A.1 Business Process Engineering . 331

A.1.1 Air Traffic Business Processes . 332
A.1.2 Freight Logistics Business Processes 333
A.1.3 Harbour Business Processes . 333
A.1.4 Financial Service Industry Business Processes 334

A.2 Business Process Reengineering Requirements 335
A.2.1 Michael Hammer’s Ideas on BPR 336
A.2.2 What Are BPR Requirements? 338
A.2.3 Overview of BPR Operations . 338
A.2.4 BPR and the Requirements Document 339
A.2.5 Discussion: Business Process Reengineering 342

B Towards a Domain Model of Transportation 343
B.1 Net Topology . 343

B.1.1 Nets, Segments and Junctions . 343
B.1.2 Segment and Junction Identifications 345
B.1.3 Segment and Junction Reference Identifications 345
B.1.4 Paths and Routes . 347
B.1.5 Segment and Junction Identifications of Routes 349
B.1.6 Circular and Pendular Routes . 350
B.1.7 Connected Nets . 352
B.1.8 Net Decomposition . 353

B.2 Multi-Modal Nets . 354
B.2.1 General Issues . 354
B.2.2 Segment and Junction Modes . 354
B.2.3 Single-Modal Nets and Net Projection 355

B.3 Segment and Junction Attributes . 356
B.3.1 Segment and Junction Attribute Observations 356
B.3.2 Route Lengths . 358
B.3.3 Route Traversal Times . 359
B.3.4 Function Lifting . 360
B.3.5 Transportation Costs . 360

B.4 Road Nets . 361
B.5 Railway Nets . 364

XXVIII Contents

B.5.1 General . 364
B.5.2 Lines, Stations, Units and Connectors 364

B.6 Net Dynamics . 366
B.6.1 Segment and Junction States . 367
B.6.2 Segment and Junction State Spaces 369

B.7 Conclusion . 369

C Towards a Domain Model of Manufacturing 371
C.1 Introduction . 371

C.1.1 Definitions . 371
C.1.2 Examples of Machines . 372
C.1.3 Structure of Chapter . 372

C.2 Parts . 373
C.3 Machines . 375
C.4 Machine Operation . 377
C.5 Production Floors . 378
C.6 Production Plans . 382

C.6.1 Production Layouts . 382
C.6.2 Production Targets . 382
C.6.3 Part Dependencies . 383
C.6.4 Production Plans . 384

C.7 Interpretations of the Model — So Far! 384
C.7.1 A Matchbox Factory . 384
C.7.2 A Hot Strip Mill . 385
C.7.3 Cog Wheel Factory . 386

C.8 Conclusion . 386

D Towards a Model of CyberRail . 387
D.1 Background . 387
D.2 A Rough Sketch Formal Model . 388

D.2.1 An Overall CyberRail System . 388
D.2.2 Travellers . 389
D.2.3 cyber . 391

D.3 A CyberRail Bibliography . 393
D.4 Conclusion . 394

E Towards a Domain Model of ‘The Market’ 397
E.1 A Rough Sketch and its Analysis . 397

E.1.1 Buyers and Sellers . 397
E.1.2 Traders . 398
E.1.3 Supply Chains . 399
E.1.4 Agents and Brokers . 400
E.1.5 Catalogues . 403
E.1.6 The Transactions . 403
E.1.7 Contractual Relations . 404

Contents XXIX

E.2 Narrative and Formal Model . 404
E.2.1 Formalisation of Syntax . 404
E.2.2 Formalisation of Semantics of Market Interactions . . . 406
E.2.3 On Operations on Trader States 410

E.3 Discussion . 411

Part V Support Example Appendices

F Time and Time/Space — Two Axiom Systems 415
Borrowed Material: Johan van Benthem and Blizzard
F.1 van Benthem’s Theory of Time . 415
F.2 Blizard’s Theory of Time-Space . 416

G Timetable Scripts . 419
G.1 The Syntax of Bus Lines . 420
G.2 The Syntax of Timetable Scripts . 420
G.3 Well-formedness of Journies . 421
G.4 The Semantics of Timetable Scripts . 425
G.5 Discussion . 426

H The Gunter et al. Model & its Reformulation 427
H.1 Digital Rights Licensing . 427

H.1.1 What is Digital Rights? . 427
H.1.2 Realities by Users and Licenses Issued by Owners . . . 428
H.1.3 Digital Rights Management (DRM) 428
H.1.4 Structure of Presentation . 428

H.2 Transcript of the Gunter/Weeks/Wright Paper 428
H.2.1 Actions, Events, Realities and Licenses 428

H.3 Standard Licenses . 430
H.3.1 Up Front Licenses . 430
H.3.2 Flat Rate Licenses . 431
H.3.3 Per Use Licenses . 431
H.3.4 Up to Expiry Date Licenses . 432
H.3.5 Non-cancellable Multi-use Licenses 432
H.3.6 Cancellable Multi-use Licenses . 433

H.4 A License Language . 434
H.4.1 Syntax . 434
H.4.2 Examples . 434
H.4.3 Semantics . 435

H.5 An RSL Model . 435
H.5.1 Actions, Events, Realities and Licences 435
H.5.2 Standard Licences . 436
H.5.3 A License Language . 440

H.6 End of “Gunter” Paper . 441

XXX Contents

Part VI Administrative Appendices

I RSL: The Raise Specification Language
A Primer . 445
I.1 Types and Values . 445

I.1.1 Some Distinctions . 445
I.1.2 An Aside . 446

I.2 Types . 446
I.2.1 Type Expressions . 446
I.2.2 Type Definitions . 449

I.3 The RSL Predicate Calculus . 451
I.3.1 Propositional Expressions . 451
I.3.2 Simple Predicate Expressions . 451
I.3.3 Quantified Expressions . 451

I.4 Concrete RSL Types: Values and Operations 452
I.4.1 Arithmetic . 452
I.4.2 Set Expressions . 452
I.4.3 Cartesian Expressions . 453
I.4.4 List Expressions . 453
I.4.5 Map Expressions . 454
I.4.6 Set Operations . 455
I.4.7 Cartesian Operations . 457
I.4.8 List Operations . 457
I.4.9 Map Operations . 459

I.5 λ-Calculus + Functions . 461
I.5.1 The λ-Calculus Syntax . 461
I.5.2 Free and Bound Variables . 461
I.5.3 Substitution . 462
I.5.4 α-Renaming and β-Reduction . 462
I.5.5 Function Signatures . 462
I.5.6 Function Definitions . 463

I.6 Other Applicative Expressions . 463
I.6.1 Simple let Expressions . 463
I.6.2 Recursive let Expressions . 464
I.6.3 Predicative let Expressions . 464
I.6.4 Pattern and “Wild Card” let Expressions 464
I.6.5 Conditionals . 465
I.6.6 Operator/Operand Expressions 465

I.7 Imperative Constructs . 466
I.7.1 Statements and State Changes . 466
I.7.2 Variables and Assignment . 466
I.7.3 Statement Sequences and skip . 467
I.7.4 Imperative Conditionals . 467
I.7.5 Iterative Conditionals . 467

I.7.6 Iterative Sequencing . 467
I.8 Process Constructs . 468

I.8.1 Process Channels . 468
I.8.2 Process Composition . 468
I.8.3 Input/Output Events . 468
I.8.4 Process Definitions . 469

I.9 Simple RSL Specifications . 469

J Biography . 471

K Consolidated Bibliography . 475
References . 475

L Indexes . 493
L.1 Concept Index . 493
L.2 Example Index . 502
L.3 Referenced Author Index . 504
L.4 Symbol Index . 506

Part I

Technology Management

1

On Domains and On Domain Engineering1

Prerequisites for Trustworthy Software

A Necessity for Believable Management

Message to Software Technology Management

• Before software can be designed we must understand its requirements.
• Before requirements can be prescribed we must understand the domain.

With this chapter we wish to make the reader aware of a new dimension to
software engineering.

• Automotive engineers have their application sciences include those of me-
chanics and of thermodynamics and be otherwise based on applied math-
ematics.

• Mobile phone engineers have their application sciences include those of
electromagnetic field theory and of electronics and be otherwise based on
applied mathematics.

• Application software engineers, till now, have only had their profession-
alism be “otherwise” based on computer science. There has, effectively
speaking, not been an appropriate set of application sciences, one for each
domain of software applications.

• Domain engineering, applied to application areas such as administrative
forms processing (i.e., documents), air traffic, financial service systems,
health care, manufacturing, “the market” (including digital rights man-
agement), transportation, etc., raises the specter of there now emerging
proper software application sciences.

In this chapter we outline, in a more pedantic manner, several of the issues
stemming from domain engineering.

• We bring small in-line examples illustrating facets of domains and their
description.

• We summarise engineering approaches to domain and to requirements
modelling.

1This is an edited version of [28]. Presented, together with [29], at a number of
meetings with Japanese Software and IT industry leaders during the Spring of 2006.

4 1 On Domains and On Domain Engineering

• We show how the latter, requirements engineering, changes and becomes
more stable and a more well-founded professional activity.

• And we show, in in Appendices A–E, examples of domain descriptions of
(1) a variety of business processes and their reengineering, (2) transporta-
tion nets, (3) manufacturing, (4) “the market” and (5) CyberRail.

We hope with this to make you interested in making your group an even more
professional engineering enterprise.

End of Message to Software Technology Management

Preface

Warning: This is a Casual Document

This is not a technical scientific document. This is a casual, sort of “ad-

vertisement” document. Behind this document lies a major three-volume
technical/scientific reference work [31–33]. What may appear as claims in
the present document are fully substantiated in the 2416 pages of this ref-
erenced major work.

The intended target audiences for this document are business, software
development and research managers of from small via medium to large scale
software houses as well as my peer colleagues in computer and computing
science.

The aim of this document is to explain the concepts of domain and
domain engineering, and motivate why the reader should be interested in
understanding what we have to say.

The undoubtedly ambitious objective of this document is, on the ba-
sis of presentations given by me and my colleagues to the above-mentioned
managers — and as based on this document — to convince them that their
enterprise ought engage in some form of loose or less-loose collaboration aimed
at some form of joint domain engineering (“trial run”) activity.

1.1 FAQ: Domains and Domain Models

In this section we bring in some definitions related to domains (Sect. 1.1.1),
we briefly characterise what a domain description contains (Sect. 1.1.2), and
we overview the triptych dogma of developing software from domain models
via requirements to software design (Sect. 1.1.3). In Sect. 1.1.3 we also briefly
touch upon such issues as “domains change slowly”, “requirements do not
change that often” and “domain knowledge representing corporate assets”. Af-
ter that we overview the triptych phases of development (domain engineering,
requirements engineering and software design) (Sect. 1.1.4). Sect. 1.1.5 briefly

1.1 FAQ: Domains and Domain Models 5

touches upon business process engineering. The section ends, Sect. 1.1.6, with
a mentioning of the concepts of precise narratives and formal specifications.

1.1.1 Some Definitions

Domains

By a domain we understand a universe of discourse, an area of human activity
or an area of science — sufficiently well delineated to justify giving it a name:
the name domain, and sufficiently well distinguished from “neighbouring”
universes or areas to avoid unnecessary overlap and confusion.

Examples of Domains

Examples of domains are: air traffic, financial service industry (banks, insur-
ance companies, portfolio managers, stock brokers, traders and exchanges,
etc.), transportation (railways or road nets or airline nets or shipping nets),
health care (from private physicians and pharmacies via analytical laborato-
ries and rehabilitation clinics to hospitals, etc.), manufacturing, etc. These
were examples of components of a country’s or a region’s infrastructure. An-
other example is documents (of any form, shape and medium, being created,
modified (edited), copied, moved, etc.). And yet another example is rights
management of digital documents (usually music recordings, books, movies,
photos [images in general], also known as DRM).

Domain Engineering

By domain engineering we understand the modeling of a domain: a careful
description of the domain as it is, void of any reference to possibly desired
new software, including requirements to such software.

Domain Model and Domain Theory

By a domain theory we understand a formal model of a domain such that
properties of the model the domain can be stated and formally verified —
claiming that these properties are properties of the domain being modelled.

A domain model is thus a description of a sufficient number of domain
entities, domain functions, domain events and domain behaviours — so for-
mulated and detailed that one is able to answer most relevant questions about
the domain.

6 1 On Domains and On Domain Engineering

1.1.2 What Is a Domain Description?

A domain description describes the domain: in natural language, for example
Japanese or English, and mathematically, in some abstract, formal specifica-
tion language.

What do the descriptions describe? The short answer is: entities, functions,
events and behaviours. A slightly longer answer is given afterwards.

Entities and Types

First one describes the simple entities of the domain: the manifest phenomena
— things that you can point to or measure by scientific instruments — and
concepts derived from these — things that can be defined in terms of the
phenomena.

Example 1.1 Entities: We exemplify the notion of simple entities:

Financial Service Industry: Bank accounts, whether demand/deposit, savings
& loan, or other are simple entities. So are monies, bank cards, credit
cards, securities instruments like bonds and stocks. Etcetera.

The Market: The core entity is merchandise (goods, wares for sale).
Transportation Nets: Road, rail, shipping lane, and air lane segments and

corresponding junctions are simple entities. States of junctions (open or
closed for movement across a junction from a segment to another segment)
are conceptual simple entities.

Documents: A document is a simple entity.

The domain stakeholders decide which aggregations of simple entities con-
stitute the dynamic, value-varying state of the domain, which constitute the
static, more-or-less value-constant context of the domain.

Functions

Functions apply to entities, some of them “input” to the domain, some being
states and/or context values of the domain and yield entities, either “output”
from the domain, or new states.

Example 1.2 Functions: We exemplify the notion of functions:

Financial Service Industry: Opening and closing bank accounts, buying and
selling securities instruments, buying on a credit card, depositing into and
withdrawing monies from an account, etc., are functions.

The Market: Buyers inquiring about availability, price and delivery terms
of specific merchandise, sellers offering this information, buyers ordering
quantities of merchandise, sellers acknowledging such orders (or not) and
delivering the goods, buyers accepting the goods — or rejecting them, and
sellers invoicing accepted goods — with buyers paying the invoice, etc.

1.1 FAQ: Domains and Domain Models 7

Transportation Nets: Changing the state of a junction (from “red” to “green”)
is a function. So is adding a new segment, removing an old one, etc.

Documents: Creating, copying and editing documents are functions.

Events

We may label as events some state or context changes.

Example 1.3 Events: We exemplify the notion of events:

Financial Service Industry: The event of going below a credit limit when with-
drawing monies from an account. The event of a bank failing to meet its
obligations. The event of a listed stock company failing to properly report
its quarterly dividends.

The Market: The event of running out of stock of some merchandise in some
retailer or wholesaler or producer. The event of a buyer failing to pay an
overdue invoice.

Transportation Nets: The event of having to turn a junction state into all
“red” because of a traffic accident.

Documents: The event of creating the billionth document!

Behaviours

Behaviours are sequences of function actions and events.

Example 1.4 Behaviours: We exemplify the notion of behaviours:

Financial Service Industry: The opening of a demand/deposit account fol-
lowed by a sequence of zero, one or more deposits and withdrawals and
ending with the closing of the account forms a behaviour.

The Market: There are customer, retailer, wholesaler and producer behaviours,
as well as the behaviours of the delivery of the merchandise from producers
via wholesalers to retailers and consumers.

Transportation Nets: The movement of transport conveyours (cars, trains,
ships and aircraft) along segments, and into and out of junctions, forms a
behaviour.

Documents: The sequence of creating a document, editing it, copying it, edit-
ing and copying the copy, etc., forms a behaviour.

8 1 On Domains and On Domain Engineering

Domain Descriptions are Serious Documents

Examples 1.1–1.4 illustrated tiny aspects of domains. A reasonably compre-
hensive and fully consistent domain description of even the “tiniest” domain
is a serious document. It takes much time and many human resources to
establish a trustworthy domain description.

Appendices B–D (Pages 343–395) shows fragments of realistic domain
models of (B) transportation nets, (C) manufacturing, (D) documents, (E)
“the market” and (D) a futuristic railway service concept CyberRail.

1.1.3 The Triptych Dogma

The triptych dogma is the basis for Vol. 3 of [31–33].

The Triptych Dogma

Before software can be developed the software developers and the clients
contracting this software must understand the requirements.

Before requirements can be developed the software developers and the
clients contracting these requirements must understand the domain.

Needless to say, this document would not be issued if the concept of domain
was widely known and if the concept of first doing domain engineering before
requirements engineering was likewise well accepted.

Other Engineering Branches Have Their Domain Theories

Automotive engineers have the physical sciences of mechanics and thermo-
dynamics as part of their well-understood domain. Mobile telephony engi-
neers have the physical sciences of electronics and radio communication (i.e.,
Maxwell’s Equations) as part of their well-understood domain. Aerospace
engineers have celestial mechanics and aerodynamics as part of their well-
understood domain. Civil engineers have soil physics and structural mechanics
as part of their well-understood domain.

Nissan, Mazda and Toyota would only hire such automotive engineers who
have the necessary and sufficient scientific and technical skills in their basic
science. NTT DoCoMo would only hire such radio and electronics engineers
who have the necessary and sufficient scientific and technical skills in their
basic science. And so on.

If a software engineer develops software for the financial service indus-
try then, besides the tool science of computing, that software engineer need
know “all about” the financial service industry domain theory! Similar for
software applications within transportation, health care, manufacturing, air
traffic, “the market”, etcetera. But they do not! And their companies still get
away with it!

1.1 FAQ: Domains and Domain Models 9

It is about time, we think, that application software engineers be given the
same opportunity to also conduct their work professionally — by providing
them with suitable domain theories.

Domains Change Slowly

Domains change slowly. The majority of phenomena and concepts of the fi-
nancial service industry remain the same over decades. What you see, today,
as a possibly bewildering array of fancy offers is but neat combinations of
standard, well-known basic concepts, basic facilities put to new uses. Similar
for “all other” domains.

In Future Requirements Will “Never” Change

Some software engineers, and especially some academic software engineering
scientists claim that requirements always change — and that therefore “their
little gimmick contribution” to requirements engineering offers a solution to
the problem. Well, once you have understood the underlying, and, we claim,
rather stable domain, then requirements tend not to change “at all”! We shall
justify this seemingly “outrageous” claim in this chapter.

Corporate Assets

So, we claim, it is a good thing for a mature, professional software house to
focus on its core businesses in terms of one, two or a few more domains. To
build up domain knowledge — not just in the heads of its loyal staff — but
more importantly, on paper, e.g., electronically “inside the computer”: in the
form of carefully constructed, carefully maintained, carefully protected and
carefully adhered-to domain theories. Once in place, even rudiments of such
theories should convince existing and potential clients that their provider is
the real “pro”.

1.1.4 Proper Software Development

So, for us, software development proceeds in phases:

[1] Domain Engineering

In a project aimed at developing some software application for customers, if
one has not already been established for the wider domain of some application,
then establish first a domain model — usually with a scope that is far wider
than the usually narrow span of the subsequent requirements.

The domain model usually embodies descriptions of the following domain
facets:

10 1 On Domains and On Domain Engineering

• the domain intrinsics: By domain intrinsics we understand “that in
terms of which all other facets are expressed”,

• the supporting technologies of the domain,
• the management and organisation of the domain,
• the rules and regulations of the domain,
• the domain scripts, and
• the human behaviour of the domain.

Most chapters and Appendices A–E of this monograph will touch upon some
issues of how to construct a domain model.

[2] Requirements Engineering

From the domain model, in stages of development, and in close interaction
with requirements stakeholders, construct the machine, i.e., the hardware +
software computing system. There are three parts to requirements:

• The domain requirements: By domain requirements we understand
those requirements which can be expressed solely using terms of the do-
main. (Usually domain requirements are called functional requirements.)

• The interface requirements: are those requirements which are expressed
using terms both of the domain and of the machine — building up around
the entities, functions, events and behaviours that are (to be) shared be-
tween the domain and the machine.

• The machine requirements: are then those requirements which can be
expressed sôlely using terms of the machine. (Usually domain requirements
are called non-functional requirements.)

Chapter 3 will touch upon some issues of how to construct a requirements
model from a domain model.

[3] Software Design

From the requirements model, in stages of development, we design the soft-
ware.

Chapters 27–28 of Vol. 3, [33], of [31–33] cover a number of techniques for
“deriving” trustworthy software from requirements.

1.1.5 Business Process Engineering and Reengineering

Crucial elements in software engineering and in providing services to IT clients
is that of identifying the business processes and suggesting the revision of
business processes.

With carefully worked-out domain descriptions the pursuit of business
process engineering and reengineering takes on a far more professional rôle.

1.2 FAQ: Domain Engineering 11

We therefore claim that pursuing serious domain engineering helps con-
sultancy firms better advise their clients.

We refer to Appendix A for more on business process engineering and
business process reengineering (BPR).

1.1.6 Precise Narratives and Formal Specifications

Chapters 3–10 and Appendices A–D show both informal and formal domain
descriptions.

• The informal, yet precise narratives are directed at domain and require-
ments stakeholders.

• The formal descriptions — “tuned” carefully, almost line-by-line to the
informal narratives — are directed at software engineers representing both
the developers and acting as consultants to the domain client.

In this document we show only RSL [31–33, 44, 101, 104, 106] specifications.
At JAIST they are developing domain models in CafeOBJ [89,90, 99, 100].

In domain and in requirements verification the strong, interactive verifica-
tion features are expected to bring a heretofore unseen high level of trust to
bear on domain descriptions and on requirements prescriptions.

1.2 FAQ: Domain Engineering

1.2.1 With Whom to do Domain Models?

Domain models are developed in close collaboration with stakeholders of the
domain.

Example 1.5 Stakeholders: Typical stakeholders of the financial services do-
main are:

• The owners of banks, insurance companies, stock broking companies, the
stock exchange, credit card companies, etc.

• The executive, divisional, and operational layers of managers of the insti-
tutions just mentioned above.

• The clerks, i.e., the “floor” workers of the banks, the insurance companies,
the stock broking companies, the stock exchange, the credit card company,
etc., institutions.

• The customers of banks, insurance companies, stock broking companies,
the stock exchange, the credit card companies, etc.: private citizens as well
as commercial forms (businesses, industries, etc.).

• The government regulatory agencies: Federal Savings & Loan Agency, Fed-
eral Reserve Bank, Stock Exchanges Commission, etc.

• The ministries of finance, commerce, etc.
• Politicians.

In other words, the stakeholder group is quite large.

12 1 On Domains and On Domain Engineering

1.2.2 What Rôle “Business Process Engineering”?

We refer to Appendix A for detailed accounts and examples of the concepts
of business processes and business process reengineering.

It is of utmost importance to identify all those business processes that
might possibly be affected by requisition of new computing systems. Once a
new computing system has been installed then many of the people acting in the
domain need change their business processes. Hence — as we shall see in the
next section, FAQ: Business Process Reengineering — requirements engineer-
ing need establish careful reengineering prescriptions (see also Appendix A).
That can only be done if the domain engineering work has constructed simi-
larly careful business process descriptions.

1.2.3 Which Are the Facets of a Domain Model?

By a facet of a domain we understand a way of looking at the domain, some
view, from some stakeholder or other perspective, of the domain.

We can identify the following domain facets:

• [1] Intrinsics
• [2] Support Technology
• [3] Management & Organisation
• [4] Rules & Regulations
• [5] Scripts
• [6] Human Behaviour

We will briefly touch upon each of these.

[1] Intrinsics

By intrinsics we mean the absolute barebones of a domain: That without
which it is not meaningful to talk about anything in the domain.

Example 1.6 Intrinsics of Transportation: In order to transport there must
be a (i) path, from one location to another, along which to transport (a se-
quence of one or more road segments, rail lines, shipping lanes, airlanes —
called segments connected by junctions); there must something to transport,
i.e., a (ii) load (freight, passenger); there must be a (iii) conveyour (that
transports, i.e., a vehicle, a car, a train, a ship, an aircraft), and there must
be (iv) movement. The terms path (segment, junction), load (freight, passen-
ger), conveyour (car, train, ship, aircraft), and movement are the intrinsics of
transportation.

A domain description must describe all the intrinsics.

1.2 FAQ: Domain Engineering 13

[2] Support Technology

By support technology we mean the technological or human means for affect-
ing functions and for “carrying” (embodying) entities of the domain.

Example 1.7 Support Technology of Transportation: To regulate traffic
along a road net, one often deploys signals, for example the red/yellow/-
green semaphores of road junctions. To switch trains from one line to another
line one deploys switches (point machines) and the switch technology may
manifest itself in many ways: hand thrown switches (as in the very old days),
mechanically pulled switches (from cabin towers with mechanical pulleys and
wires), electromechanical such, or, as today, the solid state interlocking of
groups of switches.

A domain description must describe all the relevant support technologies.
The descriptions must include descriptions of failure modes, of probabilities
of failure, of timing of operations, etc.

[3] Management & Organisation

By management & organisation we mean the structure of layers of manage-
ment and the issues that are dealt with by management: giving directives, set-
ting codes of conduct (rules & regulations), “back-stopping” (timely responses
to) problems arising in lower levels of the worker and manager hierarchy, etc.

Example 1.8 Management & Organisation: Manufacturing: In a production
plant management must set strategic goals and tactical plans for implement-
ing these goals. Strategies deal with such matters as when should goodwill
in the market be turned into extra borrowing of funds for expansion — that
is conversion of one form of resources to other forms. Tactics deal with such
matters as which allocation and scheduling of serially reusable resources must
be implemented in order to achieve smooth production, balanced use of re-
sources, etc.

A domain description must describe all the management & organisation enti-
ties, functions, events and behaviours.

[4] Rules & Regulations

By a rule we mean a directive that states how a human should act in the
domain, or how technology in the domain is expected to behave, including be
deployed.

By a regulation we mean a directive that states what should occur if a
rule is found not to be followed.

14 1 On Domains and On Domain Engineering

Example 1.9 Rules & Regulations: Banking: Rule: For normal demand/de-
posit bank accounts a demand (a withdrawal of money) should not bring the
account balance below zero. Regulation: If it does, then the transaction should
be rejected, and the account holder notified.

A domain description must describe all the rules & regulation entities, func-
tions, events and behaviours.

[5] Scripts

By a script we understand a semi- to fully formal description of rules and
of regulations — such that can possibly be computerised and/or which can
stand the test of the rule-of-law.

Example 1.10 Scripts: Digital Rights Management Licenses: Currently there
is a lot of interest in DRM: Digital Rights Management licensing of use of digi-
tal works such as music and movie videos. These licenses are usually expressed
in a so-called rights expression language. The DRM can then decide whether
actual uses of the digital works satisfy, i.e., are in accordance with the licenses.

A domain description must describe all the script entities, functions, events
and behaviours.

Chapter 10 exemplifies the development of a number of license and contract
language designs.

[6] Human Behaviour

By human behaviour we understand the entities, functions, events and be-
haviours of humans as they go about discharging their work in the domain.
Some do it diligently, with care, some with less care, some sloppily, some
delinquently, and some in an outright criminal matter.

Example 1.11 Human Behaviour: A bank clerk must check and double check
customer identification versus account information. Doing so is diligence. Fail-
ing occasionally to do so is sloppy. Forgetting outright to even check may be
an act of criminal neglect.

A domain description must describe all the human behaviour entities, func-
tions, events and behaviours: looseness, non-determinism, vagrancy, and all!

If subsequent software requirements are to cope with human failures within
the above outlined spectrum and if one has not properly described that spec-
trum, then one cannot prescribe proper requirements.

1.2 FAQ: Domain Engineering 15

1.2.4 How to Acquire Domain Knowledge?

We see the following — initially tentative — steps in the process of domain
acquisition:

• The domain engineer is familiarised with the domain through on-site visits
and casual talks with as full a variety of domain stakeholders as can be
made available.

• The domain engineer may have access to more or less casual descriptions
of the domain from elsewhere. Such documents are also studied in the very
initial domain acquisition stage.

• The domain engineer, on the basis of such casual talks, tries out an own,
rudimentary domain model — enough for the domain engineer now to
formulate an extensive domain questionnaire.

• The domain engineer now present that domain questionnaire to different
groups of domain stakeholders.

• For each such group the questionnaire asks questions that cover:

⋆ the entities,
⋆ the functions,
⋆ the events, and
⋆ the behaviours

of the domain, and from each of the full variety of domain facets:
⋆ the intrinsics,
⋆ the support technologies,
⋆ the management & organisation,
⋆ the rules & regulations,
⋆ the script, and
⋆ the human behaviour facets.

• Individuals and groups of individuals within the diverse stakeholder com-
munities are now, possibly guided by the domain engineers, to answer the
questionnaire. Usually the answers can be expressed in one or two line
statements. We refer to these statements as domain description units.

• The domain description units are now indexed, classified, categorised, anal-
ysed, and possibly revised — with stakeholders.

• A “final” such, usually very large, database registered set of domain de-
scription units — free from inconsistencies and otherwise relative complete
— form the basis for the domain engineer’s domain description, informal
and formal.

• Thus ends the domain acquisition stage when the domain description stage
has begun.

16 1 On Domains and On Domain Engineering

1.2.5 How to Validate a Domain Model?

To Get the Right Domain

Domain validation is about getting the right domain. Not a domain descrip-

tion which describes entities, functions, events and behaviours that were not
intended, but intrinsics, support technologies, management & organisation,
rules & regulations, scripts and human behaviours which indeed characterise
the domain in question.

After the resource-consuming domain description stage comes the stage where
the proposed domain model is put forward for validation. Domain validation
is a stage in which domain stakeholders, typically a subset of those who took
part in the domain acquisition stage, collaborate with the domain engineers.

Line-by-line the two “parties” go through the informal description of the
domain: its entities, functions, events and behaviours; its business processes;
and its intrinsics, support technologies, management & organisation, rules &
regulations, scripts and human behaviours. Agreement has to be reached on
each and every item of description. Disagreements lead to revisions of the
domain description. Sooner or later the domain modeling process stabilises.

The domain validation process can be supported technologically by reason-
ably sophisticated hyper-link cross-referenced domain description documents.

1.2.6 How to Verify a Domain Model?

To Get the Domain Right

Domain verifications is about getting th domain right. Not a domain de-

scription with mistakes, errors and inconsistencies, but a domain description
that is consistent and relative complete.

During the domain description process many questions arise as to the inter-
pretation of stakeholder expressed domain description units. To resolve many
of these the domain engineer may have to express lemmas (propositions, theo-
rems) that may or may not hold of the (formalised) domain description being
worked out.

Domain verification is the process of analysing domain description units,
stating hypotheses and of proving lemmas about, testing, or model checking
the emerging domain description. Domain analysis and verification may thus
involved a variety of support tools: Proof checkers, theorem provers, testing
tools and model checkers.

1.3 FAQ: Requirements from Domain Models? 17

1.3 FAQ: Requirements from Domain Models?

The aim of requirements is to prescribe a machine. The machine is the com-
bination of hardware and software to be acquired and/or developed.

Whereas a domain description describes “the domain out there”, as it is,
a requirements prescription prescribes “the machine in there”, as you would
like it to be!

The domain engineer “looks at the world” and carves out some segment for
description. The requirements engineer knows what is feasible with machines
and tries to map a suitable segment of the domain onto a machine.

1.3.1 With Whom to do Requirements Models?

Same answer as given in Sect. 1.2.1 on page 11. See Example 1.5 on page 11.

1.3.2 What Role “Business Process Re-engineering”?

We refer to Appendix A for detailed accounts and examples of the concepts
of business processes and business process re-engineering (BPR). We man-
date that domain engineering be the new phase of software engineering, one
which has been fully carefully carried out before requirements engineering is
seriously commenced. With domain engineering and its view of business pro-
cesses both requirements and business process reengineering takes on a whole
new dimension — and becomes a both easier and more meaningful stage of
requirements engineering.

We repeat from Sect. 1.2.2:

It is of utmost importance to identify all those business processes that might

possibly be affected by requisition of new computing systems. Once a new

computing system has been installed then many of the people acting in

the domain need change their business processes. Hence requirements en-

gineering need establish careful re-engineering prescriptions (see also Ap-

pendix A). That can only be done if the domain engineering work has

constructed similar careful business process descriptions.

1.3.3 Which Are the Facets of a Requirements Model?

There are three main parts to a requirements prescription:

• Domain Requirements: These are the requirements that can be ex-
pressed solely by using terms from the domain.

• Interface Requirements: These are the requirements that are expressed
using terms both from the domain and from the machine.

• Machine Requirements: These are the requirements that can be ex-
pressed solely by using terms from the machine.

We will now briefly survey each of these.

18 1 On Domains and On Domain Engineering

Which Are the Facets of Domain Requirements?

The domain requirements are the requirements that can be expressed solely
by using terms from the domain. The domain requirements describes that
part of an idealised view of the domain which is to “reside” in the machine.

In addition to the domain facets (intrinsics, support technology, manage-
ment & organisation, rules & regulations, scripts, human behaviour) there are
an orthogonal number of domain requirements facets. They are:

• Projection: Not all of a domain description need be “implemented”. Pro-
jection serves to identify those parts of a domain description which shall
remain in the requirements prescription.

Example 1.12 A Projected Transportation Domain: In Appendix B we
present a domain description of a multi-modal transportation net. That
description is intended to also cover dynamic aspects of such nets: traffic,
the flow of vehicles across the various modalities of the net (road, rail,
sea and air) including the transfer of goods between different modality
conveyours, etcetera. An example projection would be to leave out all of
the dynamics and focus just on rail line maintenance.

• Determination: Those parts of a domain description which are pro-
jected onto the requirements prescription may express undesired non-
determinism, that is, a kind of “looseness” with respect to entity value,
functionality, event variability and behaviour. Determination serves to en-
dow the projected parts with a necessary and sufficient, desirable level of
determinism.

Example 1.13 A Determined Market Domain: In Appendix E we present
a domain description of “the market”. That description covers arbitrary
buying and selling amongst pairs of buyers and sellers (consumers and
retailers, retailers and wholesalers, and wholesalers and producers). To
limit the description to only allow such orders which are covered by seller
catalogues represents a determination.

• Instantiation: Oftentimes a domain description describes a domain in its
fullest generality. And very often a required application shall reside in a
domain which is far less general.

Example 1.14 An Instantiated Transport Domain: A domain description
may have covered all possibly conceivable railway nets. But if the appli-
cation is only for the Japanese Shinkansen, then that domain description
can be considerably instantiated (that is, abbreviated, shortened).

• Extension: Sometimes certain operations are not feasible in the domain.
For humans to carry them out would require inordinate access to resources,
including time. With computing and communication such hitherto infea-
sible operations may now become feasible. We say that the description
of previously infeasible operations in the domain extends that domain.

1.3 FAQ: Requirements from Domain Models? 19

The need to extend the domain has arisen in the context of prescribing
requirements.

Example 1.15 An Extended Travel Planning Domain: In the olde days,
with telephone directory thick airline guides on flights anywhere in the
world, it was not feasible to think of a geographically illiterate clerk to
find combinations of typically 5–6 consecutive flights that would bring a
passenger from some small locality in western China to some other small
locality in northern Brasil.

• Fitting: Oftentimes two or more groups of requirements engineers are
working on sufficiently distinct applications albeit within relatable do-
mains (either the same or two or more domain that do indeed share some
phenomena and concepts). Requirements may then, naturally arise, re-
quirements that imply that the otherwise distinct set of requirements be-
ing (otherwise) worked out, from respective domain description (parts),
be fitted to one another.

Example 1.16 Two Timetable-Fitted Transport Domains: Two groups
of requirements engineers are each working on their transport require-
ments, one for train traffic, its monitoring and control, and one for bus
traffic, its monitoring and control. During this work it is decided to fit
the two traffic timetables such that queries can involve both train and bus
timetables.

Which Are the Facets of Interface Requirements?

The interface requirements are the requirements that are expressed using
terms both from the domain and from the machine. The interface requirements
prescribe software which builds a bridge between the real domain outside the
machine and its idealised counterpart inside the machine.

The interface is defined by all those entities, functions, events and be-
haviours that can be said to be shared between the domain and the machine.
In the domain these entities, functions, events and behaviours “occur for real”.
In the machine they serve to “mimic” a perceived real domain.

We consider the following facets of interface requirements:

• Shared Phenomena and Concept Identification: A line by line in-
spection of the domain requirements shall reveal and result in a list of
all shared phenomena and concepts: simple entities, functions, events and
behaviours.

• Shared Data Initialisation Interface: Usually, before a new computing
system, i.e., the machine, can be put to use, it must be initialised. Typically
a database must be established. The software resulting from initialisation
requirements is often substantial.

20 1 On Domains and On Domain Engineering

Example 1.17 Supply Chain State Initialisation: In requirements for a
supply chain system of consumers, retailers and delivery services it is nec-
essary to establish initial sales catalogues and delivery service tables.

• Shared Data Refreshment Interface: Initial information may have to
be updated.

Example 1.18 Supply Chain State Refreshment: In requirements for a
supply chain system of consumers, retailers and delivery services it is also
necessary to have to more or less irregularly to update sales catalogues
and delivery service tables.

• Computational Interface: The main computations of a machine may
occasionally need prompts from the domain: guidelines as whether to per-
form a computation in one way or in another.
The domain operations cannot be fully implemented by the machine but
its computational “path” need be supported by human interaction, that
is, the operation is ‘shared’.

Example 1.19 Consistency of Transport Net Segments: We refer to the
next interface item: MM dialogues, and to the example, Example 1.20 of
that item. While successively providing input for segment after segment,
and for junction after junction (not mentioned below) the input provider
may decide, occasionally, to request the input vetting system to check for
consistency of input data. Such requests and the possible need for the
update of previously input data, amount to a computational interface.

• Man-Machine Dialogue Interface: The bulk, or mass, of interaction
between the machine and the domain are guided by dialogues. MM di-
alogues prescribe desirable sequences of interactions and how these se-
quences are presented over the usually graphic interface (GUI).

Example 1.20 GUI for Transport Net State Initialisation: Every segment
of a transport net contains the following information: Segment identifier,
segment name, segment length, identifiers of the two junctions between
which the segment is connected, a set of four Bezier coordinates that ap-
proximate the segment curvature, etc. A graphic user interface “window”
has names paired with blank fields for providing this kind of information.
Etcetera.

• Man-Machine Physiological Interface: The MM dialogue, besides
GUI, is usually “carried” by tactile instruments (keyboard, mouse, “point-
ing to the screen, depressing icons (buttons)”), by sound (microphones and
loudspeakers), video and fingerprint recognition, etc. A close fit to the do-
main is often desirable.

• Machine-Machine Dialogue: Not all initialisation or update of infor-
mation takes place over the man-machine interface. Remaining such re-
freshment and update occurs between machines. Typically involving data

1.3 FAQ: Requirements from Domain Models? 21

migration from legacy systems (i.e., machine for which no proper domain
engineering exists).

Which Are the Facets of Machine Requirements?

The machine requirements are the requirements that can be expressed solely
by using terms from the machine, that is, the hardware and the software with
which to build the machine.

• Performance: Performance is measured in terms of computation (re-
sponse) time, storage consumption, and usage of other (equipment) re-
sources.

• Dependability: To properly define the “ilities” of accessability, availabil-
ity, integrity, reliability, robustness, safety, security,etcetera, one must first
define the concepts of failure, error and fault. Fault tree analysis can be
used to determine suitable dependability requirements.
All this is carefully outlined in [33, Chap. 19, Sect. 19.6].

• Maintainability: There are a number of maintainability issues: adaptive,
corrective, perfective, preventive and extensional maintenance: to fit new
hardware and software, to remove bugs, to tune performance, to safeguard
against failures due to other forms of maintenance, and to implement ad-
ditional, new requirements.

• Platform: Software is developed on specific computing platforms, to be
executed on specific computing platforms, to be maintained/serviced from
specific computing platforms, and to be demonstrated on specific comput-
ing platforms. These platforms must be precisely prescribed.

Example 1.21 A Satellite System: Software for a satellite is to be de-
veloped on a Sun Microsystems Linux platform, to be demonstrated on a
Apple Computers OS X platform, to be maintained, on ground, on a IBM
PC-compatible Microsoft Vista platform, but to run on a space-borne mil-
itary computer platform.

• Documentation: Software development documentation can be extensive,
and encompass documents covering all phases, stages and steps of develop-
ment, from domain engineering via requirements engineering to software
design, including, of course, the “executable” code. Or software documen-
tation may just be a user’s guide. In-between there are installation man-
uals, maintenance manuals, usage logbooks, test suite manuals with test
outcomes, etc.

1.3.4 How to Acquire Requirements?

Principles and techniques very much similar to those covered in Sect. 1.2.4
apply here. So we just refer the reader to study Page 15 — reading ‘require-
ments’ wherever Sect. 1.2.4 wrote ‘domain’.

22 1 On Domains and On Domain Engineering

1.3.5 How to Validate a Requirements Model?

Principles and techniques very much similar to those covered in Sect. 1.2.5 ap-
ply here. So we first refer the reader to study Page 16 — reading ‘requirements’
wherever Sect. 1.2.5 wrote ‘domain’. Then validation must be performed not
just on the requirements prescription documents but also the underlying do-
main description documents.

1.3.6 How to Verify a Requirements Model?

Principles and techniques very much similar to those covered in Sect. 1.2.6 ap-
ply here. So we first refer the reader to study Page 16 — reading ‘requirements’
wherever Sect. 1.2.6 wrote ‘domain’. Then verification must be performed not
just on the requirements prescription documents but also with respect to the
underlying domain description documents.

1.3.7 What About Satisfiability and Feasibility?

Satisfiability

For a requirements prescription to be satisfactory the following must hold:

• the document must be correct (i.e., verified),
• the document must be unambiguous,
• the document must be complete,
• the document must be consistent,
• the document must be stable,
• the document must be verifiable,
• the document must be modifiable,
• the document must be traceable, and
• the document must be faithful.

Section 23.2 of Vol. 3 [33] provides details.

Feasibility

For a requirements prescription to be feasible the following must hold:

• the requirements prescription must be technically feasible,
• the requirements prescription must be economically feasible, and
• the requirements prescription must somehow imply implicit/derivative

goals of the project.

Sections 23.3–5 of Vol. 3 [33] provides a few more details.

1.4 Conclusion 23

Technical Feasibility

Technical feasibility amounts to:

• Feasibility of business process re-engineering: Can the prescribed busi-
ness process re-engineering requirements be implemented? We refer to
Appendix A.

• Feasibility of hardware: Can the required hardware be implemented?
• Feasibility of software: Can the required software be implemented?

Section 23.3 of Vol. 3 [33] provides details.

Economic Feasibility

Economic feasibility amounts to:

• Are the development costs feasible? Are they realistic and can they be
funded?

• Are the write-off costs feasible? Is it economic to use the required system?
• Do gains outweigh costs?

Section 23.4 of Vol. 3 [33] provides a few more details.

Compliance with Implicit/Derivative Goals

By implicit/derivative goals we mean those goals that cannot be expressed in
terms of computable functions but which are expected to be fulfilled once the
required software has been in sue for some time. Classical examples are: The
corporation using this software becomes more competitive, or its staff are now
more satisfied with their working conditions, etc.

Compliance is hard to measure, let alone predict. But attempts should be
made to assess compliance up-front.

Section 23.5 of Vol. 3 [33] provides a few more details.

1.4 Conclusion

1.4.1 Myths and Commandments of Formal Methods

As of the year 2009 some, even respectable software engineers and academics,
have problems with what they refer to as formal methods, which we prefer to
call formal techniques.2 One often finds that these sceptics voice various con-
cerns. Some in the form of myths or claims. Other concerns reflect hesitancy

2Recall that a [good] method is a set of principles for selecting and applying a
number of principles, techniques and tools in order to [efficiently] analyse a problem
and provide (i.e., construct, synthesize) an [efficient] solution to that problem. Given
that the principles cannot be formalised in that they most often relate to pragmatic
issues — which also cannot be formalised — it does not seem wise to refer to a
method as a formal method. So instead we prefer to speak about formal techniques
and formally based tools.

24 1 On Domains and On Domain Engineering

with respect to how such formal techniques can be inserted into university
curricula and into industry.

In this section we shall discuss these and related topics.
The aim of this section is to cover some — perhaps, let’s hope — historical

objections made against formal techniques and related issues. The objective
of this section is to prepare you with counterarguments should you become
engaged in discussions centered around these topics.

First Seven Myths

Anthony Hall [116] lists and dispels the following myths (claims) about formal
techniques:3

1. Using formal techniques can guarantee that software is perfect.

Of course, use of formal techniques cannot guarantee perfect soft-
ware. It can, when properly followed, and in most cases indeed
does, lead to far more appropriate software.

2. Formal Techniques are all about program proving.

Well, at least in [31–33] it is not. In those three volumes we have
emphasised abstract modelling.

3. Formal techniques are only useful for safety-critical systems.

Formal techniques are useful for any kind of software system,
whether a translator (compiler, interpreter), a database informa-
tion management system, a reactive system, a workpiece (spread-
sheet, text processor) system, etc.

4. Formal techniques require highly trained mathematicians.

No, they do not. But they do require software engineers who are
willing and able to think abstractly, and here mathematics is a
wonderful carrier. To do proofs requires, not highly trained logi-
cian mathematicians, but software engineers with a sense of logic,
with analytic minds and the ability to reason.

5. Using formal techniques increases the cost of development.

No. In numerous projects (some conducted under the auspices
of the European Union’s IT research programmes, in the 1980s
and the 1990s) it has been demonstrated that using formal tech-
niques did not increase cost of development, and in several cases
it decreased the cost. For example, consider DDC’s, Dansk Data-
matik Center’s, very successful development of a full Ada com-
piler [58, 59, 77]. DDC spent around 44 man years to develop, on
time, a United States Department of Defense validated compiler
— while another European and several US companies spent at

3We list the “myths” and claims as enumerated in [116], but the subsequent
indented comments represent our own views.

1.4 Conclusion 25

least three–five times the manpower on rather late delivery com-
pilers. The DDCI company appears to be the only surviving Ada
compiler provider.

6. Formal techniques are unacceptable to users.

Who says users should read formal specifications? In [33] we have
stressed the importance of concurrently developing and maintain-
ing informal as well as formal domain descriptions, requirements
prescriptions and software design specifications.

7. Formal techniques are not used on real, large-scale software.

Of course they are. And, where they are not, they should be!
Doing otherwise is basically outright criminal, and is cheating the
customer — since formal techniques can be used.

We encourage the readers to study Anthony Hall’s delightful [116].

Seven More Myths

Jonathan P. Bowen and Michael G. Hinchey [66] builds upon Anthony Hall’s
analysis [116], and add a further seven “myths” and claims:4

8. Using formal techniques delays the development process.

Like item 5 above, using formal techniques does not, in general,
delay the development process. It may, and usually will demand
that far more time is spent on domain and on requirements mod-
elling, and on early stages of software design. But, also in indus-
trial projects, use of formal techniques has shown to then decrease
rather significantly the length and manpower needs of coding.

9. Formal techniques are not supported by tools.

Most formal techniques today come with industry-scale tool sets.

10. Formal techniques mean forsaking traditional engineering design

methods.

No. Many traditional engineering methods still apply. Some need
to be revised a little.

11. Formal techniques only apply to software.

No. Formal techniques are, interestingly enough, today far more
widespread in hardware development than in software develop-
ment. It seems hardware producers are more responsible, since
the costs of having to withdraw a chip from the market can easily
run into US $ 300 million.

12. Formal techniques are not required.

4We list the “myths” and claims as enumerated in [66], but the subsequent
indented comments represent our own views.

26 1 On Domains and On Domain Engineering

Yes, they are. In particular, software for military applications, in
the UK, now demands the use of formal techniques.

13. Formal techniques are not supported.

There are now many software houses, especially in Europe, which
offer consultancy advice on the use of formal techniques in other
software houses’ formal developments. The Japanese company
CSK Holdings Corporation5 is a world leader in supporting
their clients6 in using the VDM formal method.

14. “Formal methods” people always use formal methods.

Well, we really cannot speak on behalf of all “formal methods
people”. So, let’s leave this one uncommented.

Despite the seeming “outdatedness” of some of the seven more myths, we still
encourage the readers to study Bowen and Hinchey’s delightful [66].

Ten Formal Methods Commandments

Given that the myths and claims have been disposed of in a trustworthy,
believable manner, we can then go on and reiterate what has been said again
and again in this monograph: When using formal techniques, please consider
carefully the following sound advice from Jonathan P. Bowen and Michael G.
Hinchey [67]:7

15. Choose an appropriate notation.

Certainly.

16. Formalise, but not overformalise.

What is probably meant here is: Choose an appropriate abstrac-
tion level.

17. Estimate costs.

Always.

18. Have a formal methods guru “on call”.

See answer to item 13 above.

5http://www.csk.com/support e/vdm/index.html
6Felica Networks, Japan, http://www.felicanetworks.co.jp/index.html,

is one such company: The NTT/DoCoMo mobile phone, FOMA 905i
(http://www.nttdocomo.com/features/foma905igallery/), and the Mobile Fel-
ica smart chip was designed using VDM extensively. In a paper at the Formal
Methods 2008 Industry Day (http://www.fm2008.abo.fi/industry day.php), Mr.
Taro Kurita, FeliCa Networks Inc. and Messrs. Miki Chiba and Yasumasa Nakat-
sugawa Sony Corporation gave a presentation: Application of a Formal Specification
Language (VDM) in the Development of the “Mobile FeliCa” IC Chip Firmware
for Embedding in Mobile Phone.

7We list the Ten Commandments as listed in [67], but the subsequent indented
comments represent our own views.

1.4 Conclusion 27

19. Do not abandon thy traditional development methods.

See answer to item 10 above.

20. Document sufficiently.

This monograph repeatedly stresses this point and [31–33] does it
almost to the extreme. In most other engineering practices docu-
mentation is far more extensive than what we witness today (year
2009) in software development. So follow the advice of the present
volume: Document, document, document.

21. Do not compromise thy quality standards.

In fact, tighten your quality standards.

22. Do not be dogmatic.

Creating abstract models and making design decisions as to soft-
ware data structures and algorithms requires exceedingly open
minds. Developing software, in general, requires the effort of at
least two, and usually 5–8, people in tight collaboration. Dogma-
tism, sticking to early development (modelling and design) deci-
sions, simply “is out”. Your colleagues will not have it.

23. Test, test and test again.

We stress formal testing, i.e., testing based on formal, abstract
interpretation of formal domain descriptions, formal requirements
prescriptions and formal software specifications. Besides verifica-
tion and model checking, it is indeed necessary to test.

24. Reuse. Re-use of modules is what is primarily referred to here. Prepara-
tion for re-use is supported if the formal specification language possesses
a module (class, scheme, object) concept. Then domain ‘modules’ can be
re-use edited into requirements ‘modules’ and these again into software
design ‘modules’. Then, in “related” domains, or requirements or software
designs these ‘modules’ can then be further “re-use edited”. Otherwise re-
use seems to this author that “reuse” is sort of a “white elephant,” a
desideratum that few can live up to.

When, for example, a compiler is first developed, its development,
all stages, from domain (i.e., language semantics) description via require-
ments prescription to software design, is being reused. We hope. That
is, the company, the group that develops the first compiler, “survives” to
make several subsequent generations of that “same” compiler, but now for
slightly, or less slightly changed, requirements, for new language features,
etc.

That is reuse at the level we know and are familiar with. For us to think
of reusing a module, or even a component, from some problem frame,
i.e., from some domain-specific architecture development in an entirely
different domain-specific architecture development makes less sense.

It does, however, make sense in the meaning of that of the Object
Management Group’s (OMG) guidelines for, say, dictionary components.

28 1 On Domains and On Domain Engineering

The kind of dictionaries referred to have a base part which can be reused
across compiler, operating system, database, and several application sys-
tem developments.

So, really, all we can say is: The jury is still out, and the verdict can
be expected in the next decade!

As for re-use of domain descriptions and requirements prescriptions: The
very purpose of developing domain descriptions is that they be re-used
whenever requirements for software within the application area are being
developed.

And even the requirements, for some applications, can be partially
reused, i.e., fitted to, requirements for a “neighbouring” area of the same
domain.

1.4.2 FAQs: Frequently Asked Questions

General

25. Should/can/must stakeholders understand formal specifications?

No, not necessarily. As we have advocated, proper developments
should contain complementary informal and formal descriptions,
prescriptions and specifications.

For a number of software developments, customers may engage
consultants to also check that the formal descriptions, prescrip-
tions and specifications are up to standard.

For a number of software products, insurance companies re-
quire that a certified company, like Lloyd’s [165] (or such simi-
lar companies as Norwegian Veritas [192], Bureau Veritas [68] or
TÜV [237]), regularly and irregularly, unannounced, inspect and,
in various ways, check the development. Such insurance and “ver-
ification” companies are increasingly turning to formal techniques
so their staff can understand and professionally evaluate the use
of formal descriptions, prescriptions and specifications.

26. What should/could be the languages of informal descriptions?

For domain descriptions it should be the national, i.e., natural
language of the client plus the professional language of the domain.
No IT jargon is basically needed — unless, of course, IT plays a
nontrivial rôle in the already existing domain.

For requirements prescriptions the answer is the same as for
domain descriptions, except that now one is allowed to use, in
appropriate areas of typically interface and machine requirements,
an appropriate, generally established sublanguage of IT.

For software designs — for which we have not dealt with infor-
mal annotations to any serious extent — it is, of course, necessary
to use the language also of IT (software).

1.4 Conclusion 29

As for domain-specific languages, make also sure that proper
terminologies are established for the IT (software) sublanguages
that are used.

27. What should/could be the languages of formal descriptions?

Whichever is most appropriate and at hand. For most develop-
ments that we know of, i.e., for most problem frames, the RAISE

Specification Language, RSL, is adequate. You can then, when
and as needed, augment RSL descriptions, prescriptions or spec-
ifications with Petri nets [148, 199, 210–212], message sequence
charts [142–144], live sequence charts [80, 128, 153], statecharts
[123,124,126,127,129] or duration calculus [247,248] descriptions,
prescriptions or specifications — or several of these. These “aug-
mentations” were covered, to some nontrivial depth, in [32, Vol. 2,
Chaps. 12–15].

Or you can use CafeOBJ [89, 90, 99, 100]. The CafeOBJ soft-
ware support system allows stepwise development, execution and
verification of CafeOBJ specifications.

Or you can use B [1,71], Event B, VDM-SL [55,56,95,96] or
Z [132,133,229,230,242] — all come, or will soon come, with suit-
able Petri net, message or live sequence chart, statechart, duration
calculus or TLA+ [156,175] augmentations.

RSL variants of UML’s Class Diagrams may also be advisable [32,
Vol. 2, Chap. 10].

28. When have we specified enough — minimum/maximum?

You have specified enough, both informally and formally, when
what is left to describe are such things as identifier formats. That
is, when you have specified everything but possibly that, then you
have specified the necessary and sufficient amounts. The trivial
things left unspecified are those things that one can safely trust
the software designer to make final and trustworthy design de-
cisions about. Also, certain aspects of graphical user interfaces,
specific handling of tactile input, etc., seem to belong to this class
of initially unspecified things.

Domains

29. Why domain engineering by computing scientists and software engineers?

Because computing science has the tools, namely the specifica-
tion languages, and because computing science has the principles
and techniques of abstract modelling. Mathematicians — in some
sense — could be claimed to have similar such tools, but they
really do not. Their abstractions go well beyond those that are
needed for domain modelling. They are not interested in proof
systems, for example, for formal specifications — but in the more

30 1 On Domains and On Domain Engineering

general notions of power of such proof systems, etc. Finally, the
computing scientists interface, daily, with software engineers —
and, in the hard realities of the day, domain theories are the first
to be demanded by software engineers.

Most formal specification languages can handle systems that
evolve, that is, whose components grow and shrink. Mathematics,
in todays’ conventional sense, cannot handle system evolution.

30. Should one use normative and/or instantiated domain descriptions?

This is a contentious issue. For a specific requirements develop-
ment one may be tricked into developing only an instantiated do-
main description, that is, a domain description that is already
instantiated to the specific domain.

Some authors seem, in their writing, to assume instantiated
domain descriptions. The author of this volume advises normative,
i.e., generic, domain descriptions.

31. Who should research and develop domain theories?

There are basically three possibilities, listed in causal order:
• initially university and academic research centre computing

science departments, i.e., their staff,
• eventually domain-specific university and academic research

centre departments, and
• finally, domain-specific commercial companies.

Initially it is advised that university and academic research cen-
tre computing science scientists research and develop domain
models. As mentioned above, in item 29, initially the computing
scientists have the basic methods needed to do domain theory re-
search, and are also interested in the engineering of large-scale
documentation, etc.

But eventually, within years, say 3–5 years after the initial
start of computing science R&D in domain theories, it should also
be undertaken by domain-specific research groups: transporta-
tion, in healthcare, in financial services, in marketing and sales
(e-marketing), etc. Just as such university departments are, to-
day, using (applied) mathematics, we can foresee that they will
also be able, soon, to use even fairly sophisticated computing sci-
ence ideas.

And, finally, private, commercial companies, for example,
software houses strong in a particular application domain, will
embark on such domain theory R&D, as will suppliers of any form
of technology to companies within the domain.

32. What is the timeframe for the R&D of domain theories?

It is strongly believed that the timeframe for the R&D of domain
theories is of the order of 10 to 20 years, or in cases up to 30

1.4 Conclusion 31

years, before one can safely say that a domain theory has been
established.

In other words: Patience is called for. Conviction that estab-
lishing such theories is of utmost importance is called for.

To do research and development on domain theories seems to belong to the
category of “Grand Challenge” endeavours (Sect. 1.4.3).

Requirements

To us, there are basically only two questions concerning requirements devel-
opment:

33. Requirements always change, so why formalise?

No! It may be true that people conceive of requirements “always
changing”. But we venture to claim that such “changes” are re-
ally not so much “changing requirements” as they are, or reflect,
increased, and hence better, understanding of the domain.

In other words: Given that one had an established, i.e., a rea-
sonably comprehensive, domain theory, we will then claim that
requirements do not change “so much” (as before conceived)!

34. Must we formulate requirements strictly before software design? This
question could also appear in the previous section as: Must we determine
domain descriptions strictly before requirements prescriptions?

In both cases the answer is: Yes, for the time being. Till such a
time when we indeed have (i) reasonably firmly established domain
theories, and (ii) a sufficient body of knowledge, i.e., experience
with requirements “strictly derived” from domain theories, until
such a time we are, due to commercial, i.e., competitive, pressures,
more or less forced to develop domain descriptions hand-in-hand
with requirements prescriptions, and the latter hand-in-hand with
early stages of software design. The special approach to software
development shows a way in which to develop domain descriptions
“staggered” with the development of requirements prescriptions,
and these again “staggered” with the development of software ar-
chitecture design — where, by “staggering”, we mean that one
phase follows almost right “on the heels” of the preceding phase.

1.4.3 Research and Tool Development

32 1 On Domains and On Domain Engineering

Evolving Principles, Techniques and Tools

As programming methodology and computing science (i.e., foundational) re-
search progresses, the present development principles and techniques will
evolve, and more elegant forms of these can be expected. New, formal speci-
fication languages will emerge. And tools for their use, including verification,
model checking and testing tools will be constructed. One thing seems, how-
ever, to be an assurance: these new principles techniques and tools (the latter
including the new languages), will not deviate radically from what this mono-
graph shows.

Grand Challenges

To put a man on the moon was a technological as well as a scientific grand
challenge. To embark upon, conduct and complete the human genome project
was likewise a grand challenge.

Three Dimensions of Grand Challenges

Related to this monograph we can formulate three sets of grand challenges:
(i) integration of formal techniques, (ii) trustworthy evolutionary systems de-
velopment, and (iii) domain theories. We will briefly remark on these.

Integration of Formal Techniques

In [32, Chaps. 10, 12–15] we introduced UML class diagrams, Petri nets, mes-
sage and live sequence charts, statecharts and the duration calculus. The
chapters suggested that, when appropriate, these other notational, mostly
diagrammatic systems be used in conjunction with, for example, RSL. The
formal issue is: How does the semantics of RSL fit with the semantics of UML
class diagrams, Petri nets, message and live sequence charts, statecharts and
the duration calculus?

The referenced chapters gave some strong hints. But “the final jury is still
out!”

Much research and much experimental development still has to be done
before we deploy these combinations or integrations in common industrial
practice. For now they can be used in carefully monitored and integrated
formal techniques guru-tutored industrial developments. We refer to a series
of conferences on IFM: (Integrated Formal Methods), which are held annually,
for references to ongoing R&D [7,65, 69, 111].

• We consider it a ‘Grand Challenge’ to achieve a set of formal techniques
and formally based tools which together cover software development for
all of today’s and the immediately foreseeable applications.

1.4 Conclusion 33

Trustworthy Evolutionary Systems Development

Software systems evolve. From when they are first delivered till they are fi-
nally disposed of they usually undergo many, many changes, that is, they are
maintained: Corrected (for bugs), perfected (new functionalities are added,
old functionalities are, resource-consumption-wise, made more efficient), and
adapted (to new platforms). Software systems evolution, the proper handling
of legacy systems, i.e., systems that have been in use, say, for decades, is a
major problem. The use of formal techniques in the initial development of
these is no hindrance, but, we strongly believe, the non-use of formal tech-
niques and/or the absence of proper, fully comprehensive documentation, is
an obstacle to smooth, problem-free evolution.

• We consider it a grand challenge to achieve a set of development princi-
ples and techniques as well as a set of management practices which to-
gether cover all of today’s and the immediately foreseeable applications
and which by careful use — and reuse — can ensure software systems
whose evolution, from initial development, via repeated adaptive and per-
fective maintenance, to final disposition, perhaps decades later, ensure as
near bug-free software as is humanly conceivable.

Domain Theories

We repeat our adage: software cannot be designed before we have a reason-
able grasp of its requirements; requirements cannot be prescribed before we
have a reasonable grasp of the domain of the software; and hence it is of
utmost importance, as this monograph attests, to (somehow) build require-
ments development on domain theories. The somehow hedge makes room for
the developers to codevelop the domain description and the requirements pre-
scription.

• We consider the following to be examples of grand challenges: to achieve
domain theories for such domains as railways, transportation in general,
the market (buyers and sellers: consumers, retailers, wholesalers, produc-
ers, brokers, distributors, etc.), healthcare, financial services (banks, in-
surance companies, securities instrument brokers and traders, stock (etc.)
exchanges, portfolio management, etc.), and production (i.e., manufactur-
ing), etc.

On the Nature of “Grand Challenges”

Tony Hoare has formulated 17 criteria for a research topic to be a grand
challenge. We borrow the topic lines from [135], but edit, i.e., shorten Hoare’s,
as usual, poignant, discussion. In other words, we strongly encourage the
reader to study Hoare’s paper.

The “it” below refers to “a grand challenge”.

34 1 On Domains and On Domain Engineering

1. Fundamental: It relates strongly to foundations, and the nature and
limits of a discipline.

2. Astonishing: It implies constructing something ambitious, heretofore not
imagined.

3. Testable: It must be objectively decidable whether a grand challenge
project endeavour is succeeding or failing.

4. Revolutionary: It must imply radical paradigm shifts.
5. Research-oriented: It can be achieved by methods of academic research

— and is not likely to be met sôlely by commercial interests.
6. Inspiring: Almost the entire research community must support it, enthu-

siastically, even while not all may be engaged in the endeavour.
7. Understandable: Comprehensible by — and captures the imagination

of — the general public.
8. Challenging: Goes beyond what is initially possible and requires insight,

techniques and tools not available at the start of the project.
9. Useful: Results in scientific or other rewards — even if the project as a

whole may fail.
10. International: It has international scope: Participation would increase

the research profile of a nation.
11. Historical: It will eventually be said: It was formulated years ago, and

will stand for years to come.
12. Feasible: Reasons for previous failures are now understood and can now

be overcome.
13. Incremental: Decomposes into identified individual research goals.
14. Cooperative: Calls for loosely planned cooperation between research

teams.
15. Competitive: Encourages and benefits from competition among indi-

viduals and teams — with clear criteria on who is winning, or who has
won.

16. Effective: General awareness and spread of results changes attitudes and
activities of scientists and engineers.

17. Risk-Managed: Risks of failure are identified and means to meet will be
applied.

1.4.4 Application Areas

With this section we shall try to give some more examples. But the examples
will only be dealt with in a discursive manner. For each of a number of such
examples, we will briefly outline the application area and then refer to a
monograph, a book, in which the example is covered to some non-trivial depth.

We mention the following books:

• I. Hayes (ed.): Specification Case Studies (Prentice Hall, 1987), [130].
• C. Jones, R. Shaw (eds.): Case Studies in Systematic Software Develop-

ment (Prentice Hall, 1990), [151].

1.4 Conclusion 35

• H.D. Van, C. George, T. Janowski, R. Moore (eds.): Specification Case
Studies in RAISE (Springer, April 2002), [238].

Needless to say: they (should) all belong in the reference library of the pro-
fessional software engineer.

In the list below chapter references are to chapters in the above mentioned
and below repeated first references. Second, separately bracketed references
are to individual papers (chapters).

1. The UNIX Filing System: Chap. 4 [130] [183]
Title explains the application.

2. CAVIAR: Visitor Information System: Chap. 5 [130] [98]
A reasonably sophisticated company visitor and meeting (room reserva-
tion) system is developed.

3. The IBM CICS Transaction System: Chaps. 14–17 [130] [131]
A number of papers outline the major legacy system reengineering of the
IBM Customer Information and Control System (CICS).

4. A Proof Assistant: Chap. 4 [151] [182]
The design of a proof assistant system, with theorem store, proof verifi-
cation, etc., is carefully argued.

5. Unification: Chaps. 5, 6 [151] [97]
Two chapters outline fundamental aspects of unification, a technique used
extensively in proof systems, and in rewrite systems, including interpreters
for, for example, logic programming languages.

6. Storage: Chaps. 7, 8 [151] [108]
Two papers investigate heap storage and garbage collection.

7. Graphics: Chap. 13 [151] [170]
Paper investigates and formalises line representations on graphics devices.

8. A University Library System: Chap. 3 [238] [194]
A reasonably sophisticated library system is developed.

9. A Radio Communications-Based Telephone Switching System:
Chap. 4 [238] [91]
In a fascinating development, a system for radio communication-based
telephony for The Philippines is developed. It involved a centralised sta-
tion and some 40 (Philippine island remote) stations, time-division multi-
plexing (TDM), and many other technology-based hardware equipment
factors. This careful, stepwise development unfolds towards an imple-
mentable system.

10. A Ministry of Finance Information System: Chap. 5 [238] [164]
Developed for the Vietnam Ministry of Finance, this system involves the
Taxation, the Budget and the Treasury Departments as well as all the
actions within and between them: from assessment of tax bases, via the
budgeting for all ministries, to the collection of taxes.

11. Multilingual Document Processing: Chap. 6 [238] [92]

36 1 On Domains and On Domain Engineering

A system is developed for processing (creating, editing, communicating
and displaying) documents containing any number of scripts for any com-
bination of the four script directions: horizontal left-to-right (say English),
horizontal right-to-left (say Arabic), vertical left-to-right (say Mongol) and
vertical right-to-left (say old Chinese and Japanese).

12. Production Processes: Chap. 7 [238] [193]
A manufacturing system is developed, one which involves production cells,
stock handling and all the related processes.

13. Travel Planning: Chap. 8 [238] [223]
A reasonably sophisticated travel planning system is developed.

14. Authentication: Chap. 9 [238] [235]
Some safety properties of authentication protocols are formulated and
proven.

15. Spatial Graphics: Chap. 10 [238] [190]
A model of (what is called) the Realm data structure and its operations is
given. The Realm data structure is used in representing three-dimensional
spatial data and operations on these.

1.4.5 Closing Remarks

On Programming, Engineering and Management

Most, if not all, software engineering texts and handbooks concentrate on the
management aspects and on the informal, human-centered facets of program-
ming and engineering.

We shall, in this monograph, focus on abstraction and both informal and
formal modelling of systems and languages; focus on the development princi-
ples and techniques of a new kind of engineering: domain engineering; bring
an altogether new focus to bear on the phases of requirements engineering
and software design. We have only briefly, in Chap. 2 and Chap. 5, covered
some aspects of software management. The new focus, to remind the reader, is
based on all software development being initially based on extensive and seri-
ous domain engineering. The stage of domain requirements, and the stages of
software design from either and all of the three domain, interface and machine
requirements, highlight the new focus — as does the insistence on codevelop-
ing both informal and formal specifications.

From this triptych view of software engineering springs a new awareness
of software development management. Such management is predicated on the
systematic (“light”) or rigorous or even formal use of the principles and tech-
niques of these three volumes. Traditional engineering management is predi-
cated by laws of natural science and must consider human factors. Software
engineering management, in contrast, is predicated on the more mathemati-
cal theories of computing science and the application domains, and then must
consider human factors. Software development management is a fascinating
area. But it is not one that we feel competent to “preach” about.

1.4 Conclusion 37

Current Software Engineering Edifices

In today’s software engineering there are usually no two similar software en-
gineering solutions to identical or near-identical problems. Software systems,
from different suppliers, but for near-identical application problems usually of-
fer significantly different user interfaces; and oftentimes vastly different (“hid-
den”) implementations. Each such software system usually requires significant
training. Users switching from one product to what ought be a similar prod-
uct most often require significant retraining. Such “reusers” typically do not
recognize that these distinct software products are providing near-identical
solutions. As a result users become “religious” about software systems that
they are using. Companies, for fear of retraining costs, when seeking new
staff usually advertise that they are using “such-and-such” software prod-
ucts and that applicants must have the proverbial “two and a half years”
prior experience with this product. I consider this a disgrace to our industry.
An airline pilot with Airbus airplane flight experience can with predictable
and acceptable costs be retrained for Boeing airplanes. And conversely. Many
application solutions require that their users learn a whole vocabulary of con-
cepts. Typically these vocabularies are not (theory of) domain-oriented; some-
times they are somewhat requirements-oriented; and usually they are strongly
implementation-oriented. In any case such vocabularies are detrimental to the
intellect of their (forced) users.

Current Software Engineering Jargon

Not all software is end-user software — in the sense of these users being
people who have not been trained in IT in general. Two categories of soft-
ware (packages) that can be characterised as not being end-user software
(packages) are computing systems base software like database systems, com-
pilers, multiple-user operating systems, and so on, and so-called middleware.
The current jargon defines middleware software as software that allows “front
ends” like web browsers/servers or other end-user software packages to com-
municate with “back end” base software like database management systems
(i.e., databases).

A New View on Software Engineering

The main messages of this monograph is: The diligent reader will gain a view
of software engineering which is rather different from the view we think is usu-
ally propagated by traditional textbooks. The message here is that software
engineering is a highly intellectual activity. In addition to good engineering
analysis, software engineering emphasises writing beautiful documents. The
view is also characterised by reasoning over texts, and calculation, in the form
of transformation (refinement and reification), verification, model checking

and tests, calculations that take formal texts and yield formal texts. Soft-
ware engineering is only to a small extent based on the natural sciences.
Software engineering is primarily based on computing science and hence on
the mathematical disciplines of logic, recursive function theory and modern
algebra. The above view applies also when the principles and techniques of
these three volumes are applied in their informal version. When applied in the
formal version the message covers a spectrum of “formality”: from systematic
(“lightweight”), via rigorous, to (fully) formal uses of formal techniques. This
view and this message is carried most forcefully by [31–33, Vols. 1 and 2]. If the
reader only follows the first message (and therefore hardly deploys even the
lightweight formal techniques approach), or follows either of the systematic
to formal approaches and then finds, after having studied these volumes, that
her view on software engineering has changed accordingly, then the author
has achieved a main objective.

2

Possible Collaborative Domain Projects1

A Management Brief

• JAIST/DEDR2 has some interest-
ing things to offer.

• It is in the domain engineering
area of software engineering:
⋆ the orderly,
⋆ manageable, and
⋆ believable
development of
⋆ trustworthy,
⋆ dependable
⋆ software
— on time, at cost — the right soft-
ware:
⋆ verifiably correct and
⋆ and customer-validated.

• This chapter outlines some ideas on
⋆ possible joint collaboration
⋆ centered around the first phase

of a triptych of software engi-
neering

⋄ domain engineering,

⋄ requirements engineering
and

⋄ software design;

⋆ and based on using formal ap-
proaches

⋄ that allow careful interactive
analysis

⋄ validation

⋄ and verification

of designs.

• There is another JAIST/DEDR sup-
porting document. Chapter 1:

⋆ On Domains and Domain Engi-
neering

Prerequisites for Trustworthy
Software

A Necessity for Believable
Project Management

It provides substantial evidence.

Abstract

In this note we suggest a number of alternative, collaborative projects
within the broader research and engineering area of domain theory and
domain engineering.

The common denominators are: The collaborators (i.e., partners), in-
cluding the proposing JAIST/DEDR Group, each have their own vested
interest in one or another facet of the proposed joint topic of R&D; the

1This is an edited version of [29]. Presented, together with [28], at a number of
meetings with Japanese Software and IT industry leaders during the Spring of 2006.

2DEDR: Domain Engineering and Digital Rights, a JAIST COE Project:
http://www.ldl.jaist.ac.jp/drcp/

40 2 Possible Collaborative Domain Projects

goal of the project can thus be defined both as the sum of the goals of
each partner as well as the sum-total of their working together: namely
an increased, mutually beneficial awareness of engineering by academia,
and an increased awareness of academic research approaches and results
by industry.

Expected outcome of the joint R&D are: (i) Sizable precise descrip-
tions (in English and Japanese) of selected (i.e., chosen) domains, their
formalisation and analysis; (ii) example software package or sub-system
development for selected applications and related to the chosen domain
descriptions; (iii) and increased awareness in the Japanese IT commu-
nity of the benefits of strict domain engineering, related requirements
engineering and trustworthy software.

2.1 Background

The background for this proposal is the emergence of a new technically sound
and scientifically fascinating approach to software development: From domain
models via requirements to software design. This approach is illustrated es-
pecially by Item 3, [33], in the series:

1. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theo-
retical Computer Science, the EATCS Series. Springer, 2006.

2. Software Engineering, Vol. 2: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

3. Software Engineering, Vol. 3: Domains, Requirements and Software De-
sign. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006.

We also refer to Chap. 1:

4. Domains and Domain Engineering. Prerequisites for Trustworthy Soft-
ware. A Necessity for Believable Project Management.

2.2 Prior Evidence

Needless to say, we would not put forward this document unless we represent
some strong previous and successful projects of the kind mentioned in the
next section. Our reference list includes:

2.2.1 Ministry of Finance, Vietnam

MoFIT/UNU-IIST

Over a three year period in the mid-1990s UNU-IIST, the UN University’s In-
ternational Institute for Software Technology, www.iist.unu.edu, collaborated

2.2 Prior Evidence 41

with the Vietnamese Ministry of Finance on domain engineering, requirements
capturing and suggesting a computing system architecture for the problem de-
scribed in the next section. That problem is formulated generically.

General

A ministry of finances perception of the nation in which it serves is that
it is hierarchically organised: the state (s), the (non overlapping, contained)
provinces (pi), the (non overlapping, contained) districts (within provinces,
dij

), and the (non overlapping, contained) communes (cities, townships, vil-
lages, etc., cijk

) within provinces — such that all provinces “make up” the
state ({p1, p2, . . . , pi, . . . , pp} = s), all districts of a province “make up” that
province ({di1 , di2 , . . . , diι

, . . . , did
} = pi), and all communes of a district

“make up” the district ({ciι1
, ciι2

,. . . ,ciιi
, . . . , ciιc

} = diι
).

Now the main functions of a ministry of finance wrt. its own taxation
department, the budget departments (of various ministries and of the ministry
of finance) and that ministry’s treasury department are as follows:

• Assessment: Annually an order is issued — by the ministry of finance
taxation department — whereby the corresponding taxation departments
of each province (of the state), each district within each province (of the
state), and each commune within each district (etc., etc.) are to assem-
ble, gather, obtain, by census or otherwise, statistical data, that is “the
assessment data”. These data represent “best guesses” of the basis for
tax revenue (such as personal income, sales (for sales tax purposes), fees
(for services rendered by province, district or commune authorities), etc.).
From the communes this kind of data is communicated (perhaps in sim-
plified, summary form) to the district of that commune, and likewise from
district to province, and to state. These communications must take place
before certain dates (Dac→d

, Dad→p
, Dap→s

).
• Budgeting: More or less simultaneously an order is issued — by the

budget department of the ministry of finance — whereby each ministry
(mµ, incl. the ministry of finance, mf) is to set up a budget, Bmµ

, for
next year’s activities (i.e., expenditures) Emµ

. The ministry of finance sets
an initial ceiling Imµ

(of so many millions of, say, dollars) for respective
ministries’ expected incomes.

The various ministries submit their (possibly negotiated) budgets for
next year to the ministry of finance by a certain date D→m. A twist to
this budgeting process may occur if the ministry of finance judges, well
before D→m, but after Dap→s

, that the assessment data warrants either
a downward (pessimistic), or an upward (optimistic), adjustment of the
income Imµ

. The submitted budget Bmµ
must balance within the possibly

adjusted income ceiling Imµ
. The various ministries also have “shadow”

budget departments in each province, district and commune.

42 2 Possible Collaborative Domain Projects

• National Budget Enactment: The parliament then negotiates and
eventually, in time for the next year, passes the national budget, Bs, as
assembled from all ministries’ individual budgets Bmµ

.
The budget Bs is subdivided into province, district and commune ex-

penditures.
• Treasury Tax Collection: Finally, the next fiscal year arrives, and the

ministry of finance taxation department requests the taxation departments
(of provinces, districts and communes) to regularly gather all relevant
taxes and regularly send appropriate proportions of these taxes to the
corresponding commune, district, province and state treasuries. Thus some
proportion of a commune tax revenue goes to that commune’s treasury, and
the rest to the district treasury. As districts, independently of communes,
also gather taxes, their income derives from these taxes and from the
communes, and its outlay goes locally, to the district treasury and the
treasury of its province, and so on.

References

• Do Tien Dung, Le Linh Chi, Nguyen Le Thu, Phung Phuong Nam, Tran
Mai Lien, and Chris George. Developing a Financial Information Sys-
tem. Technical Report 81, UNU-IIST, P.O.Box 3058, Macau, September
1996. http://www.iist.unu.edu/newrh/III/1/docs/techreports/re-
port81.pdf

Abstract: This document describes the work done in the UNU/IIST
MoFIT project during the period April–September 1996 by five Fellows
from Vietnam (four from the Ministry of Finance, one from the Institute
of Information Technology). The eventual aim of the project is to describe a
complete financial information system. The first part of the project concen-
trated on the taxation system, the Vietnamese Government’s main revenue
collecting system. It includes a domain analysis in two parts, an informal
narrative and a formal model; a prototype of part of that system developed
from the formal specification and used to test it; a description of the se-
curity aspects of the system; an extension of the formal model describing
the security aspects; and a description of taxation policies, particularly
those likely to change in the immediate future. The formal components
are written in the RAISE specification language, RSL using the RAISE
development method.

• Do Tien Dung, Chris George, Hoang Xuan Huan, and Phung Phuong
Nam. A Financial Information System. Technical Report 115, UNU-IIST,
P.O.Box 3058, Macau, July 1997. http://www.iist.unu.edu/newrh/-

III/1/docs/techreports/report115.pdf3

Abstract: In this document we continue the work started in “Developing

3Partly published in Requirements Targeting Software and Systems Engineering,
LNCS 1526, Springer-Verlag, 1998.

2.2 Prior Evidence 43

a Financial Information System”, UNU/IIST Research Report 81. That
document concentrated on the taxation system and on its detailed devel-
opment. Here we take a broader view, sketching the taxation system and
also the budget, treasury and external aid and loan systems. Then we
show how these may all be combined, allowing not only “vertical” commu-
nication within each system but also “horizontal” communication between
components of different systems. We thus provide a top-level specification
of a national financial information system.

2.2.2 Railway Computing Systems, China

With the Chinese Ministry of Railways UNU-IIST, over a four year period,
1993–1996, carried out a domain–requirements–software design study for a
train running map system for the ZhengZhou–WuHan north–south artery. A
train running map is a two dimensional diagram. Horizontal lines designate
train stations. The horizontal, say the t, dimension denote time. The vertical
dimension denote lines between stations such that if two adjacent horizontal
lines designate stations si and sj , then the space between these horizontal lines
denotes the rail line(s) between si and sj . Let us assume si above sj . A train
traveling from si and sj is now denoted by a specific slanting, i.e., a diagonal
line, “the train”, proceeding from “north–west” to “south-east”. “The train”
traveling from sj and si is therefore denoted by a specific slanting, i.e., a
diagonal line proceeding from “south-west” to “north-east”. Steeper diagonal
lines denote faster trains. Usually a running map depicts many trains. In the
period t0 (leftmost edge) to tN (rightmost edge) there might typically be 30-
40 trains in either direction. The map is “crowded”. A delayed (too fast) train
shows up skewed, with a slower (steeper) gradient than its scheduled diagonal.
If there are n crossing train diagonal lines between adjacent stations then there
must be n parallel tracks (somewhere) between these stations. Rescheduling
a train means to both move the scheduled diagonal to the right and to change
its gradient. When moving “the train” its gradient may cross other train
gradients on the line — which may not be feasible if it is a single line. Hence
a running map system is a rescheduling system for quickly moving “trains”
around subject to rules & regulations.

We refer to a small collection of mostly UNU-IIST-related documents and
publications [13, 15, 17, 20–24, 49, 51, 53, 57, 93, 102, 103, 162, 163, 181, 191, 204,
208,209,227,234,244,246,249].

2.2.3 Radio Communications, The Philippines

With the Philippine government’s Advanced Science and Technology Institute
(ASTI), UNU-IIST carried out a joint R&D project on a radio communica-
tions based telephone system 1994–1996. It was subsequently completed by
ASTI in Manila.

44 2 Possible Collaborative Domain Projects

Simplifying — but see the reference below — the system was built up
around a central radio station and a number of (40) local, inexpensive radio
stations (placed in the vast island country of The Philippines). Think of the
1+40 stations organised as a simple one level tree, the root is the central
station, the immediate subtree leaves are the 40 local stations. Order these
1–40. Number the root 0. Now communication is like a conveyour belt that
winds its way from the root to the first station and back, then from the root
to the second station, and back, and so on, from the root to the 40th station
and back, and then all over again: 0 − 1 − 0 − 2 − 0 − 3 − 0 · · · 0 − 39 − 0 −
40− 0− 1− 0− 2− 0 · · · . Telephone calls are now digitally time-multiplexed
so that a call from any subscriber (attached to some station i (0..40)) to
some other subscribed (attached to some station j (0..40)) is chopped into
“zillions” of small packages and placed on the conveyour belt suitably marked
with sender and receiver information. The project was then to specify this
domain: the equipment, the arrangement of telephone messages, their dial-
up and connection, etc., and then to establish requirements to a dependable
software control system and its design.

• Roderick Durmiendo and Chris George. Formal Development of a Digi-
tal Mutiplexed Radio-Telephone System. Research Report 67, UNU-IIST,
P.O.Box 3058, Macau, Feb 1996. http://www.iist.unu.edu/newrh/-

III/1/docs/techreports/report67.ps.gz

Abstract: This paper presents a formal development of a Radio Telephone
System by a sequence of correctness-preserving refinements. We follow sev-
eral steps of refinement from an abstract applicative specification which is
validated against the properties and behavior of a basic telephone service,
to a specification involving a central station and a number of remote sta-
tions communicating synchronously by means of radio channels. Particular
features of the development are the decomposition of the basic telephone
service into separate layers for the phones and the communication net-
work, and the introduction of finite communication resources. We verify
that the decompositions preserve correctness and that the resources are
allocated and released correctly. The work was carried out with the RAISE
specification language and its associated method, using the RAISE tools.

2.3 Possible Project Topics

As can also be gleaned from Item 4 on page 40 we suggest joint R&D projects
around domains, requirements and advanced software for either one or more
of the following areas, with one or more selected areas giving rise typically
one collaborative project:

2.3 Possible Project Topics 45

2.3.1 Administrative Forms Processing

Public and private institutions, enterprises, businesses, industries, are becom-
ing increasingly dependent on semi-automated document handling systems.
These systems have grown piecemeal, from simple document text processing
to “office” products, etc. Many issues of generality, of safe and secure transfer
of documents, etc., are given short shrift4. It is about time to reconsider the
issues from basic principles.

Topics: Documents of all kinds and forms dominate the public and private
administration. Templates serve as the basis for filling-in applications,
surveys, questionnaires, invoices, budgets, accounts, and other forms of
simple documents. Meta-templates serve to aggregate simple documents
into aggregate documents (transacted invoices into accounts, merging ac-
counts and budgets into audits, etc.). Document handling further involves
such issues as who maintains (keeps) masters, who is allowed to edit and
copy documents, documents only being accessible to properly authorised
persons. Documents may also belong to the so-called digital rights domain:
video clips, photos, music, movies, books, etc.

Of interest to: Public and private administrators and administrations, hos-
pitals, banks, insurance companies, taxes and excise departments of the
ministry of finance, etc., etc., and the providers of IT services, equipment
and software for this infrastructure segment of society.

Goals: There are several concurrent goals: (i) To develop a common the-
ory of documents, a theory manifested in the form of well-written nar-
rative descriptions in Japanese (and English) as well as formalised in for
example CafeOBJ. (ii) To develop portable software modules that han-
dle one or another kind of document handling facet (creation, editing,
copying, distribution, shredding) and also protection (copyrights (digital
rights management), access authorisation (security), and secure availabil-
ity). (iii) Possible industry standardisation proposals. (iv) New electronic
(incl. mechatronics) “gadgets” for document handling.

We refer to Chap. 7.

2.3.2 Air Traffic

Aircrafts cruise the air lanes. Air traffic becomes increasingly denser. Air
traffic control (ATC) becomes increasingly more serious.

Topics: We propose to domain model the aircraft airspace of airports, air
lanes, and air traffic control centers (terminal towers, approach towers,
regional and continental control centers) — i.e., of their entities, functions,

4Merriam-Webster defines ‘short shrift’ by: barely adequate time for confession
before execution, little or no attention or consideration, quick work – usually used
in the phrase make short shrift of

46 2 Possible Collaborative Domain Projects

events and behaviours. Included in this modelling is also the modelling of
the supporting technologies (radar, tactical collision avoidance systems,
etc.), the management and operation of air space, the (ICAO and local
aviation authority) rules and regulations, their scripts, and the spectrum
of from diligent via sloppy and delinquent to outright criminal behaviour
of humans acting in the air traffic domain (pilots, controllers, etc.).

Of interest to: Civil aviation authorities, airlines, air traffic controllers,
airports, pilots, passengers, etc. — as well as to the aircraft and the IT +
software industry providers of technology.

Goals: There are several concurrent goals: (i) To develop a common theory
of air traffic, a theory manifested in the form of well-written narrative
descriptions in Japanese (and English) as well as formalised in for example
CafeOBJ. (ii) To develop portable software modules that handle one or
another kind of air traffic control. (iii) Possible industry standardisation
proposals. (iv) New electronic (incl. mechatronics) “gadgets” for air traffic
control.

We refer to:

5. See Appendix Sect. A.1.1 on page 332.
6. Dines Bjørner: Software Systems Engineering — From Domain Analy-

sis to Requirements Capture: An Air Traffic Control Example. 2nd Asia-
Pacific Software Engineering Conference (APSEC ’95), Brisbane, Queens-
land, Australia (IEEE Computer Society, 1995)

7. Kristian Kalsing: Specification of Air Traffic Control5. Software Verifica-
tion Research Centre, School of Information Technology, The University
of Queensland, Australia, October 3, 1999.

2.3.3 Airports

Increasingly, around the world, air traffic grows by “leaps and bounds”. Air-
ports are becoming congested. New airports are being rapidly built. China
expects, according to industry sources, to open one new airport every month
for the next 10 years! Airport management, including the training of airport
service and support staff becomes acute.

Topics: An airport can be seen as a work flow system where people (passen-
gers, aircraft crews, gate staff, etc.), aircraft, aircraft supplies (luggage,
catering, gasoline), aircraft cleaning, aircraft mechanical etc. check, in-
formation (tickets, boarding cards, luggage tabs, passenger lists, revised
timetables, etc.), etc., flow and interact. We propose to domain model
airports, including the entities of an airport, the functions, the events and
the behaviours. Included in this modelling is also the modelling of the sup-
porting technologies (check-in counters, boarding card machines, luggage

5http://www.ldl.jaist.ac.jp/dedr/airtrafficcontrol.ps

2.3 Possible Project Topics 47

tab machines, baggage conveyor belts, etc.), the management and opera-
tion of airports, the spectrum of from diligent via sloppy and delinquent
to outright criminal behaviour of humans acting in the airport domain
(passengers, gate staff, etc.).

Of interest to: Passengers, airlines, airports, civil aviation authorities, air-
craft crews, suppliers (catering services, cleaning services, etc.), the soft-
ware houses providing airport software packages, etc.

Goals: There are several concurrent goals: (i) To develop a common theory
of airports, a theory manifested in the form of well-written narrative de-
scriptions in Japanese (and English) as well as formalised in for example
CafeOBJ. (ii) To develop portable software modules that handle one or
another kind of airport operation. (iii) Possible industry standardisation
proposals. (iv) New electronic (incl. mechatronics) “gadgets” for airports.

8. Anders Dinesen and Ibrahim Alameddine: Towards Domains, Require-
ments, Software Design. Descriptions for Airport Management Applica-
tions6. This is an undergraduate student term project (1/5’th weekly
load) Dept. of IT, Technical University of Denmark, August 8, 2000

2.3.4 Financial Service Industry

E-Banking, the handling of insurance payments and claims processing and
buying and selling securities instruments (stocks, bonds, etc.) over the Inter-
net, etc., calls for an overhaul of our understanding of the whole financial
service industry.

Topics: We propose to comprehensively domain model not only the individ-
ual transactions within banks, insurance companies, stock (etc.) brokers
and traders, the stock exchanges, portfolio management, credit card com-
panies, etc., but more importantly, on the basis of sufficiently detailed
models of the former, to domain model, on one hand, the interactions be-
tween these “players”, between banks, between insurance companies, etc.,
and between banks and insurance companies, between banks and securities
instrument brokers and traders, between banks and credit card companies,
etc., and, on the other hand, between “the market”: consumers, retailers,
wholesalers, producers, distributors and banks, etc., etc.

Of interest to: (i) Each and everyone of all the commercial players of the fi-
nancial service industry: banks, insurance companies, stock (etc.) brokers
and traders, the stock exchanges, portfolio management, credit card com-
panies, etc., (ii) private citizens (the users, the clients, customers, of these
services), (iii) “the market” (retailers, wholesalers, producers, distribu-
tors), (iv) public and private regulatory agencies (state and federal sav-
ings & loan regulatory agencies, federal and state exchange commissions,

6http://www.ldl.jaist.ac.jp/dedr/airport.ps

48 2 Possible Collaborative Domain Projects

etc., etc.), involved ministries (finance, trade, industry, citizens protection,
etc.), “the public at larger”, and politicians (eager to profile themselves as
champions of either industry or consumers, “or both”!), and the software
houses providing financial software packages, etc.

Goals: There are several concurrent goals: (i) To develop a common the-
ory of the financial service industry, a theory manifested in the form of
well-written narrative descriptions in Japanese (and English) as well as
formalised in for example CafeOBJ. (ii) To develop portable software mod-
ules that handle one or another kind of financial service transactions (or
other). (iii) Possible industry standardisation proposals. (iv) New elec-
tronic (incl. mechatronics) “gadgets” for the financial service industry.

2.3.5 Health Care

Health costs are soaring. Freedom of choice with respect to selecting pri-
vate physician, clinic and hospital is spreading, specialisation of treatment
and treatment places (locations), etc., and all this within a framework of in-
creased differentiation of and collaboration between private and public health
insurance.

Topics: We propose to comprehensively domain model the flow of peo-
ple, information, material, and monitoring & control within the health
care sector at large: from citizens (healthy or sick), via private physi-
cians, treatment clinics, hospitals, pharmacies, the pharmaceutical indus-
try, providers of health care equipment, etc., to the national boards of
health, the ministries of health, etc. Special models, embedded within the
larger model, might focus on (1) patient medical records (in preparation
for electronic patient journals, EPJ)7, (2) hospitalisation plans, (3) the
interaction between analytical instruments (X-Ray machines, CTM (com-
puter tomography machines) and MRS (magnetic resonance scanners),
etc.) and patient medical records (cum EPJ), etc.

Of interest to: Patients, medical professionals, pharmacists, clinics, hospi-
tals, national boards of health, etc., the pharmaceutical industry, ministry
of health, the software houses providing health care software packages, etc.

Goals: There are several concurrent goals: (i) To develop a common theory
of the health care, a theory manifested in the form of well-written nar-
rative descriptions in Japanese (and English) as well as formalised in for
example CafeOBJ. (ii) To develop portable software modules that handle
one or another kind of health care transactions (or other). (iii) Possible in-
dustry standardisation proposals. (iv) New electronic (incl. mechatronics)
“gadgets” for the health care sector.

7See also project proposal 1: Administrative Forms Processing.

2.3 Possible Project Topics 49

9. Dines Bjørner: Domain Modelling some Healthcare Sector Concepts8.
Vastly incomplete internal draft report. Dept. of IT, Technical Univer-
sity of Denmark, September 14, 2000

2.3.6 Manufacturing

Agile manufacturing, the ability to “turn around” and respond quickly to new
or changed production orders, including the production of systems involving
many co-ordinated producers, is becoming an everyday issue.

Topics: We propose to comprehensively domain model the flow of people,
information, material, and monitoring & control within the manufacturing
companies and between these, as well as between these and suppliers of
product parts (incl. raw materials) and consumers of products, and also
the related supply chain of delivery services. More specifically we propose
to model manufacturing floors (of loosely or tightly coordinated machines,
conveyour belts or delivery fork lifts, etc., and their interfaces to the supply
and end-product warehouses), order processing departments, etc., etc. As
part of requirements for agile manufacturing we propose to model the
coordination (by agents and brokers) of how orders for agile production of
complex systems are resolvable through collaboration between otherwise
competing manufacturers.

Of interest to: The manufacturing industry in terms of individual man-
ufacturers and the industry as a whole (Keidanren9 and METI10), the
distribution (trucking) companies, industry research centres in industry,
at universities, and at government level, and the software houses providing
manufacturing software packages.

Goals: There are several concurrent goals: (i) To develop a common the-
ory of the manufacturing industry, a theory manifested in the form of
well-written narrative descriptions in Japanese (and English) as well as
formalised in for example CafeOBJ. (ii) To develop portable software mod-
ules that handle one or another kind of manufacturing company and/or
industry transactions (or other). (iii) Possible industry standardisation
proposals. (iv) New electronic (incl. mechatronics) “gadgets” for the man-
ufacturing industry.

We refer to Appendix C.

2.3.7 “The Market”

The concept of e-market is alluring. We all transact simple purchases over the
Internet: buying airline tickets, books, records, movie DVDs, etc. We are also

8http://www.ldl.jaist.ac.jp/dedr/healthcare.ps
9http://www.keidanren.or.jp/

10http://www.meti.go.jp/english/

50 2 Possible Collaborative Domain Projects

beginning to acquire, rent, or otherwise, music and movies: paying for their
rendering on suitable devices in our possession. A sizable variety of software
packages are offered. But do also these packages together constitute or reflect
a proper understanding of the market?

Topics: We propose to comprehensively domain model the market in terms
of consumers, retailers, wholesalers, producers, distribution services and
the interface to credit and bank card payment services. Included in such
a comprehensive model is the modelling of functions like inquiring as
to what is available, offering “deals”, submitting and accepting orders,
sending, accepting, invoicing, paying, rejecting, and “repairing” purchased
merchandise (between buyers [consumers, retailers, wholesalers] and sell-
ers [retailers, wholesalers, producers]). Included is also the modelling of
agents acting on behalf of potential buyers or sellers, and brokers acting
on behalf of potential buyers and sellers. Auctioning and the management
of digital rights licenses and their use are yet further matters that, to-
gether with the previous functionalities illustrate the depth and breadth
of “the market”.

Of interest to: Consumers, retailers, wholesalers, producers, distribution
services, credit card companies, banks, market (fair trade) associations,
consumer protection organisations, ministry of trade, the software houses
providing e-market systems, etc.

Goals: There are several concurrent goals: (i) To develop a common theory
of “the market”, a theory manifested in the form of well-written narra-
tive descriptions in Japanese (and English) as well as formalised in for
example CafeOBJ. (ii) To develop portable software modules that handle
one or another kind of market transactions (or other). (iii) Possible in-
dustry standardisation proposals. (iv) New electronic (incl. mechatronics)
“gadgets” for “the e-market”.

We refer to Appendix E and to

10. Dines Bjørner: Domain Models of “The Market” — in Preparation for E-
Transaction Systems11. In: Practical Foundations of Business and System
Specifications (Eds.: Haim Kilov and Ken Baclawski) Kluwer Academic
Press, The Netherlands, December 2002

2.3.8 Transportation

Transportation, as financial services and health care, count as the prime in-
frastructure components whose quality strongly influence a country’s or a
region’s welfare. Transportation takes many forms, i.e., there are many sub-
infrastructures that can each be tackled more or less separately — and some
of these will be covered in Sect. 2.3.8[1] (Page 51), Sect. 2.3.8[3] (Page 52) and

11http://www.ldl.jaist.ac.jp/dedr/themarket.ps

2.3 Possible Project Topics 51

Appendix B. But we can also speak of the generic domain of transportation:
transportation nets and traffic.

Topics: We propose to model the entities, functions, events and behaviours
of transportation nets and traffic, that is, of multi-modal segments (roads,
rail lines, air lanes, shipping lanes) and multi-modal junctions (street in-
tersections, railway stations, airports, harbours), their composition into
multi-modal nets, the projection of multi-modal nets onto single modality
nets (road nets, rail nets, air lane nets, shipping lane nets), the func-
tions of enlarging, reducing or “repairing” (incl., maintaining) segments,
junctions and sub-nets, the events of segments, junctions and sub-nets
(impassable, closed, disconnected, etc.), and the behaviours of nets and
traffic. Included in this overall model is the modelling of support technolo-
gies (such as traffic monitoring and control [junction semaphores, railway
line signals, etc.], etc.), management & organisation (of segment and junc-
tion maintenance, traffic, etc.), and rules & regulations (and their scripts,
for net maintenance, traffic, etc.).

Of interest to: Any of the stake holders in any of the road, rail, air traffic
or shipping domains.

Goals: There are several concurrent goals: (i) To develop a common, generic
theory of transportation, a theory manifested in the form of well-written
narrative descriptions in Japanese (and English) as well as formalised
in for example CafeOBJ; (ii) to serve as a basis for developing require-
ments for software that may be common to, i.e., shared by the domain
models covered in Chap. 7; and (iii) to otherwise serve as a common ref-
erence point for the domain models covered in Sect. 2.3.8[1] (Page 51),
Sect. 2.3.8[3] (Page 52) and Appendix B

We refer to Appendix B.

[1] Container Shipping

Topics: We propose to model the entities, functions, events and behaviours
of container shipping: containers, container ships, container (harbour) ter-
minals, the stowage of containers aboard ships and in (harbour or port)
terminal pool areas, the processing of shipping requests (bills of lading,
way bills),

Of interest to: Container shipping lines, container terminal ports, removal
companies arranging for the transport of goods, as well as software houses
and operations research companies providing IT and logistics consultancy
and software support.

Goals: There are several concurrent goals: (i) To develop a common theory
of container logistics, a theory manifested in the form of well-written nar-
rative descriptions in Japanese (and English) as well as formalised in for
example CafeOBJ. (ii) To develop portable software modules that handle

52 2 Possible Collaborative Domain Projects

one or another kind of containers transactions (order processing, stowage,
etc.). (iii) Possible industry standardisation proposals. (iv) New electronic
(incl. mechatronics) “gadgets” for container shipping.

See

11. Dines Bjørner: A Container Line Industry Domain, a 90 page report:
http://www2.imm.dtu.dk/˜db/container-paper.pdf

[2] Road Nets and Traffic

See Appendix B.

[3] Railways

Train traffic, in Europe, China, Japan and the United States is considered a
main provider of overland freight transport and, still in many places, passenger
transport. Road congestion, on free and toll ways are such that, with the
above, the demands on moving certain forms of transport away from roads
and onto rails is socially increasing.

Topics: We propose to model the entities, functions, events and behaviours
of railway systems: lines with their signalling and stations with their intri-
cate rail arrangements (leading to issues of interlocking), the monitoring
and control of train traffic, the setting of signals and switches, and so on.
Included in these models are models of supporting technologies reflecting
real time embedded systems (signals, interlocking, etc.), management &
organisation, rules & regulations, etcetera.

Of interest to: Railway infrastructure owners and operators, train opera-
tors, passengers, freightors, regulatory agencies, etc., as well as software
houses and operations research companies providing IT and logistics con-
sultancy and software support.

Goals: To develop a common theory of railways, a theory manifested in
the form of well-written narrative descriptions in Japanese (and English)
as well as formalised in for example CafeOBJ. (ii) To develop portable
software modules that handle one or another kind of railway planning
and operations. (iii) Possible industry standardisation proposals. (iv) New
electronic (incl. mechatronics) “gadgets” for railways.

See Appendix B, [13, 15, 17, 20–24,49, 51, 53, 57, 93, 102,103,162,163,181,191,
204,208,209,227,234,244,246,249] and

12. Dines Bjørner: Towards a TRain Book, This document suggests a number
of domain models for a variety of railway facets. It is part of an ongoing
domain theory “Grand Challenge” effort: TRain: http://www.railway-
domain.org/thetrainbook.ps.

2.4 Project Modalities

How do we foresee these projects being

• formulated,
• funded,

• carried out, and
• propagated?

Well, that’s what this chapter “is all about”! Let us just suggest a few ideas
concerning how possible joint projects may be carried out:

• Group(s) at the industrial (or institutional) partner(s) work[s] on their
application domain specific requirements and software designs — all the
while regularly communicating requirements and assumptions about the
domain to the other partners.

• The DEDR Group at JAIST works on the domain model:
⋆ carefully expressing

⋄ narratives and
⋄ terminologies (including ontologies)
⋄ in both Japanese and English;

⋆ carefully formalising this domain model in both
⋄ CafeOBJ and
⋄ RAISE and/or VDM;
and

⋆ carefully
⋄ analysing and
⋄ verifying properties, i.e.,
⋄ propositions, lemmas and theorems of the formalisations.

• The industry (institutional) and JAIST partners meet regularly, it is sug-
gested, typically once every 12 weeks12, for three–four days, presenting
their work to each other, discussing shortcomings, improvements and pos-
sibly revise project plans.
⋆ This mode of operation was and is typical of the European Community

ESPRIT and Framework Programme projects.
• Each project period is suggested to be 18 months.
• The joint project is suggested reviewed yearly, 15 months into each period.
• A full project is suggested to last for 2–3 periods.
• The project is suggested to yearly propagate its work at open, three day

workshops.

12Thus there are 11 full working weeks between the weeks where the groups meet.

Part II

A Science & Engineering of Domain Models

3

The Rôle of Domain Engineering in Software
Development1

Abstract

We outline the concept of domain engineering and explain the main stages
of developing domain models. Requirements engineering is then seen as an
intermediate stage where domain models are “transformed” into require-
ments prescriptions. Software Design concludes development — and we
comment on software correctness with respect to both requirements pre-
scriptions and domain descriptions. We finally overview this new phase
of development: domain engineering and argues its engineering virtues
while relating them to object-orientedness, UML, component-based SE,
aspect-orientedness and intentional software development.

3.1 Introduction

3.1.1 Triptych Dogma

Traditionally, today, software development starts with expressing require-
ments and then goes on to design software from the requirements. In this
paper we shall explain why this is not good enough. First we express the
triptych dogma: Before software can be developed we must understand its
requirements. Before requirements can be expressed we must understand the
domain in which the software (plus the hardware) is to reside. Therefore we
must first develop an understanding of that domain.

3.1.2 Triptych of Software Development

We therefore develop software as follows: First we develop a domain descrip-
tion. Then, from the domain description, we develop a requirements prescrip-

1This is an edited version of [37]. Presented at the October 2006 meeting of
the IPSJ (Information Processing Society of Japan) Software Engineering Symposium
2006, Tokyo.

58 3 The Rôle of Domain Engineering in Software Development

tion. And, finally, from the requirements prescription we develop a software
design. While developing we verify and validate the domain description, verify
and validate the requirements prescription with respect to the domain descrip-
tion and requirements stakeholder statements, and verify the software design
with respect to the requirements and domain specifications.

3.2 An Example: Railway Nets

Before we delve into too much “talking about” domain descriptions let us
show a tiny example. The example covers a description of just a small part
of a domain: the net of rails of a railway system. There are only two parts
to the description: A systematic, “tight”, precise English narrative, and “its”
corresponding formalsation in the specification language, RSL of RAISE [31–
33,44,101,104,106]. We do not show “all the work” that precedes establishing
this description.

3.2.1 Narrative

1. A railway net is a net of mode railway.
2. Its segments are lines of mode railway.
3. Its junctions are stations of mode railway.
4. A railway net consists of one or more lines and two or more stations.
5. A railway net consists of rail units.
6. A line is a linear sequence of one or more linear rail units.
7. The rail units of a line must be rail units of the railway net of the line.
8. A station is a set of one or more rail units.
9. The rail units of a station must be rail units of the railway net of the

station.
10. No two distinct lines and/or stations of a railway net share rail units.
11. A station consists of one or more tracks.
12. A track is a linear sequence of one or more linear rail units.
13. No two distinct tracks share rail units.
14. The rail units of a track must be rail units of the station (of that track).
15. A rail unit is either a linear, or is a switch, or a is simple crossover, or is

a switchable crossover, etc., rail unit.
16. A rail unit has one or more connectors.
17. A linear rail unit has two distinct connectors. A switch (a point) rail

unit has three distinct connectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

18. For every connector there are at most two rail units which have that
connector in common.

19. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

20. A linear sequence of (linear) rail units is an acyclic sequence of linear units
such that neighbouring units share connectors.

3.2 An Example: Railway Nets 59

3.2.2 Formalisation

type

1. RN = {| n:smN • obs M(n)=railway |}
2. LI = {| s:S • obs M(s)=railway |}
3. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value

4. obs LIs: RN → LI-set
4. obs STs: RN → ST-set

5. obs Us: RN → U-set

6. obs Us: LI → U-set

8. obs Us: ST → U-set

11. obs Trs: ST → Tr-set
15. is Linear: U → Bool

15. is Switch: U → Bool

15. is Simple Crossover: U → Bool

15. is Switchable Crossover: U → Bool

16. obs Ks: U → K-set

20. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom

4. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

6. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

7. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

8. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

9. ∀ n:RN, s:ST • s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

10. ∀ n:RN,l,l′:LI • {l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

10. ∀ n:RN,l:LI,s:ST •

l ∈ obs LIs(n)∧ s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

10. ∀ n:RN,s,s′:ST • {s,s′}⊆obs STs(n)∧s 6=s′ ⇒

60 3 The Rôle of Domain Engineering in Software Development

obs Us(s)∩ obs Us(s′)={}

11. ∀ s:ST•card obs Trs(s)≥1

12. ∀ n:RN,s:ST,t:Tr •

s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

13. ∀ n:RN,s:ST,t,t′:Tr •

s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′ ⇒
obs Us(t) ∩ obs Us(t′) = {}

18. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)} ⇒
card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

19. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in

∃ u,u′,u′′,u′′′:U • u ∈ sus ∧
u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks=obs Ks(u),sks′=obs Ks(u′),

lks=obs Ks(u′′),lks′=obs Ks(u′′′) in

∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}
end end

3.2.3 References

We can refer to more complete descriptions of railway domains: www.railway-
domain.org. There are some publications: [18, 20, 52, 53] and a “book”: “The
TRain Book”: http://www.railwaydomain.org/book.ps. See also Appendix B.

3.3 Domains

3.3.1 Examples of Domains

There are basically three kinds of domains, sometimes called application do-
mains or business domains. These are: base systems software such as compil-
ers, operating systems, database management systems, data communication
systems, etc.; “middleware” software packages: Web servers, word/text pro-
cessing systems, etc.; and the real end-user applications. That is, software for
airlines and airports; banks and insurance companies; hospitals and healthcare
in general; manufacturing; the market: consumers, retailers, wholesaler, the
distribution chain; railways; securities trading: exchanges, traders and brokers;
and so forth.

3.3 Domains 61

3.3.2 Domain Description

What Is a Domain Description

What do we mean by a domain description? By a domain description we
mean a document, or a set of documents which describe a domain as it is,
with no references to, i.e., with no implicit requirements to, software. The
informal language part of a domain description is such that a stakeholder of
that domain recognizes that it is a faithful description of the domain. So, a
domain description describes something real, something existing. Usually a
domain description describes not just a specific instance of a domain, but a
set of such, not just one bank but a set of “all” banks!

How Is a Domain Description Expressed?

How is a domain description expressed? By a domain description we mean
any text that clearly designates an phenomena, an entity, or a function (which
when applied to some entities become an action), or an event, or a behaviour
(i.e., a sequence of actions and events) of the domain, or a concept defined,
i.e., abstracted from other domain descriptions.

Domain Descriptions Are Indicative

Domain descriptions described what there is, the domain as it is, not as the
stakeholder would like it to be.

Informal and Formal Domain Descriptions

Domain descriptions come in four, mutually supportive forms, three informal
texts and one formal: (i) rough sketches are informal, incomplete and per-
haps not very well structured descriptions; (ii) terminologies — explaining
all terms: names of phenomena or concepts of the domain; (iii) narratives —
“tell the story”, in careful national/natural and professional language; and
(iv) formal specification — formalising in mathematics the narrative and pro-
vides the ultimate answer to questions of interpretation of the informal texts.
Initial descriptions necessarily are rough sketches. They help us structure our
thinking and generate entries for the terminology. Terminologies, narratives
and formalisations are deliverables.

Existing Descriptions

Are there accessible examples of domain descriptions? Yes, there are descrip-
tions now of railway systems, transportation nets, financial service industries,
hospital healthcare, airports, air traffic, and many other domains. Some are in
the form of MSc theses, some are part of PhD theses. Some fragment domain
descriptions are published in journal papers, some in conference papers. And
several are proprietary — having been developed in software houses. For all
the cases implied above the descriptions include formal descriptions.

62 3 The Rôle of Domain Engineering in Software Development

3.3.3 Domain Engineering

How to Construct a Domain Description?

In the following we will briefly outline the steps — domain stakeholder iden-
tification, domain acquisition, domain analysis, domain modelling, domain
verification and domain validation — that it takes to construct a domain
description.

Domain Stakeholders

All relevant stakeholders must be identified. For, say a railway domain, typical
stakeholder groups are: the owners of a railway; the executive, strategic,
tactical and operational management — that is several groups; the railway
(“blue collar”) workers — station staff, train staff, line staff, maintenance
staff, etc.; potential and actual passengers and relatives of these; suppliers of
goods and services to the railway; railway regulatory authorities; the ministry
of transport; and politicians “at large”. Liaison with representatives of these
stakeholder groups must be regular — as some, later, become requirements
stakeholders.

Domain Acquisition

The domain engineer need acquire information (“knowledge”) about the do-
main. This should be done pursuing many different approaches. The two most
important seems to be: (i) reading literature, books, pamphlets, Internet in-
formation, about the domain, and (ii) eliciting hopefully commensurate in-
formation from stakeholders. From the former the domain engineer is (hope-
fully) able to formulate a reasonable questionnaire. Elicitation is then based
on distributing and the domain engineers personally “negotiating” the ques-
tionnaire with all relevant stakeholders. The result of the latter is a set of
possibly thousands of domain description units.

Domain Analysis

Description Unit Attributes

The domain description units are then subjected to an analysis. First they
must be annotated with attribute designators, (i) ontological such as entity,
function, event, behaviour; (ii) facets such as intrinsics, support technology,
management & organisation, rules & regulation, script, human behaviour;
and (iii) administrative such as source of information, date, time, locations,
who acquired, etc.: etcetera.

3.3 Domains 63

Problems

Analysis of the description units involve looking for and resolving incomplete-
ness, inconsistency and conflicts.

Concepts

Analysis of the description units primarily aims at discovering concepts, that
is, notions that generalise a class of phenomena, and for discovering meta-
concepts, that is “high level” abstractions that together might help develop
as generic and hence, it is believed, applicable, reusable domain model as
possible.

Domain Modelling Proper

Domain modelling is then based on the most likely database-handled domain
description units. The domain model, that is, the meaning of the domain de-
scription must capture: (i) intrinsics: that which is at the basis of, or common
to all facets, (ii) technologies which support phenomena of the domain, (iii)
management & organisation: who does what, who reports to whom, etc., (iv)
rules & regulations — governing human behaviour and use of technologies —
(v) sometimes manifested in scripts, and (vi) human behaviour — diligent,
sloppy, delinquent or outright criminal. It must all be described!

Domain Verification

Verification — only feasible when a formal description is available — proves
properties of the domain model not explicitly expressed, and serves to ensure
that we got the model right.

Domain Validation

Validation is the human process of “clearing” with all relevant stakeholders
that we got the right model [64].

Discussion

Thus domain engineering is a highly professional discipline. It requires many
talents: interacting with stakeholders, ability to write beautifully and con-
cisely, ability to formalise and analyse formal specifications, etc. Domain en-
gineers are also researchers: physicists of human made universes.

64 3 The Rôle of Domain Engineering in Software Development

3.3.4 Professionalism of SE

Mechanical engineers are fully versant in the laws of the domain for which
they create artifacts (Newton’s Laws, etc.). Radio engineers, when hired, a
fully versant in Maxwell’s Equations — laws governing their application do-
main. And so it goes for all other professional engineers than SEs. Sometimes
their basis in theoretical computer science is rather shaky. And always they
know little or nothing about the business domain for which they develop soft-
ware: financial services, transportation, healthcare. It is not becoming of a
professional. Domain engineering brings professionalism into SE.

3.4 “Deriving” Requirements

3.4.1 “The Machine”

By “the machine” we understand that computing system, hardware and soft-
ware, which is to be inserted in the domain in order to support some activities
of the domain.

3.4.2 Three Kinds of Requirements

There are basically three kinds of requirements: (i) domain requirements —
those which can be expressed sôlely using terms of the domain; (ii) machine
requirements — those which can be expressed without using terms of the
domain (in the vernacular: sôlely using terms of the machine); and (iii) inter-
face requirements — those which must be expressed using terms both of the
domain and the machine. We treat these in a slightly changed order.

Domain Requirements

One can rather simply, that is very easily, develop the domain requirements
from the domain description. Here is how it is done: “Go through” the domain
description, with the various requirements stakeholders, while seeking answers
to the following sequentially order questions: (a) Projection: should this “line”
(being read) be part of the requirements? (b) Instantiation: if so, should what
is described be instantiated from its usually generic form? (c) Determination:
and — if it is expressed in a loose or non-deterministic, i.e., under-specified
manner — should it be be made more determinate? (d) Extension: Are there
potential phenomena or concepts of the domain which were not described
because they were infeasible in the domain — if so can a machine make it
feasible? (e) Fitting: Are there other requirements development, elsewhere,
with which the present one could be “interfaced”?

The result of a domain requirements development phase is a (sizable) doc-
ument that is expected to (functional-) requirements-specify that which can
be computed (and communicated electronically).

3.4 “Deriving” Requirements 65

Interface Requirements

The interface requirements development stage now starts by identifying all
the phenomena that are to be shared between the domain (“out there”) and
“the machine” (“in here”)!

The shared phenomena and (now, to be, machine) concepts are either sim-
ple entities, functions, events or behaviours. Each such shared phenomenon
leads, respectively, to interface requirements concerning entities: bulk data
(database) initialisation and refreshment; functions: man/machine dialogue
concerning computational progress; events: handling of interrupts, unforeseen
or rare situations, and the like; and behaviours: logging and replay monitoring
and control. For each of the four classes due consideration is paid wrt. use
of visual displays, tactile instruments (“mouse”, keyboard, stylos, sensitive
screens or pads, etc.), audio equipment: sound recognition and production,
smell, taste, and physics measurements.

The result of an interface requirements development phase is a (sizable)
document, adjoint to or interleaved with2 the domain requirements docu-
ment, that is expected to (user-) requirements-specify that which can be in-
terchanged (input/output between man or machine and machine).

Machine Requirements

Machine (or systems) requirements deal with such matters as performance:
dealing with concerns of storage and response times (hence equipment “num-
bers”); dependability: accessibility, availability, reliability, fault tolerance; se-
curity, etc.; maintainability: adaptive, perfective, corrective and preventive
maintenance; portability: development, demonstration, execution, and main-
tenance platform issues; documentation: installation, training, user, mainte-
nance and development documents.

The machine requirements are developed “against” a check-list of all these
requirements possibilities and focusing on each line of the domain require-
ments and interface requirements documents.

The result of a machine requirements development phase is yet a (sizable)
document — adjoint to the domain and interface requirements documents
— that is expected to (system-) requirements-specify that which can be also
implemented.

3.4.3 Further SE Professionalism

Requirements engineering has been made easy. The domain is relatively sta-
ble. There is now a clear, well-defined path from domain models to require-
ments models. The adage, i.e., the common observation, “requirements always

2Whether adjoint or interleaved is a determined by style and by the problem-at-
hand.

66 3 The Rôle of Domain Engineering in Software Development

change” need no longer be true. For a software engineer to command the
process of creating domain models and comfortably transforming them into
requirements with input from requirements stakeholders signifies professional
SE.

3.5 Software Design

To round off the triptych approach to software development, such as advocated
here, we briefly mention that the requirements specifications (which prescribe
what), are now the basis for refinement into software designs (the how). We
shall not go into these aspects in this paper but refer the reader to the rather
fully comprehensive [31–33] other than recalling

D,S |= R

Correctness of S with respect to R can be proven using recorded assumptions
about the D.

3.6 Rôle of Domain Descriptions

3.6.1 A Science Motivation

One rôle of domain modelling is that of obtaining and recording understand-
ing. The domain engineer is a researcher: studies “new territory”. Just as
physicists for centuries have studied “mother” nature, so it is high time we
study the universes of man-made structures.

3.6.2 A Engineering Motivation

Another rôle of domain modelling is the engineering one. We present an el-
egantly formulated summary of the rôle of domain descriptions in software
engineering. It was expressed by Sir Tony Hoare — in an exchange of e-mails
in July 2006.

Tony Hoare’s Assessment

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any
good software design in the area. They describe possible places to define the
system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be
made in any embedded software design, especially one that is going to be
formally proved.

3.6 Rôle of Domain Descriptions 67

3. They describe the whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

Structuring of Rôles

We rephrase our and Tony’s formulation as follows: Domain models represent
theories of human organisations — and as such they are interesting in-and-by
themselves. Domain models also represent a first major result in a software
development: In proving correctness of Software with respect to Requirements
assumptions are repeatedly made about the Domain. We can summarise the
engineering rôle of domain engineering as follows:

D,S |= R

3.6.3 Conventional SE Paradigms

We are presenting a novel theory-based approach to software development.
This, the triptych approach has to compete with conventional software de-
velopment methods, that are currently en vogue in the industry. Let us try
relate some of these conventional methods to what we advocate: Examples
are: object-oriented programming (OO), unified modeling language (UML),
component-based programming (CBSE), aspect-oriented software engineering
(AOS), and int∃ntion∀l software development (∃∀).

I believe that you will find that some of the strengths of OO, CBSE and
especially ∃∀ are occurring “naturally” in both the domain engineering and in
the “derived” requirements engineering. That is, we wish to point out how we
can understand basic traits of OO, CBSE, AOP and especially ∃∀ and thus
explain why these approaches have won adherents.

OO Programming

We assume that the audience is well familiar with the OO programming
paradigm. We shall briefly list some of the OO “quarks”3: class, object,
method, message passing, inheritance, encapsulation, abstraction and poly-
morphism. Several of these “quarks” are specifically oriented at programming
rather than specifying.

3Term used by Ms Deborah J. Armstrong in naming fundamental OO concepts
(http://en.wikipedia.org/wiki/Object-oriented programming)

68 3 The Rôle of Domain Engineering in Software Development

The foremost feature of OO that are of interest in the context of domain
and requirements engineering is the concept of objects. OO objects are also
present in the triptych approach to formalisation: the encapsulation of related
entities, functions and events in a module, with that module now denoting
possible behaviours. Many object modelling techniques, essentially all discov-
ered by the Simula 67 originators [12], carry over to domain and requirements
specifications.

So first we remark that OO primarily addresses programming assuming
given requirements, whereas the triptych approach advocated here address
the entire span of software development from, and significantly focused on
domain modelling, and on deriving requirements from domain descriptions.
The triptych approach advocated here does not prescribe which combination
of coding paradigms you may wish to use: OO, AOP, CBSE, XP (Expert
Programming), etc.

The RSL scheme, class and object constructs and their parameterisation
provide for straightforward expression of object-orientedness.

UML

UML, to us, is a confused approach to software development. Yet, however,
it has some appealing features. It mixes informal textual specifications with
several graphical techniques (Petri nets, MSCs, Statecharts). It supposedly
has a “powerful” data schema concept (class diagrams). In UML you are
programming more than you are specifying.

But UML, to us, has problems: It has no notion of abstraction. It thus has
no notion of stepwise development — necessary to conquer complexity with a
phase, and necessary to separate the necessarily separated phases of domain
modelling (the why), requirements modelling (the what), and software design
(the how). One cannot reason logically over UML specifications. It is placed
somewhere between requirements and software design specifications. For these
reasons we cannot take UML serious4 and we wonder why professional software
engineers do?

CBSE: Component-based SE

A basic concern of CBSE is building software systems from reusable compo-
nents. There seems to be many different “schools” of CBSE. Being in Japan
it is reasonable to follow that of the CBSE Group, Fukazawa Laboratory,
Waseda University5: In a narrow sense, “a software component is defined as

4Well, we do, of course, and that is why, in [32, Chaps. 12-14], we “UML-ise”
formal techniques in that they cover Petri Nets, Message and Lice Sequence Charts
and Statecharts, respectively, and “integrate” them with, in our case, RAISE/RSL.

There really is no way in which we can ‘formalise’ UML.
5http://www.fuka.info.waseda.ac.jp/Project/CBSE

3.6 Rôle of Domain Descriptions 69

a unit of composition, and can be independently exchanged in the form of an
object code without source codes. The internal structure of the component
is not available to the public. The characteristics of the component-based
development are the following:

• Black-box reuse
• Reactive-control and component’s granularity
• Using RAD (rapid application development) tools
• Contractually specified interfaces
• Introspection mechanism provided by the component systems
• Software component market (CALS)

It is natural to model and implement components in an object-oriented
paradigm/language. Therefore, when understanding the component, the tra-
ditional techniques in the OO paradigm such like OO framework, design pat-
terns, architecture patterns and meta-patterns are very important”

We shall now try evaluate basic tenets of CBSE in light of the triptych
approach. We strongly advice that search for components start at the level of
domain modelling.

• Start with a simple entity.
• Which are the functions that “create”, inspect and change variables pri-

marily involving that (or those) simple entity (entities) ?
• Which are the events ?
• Choose such entities that basically form states that are subject to, i.e..,

“exhibit” behaviours.

Once identified in the domain, requirements may project, instantiate, determi-
nate, extend and fit them in a variety of ways. Such domain-to-requirements
operations may be expressed in the form of adjusting suitable parameters to a
schema/module/object like abstract formalisation of the domain component.
From here on many of the intriguing issues of CBSE can be better understood,
either as basic abstraction-to-concretisation refinements or as simple coding
tricks. CBSE certainly has a rôle in making the triptych approach even more
viable.

AOP: Aspect-oriented Programming

A basic concern of AOP is that some code is scattered or tangled, making
it harder to understand and maintain. It is scattered when one concern (like
logging) is spread over a number of modules (e.g., classes and methods). That
means to change logging can require modifying all affected modules. Modules
end up tangled with multiple concerns (e.g., account processing, logging, and
security). That means that to change one module entails understanding all
the tangled concerns.

AOP attempts to aid programmers in the separation of concerns, specif-
ically cross-cutting concerns, as an advance in modularization. AOP does so

70 3 The Rôle of Domain Engineering in Software Development

using primarily language changes, while AOSD (aspect-oriented software de-
velopment) uses a combination of language, environment, and methodology.

Separation of concerns entails breaking down a program into distinct parts
that overlap in functionality as little as possible. All programming methodolo-
gies — including procedural programming and object-oriented programming
— support some separation and encapsulation of concerns (or any area of in-
terest or focus) into single entities. For example, procedures, packages, classes,
and methods all help programmers encapsulate concerns into single entities.
But some concerns defy these forms of encapsulation. Software engineers call
these cross cutting concerns, because they cut across many modules in a pro-
gram.

So, really, AOS, is primarily a coding discipline. So why do we bring it
up here, in a presentation which is primarily not about coding, but about
domains and requirements. Some software engineers (may) ask: What is rela-
tion between the triptych approach and AOS?Our answer is: The cross cutting
concerns appear not to be caused by domain requirements, nor by interface re-
quirements, but by machine requirements. Thus problems of cross-cutting con-
cern appears to be introduced in a serious, but not really user-oriented stage
of requirements development. This “discovery” might enlighten researchers in
the AOS community.

∃∀: Intentional Software Development

The intentional software development paradigm is the creation of Charles
Simonyi6.

It appears that little if any literature is readily accessible [2, 224–226]. So
we shall resort to quoting from Intentional Software’s Web page (http://-
intentsoft.com/technology/glossary.html). The quotes are in slanted text.

Domain

A domain is an area of business, engineering or society for which a body of
knowledge exists. Examples include health care administration, telecommu-
nications, banking, accounting, avionics, computer games and software engi-
neering.

Domain Code

Domain code is the structured code to represent the intentions contributed by
subject matter experts for the problem being solved. Domain code includes
contributions from all domains relevant to the software problem. Domain code
is not executable (as traditional source code is — by compilation or interpre-
tation), but it can be transformed into an implementation solution when it is
input to a generator that has been programmed to perform that transforma-
tion process.

6Intentional Software, Bellevue, Washington, USA; http://intentsoft.com

3.6 Rôle of Domain Descriptions 71

Domain-Oriented Development

Domain-oriented development is the process of separating the contributions of
subject matter experts and programmers to the maximum extent so that gen-
erative programming can be applied to structured domain code. This greatly
simplifies improvements to the domain and implementation solutions.

Domain Schema

A domain schema is a schema for a specific domain. The domain schema de-
fines the domain terminology and any other information that is needed — for
the intentional editor and generator to work — such as parameters, help text,
default values, applicable notations and other structure of the domain code.
Domain schemas are created by the subject matter experts and programmers
working together, and are expressed in a schema language.

Domain Terminology

Domain terminology means the terms of art (words with a special meaning)
in a domain, for example “claim payment” in health care administration.
Domain terminology is important because it is the usual way to express in-
tentions. Broadly speaking, terminology includes notations normally used by
a subject matter expert, such as tables, flowcharts and other symbols. The
meaning of the terms is part of the domain knowledge that is shared be-
tween subject matter experts and programmers to the extent necessary and
ultimately designed into domain schemas and the generator.

Discussion

Intentional software development, it should be clear from the above, builds
on a number of software development tools which are provided with domain
description-like information and which can then automate code generation.
Other than that we shall neither comment nor speculate on Charles Simonyi’s
characterisations.7 We believe that the reader can easily see the close relations
to the triptych phases of development. We find them fascinating and will try
communicate our own observations to Charles Simonyi before commenting in
depth. ∃∀ certainly has a rôle in making the triptych approach even more
viable.

7Well, I cannot, of course, refrain from saying that seven groups of my students
have founded a number of Danish software companies whose corporate asset it is
that they generate code for application of the domain-specific area which is their
company’s hallmark, their corporate asset.

3.7 Conclusion

3.7.1 What Have We Achieved?

We have outlined two of the major phases of a new approach to software devel-
opment: domain engineering — primarily — and requirements engineering —
as it relates to domain engineering. We have not really covered the relation of
requirements engineering to software design, i.e., programming — other than
now saying: software design is then a further refinement of the requirements,
and, well, read next! We have then related this, the triptych approach to some
current programming and software development paradigms: OO, CBSE, AOS
— as mostly programming cum coding paradigms, and Intentional Software
Development which, to us, have a much clearer and cleaner understanding of
the domain, with the domain intentions, when being edited, probably having
the editing stage amount to, or being based on some form of requirements
development.

3.7.2 What More Need be Achieved?

Well, on the basis of three volumes,

• D. Bjørner: Software Engineering, Vol. 1: Abstraction and Modelling
(Springer, 2006)

• D. Bjørner: Software Engineering, Vol. 2: Specification of Systems and
Languages (Springer, 2006)

• D. Bjørner: Software Engineering, Vol. 3: Domains, Requirements and
Software Design (Springer, 2006)

supported by almost 6,000 lecture slides and supported by extensive RAISE
tools, what more could one wish?8

The answer is: more tools, tools to support documentation: creation, edit-
ing, versioning, etc.; tools to support domain and requirements acquisition
and analysis; tools to extend the use of RAISE; as well as tools to integrate
the formal use of RAISE with the formal use of Petri nets [148,199,210–212],
MSCs [142–144], LSCs [80,128,153], Statecharts [123,124,126,127,129], Dura-
tion Calculus and TLA+ [247,248], [155,156,175,176], etc. [7,65,69,111,216],
further theorem proving, proof checking, model checking and testing tools.

8Well, this monograph should be added to the above three items as
well as a forthcoming textbook: Domain Engineering – The Triptych Approach,
http://www.imm.dtu.dk/˜db/de-p.pdf (or /tseb.pdf)

4

Verified Software for Ubiquitous Computing
A VSTTE/Ubiquitous Computing Project Proposal

Abstract

We sketch a project that is to be pursued over the next 15 years and,
hopefully, by partners on five continents: (i) the Pacific: Australia, New
Zealand; (ii) Asia: China, India, Japan, Korea, Macau, Singapore; (iii) Eu-
rope (Austria, Denmark, England, France, Germany, Ireland, Italy, Por-
tugal, Sweden, Switzerland) and (iv-v) North and South America (Ar-
gentina, Brasil, Canada, USA).

Sets of commensurate descriptions of transportation domains shall be
developed and analysed. A domain theory of, it is proposed, transporta-
tion shall thus emerge. Based on these descriptions (formalised using a
set of integrated formal notations) a set of commensurate prescriptions
of requirements for a ubiquitous computing system for automated high-
ways shall be developed. The “commensurateness” of the different re-
quirements prescriptions and their relations to the commensurate domain
descriptions shall likewise be proved. Eventually these requirements shall
be programmed with program annotations relating program statements
to respective requirements and domain models.

In this report we outline and discuss implications of the above.
There are two versions of this document.
A short version is the invited paper for the First Asian Working Con-

ference on Verified Software, UNU-IIST, Macau, 29–31 October, 20061.
A long version aims at informing potential project partners in, we hope,

sufficient detail so as to help them decide to join the project.
This is the long version.

4.1 The Backgrounds

4.1.1 “A Gleam in the Eye”

Three strands appear to come together in this project proposal.

0This is an edited version of [38]. Presented at the 29 October 2006 1AWCVS
(First Asian Working Conference on Verified Systems), Macau SAR.

1http://www.iist.unu.edu/www/workshop/AWCVS2006/

74 4 Verified Software for Ubiquitous Computing

One initiation point for this research and advanced development proposal
is the author’s fascination with domain engineering as applied to transporta-
tion. Initially to the railway sub-domain. More generally, and later, with the
transportation domain. And, in this proposal, the instantiation of this trans-
portation domain to the concept of “the automated highway”.

Two other initiation points were Tony Hoare’s similar obsession with
VSTTE, “a million lines of verified code”, and Robin Milner’s “lifting” of
the concerns of ubiquitous computing to elegant heights.

More than 30 years of quest for provably correct software, since the days
of the birth of VDM at the IBM Laboratory, Vienna, Austria, is embodied in
the project.

4.1.2 Grand Challenges of Informatics

Ref. 1 enumerates 13 criteria for a project to attain “grand challenge” status;

1. Criteria for a Grand Challenge
Tony Hoare, Robin Milner, Martyn Thomas, and Alan Bundy;
Revised by Tony Hoare, 30 May 2002.
http://www.cra.org/Activities/grand.challenges/hoare.pdf
The primary purpose of the formulation and promulgation of a grand
challenge is to accelerate the advancement of science. The only purpose
of this document is to clarify the concept of grandness as applied to a
scientific challenge. The suggested criteria concentrate on those aspects
of grandness that contribute towards the primary scientific goal of the
challenge. They are the criteria that distinguish a grand challenge from
the many other worthy kinds of challenge that are formulated to contribute
to economic, political or other societal goals. Each criterion is intended
to describe some property relevant for the comparison and evaluation of
proposed grand challenges solely according to their degree of grandeur.
No challenge, however grand or otherwise desirable, should be expected
to meet all the criteria. The order of the criteria is not significant.

(a) It arises from scientific curiosity about the foundation, the nature or
the limits of the scientific discipline.

(b) It has enthusiastic support from (almost) the entire research commu-
nity, even those who do not participate.

(c) It has international scope: participation would increase the research
profile of a nation.

(d) It is generally comprehensible, and captures the imagination of the
general public, as well as the esteem of scientists in other disciplines.

(e) It was formulated long ago, and still stands.
(f) It goes beyond what is initially possible, and requires development of

techniques and tools unknown at the start of the project.
(g) It calls for planned co-operation among identified research teams and

schools.

4.1 The Backgrounds 75

(h) It encourages and benefits from competition among identified individ-
uals and teams, with clear criteria on who is winning, or has won.

(i) It necessitates collaboration of several identified research specialties,
theoretical and/or practical.

(j) It decomposes into identified intermediate research goals, whose achieve-
ment brings scientific or economic benefit, even if the project as a
whole fails.

(k) It should be rather obvious how far and when the challenge has been
met (or not).

(l) It should lead to radical paradigm shift, breaking free from the dead
hand of legacy.

(m) It is not likely to be met simply from commercially motivated evolu-
tionary advance.

The word “challenge” is these days commonly applied to a survey of rele-
vant topics in some general research area that promises some short-term
social or economic benefit, often just to a single nation or region (provided,
of course,that sufficient research funds are allocated to it immediately).
The criteria listed above are not intended to apply to such challenges.
The tradition of Grand Challenges is common in many branches of Science.
If you want to know whether a challenge is grand enough, compare it with:

• Put a man on the moon
• Cure cancer (in ten years)
• Prove Fermat’s last theorem
• Map the Human Genome
• Map the Human Proteome
• Find the Higgs boson
• Find Gravity waves
• Unify the four forces of Physics
• Complete Hilbert’s programme for the foundations of mathematics

Some of these have succeeded, some of them have failed, and some of
them are still open. In computing, the following are listed, not because we
recommend them, but because they are familiar to Computer Scientists.
The reader is invited to evaluate any of the examples according to the
criteria given later. Obviously, no challenge will meet all of them.

• Prove that P is not equal to NP
• The Turing test
• The Verifying Compiler
• A championship chess program
• A championship GO program.
• Automatic translation of scientific literature from Russian to English.
• A mathematical model of the evolution of the web.
• A wearable computer serving as a guide dog for the blind.

Some of these have succeeded, some of them have failed; some of them
have lost the interest of the scientific community, and some are reliably

76 4 Verified Software for Ubiquitous Computing

conjectured to be impossible. They are quoted here only as illustrations
of the property of grandeur. There is no implication that any of these will
be found worthy of general support.

4.1.3 VSTTE: Verified Software: Theories, Tools and Experiments

The idea at the root of the VSTTE grand challenge is that of a verifying com-
piler. That compiler accepts annotated code. The annotations are, for exam-
ple, like pre- and post-conditions (say in a Hoare-style logic). The annotations
are meant to express requirements and assumptions about the machine and
the environment of the machine on which the code is executed. The verifying
compiler is then expected to verify that the annotated code indeed satisfies
the annotations.

Reference 2 is an original source for the VSTTE effort; Ref. 3 is a position
statement prepared for the conference otherwise announced in Ref. 4 while
Ref. 5 elaborates on Ref. 3; Ref. 6 provides further elaboration in the form of
a FAQ; Ref. 7 announces one kind of follow-up on the VSTTE conference in
October 2005.

2. The Verifying Compiler: A Grand Challenge for Computing Research
Tony Hoare, Journal of the ACM, Vol. 50, No. 1, January 2003
http://www.csl.sri.com/ shankar/GC04/hoare-compiler.pdf

3. VSTTE: Verified Software: Theories, Tools, Experiments
Conference home page, Oct. 10th-14th, 2005
http://vstte.inf.ethz.ch/ or http://vstte.ethz.ch/

4. The IFIP Working Conference on Verified Software: Theories, Tools, Ex-
periments; conference report
Tony Hoare, Jayadev Misra, and N. Shankar, October 20, 2005
http://vstte.ethz.ch/report.html

5. Verified Software: Theories, Tools, Experiments — Vision of a Grand
Challenge project
Tony Hoare and Jayadev Misra, July 2005.
http://vstte.ethz.ch/pdfs/vstte-hoare-misra.pdf

6. Verified Software: Frequently Asked Questions
Tony Hoare and Jayadev Misra, 19 September 2005
http://wiki.se.inf.ethz.ch/vstte/index.php/Verified Software: Frequently-
Asked Questions

7. FLoC’2006 Workshop on Verified Software: Theories, Tools, and Experi-
ments
K. Rustan M. Leino, Summer 2006
http://research.microsoft.com/˜leino/vstte2006/

8. Verified Software Roadmap 2006
A list of 16 references (in the form of URLs) are given to position state-
ments on the topic of VSTTE. http://qpq.csl.sri.com/vsr/private/veri-
fied-software-roadmap-2006/, http://qpq.csl.sri.com/vsr/private/verified-

4.1 The Backgrounds 77

-software-roadmap-2006/dines.pdf/view refers to an early version of the
current proposal.

4.1.4 Ubiquitous Computing: The Automated Highway

By ‘ubiquitous computing’ we shall here understand the presence of compu-
tation (and communication) “everywhere”. And by ‘the automated highway’
we shall specifically understand the use of computation and communication in
every possible aspect of automating the orderly (safe and efficient) movement
of cars along a net of highways. This latter implies the availability of sensors
and actuators along and possibly above and/or “outside” the highway net and
in all vehicles moving along this net of highways.

Ubiquitous Computing

9. Ubiquitous Computing Grand Challenge: Introduction
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/

• There is burgeoning population of ’effectively invisible’ computers
around us, embedded in the fabric of our homes, shops, vehicles, farms
and some even in our bodies. They are invisible in that they are part
of the environment and we can interact with them as we go about our
normal activities. However they can range in size from large Plasma
displays on the walls of buildings to microchips implanted in the hu-
man body. They help us command, control, communicate, do business,
travel and entertain ourselves, and these ’invisible’ computers are far
more numerous than their desktop cousins. How many computers will
you be using, wearing, or have installed in your body, in 2020? How
many other computers will they be talking to? What will they be say-
ing about you, doing for you, or to you? By that time computers will
be ubiquitous and globally connected. Shall we be able to manage such
large-scale systems, or even understand them? How do people interact
with them and how does this new pervasive technology affect society?
How can non-computing people configure and control them? What
tools are needed for design and analysis of these constantly adapting
and evolving systems? What theories will help us to understand their
behaviour?

• These are the sort of issues which make Ubiquitous Computing a
Grand Challenge; join us in addressing them.

• The Ubiquitous Computing Grand Challenge (UbicompGC) is one of
the 6 UKCRC Grand Challenges. It was formed by merging two of the
original Grand Challenges GC2 ”Science for global ubiquitous comput-
ing” which focused on theory and GC4 ”Scalable ubiquitous computing
systems” which focused on engineering aspects. UbicompGC is formu-
lating a research manifesto which postulates the need for combined

78 4 Verified Software for Ubiquitous Computing

Science (theory) as well as addressing the Engineering and Social is-
sues related to building Ubiquitous Systems. So far, most research in
the UK and elsewhere has focussed on the Engineering with very little
attention on the theory required to underpin the design and analysis
of ubiquitous systems which are intrinsically large-scale and complex.
Some of the work in the Equator project has addressed social aspects
and how people will interact with Ubiquitous Systems. The overview
page summarises the goals of the challenge.
Background information on the Grand Challenges together with a re-
port describing each of the challenges can be found on the UKCRC
Grand Challenges site. We intend to hold a mini-workshop as part of
the Grand Challenges Conference in Glasgow 22-24 March 2006.

• UbicompGC activities are currently being promoted by the EPSRC
funded UK-UbiNet Network grant which predated UbiCompGC and
runs from April 2003 - March 2006. The Ubicomp steering commit-
tee are all members of the UK-UbiNet management committees. See
the UK-UbiNet for information on UK and worldwide activities on
ubiquitous computing, workshops organised which addressed the is-
sues raised by the UbiCompGC research manifesto, future workshops
and information on events and conferences.

• We welcome discussion of all aspects of UbicompGC. For this purpose,
please subscribe to the UbicompGC email list. We especially invite
discussion on the final draft of the UbicompGC manifesto, which we
aim to finalise by 1 September 2005.

• There will be a sequence of evolving Annexes to the manifesto, includ-
ing descriptions of ”foothill projects”, also published for discussion
with the manifesto. Two threads of discussion, called ’Manifesto’ and
’Foothills’, have been created for these discussions.

• More generally, wide-ranging discussion will greatly help the steering
committee in building a community around the Grand Challenge, and
in coordinating its activity.

• UbicompGC Steering Committee
(a) Prof. Morris Sloman, Department of Computing, Imperial College

London (Chairman)
(b) Dr. Dan Chalmers, Informatics, University of Sussex
(c) Prof. Jon Crowcroft, Computer Laboratory University of Cam-

bridge
(d) Prof. Marta Kwiatkowska, School of Computer Science, University

of Birmingham
(e) Prof. Robin Milner, Computer Laboratory University of Cambridge
(f) Prof. Tom Rodden, Computer Science and IT, University of Not-

tingham
(g) Prof. Vladimiro Sassone, Informatics, University of Sussex

10. Ubiquitous Computing Grand Challenge: Overview
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/overview.html

4.1 The Backgrounds 79

• By 2020 how many computers will you be using, wearing, have in your
home, or even in your body? Computers are ubiquitous and will soon
be globally connected. Shall we be in control of the complex emerging
behaviour arising from their aggregation in a ”ubiquitous” global net-
work, or even understand it? As these devices become smaller, more
numerous, more independent from users and more deeply embedded in
the world around us, they raise formidable scientific and engineering
challenges.

• We propose to develop scientific theory and the design principles of
Global Ubiquitous Computing together, in a tight experimental loop.

• At least since Leonardo, engineers have relied upon science when build-
ing their artifacts, whilst real-world challenges have often set the goal-
post for scientists. Nevertheless, often in the past the two have devel-
oped independently from each other. Why are we advocating here for
their integration as the key of our research method? The reason is in
the very scale and nature of ubiquitous computers, and the way they
are growing intimately embedded in our lives: we can hardly afford
”experimental” failures, as we allow them to control transport, moni-
tor our health, regulate our bank accounts as well as our most delicate
global financial mechanisms.

• The final goals of the research proposed here can be described suc-
cinctly as:
⋆ To define a set of design principles that pertain to all aspects of

ubiquitous computing and are accepted, taught, and used in prac-
tice;

⋆ To develop a coherent information science that allows descriptive
and predictive analysis of ubiquitous computing at many levels of
abstractions, and to use it to derive, analyse, justify its construc-
tions.

• Qualities of Global Computers
In order to allow a ubiquitous computer to blend in the environment
and act ”invisibly” whilst being dependable and remain controllable,
we will have to guarantee (”by design and construction”) that it is:
⋆ Fluid: it structure will vary frequently, and evolve in the long term;
⋆ Purposive: each of its components has a purpose, which explains

its actions;
⋆ Autonomous: it makes autonomous decisions based on its context

and its ”experience” of it;
⋆ Reflective: it can take actions (on itself) based on self-analysis;
⋆ Trustworthy: it can be trusted not to misuse information and re-

sources;
⋆ Tactful: its impact on its surroundings is effective, but minimal
⋆ Scalable: the size of its subsystems can vary greatly, yet the same

principles apply to them all; and
⋆ Efficient.

80 4 Verified Software for Ubiquitous Computing

• Challenges of Global Computing
We are already developing new theories, programming languages and
experimental systems to help engineer ubiquitous computers. The chal-
lenges ahead (arising from the qualities required) are many, and of
considerable depth. Amongst the engineering ones:
⋆ design devices to work from solar power, are aware of their location

and what other devices are nearby, and form cheap, efficient, se-
cure, complex, changing groupings and interconnections with other
devices;

⋆ engineer systems that are self-configuring and manage their own
exceptions;

⋆ devise methods to filter and aggregate information so as to cope
with large volumes of data, and to certify its provenience.

⋆ business model for ubiquitous computing, and other human-level
interactions.

• Amongst the science challenges we list:
⋆ discover mathematical models for space and mobility, and develop

their theories; devise mathematical tools for the analysis of dy-
namic networks;

⋆ develop model checking, as well as techniques to analyse stochastic
aspects of systems, as these are pervasive in ubiquitous computing;

⋆ devise models of trust and its dynamics;
⋆ design programming languages for ubiquitous computing.

• These and other ideas are developed in detail in the Manifesto of the
UKCRC Grand Challenges proposal:
⋆ Global Ubiquitous Computing: Design and Science
⋆ http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/manifesto.html

11. Ubiquitous Computing, The Computer Journal.2006; 49: 390-399
http://www.bcs.org/BCS/Awards/Events/cjlectures/ubiquitous.htm
http://comjnl.oxfordjournals.org/cgi/content/full/49/4/390

• The Computer Journal presents the first Computer Journal Lecture:
“Ubiquitous Computing” by Robin Milner.

• 23rd February 2006, Central London, 5:30 pm for a 6:15 pm start.
• Lecture by Robin Milner - Computer Laboratory, University of Cam-

bridge. The lecture will be followed by a debate on the lecture. The
lecture itself, and the discussion following it, will be edited for the
Computer Journal.

The vision of ubiquitous computing (ubicomp) is that computing entities
become an effective part of our environment, supporting our lives with-
out our continual direction, so that we can be largely unaware of them.
One of the UK Grand Challenges for Computing Research addresses not
only the ubicomp vision, but also the design principles and theories that
will support it. Ubicomp will entail hardware/software systems that ex-
ceed those that we know by orders of magnitude in size. There is little

4.1 The Backgrounds 81

chance of extrapolating existing methods of software production to cope
with them. Ubicomp offers an opportunity to develop a deeper science of
computing that interweaves three ingredients - vision, design and theory -
more intimately than ever before. This is the Grand Challenge; the lecture
will explore how we may approach it.

12. Ubiquitous Computing: Shall we understand it?
Follow-up discussion on the above: http://www.bcs.org/server.php?show-
=ConWebDoc.4708&setPaginate=No

13. Wikipedia’s URL on Ubiquitous Computing: http://en.wikipedia.org/wi-
ki/Ubiquitous computing
Ubiquitous computing (ubicomp, or sometimes ubiqcomp) integrates com-
putation into the environment, rather than having computers which are
distinct objects. Other terms for ubiquitous computing include pervasive
computing, calm technology, and things that think. Promoters of this idea
hope that embedding computation into the environment and everyday ob-
jects would enable people to move around and interact with information
and computing more naturally and casually than they currently do. One
of the goals of ubiquitous computing is to enable devices to sense changes
in their environment and to automatically adapt and act based on these
changes based on user needs and preferences.

14. Ubiquitous Computing Evaluating Consortium:
http://ubiqcomputing.org/ — An effort led by SRI Intl.

15. Ubicomp: Conference announcements:
http://ubicomp.org/ubicomp2005, http://ubicomp.org/ubicomp2006

16. IEEE Journal on Pervasive Computing
http://www.computer.org/portal/site/pervasive/

The Automated Highway

Just very briefly: an automated highway system or Smart Road, is an advanced
intelligent transportation system technology designed to provide for driverless
cars on specific rights-of-way. It is most often touted as a means of traffic
congestion relief, since it drastically reduces following distances and thus allow
more cars to occupy a given stretch of road.

17. Wikipedia: Automated Highway System http://en.wikipedia.org/wiki/-
Automated highway system
An automated highway system (AHS) or Smart Road, is an advanced In-
telligent transportation system technology designed to provide for driver-
less cars on specific rights-of-way. It is most often touted as a means of
traffic congestion relief, since it drastically reduces following distances and
thus allow more cars to occupy a given stretch of road.

• How it works
The roadway has magnetized stainless-steel spikes driven one meter
apart in its center. The car senses the spikes to measure its speed

82 4 Verified Software for Ubiquitous Computing

and locate the center of the lane. Further the spikes can have either
magnetic north or magnetic south facing up. The roadway thus has
small amounts of digital data describing interchanges, recommended
speeds, etc.
The cars have power steering, and automatic speed controls, but these
are controlled by the computer.
The cars organize themselves into platoons of eight to twenty-five cars.
The platoons drive themselves a meter apart, so that air resistance is
minimized. The distance between platoons is the conventional braking
distance. If anything goes wrong, the maximum number of harmed
cars should be one platoon.

• Deployments
A prototype automated highway system was tested in San Diego
County, California in 1991 along Interstate 15. However, despite the
technical success of the program, investment has moved more toward
autonomous intelligent vehicles rather than building specialized infras-
tructure. The AHS system places sensory technology in cars that can
read passive road markings, and use radar and inter-car communica-
tions to make the cars organize themselves without the intervention of
drivers.

18. Foothill Project: Automating the Highway: http://www-dse.doc.ic.ac.uk/-
Projects/UbiNet/GC/Manifesto/fp-automatinghighway.html
UKCRC Grand Challenges for Computing Research. Ubiquitous Comput-
ing: Science and Design
Since this project is one of the bases for the present proposal we quote in
extenso.

• Jon Crowcroft: http://www.cl.cam.ac.uk/users/jac22/
• Monitoring and control of private vehicles on the public highway is

high on the political agenda; this is because it is becoming feasible,
and may be desirable for at least two reasons: first, from the economic
perspective, it may achieve more efficient use of road resources; second,
from the safety perspective, it may achieve a significant drop in injury
and death on the roads. Various prototypes exist, and various projects
are current. Many technologies interact, and there are numerous legal,
political and economic stakeholders. We propose a foothill project to
study monitoring and control with particular concern for efficiency and
safety, in the context of ubiquitous systems for transport. For efficiency
(of road use) the monitoring and control may be either distributed or
centralised, or a combination of the two. In a distributed system the car
receives information from navigation systems and roadside monitors
concerning routes, conditions and prices; it (or its driver) then makes
a decision and pays. on the other hand a centralised system, such as the
London congestion-charging scheme, depends entirely on a network of
roadside monitors, recording data about vehicles, drivers and journeys
on a central database used as the basis for billing.

4.1 The Backgrounds 83

• To improve safety, there a spectrum of possible solutions from dis-
tributed to centralised systems. At the centralised extreme, ‘car-trains’
have been proposed; vehicles joining trunk routes would be logically
clumped, and controlled by a single aggregate unit. At the distributed
extreme, each vehicle always chooses its own velocity, using data from
on-board and remote sensors. There are many research problems; for
example:
⋆ What are the design spaces for distributed and/or centralised sys-

tems in the two cases? Can they me mixed, e.g. distributed for
efficiency of road-use but centralised for safety?

⋆ By what measures can each solution in the space be assessed for
its contribution to both efficiency and safety?

⋆ In each possible design, what threats arise from neglect or malev-
olence? These threats may attack endanger correct technical func-
tion, or they may endanger privacy (for example, centralised records
may be illegally mined to deduce driver habits).

⋆ Success in addressing these problems will involve a variety of theo-
retical or simulational models of distributed and mobile processes;
and will prompt the further development of such models.

19. A longer paper addressing these issues of item 18 on the facing page is
also available:
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/road.pdf

20. Carnegie Mellon AHS group http://www.cs.cmu.edu/Groups/ahs/

21. Automated Highway Systems: http://scholar.lib.vt.edu/theses/available/etd-

5414132139711101/unrestricted/ch2.pdf, http://72.14.203.104/search?q=cache:-

ctx HZkkonwJ:scholar.lib.vt.edu/theses/available/etd - 5414132139711101/un-

restricted/ch2.pdf+Automated+Highway&hl=en&ct=clnk&cd=3

4.1.5 Domain Engineering

Section 4.3.2 should probably be read first. By a domain model we understand
an abstraction of some reality, something which exists, and as it is conceived
to be. A domain model is typically expressed by both a precise, and as here
English narrative and a formalisation. If the formalisation is in logic then
one of the set of models which satisfy the logic is what we mean by “the
domain model”. If the formalisation is in some model-oriented specification
language, such as B [1, 71], RAISE [31–33, 44, 101, 104, 106], VDM-SL [55, 56,
95, 96] or Z [132, 133, 229, 230, 242], then the semantics of these languages
explicitly designates the model(s). To create such a model, or, typically, set
of models, one needs to acquire domain knowledge, analyse it, and then bring
the acquisition and the analysis together in a description such as for example
given in Sect. 4.3.2 and according, for example, to the principles, techniques
and tools as outlined to some depth in Chap. 11 of [33].

22. Domain Engineering: Part IV, Chaps. 8–16 of [33].

84 4 Verified Software for Ubiquitous Computing

These chapters cover:

8. Overview of Domain Engineering
9. Domain Stakeholders

10. Domain Attributes: Continuity, Discreteness and Chaos; Statics and
Dynamics; Tangibility; One, Two, . . . Dimensionality

11. Domain Facets: Domain Facilitators (Business Processes), Intrinsics,
Support technologies, Management and Organisation, Rules and Reg-
ulations, Scripts, Human Behaviour

12. Domain Acquisition
13. Domain Analysis and Concept Formation: Incompleteness, Inconsis-

tency, Conflicts; Concepts
14. Domain Verification and Validation
15. Towards Domain Theories
16. The Domain Engineering Process Model

23. “Domain Engineering”, Chapter in forthcoming EATCS Series textbook
covering a number of BCS FACS Evening Seminars, 2003-2005, Eds.
Jonathan Bowen and Paul Boca, Springer, 2007. http://www.jaist.ac.-
jp/˜bjorner/domain.ps

24. Chapter 1 [28] “On Domains and Domain Engineering, Prerequisites for
Trustworthy Software, A Necessity for Believable Project Management”,
http://www.jaist.ac.jp/˜bjorner/jaist-dom.ps, 182 pages

This is a somewhat lengthy document which summaries item 22 on
the previous page, lists and answers a number of FAQ, and brings,
in a number of appendices, reasonably sized examples of domain
descriptions or references to such: Transportation, Manufacturing,
Documents, “The Market”, “Cyberrail” (a Japanese conception of
a future railway system). In addition the document also surveys
the concept of Business Processes (referred to in Chap. 11, see
item 22 on the preceding page, as well as a summary of the RSL
language.

25. Chapter 2 [29] “Possible Collaborative ‘Domain’ Projects: Japanese Pri-
vate and/or Public Institutions + JAIST/DEDR”, The JAIST School
of Information Sciences’ Domain Engineering and Digital Rights Group,
http://www.jaist.ac.jp/˜bjorner/jaist-dom-projs.ps

Based on the lengthy document referenced in item 24, this short
document outlines, for Japanese public and private institutions
(government and industry) how possible collaborative domain en-
gineering projects might be organised.

4.2 The Triptych Dogma 85

4.2 The Triptych Dogma

4.2.1 The Dogma

Before software can be designed its requirements must be understood. Before
requirements can be prescribed the application domain must be understood.

Hence the “idealistic” triptych dogma:

• D: First one must establish a proper, comprehensive domain theory for
the application area — here transportation in general.

• R: From such a domain theory one can, as we show in Chaps. 18–25 of
Vol 3 of [31–33], i.e., [33], “derive” domain (i.e, functional) requirements.

• S: From these again, as we show in Chaps. 26–29 [33], we can decide major
structures of the desired software.

4.2.2 Verification

In proving software, i.e., program code, S, correct with respect to require-
ments, R, such a proof is always relative to assumptions about the domain,
D:

D,S |= R
To do proper proofs we postulate that proper theories need first be established
of the domain and of the requirements.

4.2.3 Decomposition of Project Effort

The present proposal hinges to some extent on the triptych dogma. But the
proposal allows for research groups to focus their contributions “down stream”
from domain descriptions and requirements prescriptions, or only on one of
these.

Some “Verified Software for Ubiquitous Computing” project groups will
wish to focus on one or more of:

• Domain Theories (descriptions and analysis) using one or another ap-
proach, including combinations of approaches, other groups on

• Requirements Prescription development from Domain Descriptions and
proofs of development “transformations”, other groups on

• Requirements Theories (descriptions and analysis), or on
• Software Design development from Requirements Prescriptions and proofs

of development “transformations”, or on
• Program Code Annotation and Verification — from Domain Descriptions

and Requirements Prescriptions

Project management is then needed to secure that it all “hangs together”,
forms a whole.

86 4 Verified Software for Ubiquitous Computing

4.3 The Project Proposal

4.3.1 Summary

Section 4.2.3 on the preceding page suggests a number of project components:

1. Sets of commensurate correlated informal and formal descriptions of trans-
portation domains shall be developed and analysed. We refer to Sect. 4.3.2.

2. A theory of transportation shall thus emerge. That theory shall explain
and verify rove what precisely is meant by commensurateness.

3. Based on these descriptions (formalised using a set of integrated formal
notations) a set of commensurate prescriptions of requirements for a ubiq-
uitous computing system for automated highways shall be developed.

4. The “commensurateness” of the different requirements prescriptions and
their relations to the commensurate domain descriptions shall likewise be
verified.

5. Eventually these requirements shall be programmed with program annota-
tions relating program statements to respective requirements and domain
models.

6. The programs with annotations shall be processed by a verifying compiler
and the program code shall be automatically verified wrt. the program
annotations.

4.3.2 Domain Theories

To get a grasp on what a domain description might entail we present an
example domain description. From that the reader is expected to draw a
number of conclusions, including whether this project proposal is of interest
or not. We refer to Item 1 Sect. 4.3.1.

A Domain Model

Let us take a reasonably comprehensive look at an albeit simple domain de-
scription, namely that of a simple transportation net and its traffic. We refer
to

• The BCS FACS Journal, December 1005
http://www.bcs-facs.org/newsletter/facts200512.pdf

for a more detailed exposition of the below description.
(1.) A transportation net (N) consists of segments (S) and junctions (J).

(2., 3.) That is, from a net one can observe the set of all segments and the
set of all junctions. (4.) There is at least one segment and two (distinct) junc-
tions in any net. (5.) Segments and junctions have unique identifications (Si,

4.3 The Project Proposal 87

Ji)2. (6.,7.) One can observe segment and junction identifiers from segments,
respectively junctions. (8., 9.) To avoid “junk” being models of our specifica-
tion we must insist that the number of segments [junctions] of a net equals the
number of segment [junction] identifiers of that net. (10., 11.) Segments are
delimited by a pair of junctions, and from a segment one can (thus) observe
the pair of junction identifiers of the delimiting junctions. (12., 13.) Junctions
connect to one or more distinct segments, and from a junction one can (thus)
observe the set of one or more respective segment identifiers.

type

1. N, S, J
value

2. obs Ss: N → S-set

3. obs Js: N → J-set
axiom

4. ∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2
type

5. Si, Ji
value

6. obs Si: S → Si
7. obs Ji: J → Ji
axiom

8. ∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
9. ∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}
type

10. Jip = {|{ji,ji′}:Ji-set • ji6=ji′|}
value

11. obs Jip: S → Jip
type

12. Si1 = {|sis:Si-set•card sis ≥1|}
value

13. obs Sis: J → Si1
axiom

14. ∀ n:N, s:S • s ∈ obs Ss(n) ⇒
15. let {ji,ji′} = obs Jis(s) in

16. ∃! j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ∧
17. obs Si(s) ∈ obs Sis(c) ∩ obs Sis(c′) end

18. ∀ n:N, j:J • j ∈ obs Js(n) ⇒
19. let sis = obs Sis(c), ji = obs Ji(j) in

20. ∃! ss:S-set • ss⊆obs Ss(n) ∧ card ss=card sis ∧
21. sis = {|obs Si(s)|s:S•s ∈ ss|} end

2Segment and junction identifiers can be thought of as summarising the distinct
spatial location of that which they identify.

88 4 Verified Software for Ubiquitous Computing

(14.–17.) For every segment of a net there exists exactly a set of distinct
junctions of that net whose identifiers are those observable from that segment,
and (18.–21.) – vice versa – for every junction of a net there exists exactly
a set of distinct segments of that net whose identifiers are those observable
from that junction.

The above description covers just the net of its junction-connected seg-
ments. Nets, Segments and Junctions are phenomena. Identifiers are concepts
— as are the next many notions.

(22.) Paths are triples of (junction,segment,junction) identifiers, and routes
are sequences of paths. (23.–25.) ‘paths(n)’ expresses all paths of a net ‘n’.
(27.–30.) A route is a finite sequence of paths such that adjacent sequence
triples designate adjacent paths, that is, paths sharing a junction identifier
(well-formedness). (32.–35.) ‘routes(n)’ expresses all routes of a net, ‘n’, that
is, a possibly infinite set since routes my be cyclic. Any path is a route. If r
and r′ are routes such that the last path of r shares last junction identifier
with the first junction identifier of the first path of r′, then their concatenation
is a route.

type

22. P = Ji × Si × Ji
value

23. paths: N → P-set

24. paths(n) ≡
25. {(ji,si,ji′)|s:S,ji,ji′:Ji,si:Si• s ∈ obs Ss(n) ∧

{ji,ji′} ∈ obs Jis(s)∧si=obs Si(s)}
type

26. R = {|r:P∗
•wf R(r)|}

value

27. wf R: P∗ → Bool

28. wf R(r) ≡
29. ∀ i:Nat • {i,i+1}⊆inds(r) ⇒
30. let (, ,ji)=r(i), (ji′, ,)=r(i+1) in ji = ji′ end

31. routes: N → R-infset

32. routes(n) ≡
33. let rs = {〈p〉|p:P•p ∈ paths(n)}
34. ∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)} in

35. rs end

(36.) The state of a segment is a either an empty set, or a singleton set,
or a set of two “reversed” pairs of the identifiers of the two junctions to
which the segment is connected. An empty set designates that the segment
is closed for traffic. A single pair (ji, ji′) designates that the segment is open
for traffic from the junction identified by ji to junction identified by ji′ . A
double pair designates that the segment is open for traffic in both directions.
(37.) The state of a junction is a set of pairs of identifiers of the segments
that are connected to that junction. If (sij

, sik
) are in the state then it means

4.3 The Project Proposal 89

that traffic can traverse the junction from the segment identified by sij
to

the segment identified by sik
. (38.–39.) From a segment [junction] one can

observe the state of the segment [junction]. (40.–43.) One can speak of and
observe the state space of a segment [junction]. (44.–45.) The current state of
a segment [junction] lies in the state space of that segment [junction].

type

36. SΣ = {|jip:(Ji×Ji)-set •

card jip≤2∧card jip=2⇒(ji,ji′)∈ jip⇒(ji′,jip)∈ jip∧ji6=ji′|}
37. JΣ = (Si×Si)-set
value

38. obs SΣ: S → SΣ
39. obs JΣ: J → JΣ
type

40. SΩ = SΣ-set

41. JΩ = JΣ-set

value

42. obs SΩ: S → SΩ
43. obs JΩ: J → JΩ
axiom

44. ∀ s:S • obs SΣ(s) ⊆ obs SΩ(s),
45. ∀ j:J • obs JΣ(j) ⊆ obs JΩ(j)

(46.) Time, vehicles and lengths are introduced. Time is considered a dense,
ordered set. (47.) Fractions are reals in the inclusive range 0 to 1. (48.) A
(vehicle) position is either at a junction or some fraction a segment (down,
from fji to tji, implicitly) identified by this pair of identifiers of the junctions
to which the segment is connected. (49.) Real [observed] traffic, rTF [oTF], is
a continuous function [discrete map] from time to pairs of nets and positions of
vehicles. (50.) Segments have lengths. (51.–58.) The lengthy axiom expresses
one aspect of traffic: that positions are indeed positions of the net.

type

46. T, V, L
47. F = {|f:Real•0≤f≤1|}
48. P == mkP at J(ji:Ji) | mkP along S(fji:Ji,f:F,tji:Ji)
49. rTF = T → (N × (V →m P))
50. oTF = T →m (N × (V →m P))
value

51. obs L: S → L
axiom

52. ∀ tf:(rTF|oTF) •

53. ∀ t ∈ dom tf •

54. let (n,vps) = tf(t) in

55. ∀ p:P • p ∈ rng vps ⇒
56. case p of

90 4 Verified Software for Ubiquitous Computing

57. mkP at J(ji) → ji ∈ obs Jis(n),
58. mkP along S(jf, ,jt) → {jf,jt}⊆obs Jis(n)

end end

The formalisation of other aspects of traffic are left as an exercise: (i) that
real [observed] traffic is truly continuous [monotonic] (including: moving from
open segments through “open” junctions onto open segments and: vehicles
do not “jump around”), (ii) that there are no “ghost” vehicles (that is, that
a vehicle which is in the traffic at two distinct times are in the traffic at all
times in between these, etcetera.

Real Highway Transportation Nets

The model above has been simplified to fit this chapter. A more realistic
model, one that can serve as a domain model for the requirements of an auto-
mated highway, would model (i) multi-lane highway segments and junctions,
(ii) vehicle lane positions, (iii) vehicles changing lanes, etc.

4.3.3 Requirements

General: Co-ordination and Function Requirements

Now, depending on requirements for ubiquitous automated highway comput-
ing, a number of co-ordinated requirements prescriptions need be studied,
be developed, and the resulting formal prescriptions analysed — including
establishing a theory of the requirements. By “co-ordinated requirements pre-
scriptions” we mean a “set and a co-ordination” which, as a whole, prescribe
requirements to an automated highway computing system, but such that
individual members of the set (“function requirements”) each solve a well-
prescribed problem in the context of the co-ordination software (prescribed
by the “co-ordination”).

We think of the co-ordination requirements and the corresponding software
to represent the essence of ubiquity.

Ubiquitous Requirements: Some Speculations

In this section we shall sketch some rather preliminary ideas on some aspects
of requirements to automated highways — such aspects, it seem, which may
cast light on what we may be an issue of, an “ingredient” in requirements to
ubiquitous computing systems.

A first set of requirements could be those for the computerise support of
“platooning”, that is, of cars joining, driving as part of, and leaving platoons,
that is, sequences of cars going, say at some high speed, from one place to
another — with cars possibly leaving one platoon to join another, etc. We

4.3 The Project Proposal 91

refer, for example, to Safe Platooning in Automated Highway Systems http://-
www.path.berkeley.edu/PATH/Publications/PDF/PRR/97/PRR-97-46.pdf.

Let us, more generally, perform an experiment. Assume traffic “rolling”
down a highway. Traffic consists of a number of vehicles passing down a num-
ber of opposite lanes, possibly at different velocities, possibly changing lane,
overtaking, possibly slowing or speeding up.

Now what might “automation” mean in this case? Well it could mean
either of many different things. All vehicles could be coerced into travelling
at “same” velocity, or “as much as possible” close to (from below) a desired
mean velocity, or be “free to change velocity”, and/or be constrained to “near
same” (mean) acceleration and deceleration. Etcetera.

Whichever of these are chosen, it seems that each vehicle is expected to
register, as is expected done by their drivers today, some composite “picture”,
a “local state”, of the traffic “around” that vehicle, to “some depth”, that is,
to some distance from that vehicle. Based on such a local state the driver
today makes driving (steering, acceleration, deceleration, etc.) decisions. To-
day drivers do that — thus basically without consulting other drivers’ plans
(including their local states). In an automated highway computing system one
might expect individual as well as communal driving decisions and hence ac-
tions to be based on summaries of local states “around” each vehicle, or even
global such summaries. Classically one might be able to express such decision
outcomes as the result of solving a large number of for example differential
equations, or, alternatively, some similar sets of fuzzy control expressions.

One is here reminded of:

• Victor I. Varshavski and Dmitrii Aleksandrovich Pospelov: Puppets with-
out strings: Reflections on the evolution and control of some man-made
systems, Mir Publishers, Moscow, 1984 (English edition: Mir Publishers,
1988, 294 pages).

An analysis of what is thought to be needed to express (i.e., to monitor and,
later, control) local (and “less local”) states in domain descriptions and, sub-
sequently in requirements prescriptions should give a rather precise idea about
the need for computing system sensors and actuators.

Everyone can speculate: mention this and that kind of sensors and actua-
tors, but only a thorough domain analysis and a “therefrom derived” require-
ments analysis can tell us exactly the properties we need of those sensors and
actuators.

Further on Requirements

In this chapter we shall not further attempt to formulate further requirements.
To do this properly requires, in our mind, very close collaboration with the
Cambridge University group of Prof. Jon Crowcroft. We refer to:

• [18] http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/fp-automa-
tinghighway.html

92 4 Verified Software for Ubiquitous Computing

• [19] http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/road.pdf

It is hoped that some of the groups involved in Domain Theories will also
want to become involved in the Requirements-related projects.

And it is expected that this, the Requirements effort, will be closely col-
laborating with the Ubiquitous Computing Automated Highway project as
referred to above.

4.3.4 Software

We postulate, as we did in Sect. 4.3.3 on page 90, that the resulting computing
system software consists of the co-ordination (the ubiquitous) software and
its many “isolated” packages. We speculate that these “isolated” software
packages can each be developed in isolation — provided that a stable interface
to the co-ordination software can be established — and that they can each be
verified in, i.e., assuming this context.

We shall not speculate further on the software possibly emanating from
this proposed project other than the above single paragraph.

4.3.5 Overview of Project Components

* Domain

* Theories of

* Requirements

* Refinement

 Theories

 Ubuiquity

 Theories

* Program
 Annotations

 Program Code
* Verified

Domain

Requirements

Description

Prescription

Software
Design

* Integration Theories

* Compositionality Theories

* Theories of Analysis Scripts
 Proof Scores & Tactics

* Program Annotations to
 Requirements and Domain
 Relations

* Software Design to

* Requirements to Domain
 Relations

 Requirements Relations

Fig. 4.1. Project Components

4.4 Challenges 93

4.4 Challenges

There is an overall challenge:

Challenge # 0. Verified Software for Ubiquitous Computing:
The overall challenge is to both understand the concept of ubiquitous
computing and contribute to the verified software concept.

And there are a number of constituent challenges. The latter contribute to
the former. We formulate some of the latter as we expect different research
groups around the world to more readily “catch on” to the latter challenges
than to the former.

4.4.1 Commensurate Specifications

The example given in Sect. 4.3.2 on page 86 was expressed in the RSL formal
specification language [31–33,44, 101,104,106]. There are other formal spec-
ification languages. To wit: Alloy [146], B [1, 71], CafeOBJ [89, 90, 99, 100],
Casl [11, 78, 184,185], CSP [137,138,218,222], VDM-SL [55,56, 95, 96], RSL
[31–33, 44, 101, 104, 106], or Z [132, 133, 229, 230,242] are some of the better

known.
Some (verified software for ubiquitous computing project groups) will spec-

ify their domains or requirements in one of these languages. Others in another
of these languages.

Challenge #1. Commensurate Specifications: It is therefore a
challenge to show relations between some pairs of specifications pur-
porting to describe “the same thing”, that is, to embody the compa-
rable theories.

4.4.2 Integrated Specifications

The example given in Sect. 4.3.2 on page 86 captures only some basic entities
of transportation nets and some basic characteristics of traffic (a behaviour).

To capture such phenomena as the individual behaviour of a vehicle, the
monitoring and control of traffic and of traffic signals (i.e., the changing of
segment and, in particular junction states, would probably be a mistake. More
suitable formal notations should be used. They should then be used in conjunc-
tion with some formal textual notation, such as those mentioned in Sect. 4.4.1.

Which other such possible, “more suitable” notations exists, today, Sum-
mer 2006? We suggest that perhaps either one or more of the following may be
used: DC (for duration calculus, a temporal logic specification language) [247,
248], message or live sequence charts (MSCs, [142–144], or LSCs, [80,128,153]),
Petri nets [148, 199, 210–212], Statecharts [123, 124, 126, 127, 129], TLA+

[155, 156, 175, 176], or other. Some of these other may “be in the works”

94 4 Verified Software for Ubiquitous Computing

as of now: being researched and put forward as means for modelling, say,
statistical, continuous, chaotic or other phenomena.

Whenever the textual notations of Alloy [146], Event B [1,71], CafeOBJ
[89, 90, 99, 100], Casl [11, 78, 184, 185], VDM-SL [55, 56, 95, 96], RSL [31–33,

44,101,104,106], Z [132,133,229,230,242], or other, are combined with those
of, for example, DC [247, 248], MSC [142–144], LSC [80, 128, 153], Statecharts
[123, 124, 126, 127, 129], TLA+ [155, 156, 175, 176], or other, we say that the
result is a set of two or more interfacing specifications. The interface may be
manifest in for example the following way: In specification SLi

A some identifiers
id1, id2, . . . , idn are claimed, semantically, to be somehow ‘equivalent’ with

identical identifiers in specification S
Lj

B . When this is the case, an obligation
arises, namely to show that a suitable equivalence (or satisfaction) relation can
be established. Reasoning in one notation “must carry over” into “interfacing”
parts expressed in another specification.

Substantial research is done in this are as witnessed by, for example, [7,
65, 69, 111,216].

A real core issue for this project to study is the relationship between
the kind of textual specification languages extensively listed and referenced
above and the calculus of classical mathematics — as for example used in
automotive engineering: differential equations and the like. It is a challenge
to provide as seamless transition from specification in the form of classical
applied mathematics, including operations research, and the newer formal
specification languages.

Challenge # 2. Integrated Specifications: For specific such in-
terfacing (and thus commensurate) specifications or for general uses
of their specification languages, suitable equivalence (or satisfaction)
relations must be established (formulated and formally verified).

4.4.3 Domain Theories

By a domain theory we understand a domain description and a number of
theorems that can be proved to hold of what the description models. These
theorems are (obviously) proved in the proof system of the notations in which
the domain description is expressed.

What could such “interesting” theorems be about? Well, let’s try some
possible, or potential examples:

• Kirchoff’s Law for Railways: Assuming that train timetables are modulo 24
hours and that trains run on time, then for any 24 hour contiguous period
(i.e., interval) and for every train station it is the case that the number
of trains arriving at a station minus the number of trains ending their
journey at that station plus the number of trains starting their journey at
that station equals the number of trains leaving that station.

4.4 Challenges 95

• “No Ghost Trains”: In a domain description of highway traffic along a
segment, then for any consecutive times t and t′′ and for any vehicle which
is in the traffic at those times it is the case that the vehicle is also in the
traffic at all times between t and t′′.

• “God does’nt Play Dice”: We assume that the model for traffic is con-
tinuous, or at least monotonic over time (either a dense set of points, or,
respectively, a discrete set of points with clearly defined “next” time suc-
cessors). We assume a single lane, one traffic direction segment. If at time
t vehicle vi is “after” vehicle vj in the traffic along the segment, then at
a “next” (i.e., the successor) time t′ vehicles vi and vj have not reversed
their position.

This leads us to formulate:

Challenge #3. Domain Theories: So, for the domain of trans-
portation (incl. highway transportation) the challenge is to identify
and prove “interesting” theorems.

A source of inspiration as to what kinds of theorems to look for in any domain
theory seems to be [94]. It is hard for me to think that laws of man-made
domains are that fundamentally different from those of nature.

4.4.4 Analysis Scripts: Proof Scores and Tactics

In connection with research around CafeOBJ some insight is gained with
respect to “standard” scripts according to which CafeOBJ specifications can,
or should be analysed. These are called proof scores. Proof scores are first
class CafeOBJ objects. In that sense they are different proof tactics pursued
as early as the early days of LCF [110, 179, 180, 198, 202] and is also a core
subject of PVS [195,196] proof work [197].

Challenge # 4. Analysis Scripts: Proof Scores and Tactics:
So, for any domain or requirements formalisation the challenge is to
find a suitable, reusable set of analysis scripts.

4.4.5 Ubiquity

“How are the computers in the automated highway system configured and con-
trolled? What tools are needed for design and analysis of constantly adapting
and evolving computing system? What theories will help us to understand its
behaviour? How do we manage such systems, or even understand them? How
do people interact with them and how, in which ways, does this new pervasive
technology affect us?”

These are some of the many questions that the Ubiquitous Computing —
Science and Design — Grand Challenge initiative is raising.

96 4 Verified Software for Ubiquitous Computing

Challenge #5. Ubiquity: The proposed Verified Software for Ubiq-
uitous Computing project is expected to contribute to at least the
tools are needed for design and analysis of constantly adapting and
evolving computing system and to their underlying theory.

4.4.6 Compositionality

We have made some vague, non-committed references to ‘decomposition’ of
the domain description, the requirements prescription and the software design
tasks (the latter in terms of ‘isolated’ software packages composed with ‘co-
ordination software’.

Challenge #6. Compositionality: Does the established computer
science work on compositionality, for example as illustrated by [83–88],
apply here? Or must new concepts be developed?

This version of the compositionality concept apply specifically to components
and objects.

We refer to a recent paper on compositionality: [48].

4.4.7 Formalisation of Machine Requirements

Machine requirements such as performance, dependability, maintainability,
platforms, etc. are not easily formalisable, and, when formalisable (with some
difficulty) it is not yet well understood how one “derives” implementations
correct wrt. the machine requirements.

Challenge # 7. Formalisation of Machine Requirements: Ubiq-
uitous computing has very much to do with machine requirements so a
special challenge, in the small, and, it appears, as many distinct chal-
lenges, is to discover, study and make practically useful principles,
techniques and tools of machine requirements and their implementa-
tion.

4.4.8 Requirements to Domain Relations

We here claim, and show in of Vol. 3 [33, Chap. 19] and in [41], that core
issues of requirements, what we term the domain requirements and the inter-
face requirements, can be systematically deduced, in interaction between the
domain description, the requirements engineers and the client.

Challenge # 8. Requirements to Domain Relations: Although
the engineering seems clear it also seems desirable to have a more
formal understanding of the relations between requirements prescrip-
tions and domain descriptions, and for a suitable variety of cases —
for example such as appears to be offered in the context of software
for ubiquitous computing.

4.5 Some Observations 97

4.4.9 Software Design to Requirements Relations

Many of the relations that are implied here are those that show up, it appears
— and to this author certainly — in for example Michael Jackson’s seminal
work on ‘Problem Frames’ [147].

Challenge # 9. Software Design to Requirements Relations:
So we pose as a challenge to more precisely understand these relations
— including formally.

4.4.10 Annotation to Requirements and Domain Relations

A major cornerstone of the VSTTE ideal of program correctness is that of
being able to have a machine prove correctness of program code with respect
to program code annotations.

We assume that programs are annotated, and that the annotations contain
elements

(1) some of which “clearly” relate to Requirements prescriptions,
(2) others (therefrom possibly distinct (?)) of which “clearly” relate to Domain

descriptions, and
(3) yet others of which (perhaps the three kinds of annotation elements “over-

lap”) “clearly” relate to the programming language.

The three, as we postulate, “clearly” identifiable parts appears (and this is
yet a postulate) to express properties that then appears to only be provable in
relation to respective semantics: (1′) The domain theory, (2′) the requirements
theory and (3′) the programming language semantics or proof system.

In view of our suggestion:

D,S |= R
we pose the challenge:

Challenge #10. Program Annotations: Do the postulates above
(1,1′–2,2′–3,3′) hold. How can we express the annotations so as to
[most?] clearly designate the three relations? And how is the verifying
compiler going to handle all this?

4.5 Some Observations

Rather unusual for a paper of this kind we bring some extensive comments
on an earlier version.

98 4 Verified Software for Ubiquitous Computing

4.5.1 Michael Jackson’s 22 March, 2006 Observations

I would be inclined to go further, in a direction that may offer some insight
but would surely be fruitless for influencing the GC. A major difficulty of de-
veloping a software-intensive system that interacts with a non-formal physical
or human domain is that formalisation is always only approximate. If the sys-
tem is critical it becomes vital to obtain a very good approximation indeed,
and this cannot, in general, be achieved by elaborating the description of do-
main properties. Instead it becomes necessary to structure a set of domain
descriptions, with their attendant requirements and subproblem machines, so
that they form an assemblage that in total is a good enough approximation.
A simple case is a cascading structure in which the highest element in the cas-
cade describes an idealised domain in which everything works ’as it should’
and other elements describe a less idealised domain in which various ’faults’
invalidate parts of the assumptions on which the highest element is based.

More generally still, a realistic problem is an assemblage of many sub-
problems, each addressing a partial requirement on the basis of a partial view
of the problem world. The composition of these subproblems raises many
concerns such as conflict, interference, incommensurability, and so on, which
must be addressed if the subproblems and their solutions are to be combined
into the desired system. This complexity of composition inevitably leads to
a complexity of software structure. Without addressing this aspect of soft-
ware structure the developer cannot know whether or not the behaviour of
the programmed machine has a good likelihood of ensuring satisfaction of the
problem requirements.

One manifestation of this difficulty is that the ’verifying compiler’ version
of the GC can be seen to depend on the program having an appropriate
structure. If the specification is to be embedded in the program the form of pre-
and post-conditions and invariants, the program must possess a structure that
can accommodate the specification without introducing so many specification
variables that the specification itself becomes unintelligible. To take a trivial
and grossly simplified example: if a word processor specification includes an
invariant on the document that is to be processed, there ought to be a program
component corresponding to the whole document. If there are, instead, only
components corresponding to operations on the document there will be no
place in the program where the document invariant can be written.

4.5.2 Tony Hoare’s July 31, 2006 Observations

The first subsection below is from “random paragraphs” drafted by Tony
Hoare, July 2006: Theory for Verified Software, received in an e-mail.

The second subsection below is from an e-mail of It predates “random
paragraphs”. The bulleted items of the first subsection were part of the June
e-mail from which we only bring the advice.

4.5 Some Observations 99

Random Paragraphs

In any practical software project, theory begins to play a role long before
the project starts. Its initial role is to construct a mathematical model of the
real world domain in which the projected software will be deployed, without
making any commitment to a particular choice of functionality or of imple-
mentation technology.

An academic example of a useful domain model is one that describes a
range of procedures for the organisation of different kinds of scientific meet-
ing [Fisler]. An industrial example is the domain of scheduling algorithms
[Doug Smith]. Domain models (often called ontologies) are of wide applica-
tion in various e-sciences, to standardise terminology and logical structure
of observable data, and to help solve consistency problems between experi-
mental data bases. A domain model may make a contribution towards the
analysis of systems composed of other systems (including commercial off-the
shelf software). A domain model can provide a framework for classification
of a range of software and hardware standards, relating them to each other
and to their common purposes. A good example is the ISO Reference Model
for Open Distributed Processing. Other serious applications (perhaps too se-
rious for experimentation!) are in the service industries, including retail sales,
transport, the health service, and even parts of e-government.

• A well-structured domain model will describe all aspects of the real world
that are relevant for any good software design in the area. It describes
possible places to define the system boundary for any particular project.

• A domain model makes explicit the preconditions about the real world
that have to be made in any embedded software design, especially one
that is going to be formally proved.

• A domain model describes the whole range of possible designs for the
software, and the whole range of technologies available for its realisation.
It is a suitable basis for the Æproduct lineÇ approach to software design
and construction.

• A domain model provides a logical framework for formalisation and full
analysis of a range of possible customer requirements; it reduces the risk
of contamination of requirements by the choice of a particular technology
of implementation.

• A domain model enumerates and analyses the decisions that must be taken
earlier or later any design project; it identifies those decisions that are inde-
pendent and those that conflict, those decisions that must be taken early,
and those that can be postponed. Late discovery of feature interactions
can be forestalled.

Research on domain modelling dates back at least as far as the development of
VDM, Z, RAISE, and there are now many mathematical formalisms available
for describing both the whole and various aspects of a domain model. For
example, there are formalisms based on set theory (Z), process calculus (Pi),

100 4 Verified Software for Ubiquitous Computing

abstract algebra (ASM), graphical notations (UML), and mixtures of these.
Each of these will be suitable for describing different aspects of the domain.
It will be a challenge to use them in an appropriate combination, with formal
checks of consistency between them. Work on combined use of formalisms may
motivate and guide research toward unifying theories of programming.

An even more important challenge will be to validate a domain model.
This may be done by a broad survey of existing implementations, showing
that they can all be classified as examples (at least, in approximation) of the
model. The model may suggest useful experiments on the real world. The
extra effort devoted to the generality of a domain model will be very worth
while, because it can be done long in advance of any particular project, and
because domain models are much more re-usable than any of their specific
implementations.

Comments, I of III

You will find the above issues covered extensively in [33].

Advice3

I suggest you give more prominence to these (ed.: the above bulleted) advan-
tages.

A large part of the serious work of domain modelling is a check of the cor-
respondence between the model and the real world. I think your plans should
include careful design of the earlier experiments that make this check. This
would increase the value of your project far more than actual implementa-
tion of any particular one of the possible designs. This particular example
project would have to be conducted in close (maybe too close) association
with the automobile industry, who are already developing the technology and
conducting the experiments – and even delivering the products!

I think your project will have more impact and attract more researchers
if you put forward a small range of example projects. They should include a
domain taken from the home, one taken from the law (perhaps election law),
and perhaps a fragment of an application in (local) government. Different
researchers will find different domains more attractive.

The whole point of your example projects is that each of them will de-
liver results that are much more general than any particular implementation
(whether verified or not). Don’t spoil this by implementing just one of the
possibilities. If you are going to implement anything it should be a program
development tool or generator that can be applied to the whole class of im-
plementations, including perhaps an experimental environment for evaluating
alternative designs.

3Hoare, continued

4.5 Some Observations 101

Your document contains an example of a fragment of a model written
in your favourite language (presumably). Different aspects of the model and
design might be well expressed in different conceptual frameworks, for ex-
ample, process calculus, the pi calculus, algebra, UML, biographical systems,
etc. Even pictures can be quite helpful. The experienced mathematician is
quite skilled in living simultaneously in a variety of modelling presentations.
Such diversity should be welcomed, and theorists should be invited to develop
techniques and tools that ensure consistency and coherence of the various as-
pects of the model. Thus domain modelling will provide motivation and source
material for another Grand Challenge – Unifying Theories.

In your next step, I would advise you to ’choose your team’. Who are the
world-wide leaders in the field whom you would most like to recruit to work
on the project? Who are those whose antagonism to the project would be
most damaging? The biblical number of apostles is twelve. When you have
the leaders helping you, then you can cast your net to the whole community.

Comments, II of III

The current paper has already presupposed this advice.

4.5.3 Robin Milner’s July 31, 2006 Observations

The E-mail Header

Thank you for putting so much effort into joining two GCs – GC6 and GC2/4
– in the context of automated traffic. I largely agree with what you are saying,
and in the note at the end I try to map your way of thinking onto how we
have already been thinking in GC2/4. I also comment inconclusively on how
we would coordinate this junction; and finally I mention a few things that
occurred to me while reading your piece.

I hope we can push this further. I’m puzzled at present as to who on the
GC2/4 side will be proactive in the coordination, as opposed to proactive in
their own research strand. This whole thing depends on the chance of finding
the right individuals!

Here’s one thought (but read my remarks below): we could avoid setting
up a coordination team at the start, and instead – by luck or judgement – find
just ONE (sub)-project that can arise between us because the right individuals
need each other. What do you think?

Automated Traffic

You propose a project of 7-10 years on automated traffic. This is a valuable
specialisation of the Ubicomp Grand Challenge; the GC must surely involve
such special goals. The GC also aims for generic engineering principles and
theories that cover a range of specialisations, and this is evident from the

102 4 Verified Software for Ubiquitous Computing

general form in which its goals are stated. But I can’t see any way to reach
these goals other than specialisations like the traffic one.

The Ubicomp GC proposes that we identify foothill ‘topics’, or better
‘activities’, and for each activity there would be many (coordinated we hope,
but loosely so) foothill ‘projects’, each perhaps lasting 3-4 years and tackling
a specific aspect of the topic, taking care to involve at least some mix of
the three GC themes: Experience, Design and Science. So I see your ‘foothill
project’ more as a ‘foothill activity’. This isn’t just a matter of what words
we choose; it emphasizes that to advance understanding of the ‘topic’ (by
coordinating the *activity*) we need to identify many ‘projects’ with aims
achievable in 3-4 years.

With this in mind, we can think of your proposal in Section 3 as needing
to be specialised to specific projects. (See Sect. 4.5.3.) Formulating achiev-
able goals for these (sub)-projects is surely a creative task in itself. But, for
example, Jean Bacon has one such project already running, involving traffic
in Cambridge. I don’t know the project as well as I should, but I believe it
involves knitting together at least two of the GC themes: Experience (what do
citizens and the City Council actually want?) and Design (what event-based
model can express alternative designs to achieve this experience?)

One can think of this kind of project as helping to formulate an appropriate
dynamic model, rather than as presupposing an already perfect such model.

A different project (prompted by Jon Crowcroft) could involve the com-
parison of two different design choices for a specific application: ‘distributed
control’ (each car has its say) with ‘centralised’ control (the highway makes
all the decisions). To do this comparison one still has to postulate a model in
which both designs can be expressed; so the project can be regarded propos-
ing and testing the Model as well as identifying the differences in Experience
provided by the two designs.

Other projects can involve theoretical aspects of such models: how to ex-
press designs (in some mix of logics, process calculi, differential equations,
and languages based on these); how to analyse the state-space of a design (by
pencil and paper, or by model-checking) to ensure that some requirements are
met; how all of this can be done stochastically; etc. These theoretical aims
pertain to ALL ubicomp systems of course; but theories, like engineering prin-
ciples. designs, get established through specific application.

Coordinating a Foothill Activity

In GC2/4 there is debate about how a foothill activity can be coordinated,
and woven into the coordination of the whole GC activity. This is hard; and
presumably it’s even harder to do between two GCs! You already address this
in 6.4.2 where you expect ‘20 to 30 groups’ to be enlisted. The big question is:
how do they interact? I’m sure it depends, as you are hinting, on gathering a
steering group who really believe in the coordination as much as in their own
specific research. This group ought to be more or less equally represent the

4.6 Project Management 103

two GCs. What will not work is to try to do this top-down! It follows that,
like democracy, it sometimes cannot be done at all. But we can continue to
try.

Specific Comments on DB’s Early Draft of This Paper

• At the start of 4.1.5 you introduce domain models as abstracting reality. I
think one of our main problems is that they have to model ‘future’ reality,
or future possible realities. That’s where we have not the luxury of a
natural science – where the reality is not (or is only very slowly) modified
by the model!

• This raises a question-mark about the Dogma (Sect. 4.2.1), first bullet,
where you say “First one must establish a . . . domain theory”. In GC2/4
we imagine that the model (or theory) will only be arrived at by the
research; so it’s one of the ultimate aims of the GC, not a first step.

Comments, III of III

You will find that Milner’s comments are addressed extensively in [33].

4.6 Project Management

4.6.1 Self-funding

This project frame proposal does not imply central funding. That is, each
partner must find own funding. Each partner is expected to contribute at
least 6 person months of research per year — and typically 6-18 such months
per year.

4.6.2 A Patchwork of Overlapping, Individualistic Contributions

Challenges #1–#10 indicate rather clearly that there is room for individual
groups to contribute to just one of them. It is then hoped, through “gentle
coercion and persuasion” to get these or other individual groups interested in
“filling the gaps”.

Challenge #11. Management: It is indeed a management chal-
lenge to get as many groups to work in order to “fill” the programme,
so that all challenges (# 1–#10) are taken care of, and it is indeed
a management challenge to make sure that the patchwork hangs to-
gether, that is, to fulfill challenge #0

104 4 Verified Software for Ubiquitous Computing

4.6.3 Project Plan

The project plan can only be very loose: This project is not centrally funded,
it is a research project with very many open issues, requires individuals of
widely different skills that must be “fused”, etcetera.

The best we can suggest at this time is for the reader to take a look at
Fig. 4.1 on page 92 and at our sketch “milestone” plan, Sect. 4.6.5.

4.6.4 Resource Requirements

The project is characterised by a diversity of issues, from domains via re-
quirements to software; from integration and composition of medium to large
scale specifications expressed in many “styles”, transitions from domain via
requirements to software design specfications, the establishment of formal re-
lations (for these transitions), and the verification of annotated code. This
calls for many groups to contribute to the project, each with their specialty,
some working already on other foothill projects of either of the two underlying
grand challenges.

We therefore expect a number from 20 to 30 groups to be enlisted in this
project for it to succeed.

Each such group may be from one person working at least half time to
several (3–4) such persons. And for typically 3–4 years.

It is expected to hold an annual “Verified Software for Ubiquitous Com-
puting” workshop — probably as part of some event of the two underlying
Grand Challenges. It is deemed mandatory that each group participate three
or four consecutive times in these workshops.

4.6.5 “Milestones”4

These are the short, medium and long term goals to be reached:

• Short Term Goals: Summer 2007
The gathering of at least some 20 or more reasonably committed and
reasonably strong research individuals (groups), the holding of a kick-off
workshop, and hence the start of the project.

• Medium Term Goals:
In chronological order we list one set of “deliverables”, one could call them
the “on the path from domains to verified software” deliverables:

⋆ Domain Specifications 2008–...
⋆ First Set of 1–2 Requirements 2009–...
⋆ Next Set of 4–5 Requirements 2010–...
⋆ Requirements to Domain Relations 2011–...

4Please recall that this document was written early 2006 for presentation in
October 2006.

⋆ First Set of 1–2 Software Designs 2012–...
⋆ Next Set of 4–5 Software Designs 2013–...
⋆ Software Design to Requirements Relations 2013–...
⋆ Program Annotations to Requirements and Domain Relations 2015–...
⋆ First Set of 1–2 Verified Program Code 2016–...
⋆ Next Set of 4–5 Verified Program Code 2018–...

We then list supporting theory “milestones”. These are more thought of
as individual contributions (i.e., papers) that are produced in a hopefully
steady flow:

⋆ Domain Theories 2009–...
⋆ Requirements Theories 2011–...
⋆ Integration Theories 2009–...
⋆ Compositionality Theories 2009–...
⋆ Theories of Ubiquity 2009–...
⋆ Theories of Proof Score/Scripts &c. 2009–...

• Long Term Goals:

⋆ Verified Software for Automated Highways 2020–...

4.6.6 Project Board and Management

Obvious one must have “such a thing”: board, project leader, etc. Tony
Hoare’s and Robin Milner’s comments in Sects. 4.5.2 and 4.5.3 are all rel-
evant in this context.

4.7 Conclusion

We have sketched a foothill project within the two grand challenges of
‘VSTTE: Verified Software, Theories, Tools and Experiments’, and ‘Ubiq-
uitous Computing’, the latter specifically in the context of ‘Automated High-
ways’. Both of the two grand challenges had set somewhat different scopes and
spans for their expected activities. The current proposal attempts to bring the
two together on “one plate”.

4.8 Acknowledgements

Discussions over the last six months (fall 2005 – spring 2006) with (in chrono-
logical order) Tony Hoare, Cliff Jones, Michael Jackson, Kokichi Futatsugi
and Robin Milner are much appreciated.

5

The Triptych Process Model1

Process Assessment and Improvement

Abstract

The triptych2 approach to software engineering proceeds on the basis of
carefully monitored and controlled possibly iterated progression through
domain engineering and requirements engineering to software design.

In this paper we will outline these three phases, show the many stages
of development within each and also indicate the many steps within each
stage. We will ever so briefly touch upon informal narration and formal
description (prescription and specification) of domains (requirements and
software designs), and the verification (theorem proving, model checking
and testing) and validation of domain descriptions (requirements prescrip-
tions and their relations to domain descriptions, as well as the software de-
sign specifications and their relations to requirements prescriptions). The
importance of process management and its relations to software process
assessment (SPA) and software process improvement (SPI) will then be
underscored. Our measuring “stick” is that set up by Watts Humphrey’s
capability maturity model (CMM). We will suggest and discuss seven as-
sessment and eight improvement categories. In closing we will have some
few words to say about software procurement.

5.1 The Triptych Dogma

5.1.1 Background

In the past, as exemplified in major software engineering textbooks [109,139,
200, 205, 228, 240], software engineering focused on requirements engineering
and software design. The triptych dogma extends the two (requirements en-
gineering and software design) into three (domain engineering plus the two
phases already mentioned).

1This is an edited version of [38]. Invited talk at JASPIC 2006 (Japan Association
for Software Process Improvement) meeting October 12-13, 2006 at Tsukuba.

2The term ‘triptych’ covers the three phases of software development: domain
description, requirements prescription and software design.

108 5 The Triptych Process Model

5.1.2 The Dogma

• Justifying requirements prescriptions:
⋆ Before software can be designed
⋆ we must understand the requirements.

• Justifying domain descriptions.
⋆ Before requirements can be prescribed
⋆ we must understand the domain.

• Justifying the triptych:
⋆ First analysing and describing the (application) domain,
⋆ then analysing and prescribing the requirements, and
⋆ finally analysing and specifying the software design and code.

5.1.3 New Aspects

The relatively new aspect of software development is here ‘domain engineer-
ing’. This new aspect “translates” into a number of new methodological as-
pects of domain and requirements engineering. The next, the major section
will survey these aspects. All of this is covered extensively in volume 3 of the
three volume book [31–33]. All figures and tables in this chapter are re-used
from [33](by permission from Springer).

5.2 The Triptych Process Models and Documents

5.2.1 Common Aspects

Process Models

The triptych process model is the composition of three process models: one
each for domain engineering, requirements engineering and software design.
We hint at this composition in Fig. 5.1 on the next page.

The internals of the three boxes (i.e., phases of development) of Fig. 5.1 on
the facing page are outlined in Figs. 5.4 on page 112, 5.8 on page 116 and 5.9
on page 117, respectively Fig. 5.11 on page 119.

The DO edges of Fig. 5.1 on the next page enter topmost boxes of respective
Figs. 5.4 on page 112, 5.8 on page 116 and 5.11 on page 119.

The REDO edges of Fig. 5.1 on the next page enter whichever boxes of
Figs. 5.4 on page 112, 5.8 on page 116 and 5.9 on page 117, respectively
Fig. 5.11 on page 119 that are found to be most appropriate. (More on this
later.)

5.2 The Triptych Process Models and Documents 109

Domain Engineering

Software Design

Requirements Engineering

REDO

REDO

REDO

DO

DO

Software Engineering

= Software Development

Fig. 5.1. A simplified view of the triptych process model

Documents

Common to all three phases of software development are that they primar-
ily manifest themselves in documents. Figure 5.3 on page 111, Fig. 5.5 on
page 114, Fig. 5.6 on page 115, Fig. 5.7 on page 116, and Fig. 5.10 on page 118,
to be commented later, illustrate the breadth, depth and quite substantial
number of such resulting documents. And common to each set of such doc-
uments is the more-or-less administrative “working out” of information doc-
ument, cf. items 1 of Fig. 5.3 on page 111, Fig. 5.5 on page 114, Fig. 5.6 on
page 115, Fig. 5.7 on page 116, and Fig. 5.10 on page 118. Figure 5.2 extracts
item 1. from Fig. 5.3 on page 111, Fig. 5.5 on page 114, 5.6 on page 115,
Fig. 5.7 on page 116, and Fig. 5.10 on page 118.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management

ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

Fig. 5.2. Informative documents

Let us briefly review the pragmatics of Fig. 5.2. In any of the three phases
of development, domain engineering, requirements engineering and software

110 5 The Triptych Process Model

design, the information implied by the table-of-contents of Fig. 5.2 on the
previous page must be carefully worked out. Take items ‘Assumptions and
Dependencies’, and ‘Implicit/Derivative Goals’. The description, prescription
or design work to be done in the phase to which the information documents
apply rely on assumptions and dependencies. These must be fully understood,
hence documented before any proper development takes place. Consider items
‘Current Situation’, ‘Needs and Ideas’, and ‘Concepts and Facilities’. The cur-
rent situation which apparently warrants the proper development must be
recorded. It might change thus necessitating change of development. Develop-
ment — of whichever of the three phases — would not be undertaken unless
someone, the customer and/or the developer, has some needs for the (approx-
imately) expected results of the development, and, as well, has some ideas
as how (methodologically) to basically develop whatever is to be developed
(a domain description, a requirements description, a software design). The
customer and/or developer also, initially have made some thoughts of the
core concepts and facilities around which the development is expected to take
place. All of this need be properly recorded as any review of project status
occurs in the pragmatic context of ‘Assumptions and Dependencies’, ‘Implic-
it/Derivative Goals’, ‘Current Situation’, ‘Needs and Ideas’, and ‘Concepts
and Facilities’.

5.2.2 The Domain Engineering Process Model

We first rough-sketch narrate the stages and steps of the domain engineering
development of a domain model, then review the documents that should em-
anate from such development. Finally we diagram an essence of the narration
and the document table-of-contents.

But first some words on domain models.

Domain Models

A main result of domain engineering development, as applied to some specific
application domain3, is a domain model. Domain models are in the form of
descriptions. Domain descriptions describe what there is, and as it is. There
is no presumption of requirements implied by these descriptions. They are
not requirements prescriptions. By analogy, physicists [domain engineers] are
describing mother nature [application domains] and engineers [requirements
engineers and software designers] are prescribing and implementing require-
ments.

3Examples of domains are: (1) the financial service industry as a whole, (1.1) a
bank, (1.1.1) a bank’s mortgage lending business; (2) the transportation industry as
a whole, (2.1) a railway system, (2.1.1) an interlocking system; etcetera.

5.2 The Triptych Process Models and Documents 111

Domain Engineering, A Narrative

The domain engineering triptych dogma, and as argued in Chaps. 8–17 of [33],
advocates (item 2.) the following stages of description development (after work
on information documents [items 1.a–l] have been duly completed): (2.a) iden-
tification of as wide a spectrum of domain stakeholders, (2.b) acquisition of
domain understanding, (2.c) establishment (and subsequent, throughout all
stages, use and maintenance) of a domain terminology (ontological terms),
(2.d) understanding and rough-sketching all relevant business processes, (2.e)
domain modelling (all domain facets), and (2.f) the domain model comple-
tion (including consolidation). Intertwined with the domain description parts
(item 2., subitems (a–f)) are the analysis parts with (3.a) domain analysis
aiming at identifying inconsistencies, conflicts and incompletenesses, (3.b)
domain validation, (3.c) domain verification, and (3.d) possible work on
establishing a domain theory.

The new thing here is all of items 1.–2.–3.

Domain Engineering Documents

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

2. Descriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Terminology
(d) Business Processes
(e) Facets:

i. Intrinsics
ii. Support Technologies
iii. Management and

Organisation
iv. Rules and Regulations
v. Scripts
vi. Human Behaviour

(f) Consolidated Description
3. Analyses

(a) Domain Analysis and
Concept Formation

i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Domain Validation
i. Stakeholder Walkthroughs
ii. Resolutions

(c) Domain Verification
i. Model Checkings
ii. Theorems and Proofs
iii. Test Cases and Tests

(d) (Towards a) Domain Theory

Fig. 5.3. Domain engineering document table-of-contents

112 5 The Triptych Process Model

Figure 5.3 on the preceding page summarises the plenitude of highly interre-
lated sets of documents that must all be carefully worked out and carefully
correlated.

Domain Engineering Stages and Steps

Identification and Liaison
Stakeholder

Elicitation Studies

Elicitation Interviews

Preparation, Presentation

Description Unit Indexing

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapters 10−11

Chapter 11

DOMAIN
DEVELOPMENT

Chapter 9

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

Stakeholder Identification

ACQUISITION

Fig. 5.4. The domain engineering process model diagram

Figure 5.4 diagrams, in box-and-edge form, the stages and steps of domain
engineering development and their interrelations. The diagram does not give
a correct “picture” of the necessity for iteration: going “backwards and for-
wards” across the development, i.e., across the diagram. Obviously, having a
precise understanding of the syntax, semantics and pragmatics of boxes and
edges, helps developers and their managers monitor and control (including
“contain”) iterations.

5.2 The Triptych Process Models and Documents 113

5.2.3 The Requirements Engineering Process Model

We first rough-sketch narrate the stages and steps of the requirements en-
gineering development of a requirements model, then review the documents
that should emanate from such development. Finally we diagram an essence
of the narration and the document table-of-contents.

But first some words on “the machine” and on requirements models.

The Machine

Requirements is about prescribing the machine: the hardware and the software
which shall implement the requirements. The machine resides in the domain.
Once developed we shall sometimes refer to that domain as the environment
of the machine — with the machine + that environment becoming a new
domain.

Requirements Models

A main result of requirements engineering development, as applied to some
specific application domain4, is a requirements model. Domain models are
in the form of descriptions. Requirements prescriptions prescribe what there
should be.

Requirements Engineering, A Narrative

The requirements engineering triptych dogma, and as argued in Chaps. 18–26
of [33], advocates (item 2.) the following stages of prescription development
(after work on information documents [items 1.a–l] have been duly completed):
(2.a) identification of as wide a spectrum of requirements stakeholders, (2.b)
acquisition of requirements statements, (2.c) rough-sketching first ideas of
a requirements model in order to (“eureka”) discover un-formulated require-
ments, (2.d) establishment (and subsequent, throughout all stages, use and
maintenance) of a requirements terminology (ontological terms), and (2.e)
requirements modelling of all requirements facets: (2.e.i) business process
reengineering (BPR),

(2.e.ii) domain requirements, (2.e.iii) interface requirements, (2.e.iv) ma-
chine requirements, and (2.e.v) completion of a full requirements prescription.
Intertwined with the requirements prescription parts (item 2., subitems (a–e))
are the analysis parts with (3.a) requirements analysis aiming at identifying
inconsistencies, conflicts and incompletenesses, (3.b) requirements validation,

4Examples of domains are: (1) the financial service industry as a whole, (1.1) a
bank, (1.1.1) a bank’s mortgage lending business; (2) the transportation industry as
a whole, (2.1) a railway system, (2.1.1) an interlocking system; etcetera.

114 5 The Triptych Process Model

(3.c) requirements verification, and (3.d) possible work on establishing a
requirements theory.

The new things here are the way in which (2.b) ‘acquisition of require-
ments statements’ is pursued, and items (2.c) and (2.c subitems i., ii., and
iii.). Essentially (2.b) questionnaires are formulated on the basis of assumed
existing domain specifications.

Essentially the questionnaires and the rough sketching of a domain and
interface requirements model, after analysis of the requirements statements
(3.a), is pursued basically as follows (2.e.ii): which of the entities, functions,
events and behaviours described in the domain model must be partially or
fully supported by the machine being requirements prescribed? Must those
(entities, functions, events and behaviours) being so selected (i.e., projected)
be made more determinate, and/or more concretely instantiated, and/or ex-
tended, and/or fitted with, or to other, elsewhere developed requirements?
Similar for business processes of the “original” domain. Usually they need be
reconsidered (2.e.i). Etcetera.

Requirements Engineering Documents

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas (Eurekas, I)
(e) Concepts & Facilities (Eurekas,

II)
(f) Scope & Span
(g) Assumptions & Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis (Eurekas, III)
(j) Standards Compliance
(k) Contracts, with Design Brief
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

Fig. 5.5. Requirements engineering informative document table-of-contents

Figures 5.5, 5.6 on the next page and 5.7 on page 116 summarise the plenitude
of highly interrelated sets of documents that must all be carefully worked out
and carefully correlated.

Requirements Engineering Stages and Steps

Figure 5.8 on page 116 and 5.9 on page 117 diagram, in box-and-edge form,
the stages and steps of requirements engineering development and their inter-

5.2 The Triptych Process Models and Documents 115

2. Prescriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)
(d) Terminology
(e) Facets:

i. Business Process
Re-engineering
• Sanctity of the Intrinsics
• Support Technology
• Management and

Organisation
• Rules and Regulation
• Human Behaviour
• Scripting

ii. Domain Requirements
• Projection
• Determination
• Instantiation
• Extension
• Fitting

iii. Interface Requirements
• Shared Phenomena and

Concept Identification
• Shared Data

Initialisation
• Shared Data

Refreshment
• Man-Machine Dialogue

• Physiological Interface
• Machine-Machine

Dialogue
iv. Machine Requirements

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessability
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive
⋆ Corrective
⋆ Perfective
⋆ Preventive

• Platform
⋆ Development

Platform
⋆ Demonstration

Platform
⋆ Execution Platform
⋆ Maintenance

Platform
• Documentation

Requirements
• Other Requirements

v. Full Reqs. Facets Doc.

Fig. 5.6. Requirements engineering prescription document table-of-contents

relations. The diagram does not give a correct “picture” of the necessity for
iteration: going “backwards and forwards” across the development, i.e., across
the diagram. Obviously, having a precise understanding of the syntax, seman-
tics and pragmatics of boxes and edges, helps developers and their managers
monitor and control (including “contain”) iterations.

5.2.4 The Software Design Process Model

We first rough-sketch narrate the stages and steps of software design develop-
ment of a software architecture (etc.), then review the documents that should

116 5 The Triptych Process Model

3. Analyses
(a) Requirements Analysis and

Concept Formation
i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Requirements Validation
i. Stakeholder Walk-through

and Reports
ii. Resolutions

(c) Requirements Verification
i. Model Checkings

ii. Theorem Proofs

iii. Test Cases and Tests

(d) Requirements Theory

(e) Satisfaction and Feasibility
Studies

i. Satisfaction: Correctness,
unambiguity, completeness,
consistency, stability,
verifiability, modifiability,
traceability

ii. Feasibility: Technical,
economic, BPR

Fig. 5.7. Requirements engineering analytic document table-of-contents

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison

Acquisition
Requirements

Validation
& Verification

Requirements Modelling

Stakeholder

Fig. 5.8. Diagramming a requirements process model

emanate from such development. Finally we diagram an essence of the narra-
tion and the document table-of-contents.

Software Design, A Narrative

The software design process is here simplified into four stages (Fig. 5.10 on
page 118 items 2.a–d): software architecture design, component design, mod-
ule design, and (module) program coding. Each of these may consist of two
or more steps of development (cf. Fig. 5.11 on page 119). Between adjacent

5.2 The Triptych Process Models and Documents 117

Domain Requirements Machine Requirements

Shared Data Initialisation

Shared Data Refreshment

Physiological Dialogue

Dependability

Interface Requirements

Fitting

Extension

Instantiation

Determination

Projection

BPR

Shared Phenomena

Performance

Availability

Reliability

Safety

Security

Maintainability

Perfective

Adaptive

Corrective

Preventive

Portability

Documentation

Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Accessibility

Man−Machine Dialogue

Machine−Machine

Identification

Dialogue

Requirements Modelling

Fig. 5.9. The requirements modelling stage

steps there is a correctness obligation (V:MC:T, verification, model checking
and testing). Verification proofs usually are of the kind: D,S |= R which
means that the proof that the Software implements the Requirements entails
reference to the D.

Software Design Documents

Figure 5.10 on the next page summarises the plenitude of highly interrelated
sets of documents that must all be carefully worked out and carefully corre-
lated.

118 5 The Triptych Process Model

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management,
ii. Developers,
iii. Consultants

(m) Plans
i. Project Graph
ii. Budget, Funding, Accounts

(n) Management
i. Assessement Plans & Actions
ii. Improvement Plans & Actions

2. Software Specifications
(a) Architecture Design (Sa1

. . . San)
(b) Component Design (Sc1i

. . . Scnj
)

(c) Module Design (Sm1
. . . Smm)

(d) Program Coding (Sk1
, . . . , Skn)

3. Analyses
(a) Analysis Objectives and Strategies

(b) Verification (Sip , Si ⊒Li
Si+1)

i. Theorems and Lemmas Li

ii. Proof Scripts ℘i

iii. Proofs Πi

(c) Model Checking (Si ⊒ Pi−1)
i. Model Checkers
ii. Propositions Pi

iii. Model Checks Mi

(d) Testing (Si ⊒ Ti)
i. Manual Testing

• Manual Tests MS1
. . . MSµ

ii. Computerised Testing
A. Unit (or Module) Tests Cu

B. Component Tests Cc

C. Integration Tests Ci

D. System Tests Cs . . . Csits

(e) Evaluation of Adequacy of Analysis
Legend:
S Specification
L Theorem or Lemma
℘i Proof Scripts
Πi Proof Listings
P Proposition
M Model Check (run, report)
T Test Formulation
M Manual Check Report
C Computerised Check (run, report)
⊒ “is correct with respect to (wrt.)”
⊒ℓ “is correct, modulo ℓ, wrt.”

Fig. 5.10. Software design document table-of-contents

Software Design Stages and Steps

Figure 5.11 on the facing page diagram, in box-and-edge form, the stages
and steps of software design development and their interrelations. The dia-
gram does not give a correct “picture” of the necessity for iteration: going
“backwards and forwards” across the development, i.e., across the diagram.
Obviously, having a precise understanding of the syntax, semantics and prag-
matics of boxes and edges, helps developers and their managers monitor and
control (including “contain”) iterations.

5.3 Review of the Triptych Process

5.3.1 The Process Model: Diagrams and Tables-of-content

We have surveyed the (mainly) software development processes according to
the triptych dogma. We have seen that these processes can be diagrammed
and also be “mapped” onto tables-of-content of the documents resulting from
respective phases. Of course there is much more to these three phases, their
very many stages (within phases), and their potentially very many more steps
(within stages) than can be covered in chapter form.

5.3 Review of the Triptych Process 119

SA1

SA2

SAm

C11 Cn1

C12 C22 C2n

C21

C1L C2M CnN

K1 K2 Kn

.....

.....

.....

+

.....

++

+ + +

V:MC:T

V:MC:T V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:TV:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

DOMAIN DESCRIPTION DEVELOPMENT

REQUIREMENTS PRESCRIPTION DEVELOPMENT

SOFTWARE ARCHITECTURE DEVELOPMENT

COMPONENT

CODING

SOFTWARE

DEVELOPMENT

S
O

F
T

W
A

R
E

 C
O

M
P

O
N

E
N

T
 D

E
V

E
LO

P
M

E
N

T
C

O
D

IN
G

S
O

F
T

W
A

R
E

 A
R

C
H

IT
E

C
T

U
R

E
 D

E
V

E
LO

P
M

E
N

T
P

R
IO

R
 D

E
V

E
LO

P
M

E
N

T
S Domain

Requirements

Software Architecture

Software Components

Fig. 5.11. The software design development processes

5.3.2 Process Model Semantics

Diagrams, such as those of Figs. 5.1, 5.4, 5.8–5.9 and 5.11, reflect some prag-
matics, has some syntax and embodies, hopefully some semantics. We wish,
here, to emphasise the semantics:

What is important to mention here, justifying this separate section, is that
each of the boxes of the description, prescription and software design
parts of Figs. 5.4, 5.8, 5.9 and 5.11 and each of their interconnecting
edges embody a clear set of method principles, techniques and tools with
many of these techniques also being pursuable formally and supported,
or supportable, by theory-based tools.

In the following we shall assume that the above paragraph on the semantics
of the process model diagrams is taken for granted.

120 5 The Triptych Process Model

5.3.3 Informal versus Formal Development

The term ‘development’ covers any combination of the three phases: do-
main, requirements or software design only; domain+requirements or require-
ments+software design, or all three phases “more-or-less” consecutively.

Development can, as shown in [33] be pursued informally or formally,
and therefore in any “graded scale” combination of these.

0. Informal development means: no formalisation of domain descrip-
tions, requirements prescriptions or software design specifications are at-
tempted. Thus verification cannot be done using formal proofs or model check-
ing. Only code testing.

There are, roughly speaking three “points” on the semi-formal to formal
scale of development.

1. Systematic development formalises domain descriptions, require-
ments prescriptions and software design specifications. But that is just about
as much formalisation that is attempted.

2. Rigorous development extends systematic development by stating
all “crucial”5 properties and maybe even sketch or carry through the proof or
model checking of properties of some of these.

3. Formal development requires that all necessary (including correct-
ness) properties are formally expressed and theorem proved or model checked.

The triptych paradigm allows for any of these latter three (1.–2.–3.) forms
of development.

5.3.4 Adherence to Phases, Stages and Steps

It is important to stress the following assumption:

Adhering to the triptych paradigm, to us, means that all phases, stages
and steps as outlined above are followed. This means that documents are
produced as per the tables-of-contents shown in Fig. 5.3, Figs. 5.5–5.7
and Fig. 5.10.

Our treatment, next, of process assessment and improvement, is based on,
i.e., starts with the above assumption.

5.4 Process Assessment and Improvement Management

5.4.1 Notions of ‘Process Assessment’ and ‘Improvement’

In order to speak of ‘assessment’ and ‘improvement’ we must identify that
which is being assessed and improved: the results of following one set of

5We do not here further characterise what we mean by ‘crucial’.

5.4 Process Assessment and Improvement Management 121

method principles, techniques, tools and their management, over following an-
other such set. Process assessment is now about judging adherence of a given
process to its process model, Pragmatically, Semantically and Syntactically
(PSS, usually in reverse order): to which (PSS) degrees does the process
fulfill what is “laid down” in the process model. Process improvement is then
about changing the assessed development processes such that the results of
using the changed processes are assessed to have been improved.

By “assessment” and “improvement” we first of all mean “assessing and
improving documents”. The documents are those emanating from activities
denoted by nodes and edges of the process model.

Each such box and each such edge may have many documents “attached”
to it, and each such document has its syntax, semantics and pragmatics. The
syntax and semantics can usually be given very precise definitions. Hence we
can, in a sense, objectively “measure” (assess) whether a document “lives up”
to that syntax and that semantics! For pragmatics the “measure” is more
subjective. To be able to “measure” process improvement one must therefore
attach to each planned document for each box and each edge a “measure” of
compliance. Is a document in 100% compliance with those syntactic, semantics
and pragmatic measures or is it not? Or more precisely: where on a scale from
0 to 1 lies the quality of a document wrt. an “ideal”.

Software Process Assessment 1 Process Model Syntax and
Semantics: In order to handle process improvement (à la CMM, from
a lower to a higher level) — using the triptych approach — managers (as
well as, of course, developers), must be intimately familiar with the syntax
and semantics of the documents produced and expected to be produced
by process model node and edge activities. This is a strong requirement
and can not be expected by just any software development organisation.
And there are really no shortcuts.6 Process improvement — wrt. the pre-
cision of monitoring resource usage — is predicated on this assumption:
that management is strongly based on professional awareness of triptych
principles, techniques and tools. The “degree”7 to which a development
document adheres to the syntax and semantics of the relevant box or
edge thus provides an assessment.

Several groups, worldwide, the most well known is perhaps Praxis High In-
tegrity Systems, http://www.praxis-his.com, practices this on a daily basis. So
do many members of ForTIA: The Formal Techniques Industrial Association,
www.fortia.org.

6In other branches of engineering project managers (i.e., project leaders) and
developers, the “engineers at floor level” basically all have the same, normalising
education. Hence they are intimately familiar with the syntax and semantics of
their tasks. The problem is in software engineering.

7This “degree” notion is not defined here

122 5 The Triptych Process Model

Software Process Improvement 1 Process Model Syntax and
Semantics: To improve this general aspect of the possible processes
that developers and managers might be able to pursue under the banner
of the Triptych Process Model one simply has to resort to education and
training. There is no substitute.

We choose here to also “anchor” our discourse of ‘process improvement’ by
referring to the Capability Maturity Model (CMM) of Watts S. Humphrey
(WSH) [139]. CMM postulates five levels of maturity of development groups.
Level 1 being a lowest, in a sense “least desirable”, and level 5 being the
highest, “most desirable” level of professionalism that WSH finds useful to
define. Process improvement, by a development group, is now the improvement
of the development processes such that the group (i.e., the software house)
advances from level i to level i + j where i, j are positive numbers and i + j
is less than 6. So let us first review WSH’s notion of CMM.

5.4.2 The CMM: Capability Maturity Model

The following subsection are “lifted” from http://en.wikipedia.org/wiki/Capabili-

ty Maturity Model:

1. Level 1, Initial: At maturity level 1, processes are usually ad hoc and
the organization usually does not provide a stable environment. Success in
these organizations depends on the competence and heroics of the people
in the organization and not on the use of proven processes. In spite of
this ad hoc, chaotic environment, maturity level 1 organizations often
produce products and services that work; however, they frequently exceed
the budget and schedule of their projects.

Maturity level 1 organizations are characterized by a tendency to over
commit, abandon processes in the time of crisis, and not be able to repeat
their past successes again.

2. Level 2, Repeatable: At maturity level 2, software development suc-
cesses are repeatable. The organization may use some basic project man-
agement to track cost and schedule.

Process discipline helps ensure that existing practices are retained dur-
ing times of stress. When these practices are in place, projects are per-
formed and managed according to their documented plans.

Project status and the delivery of services are visible to management
at defined points (for example, at major milestones and at the completion
of major tasks).

Basic project management processes are established to track cost,
schedule, and functionality. The minimum process discipline is in place to
repeat earlier successes on projects with similar applications and scope.
There is still a significant risk of exceeding cost and time estimate.

5.4 Process Assessment and Improvement Management 123

3. Level 3, Defined: The organization’s set of standard processes, which is
the basis for level 3, is established and improved over time. These stan-
dard processes are used to establish consistency across the organization.
Projects establish their defined processes by the organization’s set of stan-
dard processes according to tailoring guidelines.

The organization’s management establishes process objectives based
on the organization’s set of standard processes and ensures that these
objectives are appropriately addressed.

A critical distinction between level 2 and level 3 is the scope of stan-
dards, process descriptions, and procedures. At level 2, the standards,
process descriptions, and procedures may be quite different in each spe-
cific instance of the process (for example, on a particular project). At
level 3, the standards, process descriptions, and procedures for a project
are tailored from the organization’s set of standard processes to suit a
particular project or organizational unit.

4. Level 4, Managed: Using precise measurements, management can effec-
tively control the software development effort. In particular, management
can identify ways to adjust and adapt the process to particular projects
without measurable losses of quality or deviations from specifications.

Subprocesses are selected that significantly contribute to overall process
performance. These selected subprocesses are controlled using statistical
and other quantitative techniques.

A critical distinction between maturity level 3 and maturity level 4 is
the predictability of process performance. At maturity level 4, the perfor-
mance of processes is controlled using statistical and other quantitative
techniques, and is quantitatively predictable. At maturity level 3, pro-
cesses are only qualitatively predictable.

5. Level 5, Optimizing: Maturity level 5 focuses on continually improving
process performance through both incremental and innovative technolog-
ical improvements. Quantitative process-improvement objectives for the
organization are established, continually revised to reflect changing busi-
ness objectives, and used as criteria in managing process improvement.
The effects of deployed process improvements are measured and evalu-
ated against the quantitative process-improvement objectives. Both the
defined processes and the organization’s set of standard processes are tar-
gets of measurable improvement activities.

Process improvements to address common causes of process variation
and measurably improve the organization’s processes are identified, eval-
uated, and deployed.

Optimizing processes that are nimble, adaptable and innovative de-
pends on the participation of an empowered workforce aligned with the
business values and objectives of the organization. The organization’s abil-
ity to rapidly respond to changes and opportunities is enhanced by finding
ways to accelerate and share learning.

124 5 The Triptych Process Model

A critical distinction between maturity level 4 and maturity level 5 is the
type of process variation addressed. At maturity level 4, processes are con-
cerned with addressing special causes of process variation and providing statis-
tical predictability of the results. Though processes may produce predictable
results, the results may be insufficient to achieve the established objectives.
At maturity level 5, processes are concerned with addressing common causes
of process variation and changing the process (that is, shifting the mean of
the process performance) to improve process performance (while maintain-
ing statistical probability) to achieve the established quantitative process-
improvement objectives.

5.4.3 Process Models and Processes

One thing is the process model, viz., the graph-like structures shown in, for
example, Figs. 5.4, 5.8, 5.9, and 5.11. (These are syntactic structures, but have
semantic meanings.) Another thing is the actual usage of such models, that is,
the actual processes that the software developers (domain, requirements and
software design engineers) “steer through” when developing domain models,
requirements models and software designs.

Graphs and Graph Traversal Traces

Assume some graph-like, let us call it, process model, see Fig. 5.12.

D

F

A

B

E

G

H

J

K

L

C

b

a

d
c

e
f

g

h

j

k

m

n

 ... etcetera ... etcetera

Fig. 5.12. A graph (left) and two (incomplete) traversal traces (center and right)

• So Fig. 5.12 shows a process model and two traces.
⋆ REDOs, that is, iterations of phases, stages and steps lead to additional

traces.
⋄ Let us call the totality (set) of these traces for OK traces.

⋆ And “jumping” or just “skipping” phases, stages and steps lead to
further additional traces.
⋄ Let us call these “jumped” or “skipped” traces for NOK traces.

• A process model thus denotes a possibly infinite set of such traces.

5.4 Process Assessment and Improvement Management 125

The leftmost part of Fig. 5.12 on the preceding page shows an acyclic graph.
The graph consists of distinctly labeled nodes and (therefrom distinctly la-
beled) edges. The center and right side of the figure shows some possible
traversal traces. By a traversal trace we understand a sequence of wavefronts.

By a wavefront we understand a set of node and edge labels such that
no two of these are on the same path from an input (i.e., in-degree 0) to an
output (i.e., out-degree 0) node, and such that there is a contribution to the
set from any path from an input to an output node.

The third wave of the two traces shown in the two rightmost figures can
thus be represented by {B, b} and {a, C}.

A process model is here taken to be a graph: boxes denote activities that
result in information and description, prescription or specification documents
and edges denote analytic activities that result in documents that record re-
sults of (concept formation, consistency, conflict and completeness) analysis,
verification, model checking, testing and possibly theory formation.

A development process is any trace over sets of these activities.
Figure 5.12 on the facing page’s center figure thus portrays the following

initial trace:

〈{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

Thus a process model denotes a set of such traces.

Incomplete and Extraneous Processes

The trace:

〈{A},{a,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

appears to have skipped the activity (phase, stage or step) designated by
B. Loosely speaking we call such processes incomplete with respect to their
underlying (i.e., assumed) process model (Fig. 5.12 on the preceding page, the
leftmost graph).

The trace:

〈{A},{a,z},{X},{D,Y,b},{D,E,C},...,etcetera〉

appears to have performed some activities (z, X, Y) not designated by the
process model of Fig. 5.12 on the facing page (the leftmost graph). Loosely
speaking we call such processes extraneous (or ad hoc) with respect to their
underlying process model.

Process Iterations

The trace

〈{A},{a,b},{B,b},{a,b},{B,b},{c,d,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...〉

126 5 The Triptych Process Model

designates an iterated process. After action B in {B,b} the process “goes-back”
to perform action b (in {a,b}); and after (either of) actions c or d in {c,d,b}
the process “goes-back” to perform action B in {B,b}. Loosely speaking we
call such processes iterated with respect to their underlying process model.

The above trace only shows simple “one-step” (or stage or phase) “back-
ward-and-then-onward” iterations. But the REDO idea, also indicated in
Fig. 5.1 on page 109, can be extended to any number of steps (etc.).

Degrees of Process Model Compliance

We can now define two notions of process model compliance, a syntactic and
a semantic. The syntactic notion of process model compliance has to do with
“the degree” to which an actual process matches a possibly iterated, i.e., an
OK trace of a process model. The semantic notion of process model compliance
is concerned with adherence to the semantics of boxes and edges.

We shall not, in this paper define these notions precisely — that should
be done in a future paper.

Suffice it to summarise that an ongoing process, i.e., an ongoing software
development project can be assessed wrt. its syntactic and its semantics com-
pliance wrt. its process model. One can precisely state which activities have
been omitted (incompleteness), and which activities were extraneous (or ad
hoc).

We first deal with syntactic compliance, then, in the next section, with
semantics compliance.

Software Process Assessment 2 Syntactic Process Compli-
ance: Given the generic process models diagrammed in Figs. 5.4, 5.8,
5.9 and 5.11, and given the project-specific software development graph
as exemplified by Fig. 5.13, one can now, in a process claimed to ad-
here to these models and graphs quite simply assess whether that actual
process follows those diagrams.

We assume that assessment takes place “regularly”, that is, with a frequency
higher than process wave transitions, that is, more often than the process
evolves through steps and stages. Otherwise it may be too late (or too cum-
bersome) to “catch-and-do” an omitted step.

Software Process Improvement 2 Syntactic Process Com-
pliance: Adherence to the process model can, at least “formally”, be
improved by actually ensuring that the process steps and stages (or even
phases) that were assessed to not having been performed, that these be
performed.

A “Base 0” for Triptych Developments

By a triptych development we mean a development which applies the prin-
ciples, techniques and tools as prescribed by the triptych dogma. Either in

5.4 Process Assessment and Improvement Management 127

a systematic, or in a rigorous, or in a formal way. A triptych development
process therefore, “by definition” has its base point at level 4 in the CMM
scale. This does not mean that a software development process which claims
to follow the triptych dogma (or the software house within which that process
occurs) at least measures at level 4. The dogma sets standards. The process
may follow, or may not follow such standards. Whether they are followed or
not is now an “easy” matter to resolve. The degree to which the dogma, in
all its very many instantiations, is followed is now “fairly easy” to resolve.
The “ease” (or “easiness”) depends on how well developers and management
understands the many triptych principles, techniques and tools, how well they
understand the prescribed syntax and semantics of required documents, and
on how well they understand their pragmatics, that is, the reason for these
principles, techniques and tools.

The pragmatics is what makes management interesting. Well mastered
pragmatics allows the managers leeway (i.e., discretion) in the dispatch of their
duties, that is, allow them to skip (or “go light” on) certain activities, including
choosing whether a step or even a stage should be performed “lightly” or more-
or-less “severely”, that is, be informal, or formal (and then in a scale from
systematic via rigorous to formal).

Software Process Assessment 3 Planned Syntactic and Se-
mantics Compliance: If a process is assessed (SPA) to be in full
compliance, syntactically and semantically with the process model then
we claim that the software development in this case is at CMM level 4
(or higher).

Software Process Improvement 3 Planned Syntactic and Se-
mantics Compliance: If it is assessed that a process has not reached
CMM level 4, and that at least CMM level 4 is desired, then one must first
secure syntactic compliance, see process improvement #2 (Page 126),
thereafter ensure that each of the steps (or stages, or phases) whose se-
mantic compliance was assessed too low be redone and according to their
semantic intents.

5.4.4 Proactive Measures

The above spoke in general about assessment and improvement.
We are now ready to deal with more specific issues of process assessment

and improvement. But first we need to refine our notion of process model.

Project Development Graphs

The process models (i.e., the graphs) are generic. They apply to any develop-
ment — whatever the software. They must be instantiated to fit the particular
problem frame (see [147] as well as [33, Chap. 28]).

128 5 The Triptych Process Model

Figure 5.13 shows the project development graph that was used in the
development of the Danish Ada compiler [58, 77] (1981–1984).

Semantics

Static
Semantics

Dynamic
Semantics

Sequential
Semantics Semantics

Concurrent

Machine

Compiling
Algorithm

Administrator
Multi-pass

Analysis
Semantic

Domain

Requirements
Capture

Software
Architecture

Host Compiler Target System

Run-time
System

Run-time

Design
to

Code
P1 P2 P4 P5 P9Front-end Back-endP6

P:

pass

1

2

5 6

7

8

9

3

4

10

11 12 13

T-code α

β

 γ

Architecture

Theory

45

Fig. 5.13. Project development graph: Compiler development

The top horizontal and dashed line of Fig. 5.13 separates domain engineering
from requirements engineering. The domain engineering box (“Semantics”)
represents a simplification of the usual domain engineering process diagram.
(You are to put that usual diagram into the “Semantics” box (a form of sup-
plementation)!) The second horizontal and dashed line of Fig. 5.13 separates
requirements engineering from software design. (Again you are to supplement
the requirements engineering and software design boxes etc. of Fig. 5.13 with
the generic process models for requirements engineering and software design.)

The software (domain, requirements, software design) development graphs
in the sense of supplementation are orthogonal to process models. They allow
more meaningful assignment of semantics to boxes and edges and they allow
more specific management (planning, monitoring and control).

In this paper we do not show how to construct a resulting pull graph from
the combination of the earlier process models with the later, domain specific
graph.

5.4 Process Assessment and Improvement Management 129

Management

So far, in this paper, we have not dealt with management. Management8 is
about planning, and monitoring and controlling process resource usage —
including the quality of the documents emanating from the use of resources.
Planning is about scheduling and rescheduling processes and allocating and
re- and deallocating resources to (from) processes.

A primary resource in software development is the set of domain and
requirements engineers and the set of software designers. Other primary re-
sources are the time, space and tools used by these developers.

Planning — Scheduling and Allocation:

Planning starts with instantiating, selecting, or developing a new, tenta-
tive, software development graph and detailing (i.e., annotating) it wrt. pro-
cess model concepts: phases (domain, requirements, software design), stages
(stakeholder identification, acquisition, analysis, description (prescription,
specification), verification, model checking, testing, validation, etc.), and make
allowances for more crucial, detailed steps.

Based on the resulting software development graph management can, in
a far more detailed (i.e., granular) way, ascribe resource usage (people, time,
offices, equipment, software development tools) to each box and edge, and can
schedule these in time and allocate them “in space”.

Software Process Assessment 4 Resource Planning: How can
one assess a software development project plan (i.e., graph), that is, some-
thing which designates something yet to happen? Well, one can compare
to previous software development graphs purporting to cover “similar” (if
not identical) development problems and their eventual outcome, that is,
the process that resulted from following those graphs. Based on actual
resource usage accounts one can now — “to the best of anyone’s ability”
— draw a software development graph and ascribe resource consumption
estimates (time, people, equipment) to each and every node and edge.
Thus ‘assessment’ here was “speculated assessment” of an upcoming
project.

Thus, if that ‘speculated assessment’ of an upcoming project is felt, by the
assessors, i.e., the management, to be flawed, to be questionable, then one has
to proceed to improvement:

Software Process Improvement 4 Resource Planning: One
must first improve the precision with which one designs the domain spe-
cific project development graphs. Then the precision with which we asso-
ciate resource usage with each box and edge of such a graph. Etcetera.

8We restrict management to the below items. That is: we do not consider product
management (which products to develop and in which sequence of deliverables) nor
project funding.

130 5 The Triptych Process Model

Some development projects are very much “repeats” of earlier such
projects and one can expect improvement in project development graphs
for each “repeat”. Other projects are very much tentative, explorative,
that is, are actually applied research projects — for which one only knows
of a project development graph at the end of the project, and then that
graph is not necessarily a “best such”!

Monitoring & Controlling Resource Usage:

As the project (i.e., the process) evolves management can now check a number
of things: adherence to schedule and allocation, and adherence to the syntactic
and the semantic notions of process model compliance.

Most process models do not possess other than rather superficial and then
mostly syntactic notions of compliance. In the triptych process model semantic
compliance is at the very core: Every box and every edge of the process models
have precise syntax and semantics of the documents that are the expected
results of these (box and edge) activities.

Software Process Assessment 5 Resource Usage: No problems
here. As each step (of the development process) unfolds one can assess
its compliance to estimated plan.

Should a resource usage assessment reveal that there are problems (for exam-
ple: all resources used well before completion of step) then something must
be done:

Software Process Improvement 5 Resource Usage: Well,
perhaps not this time around, when all planned resources have already
been consumed — no improvement can undo that — but perhaps “next”
time around. An audit may reveal what the cause of the over-consumption
was. Either a näıve, too low resource estimate, or unqualified staff, or
some simple or not so simple mistakes? Improvement now means: make
precautions to avoid a repetition.

Resource usage is at a very detailed and accountable level and can thus be
better assessed. Slips (usually excess usage) can be better foreseen and dis-
covered and more clearly defined remedies, should milestones be missed or
usage exceeded, can then be prescribed — including skipping stages and steps
whose omission are deemed acceptable.

Skipping stages and steps result in complete, perhaps extraneous (ad hoc)
processes. Given that management has an “ideal” process model and hence
an understanding of desirable, possibly iterated processes, management can
now better assess which are acceptable slips.

From Informal to Formal Development

By process improvement, to repeat and to enlarge on our previous character-
isation of what is meant by process improvement, we understand something

5.4 Process Assessment and Improvement Management 131

which improves the quality of resulting software. We “translate” the term ‘re-
sulting software’ into the term ‘resulting documents’. These documents can
— as defined on in Sect. 5.3.3 — be developed either informally (without
any use of any formalism other than the final programming language9), or
systematically formal, or rigorously formal or formally formal!

Informal Development:

It is an indispensable property of the triptych approach to software develop-
ment that the formalisable steps domain engineering, requirements engineer-
ing and software design be pursued in some systematic via rigorous to formal
manner. Hence the informal aspects of development is restricted to the devel-
opment of only the informative documents. Informative documents are usually
“developed” by project leaders and managers. Hence an “upper” level of man-
agement is process assessing and possibly prescribing process improvements
to a “lower” level of management!

Software Process Assessment 6 Informal Development of
Informative Documents: We refer to Fig. 5.2 on page 109. That
figure lists the kind of documents to be carefully developed — and hence
assessed. Since no prescribed syntax, let alone formal semantics can be
given for these documents — whose purpose is mainly pragmatic — as-
sessment is a matter of style. It is easy to write non-sensical, “pat” infor-
mative documents which do not convey any essence, any insight. Assess-
ment hence has to evaluate: dose a particular, of the many informative
documents listed in Fig. 5.2 on page 109, really convey, in succinct form,
an essence of the project being initiated?

Software Process Improvement 6 Informal Development of
Informative Documents: If an informative document is assessed to
not convey its intended message succinctly, with necessary pedagogical
and didactical “bravour”, then it must be improved. Only “seasoned”,
i.e., experienced managers can do this.

Systematic, Rigorous and Formal Development:

The development of domain description, requirements prescription and soft-
ware design documents as well as the development of analytic documents
(tests, verification, model checking and validation) can be done in a spectrum
from systematically via rigorously to formally.

9Thus we do not consider UML to be a formalism. For a “formalism” to qualify
as being properly formal it must have a precise syntax, the syntax must have a
precise semantics, and there must be a congruent proof system, that is, a set of
proof rules such that the semantics satisfy the proof rules.

132 5 The Triptych Process Model

Software Process Assessment 7 Staff and Tool Qualifica-
tion: Given the syntax and semantics of the specific step — in the
process model — of the tasks to be assessed a (syntax and semantics) a
knowledgeable person, a project (task) leader or a manager, can assess
compliance. That assessment is greatly assisted by the software tools10

that support activities of those tasks: If they can process the documents
then something seems OK. If not, assessment will have to be negative.

There are now two distinct, “extreme” reasons for a failure to meet assessment
criteria — with any actual reason possibly being a combination of these two
“extremes”. One is that the quality of the staff performing the affected tasks
is not up to expectations. The other is that the tools being deployed are not
capable of supporting the problem solution task.

Staff Qualification:

If the assessment of ‘Systematic, Rigorous and Formal Development of Specifi-
cations and Their Analysis’ is judged negative due to inadequate development
decisions then we suggest the following kind of improvement.

Software Process Improvement 7 Staff Qualification: It is
suggested that improvement, when deemed necessary, takes either of
three forms: Either “move” from a systematic to a rigorous level of devel-
opment, or from a rigorous to a formal level of development when that is
possible and redo the task(s) affected. Or educate and train staff to re-
perform the affected task(s) more accurately (while remaining systematic,
rigorous, or formal as the case may be. Or replace affected staff with bet-
ter educated and trained staff and redo the task(s) affected. These kinds
of improvement decisions are serious ones.

Tools

There are different categories of tools. Tools can serve management: for the
design of software development graphs (a la Fig. 5.13 on page 128) and their
“fusion” into the appropriate process model diagrams (a la Fig. 5.4, Fig. 5.8
and 5.9, and Fig. 5.11) and for the monitoring and control (i.e., assessment
and improvement) of the process with respect to these diagrams. And tools
can serve developers: syntactic and semantic description, prescription and
software design tools as well as analytic tools: for testing, model checking
and verification (proof assistance or theorem provers). These tools embody,
that is, represent the formalisms of the textual or diagrammatic notations
used — whether Alloy [146], B [1, 71], CafeOBJ [89, 90, 99, 100], Casl [11,
78, 184, 185], Duration Calculus [247, 248], LSCs [80, 128, 153], MSCs [142–

10These software tools mainly support the use of the main tools, namely the
specification languages, their transformation (or refinement) and their proof systems.

5.4 Process Assessment and Improvement Management 133

144], Petri Nets [148, 199, 210–212], RAISE RSL [31–33, 44, 101, 104, 106],
Statecharts [123, 124, 126, 127, 129], TLA+ [155, 156, 175, 176], VDM-SL [55,
56,95,96], or Z [132,133,229,230,242].Thus the formal notations of the above
listed thirteen languages, whether textual or diagrammatic, or combinations
thereof, are tools, as are the software packages that support uses of these
linguistic and analytic means.

Tool Qualification:

If assessment of ‘Systematic, Rigorous and Formal Development of Specifica-
tions and Their Analysis’ is judged negative due to inadequate tools then we
suggest the following kind of improvement:

Software Process Improvement 8 Tool Qualification: Better
tools must be selected and applied to the task(s) affected (i.e., judged
negatively assessed). These tools are either intellectual, that is, the speci-
fication languages, whether textual or diagrammatic, and their refinement
and proof systems, or they are the manifest software tools that support
the intellectual tools. These are likewise a serious improvement decisions.

5.4.5 Review of Process Assessment and Improvement Issues

We have surveyed, somewhat cursorily, a number of software process assess-
ment and software process improvement issues. We characterise these from a
another viewpoint below.

1. Process Model Syntax and Semantics Assessment and Improve-
ment:
We refer to Page 121.
The issue here is whether the management and development staff really
understands and, to a satisfactory degree, can handle the triptych pro-
cess model in all its myriad of phases, stages and steps, specificationally
and analytically, and with all its myriad of documentation demands. If
not, then they cannot be effectively assessed and subjected to “standard”
improvement measures.
This is an assessment (and improvement) issue which precedes proper
project start.

2. Syntactic Process Compliance Assessment and Improvement:
We refer to Page 126.
This issue is a “going concern”, that is, an ongoing, effort of regular assess-
ment and possibly an occasional improvement. It merely concerns whether
a mandated step (or stage or even phase) of development and its expected
production of related documents has taken or is taking place.

3. Planned Syntactic and Semantics Compliance Assessment and
Improvement:

134 5 The Triptych Process Model

This is an assessment (and improvement) issue which, in a sense, sets a
proper framework for the project: Does management wish to attain at
least CMM level 4, or higher or lower? In that sense it precedes project
start while determining the rigour with which the next assessments and
improvements are to be pursued.

4. Resource Planning Assessment and Improvement:
We refer to Page 129.
This item of assessment and improvement takes place at project start
and may have to be repeated when resource consumption exceeds plans.
Assessment and improvement may involve “layers” of project leaders and
management.

5. Resource Usage Assessment and Improvement:
We refer to Page 130.
This item of assessment and improvement takes place at regular inter-
vals during an entire project and involves “layers” of project leaders and
management. It may lead to replanning, see Item 4.

6. Informative Document Assessment and Improvement:
We refer to Page 131.
Informative documents are usually directed at client and software house
management and not at software house software engineers. As such they
are often the result of the combined labour of client and software house
management. Assessments take place while the planned project is being
discussed between these partners. Improvements may then be suggested
at such mutual project planning meetings.

7. Staff and Tool Qualification Assessment
We refer to Page 132.
This form of assessment is probably the most crucial aspect of SPA (and
hence of SPI). It strikes at the core of software development. The resources
spent in what is being assessed conventionally represents a very large, a
dominating percentage of resource expenditures.
Thus this complex of “myriads” of process step, stage and phase (docu-
ment) assessment must be subject to utmost care.

7. Staff Qualification Improvement:
We refer to Page 132.
The implications of even minor staff improvement actions may be serious:
staff well-being, inavailability of staff, serious delays are just a few. Thus
improvement planning must be subject to utmost care, both technically
and socio-economically, but also as concerns human relations.

8. Tool Qualification Improvement:
We refer to Page 133.
The implications of even minor tool improvement actions may be serious:
serious retraining or restaffing, serious time delays, and serious hence cost
overruns.

5.4 Process Assessment and Improvement Management 135

5.4.6 Hindrances to Process Assessment and Improvement

What could be “standard” hindrances to assessment and improvement? And
what could be similar hindrances to actually carrying out projects according
to the triptych process model?

Lack of Knowledge of Methodology

Both management and development staff must be intimately familiar with the
triptych process model and its syntactic, semantic and pragmatic implications,
its need for from systematic via rigorous to formal development, its need
for the creation, use, maintenance and correlation of myriads of documents,
and its need for assessment and possible improvement. Lack of knowledge
of the methodology, ever so sporadically, is a hindrance to proper software
development processes.

Generation Gaps

Classically we see that young candidates join software houses as software engi-
neers, fluent in the kind of methods: principles, techniques and tools inherent
in the triptych approach. They are eager to use these. But they are usually
stifled: their slightly older colleagues as well as their project leaders and
managers do not possess the same skills, or are outright illiterate wrt. the
triptych methods: principles, techniques and tools. Lack of knowledge of the
methodology, across generations of staff, is a hindrance to proper software de-
velopment processes — and even a few years (say ten) count as a generation
today.

Lack of Tools

Above we pointed out that there we intellectual tools and there were software
tools that support the use of the intellectual tools. Here we mean both.

On one hand, the problem being tackled in a particular software develop-
ment project may be such that there are, as of today, year 2006, no obvious
or no good intellectual tools (and a methodological approach, i.e., a process
model) for the properly assessable and improvable pursuit of such a project.
On the other hand, even when appropriate intellectual tools are (and a process
model is) available there may not be good manifest, that is, software support
tools available.

Lack of tools is a serious hindrance to proper software development pro-
cesses.

136 5 The Triptych Process Model

Lack of Acceptance

By far the most common hindrance to proper software development processes
— such as suggested by the triptych process model — processes that can be
properly assessed and for which a continuum of improvement possibilities ex-
ists — is (1) the lack of acceptance of what is referred to as “formal methods”,
and (2) the lack of acceptance of the necessity to do proper domain modelling
before tackling requirements.

This is not the time and place to lament on those “facts”.

5.5 Conclusion

It is time to conclude.

5.5.1 Summary

We have overviewed a rather comprehensive process model, the triptych model
which prescribes three development phases: domain engineering, requirements
engineering and software design, and which, within these prescribes a number
of stages and within these again a number of steps. Phases, stages and steps
may be iterated, and phases, stages and steps, as well as the transition between
them results in documents. We have modelled process models as acyclic graphs
which denote possibly infinite sets of indefinite length traces of waves, where
a wave is a set of nodes and edges of the graph not on the same path from
an input node (of in-degree 0) to an output node (of out-degree 0), but where
subsequences of traces may be repeated (due to process iterations: redoing
“previous” tasks).

We have then identified a class of seven software process assessment cat-
egories and eight software process improvement categories, all in relation to
the syntax and semantics of the triptych process model. Finally we briefly
touched upon hindrances to process assessment and improvement.

5.5.2 Future

This is the first time the author has related the triptych model of [31–33] to
SPA and SPI: software process assessment and software process improvement,
and hence to CMM, Watts Humphrey’s Capability Maturity Model. It has
been instructive to do so. Clearly, for actual projects to apply the triptych
approach and to carry out the assessments and improvements suggested in this
paper, more clarifying directions must be given. And support tools developed.

5.5.3 Software Procurement

Software

By software we shall here mean not just the executable code and some man-
uals on how to install, use and possibly repair this code, but also all the
documents that emanates from a full project developing this code. That is,
all the documents listed in Fig. 5.3, Figs. 5.5, 5.6 and 5.7, and in Fig. 5.10.

Procurement

In software procurement it is therefore natural that the procurement includes
as large a set of the documents mentioned in those figures, and that all
these documents have passed an assessment with some positive, CMM level-
relatable degree of acceptance.

6

Domains and Problem Frames1

The Triptych Dogma and M.A.Jackson’s PF Paradigm

Abstract

In this report we interpret Michael Jackson’s Problem Frame concept
[147]. We do so in the context of the transition from a domain model of
some broad application domain to a set of requirements models — one
for each of a sufficiently distinct set of domain requirements — but for
what is claimed to be “the same” broad application domain.

We shall thus follow the triptych dogma of [33] — and this Mono-
graph!2

First we develop a domain model (for the application area of trans-
portation nets). Then we sketch the development of a number of diverse
domain requirements for the computerisation of transportation network
management, monitoring and control. Finally we relate the diverse do-
main requirements to similarly different Problem Frames.

The claim of this report is that to better understand the underlying
issues of Michael Jackson’s Problem Frame one must see the concept of
Problem Frames as a function of the relation between a domain model
and a (domain) requirements model.

6.1 Domains and Problem Frames

Before software can be designed we must understand its requirements. Before
requirements can be prescribed we must understand the domain3. In this
paper we exemplify one domain description and four related requirements
prescriptions. The latter are intended to illustrate distinct frames.

1This is an edited version of [27]. Invited talk at IWAAPF (International Work-
shop on Advances and Applications of Problem Frames), a satellite event of ICSE
2006 (International Conference on Software Engineering) Shanghai, May 2006.

2 [33, 147] (together with references to the companion volumes [31, 32] of [33])
will be the only citations of this report.

3The term domain is here used instead of the — in problem frame contexts —
perhaps more common term environment.

140 6 Domains and Problem Frames

6.1.1 Aims & Objectives

Aims

We aim to illustrate aspects of problem frame independent domain engineer-
ing, problem frame dependent requirements engineering, and the interplay
between various requirements prescriptions.

Objectives

Our objective is to plead for more systematic software engineering work
around domain engineering, before requirements engineering sets in.

6.1.2 Structure of Paper

We first bring a long and undoubtedly boring domain description, then four
requirements prescriptions. In the conclusion we relate this quadruple develop-
ment to the problem frame approach, and briefly discuss a rôle for the triptych
cum problem frame approach in the Verified Software: Theories, Techniques and
Experiments (VSTTE) and the Ubiquitous Computing grand challenges!

We need the “multiple masses of details” in order to properly substantiate
our aims and objectives.

6.2 The Domain

Our domain is that of transportation nets. We abstract in such a way as to
capture both road, rail, air and shipping transport nets. The basic concepts
of street segments between street intersections, rail lines between train sta-
tions, air lanes between airports and shipping lanes between harbours are
abstracted into segments and the street intersections, train stations, airports
and harbours are abstracted into junctions.

6.2.1 Net Topology

We “slowly” (read: carefully) narrate and formalise a number of concepts
related to segments and junctions.

6.2.2 Nets, Segments and Junctions

Nets consists of one or more segments and two or more junctions.

6.2 The Domain 141

type

N, S, J
value

obs Ss: N → S-set

obs Js: N → J-set
axiom

∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2

Annotations:

• N, S, J are considered abstract types, i.e., sorts. N, S and J are type names,
i.e., names of types of values. Values of type N are nets, values of type S
are segments and values of type J are junctions.

• One can observe from nets, n, their (one or more) segments (obs Ss(n))
and their (two or more) junctions (obs Js(n)); n is a value of type N.

• Functions have names, obs Ss, and obs Js, and functions, f, have sig-
natures, f: A → B (not illustrated), where A and B are type names. A
designates the definition set of f and B the range set.

• A-set is a type expression. It denotes the type whose values are finite,
possibly empty set of A values.

• These observer functions are postulated.
• They cannot be formally defined.
• They are “defined” once a net has been pointed out4

• The axiom expresses that in any net there is at lest one segment and at
least two junctions.

sa

sc

sf

sd
se

sb

sh c5
sg

sj

sk

j6

j4

j7

j8

j2

j3

j1

Fig. 6.1. A simple net of segments and junctions

Applying the observer functions to the net of Fig. 6.1 yields:

4Take the transportation net Europe. By inspecting it, and by deciding which
segments and which associated junctions to focus on (i.e., “the interesting ones”)
we know which are all the interesting roads, rail tracks, air lanes and shipping lanes,
respectively the interesting (associated) street intersections, trains stations, airports
and harbours.

142 6 Domains and Problem Frames

obs Ss(n) = {sa,sb,sc,sd,se,sf,sg,sh,sj,sk}
obs Js(n) = {j1,j2,j3,j4,j5,j6,j7,j8}

Nets, segments and junctions are physically manifest, i.e., are phenomena.

6.2.3 Segment and Junction Identifications

Segments and junctions have unique identifications.

type

Si, Ji
value

obs Si: S → Si
obs Ji: J → Ji

Segment and junction identifications are abstract concepts. No two segments
have the same segment identifier. And no two junctions have the same junction
identifier.

axiom

∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}

Annotations:

• card set expresses the cardinality of the set set, i.e., its number of distinct
elements.

• {f(a)|a:A • p(a)} expresses the set of all those B elements f(a) where a is
of type A and has property p(a) [where we do not further state f, A and
B. p is a predicate, i.e., a function, here from A into truth values of type
Bool, for Boolean].

• The axioms now express that the number of segments in n is the same as
the number of segment identifiers of n — which is a circumscription for:
No two segments have the same segment identifier.

• Similar for junctions.

The constraints that limit identification of segments and junctions can be
physically motivated: Think of the geographic (x, y, z co-ordinate) point
spaces “occupied” by a segment or by a junction. They must necessarily be
distinct for otherwise physically distinct segments and junctions. Segments
may thus cross each other without the crossing point (in x, y space) being a
junction, but, for example, one segment may, at the crossing point be physi-
cally above the other segment (tunnels, bridges, etc.). Segments are delimited
by two distinct junctions. From a segment one can also observe, obs Jis, the
identifications of the delimiting junctions.

type

Jip = {|{ji,ji′}:Ji-set • ji6=ji′|}

6.2 The Domain 143

value

obs Jis: S → Jip

Annotations:

• {|a:A • p(a)|} is a subtype expression. It expresses a subset of type A,
namely those A values which enjoys property p(a) [p is a predicate, i.e.,
a function, here from A into truth values in the type Bool]. In the above
p(a) is ji6=ji′.

• In this case Jip is the subtype of Ji-set whose values are exactly 2 element
sets of Ji elements.

Any junction has a finite, but non-zero number of segments connected to
it. From a junction one can also observe, obs Sis, the identifications of the
connected segments.

type

Si1 = {|sis:Si-set•card sis ≥1|}
value

obs Sis: J → Si1

Annotations:

• Si1 is the type whose values are non-empty, but finite sets of Si values.

One cannot from a segment alone observe the connected junctions. One can
only refer to them. Similarly: one cannot from a junction alone observe the
connected segments. One can only refer to them. The identifications serve the
role of being referents. In any net, if s is a segment connected to connectors
identified by ji and ji′, respectively, then there must exist connectors j and
j′ which have these identifications and such that the identification si of s is
observable from both j and j′.

axiom

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in

∃! j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ∧
obs Si(s) ∈ obs Sis(c) ∩ obs Sis(c′) end

Annotations:

• We read the above axiom:
⋆ for all nets n and for all segments s in n
⋆ let ji and ji′be the two distinct junction identifications observable from

s, then
⋆ exists exactly two distinct junctions, j and j′ of the net, such that
⋆ the segment identification of s is in both the sets of segment identifi-

cations observable from j and j′.

144 6 Domains and Problem Frames

sf, sfi, {j4i,j8i}

se, sei, {j8i,j2i}

j8, j8i, {sei,sfi,ski}

sk, ski, {j7i,j8i}

Fig. 6.2. One junction and its connected segments

Figure 6.2 illustrates the relation between observed identifications of segments
and junctions.

The above constraints take on the mantle of being laws of nets: If segments
and junctions otherwise have distinct identifications, then the above must
follow as a law of man-made artifacts. Vice-versa: In any net, if j is a junction
connecting segments identified by si, si′, . . . , si′′ then there must exist segments
s, s′, . . . , s′′ which have these identifications and such that the identification
ji of j is observable from all s, s′, . . . , s′′.

axiom

∀ n:N, j:J • j ∈ obs Js(n) ⇒
let sis = obs Sis(c), ji = obs Ji(j) in

∃! ss:S-set • ss⊆obs Ss(n) ∧ card ss=card sis ∧
sis = {|obs Si(s)|s:S•s ∈ ss|} end

Annotations:

• Let us read the above axiom:
⋆ for all nets, n, and all junctions, j, of that net
⋆ let sis be the set of segment identifications observed from j, and let ji

be the junction identifier of j, then
⋆ there exists a unique set, ss, of segments of n with as many segments

as there are segment identifications in sis, and such that
⋆ sis is exactly the set of segment identifications of segments in ss.

6.2.4 Paths and Routes

By a path we shall understand a triplet of a junction identification, a segment
identification and a junction identification.

type

P = Ji × Si × Ji
value

paths: N → P-set

paths(n) ≡

6.2 The Domain 145

{(ji,si,ji′)|s:S,ji,ji′:Ji,si:Si•

s ∈ obs Ss(n)∧{ji,ji′} ∈ obs Jis(s)∧si=obs Si(s)}

Annotations:

• Paths are modelled as Cartesians.
• One can generate all the paths of a net.
• It is the set of path triplets, two for each segment of the net and such that

the pair of junction identifications, ji and ji′, observable from a segment is
at either “end” of the triplet, and such that the segment identification is
common to the two triplets (and in the “middle”).

Paths, and as we shall see next, routes are mental concepts. By a route of a
net we shall understand a list, i.e., a sequence of paths as follows:

• A sequence of just one path of the net is a route.
• If r and r′ are routes of the net such that the last junction identification,

ji, of the last path, (, ,ji) of r and the first junction identification, ji′, of
the first path (ji′, ,) of r′ are the same, i.e., ji=ji′, then r̂r′ is a route.

• Only routes that can be generated by uses of the first (the basis) and the
second (the induction) clause above qualify as proper routes of a net.

type

R = {|r:P∗
•wf R(r)|}

value

wf R: P∗ → Bool

wf R(r) ≡
∀ i:Nat • {i,i+1}⊆inds(r) ⇒

let (, ,ji)=r(i), (ji′, ,)=r(i+1) in ji = ji′ end

routes: N → R-infset

routes(n) ≡
let rs = {〈p〉|p:P•p ∈ paths(n)}

∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)} in

rs end

Annotations:

• Routes are well-formed sequences of paths.
• A sequence of paths is a well-formed route if adjacent path elements of the

route share junction identification.
• Give a net we can compute all its routes as follows:

⋆ let rs be the set of routes to be computed. It consists first of all the
single path routes of the net.

⋆ Then rs also contains the concatenation of all pairs of routes, r and r′,
such that these are members of rs and such that their concatenation is
a well-formed route.

146 6 Domains and Problem Frames

⋆ If the net is circular then the set rs is an infinite set of routes. The least
fix point of the recursive equation in rs is the solution to the “routes”
computation.

6.2.5 Segment and Junction Identifications of Routes

For future purposes we need be able to identify various segment and junction
identifications as well as various segments and junctions of a route.

value

xtr Jis: R → Ci-set, xtr Sis: R → Si-set
xtr Jis(r) ≡ case r of 〈〉 → {}, 〈(ji, ,ji′)〉̂r′ → {ji,ji′}∪ xtr Jis(r′) end

xtr Sis(r) ≡ case r of 〈〉 → {}, 〈(,si,)〉̂r′ → {si}∪ xtr Sis(r′) end

xtr Ss: N × Ji → S-set

xtr Ss(n,ji) ≡ {s|s:S•s ∈ obs Ss(n) ∧ ji ∈ obs Jis(s)}

xtr C: N × Ji → C, xtr S: N × Si → S
xtr C(n,ji) ≡ let j:J • j ∈ obs Js(n) ∧ ji=obs Ji(j) in j end

xtr S(n,si) ≡ let s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) in s end

first Ji: R
∼→ Ji, last Ji: R

∼→ Ji
first Ji(r) ≡ case r of 〈〉 → chaos, 〈(ji, ,)〉̂r′ → ji end

last Ji(r) ≡ case r of 〈〉 → chaos, r′̂〈(, ,ji)〉 → ji end

first Si: R
∼→ Si, last Si: R

∼→ Si
first Si(r) ≡ case r of 〈〉 → chaos, 〈(,si,)〉̂r′ → si end

last Si(r) ≡ case r of 〈〉 → chaos, r′̂〈(,si,)〉 → si end

first J: R × N
∼→ J, last J: R × N

∼→ J
first J(r,n) ≡ xtr J(first Ji(r),n)
last J(r,n) ≡ xtr J(last Ji(r),n)

first S: R × N
∼→ S, last S: R × N

∼→ S
first S(r,n) ≡ xtr S(first Si(r),n)
last S(r,n) ≡ xtr S(last Si(r),n)

Annotations:

• Given a route one can extract the set of all its junction identifications.
⋆ If the route is empty, then the set is empty.
⋆ If the route is not empty than it consists of at least one path and the

set of junction identifications is the pair of junction identifications of
the path together with set of junction identifications of the remaining
route.

6.2 The Domain 147

⋆ Possible double “counting up” of route adjacent junction identifica-
tions “collapse”, in the resulting set into one junction identification.
(Similarly for cyclic routes.)

• Given a route one can similarly extract the set of all its segment identifi-
cations.

• Given a net and a junction identification one can extract all the segments
connected to the identified junction.

• Given a net and a junction identification one can extract the identified
junction.

• Given a net and a segment identification one can extract the identified
segment.

• Given a route one can extract the first junction identification of the route.
⋆ This extraction should not be applied to empty routes.
⋆ A non-empty route can always be thought of as its first path and the

remaining route. The first junction identification of the route is the
first junction identification of that (first) path.

• Given a route one can similarly extract the last junction identification of
the route.

• Given a route one can similarly extract the first segment identification of
the route.

• Given a route one can similarly extract the last segment identification of
the route.

• And similarly for extracting the first and last junctions, respectively first
and last segments of a route.

6.2.6 Circular and Pendular Routes

A route is circular if the same junction identification either occurs more than
twice in the route, including if it occurs as both the first and the last junction
identification of the route. Given a net we can compute the set of all non-
circular routes by omitting from the above pairs of routes, r and r′, where the
two paths share more than one junction identification.

non circular routes: N → R-set

non circular routes(n) ≡
let rs = {〈p〉|p:P•p ∈ paths(n)}

∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)∧non circular(r,r′)} in

rs end

non circular: R×R → Bool

non circular(r,r′) ≡ card xtr Jis(r) ∩ xtr Jis(r′) =1

Annotations:

• To express the finite set of all non-circular routes
⋆ is to re-express the set of all routes
⋆ except constrained by the further predicate: non circular.

148 6 Domains and Problem Frames

• An otherwise well-formed route consisting of a first part r and a remaining
part r′

⋆ is non-circular if the two parts share at most one junction identification.

sa

sc

sf

c4

sd

sh

sb
se

sj sk

sg

j1

j3

j2

j8

j7
j5

j6

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i)>

Fig. 6.3. A route, graphically and as an expression

sa

sc

sd

sb

sh

sk

sg

sf

se

sj

j1
j2

j3

j8

j7

j4

j6

j5

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i),(j8i,sfi,j4i),(j4i,sci,j7i)>

Fig. 6.4. A circular route, graphically and as an expression

Let a path be (jif , si, jit), then (jit, si, jif) is a reverse path. That is: the two
junction identifications of a path are reversed in the reverse path. A route,
rr, is the reverse route of a route r if the ith path of rr is the reverse path of
the n− i + 1’st path of r where n is the length of the route r, i.e., its number
of paths. A route is a pendular route if it is of an even length and the second
half (which is a route) is the reverse of the first half route.

value

reverse: P → P
reverse(jif,si,jit) ≡ (jit,si,jif)

reverse: R → R
reverse(r) ≡

case r of

〈〉 → 〈〉,
〈(jif,si,jit)〉̂r′ → reverse(r′)̂〈(jit,si,jif)〉

6.2 The Domain 149

end

reverse(r) ≡ 〈reverse(r(i))|i in [n..1]〉

pendular: R → R
pendular(r) ≡ r̂reverse(r)

is pendular(r) ≡ ∃ r′,r′′:R • r′̂r′′ = r ∧ r′′=reverse(r′)

Annotations:

• The reverse of a path is a path with the same segment identification, but
with reverse junction identifications.

• The reverse of a route, r, is
⋆ the empty route if r is empty, and otherwise
⋆ it is the reverse route of all of r except the first path of r concatenate

(juxtaposed) with the singleton route of the reverse path of the first
path of r.

• Given a route, r, we can construct a pendular route whose first half is the
route r and whose last half is the reverse route of r.

• A (an even length) route is a pendular route if it can be expressed as the
concatenation of two (equal length) routes, r′ and r′′ such that r′′ is the
reverse of r′, that is, if its second half is the reverse of its first half.

6.2.7 Connected Nets

A net is connected if for any two junctions of the net there is a route between
them.

value

is connected: N → Bool

is connected(n) ≡
∀ j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ⇒

let (ji,ji′) = (obs Ji(j),obs Ji(j′)) in

∃ r:R • r ∈ routes(n) ∧
first Ji(r) = ji ∧ last Ji(r) = ji′ end

Annotations:

• A net n is connected if
⋆ for all two distinct connectors of the net
⋆ where ji and ji′ are their junction identifications,
⋆ there exists a route, r, of the net,
⋆ whose first junction identification is ji and whose last junction identi-

fication is ji′.

150 6 Domains and Problem Frames

6.2.8 Net Decomposition

One can decompose a net into all its connected subnets. If a net exhaustively
consists of m disconnected nets, then for any pair of nets in different discon-
nected nets it is the case that they share no junctions and no segments. The
set of disconnected nets is the smallest such set that together makes up all
the segments and all the junctions of the (“original”) net.

value

decompose: N → N-set

decompose(n) as ns
obs Ss(n) = ∪{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
obs Js(n) = ∪{obs Js(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Js(n′)|n′:N•n′ ∈ ns} ∧
∀ n′:N•n′ ∈ ns ⇒ connected(n′) ∧ ...

Annotations:

• A set ns of nets constitutes a decomposition of a net, n,
1. if all the segments of n appear in some net of ns,
2. if all the junctions of n appear in some net of ns,
3. if no two or more distinct nets of ns share segments,
4. if no two or more distinct nets of ns share junctions, and
5. if all nets of ns are connected.

• Comment: It appears that items 3 and 4 are unnecessary, that is, are
properties once items 1, 2 and 5 hold.

That is, we have the following:

Lemma:

∀ n:N •

let ns = decompose (n) in

∀ n′,n′′:N • {n′,n′′}⊆ns ∧ n′6=n′′ ⇒
obs Ss(n′) ∩ obs Ss(n′′) = {} ∧
obs Js(n′) ∩ obs Js(n′′) = {} end

The above items define a lot of what there is to know about transportation nets
if we only operate with the sorts that have been introduced (N, S, Si, J, Ji) and
the observer functions that have likewise been introduced (obs Ss, obs Js,
obs Si, obs Ji, obs Jis and obs Sis). The relationships between sorts, i.e.,
net, segment, segment identification, junction and junction identification val-
ues are expressed by the axioms. The above is a so-called property-oriented
model of the topology of transportation nets. That model is abstract in that
it does not hint at a mathematical model or at a data structure representation
of nets, segments and junctions, let alone their topology. By topology we shall
here mean how segments and junctions are “wired up”. The axioms above
guarantee that no segment of a net is left “dangling”: It is always connected

6.2 The Domain 151

to two distinct junctions; and no junctions of a net is left isolated: It is always
connected to some segments of the net.

We have tacitly assumed that all segments are two way segments, that is,
transport can take place i either direction. Hence a segment gives rise to two
paths.

6.2.9 Multi-Modal Nets

Interesting transportation nets are multi-modal. That is, consists of segments
of different transport modalities: roads, rails, air-lanes, shipping lanes, and,
within these of different categories. Thus roads can be either freeways, motor-
ways, ordinary highways, and so on.

General Issues

We introduce a concept, M, of transport modes. M is a small set of distinct,
but otherwise further undefined tokens. An m in M designates a transport
modality.

type

M

Segment and Junction Modes

With each segment, s, we can associate a single mode, m, and with each
junction we can associate the set of modes of its connected segments.

value

obs M: S → M
obs Ms: J → M-set

axiom

∀ n:N, j:J • j ∈ obs Js(n) ⇒
let ss = xtr Ss(n,obs Ji(j)) in

obs Ms(j) = {obs M(s)|s:S • s ∈ ss} end

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in

let {j,j′} = {xtr J(n,ji),xtr J(n,ji′)} in

obs M(s) ∈ obs Ms(j) ∩ obs Ms(j′) end end

Annotations:

• From a segment one can observe its mode.
• From a junction one can observe its set of modes.
• Let us read the first axiom:

⋆ for all net, n, and all junctions, j, of that net

152 6 Domains and Problem Frames

⋆ let ss be the set of segments connected to j,
⋆ now the set of modes of c is equal to the set of modes of the segments

in ss.
• Let us read the second axiom:

⋆ for all net, n, and all segments, s, of that net
⋆ let ji and ji′ be the junction identifiers of the two junctions to which s

is connected, and
⋆ let j and j′ be the two corresponding junctions,
⋆ then the segment mode is in both the set of modes of the two junctions.

• We can define a function, xtr Ss, which from a net, n, and a junction
identification, ji, extracts the set of segments, ss, connected to the junction
identified by ji.

• xtr Ss(n,ji) yields the set of segments, ss, in the net n for which ji is one
of the observed junction identifications of s.

• And we can define a function, xtr J, of signature N × Ji → J, which when
applied to a net, n, and a junction identification, ji,

• extracts the junction in the net which has that junction identifier.

Single-Modal Nets and Net Projection

Given a multi-modal net one can project it onto a set of single modality nets,
namely one for each modality registered in the multi-modal net.

type

mmN = {|n:N • card xtr Ms(n) > 1|}
smN = {|n:N • card xtr Ms(n) = 1|}

value

xtr Ms: N → M-set

xtr Ms(n) ≡ {obs M(s) | s:S • s ∈ obs Ss(n)}

projs: N → smN-set

projs(n) ≡ {proj(n,m) | m:M • m ∈ xtr Ms(n)}
proj: N × M → smN
proj(n,m) as n′

post

let ss = obs Ss(n), ss′ = obs Ss(n′),
js = obs Js(n), js′ = obs Js(n′) in

ss′ = {s | s:S • s ∈ ss ∧ m=obs M(s)} ∧
js′ = {j | j:J • j ∈ js ∧ m ∈ obs Ms(j)}
end

Annotations:

• A multi-modal net is a net with more than one mode. mmN is thus the
subtype of nets, n:N, which are multi-modal.

6.2 The Domain 153

• A single-modal net is a net with exactly one mode. smN is thus the subtype
of nets, n:N, which are multi-modal.

• The xtr Ms function extracts the mode of every segment of a net.
• The projs function applies to any net, n:N, and yields the set of single-

modal subnets of n, one for each mode of n. The projs function makes use
of the proj function.

• The proj function applies to any n, n:N, and any mode of that net, and
yields the single-modal subnet on n whose mode is the given mode.
⋆ The proj function is expressed by a post condition, i.e., a predicate

that characterises the necessary and sufficient relation between the ar-
gument net, n, and the result net n′.

⋆ In a single-modal net, n′, projected from a multi-modal net, n, and of
mode m, we keep exactly those segments, ss′, of n whose mode is m,

⋆ and we keep exactly those junctions, js′, of n whose mode contains m.
⋆ No more is needed in order to express the necessary and sufficient

condition for a single-modal net to be a subnet of a proper net.
⋆ That is, some single-modal nets are not proper nets since in proper nets

every junction have the set of modes of all the segments connected to
the junction.

6.2.10 Sub-Junctions

Let ms:{m1, m2, ..., mn} be the set of modes of a junction j. To each such
mode mi we can associate a junction mjmi

.5 With any such junction mjmi

we can associate a modal junction identification mjmii
.

type

MJ, MJi
value

obs MJs: J → MJ-set
obs MJ: J × M → MJ
obs MJi: MJ → MJi
obs M: MJ → M

axiom

∀ j:J,m:M•m ∈ obs Ms(j) ⇒ let mj = obs MJ(j,m) in obs M(mj)=m end

6.2.11 Segment and Junction Attributes

Segment and Junction Attribute Observations

We now enrich our segments and junctions.

5mjmi is not to be confused with the junction identification of ji of j.

154 6 Domains and Problem Frames

Segments have lengths. Junctions have modality-determined lengths be-
tween pairs of (same such modality) segments connected to the junction. Seg-
ments have standard transportation times, i.e., time durations that it takes to
transport any number of units of freight from one end of the segment to the
other. Junctions have standard transfer time per modality of transport be-
tween pairs of segments connected to the junction. Junctions have standard
arrival time per modality of transport. Junctions have standard departure
times per modality of transport. Segments have standard costs of transport-
ing a unit of freight from one end of the segment to the other end. Junctions
have standard costs of transporting a unit of freight from the end of one
connecting segment to the beginning of another connecting segment.
We can now assess (i) length of a route, (ii) shortest routes between two
junctions, (iii) duration time of standard transport along a route, including
transfer, stopover and possible reloading times at junctions, and iv) shortest
duration time route of standard transport between two junctions.

type

L, TI
value

ms:M-set, axiom ms 6={}
obs L: S → L
obs L: Si × J × M × Si → L
obs TI: S → TI
obs TI: Si × J × Si → TI

obs TI: J × M
∼→ TI, pre obs TI(j,m): m ∈ obs Ms(j)

obs TI: J × M × M
∼→ TI, pre obs TI(j,m,m′): {m,m′}⊆obs Ms(j)

obs arr TI: J × M
∼→ TI, pre obs arr TI(j,m): m ∈ obs Ms(j)

obs dep TI: J × M
∼→ TI, pre obs dep TI(j,m): m ∈ obs Ms(j)

+: L × L → L
+: TI × TI → TI

Annotations:

• L and Ti are sorts designating length and time values.
• ms denotes a non-empty set of modes.
• From a segment one can observe, obs L, its length.
• From a segment one can observe, obs TI, a time duration for a normal

conveyour of the mode of the segment to travel the length of the segment.
• From a junction and a mode (of that junction) one can observe, obs TI,

a time duration for a normal conveyour of the mode to cross, i.e., to travel
through the junction.

• From a junction and a pair of modes (m and m′ of that junction) one
can observe, obs TI, a time duration which represents the normal time
it takes to transfer freight from a conveyour of mode m to a conveyour of
mode m′. (The two modes may be the same.)

6.2 The Domain 155

• From a junction and a mode (of that junction) one can observe, obs arr TI,
a time duration for an item of freight destined for a normal conveyour of
the mode to arrive and be “entry” processed (including loaded) at that
junction.

• From a junction and a mode (of that junction) one can observe, obs dep TI,
a time duration for an item of freight destined for a normal conveyour of
the mode to arrive and be “exit” processed (including unloaded) at that
junction.

• One can add lengths.
• One can add time durations.

Route Lengths

One can compute the length of a route of a net and one can find the shortest
such route between two identified junctions.

value

length: R → N
∼→ L

length(r)(n) ≡
case r of

〈〉 → 0,
〈(jf,si,jt)〉 → obs L(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in

obs L(si) + obs L(sii,xtr J(ji2,n),sij) + length(〈(jj1,sij,jj2)〉̂r′) end

end

pre: r ∈ routes(n) ∧ ji2=jj1

shortest route: Ji × Ji → N
∼→ R

shortest route(jf,jt)(n) ≡
let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in

let sr:R • sr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ length(r)(n)<length(sr)(n) in

sr end end end

pre: {jf,jt}⊆obs Jis(n) ∧ jf6=jt

Annotations:

• The length of a single modality route of a net
⋆ is 0 if the route is empty,
⋆ otherwise it is the length of the first segment of the route plus the

length of the rest of the route computed as follows:
⋄ If the route consists of just one segment, then 0,
⋄ else, the length of the junction from incident segment to emanating

segment plus
⋄ the length of the rest of the route computed as otherwise specified

above.

156 6 Domains and Problem Frames

• The shortest route of a net between two of its identified junctions (the
precondition) can be abstractly determined as follows:
⋆ First we find all the routes, rs, of the net.
⋆ Then we find those routes, crs, whose first and last junction identifica-

tions are the given ones, jf and jt.
⋆ Amongst those we find a shortest one, that is, one, in crs, for which

there are no shorter routes, r, in crs.

Route Traversal Times

One can find the total time it takes to traverse a route, including the times it
takes to pass through a junction, and one can find the quickest route between
two identified junctions.

all time: R → N → TI
all time(r)(n) ≡

obs arr TI(xtr J(first J(r),n),obs M(first S{r}))
+ time(r)(n)
+ obs dep TI(xtr J(last J{r},n),obs M(last S(r)))

time: R → N → TI
time(r)(n) ≡

case r of

〈〉 → 0,
〈(jf,si,jt)〉 → obs TI(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in

obs TI(si) + obs TI(sii,xtr J(ji2,n),sij) + time(〈(jj1,sij,jj2)〉̂r′) end

end

pre: r ∈ routes(n) ∧ ji2=jj1
quickest route: Ji × Ji → N → R
quickest route(jf,jt)(n) ≡

let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in

let qr:R • qr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ all time(r)(n)<all time(qr)(n) in

qr end end end

Function Lifting

Notice how the two functions shortest route and quickest route differ only
by the length, respectively the time functions. Hence:

type

Q
FCT = R → N → Q

6.2 The Domain 157

value

less: Q × Q → Bool

lowest: Ji × Ji → N → FCT → R
lowest(jf,jt)(n)(fct) ≡

let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in

let lr:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ less(fct(r)(n),fct(qr)(n)) in

lr end end end

Similarly one could also lift the ‘less’ predicate:

Q
PRE = Q × Q → Bool

FCT = R → N → Q
value

best: Ji × Ji → N → FCT → PRE → R
best(cf,ct)(n)(fct)(pre) ≡

let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=cf ∧ last Ji(r)=ct} in

let br:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ pre(fct(r)(n),fct(qr)(n)) in

br end end end

Transportation Costs

We can further assess (i) transport cost (tk:TK), (ii) lowest (per unit) freight
cost (fk:FK) between two junctions, etc. We assume that if a freight item is
transported into a junction and out of that junction by the same modality
conveyour, then it is not reloaded, i.e., along segments of the same modality.6

type

TK, FK, K = TK|FK
value

obs TK: (S|J) → TK
obs FK: (S|J) → FK

+: K × K → K
cost: R → N → K
cost(r)(n) ≡

case r of

〈〉 → 0,
〈(jf,si,jt)〉 →

6This grossly simplifying assumption will be removed later. For the time being
it allows us to operate with the simple notion of routes that was introduced above.
For the reloading case we need to decorate the route notion, effectively making it
into a bill of ladings notion: one that prescribes possible reloading at junctions.

158 6 Domains and Problem Frames

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+obs K(xtr J(jt,n))
〈(jf,si,jt),(jf′,si′,jt′)〉̂r′ → assert: jt=jf′

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+...+cost(r′)
end

cheapest: Ji×Ji → N → ((K×K)→K) → ((K×K)→Bool) → R
cheapest(jf,jt)(n) ≡

best(jf,jt)(n)(λ(k1,k2):(K×K)•k1+k2)(λ(k1,k2):(K×K)•k1<k2)

6.2.12 Road Nets

We wish to view road nets at different levels of abstraction. At a most detailed
such level we make no distinction between the road kinds, whether community
roads, provincial roads, motor roads or freeways. At another level of abstrac-
tion we wish to make exactly those distinctions. And at least detailed level
of abstraction we consider certain road junctions to designate road nets of
smaller or larger communities.

J5 J6

J7

J1

J3

J2

J4

J8

[A]

J5 J6

J7

J4

J8

J1

J3

j11

j12

j21 j23
j13

j31

j32

j33

j34

j22 J2

j35

[B]

J1

J3

J2

j13

j11

j33

j31

j32

j34j35

j23j21

j22

j12

[C]

Fig. 6.5. Gross [A] versus semi-detailed [B] road net — and [C]ommunity road nets

Figure [A] 6.5 shows a road net. Instead of showing junctions J1, J2 and J3 as
small black disks we show them as larger circles — for reasons that transpires
from Fig. [B] 6.5.

Junctions J1, J2 and J3 are considered composite, that is, to represent
communities.

We may consider the road net of Fig.[A] 6.5 to be an abstraction of the
road net hinted at in Fig.[B] 6.5.

Junctions j11, j12, . . . , j35 are considered simple embedded junctions.
We decide to allow three kinds of junctions:
composite, simple embedded and simple.

They are as follows:
Composite junctions stand for road nets themselves. The junctions of

those road nets are all simple embedded junctions. Simple embedded junc-

6.2 The Domain 159

tions are the junctions, hence, of composite junction road nets. Simple junc-
tions are those junctions which are not composite (that is: are not standing
for road nets) and are not simple embedded junctions (that is: simple, hence
un-embedded junctions are those remaining junctions of a net which include
modality road).

In Fig. [B] 6.5 on the preceding page we have left out the internal roads,
that is, segments of junctions J1, J2 and J3, that is between the simple em-
bedded junctions j11, j12 and j13, between j21, j22 and j23, and between j31,
j32, j33, j34 ans j35.

The internal segments of junctions J1, J2 and J3 are shown in Fig. [C] 6.5
on the facing page. They are to be considered complete nets “in and by”
themselves.

We may consider the implied junction identifications Ji1, Ji2 and Ji3 to
be names of communities.

We may consider the implied junction identifications ji11, ji12 and ji13 to
abstract to J1, ji21, ji22 and ji23 to abstract to J2, and ji31, ji32, ji33, ji34
and ji35 to abstract to J3.

We shall assume that from these junction identifications, say jikℓ, one can
observe the more abstract junction identifications, i.e., Jik.

We shall, conversely, assume that from segment junction identifications
one can observe whether they are identifications of composite, of simple em-
bedded or of simple junctions, and, if of composite junctions, that one can
further observe which simple embedded junction of the composite junction
the segment is connected to.

In summary: When consider any multi-modality net and from it project,
that is, consider only the net, nr, of modality road, then we may find that
some junctions are composite while are are simple. When then examining the
road nets, rn, contained in composite junctions then we will find that their
junctions are simple embedded. The embedded road nets, rn, otherwise satisfy
all the properties (i.e., axioms) of nets in general. To link up the segments of nr

incident upon, that is, connected to composite junctions (in nr) we provide
their junction identifications with two levels of observability: the abstract
one that made us see that they were connected to composite junctions (cf.
Fig. [A] 6.5 on the preceding page), and a concrete one that enables us to
decide which ones of the simple embedded junctions they are “finally” linked
to (cf. Fig. [B] 6.5 on the facing page).

type

M == road | ...
Jc, Js, Jse
Jic, Jis, Jise
J = Jc | Js | Jse
Cn

value

is composite J: J → Bool

160 6 Domains and Problem Frames

is simple J: J → Bool

is simple embedded J: J → Bool

obs N: Jc → N
obs Jic: Jc → Jic, obs Jis: Js → Jis, obs Jise: Jse → Jise
obs Cn: Jic → Cn, obs Cn: Jise → Cn
obs Jise: Jic → Jise

axiom

∀ j:Jc • is composite J(j) ∧ xtr Ms(obs N(j,road))={road},
∀ j:Js • is simple J(j),
∀ j:Jse • is simple embedded J(j)

∀ n:N,j:J • j ∈ obs Js(n) ∧ is composite J(j) ⇒
let rn = obs N(j) in

end

6.2.13 Railway Nets

General

A transportation net of modality railway has segments be lines between sta-
tions and have junctions be stations.

We concretise the concept of modes. Mode m=railway will now designate
railway nets:

type

M == road | railway | ...

From a multi-modal transportation net we can project the railway net, rn:RN:

value

proj: N × {railway} → RN

Junctions of a transportation net of modality railway have sub-junctions which
are stations:

value

proj: J × {railway} → ST

Segments of a transportation net of modality railway become lines:

value

proj: S × {railway} → LI

6.2 The Domain 161

Lines, Stations, Units and Connectors

Railway segments are thus called lines, and railway sub-junctions are thus
called stations. A notion of connectors is introduced. It is not to be confused
with the previous notion of junctions.

21. A railway net is a net of mode railway.
22. Its segments are lines of mode railway.
23. Its junctions are stations of mode railway.
24. A railway net consists of one or more lines and two or more stations.
25. A railway net consists of rail units.
26. A line is a linear sequence of one or more linear rail units.
27. The rail units of a line must be rail units of the railway net of the line.
28. A station is a set of one or more rail units.
29. The rail units of a station must be rail units of the railway net of the

station.
30. No two distinct lines and/or stations of a railway net share rail units.
31. A station consists of one or more tracks.
32. A track is a linear sequence of one or more linear rail units.
33. No two distinct tracks share rail units.
34. The rail units of a track must be rail units of the station (of that track).
35. A rail unit is either a linear, or is a switch, or a is simple crossover, or is

a switchable crossover, etc., rail unit.
36. A rail unit has one or more connectors.
37. A linear rail unit has two distinct connectors. A switch (a point) rail

unit has three distinct connectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

38. For every connector there are at most two rail units which have that
connector in common.

39. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

40. A linear sequence of (linear) rail units is an acyclic sequence of linear units
such that neighbouring units share connectors.

type

21. RN = {| n:smN • obs M(n)=railway |}
22. LI = {| s:S • obs M(s)=railway |}
23. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value

24. obs LIs: RN → LI-set
24. obs STs: RN → ST-set

25. obs Us: RN → U-set

26. obs Us: LI → U-set

28. obs Us: ST → U-set

162 6 Domains and Problem Frames

31. obs Trs: ST → Tr-set
35. is Linear: U → Bool

35. is Switch: U → Bool

35. is Simple Crossover: U → Bool

35. is Switchable Crossover: U → Bool

36. obs Ks: U → K-set

40. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom

24. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

26. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

27. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

28. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

29. ∀ n:RN, s:ST • s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

30. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

30. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

30. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

31. ∀ s:ST•card obs Trs(s)≥1

32. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

33. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

38. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

39. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒

6.2 The Domain 163

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in

∃ u,u′,u′′,u′′′:U • u ∈ sus ∧
u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in

∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}
end end

6.2.14 Net Dynamics

By net dynamics we shall mean the changing possibilities of flow of conveyors
(cars, trains, aircraft, ships, etc.) along segments and through junctions. We
speak of direction of flow along segments in terms of “from the junction at
one end of the segment to the junction at the other end”. And we speak of
flow through a junction as “proceeding from one segment incident upon the
junction into a (usually different) segment emanating from that junction”.
Segments connected to a junction are both incident upon that junction and
emanates from that junction.

Segment and Junction States

A

C

B

D

Y

X

J

Fig. 6.6. A Special “Carrefour” Junction

Segments may be open for traffic in either or both directions (between the
segments’ two junctions [identified by jix and jiy]) or may be closed. We
model the state, sσ : SΣ, of a segment, s : S, as a set of pairs of junction
identifications, namely of the two identifications of the junctions that the
segment connects. This state, sσ : SΣ, is either empty, i.e., the segment
is closed ({}), or has one pair, {(jix, jiy)}, that is, the segment is open in
direction from junction jix to junction jiy, or another pair {(jiy, jix)}, or both
pairs {(jix, jiy), (jiy, jix)}, that is, is open in both directions. Junctions may
direct traffic from any subset of incident segments to any subset of emanating
segments. We model the state, jσ : JΣ, of a junction, j : J , as a set of pairs

164 6 Domains and Problem Frames

of segment identifications, namely of identifications of segments connected to
the junction. Let the set of identifications of segments connected to junction
j be {si1, si2, ..., sim)}. If, in some state, jσ of the junction, it is possible
(allowed) to pass through the junction from the segment identified by sij to
the segment identified by sik, then the pair (sij , sik) is in jσ. The junction
state may be empty, i.e., closed: no traffic is allowed through the junction. Or
the junction state may be “anarchic full”, that is, it contains all combinations
of the pairs of identifiers of segments incident upon the junction.

type

SΣ = (Ji×Ji)-set
JΣ = (Si×Si)-set

value

obs SΣ: S → SΣ
obs JΣ: J → JΣ

xtr Jis: SΣ → Ji-set
xtr Jis(sσ) ≡ {ji|ji:Ji • (ji,) ∈ obs sσ ∨ (,ji) ∈ obs sσ}
xtr Sis: JΣ → Si-set
xtr Sis(jσ) ≡ {si|si:Si • (si,) ∈ obs jσ ∨ (,si) ∈ obs jσ}

axiom

∀ s:S • xtr Jis(obs SΣ(s)) ⊆ xtr Jip(s),
∀ j:J • xtr Sis(obs JΣ(j)) ⊆ xtr Sis(j)

Observations:

• A junction, j : J , of just one segment, s : S, that is, s is a cul de sac, may
either be closed, and vehicles trying to enter j will be queued up, or it is
open, and vehicles entering j will be lead back to s.

• As a consequence segment s, in order for this latter routing to happen,
must be open in both directions when j is “open”.

• In general, if the state of a junction j (identified by ji) contains a pair
(six, siy) then the state of the designated segments, sx and sy, must re-
spectively contain pairs (ji′, ji), respectively (ji, ji′′), where {ji, ji′} and
(ji, ji′′} are the pairs of junction identifications associated with six and
siy respectively.

• And this must hold for all states of junctions and adjacent segments.
• This is captured in the axioms below.

axiom

...

The junction of Fig. 6.6 shows four segments, identified by A, B, C and D. The
figure also suggests a state in which traffic lights prohibit movements from A
into J, from B into J, from C via J into A, and from D via J into B. The
“bypass” from A/X into Y/D appears to be such that traffic can always pass

6.2 The Domain 165

from A into D. The current state alluded to in Fig. 6.6 on page 163 appears
to be:

jσJ : {(A, D), (C, B), (C, D), (D, A), (D, C)}
(A, D) is potentially a member of every state that the junction can possibly
be in — see next section.

Segment and Junction State Spaces

A state space is a set of states. A segment can be in one of several segments
states. A junction can be in one of several junction states. Hence we introduce
segment and junction state spaces.

type

SΩ = SΣ-set

JΩ = JΣ-set

value

obs SΩ: S → SΩ
obs JΩ: J → JΩ

axiom

∀ s:S • obs SΣ(s) ⊆ obs SΩ(s),
∀ j:J • obs JΣ(j) ⊆ obs JΩ(j)

6.2.15 More on Net Dynamics: Traffic

Vehicles and Positions

There is a further undefined notion of vehicles, V. And there is a notion of the
position, P, of a vehicle. Either a vehicle is positioned in a junction, and then
its position is designated by the junction identifier. Or a vehicle is positioned
along a segment, and then its position is designated by a triplet: the identifier
of the junction it is moving away from, the identifier of the junction it is
moving towards, and the fraction of the distances from the position to the two
junctions: If the fraction is 0, then the vehicle has just entered the segment,
if the fraction is 1, then the vehicle is just about to leave the segment, and,
hence, if the fraction is a proper real between o and 1, but neither 0 nor 1,
then the vehicle is properly within the segment.

type

F = {|f:Real•0≤f≤1|}
P == mkP at J(ji:Ji) | mkP along S(fji:Ji,f:F,tji:Ji)

166 6 Domains and Problem Frames

Traffic

Traffic is now a function from time to a pair of a net, and the positions of
vehicles within the net.

type

V
T
TF = T →m (N × (V →m P))

Proper Vehicle Positions

The positions of a traffic must designate proper junctions of the net.

axiom

∀ tf:TF •

∀ t ∈ dom tf •

let (n,vps) = tf(t) in

∀ p:P • p ∈ rng vps ⇒
case p of

mkP at J(ji) → ji ∈ obs Jis(n),
mkP along S(jf, ,jt) → {jf,jt}⊆obs Jis(n)

end end

Other Traffic Constraints

Traffic must be smooth: Positions of vehicles do not “jump around”, i.e.,
movement are monotonic. No “ghost vehicles”: If at times t and t′ considered
close to one another a vehicle is in the traffic then it is also in the traffic at
all times in between t and t′. We omit the formalisations of these constraints.

6.2.16 Time Tables and Traffic

By a time table we understand an entity which to named transport vehicles
associate journey descriptions. By a journey description we understand a se-
quence of junction visits. By a junction visit we understand a triple: Arrival
time, junction identifier and departure time.

type

TT = Vn →m Journey
Journey = (at:T × ji:Ji × dt:T)∗

6.4 A Set of Requirements 167

Scheduling

By scheduling we shall here, in a narrow sense, understand a function from
nets and time tables to a possibly infinite set of traffics such that each traffic
satisfies the time table.

value

sched: TT → N → TF-infset

sched(tt)(n) as tfs
pre: wf TT and N(tt,n)
post: ∀ tf:TF • tf ∈ tfs ⇒ wf TF(tf) ∧ sat(tf,tt)

wf TT and N: TT × N → Bool, ...
sat: TF × TT → Bool, ...

6.3 And so on!

We have shown fragments of a description of a domain of transportation nets.
There is, of course, much more. “Years of work still to be done!” But, for the
time being we have enough to illustrate some reasonably interesting require-
ments.

6.4 A Set of Requirements

We shall consider the following four sets of requirements: (i) requirements for
software to monitor net maintenance, (ii) requirements for software to monitor
& control net traffic, (iii) requirements for software to simulate net traffic, and
(iv) requirements for software to support transport logistics: optimal routes
etc.

6.4.1 Plan of Development of Requirements

The plan is now to first give a brief, rough sketch narrative of the four sets
of requirements. We do so, here, in this paper, in an unusual way. First we
‘extend’ the domain description given earlier. Then we ‘project’, ‘instanti-
ate’, and make less non-deterministic (‘determination’) the extended domain
description, that is: We transform the domain description into domain require-
ments prescriptions. But first we present the domain extensions. After that
the plan is to analyse these four domain extension sketches wrt. such com-
mon “features” that may be shared by the four (or triples of three or pairs
of two) software implementations; to present the requirements for each of the
four specific software “packages”; and finally to present the requirements for

168 6 Domains and Problem Frames

such a shared “core” of software. That is, we are ‘fitting’. ‘Extension’, ‘pro-
jection’, ‘instantiation’, ‘determination’ and ‘fitting’ are three major domain
description-to-requirements prescription operations. (See Chap. 19 of [33] for
details.)

Brief Narratives of Four Domain Requirements

By domain requirements we understand requirements that can be expressed
by sôlely using terms of the domain (and ordinary, non-technical language).7

In this paper we shall only consider domain requirements. Of course, many, if
not most of the interesting problems of software development in relation also
to ‘problem frames’ may be those due to interface and machine requirements.

A Caveat on Formalisation

We shall not formalise our narratives. Instead we refer to [33,41,43,44]. To do
justice to a proper, “non-brief” narrative and its proper formalisation means
that we present systematically enumerated narratives and corresponding
formalisations to an extent that would trip the size of this chapter. The aim
of this chapter is not to show domain-to-requirements ‘transformations’, but
to relate the triptych approach to Jackson’s Problem Frame approach.

6.4.2 ‘Net Maintenance’ Software

We propose a (parameterised) software package to be developed for monitoring
and supporting the management of the maintenance of both road and rail nets.
An instantiation parameter (road,rail) shall determine whether the package
works for road or for rail nets.

Domain Description – An Extension

Segments and junctions need be maintained, that is, we may associate a set of
quality attributes related to the upkeep of segments and junctions, as well as of
any traffic signals associated with these, we may further associate actual and
estimated date(s), cost(s), and duration(s) of previous and next maintenance
services, etc., and we may keep “such” records of all segments, junctions and
signals of the net. To monitor the net quality attributes, in the domain, some
need perform work that help advise maintenance staff to evaluate and report
quality attributes of segments, junctions and signals, follow-up on missing such

7By machine requirements we understand requirements that can be sôlely ex-
pressed using terms of the machine (and ordinary, non-technical language). By in-
terface requirements we understand requirements that can be expressed only by
using terms of both the domain and the machine (and ordinary, non-technical lan-
guage).

6.4 A Set of Requirements 169

reports, and help update the attributes of the records kept when reported.
To support the management of net maintenance some need perform, in the
domain, work that help management schedule and allocate resources for the
monitoring of net quality and corresponding update of records, for the actual
maintenance work, and for handling “unforeseen” reports on segment, junction
and signal malfunctioning (i.e., in need of repair).

Domain Requirements

Entities

Segments and junctions need be maintained, that is, we must associate a
set of quality attributes related to the upkeep of segments and junctions, as
well as of any traffic signals associated with these, we must further associate
actual and estimated date(s), cost(s), and duration(s) of previous and next
maintenance services, etc., and we must keep “such” records of all segments,
junctions and signals of the net.

Monitoring Functions

To monitor the net quality attributes, in the domain, the software must have
functions that help advise maintenance staff to evaluate and report quality at-
tributes of segments, junctions and signals, follow-up on missing such reports,
and help update the attributes of the records kept when reported.

Management Functions

To support the management of net maintenance the software must have func-
tions that help management schedule and allocate resources for the monitoring
of net quality and corresponding update of records, for the actual maintenance
work, and for handling “unforeseen” reports on segment, junction and signal
malfunctioning (i.e., in need of repair). ... here follows precise require-
ments details (omitted) ...

Domain to Requirements Operations

We give a terse summary. Projection: Most of the net attributes have been
kept. Many of the concepts (routes, ..) and evaluation functions (time, length,
...) have been “projected away”. Instantiation: Usually the software, when
delivered to a client, is instantiated to the specific net characteristics of the
client. Determination: No example as looseness and non-determinism is basi-
cally absent from this part of the domain. Etcetera!

6.4.3 ‘Traffic Control’ Software

We propose a software package to be developed for monitoring and controlling
road net traffic not just at local junctions but along segments, and providing
for “green” flow along certain route directions.

170 6 Domains and Problem Frames

Domain Description – A Rough Sketch Extension

Traffic control in the conventional, non-technological net domain is done by
traffic police controlling junction flows or by local sensors and actuators posi-
tioned near junctions; sensors monitor only local traffic and actuators control
only local junction semaphores. An assessment is made (by police or sen-
sors) of local traffic density only, and appropriate arm signals or semaphore
signalling (red, yellow, green) acts as controls.

Domain Requirements

Net Representation “In the Machine”

The road net must be represented: segments, junctions and signals. Signals
must be controlled. Segment, junction and signal states must be represented.
Segment lengths and segment and junction (e.g., average) “traversal” times
must be represented. Vehicle positions in segments and junctions must be
represented. Vehicle positions must be monitored. We assume sensors to record
and inform of “density” of vehicles at segment lanes in vicinity of junctions
and leading into these. ... here follows precise requirements details
...

Traffic Monitoring Functions

Functions shall regularly sample traffic density. There must be functions for
inquiring about and reporting on unusual traffic situations (accidents, fog,
road conditions in general). It is assumed that there are functions which oth-
erwise report on the statues of the road net. (That is, functions which relate
to the net maintenance software.) ... here follows precise requirements
details ...

Traffic Control Functions

The objective of the use of these functions is to ensure smooth traffic. Indi-
vidual functions shall determine the setting of signals at junctions. Composite
functions shall determine the setting of signals, say in “green waves” along
routes — hence the road net representation must be augmented with infor-
mation about major and minor routes, time of day preferred directions: am
“into town”, pm “out of town”, and the like. ... here follows precise
requirements details (omitted) ...

Domain to Requirements Operations

Projection: Only the junction and segment state attributes need be kept.
Instantiation: The net is instantiated to a particular road net of a particular
city, i.e., that of the client. Determination: Some segments are designated
as priority segments, with determined directions being “favoured” for “green
traffic flow” at determined time intervals of the day. Accordingly some junction
state transitions are “favoured” over others. Etcetera!

6.4 A Set of Requirements 171

6.4.4 ‘Traffic Simulation’ Software

We propose a software package to be developed for simulating road net traffic.
In the domain there is, we assume, as yet no such simulation software. So we
cannot domain describe what we mean by simulation — or rather: any such
domain description becomes the domain requirements.

Net Representation

Net representation “ in the machine”: The road net must be represented: seg-
ments, junctions and signals. Segment, junction and signal states must be rep-
resented. Segment lengths and segment and junction (e.g., average) “traversal”
times must be represented. Vehicle positions in segments and junctions must
be represented. Assumptions: Vehicles, when moving, move at statistically
determined velocities, etc.

Simulation Concepts

We suggest, not as part of the requirements, but as a software implementation
idea, the following two ideas:

Representation of segment geodetic profile: A segment is decomposed into
geodetic blocks. The curvature of each block is represented by two 3D vectors,
from which a Bezier curve for that block can be constructed.

Representation of segment velocity profile: A segment is decomposed into
velocity blocks. The increase/decrease of speed for each block can be repre-
sented by two 2D vectors, from which a Bezier velocity curve for that block
can be constructed: The computation of the curve will, depending on vec-
tor characteristics (long or short vectors), compute close, or less close, or “far
away” points on the curve, and we shall take the varying density of these com-
puted points to designate positions of a vehicle at any one time, one vehicle
per computation of the velocity curve.

Traffic Simulation Functions

Here are some functions: (i) initialise states of segments and junctions wrt.
signals; (ii) initialise states of segments and junctions wrt. vehicle positions.
That is: (iii) allow vehicles to start their journey along segments and in junc-
tions when the simulation begins, and/or at different times during the sim-
ulation (say according to some time table). (iv) Schedule simulation interval
and resolution (granularity, i.e., one unit of simulation time equals r units or
real time.8); (v) “play, stop, recommence” simulation; (vi) change granularity
while “playing”; and (vii) insert vehicles during simulation.

8r can be any real above 0. If r is less than 1 simulation is microscopic; if it is 1
simulation is “real”; if it is larger than 1 simulation is macroscopic.

172 6 Domains and Problem Frames

Domain to Requirements Operations

Projection: We project away almost all but the net and time tables. We adhere
to definition of traffic (i.e., TF). Instantiation: We instantiate to a specific net.
Determination: We may decide to constrain to segment-determined constant
velocity traffic. Etcetera!

6.4.5 ‘Transport Logistics’ Software

We propose a software package to be developed for supporting freight (incl.
container) transport logistics.

Domain Description – An Extension:

In the domain planning a journey, for travelling (on a crucial trip) as a pas-
senger on trains, by bus, airplane or by ship, usually requires the use of one or
more time tables. Considerations of alternative routes, of multi modal travel,
of cost: fast, perhaps expensive, hurried travel versus slower, perhaps less
costly, and of overnight stays en route may be important. This applies to
freight transport too: refrigeration of freight load, “first to market”, etc.

Domain Requirements

Net Representation “In the Machine”

The multi modal net must be represented: segments and junctions Segment
lengths and average traversal times and traversal costs of segments and junc-
tions9 must be represented — usually the latter (times and costs) are provided
by transport vehicle (truck, train, boat and aircraft) time tables. We may thus
discover that we need to extend our domain description: Junction hubs, where
freight is transferred from one modality transport to another, may need be
further detailed, e.g., as to warehouse facilities (godowns), etc.

Logistics Functions

Etcetera !

Domain to Requirements Operations

Projection:
The net, its segments and junctions, their length, time, and cost attributes.

Also time tables. Most functions related to these. Instantiation: Maybe we
instantiate to only a shipping net, or only a rail net? Determination: As a
representation of the segment and junction traversal times we may rely on
the time tables. Etcetera!

9The traversal time and cost of junctions could be differentiated wrt. modalities:
freight being unload/loaded when incoming and outgoing segment modalities are
different, etc.

6.4 A Set of Requirements 173

6.4.6 Requirements Prescription of Shared Software

All four rough sketch requirements prescriptions projected into their require-
ments a core of the net, its segments and junctions. We therefore conclude
that a repository, i.e., a database, is needed, one in which representations
of segments and junctions are stored. A repository (software system) which
allows flexible representation of segment and junction attributes, their initial-
isation, retrieval and update. So we decide on using some relational database
management system.

Net Repository

Informal Rough Sketch

Segment representations are in the form of relation tuples. Segment attributes
are attributes of relations. Junction representations are in the form of relation
tuples. Junction attributes are attributes of relations.

Formalisation – a Very Rough Sketch

type

SR = ST-set

JR = JT-set

ST :: si:Si ftj:Jip m:M le:L ti:TI k:K f:F sσ:SΣ sω:SΩ
JT :: ji:Ji si:Si-set m:M ti:TI k:K f:F jσ:JΣ jω:JΩ

This is not quite first normal form relational representation. A junction con-
nected to n segments and with a state-space of m possible states — in (prim-
itive) first normal form would require m×n tuples. Of course “smarter” ways
of representing sets of segment identifiers and state space (ω) can be devised.
That is not a requirements issue, but a software design issue.

Repository Functions

Rough Sketch Ideas

The observer functions of the domain description are now simple tuple pro-
jections. Query facilities offered by the relational DBMS10 being deployed can
be used in connection with many of the functions transformed from the do-
main description into the specific domain requirements prescriptions. They
are the functions that make “heavy” use of observer functions. The various
domain requirements prescriptions additionally prescribe repository initiali-
sation and refreshment (i.e., update) functions — and again their design and
implementation can be greatly facilitated by the update functions of the cho-
sen relational DBMS. Of course, queries “against” an RDBMS really deposit
results in a designated workspace and displays this on the GUI.

10DBMS: Database Management System, like Frontbase www.frontbase.com
the best, or DB2 www.ibm.com/db2 or SQL www.oracle.com.

174 6 Domains and Problem Frames

Specific Function Signatures

value

obs Jip: S → Jip
sql project: RelNm×{|′′si=seg_name′′|}×{|′′ftj′′|}×Wn → Jip×GUI

The former function is the “further undefined” domain specification observer
function. The latter function “approximates” an SQL query — where we do
not show the functional arguments for the RDBMS and the workspace.

“General” Function Signatures

We intimate database retrieve (query, observer), initialise, and refresh (up-
date), function signatures:

value

query: retrieve function × RDBMS × Wn → GUI
init: (S|J)-set × RDBMS → RDBMS × GUI
refresh: (S|J)-set × RDBMS → RDBMS × GUI

6.5 And So On — What Have we Covered

We have given a rather large fragment of a domain description. We have pos-
tulated and given small fragments of four domain requirement prescriptions.
We have indicated how these domain requirements were “derived” from the
domain description. We have formalised the domain description. We hardly
formalised the domain requirements. But could (easily) do that! The four
domain requirements reflect different problem frames.

We claim to have intimated the following problem frames (PF):

• Common Software: II: Information Intensive PF.
• Maintenance: Weak Reactive11 ⊕ II PF
• Traffic Control: Strong Reactive12 ⊕ II PF.
• Simulation: Computation ⊕ Virtual Real-time ⊕ II PF.
• Logistics: Computation ⊕ II PF.

6.6 The Triptych and the Problem Frame Approaches

6.6.1 General Observations

The triptych approach advises that software development includes: domain
engineering (DE), requirements engineering (RE), and software design (SD).
The triptych approach does not replace the PF approach. To me the triptych
approach augments, supplements the PF approach.

11Weak reactive: Non real-time
12Strong reactive: “Critical” (i.e., hard) real-time

6.6.2 Specific Observations

The triptych approach does not mandate strict linear adherence to DE →
RE → SD but assumes DE ↔ RE ↔ SD ↔ DE iteration. In fact: It is impos-
sible to “discover” all that is relevant about the domain before proceeding to
understand the requirements, and all that is relevant about the requirements
before proceeding to design the software, Etcetera!

6.7 Grand Challenges of Computing Science

6.7.1 The Grand Challenge of VSTTE

The GC of VSTTE13 to me appears to focus on “a million lines” of program
code that to me appears to be verified with respect to program code annota-
tions where it is not clear to what extent those annotations relate to properties
of the code, to requirements, and to domain assumptions.

6.7.2 The Grand Challenge of Ubiquitous Computing

The grand challenge of ubiquitous computing appears to offer a very nice
opportunity for a “foothill”14 experimental project. Take the proposed Auto-
mated Highway project. As it could be conceived one is thinking of deploying
computers and communication wherever feasible (sometime in future) in the
safe and efficient driving of cars, in sorting out cross traffic, etc. So here a far
more detailed domain description of transportation nets than intimated here
is needed. Etcetera!

6.8 Conclusion

So I immodestly propose that research into and use of the PF approach be
augmented by research into and use of the triptych approach, and to adjoin the
(“otherwise”) highly laudable VSTTE effort with some serious, viz., triptych-
oriented program code development. I hope to be able to contribute to the
grand challenge of ubiquitous computing.

6.9 Bibliographical Notes

We refer to [31–33] for a complete coverage of informal as well as formal
abstraction and modelling principles and techniques [31], principles and tech-
niques specification of systems and languages [32], and principles and tech-
niques of domain engineering, requirements engineering and related software

13VSTTE: Verified Software: Theories, Techniques and Experiments
14“Foothill” project: This is one of those terrible “americanisms”: apparently used

to characterise a pre-cursor like, or perhaps rather initial stage project.

design [33]. Chapter 28 (“Domain Specific Software Architectures) of [33] sur-
veys a number of problem frames from the viewpoint put forward in this
paper.

Part III

Experimental Evidence

7

Documents1

A Rough Sketch Domain Analysis

Caveat

This chapter is incomplete. Its basis, [25], is even more so. We could have
wished to bring a more complete analysis of the Document domain.

Summary

The concept of document is all pervasive. It occurs in as widely different
contexts as scientific, technical, business or tourism papers or reports, as
sales offers, marketing brochures and personal letters, as inter- and intra-
departmental memos in public administration, as legal entities such as law
texts, jurisprudence and law court verdicts, as e-mails and web pages, as
credit card payment slips, as music and movie recordings (subject, pos-
sibly, to DRM (digital rights management), etcetera. A patient medical
report is a dossier of documents: annamnese, analysis reports, diagnos-
tics and treatment plans. In the Danish Board of National Health report
on patient medical reports (as a basis for electronic patient journals) the
term document seems to take on a bewildering and not insignificantly
large set of different meanings.

Here we shall look at some of the aspects of the semantics of doc-
uments: their creation, being edited (on the basis, i.e., in the context
of other document), their being read, being copied, being distributed
and being shredded. Thus we shall not look at the possible syntax(es)
of documents nor of their pragmatics — just some of the semantics —
that which is independent of the particular form (syntax) and contents of
documents. That semantics, to us, includes the actors who create, edit,
read, copy, distribute and shred documents, and the times and locations at
which these operations take place. We shall defer to subsequent chapters
(Chaps. 8–10) speculating on the issues of which kinds of actors, what
kind of “need-to-operate”, and, more generally, which authorisations and
in which contexts actors may act.

1This is an edited version of [25].

180 7 Documents

7.1 Some Background Remarks

7.1.1 A Source of Software Failures

With computing and communication now supporting the creation, editing
and sending/receiving (including copying) of documents there are “rich”, but
dangerous grounds for misinterpretations as to what constitutes a document.

7.1.2 An Evolving Report

In this evolving2 report we shall “ever so slowly” try establish a domain theory
of documents. In doing so we may unveil insufficiencies in abstractly modeling
a number of common domain phenomena and concepts in the usual property-
or model-oriented specification languages such as B [1,71], CafeOBJ [89,90,
99,100], CASL [11,78,184,185], VDM-SL [55,56,95,96], RSL [31–33,44,101,
104,106], Z [132,133,229,230,242] or similar specification languages.

7.1.3 Structure of This Chapter

Section 7.3 brings a näıve model of documents. It is the basis for our dis-
satisfaction. We would like to express a number of domain properties more
elegantly in current formal specification languages. But it seems we cannot.

7.2 What Are Documents?

7.2.1 Varieties of Documents

The above enumeration of examples of documents shall serve as an admittedly
rather loose delineation of what we mean by a document: something visual
or audial or audio-visual (intellectual, artistic, legal, technical, scientific) that
can be created, can be read (i.e., rendered; listened to or viewed), can (in
some cases) be edited, can be copied, can be moved from place to place, and
can be destroyed (shredded, deleted).

One of the fundamental ideas of computer science is that “data”, like
documents, can best be understood in terms of the operations on the data,
i.e., the documents. So that is what we shall do. Not the operations on personal
letters, or a poem, or a collection of poems; not the operations on a credit slip,
or on a CD ROM of music, or a DVD recorded movie; but those operations
that seem to be generic to all documents: create, render, edit, copy, move and
destroy.

2By ‘evolving’ we mean that there should hopefully appear a sequence, a trace
of edited versions of this Technical Note: from a base note (draft report). As of
12-Feb-2006 this is the base note. The present chapter is a mere, simple editing of
the 12-Feb-2006 draft report.

7.2 What Are Documents? 181

7.2.2 On the Domain of Documents

When, as we shall now do in this chapter, and as from the next chapter, namely
describe a domain of documents, then the reader will, at time, perhaps object,
saying “but that’s not feasible in the domain!”.

We shall, of course, at almost “every turn of the road”, defend our position:
namely that if you can rationally think it in the domain, then it must be
described.

Thus a domain description describes what there is. Not how you would
like it to be (that may imply either some business process re-engineering or
requirements for software). In describing what there is we have to accept
that we must describe aspects of the domain that we may not like, or that we
may not think possible.

Let us taken some examples — some claims about what it is possible to
describe — in our domain: We claim, as you shall soon see, that from every
document, d, we can observe its entire past history: If it is an unedited copy of
a prior document, dp, then we can, from that copy, d, observe the document,
dp, from which it was copied. If d is an edited version of a document, dp, then
we claim that we can observe the un-edited version of d, i.e., dp. We claim,
as we shall later substantiate, that we can observe the time and location of
when and where operations were performed on documents.

Now that’s a “pretty tall story!” you should say. Can one really, from an
edited document “see” its un-edited form. Yes we claim. Suppose it was hand-
written. Then also editing was hand-written. And we claim that it is possible
to talk about which of the hand-writing was there first, which was added as
editing changes. Can one really from a copy “see” the document from which
it was copied. Yes we claim. Certainly, if dc is a copy of d, then whatever
information d had dc must have. In addition it must be possible to claim that
dc is not the master (i.e., the basis for the copy), but that d is. There are
some subtle distinctions here. The main gist of these distinctions is that it is
in principle possible to make these claims, i.e., to talk about these properties
of documents, their copies, their edited versions, etc. Whether it is in practice
always possible to identify these matters is another issue.

Now, whether what we claim can be observed are really the actual things,
or surrogates thereof, is another matter which we shall, at the moment not
touch upon. And: whether we get the correct time and location, when we, for
example, say that we can observe time and location of when and where an
operation was performed on a document, is another matter also: the domain
is fallible. We may get a wrong answer, but an answer we get! Similarly, if we
claim to be able to observe the predecessor of a copy, i.e., the master from
from which the copy was made, then what we may see may not be that master,
but a corrupted version of it. So be it. We see something claimed to be “such
and such”!

Another, simpler way of approaching the issue of being able to observe
what has happened to a document is to accept the fact that things that have

182 7 Documents

indeed happened has happened and therefore we can talk about them. We
can also talk about which operations they were, by which actors, at which
locations and at which times. We therefore think of a never failing oracle, one
that always speak the truth. It is what this oracle can observe that we model.

We shall elaborate further on the above when we, in Sect. 7.3, go through
various aspects of documents.

7.2.3 Semantics of a Document Concept

Semantics is the study and knowledge, incl. specification of meaning in lan-
guage. Semantics determine, it appears, how we edit documents. In this chap-
ter we shall not be concerned about the contents of document, i.e., the infor-
mation to be edited. But we shall be very much interested in the interrelated
semantics of the sets of operations performed on documents. We claim that
the semantics of these interrelated sets of operations is an integral part of the
semantics of documents. With computing and communication now supporting
the creation, editing, sending/receiving (including copying) and destruction
of documents there are “rich”, but dangerous grounds for misinterpretations
as to what constitutes a document.

7.2.4 Syntax of Documents

By syntax we mean the ways in which words are arranged to show mean-
ing (cf. semantics) within and between sentences, and the rules for forming
syntactically correct sentences.

Since we are not, in this chapter, interested in the syntax of document
information — that part of a document which is of interest to the casual user
of documents — we shall not be dealing with syntaxes for document contents.
But we shall, over the next many pages, be building up an implicitly expressed
abstract syntax for a number of document attributes. These attributes have to
do with such things as: when and where (time and location) was an operation
performed on the document, was the document copied, the pre-history of the
document — since creation, etc. Together this ensemble of attributes imply
an abstract syntax of document, not of its contents, but of its management.

Thus our treatment shall in no way reflect the issues of either the Open
Document Architecture, ODA3 or the OpenDocument4 or the Office Open
XML5.

7.2.5 Structure of This Report

Section 7.3 presents a conventional model of documents such as we have tried
to encircle that phenomenon (“documents”) above. That is, we shall model
the create, copy, edit and move operations.

3http://en.wikipedia.org/wiki/Open Document Architecture
4http://en.wikipedia.org/wiki/OpenDocument
5http://en.wikipedia.org/wiki/Office Open XML

7.3 A Simple Model of Documents 183

Chapter 9, along a related line of exploration, introduces the notion of
document license. A license is also a rendering function: applied to a pair, a
license and a document, it yields those parts of a document contents for which
the agent (issuing the rendering function) has rendering rights — together,
possibly, with an updated document (one that perhaps changes future license-
based rendering rights on that document).

7.2.6 On Reading This Report

In the first releases of this document the formalisations are expressed in terms
of the RAISE specification language RSL.

That language, besides [31–33, 44, 101, 104, 106], is also introduced in
[31–33]. Those three volumes, besides, gives an extensive introduction to ab-
straction and modeling.

For readers not familiar with the tradition of formal specification languages
whose origins goes back to John McCarthy [171–174] and Peter Landin [157–
160], and which took its first form in the VDM meta (or specification) language
[14, 55], now ISO standardised into VDM-SL [5, 6, 161, 201] [and of which RSL

[104] is a derivate], we provide annotations that explain the notation. As the
chapter “wears on” these annotations “peters off”.

7.3 A Simple Model of Documents

7.3.1 Originals, Copies and Versions

There are documents. Documents are either created, edited or copied, copy.
One can claim that a document is either an original, oD, or an edited version,
for short, a version, wD, of a document, or a copy, cD, of a document. When
we edit a document there is some editing text, E. One can claim that a
document can either (i) only (say: “most recently”) be an original, oD, or (ii)
only (say: “most recently”) be an edited (a version of a), eD, document, or
(iii) only (say: “most recently”) be a copy, cD, of a document. The pragmatic
intention of documents is to embody document content, Ct. We leave the
notion of document content undefined. There is information, I. Information is
either document content, C, or the absence of such, void. To create a document
needs no document content. From a document one can observe its most recent
information.

type

D, oD, eD, cD, C, E
I == void | C

value

create: Unit → oD, edit: E × D → eD, copy: D → cD
is oD,is eD, is cD: D → Bool

184 7 Documents

axiom

∀ d:D •

is oD(d)∨is eD(d)∨is cD(d) ∧
is oD(d)⇒∼(is eD(d)∨is cD(d)) ∧
is eD(d)⇒∼(is oD(d)∨is cD(d)) ∧
is cD(d)⇒∼(is oD(d)∨is eD(d))

value

obs I: D → I
axiom

obs I(create()) = void ∧
∀ d:D • is oD(d) ⇒ obs I(copy(d)) = void

Annotations:

• The sectioning literal type designates that the following text (up to a
next sectioning literal) introduces abstract and concrete type definitions.
An abstract type definition is like a sort.
⋆ D, oD, eD, cD, C and E introduces the sorts of documents, original doc-

uments, edited documents, document copies, document contents and
document editing. (We shall not elaborate further on E till Sect. 7.3.2
on the facing page.

⋆ The equation I == void | C defines document information as either
being void or C. (We are not here telling you what void means.) The
alternatives of U == V | W | X | Y ... are, by the == constructor.,
being defined as disjoint types.

• The sectioning literal value designates that the following text (up to a
next sectioning literal) introduces values of defined types. Six such values
are introduced. We see from their types (... → ...) that they are all function
values.
⋆ create designates the create function. It is a type Unit → oD. Thus it

takes no arguments (designated by the value literal Unit) and yields
an original document.

⋆ edit designates the editing function. It is a type E × D → eD. Thus it
takes two arguments: some editing value and a document and yields
an edited document.

⋆ copy designates the copy function. It is a type D → cD. Thus it takes one
argument, a document and yields a document: the copied document.
The function signature says nothing about “what happened” to the
input argument. As we shall see, it is still there, “somewhere”.6 To
define copy, instead, with the signature copy: D → D×D would give
the erroneous impression that copy(d) as (d′,d′′), where the first of the
result arguments, d′, is to be the “original” and d′′ the copy, might
yield d 6=d′ whereas, what we mean is d=d′, thus we do not need the
signature copy: D → D×D but can do with copy: D → D.

6Adding 3 and 7, yielding 10, does not, in any way, destroy or influence 3 and 7.

7.3 A Simple Model of Documents 185

⋆ is oD designates a predicate observer function. It is a type D → Bool.
If the document is an original then truth is yielded, otherwise falsity.

⋆ is eD designates a predicate observer function. It is a type D → Bool. If
the document is an edited version of a document then truth is yielded,
otherwise falsity.

⋆ is cD designates a predicate observer function. It is a type D → Bool.
If the document is a copy then truth is yielded, otherwise falsity.

The functions are all postulated. They are claimed to exist. They are not
defined. Instead their properties will be revealed through axioms.

• The sectioning literal axiom designates that the following text (up to a
next sectioning literal) introduces a number of properties — typically over
the types and values introduced before these axioms.
⋆ The clause ∀ a:A • “reads”: for all values a of type A it is the case that.

In RSL all quantifications are typed.
⋆ The proposition is oD(d)∨is eD(d)∨is cD(d) ∧ “reads” a document

d is either an original or an edited version or a copy, and
⋆ The proposition is oD(d)⇒∼(is eD(d)∨is cD(d)) “reads” if a docu-

ment is an original then it is neither an edited version or a copy, and,
etcetera.

• The signature obs I: D → I expresses a an observer function which from
a document observes its information.

• The axioms obs I(create()) = void and ∀ d:D • is oD(d) ⇒ obs I(copy(d))
= void expresses that copies of copies of ... of copies of originals still have
no proper information content.

7.3.2 Editing and Versions

Editing a document modifies its information. An edited document is a ver-
sion of the document from which it was edited. Editing a document does not
amount to establishing a new document. From an edited document one can
observe the information immediately before it was most recently edited, and
how that information was edited, i.e., the resulting content. One way of mod-
elling the edit function is by means of two functions: a forward editing function
and a backward, “undo” editing function. The forward editing function takes
an information argument and delivers an information result. The backward
editing function takes an information argument and delivers an information
results. The backward editing function is the inverse of the forward editing
function.

type

E′ = FE × BE
FE,BE = I → I
E = {|(fe,be):E • ∀ i:I • be(fe(i))=i |}

value

obs E: D
∼→ E

186 7 Documents

axiom

obs E(create()) = chaos ∧
∀ d:D,e,(fe,be):E

obs E(edit(e,d)) ≡ e ∧
obs I(edit((fe,be),d)) ≡ fe(obs I(d)) ∧
obs I(d) ≡ be(obs I(edit((fe,be),d))) ∧
obs E(copy(edit(e,d))) ≡ e ∧ ... /∗ induction ∗/

Annotations:

• E′ is a concrete type. It is defined as the Cartesian of two types: FE and
BE.

• Both FE and BE are total functions from information to information.
• E is the subtype of E′ which constrains the backward editing function

be:BE to be an inverse of the forward editing function fe:FE.
• obs E is a partial observer function. It applies to documents.
• From an original document one cannot observe any editing functions:

obs E(create()) = chaos.
• From edited documents (whether since copied) one can (still) observe the

editing functions.
• The parenthesised clauses: (whether since copied) and (still) are not ex-

pressed by obs E(copy(edit(e,d))) = e, but intimated by the ellipses clause
... — to be formalised below.

7.3.3 Document Traces

From a document one can observe its immediate predecessor document. An
original document has no predecessor. A copy, dc of a document, d, had d
as its immediate predecessor document. An edited document, also called a
version,, de of a document, d, had d as its immediate predecessor document.
And so on, “ad finitum”, till the original document is encountered.

Let us call the document from which an edited version arises for the master
document. And let us call the document from which a copy is made also for
the master document. Thus the predecessor documents are masters wrt. the
successors.

value

obs Pre: D
∼→ D

axiom

obs Pre(create()) = chaos ∧
∀ d:D,e:E • obs Pre(copy(d)) = d = obs Pre(edit(e,d))

Annotations:

• From any document other than an original one can observe, obs Pre, its
predecessor.

7.3 A Simple Model of Documents 187

• Thus obs Pre(create()) is not defined, that is, is chaos.
• For all documents and editing functions the predecessor of a copy of d,

i.e., copy(d), is d, and the predecessor of the e edited version, edit(e,d) of
d is also d.

Observations:

• We could decide, instead of making obs Pre a partial function, to let
obs Pre(create()) yield create().

• Then obs Pre would be a total function.
• And then obs Pre(copy(create())) would be “the same” as create().
• We shall review and modify our predecessor function, obs Pre, later in

this chapter.

A document trace is a history trail, i.e., a sequence of documents, from an
original to the present document, whether a copy or a version such that the
first document of the sequence is the document, the ith document in the
sequence is the predecessor of the i − 1st document in the sequence, and
hence such that the last document in the sequence is the original. Thus one
can establish the full history that any document has undergone since the
creation of its “ultimate predecessor”.

value

obs doc trace: D → D∗

obs doc trace(d) ≡
if is oD(d) then 〈d〉 else 〈d〉̂obs doc trace(obs Pre(d)) end

Annotations:

• We name the document trace function obs doc trace since is it really an
observer function (it is being “defined” solely in terms of, in this case one
observer function).

• The document trace of an original document is the singleton sequence of
that document.

• The document trace of a copy or an edited version (d) is the prefix concate-
nation of the singleton sequence of that document (d) with the document
trace of the predecessor document of d.

• Termination is guaranteed since only a finite number of copies and edits
can have taken place on any document.

We can now complete the induction part of the axiom above obs E(copy(edit(e,d)))
= e ∧

axiom

∀ d:D •

∀ i:Nat • i ∈ inds obs doc trace(d) ⇒
is eD(obs doc trace(d)(i)) ⇒

∀ j:Nat • j ∈ inds obs doc trace(d) ∧ j<i ∧

188 7 Documents

∀ k:Nat • k ∈ {j,i−1} ∧ is cD(obs doc trace(d)(k)) ⇒
obs E(obs doc trace(d)(i)) = obs E(obs doc trace(d)(k))

Annotations:

• For all documents
• and for all indices, i, into the trace of such documents
• if the i′th document of that trace is an edited version
• then for all lower indices j, before i,
• if all documents (obs doc trace(d)(k)) of the trace properly j and i−1 are

copies,
• then we can observe in these copies the same editing value.

7.3.4 Annotated Original Documents

We modify the copy function and the notion of an original document, od:oD.
We now annotate original documents by a trace of “has been copied” markers.
The (first original) document resulting from create() has an empty such trace.
The document resulting from copy(create()) has a singleton trace of one “has
been copied” marker. Each additional copying of a marked original adds one
“has been copied” marker to the trace.

Two original documents which differ only in number of “has been copied”
markers are otherwise considered the same original.

type

hbc Mark == hbc
value

obs hbc Marks: oD → hbc Mark∗

axiom

obs hbc Marks(create()) ≡ 〈〉 ∧
∀ od:oD • obs hbc Marks(copy(od)) = 〈hbc〉̂obs hbc Marks(od)

value

disregard Marks: D → D
disregard Marks(d) as d′

obs hbc Marks(d′) = 〈〉 ∧ obs Pre(d) = obs Pre(d′)
differ by 1 Mark: D × D → Bool

differ by 1 Mark(d,d′) ≡
obs hbc Marks(d) = tl obs hbc Marks(d′) ∧
disregard Marks(d) = disregard Marks(d′)

Annotations:

• hbc Mark names a concrete type. Its only value is hbc. hbc is not further
defined.

• obs hbc Marks is an observer function. It applies to original documents
and yields a possibly empty list of hbc:hbc Marker∗ of hbc markers.

7.3 A Simple Model of Documents 189

• The list of hbc markers of a fresh, “virgin” original is empty.
• The list of hbc markers of any original that has been copied (once or more)

has one more hbc marker than the original from which it was copied.
• We can view a document without its “has been copied” marks. That is

the function of the disregard Marks function.
• Two documents are, in a sense, the same even if they differ by one or more

marks.

We now redefine the predecessor observer function.

value

obs Pre: D
∼→ D

axiom

obs Pre(copy(d)) = d ∧
∀ d:D,e:E •

obs Pre(edit(e,d)) = d ∧
∀ od:oD •

obs hbc Marks(od) = 〈〉 ⇒ obs Pre(od) = chaos ∧
/∗ the above is the same as ∗/ obs Pre(create()) = chaos ∧
obs Pre(copy(od)) = od

Later we shall augment the “has been copied” marker with location and time
of copying.

7.3.5 Document Family Trees

Each document creation may give rise to a whole set of documents: copies of
documents (for each copy a new document arises while the document from
which it was copied basically remains), and edited versions of documents (for
each version (i.e., editing) the number of documents remain the same). Given
an original document one can establish what we shall call a family tree of
documents descending from the originally created document — with each
path from the tree root to a leaf of the family tree of documents denoting a
document, that is, the number of leaves of a family tree of documents denotes
the number of documents descending from the root original document.

By a tree we, in general, understand something which satisfies the follow-
ing, conventional characterisation: (i) A tree has a root and zero, one or more
sub-trees; (ii) a [sub-]tree with zero sub-trees consists of a node, the root,
and a stem, the only branch of the [sub-]tree; (iii) a [sub-]tree with non-zero,
i.e., n ≤ 1 [sub[sub]-]trees consists of a node, the root, and n branches; the
branches are either (iii′) stems denoting a latest instance of a document, or
(iii′′) whose non-root end denote proper sub-trees.

A document family tree arises as follows: (0) In the beginning there is
nothing, i.e., no tree. A create() operation amounts to a tree being initialized.
It has a (i) root (say labelled with the operation designation: create()); (ii)
a leaf stem labelled with the original document, do, resulting from execution

190 7 Documents

c

e

ee

e

e

e

k

c

e

c

co

o’ is o after copying o
co is copy of o
eo’ is edited version of o’
eco is edited version of co
eco’ is eco after copying eco

ececo’
ceco’

eececo

ececo

cecoeco’

ecoeo’

o’

eco’’

eeco’’

ceco is copy of eco

o is original

eco’ is eco after copying eco
ceco’ is copy of eco’
ececo is edited version of ceco
ececo’ is edited version of ceco’
eececo is edited version of ececo
eececo’ is edited version of ececo’

eececo’

o

Fig. 7.1. A document family tree

of create()); and (iii) no sub-trees. Let us now take the general case. Let us
call the leaf stem, i.e., document, to which an operation may be applied for d.
Now there are either of three possibilities: (1) no operations are ever applied
to d — and the tree does not grow from the stem labelled d; or (2) an edit
operation edit(e,d) is applied to the leaf stem labelled d — where e is a suitable
pair of editing functions: forward and backward, and the tree grows by the
grafting of a “root” onto the “dangling” end of the input trees’ stem, labelled
with edit(e,d), with a single leaf stem (emanating from that root) and labelled
with the document, de resulting from the edit(e,d) operation; or (3) a copy
operation copy(d) – and the tree grows by the grafting of a “root” onto the
“dangling” end of the input trees’ stem labelled with edit(e,d) with two leaf
stems (both emanating from that root), one labelled with the input document,
d, the other labelled with a copy, dc, of document d.

A document family tree thus consists of nodes and stems (i.e., branches).
The root node designate the create() operation and its only branch denotes
the original document, o, resulting from the create() operation. Nodes, other
than the root node, designate editing or copying operations performed on
documents. Stems other than the root stem designate documents d: originals,
do, or copies, dc, or edited versions, de, of either originals or versions.

A node, other than the root node, has one input stem and, for any node,
one or two output stems. The input stem of a node is (also) said to be incident
upon that node and to designate the predecessor document of the document
resulting from the node operation. The output stem is — or the output stems
are — said to emanate from the node.

If a node designates an edit operation then it has one output stem which
designates the edited version of the document designated by the stem incident
upon the edit node. If a node designates a copy operation then it has two

7.3 A Simple Model of Documents 191

output stems: one of these stems designate the (input, the master) document
designated by the stem incident upon the copy node while the other stem
designates the copy of that (input) document.

Finally a document family tree ends in leaves which are stems, i.e., docu-
ments. From any stem in a document tree one can establish the unique path
of stems and nodes from that stem back to the original document designated
by the stem emanating from the root node. Such a path is a document trace.
As for the general, i.e., abstract concept of trees one can speak of subtrees.
If a stem is incident upon a node, then that node is the root of a subtree
which we shall here call a document tree (as distinguished from a document
family tree). A (sub-)root of a document [family]tree7 may have one or two
subtrees, i.e., document trees: one of the (sub-)root designates the [create]
(edit) 8 operation, two if it designates the copy operation.

type

DFT′ = mkCreate() × oD × DT
DFT = {|dft:DFT′

• wfDFT(dft)|}
DT == nil | ET | CT
ET = mkET(mkEdit(efns:(fe:FE,be:BE)),(ed:eD,dt:DT))
CT = mkCT(mkCopy(),(d:D,dt:DT),(cd:cD,dt′:DT))

value

wfDFT: DFT′ → Bool

wfDFT(,od,dt) ≡
case dt of

nil → true,
→ wfDT(dt)(od)

end

wfDT: DT → D → Bool

wfDT(dt)(d) ≡
case dt of

nil → true,
mkET((fe,be),(ed,dt′))

→ pre post Edit((fe,be),d,ed) ∧ wfDT(dt′)(ed),
mkCT(mkCopy(),(d′,dt′),(cd,dt′′))

→ pre post Copy(d,d′) ∧ wfDT(dt′)(d′) ∧ wfDT(dt′′)(cd)
end

pre post Edit: E × D × eD → Bool

pre post Edit((fe,be),d,ed) ≡ ...
/∗ see postcondition of the edit function on page 186 ∗/

7The phrase: (sub-)root of a document [family]tree reads as follows: root of a
document family tree or sub-root of a document tree.

8The phrase: (sub-)root designates the [create] (edit) reads as follows: root des-
ignates the create or sub-root designates the edit.

192 7 Documents

pre post Copy: D × D → Bool

pre post Copy(d,d′) ≡ disregard Marks(d′)=d

Annotations:

• DFT′ defines the Cartesian of not necessarily well-formed document tree.
• mkCreate(), oD and DT are the types of the components of the document

tree.
• mkCreate() is strictly speaking not necessary, but is introduced so that all

nodes possess an operation designator.
• oD designates the stem emanating from the mkCreate() node.
• DT designates the possibly empty sub-tree “attached” to the stem, i.e.,

upon which the stem may be incident.
• DT is thus either nil (i.e., the stem is a leaf) or is an edit tree et:ET or a

copy tree ct:CT.
• An edit tree mkET(mkEdit(efns:(fe:FE,be:BE)),(ed:eD,dt:DT)) has sub-root

node mkEdit(efns:(fe:FE,be:BE)) and one sub-tree (ed:eD,dt:DT).
⋆ The sub-root node designates the editing functions mkEdit(efns:(fe:FE,be:BE)).
⋆ The forward editing function fe “works” on the document of the stem

incident upon this sub-root node.
⋆ The backward editing function be “works” on the document of [the

edited version stem ed:eD] emanating from this sub-root node.
⋆ dt:DT designates a possible sub-tree of the stem emanating from this

sub-root node.
• A copy tree mkCT(mkCopy(),(d:D,dt:DT),(cd:cD,dt′:DT)) has sub-root node

mkCopy() and two sub-trees (d:D,dt:DT) and (cd:cD,dt′:DT).
⋆ The sub-root node designates the copy function mkCopy().
⋆ One (here shown as “the left”) sub-tree (d:D,dt:DT) designates the

document d:D being copied, hence “carried” forward, and its sub-tree
dt:DT.

⋆ One (here shown as “the right”) sub-tree (cd:cD,dt′:DT) designates the
document copy cd:cD, and its sub-tree dt′:DT.

• A number of constraints must be satisfied for a document history tree, dft,
to be proper, i.e., to be well-formed wfDFT(dft).
⋆ We can ignore the Cartesian mkCopy() component of dft.
⋆ If the sub-tree component dt is nil then the whole document history

tree is well-formed.
⋆ Otherwise the well-formedness of dft is the well-formedness of dt in the

context of the incident document od.
• The well-formedness wfDT(dt)(d) of a sub-tree dt in the context of an

incident document d is likewise defined by cases:
⋆ If dt is nil then well-formedness is guaranteed.
⋆ If dt is an edit sub-tree mkET((fe,be),(ed,dt′)) then well-formedness is

a conjunction of

7.3 A Simple Model of Documents 193

⋄ the edit pre/post condition pre post Edit((fe,be),d,ed) explained
earlier, and

⋄ the well-formedness of the version document sub-tree dt′.
⋆ If dt is a copy sub-tree mkCT(mkCopy(),(d′,dt′),(cd,dt′′)) then well-

formedness is a conjunction of
⋄ the copy pre/post condition pre post Copy(d,d′) where d′ is the

document being copied — and after copying,
⋄ the well-formedness of the master9 document sub-tree wfDT(dt′)(d′),

and
⋄ the well-formedness of the copied document sub-tree wfDT(dt′′)(cd).

7.3.6 Document Family States

A state of a document family tree is a breadth-first set of stems of the tree. A
breadth-first set of stems of a document family tree is one whose stems belong
to distinct paths. Fig. 7.2 shows 11 states of a document family tree.

s0 = {o}

s1 = {o’,co}
s2 = {eo’,co}

s3 = {o’,eco}
s4 = {eo’,eco}

s5 = {eo’,eco’,ceco}
s6 = {o’,eco’,ceco}

s7 = {o’,eco’,ececo}

s9 = {o’,eco’,eececo}
s10 = {eo’,eco’,eececo}

s8 = {eo’,eco’,ececo}

Fig. 7.2. Document family states

The idea is that there is an initial state, here s0, of the tree, and that there
is a final state, here s10, of the tree. The initial state, here s0, designates
the initial, i.e., the original document. The final or current state, here s10,
designates a notion of final (or current) documents. A final state means that
no further operations are to be performed on members of a set of documents.
(“Case closed.”) A current state means that we are observing the document
family tree “right now”. Please note that the initial, current and final states of
any document family tree are unique. Please also note that a void document,

9We shall move this notion way back, towards the front of this chapter: the
master document is the document being copied.

194 7 Documents

i.e., a copy of a copy of . . . a copy of an original document may be a current
or final document.10 Intermediate states designate possible collections of non-
final documents. Thus a non-final state has one or more successor states.
Usually there may be several ways of making state transitions from the initial
state to the final state. Possible sequences of states are indicated by:

s0 7→ s1 7→ s3 7→ s6 7→ s7 7→ s9,
s0 7→ s1 7→ s2 7→ s4 7→ s8 7→ s10.

From a document family tree we can compute all states and all possible initial
to final state sequences.

type

Σ = {|δσ:D-set•δσ 6={}|}
value

States: DFT → Σ-set

Traversal: DFT → Σ∗

7.3.7 Document Community

By a document community we mean a set of uniquely identified document
family trees.

type

Did
DoCo = Did →m DFT

No two states of (two) distinctly named document family trees share states,
i.e., have one or more documents in common.

value

wfDoCo: DoCo → Bool

wfDoCo(doco) ≡
∀ did,did′:Did • {did,did′}⊆dom doco ∧ did6=did′ ⇒

disjoint docs(doco(did),doco(did′))

disjoint: DFT × DFT → Bool

disjoint docs((,od,dt),(,od′,dt′)) ≡
{od}∪ extract docs(dt) ∩ {od′}∪ extract docs(dt′) = {}

extract docs: DT → D-set

10The reader may feel uncomfortable having such void copies “floating” around,
seemingly to no effect. But that is the cost of not imposing constraints that would
otherwise impose what we consider unnatural limitations on what can be done to
documents.

7.3 A Simple Model of Documents 195

extract docs(dt) ≡
case dt of

nil → {},
mkET((fe,),(d,dt′)) →

{fe(d)}∪ extract docs(dt′),
mkCP(,(md,dt′),(dc,dt′′)) →

{md,dc}∪ extract docs(dt′)∪ extract docs(dt′′)
end

7.3.8 Document Processing States

Instead of only include “stable” documents, that is, documents not, at the
moment being subject to operations, that is, stems in a state concept, we
could also include the operation “states”, that is, nodes in a state concept.
We call this state notion a document processing state. Figure 7.3 shows some
“early” document processing states for the same document family tree as in
Fig. 7.2 on page 193.

.........

Fig. 7.3. Document processing states — hinted at by horisontal (traversal) lines

7.3.9 Shortcomings of Model So Far

There seems to be a number of problems with the model so far: Documents —
whether manifest by humans senses (such as paper documents) or by techni-
cal/scientific apparata (such a MS Word, LATEX (.tex) files, portable document
format (.pdf) files or postcript (.ps)files) — always have a unique location in
space. Some operations have not been mentioned or modelled: moving a docu-
ment (fomr one location to another) and shredding. Operations on documents

196 7 Documents

occur at certain times and these operations may, or may not “take time to
perform”. Finally we did not mention any notion of document identity: two
documents which differ in some way (location, time of application of, say, most
recent operation, content, etc.) can be claimed to have unique, i.e., distinct
indentities. We will, accordingly, in the next two sections propose concrete
models of locations and time of operation invocation.

7.3.10 A Basic Concrete Model of Time

An Axiom System for Time

We refer to Appendix Sect. F.1 on page 415 for an axiom syste of time.

We make a distiction between time and time intervals. Time is considered
absolute time and is with respect to some initial, i.e., 0 time. Time intervals
are the same as elapsed time, that is, the difference between two times. Both
time and elapsed time are expressed in hours, minutes and seconds, or just in
seconds.

And we make a syntactic distinct between date and time. Both are abso-
lute. Dates change every 24 hours, so dates are less fine-grained than time.
And dates (time) can be converted into time (dates). A dates to time con-
version results in a measure which is modulo 24 hours. Vice versa: a time to
date conversion results in a measure which is also modulo 24 hours and thus
looses “prcision”.

Mathematically we consider time to be a linear dense point ordering. Each
document operation: create, copy, edit and move occurs at a specific time (and
lasts no time). One can extend to model to include that some operations take
time. Such a model would have some notion of a document (document) being
inaccessible to other than the operator during the operation time interval.

From documents we can now observe the time of their last operation.
When creating, copying, editing and moving a document a single time is pro-
vided (below referred to as ‘given time’). The original document being created
“receives” the given time. The document copy being established likewise “re-
ceives” the given time. The (master) document from which the copy was made
retains its time.11 The document resulting from an edit “receives” the given
time. A document move shall result in the moved document being marked
with the given time. We shall, when now considering the create, copy, edit
and move operations not consider whether the implied times are coincident
with times of other documents of other the same family or other families.
Predecessor documents of any documents retain their times of operation ap-
plications.

11One could change the model to have the master document that is “passed on”
also be ascribed the given time — the “has been copied” marker can also be used
to embody the copying time.

7.3 A Simple Model of Documents 197

type

T
value

obs T: D → T
create: T → oD
copy: D × T → D × cD
edit: E × D × T → eD

move: D × T
∼→ D

axiom

∀ t:T,e:E •

obs T(create(t)) = t ∧
let (d′,cd) = copy(d,t) in pre post Copy′(d,d′)∧obs T(cd)=t end ∧
obs T(edit(e,d,t))=t ∧
obs T(move(d,t)) = t

Annotations:

• The pre post Copy′ is a version of pre post Copy which accepts docu-
ments with time attributes.

7.3.11 A Concrete Model of Locations

We introduce a spatial notion of location. Mathematically we consider a loca-
tion to be a dense point set equipped with some “neighbourhood” (or “infini-
tisimally close” predicate). No two otherwise distinct documents can occupy
overlapping locations. Thus all distinct documents of a document family state
occupy distinct, non-overlapping locations. And similarly for document com-
munities.

From documents we can now observe their location. When creating or
copying a document a single location is provided. The original document being
created “receives” the given location. The document copy being established
likewise “receives” the given location. The document from which the copy
was made retains its location. The document resulting from an edit retains
the location of the document being edited. We finally add a new operation
on documents: Moving a document from one location to another, therefrom
distinct location. The move shall result in the location of the moved document
changing from what it was before the move to the given location. We shall,
when now considering the create, copy, edit and move operations not consider
whether the implied locations may interfere with locations of other documents
of a family or community.

type

L
value

=: L × L → Bool

198 7 Documents

infinitesimally close: L × L → Bool

axiom

∀ l,l′:L • infinitisimally close(l,l′) ⇒ l6=l′

∀ l,l′,l′′:L • l′6=l′′ ∧
infinitesimally close(l,l′)∧infinitisimally close(l,l′′) ⇒

infinitesimally close(l′,l′′) ...
value

obs L: D → L
create: T × L → oD
copy: D × T × L → D × cD
edit: E × D × T × L → eD

move: D × T × L
∼→ D

axiom

∀ t:T,l:L,d:D,e:E •

∀ t:T,l:L • obs L(create(t,l))=l ∧
∀ d:D,t:T,l:L •

let dc = copy(d,t,l) in infinitesimally close(obs L(dc),l) ∧
pre post Copy′(d,dc)∧obs L(d)=l end ∧

∀ d:D,t:T,l:L • obs L(edit(d,t,l))=l ∧
∀ d:D,t:T,l:L • obs L(move(d,t,l))6=l

7.3.12 Located and Timed Documents

An Axiom System for Time/Space

We refer to Appendix Sect. F.2 on page 416 for an axiom system of time/s-
pace.

We wish to record that for every document that has been copied the fact that
it has been copied: time and location.

value

has been copied: D → Bool

when where copied: D
∼→ L×T

otherwise the same: D×D → Bool

axiom

∀ d:D •

∼has been copied(d) ≡ when where copied(d)=chaos ∧
∀ l:L,t:T,e:E •

let (d′,cd) = copy(d,l,t) in

has been copied(d′) ∧ when where copied(d′)=(l,t)
otherwise the same(d,d′) end ...

Annotations:

• Axioms for the has been copied predicate is only sketched.

No document can at the same time be in two different locations:

axiom

∀ d,d′:D •

let (l,t) = (obs L(d),obs T(d)),(l′,t′) = (obs L(d′),obs T(d′)) in

(t=t′ ∧ l=l′ ≡ d=d′) ∧ (t=t′ ∧ l6=l′ ≡ d6=d′) end

7.4 Discussion

We have brought a rough sketch domain analysis of some aspects of the ‘Doc-
ument’ concept. In the next chapter we bring a similar rough sketch domain
analysis of some aspects of the ‘Public Administration’ concept. We empha-
sise that these, i.e., Chaps. 7 and 8 are just sketches. When we bring these
two sketches together with the Chap. 10 “story” on ‘Scripts, Licenses and
Contracts’ then we can see a larger perspective: one that combines the three
sets of basically distinct issues of Chaps. 7–8 and Chap. 10 with further issues
of document ‘Authorisation and Security’ — such as the latter is for example
strongly hinted at in Chap. 9. To do this four way combination (Chaps. 7–10)
amounts to a PhD thesis topic and work or a proper industry project.

8

Public Government1

A Rough Sketch Domain Analysis

Abstract

In this report we investigate a concept of ‘public government’ through
the concept of ‘document’. Public government is seen as consisting of
the usual three branches: the law-making, the law-enforcing and the law-
interpreting government (the latter also known as the ‘judiciary’). Com-
mon to all these are the citizens (and private companies) with which the
law, the daily administrative, and the law-decision documents deal. We
focus on document handling: the creation, editing, reading, copying, dis-
tribution, shredding, and tracing of documents. We close by examining
the issue of turning this abstract, the general domain view, into require-
ments for the electronic handling of documents — and hence we conclude
by making some statements about essential E–government. This chapter
is a torso. On one hand, it is intended as a basis for PhD student work,
and, on the other hand it lacks a proper comparison to possibly existing
literature.

8.1 An Informal View of Public Government

Public government, in this chapter, consists of the lawmakers: parliament; the
law enforcers: central and local government; and the law interpreters: judiciary
system. Citizens interact with all three branches of government.

The [A] part of Fig. 8.1 on the next page indicates the three branches of
government.

Parenthesised numerals refer to the [B-C] parts of Fig. 8.1 on the following
page.

Citizens (1), through the process of debate, provoke on their parliament
to discuss societal problems. A parliament committee (2) discusses a specific
societal problem. Their deliberations are “sent” as a law proposal to the par-
liament (3) which debates the issue and passes some law.

1This is an edited version of [30].

202 8 Public Government

[A]

Laws

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Ministries
Central Admin.

Parliament

Committee
Parliamentary

Making

Enforcing
Laws

Interpreting
Laws

[B]

Enforcement

Making
Laws

Laws

Laws
Interpreting

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Ministries
Central Admin.

Parliament

Committee
Parliamentary

(1)

(2)

(3)

[C]

Making
Laws

Laws
Interpreting

Courts
Higher

Courts
Lower

Citizen

Parliament

Committee
Parliamentary

Central Admin.
Ministries

Local Gvt.

Enforcement
Laws

(4)

(5)

Fig. 8.1. [A] The three branches.
[B] From citizens to lawmakers.
[C] Lawmaking.

The law is passed on to an appropriate ministry (of the central govern-
ment, (4) and that ministry formulates basic rules & regulations for how local
governments shall administrate uses of the law. The local governments (5)
makes provisions for handling the law locally.

Parenthesised numerals now refer to Fig. 8.2 on the next page.
The citizen is either contacted by the local government (6) and asked to

report on some issue (tax, traffic violation, or other), and the citizen replies
(6). or the citizen contacts (7) the local government in order to apply for
something (passport, pension benefits, and other) And the local government
replies (7).

The citizen is either accepts the decision of local government, or the citi-
zen does not accept the decision, and complains to the courts (9). The “due
process of law” takes place (11). Eventually the judiciary system hands down
a decision either in favour of the citizen, or in favour of the government, or
both (11) !

8.2 Flow of Documents in Public Administration

8.2.1 Between Citizens and Lawmakers

Citizens may direct (12) a problem petition to parliament — in the form of a
document signed by many citizens. Parliament (13) decides to “do something”
(or not to do anything) about the problem. A response document is produced.
A designated parliament committee (14) requests an appropriate ministry to
prepare some “background” document. The parliament committee (15) passes
discussion and a law proposal documents to parliament.

8.2 Flow of Documents in Public Administration 203

[A]

Enforcement

Making
Laws

Laws

Laws
Interpreting

Courts
Higher

Courts
Lower

Ministries
Central Admin.

Parliament

Committee
Parliamentary

Local Gvt.

Citizen

(6) (7)

[B]

Enforcement

Making
Laws

Laws

Laws
Interpreting

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Ministries
Central Admin.

Parliament

Committee
Parliamentary

(8)

(9)

(11)(10)

[C]

Laws

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Ministries
Central Admin.

Parliament

Committee
Parliamentary

Making

Enforcing
Laws

Interpreting
Laws

(12)

(13)

(14)

(15)

Fig. 8.2. Document Flows: [A] Citizens and local government.
[B] Citizens and the judiciary.
[C] Citizens and parliament.

8.2.2 Between Lawmakers and Ministries and Local Government

Parenthesised numerals now refer to Fig. 8.3 on the following page.
Parliament requests (16) further “background” documents from the central

administration, and receives these. Parliament debates the law proposal and
passes a law, which, as a document (17) is sent to the appropriate ministry for
further handling — and otherwise published in the law gazette. The ministry
and its departments, i.e., the central administration, formulates procedures
for the enforcement of the law and sends (18) these, as documents to local
administrations.

8.2.3 Between Citizens and Local Government

A citizen (19) applies for some permission, that is, an application document is
sent to a local administration — or a citizen breaks the law (symbolised with
the virtual arrow from citizen to a local authority). The local administration
(20) sends a receipt (a citation) document, possibly forwards further docu-
ments to be filled in, and gives a conditional date by which a decision can be
expected. The citizen (21) sends in the possibly further requested documents.
The local administration (22) communicates various documents related to the
case to/from other public government offices. Finally the citizen (23) receives
a response document.

8.2.4 Between Citizens and The Judiciary

The citizen either (23a) sends an acceptance document to the local administra-
tion, or (23a) rejects it, informing the local administration of this, and directs

204 8 Public Government

[A]

Laws

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Ministries
Central Admin.

Parliament

Committee
Parliamentary

Making

Enforcing
Laws

Interpreting
Laws

(16)(17)

(18)

[B]

Courts
Higher

Courts
Lower

Citizen

Local Gvt.

Parliament

Committee
Parliamentary

Making
Laws

Enforcing
Laws

Interpreting
Laws

(19) (21)

(20) (23)

Central Admin.
Ministries

(22)

[C]

Citizen

Local Gvt.

Parliament

Committee
Parliamentary

Making
Laws

Enforcing
Laws Central Admin.

Ministries

Lower
Courts

Courts
Higher

(24)

(23b)

(23a)

Laws
Interpreting

(25,29)

(26)

(27)

(28)

Fig. 8.3. Document Flows: [A] Parliament and admin.
[B] Citizen and local government.
[C] Citizen and judiciary

(23b) a complaint at the law courts. The first instance law court (24) deliber-
ates (i.e., documents are produced), a decision is sent (25) to the citizen and
the local administration, Either the local administration or the citizen both
accepts the decision and further actions are curtailed, or at least one of them
(26) appeals the decision. Lower court decision documents are passed (27) on
to a higher court. Steps (24–25) are repeated (28–29) till a final decision is
passed (29).

8.2.5 Summary of Documents

12. Citizen petition
13. Parliament response
14. Background briefing
15. Subcommittee discussion

and law proposal
16. Further background briefing
17. Law and record of parliament debate
18. Handling procedures and forms
19. Citizen application

(or “breaking law event”)
20. Local authority reply

(or citation)
21. Citizen response to local authority
22. Public admin. docs. handling

citizen request or infringement
23. “Final” local authority reply/decision

(a) Citizen acceptance or rejection
(b) Citizen lawsuit

24. Lower court handling
25. Lower court decision
26. Citizen reaction and/or

Public administration reaction
27. Transfer of lower court documents
28. Higher court handling
29. Higher court decision (final)

Citizen

Parliament

Committee
Parliamentary

Making
Laws

Enforcing
Laws Central Admin.

Ministries

Lower
Courts

Courts
Higher

(24)

(23b)

(25,29)(27)

(28)
Interpreting

Laws

(26)

(12)

(13) (15)

(14,16)(17)

Local Gvt.

(18) (22)

(19,20,21,23) (23a)

8.3 Documents — A Closer Analysis 205

8.3 Documents — A Closer Analysis

We present a “story” of documents that is a bit different from what you
may be used to. The reason is that we are building up, towards the end
of this chapter, to a “story” on computers, communication and documents.
Our “story” on documents is also “completely” independent of our previous
“narration” of public government. Again there is a reason: towards the end
of this chapter we merge the “story” on documents with the “narration” of
public government into the subject of E2G: Essential E-Government

[A]

E−Government

Government
Public

Documents

[B]

Agents

Citizen

Actors

Fig. 8.4. [A] From public government to documents — and beyond.
[B] Actors: citizens and three kinds of agents.

8.3.1 Overview of Document Issues

We summarise a number of document issues in “SMS” form:
Document Operations: Documents are created, are edited, and can be

read, copied, moved, can be the basis for searches and calculations, and can
be shredded — by actors. Document Authorisation: Actors have varying de-
grees of creation, editing, reading, copying, distribution and shredding author-
ity. Document History: Document may reveal their creation, editing, reading,
copying distribution, search & calculation history — who did what, when,
where! Document Licensing: Unauthorised actors must be prevented from
performing designated operations on documents. We achieve this indirectly
by introducing and enforcing a regime of licensing based on authorisation.

8.3.2 Actors: Citizens and Agents

Document operations are performed by actors. Actors are either agents or
citizens, An agent is either a person working for a branch of public government,
or is that branch of public government. Of course citizens may be agents in
some other context, that is, a citizen is a person interacting, not as an agent,
with agents of public government.

206 8 Public Government

8.3.3 Document Operations

Document operations are performed by actors. Documents can be created.
Documents can be edited. Documents can be read! Documents can be copied.
Documents can be moved. Documents can be shredded (not shown). An actor
can at most be performing one operation at a time. Documents are “marked”
by the time and location of the operation and by the identity of the per-
forming actors. Together the time, location and actor identity forms a unique
document identification.

 COPY MOVE

COPYEDIT

EDITCOPYEDITCREATE
ORIGINAL

D ’eD e’eD ’e’eD m’e’eD

ceD eceD ’eceD r’eceD

ceceD

cceceD

eD

ce’eD

COPY

COPY

COPY

COPY

MASTER

COPY

MOVE

READ

VERSION MASTER VERSION MASTER

VERSION MASTER MASTER

’ceceD
MASTER

CREATE
EDIT
COPY
READ
MOVE

COPY

mce’eD

Fig. 8.5. Five document operations

We overview five of the operations.
Documents can be created. Created documents contain no substantial in-

formation other than administrative information about time and location of
creation, identity of actor who created the document.

eD

ceD

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

D

C
R

E
A

T
E

C
R

E
A

T
E

D

ceD

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

E
D

IT

eD

C
R

E
A

T
E

eDD E
D

IT

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

e’eD ’e’eD

M
A

S
T

E
R

r’eceD

M
A

S
T

E
R

C
O

P
Y

m’e’eD

mce’eDce’eD

C
O

P
Y

M
A

S
T

E
R

’eD

’eceDeceDceD

ceceD ’ceceD

cceceD

C
R

E
A

T
E

eDD

ceD

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

R
E

A
D

C
O

P
Y

M
A

S
T

E
R

’eD e’eD ’e’eD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

mce’eDce’eD

E
D

IT

eceD

M
O

V
E

m’e’eD

C
R

E
A

T
E

eDD

ceD

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

C
O

P
Y

ceceD

r’eceD

R
E

A
D

Fig. 8.6. Five document operations

8.3 Documents — A Closer Analysis 207

Documents can be edited. Edited documents are versions of the document
on the basis of which they were edited. Edited documents contain substantial
information. One can read documents while editing them! One cannot copy,
move or shred documents during editing. An edited document is different from
the document input. The difference amounts to the changed text, time and
location of edit, and identity of editing actor.

Documents can be copied. As a result the master “goes on” to exist and a
copied, “the copy”, document is constructed. One cannot edit, move, read or
shred the master or the copy documents while copying. The location and time
of copying is the same for both master and copy. To audially communicate,
i.e., to tell (speak about) a document (content) to other listeners is the same
as copy ing it.

Documents can be moved. They are physically moved from one location to
another distinct location. The document “is almost” the same before start and
after end of move, only location has changed. Documents cannot be copied,
edited, read or shredded while being moved. Instead of moved we shall some-
times use the term distributed.

Documents can be read! One cannot edit, copy, move or shred document
while only reading them. Reading leaves the document unchanged — except
that it has now been read, at some time and at some location, by some actor.

Figure 8.7 shows a sequence of document operations: 1: create, 2: edit, 3:
copy, 4: edit, 5: copy, 6: edit, 7: copy, and 8: read.

1:

D

C
R

E
A

T
E

 2:

eDD E
D

IT

C
R

E
A

T
E

 3:

eDD

ceD

E
D

IT

C
O

P
Y

M
A

S
T

E
R

’eD

C
R

E
A

T
E

 4:

eDD

ceD

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD

eceD

C
R

E
A

T
E

 5:

eDD

ceD

E
D

IT

C
O

P
Y

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD

eceD

M
A

S
T

E
R

’eceD

ceceD

C
R

E
A

T
E

6:

eDD

ceD

E
D

IT

C
O

P
Y

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD

eceD

M
A

S
T

E
R

’eceD

ceceD

 C
R

E
A

T
E

e’eDE
D

IT

7:

eDD

ceD

E
D

IT

C
O

P
Y

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD

eceD

M
A

S
T

E
R

’eceD

ceceD

 C
R

E
A

T
E

e’eDE
D

IT

M
A

S
T

E
R

C
O

P
Y

’e’eD

ce’eD

8:

eDD

ceD

E
D

IT

C
O

P
Y

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD

eceD

M
A

S
T

E
R

’eceD

ceceD

 C
R

E
A

T
E

e’eD ’e’eD

ce’eD

E
D

IT

M
A

S
T

E
R

C
O

P
Y

R
E

A
D

r’eceD

Fig. 8.7. A sequence of document operations

208 8 Public Government

8.3.4 Document Family and Document Versions

Document Family: (Fig. 8.8, left) The structure to the left designates one
document family. Every create gives rise to a document family. It may grow
(copying) and shrink (shredding).

Document Version (Fig. 8.8, right) A “just” create document has version
0. Every edit of a document creates a new version of that “same” document.
All other operations leave the version attribute unchanged. (Let us not be
bothered by how version numbers are generated!)

eDD

ceD

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

ce’eD

 C
R

E
A

T
E

V1 V1

V1

V2 V2 V2

V2 V3

E
D

IT

ece’eD

VO

V4 V4

V4 V4

V4

V4

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

M
A

S
T

E
R

’eD e’eD ’e’eD

M
A

S
T

E
R

’eceD r’eceD

C
O

P
Y

cceceD

m’e’eD

mce’eDce’eD

D

C
R

E
A

T
E

E
D

IT

C
O

P
Y

eD

ceD E
D

IT

eceD

ceceD

C
O

P
Y

M
A

S
T

E
R

’ceceD

1 2

3 4

5 6

Fig. 8.8. Document family and document versions

8.3.5 Document History

From a document we can, “in theory”, trace its unique past. In reverse order
of operations: (6) Take the lower right master. (5) It was most recently the
basis for a copy ing. (4) Before that it was the basis for an earlier copy ing.
(3) Before that it was the result of a copy ing. (2) Before that it was an
edited version (1) of a created document.

See Fig. 8.9 on the facing page.
(1) Create: An actor named Nm1 performs operation create at time time1

on location loc1. A document is created with just about the only information
you see in the lower left corner to the right.

(2) Edit: An actor named Nm2 performs operation edit at time time2 on
location loc1 Document D is extended with text text into document eD.

(3) Copy: An actor named Nm3 performs operation copy (on eD and we
focus on the ‘copy’) at time time3 on location loc1. Document eD text text
remains unchanged but is referred to as ceD.

(4) Edit: An actor named Nm4 performs operation edit at time time4 on
location loc1. Document ceD text text is changed into document eceD text′.

8.3 Documents — A Closer Analysis 209

eDD

ceD

AGENT OPERATION TIME

Nm1 time1create

LOCATION
E

D
IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

loc1

C
R

E
A

T
E

 C
R

E
A

T
E

eDD

ceD

AGENT OPERATION TIME

Nm1
Nm2

time1
time2

loc1create

edit

LOCATION

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

E
D

IT

loc1

text

C
R

E
A

T
E

eDD

ceD

AGENT OPERATION TIME

Nm1
Nm2
Nm3

time1
time2
time3

loc1create

edit
copy

LOCATION

E
D

IT

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

C
O

P
Y

loc1
loc1

text

C
R

E
A

T
E

eDD

ceD

AGENT OPERATION TIME

Nm1
Nm2
Nm3
Nm4

time1
time2
time3
time4

loc1create

edit
copy

edit

LOCATION

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

E
D

IT

loc1
loc1
loc1

text’

C
R

E
A

T
E

eDD

ceD

AGENT OPERATION TIME

Nm1
Nm2
Nm3
Nm4
Nm5

time1
time2
time3
time4
time5

loc1create

edit
copy

edit

copy

LOCATION

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

M
A

S
T

E
R

C
O

P
Y

’ceceD

cceceD

m’e’eD

mce’eDce’eD

loc1
loc1
loc1
loc1

C
O

P
Y

text’

C
R

E
A

T
E

eDD

ceD

AGENT OPERATION TIME

Nm1
Nm2
Nm3
Nm4
Nm5
Nm6

time1
time2
time3
time4
time5
time6

loc1create
edit
copy
edit
copy

LOCATION

E
D

IT

C
O

P
Y

E
D

IT

M
A

S
T

E
R

C
O

P
Y

M
O

V
E

M
O

V
E

R
E

A
D

C
O

P
Y

E
D

IT

M
A

S
T

E
R

’eD e’eD ’e’eD

eceD

M
A

S
T

E
R

’eceD r’eceD

ceceD

C
O

P
Y

’ceceD

cceceD

master

m’e’eD

mce’eDce’eD

M
A

S
T

E
R

text’

loc1
loc1
loc1
loc1
loc1

Fig. 8.9. Document annotation

(5) Copy: An actor named Nm5 performs operation copy (on eceD and we
focus on the ‘copy’ ceceD) at time time5 on location loc1. Document ceceD
text text′ remains unchanged.

(6) Master: An actor named Nm6 performs operation copy (on ceceD and
we focus on the ‘master’ ′ceceD) at time time6 on location loc1 Document
′ceceD text text′ remains unchanged.

8.3.6 Document Authorisation

Rationale for Authorisation

We explain the need for introducing a concept that we shall call ‘authorisa-
tion’. Some documents may contain information that not all actors should be
aware off. For an actor to be allowed to perform an operation upon (create
or edit or copy or read or move or shred) a document, that actor must be so
authorised (by some agent). Authorisation can be in the form of a license, a
permit, to perform an operation on some entity, as here, a document.

210 8 Public Government

Authorisation of Actors

Actors can be authorised with respect to (wrt.) one specific document whose
identity will then be given, or wrt. a finite, identified set of documents, or wrt.
a potentially indefinite class of documents, so we have to introduce a notion
of a document class. (An example class of documents could be the class of
all social security application forms [based on same template]. More on this
later.)

Document D

Documents {D1,D2,...,Dn}

Document Class DC−name

Read, Copy, Move

Edit, Move, Copy, Shred

Create, Edit, Copy

Fig. 8.10. Document and operation authorisations

Actors can, within the designated set of such documents, be authorised wrt.
which operations can be performed on these documents: create, edit, copy,
search, move, read, shred and compute.

Actors may be authorised to grant document handling authorisations to
(other) actors, extend or limit previously (by others or by that same actor)
granted such document handling authorisations, or outright withdraw such
document handling authorisations altogether.

The problem of how to initialise the system of document handling autho-
risations is an interesting one — which we may have time to come back to
later.

License Scripts

A license script is a named text which is issued by one actor to another.
The license specifies a grant, an extension, a limitation or a withdrawal of
specified document operations on specified (licensed) documents. A license
can also grant permission to issue further licenses.

Example Licenses

ln1: actor a1 grants operations {op1,op2,...,opn}

8.3 Documents — A Closer Analysis 211

A14

A12
A13

1

2

3

4

5

A35:
Grant:

A34a
A34b

A12
Grant: Doc. D1: Create,Edit,Copy,Move,Read

A13:
Grant: Docs. {D2,D3}: Create,Edit

A14:
Grant:

A34a:

A34b:

 Extend:

A45:
Limit:

 Limit:

A45
A35

Doc. Class Dc: Copy,Read

 Doc. Class: Dc: Create,Edit

Doc. Class Dc: Read

 Doc. Class Dc: Read, Shred

 Doc. Class Dc: Read

Fig. 8.11. Granting, Extending and Limiting Licences

to actor a2 on documents {d1,d2,...,dm}

actor a3 extend license ln2 of actor a4 with operations {op′,op′′,...,op′′′}

actor a5 limit license ln3 of actor a6 with operations {opa,opb,...,opw}

actor a7 withdraw license ln4 from actor a8

actor a9 grants licensing right

ln5: actor a10 grants operations {opx,opy,...,opz}
to actor a11 on documents {da,db,...,dc}

actor a12 withdraw license ln6 from actor a13

8.3.7 Special Edit Operations

We have hinted at only a very rudimentary edit operation. One that takes
only one document and basically adds, modifies or deletes text. More general,
in fact a whole family of edit operations are present in everyday handling of
documents: merge of two documents into a third, implying a copy ing and a
create operation. into one of the two documents, implying a copy ing and a
simple edit operation. split of one document into two documents implying a
copy ing and two create operations. Etcetera

212 8 Public Government

8.3.8 A Document Class Concept

Examples

General Public Administration Document Classes (I)

Different branches of government work on and produce different classes of doc-
ument: Parliamentary committees handle societal background problem docu-
ments and produce committee discussion and law proposal documents.

General Public Administration Document Classes (II)

Parliament handles committee discussion and law proposal documents and
produces parliament discussion and law documents. ... And law courts receive
law suit documents, deliberate over law court proceeding documents and issue
verdicts (i.e., documents).

Specific Public Administration Documents

Taxation Document Classes: A tax office issues tax declaration template doc-
uments and handles tax declaration form2 documents.

Traffic Police Documents: A traffic police officer handles traffic violation ci-
tation template documents and issues traffic violation citation forms (i.e.,
documents).

Budget and Account Documents: An accountant handles budget documents,
fills in account template and account form documents, and aggregates (calcu-
late) over account form and budget documents to produce budgets (forms).

Document Classes

Generic Document Classes

By the generic class of documents we understand a class of documents that is
independent of the specific application domain. We make the following generic
classification: General, unformatted, un-structured text documents. Comment:
No computations can be done on such documents. Example: Any “spur-of-the-
moment” note. Formatted, semi-structured text documents. Comment: Trivial
searches can be done over such documents. Example: Most public adminis-
tration documents. Specifically formatted, template-based document. Comment:
Non-trivial computations can be done over such documents. Example: Most
application and related documents.

2A form is a filled-in template document

8.3 Documents — A Closer Analysis 213

is just ordinary text
− no section markers
−no specially desig=
nated keywords, ...

XYZ
Anon

Blar−blarTitle
Author
Department

Text1 key1 text2
key2 text3 key3
text4 ... textn−1
keyn textn

This document Form M2r1O7f

Text1

Text2

Text3

text21

text22

Unformatted Formatted

Template
− when not filled in

Form
− when filled in

Semi−formatted

value fields

Fig. 8.12. Indication of Document Classes

Specific Government Document Classes

For the application-specific category of public administration we suggest to let
the class of government documents be determined by their relevance to specific
laws or law proposals:3 Some specific examples: (i) law proposal background
document; (ii) law proposal discussion document; (iii) law document; (iv) law
admin./handling document; (v) law rules & regulation document; (vi) local
admin. letter to citizen; (vii) citizen reply to local administration letter; (viii)
citizen complaint to law court; (ix) law court inquiry document; and (x) law
court decision.

8.3.9 Document [Cross–]References

Documents in one family of documents may cross-refer to documents in an-
other family of documents as shown in Fig. 8.13 on the next page. Reasons
seem obvious: chronologically “later” documents were derived in the context
of knowledge of the chronologically “earlier” documents which can be made
aware of the of the “later” uses.

Examples of Document [Cross–]References:

(a) Law proposal background doc. may refer to other laws. (b) Law proposal
discussion doc. may refer to background doc. (c) Law usually refers to many
other laws. (d) Law admin./handling doc. usually refers to many other han-
dling docs. and refers to the law. (e) Law rules & reg. doc. refers to the law.
(f) Local admin. letter to citizen refers to the law. (g) Citizen reply to local
admin. letter refers to that letter. (h) Citizen complaint to law court refers to

3— all other documents are simple administration documents found also in most
other forms of administration.

214 8 Public Government

Document Da

Document Db

Document Dc

Document Dd

LEGEND:

from to

Fig. 8.13. Cross-references between documents of four document families

local admin. letter and law. (i) Law court inquiry doc. refers to citizen and
local admin. letters and the law. (j) Law court decision refers to the law and
other law court decisions.

8.3.10 Document Computations

We can distinguish amongst different kinds of computations over documents.
Document Identifier Searches: Example: Intra- and inter–document-family

tracing.
Attribute Searches: Example: Searches based on document attributes —

incl. form numbers.
Trivial Document “Syntactic Content” Searches: Example: Documents re-

lated to a specific agent or topic (a citizen, a law, or other). Searches look for
text parts only.

Non-trivial Document “Semantic Content” Searches: Example: Docu-
ments containing strongly formatted text parts, e.g., XML embedded and
coded texts. Searches try to deduce meaning (“data mining”).

Full-blown Computations: Example: Tax computations.

8.3.11 Summary of Document Attributes

These are the generic classes of document attributes: (1) document name,
(2) document version number, (3) document classes (generic and special), (4)
history trace of operations4 (operation, location, time, actor) and (5) reference
to relevant license. A unique document identifier can be calculated from the
above.

4including computations

8.4 E2G: Essential E-Government 215

Bjorner−e−macao

 (read,macay,june1,...)>

(gen−format,seminar)

<(create,jaist,april30,db),
 (edit,jaist,may2,db),
 ...
 (edit,shanghai,may24,db),
 (copy,macao,may31,lsc),

version−number

E−mail: Janowski−to−Bjørner
License:

Doc. name:

Doc. version:

Doc. class:

Doc. history:

Fig. 8.14. Document attributes

8.3.12 Actor Attributes

(1) Unique Actor Identifier, (2) Actor Location, (3) Licenses: (3.1) Current
“Own” Licenses (i.e., work being pursued) and (3.2) Current Granted Licenses
(i.e., work being managed), (4) Which Documents (by reference): (4.1) have
be Operated upon, (4.2) at Locations and (4.3) and at Times.

8.4 E2G: Essential E-Government

Law-based public administration handles, like any other public or private
administration, “thousands” of kinds of “zillions” of documents. Of those we
single out now, we focus only on those public government documents which
are based in law, that is, which ultimately refer to laws. That is we do not
in the following consider such kinds of documents as procurement, (ordinary)
budget, accounting, personnel, etc., documents whose handling is like in any
other, not law-based administration, whether public or private.5

8.4.1 The Meaning of E2G

So, by Essential E-Government we shall thus mean: Any electronic handling
of documents, that is, planning, discussion, decision, preparation, communi-
cation, etcetera which are based on and results in (possibly new, possibly
edited) documents such that these documents directly or indirectly refer to
laws.

5Of course, financial reporting is subject to laws, so, perhaps we should not have
been so definite in our “do not” statement.

216 8 Public Government

From Domain to E2G Requirements

To illustrate what “such electronic handling” might mean, we systematically
go through the domain(s) of public government such as outlined in Sect. 8.2
and of documents, such as outlined in Sect. 8.3, in order to decide whether
“such–and–such” agent (institution, i.e., branch of government) and citizen
interactions, documents and document attributes, functionalities, “etcetera”
must be “made more–or–less electronic”.

So Here We Go: Towards E2G

Which branches of government should be included in E2G?

One answer could be: All branches interfacing with citizens. The double–
arrowed line indicates this. Within these branches we must list the relevant
departments. Another answer could be: Only such and such a subset of the
indicated branches. (We then omit some of the ↔s.) See Fig. 8.15.

Laws
Making

Enforcing
Laws

Interpreting
Laws

Courts
Higher

Courts

Lower

Local Gvt.

Ministries
Ctrl Admin

Parliamentary

Committee

Parliament

Citizen

Fig. 8.15. Branches of government included in E2G

Which document classes should be included in E2G?

One answer could be: All the (in this example) 19 document classes implied
by the red arrows in figure to the right. For each arrow-head we then list
relevant document classes. Another answer could be: Only such and such a
subset of the indicated document classes. (That is, we omit some of the →
document classes.) See Fig. 8.16 on the next page.

8.4 E2G: Essential E-Government 217

Citizen

Parliament

Committee
Parliamentary

Making
Laws

Enforcing
Laws Central Admin.

Ministries

Lower
Courts

Courts
Higher

(24)

(23b)

(25,29)(27)

(28)
Interpreting

Laws

(26)

(12)

(13) (15)

(14,16)(17)

Local Gvt.

(18) (22)

(19,20,21,23) (23a)

Fig. 8.16. Document classes included in E2G

Which authorisation on document classes should be E2G scripted?

For each selected document class scripts of zero, one or more authorisations
need be designed and their instantiation wrt. specific documents must be
computerised, as must the monitoring and control of the implied document
family. See Fig. 8.17.

A14

A12
A13

1

2

3

4

5

A35:
Grant:

A34a
A34b

A12
Grant: Doc. D1: Create,Edit,Copy,Move,Read

A13:
Grant: Docs. {D2,D3}: Create,Edit

A14:
Grant:

A34a:

A34b:

 Extend:

A45:
Limit:

 Limit:

A45
A35

Doc. Class Dc: Copy,Read

 Doc. Class: Dc: Create,Edit

Doc. Class Dc: Read

 Doc. Class Dc: Read, Shred

 Doc. Class Dc: Read

Fig. 8.17. Document authorisations to be E2G scripted

218 8 Public Government

Which new operations should be E2G supported?

For each selected document class as well as combinations of related document
classes all conceivably E2G supported operations must be defined: All relevant
searches. All relevant n ≥ 1 computations. All trace functions. A new release
operation. The shred operation. See Fig. 8.18.

of Classes DC1,DC2,...,DCn
Compute "fi" over Document

Search over Document Release Document

Etcetera

Shred Document

Trace Document

Fig. 8.18. New operations to be E2G supported

More on E2G Document Computations (II): One class of computations have
the computation be based on values of a possibly only partially filled-in tem-
plate, i.e., form. The computation would then yield, not necessarily a docu-
ment, but new values that can serve as basis for further computations and
possibly be fed to a repository of documents. Such computations presume
design of templates, i.e., forms, and the implementation of the computations.

Yet More on E2G Document Computations (III): Another class of computa-
tions collects data from several possibly distinct documents and produce an
aggregated document. An example could be income and property tax returns
of several tax payers aggregated into a community tax budget. The leftmost,
i.e., the resulting document may be an edited (i.e., an update) version of one
of the rightmost, i.e., input documents.

See right part of Fig. 8.19 on the facing page.

Transparency Implies E2G Traceability

Given a document, say the “bottom-right-most”
√

-checked document one
may wish to trace all its “ancestor” documents. Such a trace may — as indi-
cated — lead to several traces, that is, to sequences of document references.
For an agent or a citizen such traceability implies transparency of public
government. See Fig. 8.20 on the next page.

8.4 E2G: Essential E-Government 219

T
xt

−b
2

txt−b21
txt−b22

Text−c text−c1
text−c2

txt−b2n

compute field values
from document values

(Partially) Filled Template Form

field−1
field−2

field−n

Text−a

Txt−b1

creating

Computing

possibly
over several

distinct
forms

and editing

new form
a possibly

Fig. 8.19. E2G document computations

Fig. 8.20. Traces

8.4.2 Summary of E2G

First Summary

So Essential E-Government, E2G, assumes paper-less administration, i.e., all
electronic documents and focuses on all/most such document-manifested ac-
tions which are based in law. Such documents entail: (1) Which branches of
public government are included/excluded? (2) Which document classes are in-
cluded/excluded? (3) Which authorisations, and which scripts are mandated?
(4) Which operations on documents are supported? (5) Which form of trace-
ability is supported?

220 8 Public Government

Second Summary of E2G

Figure 8.21 intimates some properties of an assumed modular, i.e., parame-
terised E2G server. The dotted rounded-edge left box stands for such a server.
You may think of one server per actor. The figure shows an agent actor. For
the citizen actor one omits the license and document interface. The syntax
of the up and down pointing license and document interfaces (to central, re-
spectively local agents) is a simplification of the possibility of n such sets of
license and document interfaces, one pair to each “other” agent being inter-
faced. The syntax of the leftward license and document interface to citizens
is a simplification of the possibility of m such sets of license and document
interfaces, one pair to each citizen being interfaced.

Secure

Secure
Communication

Communication

Document

Repository

Licenses

Licenses

Licenses

Documents

Documents

Documents

C
iti

ze
ns

Central Agents

Local Agents

Citizen

Agents

Citizens
and

the three branches
of

Government

Fig. 8.21. A possible modular software server

Figure 8.21 intends to show that every actor receives licenses and documents,
that is, with each document received there follows a license which details the
authorisations, that is, the rights, that that actor is given wrt. that document.

Figure 8.21 further intends to show that any actor may send licenses and
documents, that is, each document sent (moved, distributed) there is accom-
panied with license which details the authorisations, that is, the rights, that
the receiving actor is given wrt. that document.

Finally Fig. 8.21 should be augmented to imply that the square full line
box within the dotted rounded-edge left box checks that licenses (that are)
sent harmonises with licenses (that are) received for “derived” documents.

8.5 Closing

8.5.1 What Have We Covered?

What Have We Covered? We have covered: (1) three branches of government
↔ citizens; (2) flow of documents; (3) actors: citizens and agents; (4) doc-
uments: (4.1) create, edit, copy, move, read, shred, search, compute; (4.2)
document version, history, reference, trace; and (4.3) authorisation, license;
and (5) E2G: Essential E-Government.

8.5.2 What Did We Try to Achieve?

We have attempted to illuminate: (a) a systematic approach to understand-
ing the domain of public government; (b) another approach to asking for
E2-Government; (c) a focus of law-based documents; and (d) a view of good
governance: (d.1) Transparency of document handling ⇒ and (d.2) trans-
parency of the ‘Rule of Law’.

8.5.3 Relation to Chapters 7, 9 and 10

(We refer to the ‘Discussion’ section, Sect. 7.4 on page 199 of the previous
chapter.)

In Chap. 7 we initially covered the notion of documents, both informally
and formally.

In Chap. 9 we shall cover the notion of security, both informally and for-
mally — but with only a superficial treatment of authorisation.

In Chap. 10 we shall cover the notion of authorising scripts, licenses and
contracts, both informally and formally.

8.5.4 Towards a Theory of Documents

Together Chaps. 7–10 amount to an emerging Theory of Documents. Either
such a theory is more fully researched and developed in a PhD study or is an
industrial R&D project by a company, like Xerox, Microsoft or IBM, where
that company claims to offer, for example, public administration, a compre-
hensive and consistent, expanding set of services, hardware and software for
document handling.

9

Towards a Model of IT Security1

The ISO Information Security Code of Practice

An Incomplete Rough Sketch Analysis

Caveat

This chapter is incomplete. Its basis, [36], is even more so. We could have
wished to bring a more complete analysis of the IT Security domain. At
least 12 man-months are needed in order to bring a more complete and
comprehensive treatment.

Summary

We analyse the domain of IT systems and ‘add’ to that domain the
concept of IT Security Rules (and Regulations). The analysis is done,
first informally, then formally. The informal analysis and its presentation
follows the ‘dogmas’ set out in Vol.3 of Software Engineering [33]. The
formal presentation follows the principles and techniques and uses the
tools outlined in Vols.1-2 of the afore-mentioned book [31,32].

9.1 Introduction

IT systems are becoming increasingly ubiquitous and vulnerable: they are ev-
erywhere, integrating ‘seamlessly’ into our everyday activities, and are (there-
fore, because also of their seamlessness) vulnerable to fail wrt. proper, in-
tended operation either due to malicious attacks by intruders, or due to ‘acts
of nature’: earthquakes, typhoons, fire. Such failure of operation may have
catastrophic consequences: loss of life or property, exposure of personal or
company information or of state secrecy.

To safeguard against such consequences, to secure privacy, to maintain
‘competitive edges’, etc., it has become increasingly important to establish
codes of practice for information security management, that is, to secure that

1This is an edited version of [36].

224 9 Towards a Model of IT Security

IT operations and data cannot be interfered with by un-authorised people or
un-intended machinery. and not disrupted by ‘acts of nature’.

Information security management has become, sorry to express it in this
non-scientific manner, ‘a hot topic’.

Yet the issue is not at all that clear. What really is an IT system? What is
really meant by IT system security ? Quite substantial amounts of resources
are being spent today: monies, staff time in preparation, monitoring and con-
trol; and quite significant disruption of normal, otherwise very reasonable work
practice are often incurred as a side-effect of ensuring IT system security.

It is therefore mandatory that the topic of ‘information security manage-
ment’ be subject to a scientific study.

This then is the purpose of this chapter: to provide one such approach to
a scientific study of ‘information security management’ while recognising that
other approaches exists (but yet to be studied and reported).

The present study shall attempt to answer the questions: what is an IT
system ? what is IT system security ? and what is a code of practice for IT
system security management? — with these questions, in this chapter, being
only tentatively answered in the, by now, classical style of (i) IT system do-
main modelling: the syntax and semantics of the IT system entities, functions,
events and behaviours and (ii) of IT system security rules and regulations:
their syntax and semantics relative to the domain model of IT systems

We are not aware of any attempts of formally understanding the issues
of ‘information security management’ in the almost “holistic” sense of this
presentation.

We venture to say that there is perhaps a whole new methodological (i.e.,
modelling) approach to emerge from this study.

As we show, we can apply this approach to such physical notions as build-
ing sites, buildings, their floors, rooms, etc.; building, room, etc. installations:
wires, switches, pipes, valves, sensors, actuators, etc.; movable equipment:
main frames, laptops, file cabinets, etc.; people; as well as to related con-
ceptual notions: codes of practice, security rules, recordings of intrusions and
their handling, etc. But we venture to claim that the approach can also be
applied to similar systems: hospitals, factories, concert halls, hotels, etc. We
know of no other modelling approach that can capture the depth and width
as shown here.

Well, before being caught too optimistic, let’s see how far we can get.
Remember: it is still very much work in progress.

9.2 Our Methodological Approach

We choose the following sequence of analysis and synthesis actions: First
we bring excerpts from the ISO Standard: INTERNATIONAL ISO/IEC STAN-
DARD 17799: Information technology: security techniques — code of practice for
information security management. On the basis of these rather cursory excerpts

9.3 An Example Set of IT System Codes of Practice 225

but also on the basis of a more comprehensive analysis — both of which we
do not show — we postulate in five sections (Sects. 9.6–9.7) a domain model
for IT systems.

Section 9.6 prepares for the formal model of IT systems given in Sect. 9.7.
A formal model of the meaning of ‘security rules and regulations’ is then
sketched (Sect. 9.8).

We end the chapter with some speculations as how to proceed with what
has been presented in this chapter.

The formal model has two components: A formal model of system config-
urations: states and contexts; and a formal model of the “codes of practice
for information security management”. The former model is a conventional,
software engineering model of “a system”. Maybe there are some novel as-
pects that enable us to perform spatial (or diagrammatic) reasoning. Maybe
existing work on spatial reasoning ought be consulted [4]. The latter model is
a rather conventional model of the semantics of well formed formulas (wff s)
in logic — without including modal operations — curiously absent, it seems,
from the “ISO Code of Practice”. The assumption being made here is that all
“implementation guideline” statements of the “ISO Code of Practice” can be
expressed in some (first ?) order predicate calculus.

This approach to the modelling of a “code of practice for information
security management” is tentative. That is, it is an experiment. Maybe we
succeed. Maybe we do not. The work reported here is thus of the following
nature: it is experimental, it aims at understanding the domain of IT systems
and of the related “code of practice for information security management”.
and of testing our principles and techniques of domain engineering with this
“testing” being carried out in Sects. 9.6–9.7. If we get a formal model of the
ISO (standard) “code of practice for information security management” that
reveals that can be used to question this “code of practice”, that can be used
for “prediction”, and on the basis of which we can implement computing and
communication) systems support for this “practice” then we would claim the
experiment for being successful.

9.3 An Example Set of IT System Codes of Practice

We quote extensively from INTERNATIONAL ISO/IEC STANDARD 17799: In-
formation technology: security techniques — code of practice for information
security management.

9.3.1 [6] Organisation of information security2

2The [bracketed] sections, subsections, etc., refer to respective sections, etc., in
the ISO IT Security Management Code of Practice.

226 9 Towards a Model of IT Security

[6.1] Internal Organisation

[6.1.1] Management commitment to information security

Control:
Management should actively support security within the organization

through clear direction, demonstrated commitment, explicit assignment, and
acknowledgment of information security responsibilities.

Implementation guidance:
Management should:

1. ensure that information security goals are identified, meet the organiza-
tional requirements, and are integrated in relevant processes;

2. formulate, review, and approve information security policy;
3. review the effectiveness of the implementation of the information security

policy;
4. provide clear direction and visible management support for security ini-

tiatives;
5. provide the resources needed for information security;
6. approve assignment of specific roles and responsibilities for information

security across the organization;
7. initiate plans and programs to maintain information security awareness;
8. ensure that the implementation of information security controls is co-

ordinated across the organization (see 6.1.2).

[6.1.2] Information security co-ordination

Control:
Information security activities should be co-ordinated by representatives

from different parts of the organization with relevant roles and job functions.

Implementation guidance:
Typically, information security co-ordination should involve the co-operation

and collaboration of managers, users, administrators, application designers,
auditors and security personnel, and specialist skills in areas such as insur-
ance, legal issues, human resources, IT and risk management.

This activity should:

1. ensure that security activities are executed in compliance with the infor-
mation security policy;

2. identify how to handle non-compliances;
3. approve methodologies and processes for information security, e.g. risk

assessment, information classification;
4. identify significant threat changes and exposure of information and infor-

mation processing facilities to threats;
5. assess the adequacy and co-ordinate the implementation of information

security controls;

9.3 An Example Set of IT System Codes of Practice 227

6. effectively promote information security education, training and awareness
throughout the organization;

7. evaluate information received from the monitoring and reviewing of infor-
mation security incidents, and recommend appropriate actions in response
to identified information security incidents.

[6.2] External parties

Objective: (1) To maintain the security of the organization’s information and
information processing facilities that are accessed, processed, communicated
to, or managed by external parties. (2) The security of the organization’s
information and information processing facilities should not be reduced by
the introduction of external party products or services. (3) Any access to the
organization’s information processing facilities and processing and communi-
cation of information by external parties should be controlled. (4) Where there
is a business need for working with external parties that may require access
to the organization’s information and information processing facilities, or in
obtaining or providing a product and service from or to an external party, a
risk assessment should be carried out to determine security implications and
control requirements. Controls should be agreed and defined in an agreement
with the external party.

[6.2.1] Identification of risks related to external parties

Control:
The risks to the organization’s information and information processing

facilities from business processes involving external parties should be identified
and appropriate controls implemented before granting access.

Implementation guidance:
Where there is a need to allow an external party access to the information

processing facilities or information of an organization, a risk assessment (see
also Section 4) should be carried out to identify any requirements for specific
controls. The identification of risks related to external party access should
take into account the following issues:

1. the information processing facilities an external party is required to access;
2. the type of access the external party will have to the information and

information processing facilities, e.g.:

(a) physical access, e.g. to offices, computer rooms, filing cabinets;
(b) logical access, e.g. to an organization’s databases, information sys-

tems;
(c) network connectivity between the organization’s and the external

partyös network(s), e.g. permanent connection, remote access;
(d) whether the access is taking place on-site or off-site;

228 9 Towards a Model of IT Security

3. the value and sensitivity of the information involved, and its criticality for
business operations;

4. the controls necessary to protect information that is not intended to be
accessible by external parties;

5. the external party personnel involved in handling the organization’s in-
formation;

6. how the organization or personnel authorized to have access can be identi-
fied, the authorization verified, and how often this needs to be reconfirmed;

7. the different means and controls employed by the external party when
storing, processing, communicating, sharing and exchanging information;

8. the impact of access not being available to the external party when re-
quired, and the external party entering or receiving inaccurate or mislead-
ing information;

9. practices and procedures to deal with information security incidents and
potential damages, and the terms and conditions for the continuation of
external party access in the case of an information security incident;

10. legal and regulatory requirements and other contractual obligations rele-
vant to the external party that should be taken into account;

11. how the interests of any other stakeholders may be affected by the ar-
rangements.

Access by external parties to the organization’s information should not be
provided until the appropriate controls have been implemented and, where
feasible, a contract has been signed defining the terms and conditions for
the connection or access and the working arrangement. Generally, all security
requirements resulting from work with external parties or internal controls
should be reflected by the agreement with the external party (see also 6.2.2
and 6.2.3).

It should be ensured that the external party is aware of their obligations,
and accepts the responsibilities and liabilities involved in accessing, processing,
communicating, or managing the organization’s information and information
processing facilities.

Other information:
Information might be put at risk by external parties with inadequate se-

curity management. Controls should be identified and applied to administer
external party access to information processing facilities. For example, if there
is a special need for confidentiality of the information, non-disclosure agree-
ments might be used.

Organizations may face risks associated with inter-organizational pro-
cesses, management, and communication if a high degree of outsourcing is
applied, or where there are several external parties involved.

The controls 6.2.2 and 6.2.3 cover different external party arrangements,
e.g. including:

9.3 An Example Set of IT System Codes of Practice 229

1. service providers, such as ISPs, network providers, telephone services,
maintenance and support services;

2. managed security services;
3. customers;
4. outsourcing of facilities and/or operations, e.g. IT systems, data collection

services, call centre operations;
5. management and business consultants, and auditors;
6. developers and suppliers, e.g. of software products and IT systems;
7. cleaning, catering, and other outsourced support services;
8. temporary personnel, student placement, and other casual short-term ap-

pointments.

Such agreements can help to reduce the risks associated with external
parties.

9.3.2 [7] Asset management

[7.1] Responsibility for assets

[7.1.1] Inventory of assets

Control: All assets should be clearly identified and an inventory of all im-
portant assets drawn up and maintained.

Implementation guidance:
An organization should identify all assets and document the importance

of these assets. The asset inventory should include all information necessary
in order to recover from a disaster, including type of asset, format, location,
backup information, license information, and a business value. The inventory
should not duplicate other inventories unnecessarily, but it should be ensured
that the content is aligned.

In addition, ownership (see 7.1.2) and information classification (see 7.2)
should be agreed and documented for each of the assets. Based on the impor-
tance of the asset, its business value and its security classification, levels of
protection commensurate with the importance of the assets should be identi-
fied (more information on how to value assets to represent their importance
can be found in ISO/IEC TR 13335-3).

Other information: There are many types of assets, including:

1. information: databases and data files, contracts and agreements, system
documentation, research information, user manuals, training material, op-
erational or support procedures, business continuity plans, fallback ar-
rangements, audit trails, and archived information;

2. software assets: application software, system software, development tools,
and utilities;

230 9 Towards a Model of IT Security

3. physical assets: computer equipment, communications equipment, remov-
able media, and other equipment;

4. services: computing and communications services, general utilities, e.g.
heating, lighting, power, and air-conditioning;

5. people, and their qualifications, skills, and experience;
6. intangibles, such as reputation and image of the organization.

Inventories of assets help to ensure that effective asset protection takes
place, and may also be required for other business purposes, such as health
and safety, insurance or financial (asset management) reasons. The process of
compiling an inventory of assets is an important prerequisite of risk manage-
ment (see also Section 4).

9.3.3 [8] Human resources security

[8.1] Prior to employment

(Explanation: The word ’employment’ is meant here to cover all of the follow-
ing different situations: employment of people (temporary or longer lasting),
appointment of job roles, changing of job roles, assignment of contracts, and
the termination of any of these arrangements.)

Objective: To ensure that employees, contractors and third party users
understand their responsibilities, and are suitable for the roles they are con-
sidered for, and to reduce the risk of theft, fraud or misuse of facilities.

Security responsibilities should be addressed prior to employment in ade-
quate job descriptions and in terms and conditions of employment.

All candidates for employment, contractors and third party users should
be adequately screened, especially for sensitive jobs.

Employees, contractors and third party users of information processing
facilities should sign an agreement on their security roles and responsibilities.

[8.1.1] Roles and responsibilities

Control:
Security roles and responsibilities of employees, contractors and third party

users should be defined and documented in accordance with the organization’s
information security policy.

Implementation guidance:
Security roles and responsibilities should include the requirement to:

1. implement and act in accordance with the organization¡¯s information
security policies (see 5.1);

2. protect assets from unauthorized access, disclosure, modification, destruc-
tion or interference;

3. execute particular security processes or activities;
4. ensure responsibility is assigned to the individual for actions taken;

9.3 An Example Set of IT System Codes of Practice 231

5. report security events or potential events or other security risks to the
organization.

Security roles and responsibilities should be defined and clearly communi-
cated to job candidates during the pre-employment process.

9.3.4 [9] Physical and environmental security

[9.1] Secure areas

Objective: To prevent unauthorized physical access, damage, and interfer-
ence to the organization’s premises and information. Critical or sensitive in-
formation processing facilities should be housed in secure areas, protected by
defined security perimeters, with appropriate security barriers and entry con-
trols. They should be physically protected from unauthorized access, damage,
and interference. The protection provided should be commensurate with the
identified risks.

[9.1.1] Physical security perimeter

Control: Security perimeters (barriers such as walls, card controlled entry
gates or manned reception desks) should be used to protect areas that contain
information and information processing facilities.

Implementation guidance:
The following guidelines should be considered and implemented where ap-

propriate for physical security perimeters:

1. security perimeters should be clearly defined, and the siting and strength
of each of the perimeters should depend on the security requirements of
the assets within the perimeter and the results of a risk assessment;

2. perimeters of a building or site containing information processing facilities
should be physically sound (i.e. there should be no gaps in the perimeter
or areas where a break-in could easily occur); the external walls of the site
should be of solid construction and all external doors should be suitably
protected against unauthorized access with control mechanisms, e.g. bars,
alarms, locks etc; doors and windows should be locked when unattended
and external protection should be considered for windows, particularly at
ground level;

3. a manned reception area or other means to control physical access to the
site or building should be in place; access to sites and buildings should be
restricted to authorized personnel only;

4. physical barriers should, where applicable, be built to prevent unautho-
rized physical access and environmental contamination;

5. all fire doors on a security perimeter should be alarmed, monitored, and
tested in conjunction with the walls to establish the required level of
resistance in accordance to suitable regional, national, and international

232 9 Towards a Model of IT Security

standards; they should operate in accordance with local fire code in a
failsafe manner;

6. suitable intruder detection systems should be installed to national, re-
gional or international standards and regularly tested to cover all external
doors and accessible windows; unoccupied areas should be alarmed at all
times; cover should also be provided for other areas, e.g. computer room
or communications rooms;

7. information processing facilities managed by the organization should be
physically separated from those managed by third parties.

[9.1.2] Physical entry controls

Control: Secure areas should be protected by appropriate entry controls to
ensure that only authorized personnel are allowed access.

Implementation guidance:

1. the date and time of entry and departure of visitors should be recorded,
and all visitors should be supervised unless their access has been previ-
ously approved; they should only be granted access for specific, authorized
purposes and should be issued with instructions on the security require-
ments of the area and on emergency procedures.

2. access to areas where sensitive information is processed or stored should
be controlled and restricted to authorized persons only; authentication
controls, e.g. access control card plus PIN, should be used to authorize
and validate all access; an audit trail of all access should be securely
maintained;

3. all employees, contractors and third party users and all visitors should be
required to wear some form of visible identification and should immedi-
ately notify security personnel if they encounter un-escorted visitors and
anyone not wearing visible identification;

4. third party support service personnel should be granted restricted access
to secure areas or sensitive information processing facilities only when
required; this access should be authorized and monitored;

5. access rights to secure areas should be regularly reviewed and updated,
and revoked when necessary (see 8.3.3).

[9.1.3] Securing offices, rooms, and facilities

Control Physical security for offices, rooms, and facilities should be designed
and applied.

Implementation guidance: The following guidelines should be considered
to secure offices, rooms, and facilities:

1. account should be taken of relevant health and safety regulations and
standards;

2. key facilities should be sited to avoid access by the public;

9.3 An Example Set of IT System Codes of Practice 233

3. where applicable, buildings should be unobtrusive and give minimum in-
dication of their purpose, with no obvious signs, outside or inside the
building identifying the presence of information processing activities;

4. directories and internal telephone books identifying locations of sensitive
information processing facilities should not be readily accessible by the
public.

[9.1.4] Protecting against external and environmental threats

Control: Physical protection against damage from fire, flood, earthquake,
explosion, civil unrest, and other forms of natural or man-made disaster should
be designed and applied.

Implementation guidance:
Consideration should be given to any security threats presented by neigh-

boring premises, e.g. a fire in a neighbouring building, water leaking from the
roof or in floors below ground level or an explosion in the street.

1. hazardous or combustible materials should be stored at a safe distance
from a secure area. Bulk supplies such as stationery should not be stored
within a secure area;

2. fallback equipment and back-up media should be sited at a safe distance
to avoid damage from a disaster affecting the main site;

3. appropriate fire fighting equipment should be provided and suitably
placed.

[9.1.5] Working in secure areas

Control: Physical protection and guidelines for working in secure areas should
be designed and applied.

Implementation guidance:

1. personnel should only be aware of the existence of, or activities within, a
secure area on a need to know basis;

2. unsupervised working in secure areas should be avoided both for safety
reasons and to prevent opportunities for malicious activities;

3. vacant secure areas should be physically locked and periodically checked;
4. photographic, video, audio or other recording equipment, such as cameras

in mobile devices, should not be allowed, unless authorized;

The arrangements for working in secure areas include controls for the
employees, contractors and third party users working in the secure area, as
well as other third party activities taking place there.

[9.1.6] Public access, delivery, and loading areas

Control: Access points such as delivery and loading areas and other points
where unauthorized persons may enter the premises should be controlled and,
if possible, isolated from information processing facilities to avoid unautho-
rized access.

234 9 Towards a Model of IT Security

[9.2] Equipment security

Objective: To prevent loss, damage, theft or compromise of assets and inter-
ruption to the organization’s activities. Equipment should be protected from
physical and environmental threats. Protection of equipment (including that
used off-site, and the removal of property) is necessary to reduce the risk of
unauthorized access to information and to protect against loss or damage.
This should also consider equipment siting and disposal. Special controls may
be required to protect against physical threats, and to safeguard supporting
facilities, such as the electrical supply and cabling infrastructure.

[9.2.1] Equipment siting and protection

Control: Equipment should be sited or protected to reduce the risks from
environmental threats and hazards, and opportunities for unauthorized access.

[9.2.2] Supporting utilities

Control: Equipment should be protected from power failures and other dis-
ruptions caused by failures in supporting utilities.

[9.2.3] Cabling security

Control: Power and telecommunications cabling carrying data or supporting
information services should be protected from interception or damage.

[9.2.4] Equipment maintenance

Control: Equipment should be correctly maintained to ensure its continued
availability and integrity.

[9.2.5] Security of equipment off-premises

Control: Security should be applied to off-site equipment taking into account
the different risks of working outside the organization’s premises.

Implementation guidance: Regardless of ownership, the use of any infor-
mation processing equipment outside the organization’s premises s must be
authorized by management.

1. equipment and media taken off the premises should not be left unattended
in public places; portable computers should be carried as hand luggage
and disguised where possible when travelling;

2. manufacturers’ instructions for protecting equipment should be observed
at all times, e.g. protection against exposure to strong electromagnetic
fields;

9.3 An Example Set of IT System Codes of Practice 235

3. home-working controls should be determined by a risk assessment and
suitable controls applied as appropriate, e.g. lockable filing cabinets, clear
desk policy, access controls for computers and secure communication with
the office (see also ISO/IEC 18028 Network Security);

4. adequate insurance cover should be in place to protect equipment off-site.

Security risks, e.g. of damage, theft or eavesdropping, may vary consider-
ably between locations and should be taken into account in determining the
most appropriate controls.

9.3.5 [10] Communications and operations management

[10.1] Operational procedures and responsibilities

Objective: To ensure the correct and secure operation of information pro-
cessing facilities. Responsibilities and procedures for the management and
operation of all information processing facilities should be established. This
includes the development of appropriate operating procedures. Segregation
of duties should be implemented, where appropriate, to reduce the risk of
negligent or deliberate system misuse.

[10.1.1] Documented operating procedures

Control: Operating procedures should be documented, maintained, and made
available to all users who need them.

[10.1.2] Change management

Control: Changes to information processing facilities and systems should be
controlled.

[10.1.4] Separation of development, test, and operational facilities

Control: Development, test, and operational facilities should be separated to
reduce the risks of un-authorised access or changes to the operational system.

[10.4] Protection against malicious and mobile code

Objective: To protect the integrity of software and information. Precautions
are required to prevent and detect the introduction of malicious code and
unauthorized mobile code. Software and information processing facilities are
vulnerable to the introduction of malicious code, such as computer viruses,
network worms, Trojan horses, and logic bombs. Users should be made aware
of the dangers of malicious code. Managers should, where appropriate, in-
troduce controls to prevent, detect, and remove malicious code and control
mobile code.

236 9 Towards a Model of IT Security

[10.4.1] Controls against malicious code

Control: Detection, prevention, and recovery controls to protect against mali-
cious code and appropriate user awareness procedures should be implemented.

[10.5] Back-up

Objective:To maintain the integrity and availability of information and in-
formation processing facilities. Routine procedures should be established to
implement the agreed back-up policy and strategy for taking back-up copies
of data and rehearsing their timely restoration.

[10.5.1] Information back-up

Control: Back-up copies of information and software should be taken and
tested regularly in accordance with the agreed backup policy.

[10.6] Network security management

Objective: To ensure the protection of information in networks and the pro-
tection of the supporting infrastructure.

The secure management of networks, which may span organizational
boundaries, requires careful consideration to data-flow, legal implications,
monitoring, and protection. Additional controls may also be required to pro-
tect sensitive information passing over public networks.

[10.6.1] Network controls

Control: Networks should be adequately managed and controlled, in order
to be protected from threats, and to maintain security for the systems and
applications using the network, including information in transit.

[10.7] Media handling

Objective: To prevent unauthorized disclosure, modification, removal or de-
struction of assets, and interruption to business activities.

Media should be controlled and physically protected.
Appropriate operating procedures should be established to protect doc-

uments, computer media (e.g. tapes, disks), input/output data and system
documentation from unauthorized disclosure, modification, removal, and de-
struction.

[10.7.1] Management of removable media

Control: There should be procedures in place for the management of remov-
able media.

9.3 An Example Set of IT System Codes of Practice 237

[10.7.2] Disposal of media

Control: Media should be disposed-of securely and safely when no longer
required, using formal procedures.

[10.7.3] Information handling procedures

Control: Procedures for the handling and storage of information should be
established to protect this information from unauthorized disclosure or misuse.

[10.7.4] Security of system documentation

Control: System documentation should be protected against unauthorized
access.

[10.8] Exchange of information

Objective: To maintain the security of information and software exchanged
within an organization and with any external entity.

Exchanges of information and software between organizations should be
based on a formal exchange policy, carried out in line with exchange agree-
ments, and should be compliant with any relevant legislation (see clause 15).

Procedures and standards should be established to protect information
and physical media containing information in transit.

[10.8.1] Information exchange policies and procedures

Control: Formal exchange policies, procedures, and controls should be in
place to protect the exchange of information through the use of all types of
communication facilities.

[10.8.3] Physical media in transit

Control: Media containing information should be protected against unautho-
rized access, misuse or corruption during transportation beyond an organiza-
tion’s physical boundaries.

Implementation guidance:

1. reliable transport or couriers should be used;
2. a list of authorized couriers should be agreed with management;
3. procedures to check the identification of couriers should be developed;
4. packaging should be sufficient to protect the contents from any physical

damage likely to arise during transit and in accordance with any manu-
facturers’ specifications (e.g. for software), for example protecting against
any environmental factors that may reduce the media’s restoration effec-
tiveness such as exposure to heat, moisture or electromagnetic fields;

238 9 Towards a Model of IT Security

5. controls should be adopted, where necessary, to protect sensitive informa-
tion from unauthorized disclosure or modification; examples include:

(a) use of locked containers;
(b) delivery by hand;
(c) tamper-evident packaging (which reveals any attempt to gain access);
(d) in exceptional cases, splitting of the consignment into more than one

delivery and dispatch by different routes.

[10.8.4] Electronic messaging

Control: Information involved in electronic messaging should be appropri-
ately protected.

Implementation guidance:

1. protecting messages from unauthorized access, modification or denial of
service;

2. ensuring correct addressing and transportation of the message;
3. general reliability and availability of the service;
4. legal considerations, for example requirements for electronic signatures;
5. obtaining approval prior to using external public services such as instant

messaging or file sharing;
6. stronger levels of authentication controlling access from publicly accessible

networks.

[10.10] Monitoring

Objective: To detect unauthorized information processing activities.
Systems should be monitored and information security events should be

recorded. Operator logs and fault logging should be used to ensure information
system problems are identified.

An organization should comply with all relevant legal requirements appli-
cable to its monitoring and logging activities.

System monitoring should be used to check the effectiveness of controls
adopted and to verify conformity to an access policy model.

[10.10.1] Audit logging

Control: Audit logs recording user activities, exceptions, and information
security events should be produced and kept for an agreed period to assist in
future investigations and access control monitoring.

9.3 An Example Set of IT System Codes of Practice 239

[10.10.2] Monitoring system use

Control: Procedures for monitoring use of information processing facilities
should be established and the results of the monitoring activities reviewed
regularly.

Implementation guidance: The level of monitoring required for individual
facilities should be determined by a risk assessment. An organisation should
comply with all relevant legal requirements applicable to its monitoring ac-
tivities.

Areas that should be considered include:

1. authorized access, including detail such as:

(a) the user ID;
(b) the date and time of key events;
(c) the types of events;
(d) the files accessed;
(e) the program/utilities used;

2. all privileged operations, such as:

(a) use of privileged accounts, e.g. supervisor, root, administrator;
(b) system start-up and stop;
(c) I/O device attachment/detachment;

3. unauthorized access attempts, such as:

(a) failed or rejected user actions;
(b) failed or rejected actions involving data and other resources;
(c) access policy violations and notifications for network gateways and

firewalls;
(d) alerts from proprietary intrusion detection systems;

4. system alerts or failures such as:
(a) console alerts or messages;
(b) system log exceptions;
(c) network management alarms;
(d) alarms raised by the access control system;

5. changes to, or attempts to change, system security settings and controls.

How often the results of monitoring activities are reviewed should depend
on the risks involved. Risk factors that should be considered include the:

1. criticality of the application processes;
2. value, sensitivity, and criticality of the information involved;
3. past experience of system infiltration and misuse, and the frequency of

vulnerabilities being exploited;
4. extent of system interconnection (particularly public networks);
5. logging facility being de-activated.

240 9 Towards a Model of IT Security

9.3.6 [11] Access control

[11.1] Business requirement for access control

Objective: To control access to information. Access to information, informa-
tion processing facilities, and business processes should be controlled on the
basis of business and security requirements. Access control rules should take
account of policies for information dissemination and authorization.

[11.1.1] Access control policy

Control: An access control policy should be established, documented, and
reviewed based on business and security requirements for access.

[11.2] User access management

Objective: To ensure authorized user access and to prevent unauthorized
access to information systems. Formal procedures should be in place to control
the allocation of access rights to information systems and services.

The procedures should cover all stages in the life-cycle of user access, from
the initial registration of new users to the final de-registration of users who no
longer require access to information systems and services. Special attention
should be given, where appropriate, to the need to control the allocation of
privileged access rights, which allow users to override system controls.

[11.2.1] User registration

Control: There should be a formal user registration and de-registration pro-
cedure in place for granting and revoking access to all information systems
and services.

Implementation guidance:

1. using unique user IDs to enable users to be linked to and held responsible
for their actions; the use of group IDs should only be permitted where they
are necessary for business or operational reasons, and should be approved
and documented;

2. checking that the user has authorization from the system owner for the use
of the information system or service; separate approval for access rights
from management may also be appropriate;

3. checking that the level of access granted is appropriate to the business
purpose (see 11.1) and is consistent with organizational security policy,
e.g. it does not compromise segregation of duties (see 10.1.3);

4. giving users a written statement of their access rights;
5. requiring users to sign statements indicating that they understand the

conditions of access;

9.3 An Example Set of IT System Codes of Practice 241

6. ensuring service providers do not provide access until authorization pro-
cedures have been completed;

7. maintaining a formal record of all persons registered to use the service;
8. immediately removing or blocking access rights of users who have changed

roles or jobs or left the organization;
9. periodically checking for, and removing or blocking, redundant user IDs

and accounts (see 11.2.4);
10. ensuring that redundant user IDs are not issued to other users.

Other information: Consideration should be given to establish user ac-
cess roles based on business requirements that summarize a number of access
rights into typical user access profiles. Access requests and reviews (see 11.2.4)
are easier managed at the level of such roles than at the level of particular
rights.

Consideration should be given to including clauses in personnel contracts
and service contracts that specify sanctions if unauthorized access is at-
tempted by personnel or service agents (see also 6.1.5, 8.1.3 and 8.2.3).

[11.2.2] Privilege management

Control: The allocation and use of privileges should be restricted and con-
trolled.

[11.2.3] User password management

Control: The allocation of passwords should be controlled through a formal
management process.

[11.2.4] Review of user access rights

Control: Management should review users’ access rights at regular intervals
using a formal process.

[11.4] Network access control

Objective: To prevent unauthorized access to networked services. Access
to both internal and external networked services should be controlled. User
access to networks and network services should not compromise the security
of the network services by ensuring:

1. appropriate interfaces are in place between the organization’s network and
networks owned by other organizations, and public networks;

2. appropriate authentication mechanisms are applied for users and equip-
ment;

3. control of user access to information services in enforced.

242 9 Towards a Model of IT Security

[11.4.1] Policy on use of network services

Control: Users should only be provided with access to the services that they
have been specifically authorized to use.

[11.4.2] User authentication for external connections

Control: Appropriate authentication methods should be used to control ac-
cess by remote users.

[11.4.3] Equipment identification in networks

Control: Automatic equipment identification should be considered as a means
to authenticate connections from specific locations and equipment.

[11.4.4] Remote diagnostic and configuration port protection

Control: Physical and logical access to diagnostic and configuration ports
should be controlled.

[11.4.5] Segregation in networks

Control: Groups of information services, users, and information systems
should be segregated on networks.

[11.5] Operating system access control

Objective: To prevent unauthorized access to operating systems. Security
facilities should be used to restrict access to operating systems to authorized
users.

1. authenticating authorized users, in accordance with a defined access con-
trol policy;

2. recording successful and failed system authentication attempts;
3. recording the use of special system privileges;
4. issuing alarms when system security policies are breached;
5. providing appropriate means for authentication;
6. where appropriate, restricting the connection time of users.

[11.5.1] Secure log-on procedures

Control: Access to operating systems should be controlled by a secure log-on
procedure.

9.4 The ISO Standard ISO/IEC 17799 Table-of-Contents 243

9.3.7 [13] Information security incident management

[13.1] Reporting information security events and weaknesses

Objective: To ensure information security events and weaknesses associated
with information systems are communicated in a manner allowing timely cor-
rective action to be taken.

Formal event reporting and escalation procedures should be in place. All
employees, contractors and third party users should be made aware of the
procedures for reporting the different types of event and weakness that might
have an impact on the security of organizational assets. They should be re-
quired to report any information security events and weaknesses as quickly as
possible to the designated point of contact.

[13.1.1] Reporting information security events

Control: Information security events should be reported through appropriate
management channels as quickly as possible.

[13.2] Management of information security incidents and
improvements

Objective: To ensure a consistent and effective approach is applied to the
management of information security incidents.

Responsibilities and procedures should be in place to handle information
security events and weaknesses effectively once they have been reported. A
process of continual improvement should be applied to the response to, moni-
toring, evaluating, and overall management of information security incidents.

Where evidence is required, it should be collected to ensure compliance
with legal requirements.

[13.1.1] Reporting security weaknesses

Control:
All employees, contractors and third party users of information systems

and services should be required to note and report any observed or suspected
security weaknesses in systems or services.

9.4 The ISO Standard ISO/IEC 17799 Table-of-Contents

We bring the full table-of-contents of The ISO Standard ISO/IEC 17799 docu-
ments.

0 Introduction . 11
0.1 What is information security? . 11
0.2 Why information security is needed? . 11

244 9 Towards a Model of IT Security

0.3 How to establish security requirements 12
0.4 Assessing security risks . 12
0.5 Selecting controls . 12
0.6 Information security starting point . 13
0.7 Critical success factors . 13
0.8 Developing your own guidelines . 14

1 Scope . 14
2 Terms and definitions . 14

2.1 asset . 14
2.2 control . 14
2.3 guideline . 15
2.4 information processing facilities . 15
2.5 information security . 15
2.6 information security event . 15
2.7 information security incident . 15
2.8 policy . 15
2.9 risk . 15
2.10 risk analysis . 15
2.11 risk assessment . 15
2.12 risk evaluation . 15
2.13 risk management . 16
2.14 risk treatment . 16
2.15 third party . 16
2.16 threat . 16
2.17 vulnerability . 16

3 Structure of this standard . 16
3.1 Clauses . 16
3.2 Main security categories . 17

3.2.1 Control . 17
3.2.2 Implementation guidance . 17
3.2.3 Other information . 17

4 Risk assessment and treatment . 17
4.1 Assessing security risks . 17
4.2 Treating security risks . 18

5 Security policy . 19
5.1 Information security policy . 19

5.1.1 Information security policy document 19
5.1.2 Review of the information security policy 20

6 Organization of information security . 21
6.1 Internal organization . 21

6.1.1 Management commitment to information security 21
6.1.2 Information security co-ordination 22
6.1.3 Allocation of information security responsibilities 23
6.1.4 Authorization process for information

processing facilities . 24
6.1.5 Confidentiality agreements 24
6.1.6 Contact with authorities . 25
6.1.7 Contact with special interest groups 26
6.1.8 Independent review of information security 26

9.4 The ISO Standard ISO/IEC 17799 Table-of-Contents 245

6.2 External parties . 27
6.2.1 Identification of risks related to external parties . 28
6.2.2 Addressing security when dealing with customers 29
6.2.3 Addressing security in third party agreements . . . 31

7 Asset management . 33
7.1 Responsibility for assets . 33

7.1.1 Inventory of assets . 34
7.1.2 Ownership of assets . 34
7.1.3 Acceptable use of assets . 35

7.2 Information classification . 36
7.2.1 Classification guidelines . 36
7.2.2 Information labeling and handling 37

8 Human resources security . 38
8.1 Prior to employment . 38

8.1.1 Roles and responsibilities . 38
8.1.2 Screening . 39
8.1.3 Terms and conditions of employment 39

8.2 During employment . 41
8.2.1 Management responsibilities 41
8.2.2 Information security awareness, education, and

training . 42
8.2.3 Disciplinary process . 42

8.3 Termination or change of employment 43
8.3.1 Termination responsibilities 43
8.3.2 Return of assets . 44
8.3.3 Removal of access rights . 44

9 Physical and environmental security . 45
9.1 Secure areas . 45

9.1.1 Physical security perimeter 45
9.1.2 Physical entry controls . 46
9.1.3 Securing offices, rooms, and facilities 47
9.1.4 Protecting against external and environmental

threats . 47
9.1.5 Working in secure areas . 48
9.1.6 Public access, delivery, and loading areas 49

9.2 Equipment security . 49
9.2.1 Equipment siting and protection 49
9.2.2 Supporting utilities . 50
9.2.3 Cabling security . 51
9.2.4 Equipment maintenance . 52
9.2.5 Security of equipment off-premises 52
9.2.6 Secure disposal or re-use of equipment 53
9.2.7 Removal of property . 54

10 Communications and operations management . 54
10.1 Operational procedures and responsibilities 54

10.1.1 Documented operating procedures 54
10.1.2 Change management . 55
10.1.3 Segregation of duties . 56

246 9 Towards a Model of IT Security

10.1.4 Separation of development, test, and
operational facilities . 56

10.2 Third party service delivery management 57
10.2.1 Service delivery . 58
10.2.2 Monitoring and review of third party services . . . 58
10.2.3 Managing changes to third party services 59

10.3 System planning and acceptance . 60
10.3.1 Capacity management . 60
10.3.2 System acceptance . 60

10.4 Protection against malicious and mobile code 61
10.4.1 Controls against malicious code 61
10.4.2 Controls against mobile code 63

10.5 Back-up . 63
10.5.1 Information back-up . 64

10.6 Network security management . 65
10.6.1 Network controls . 65
10.6.2 Security of network services 66

10.7 Media handling . 66
10.7.1 Management of removable media 66
10.7.2 Disposal of media . 67
10.7.3 Information handling procedures 68
10.7.4 Security of system documentation 69

10.8 Exchange of information . 69
10.8.1 Information exchange policies and procedures . . . 69
10.8.2 Exchange agreements . 71
10.8.3 Physical media in transit . 72
10.8.4 Electronic messaging . 73
10.8.5 Business information systems 74

10.9 Electronic commerce services . 75
10.9.1 Electronic commerce . 75
10.9.2 On-Line Transactions . 76
10.9.3 Publicly available information 77

10.10 Monitoring . 78
10.10.1 Audit logging . 78
10.10.2 Monitoring system use . 79
10.10.3 Protection of log information 80
10.10.4 Administrator and operator logs 81
10.10.5 Fault logging . 81
10.10.6 Clock synchronization . 82

11 Access control . 82
11.1 Business requirement for access control 82

11.1.1 Access control policy . 83
11.2 User access management . 84

11.2.1 User registration . 84
11.2.2 Privilege management . 85
11.2.3 User password management 86
11.2.4 Review of user access rights 87

11.3 User responsibilities . 87
11.3.1 Password use . 87

9.4 The ISO Standard ISO/IEC 17799 Table-of-Contents 247

11.3.2 Unattended user equipment 88
11.3.3 Clear desk and clear screen policy 89

11.4 Network access control . 90
11.4.1 Policy on use of network services 90
11.4.2 User authentication for external connections 90
11.4.3 Equipment identification in networks 91
11.4.4 Remote diagnostic and configuration port

protection . 92
11.4.5 Segregation in networks . 92
11.4.6 Network connection control 93
11.4.7 Network routing control . 94

11.5 Operating system access control . 94
11.5.1 Secure log-on procedures . 95
11.5.2 User identification and authentication 96
11.5.3 Password management system 96
11.5.4 Use of system utilities . 97
11.5.5 Session time-out . 98
11.5.6 Limitation of connection time 98

11.6 Application and information access control 99
11.6.1 Information access restriction 99
11.6.2 Sensitive system isolation 100

11.7 Mobile computing and teleworking . 100
11.7.1 Mobile computing and communications 101
11.7.2 Teleworking . 102

12 Information systems acquisition, development and maintenance 103
12.1 Security requirements of information systems 103

12.1.1 Security requirements analysis and specification . 104
12.2 Correct processing in applications . 104

12.2.1 Input data validation . 105
12.2.2 Control of internal processing 105
12.2.3 Message integrity . 107
12.2.4 Output data validation . 107

12.3 Cryptographic controls . 108
12.3.1 Policy on the use of cryptographic controls 108
12.3.2 Key management . 109

12.4 Security of system files . 111
12.4.1 Control of operational software 111
12.4.2 Protection of system test data 112
12.4.3 Access control to program source code 113

12.5 Security in development and support processes 113
12.5.1 Change control procedures 114
12.5.2 Technical review of applications after operating

system changes . 115
12.5.3 Restrictions on changes to software packages . . . 115
12.5.4 Information leakage . 116
12.5.5 Outsourced software development 117

12.6 Technical Vulnerability Management . 117
12.6.1 Control of technical vulnerabilities 117

13 Information security incident management . 119

248 9 Towards a Model of IT Security

13.1 Reporting information security events and weaknesses 119
13.1.1 Reporting information security events 119
13.1.2 Reporting security weaknesses 121

13.2 Management of information security incidents and
improvements . 121
13.2.1 Responsibilities and procedures 121
13.2.2 Learning from information security incidents 123
13.2.3 Collection of evidence . 123

14 Business continuity management . 124
14.1 Information security aspects of business continuity

management . 124
14.1.1 Including information security in the business

continuity management process 125
14.1.2 Business continuity and risk assessment 126
14.1.3 Developing and implementing continuity plans

including information security 126
14.1.4 Business continuity planning framework 127
14.1.5 Testing, maintaining and re-assessing business

continuity plans . 129
15 Compliance . 130

15.1 Compliance with legal requirements . 130
15.1.1 Identification of applicable legislation 130
15.1.2 Intellectual property rights (IPR) 130
15.1.3 Protection of organizational records 132
15.1.4 Data protection and privacy of personal

information . 133
15.1.5 Prevention of misuse of information processing

facilities . 133
15.1.6 Regulation of cryptographic controls 134

15.2 Compliance with security policies and standards, and
technical compliance . 135
15.2.1 Compliance with security policies and standards . 135
15.2.2 Technical compliance checking 135

15.3 Information systems audit considerations 136
15.3.1 Information systems audit controls 136
15.3.2 Protection of information systems audit tools . . . 137

9.5 An Analysis of the ISO/IEC 17799 Code of Practice

We next analyse some of the ’codes of practice’ statements of Sect. 9.3
(Pages 225–243). Our analysis seeks to identify: (i) the entities, (ii) the pred-
icates and functions, (iii) the events, and (iv) the behaviours referred to in
these ’codes of practice’ statements.

You see, our problem with the ISO Standard, as well as with all the instan-
tiations that we have studied, is that they take the domain of discourse for
granted. They assume it. They never bother to carefully delineate, let alone

9.5 An Analysis of the ISO/IEC 17799 Code of Practice 249

describe it. Hence we have problem with “what could be the semantics of
these ’codes of practice’ statements.”

For each of the ‘Code of Practice’ statements, which we repeat below, we
“transliterate” this statement into predicate form. It all looks very “formal”.
But, of course, since we have not given, and will not, in this monograph, give, a
complete axiom system for all the entities (i.e., predicate and (term) function
arguments) and for all the postulated predicates and functions, the below
transliterations are, at most, “pseudo-formal”. We do, of course, eventually
aim at properly formalising the system now hinted at.

9.5.1 [6.1.1] Management commitment to information security

The ’Code of Practice’ Statement

Management should:

1. ensure that information security goals are identified, meet the organiza-
tional requirements, and are integrated in relevant processes;

2. formulate, review, and approve information security policy;
3. review the effectiveness of the implementation of the information security

policy;
4. provide clear direction and visible management support for security ini-

tiatives;
5. provide the resources needed for information security;
6. approve assignment of specific roles and responsibilities for information

security across the organization;
7. initiate plans and programs to maintain information security awareness;
8. ensure that the implementation of information security controls is co-

ordinated across the organization (see 6.1.2).

A Predicate Term Interpretation

1. exists(’information security goals’)(system)
∧ exists(’organizational requirements’)(system)
∧ does meet(system(’information security goals’),

system(’organizational requirements’))
∧ is integrated(system(’information security goals’),

system(’system processes’))
2. exists(’information security policy’)(system)

∧ is reviewed(system(’information security policy’))
∧ is approved(system(’information security policy’))

3. is effective(system(’information security policy’))
4. exists(’security initiatives’)(system)

∧ exists(’directives’)(system)
∧ is visible((system(’security initiatives’))(’management support’))

250 9 Towards a Model of IT Security

5. is adequate(system(’resources’)),
(resources(system(’information security policy’)))

6. exists(’role assignment’)(system(’information security’))
∧ exists(’responsibilities’)(system(’information security’))

7. is aware(’information security’)(system)
⊃ exists(’plans’)(system(’information security’))

∧ exists(’programs’)(system(’information security’))
8. exists(’information security controls’)(system)

⊃ is coordinated(’information security controls’)(system)

Some Comments

1. The formal expression:

exists(’information security goals’)(system)
∧ exists(’organizational requirements’)(system)
∧ does meet(system(’information security goals’),

system(’organizational requirements’))
∧ is integrated(system(’information security goals’),

system(’system processes’))

Comments:

• exists names a rather general predicate.
• It applies to a name n and the “entire” system.
• It is thus assumed that this entire system will posses a document named

n.
• Thus system(n) “selects” that document.
• does meet names a predicate.
• It applies to two documents.
• system(’system processes’) “selects” the current system processes — or,

possibly, the possibly infinite set of all potential system processes.
• is integrated names a predicate.
• is integrated applies to a document and the (...) system processes and

checks (somehow) that the entities designated by the document are
integrated in these processes.

• Note that the first argument of is integrated is a document whereas
the second argument is a dynamic system entity.

2. The formal expression:

exists(’information security policy’)(system)
∧ is reviewed(system(’information security policy’))
∧ is approved(system(’information security policy’))

Comments:

• The assumption here is that the document
system(’information security policy’)

9.5 An Analysis of the ISO/IEC 17799 Code of Practice 251

possess at least the attributes of having been ‘reviewed’ and having
been ‘approved’.

• This entails two other assumptions: that that document is subject to
the two corresponding functions
⋆ review and
⋆ approve.

3. The formal expression:

is effective(system(’information security policy’))

Comments:

• is effective names a predicate.
• It applies to a document
• and somehow determines whether it is effective.

4. The formal expression:

exists(’security initiatives’)(system)
∧ exists(’directives’)(system(’security initiatives’))
∧ has property(’management support’)(system(’security initiatives’))

Comments:

• There must be a document named ’security initiatives’,
• there must be a document named ’directives’,
• say, as a sub-document, in the document, d, named ’security initia-

tives’, and
• there must be a obvious, i.e., “visible” property of d
• namely that it has ’management support’.

5. The formal expression:

is adequate(system(’resources’)),
(resources(system(’information security policy’)))

Comments:

• system(’resources’) yields all system resources.
• resources(system(’information security policy’)) yields a “catalogue” of

resources, say by name, needed to fulfill the ’information security policy’.
• is adequateis a predicate.
• It applies to a catalogue of “real” resources,by value, and to a “cata-

logue” of resources, by name, and yields truth if the former are suffi-
cient to satisfy the latter.

6. The formal expression:

exists(’role assignment’)(system(’information security’))
∧ exists(’responsibilities’)(system(’information security’))

Comments:

• approval is here taken to be tantamount to the existence of the desig-
nated assignments.

252 9 Towards a Model of IT Security

7. The formal expression:

is aware(’information security’)(system)
⊃ exists(’plans’)(system(’information security’))

∧ exists(’programs’)(system(’information security’))

Comments:

• is aware is a rather “sweeping” predicate.
• Its implementation is simple:

⋆ one sends an e-mail to all staff to inquire “are you aware of plans
and programs to maintain information security ?”.

⋆ If a significant percentage replies yes, then predicate yields true !
• More “formally” awareness implies that the designated plans and pro-

grams (documents and [probably] software) are found (somewhere) in
the system.

8. The formal expression:

exists(’information security controls’)(system)
⊃ is coordinated(’information security controls’)(system)

Comments:

• For this ’code of practice’ we have, if not “given up” then at least
(again) resorted to some rather “sweeping” generalisations:
⋆ First we have postulated that there is a documentby the name

’information security controls’,
⋆ and that that document does indeed address the issues covered by

its name.
⋆ Then we have used the same name (’information security controls’)

as the name of a concept
⋆ and postulated an again “sweeping” predicate, is coordinated, which

“tests” the system for being in compliance with this concept.
• The implementation of is coordinated could be like that of is aware

above (Item 7).

9.5.2 [9.1.1] Physical security perimeter

The ’Code of Practice’ Statement

The following guidelines should be considered and implemented where appropriate
for physical security perimeters:

1. security perimeters should be clearly defined, and the siting and strength of
each of the perimeters should depend on the security requirements of the
assets within the perimeter and the results of a risk assessment.

We leave the remaining items of the ISO document [9.1.1] Physical security
perimeter further untreated.

9.6 The Phenomena of IT Systems 253

A Predicate Term Interpretation

1. The informal expression:

security perimeters should be clearly defined, and the siting and strength
of each of the perimeters should depend on the security requirements of
the assets within the perimeter and the results of a risk assessment;

The formal expression:

is well defined(’security perimeter’)(system) ∧
let ra = risk assessment(system), sr = security requirements(system)

sas = siting and strength(system) in is commensurate((ra,sr),sas) end

Comments:

• An overall comment is this:
⋆ The informal ’code of practice’ assumes quite a lot:

⋄ that there is a complete understanding of the physical plant,
i.e., the land site, its borders to and bordering with other sites;
the composition of buildings on this site; the one or more floors
of each of these buildings; their floor plans; etc., etc.

• Specific, predicate-related comments are:
⋆
⋆
⋆

We leave the remaining items of the ISO document [9.1.1] Physical security
perimeter further untreated.

9.6 The Phenomena of IT Systems

The observable, manifest phenomena are: simple entities3, functions, events
and behaviours. Besides phenomena, “that which we can see, hear, touch,
smell, and taste” and (or) measure with physics- (incl. chemistry-) based
instruments, there are concepts. We shall treat concepts later.

Our treatment of phenomena and concepts is in the form of rough sketches,
that is, not systematic, as a narrative, and not formal — but will later be.
Also, we shall not establish a proper terminology but ought to have. We leave
that as an exercise to the reader.

3We distinguish simple entities from entities. The later are all the phenomena
and concepts of the domain. Functions apply to and yield entities; events involve
predicates over entities. Since behaviours are sets of traces of actions and events
— where actions derive from the application of operations to arguments — also
behaviours involve the full notion of entities.

254 9 Towards a Model of IT Security

9.6.1 Simple Entities

General

By a simple entity we shall understand something physical, something we
can point to, something which occupies space, or something which is an ab-
straction, a concept, thereof. Simple entities might “end up”, in a computing
system, like data in a database, or data associated with variables in a program.
Simple entities are the “things” to which we apply functions.

First Examples of Simple Entities

Examples of simple entities are (1) the fixed physical plant: (a-b-c-d-e-...)
buildings: halls, stairwells, corridors, rooms, etc., and (f-g-h-i-...) the ground
around buildings: roads, walkways, parking areas, etc., (1) the installable semi-
fixed building parts: (a) electrical wiring, (b) water and sewage piper, (c)
burglary alarm systems, (c) fire detection and fire extinguish systems, (..)
etc.; (2) the installable and relocatable (IT security-related) equipment: (a)
main frame computers, (b) servers, (c)data communication cabling, (..) etc.;
(3) the movable equipment: (a) mostly laptops; (4) people: (a) staff, (b) hired
consultants, (c) clients, (d) potential customers, (e) invited visitors and (f)
intruders; and (5) registers: (a) books and (b) databases (possibly kept on
potentially movable storage media).

We shall now conceptually examine these simple entities more systemati-
cally.

Atomicity and Compositionality

One can can abstract a simple entity either as an atomic simple entity or as a
composite simple entity. We decide to model a simple entity as an atomic sim-
ple entity if it is decided that it has not sub-structuring, that is, if one can not
meaningfully, that is, in the context of the purpose of the model, decompose
it into sub-entities. And we decide to model a simple entity as a composite
simple entity if it is decided that it has a meaningful sub-structuring, hence
consists of sub-entities. Atomic simple entities have attributes, that is, can
be characterised by a number of properties, but these properties, as a whole,
cannot be separated. Examples will follow. Composite simple entities have
(i) simple sub-entities, (ii) a mereology, i.e., something which tells us how
the simple entities are related to one another, and (iii) attributes. We shall
consider these three kinds as independent of one another.

Atomic Simple Entities

An atomic simple entity is a simple entity whose possible “parts” we have
decided not to consider, that is, to abstract from.

9.6 The Phenomena of IT Systems 255

In one context a simple entity may be considered atomic while in another
context it may be considered composite. In the context of IT Systems we
decide to model human beings as atomic; while in the context of surgery
(health care) we may decide to model human beings as composite.

Examples of Atomic Simple Entities

We give two examples of atomic entities of IT systems.
The first example of an atomic entity is that of a laptop. Its attributes are:

brand name, model, serial number, storage hierarchy capacity, clock cycle,
ports, etc.

The second example of an atomic simple entity is that of a human being.
Personal attributes are: Name, gender, birth date, where born, citizenship,
etc.; height, weight, color of eyes, etc.; education; IT skills; and IT responsi-
bilities and IT authorisations.

Composite Simple Entities

A composite simple entity is a simple entity whose possible “parts” (that is,
the sub-entities) we have decided consider, that is, to focus on — as well as
how (the mereology of how) these simple sub-entities are put together. Add to
our analysis of composite simple entities some properties that are properties
of the composite entity, not of the simple sub-entities. We shall refer to these
properties as attributes of the composite simple entity.

Simple Sub-entities and Their Mereology

Thus we shall examine sub-entities as “free-standing” components of compos-
ite entities, and we shall introduce the concept of mereology (the study and
conceptual (philosophical) knowledge of “parts and wholes”) to deal with the
“free-standedness”!

Examples of Composite Simple Entities

We give two examples of composite simple entities.

The first example is of a building complex:

• Sub-entities of a building complex: the ground area of the building com-
plex, the roads external to the ground area, the roads internal to the
ground area, and the buildings on the ground area.

• Mereology of the simple sub-entities of a single floor building: Some exter-
nal roads are connected to some internal roads, some buildings are con-
nected to some internal roads, and some buildings are connected to some
other buildings.

• Attributes of a building complex: the name of the building complex, the
address of the building complex, the legal ownership of the building com-
plex, the acreage (etc.) of the building complex, etcetera.

256 9 Towards a Model of IT Security

The second example is of a single floor building: the simple sub-entities are
the entrance/exit ways of the building, the corridors and the rooms (walls,
doors, windows, etc., are considered part of these entities); the mereology of a
single floor building outlines the general or specific adjacency of entrance/exit
ways, corridors and rooms; and the attributes are those of the name, owner(s),
position (within some ground area), building materials, etc.

Attributes

We thus associate properties with atomic as well as composite simple entities.
Simple entities have at least one attribute. We have decided that it makes no
sense to speak of attribute-less simple entities.4 We shall model an attribute
as having a name (an attribute, or type name) and a value. A simple entity
may have more than one attribute. In our narrative of multiply-attributed
entities we do not consider their structuring (i.e., the “mereology”). We have
concluded that any such perceived structuring of multiply-attributed entity
attributes is irrelevant.5

Shared Attributes

We introduce a modelling notion of shared attributes. Examples are: a wall
separating two rooms (or diving a larger room into two smaller rooms), a door
(of a wall), being shared between two rooms and a window between a room
and “an outside”. A shared attribute may in one model not be modelled as
a shared attribute, but as a sub-entity. An example could be a door (or a
window) of a wall.

Summary of Simple Entities of IT Systems

We summarise simple entities of IT Systems ‘of interests’,6 helter-skelter, with
no apparent consideration of whether atomic or composite, or whether simple
sub-entities of other simple entities: Next is a semi-structured, yet incomplete
list of simple entities of IT Systems of interest: (1) physical plant: an or the
IT System building complex, building ground, road, building, room, corridor,
etc.; (2) installations: wiring, water piping, sewage piping, burglary detector
& alarm, fire detector & alarm, fire extinguisher, etc.; (3) movable equipment:
main frame, server, chair, table, cabinet, laptop, etc.; (4) person; and (5) regis-
ter. You will have noticed, that we have grouped the IT System simple entities
into five classes. This is a choice. We could have chosen another decomposi-
tion of simple entities into such classes. We shall later motivate the above

4This is, of course, a conjecture. As such we are ready to one day admit its
refutation. “Science only makes progress through refutations”!

5This is, of course, another conjecture. As such we are, also in this case, ready
to one day admit its refutation.

6We single out the term ‘of interest’ to indicate that, in some other model of
“basically the same domain”, there could have been another choice of simple entities.

9.6 The Phenomena of IT Systems 257

grouping. The above choice will determine our formal modelling. Whether
our choice is a good or a not so good choice will become apparent only if we
formalise a number of alternative choices — and then evaluate their merits,
their elegance.

Discussion

We will not in this document list “all” the simple entities of an IT System. In-
stead we will, in our formalisation introduce abstract, i.e., conceptual classes
of simple entities. We have treated the analysis & modelling notion of IT
System entities from an abstract, generic point of view, for example outlin-
ing composite phenomena of building complexes and buildings generically. In
any particular application of the ideas of this document to a specific IT Sys-
tem the applier would then have to instantiate the general notion of building
(etc.) mereologies to become very concrete. The above analysis & modelling
approach applies to the next issues as well: functions, events and behaviours.

9.6.2 Functions

General

By a function7 we shall understand something, an abstract concept, which
when applied to a grouping of one or more entities, i.e. and argument yields
a result, a value, in the form of either a grouping of entities or of attributes
or a combination thereof.

Functions on (1) Physical Plant

Examples of functions that apply to entities of class physical plant are: (a)
create a building, (b) change building attributes, (c) remove a building, (d)
subdivide building rooms, (e) change wall attributes,8 (f) connect two build-
ing, (g) create a road, (h) change a road, (i) remove a road, (..) etc.

Functions on (2) Installations

Examples of functions that apply to entities of class installations are: (a..)
install wiring (piping, fire detector or alarm or extinguisher, burglary detec-
tor or alarm), (b..) change, reroute, wiring (etc.), (c..) remove wiring (etc.),
(d..) change attributes of the above (wiring, piping, fire detector or alarm or
extinguisher, burglary detector or alarm), (..) etc. All of the above are wrt.
some sub-entities of some building, etc.

7We shall, inter alia, use the term ‘operation’ in lieu of the term ‘function’.
8— like inserting a door, removing a door, changing the attributes of the door

[access rights], etc.

258 9 Towards a Model of IT Security

Functions on (3) Potentially Movable Equipment

Examples of functions that apply to entities of class potentially movable equip-
ment are: (a) introduce (i.e., “create”) such equipment, including placing it
at some location, (b) moving mobile equipment from one location to another,
(c) removing mobile equipment, (d) applying, for example a laptop or a main
frame to a program, that is, invoking an IT Service, (e) changing attributes
of mobile equipment, like installing, upgrading, or removing software or data,
(..) etc.

Functions on (4) Persons

Examples of functions that apply to entities of class person are: (a..) hire,
transfer, lay off or fire a staff, (b..) change attributes of a staff person: promote,
demote, salary change, authorisation rights (privileges), etc., (c..) review or
evaluate staff performance, (d..) allow a non-staff person to be admitted to a
building or a room, or to perform some IT functions, etc., (..) etc.

Functions on (5) Registers

Examples of functions that apply to entities of class register are: (a) create
a register, (b) update a register: (b.1) record the occurrence of a desirable
or undesirable event, (b.2) evaluate a recorded event and so annotate the
register, (b..) etc. (c) copy (part of) a register and (d) destroy a register.

Discussion I

As first presented above, functions are seen as mathematical abstractions. To
apply a function to its arguments and obtain a result takes no time — time
is not an issue. But in a real world performing the kind of functions that
are exemplified above does take time. And, as presented above functions are
“functional”, that is, they are not like procedures or subroutines of conven-
tional, imperative programming languages like Java and C#, “our” functions
do not act upon storage variables and change the values of these — they are
mathematical functions. To prepare for a treatment of functions whose appli-
cation takes time and may be understood as “altering” some input argument
we now introduce a notion of state.

States

One may consider any composition of entities as a state. We usually make the
pragmatic distinction between contexts and states. Contexts are composi-
tions of simple entities whose value change less often and states are compo-
sitions of simple entities whose value change more often. Contexts provide a
setting for activities, while states are the target of these activities.

9.6 The Phenomena of IT Systems 259

State-changing Functions

We say that state-changing functions when invoked are actions. Actions may
change the state and may “return” a value to the actor, see next, who invokes
(triggers, ...) the function.

Discussion II

When functions are applied, then they are usually applied at some location,
and at some time, by some actor, a person or a machine, or whose invocation
is triggered by some event — we may say that some “outside” agent “is at
play” — and maybe with some arguments provided by the actor who also
designates the context and state entities on, or to which the function is to be
applied.

So actors are either persons, or are machines, or are “outside” agents. We
shall now treat the notion of events.

9.6.3 Events

General

Events “happen”. They “occur”. They take place instantaneously. They are
like “communications” from an “outside”. They are not functions — although
they may, “mysteriously” trigger the invocation of functions; and they are
not entities — although they may convey values. Later, when dealing with
behaviours, we shall treat events as (synchronisations and) communications
between behaviours — including the, or an, “external” behaviour. The notion
of event is closely related to the notion of behaviour.

Examples of IT System Events

We give a number of examples of undesirable IT System events.
(1) Events related to the physical plant: (a) earthquakes, (b) typhoons,

(c) fire, (d) break-in by un-authorised persons, (..) etc.
(2) Events related to physical plant installations: (a) electricity power

break-down, (b) broken water pipes, (c) vandalism to communication cables,
(d) break-down of fire detector and fire extinguisher, (e) break-down of bur-
glary detection and alarm system, (..) etc.

(3) Events related to potentially movable equipments: (a) un-authorised
access to a mainframe or laptop, (b) disappearance (theft or otherwise) of a
laptop or a data medium, (c) sudden appearance in an unexpected place of a
laptop, (..) etc.

(4) Events related to persons: (a) un-authorised access to a room (of a
building) by some person, (b) un-authorised access to a mainframe or laptop

260 9 Towards a Model of IT Security

by some person, (c) loss (theft or otherwise) of access entry card or password,
(..) etc.

(5) Events related to registers: (a) the entries of a register are up for the
annual review, (b) un-authorised access to (edit of, etc.) a register, (..) etc.

Event Identifier

By an event identifier we shall understand some unique way of identifying
one set of events from another set. Examples of event identifiers: typhoon,
earthquake, power break down, fire in building #A, water pipe breakage in
building #B, etc.

Event Alphabet

By an event alphabet we shall understand a set of event identifiers. An example
of an event alphabet is {typhoon, earthquake, power break down, fire in
building #A, water pipe breakage in building #B, ...}

Synchronisation and Communication

We shall consider events as relating two (let us assume simple) behaviours
where simple behaviours are seen as sequences of actions and events, in any
order, and where events synchronise the progress of these two behaviours while
possibly also communicating values between them.

Discussion

The above represent a greatly simplified notion of events (and behaviours).
It will do for all of our present modelling. It is based on the process concept
of CSP: Communicating Sequential Processes. Other notions of events and
behaviours could have been used for example the Petri Net or the π-Calculus
notion of processes.

9.6.4 Behaviours

General

By a behaviour we shall — somewhat circularly — understand a sequence of
sets of actions and events.

Simple, Single-thread Behaviours

By a simple behaviour we shall understand a (linear) sequence of actions and
events.

9.6 The Phenomena of IT Systems 261

Composite, Multiple-thread Behaviours

By a composite behaviour we shall understand a set of simple or composite
behaviours.

Communicating Behaviours

By a pair of communicating behaviours we shall understand two simple or
composite behaviours such that an event in one of these two identifies an
event in the other of these two.

Communications

Let

ci :< ai1 , ..., eij , ..., aim
>

and

cj :< aj1 , ..., eij , ..., ajn
>

describe two behaviours (Ci, Cj). The aik
’s and akℓ

’s describe actions (Aik
,Ajℓ

)
internal to Ci, and Cj , respectively. eij describes an event Eij . Since eij occurs
in both ci and cj event Eij may occur in both Ci and Cj . If Eij occurs in both
Ci and Cj , then it occurs simultaneously in both behaviours.

Internal Communications

Let k designate a channel, e an expression, v an identifier, and let eij be of
the “paired” forms

in ci: k!e, in cj: let v = k? in ... end

then, when event Eij occurs between behaviours Ci, Cj , the following happens:
e is evaluated in Ci, the value is bound to v in Cj , and the two behaviours
proceed. We say that the two behaviours have been synchronised and that a
value has been communicated from one to the other. We say that the com-
munication has been internal between the two behaviours.

External Communications

If either behaviour Ci or Cj has been left out of our description (i.e., ci or cj

has not been given), then we say that the communication has been external
between the described behaviour and an “external world”.

262 9 Towards a Model of IT Security

Discussion

We have presented a capsule view of behaviours (and events). There is more,
much more, to say, but this shall suffice. The view presented is basically that
of Hoare’s CSP: Communicating Sequential Processes. It is the CSP view of
behaviours that we shall assume in the following.

9.6.5 Discussion

We have presented a view of entities, functions, events and behaviours. We
take these four concepts as forming, one could say, one coherent set of aspects
of an ontology of descriptions. We shall next take a brief look at other sets of
aspects of an ontology of descriptions.

9.7 A Formal Model of IT Systems

9.7.1 Ω: The “Grand” State

In the modelling of all observable entity phenomena: simple entities, opera-
tions (i.e., functions), events and behaviours, we make use of the notion of a
“grand state” ω : Ω. The grand state includes basically all observable simple
entities. We name by Ω the type of all “grand states”. We usually name by ω a
value in Ω, i.e., a “grand state”. Usually functions performed on, i.e., actions
within the IT system being modelled are of either of the following signatures:

type

Ω, ARG, VAL
value

val f: ARG → Ω → VAL
int f: ARG → Ω → Ω
elab f: ARG → Ω → Ω × VAL

That is, these functions are either evaluation functions observing, extracting
or calculating (i.e., computing) a value of some ω, or interpretation functions
“changing”, updating ω into ω′, or are elaboration functions observing, ex-
tracting or calculating (i.e., computing) a value of some ω while “changing”,
updating ω — the latter is then called a “side-effect”.

We model the grand state as consisting of several subsystems (one could
call them components):

• Φ: the plant,
• Θ: the installations,
• ΦΘ: the plant and installations,

• Σ: movable equipment,
• Π : personnel and
• ℜ: registers.

We now discuss these.

9.7 A Formal Model of IT Systems 263

Formally we shall consider Ω to be a sort equipped with observers for at
least each of the major sub-systems.

Since we shall be modelling the plant and the more-or-less fixed installa-
tions as one (highly structured “component”) sub-system, of sort ΦΘ,

value

obs ΦΘ: Ω → ΦΘ
obs Σ: Ω → Σ
obs Π : Ω → Π
obs ℜ: Ω → ℜ

Predicates applicable to ΦΘ can then be defined to discriminate between plant
components (or sub-systems) and installations. The reason for modelling the
two otherwise somewhat distinguished sub-systems is that the highly intri-
cate structuring of installations (such as pipes, wires and cables) follows the
similarly highly intricate structuring of the plant.

9.7.2 ΦΘ: The Plant and Installations

We shall develop our model of the plant + its installations by “slowly” unfold-
ing a notion of system diagrams and system graphs. The system diagrams are
very much like architectural drawings, i.e., building and floor plans, whereas
system graphs are just that: graphs with nodes and edges. Nodes correspond
to rooms (or an installation) of a building whereas edges correspond to access
to rooms (i.e., a door or a barrier) or access to installations (a water pipe
crane, an electric wire adaptor, a sewage pipe drainage, etc.).

So our “pedantic unfolding” of how buildings are composed from rooms,
and of how rooms may be considered “embedded” in “larger” rooms, or,
rather, embedded in sub-parts of a building, e.g., floors or (east, center, north,
etc.) wings of a building that pedantic development starts from basic, atomic
entities and proceeds via their composition, to the general composition of
composite entities (i.e., nodes) and the accesses from nodes (i.e., rooms, etc.)
to nodes (i.e., adjacent rooms, etc.).

We develop the model for the plant + its installations by first developing
two graphic languages: a language of system diagrams, and a language of
system graphs. There are not many step in their development, but they are,
as we have now said several times, a bit pedantic, so please bear with us.

Simple Composition Rules

41. A simple atomic plant:
The simplest plant is one consisting of just one atomic component. See
Fig. 9.1 on the following page.

The sharp edged box (rectangle) in the system diagram is reminiscent
of how one might draw a layout of a building, or a map of a collection

264 9 Towards a Model of IT Security

System Diagram System Graph

ss

Outer "thin" frame delineates our scope
It is the "thick" sharp or rounded boxes
and (later) the arrows and edges within
the "thin" outer frame that interests us.

Fig. 9.1. A simple atomic plant

of buildings (in this case only one), or a machine, or, for that matter a
single human. The rounded corner box in the corresponding system graph
is going to be our graphical notation for plants: a plant, a component,
“is” a node.

42. A simple composite, embedded plant:
The simplest composite plant reflecting embeddedness consists of one com-
posite component, s, which then has one simple atomic component, se,
embedded within s.

s

System GraphSystem Diagram

s
s_es_e

Fig. 9.2. A simple composite, embedded plant

Now we have a node within a node, as in hyper-graphs. Plant s appears
not to be able to “access” sub-plant se — whatever we mean by ‘access’.
(We will elaborate on that later, but you can think of access as meaning:
for a properly authorised human to “use” a plant, being able to perform
the (one or more) function(s) that the plant may offer, being able to
read, update, copy, etc., the information that the plant “embodies” or the
functions it offer.)

43. A simple composite, embedded plant with access:

9.7 A Formal Model of IT Systems 265

The simple embedded plant of Item 42 on the preceding page did not show
the possibility of accessing sub-plant se from plant s. We modify Fig. 9.2
on the facing page into Fig. 9.3[A].

System Diagram System Graph

s

s_e

s

s_e

[A]

System Diagram System Graph

s

s_e

s

s_e

[B]

Fig. 9.3. A simple composite, embedded plant: [A] one access; [B] three accesses

We have in the system diagram of Fig. 9.3[A] (left) shown an “arrow”
(mostly, really, an arrow-head) to indicate that one can “access” embed-
ded component from “outer” components. The access is suggested to be
directional, one way, in one direction, or in the opposite direction, or two-
way, in both directions. The system diagram “arrow” is “dangling”: it is
not shown from where “within” plant s the arrow emanates and it is not
shown to where “within” sub-plant se the arrow is incident. In the sys-
tem graph of Fig. 9.3[A] (right) we show the “dangling arrow” notation
of Fig. 9.3[A] (left): the system graph edges from nodes to sub-nodes are
dashed.
In Fig. 9.3[B] we show three possibilities of access.

44. A simple composite, disjoint plant:
The simplest composite, non-embedded plant has the plant s consist of
two adjacent, that is, two disjoint sub-plants si and sj. See Fig. 9.4 on
the following page.
Sub-plants si and sj appear not be accessible from plant s and it also
appears that one cannot access either of the sub-plants from the other.

45. A simple composite, adjacent plant:
We can juxtapose two disjoint sub-plants si and sj “right” next to one
another, that is, adjacently, “sharing” some “wall”. See Fig. 9.5.

266 9 Towards a Model of IT Security

System GraphSystem Diagram

si sj si sj

Fig. 9.4. A simple composite, disjoint plant

System GraphSystem Diagram

si sjsi sj

Fig. 9.5. A simple composite, adjacent plant

We shall soon see what that ‘wall’ means, that is, makes possible. As it
stands now, in Fig. 9.5, there seems not to be access between the two
sub-plants. Note the straight line between nodes si and sj of the system
graph. It models the wall, i.e., adjacency (not access).

46. A simple composite, disjoint and adjacent plant:
We “insert” some access arrows in the wall of Fig. 9.5 to contain Fig. 9.6.

System GraphSystem Diagram

si sjsi sj

Fig. 9.6. A simple composite, disjoint and adjacent plant with access

The meaning is that now si and sj can access one another. We need only
have shown one access arrow: either one-way from si to sj, or two-way
sj between si, or one-way from sj to si — as shown, top-to-bottom in
Fig. 9.6 on the preceding page. The (three) un-dotted (i.e., straight line)
arrows of the system graph designate both adjacency and access direction.

9.7 A Formal Model of IT Systems 267

47. Embedded Adjacent Sub-plants with Access:
Let us consider, see Fig. 9.7[A], a sub-plant sij

of a sub-plant si of plant s
such that “activities” of s can directly access the “inner” sub-plant sij

. In
the system diagram we show the sub-plant sij

“sharing” a wall” with sub-
plant si, i.e., a wall between s and the two sub-plants (one, sij

, “within”
the other, si).

System GraphSystem Diagram

s
s_i

s_i_j s_i_j

s_i
s

[A]

System GraphSystem Diagram

s
s_i

s
s_i

s_i_j

s_i_j_k

s_i_j

s_i_j_k

[B]

Fig. 9.7. [A] Doubly embedded plant, [B] triply embedded plant

In the system graph of Fig. 9.7[A] we show this not by “sharing” the
contour of sij

with that of si but by a dash-dotted line from the contour
of s through the contour of si to the contour of sij

.
Choosing this graphical rendition disambiguates any possible multiple in-
terpretations as to which level of embedded sub-plants are being “con-
nected”. See Fig. 9.7[B].

• • •
We have introduced the most basic rules for composing plants: embedding
and juxtaposition. We have shown how one can transform a system diagram
of boxes into a system graph of nodes. And we have introduced the most
basic rules for designating access, that is, for composing (system diagram)
component boxes and (system diagram) access arrows.

Generality of the Simple Composition Rules

There can be any number m of sub-plants se1
, se2

, . . . , sem
embedded in a

plant s, and there can be any number of juxtaposed (i.e., adjacent) sub-plants

268 9 Towards a Model of IT Security

sa1, sa2, . . . , sam in a plant s. Finally there can be any number of accesses
(i.e., access arrows) between a plant s and an embedded sub-plant si of s and
between any two adjacent plants sai and saj — even multiple occurrence of
the same kind. What that means we shall cover later.

Composite (Combined) Composition Rules

We now analyse combinations of embedding, juxtaposing and access.

48. Access between embedded sub-plants of adjacent plants:
Let si and sj be two disjoint, but adjacent plants. See system diagram of
Fig. 9.8. Let plant sia be a sub-plant of si, and let siap

be a sub-plant
of sia. Similarly for sub-plant sjx of sj. The system diagram of Fig. 9.8
now illustrates all possible (in this case two-way) accesses between the two
adjacent plants and all their respective sub-sub-plant. (Figure 9.8 does not
illustrate accesses from “outer” plants to embedded sub-plants of neither
si nor sj. This is left as an exercise for the reader to draw: Both the
system diagram and the corresponding system graph.)

si_a_p

si

si_a

System Diagram

si

System Graph

sj_x

sj

sj_x

sj
si_a

si_a_p

Fig. 9.8. Access paths

Note that the topmost edge from plant si to disjoint, but adjacent plant
sj is a solid line two-way arrow. All other edges are “dash-dot” (− · − · −
· −) two-way arrows. By an access path, a route, we mean a direct access
that involves “transgressing” zero, one or more “walls”, between plants.
All of the above accesses are composite. We can model an access path as
follows:

type

AP = S × S
examples:

9.7 A Formal Model of IT Systems 269

(si,sj), (sj,si), (si,sj x), (sj x,si), (sj,si a), (sj x,si a p)

Humans “transgress” access paths. Sometimes “transporting” plants.
Each “transgression” amount to performing some function on the access.

49. Access Routes:
By an access route, r, we mean a sequence of one or more access paths
such that if pk−1, pk is a pair of “adjacent” paths in r then the second
state (si) of pk−1 is the same as the first state (sj) of pk, that is, rewriting
r:

r: 〈(s 1,s 2),(s 2,s 3),...,(s j,s j+1),(s j+1,s j +2),...,(s m−1,s m)〉

See Fig. 9.9.

si_a_p

si

si_a

System Diagram System Graph

sj_x

sj

sj_x

sj
si_a

si_a_p

si

1,2,12

3,4

5,6,7

8

9.10

11

Fig. 9.9. An access route

The system diagram of Fig. 9.9 indicates the route while the system graph
indicates the number of times the routes meanders its way through ac-
cesses (access points). Humans “travel” access routes. Sometimes “trans-
porting” plants. ‘Travelling’ amounts to performing a sequence of func-
tions on respective accesses.

Planar and Non-planar Graphs

You may have noticed that all our system graphs were shown as planar graphs.
You may also have wondered about the two-dimensionality of our system
diagrams. The plants that we deal with in humanly manifest physical plants,
that is, plants of roads, terrain around buildings, buildings and their internal
layout, equipment within buildings, the possible electrical of electronic (wired
or wireless) communication “cabling”, etc., these plants and sub-plants are all
three dimensional.

270 9 Towards a Model of IT Security

Is there a fourth dimension, or are there more than four dimensions? Is
time a dimension? If the plants change their configurations of disjointness,
adjacency or embeddedness, or if access paths change, is that something that
is modelled in the time domain? We shall look at some of these issues now,
and eventually at more of them. (Is it possible to eventually state that we
have considered all such “dimensionality” issues?)

50. N Adjacent Embedded Plants:
Consider an n story building, floor stacked upon floor. Usually a staircase
connects the floors. A system diagram would then show the building as
the plant and the staircase plus n floors as n+1 sub-plants. To get (i.e., to
“access”) from one floor to another one would have to pass through two
accesses, each access being between a floor and the staircase. We leave
the design of the system diagram and the system graph as an exercise.
Consider instead a building where for every floor there is a “bay” with
a staircase to all the other floors such that only one access (one door) is
necessary between any distinct pair of floors.

s_1

s_i

s_n

s

System Diagram System Graph

s

s_1

s_n

s_i
.....

...
..

s_2, ..., s_i, ..., s_n

s_n−1, ..., s_1

....

........

....
s_1,...,s_i−1 s_i+1, ..., s_n

Fig. 9.10. n Adjacent embedded plants

The system diagram considers the building as “separate” from the floors
and considers the floor as disjoint sub-plants with only floor #1 being
adjacent to the building (i.e., its entrance hall).

The above construction shows that any three dimensional plant s can have
any arbitrary number n of embedded sub-plants si of the plant be adjacent
sub-plants. The two dimensional system diagram is inductive, cf. the use of
“overlapping” floors and induction (. . .), hence it is schematic. Let us say that
each horisontal floor plan is along dimensions X and Y , and that a vertical
cut, along a vertical axis Z, through the building is along either dimensions
X and ZS or Y and Z. Such a set of architectural plans or a proper isometric
or perspective drawing of the building (or a set of such drawings together

9.7 A Formal Model of IT Systems 271

with floor plan drawings and a proper interpretation of those ensembles of
drawings, would perhaps be the more proper way to show a three dimen-
sional system diagram. There are similarly special diagrammatic languages
for cabling (wiring), mechanical assembly, etc.

Conjecture

The essence of it all is that we can always map such three dimensional system
diagrams onto a two dimensional system graph (albeit most often not a planar
graph).

Examples of Plant Modelling

51. Power supply cabling of machines: See Fig. 9.11.

[A] System GraphSystem Diagram

Ca
Ca

PS PSM M

- - - - - - - - - - -

[B]

PS
Ca Ca

Cn Cn

M2

System Diagram

System Graph

Cn

Mn

Ca

Ca

PS Ca Ca Ca CaCn Cn Cn

M1

M1 M2 Mn

........

...

........

........

Fig. 9.11. Power supply cabling of machines: [A] One machine, [B] n Machines

9.7.3 A Formal Model of ΦΘ

The Syntax

52. Nodes have simple names (further undefined), and atomic (basic) compo-
nents are further undefined.

272 9 Towards a Model of IT Security

53. A system graph G has a name, n:N, and otherwise consists of a basis part,
b:B, a set of zero, one or more (disjoint) components (nodes), cs:C-set,
and a set of zero, one or more edges, es:E-set.

54. A component, c:C, has a name, and consists of a basis part and a set of
zero, one or mode components (ci) embedded in the defining component
(c).

55. An edge connects two nodes, n1,n2:N, and has a set of one or more distinct
access specifications, a:A.

56. An access specification identifies an access direction and a set of opera-
tions.

57. A direction is either from the first to the second node (n1,n2), or the
reverse, or is two-way. If the direction is adj wall then there is no access
but the two nodes possess an adjacent wall (and the operation set is
empty).

58. An operation is either a move, or a read, or a perform, or some other
operation.

59. These operations are left further undefined.

type

52 N, B
53 G == mkG(sn:N,sb:B,cs:C-set,es:E-set)
54 C == mkC(sn:N,sb:B,scs:C-set)
55 E == mkE(s1:N,s2:N,sks:A-set)
56 A == mkA(sd:D,sas:O-set)
57 D == fst snd | snd fst | 2 way | adj wall
58 O == Move | Read | Perform | ...
59 Move, Read, Perform, ...

The Syntactical Constraints

52. All nodes of a graph, whether embedded or juxtaposed, have distinct
names.

52,54. To paraphrase the above: Any two disjoint components, si and sj, of
the components {s1, s2, . . . , si, . . . , sj, . . . , sm} of a plant s have distinct
names and these are distinct from the name of s. Any component si is
embedded in s and any two components si and sj, are disjoint (within s).

54. A component, i.e., a plant (or sub-plant — which is the same), si : S, has
a name, nsi.

54. If a plant, s of name ns, consists of only one component, s1 : S, of name
ns1, then their names, ns and ns1 will be made be different).

60. We decide to secure distinct of nodes by mandating that names, ni1 , ni2 ,
. . . , nim

, of nodes of immediate sub-plants of a plant named ni are distinct
and that the name ni can be uniquely “extracted” from each nij

for all j
in the interval 1..m.

9.7 A Formal Model of IT Systems 273

60. That is, think of the immediate components, si1 , si2 , . . . , sim
, of s as

being ordered as just listed, and the names being a bijection function, η
of the name of the plant and the name index of the sub-plant:

type

Idx
value

η: N × Idx ↔ N
η−1: N ↔ N × Idx

axiom

∀ n:N, i:Idx • η−1
◦ η(n,i) ≡ (n,i), i.e.: η−1◦η ≡ λx.x ≡ η◦η−1

55. An edge connects two nodes, nα, and nβ. These nodes must be distinct.
The two nodes stand in either of the following relations to one another:

(a) Either they are of disjoint but (of course) adjacent plants (otherwise
why have the edge unless to express adjacency?),

(b) or one node is of a sub-plant embedded one or more levels within
another (the “outer, surrounding”) plant,

(c) or they are sub-plant nodes, nα, nβ , each embedded (one or more
levels, i.e., ℓ#a, ℓ#b), within disjoint and adjacent plant ni, nj . The
α, β indexes typically would be: ii1i2...iℓ#a

respectively jj1j2...jℓ#b
. (The

number of . . . in these past two index expressions are ℓ#a−3, respec-
tively ℓ#b − 3.)

Formalised Graph Well-formedness

value

wf G: G → Bool

wf G(mkG(n, ,cs,es)) ≡
let ns = all nodes(cs) in wf Cs(n,cs) ∧ wf Es({n}∪ ns,es) end

wf Cs: N × C-set → Bool

wf Cs(n,cs)
let ns = {sn(c)|c:C•c ∈ cs} in

let ixs={i|i:Idx,n′:N•n′ ∈ ns∧let (n′′,j):(N×Idx)•η−1(n′) in i=j end} in

card cs = card ns = card ixs ∧ n 6∈ ns ∧
∀ mkC(n′, ,cs′):C • mkC(n′, ,cs′) ∈ cs ⇒ wf Cs(n′,cs′) end end

wf Es: N-set × E-set → Bool

wf Es(ns,es) ≡ ∀ mkE(n,n′,):E • mkE(n,n′,) ∈ es ⇒ {n,n′}⊆ns

Mereological Operations on ΦΘ

By a syntactic operation on a plant we mean an operation which changes
its hypergraph representation. Humans perform such operations. Some oper-
ations on certain components or entities require authorisation.

274 9 Towards a Model of IT Security

61. Plants change dynamically.
62. One may

(a) adjoin a node to a plant with the new node being disjoint to all
other nodes of the plant,

(b) embed a node in a plant, with the new node being immediately
contained in some node of the plant,

(c) connect two nodes, whether disjoint or arbitrarily contained.
(d) sever, i.e., remove, the edge between two nodes, whether dis-

joint or arbitrarily contained.
Etcetera.

We leave it as an exercise to formalise these operations.

Attribute Operations on ΦΘ

By an attribute operation on a plant we mean an operation which changes
changes the attributes associated with nodes and edges. Humans (and fore-
seeable or unforeseen non-human events) perform such operations. Some op-
erations on certain components or entities require authorisation.
We leave it as an exercise to conceive of and narrate and formalise such oper-
ations.

Semantic Operations on ΦΘ

By a semantics operation on a plant we mean an operation which invokes
a function to be applied to the plant. Humans (and foreseeable or unfore-
seen non-human events) perform such operations. Some operations on certain
components or entities require authorisation.
We leave it as an exercise to conceive of and narrate and formalise such oper-
ations.

9.7.4 ΣΠℜ: Movable Resources

Simple Entities

The movable resources, to recall, include:

• laptops, • people and • registers.

9.8 A Formal Modal of IT Security Code of Practice 275

Modelling

We suggest to model a movable resource as a node in the system graph. At
any one point two or more such nodes may be connected, i.e., are accessing
one another, and/or are accessing nodes of the fixed (the φθ graph).

Operations

With movable resources we can associate a number of operations: (i) on lap-
tops: (i.1–.2) (de-)register, (i.3) move, (i.4) query, (i.5–.6) (dis-)connect and
(i.7) use; (ii) on people: (ii.1–.2) (de-)register, (ii.3) query, (ii.4–.5) (re) assign
authorisations (ii.6) move, and (iii) on registers: (iii.1) (de-)catalog, (iii.2)
update, (iii.3) query, (iii.4) search, and (iii.5) copy.

We leave it as an exercise to narrate and formalise these and other opera-
tions.

9.7.5 Discussion

We have sketched how one may narrate and formalise the simple entities and
operations of an IT system. We have, and shall not cover the issue of events
and behaviours of an IT system. But once a model of simple entities and
operations is being established — true to scale, that is, with all the “bells &
whistles” — one can then also model events and behaviours.

The simple entities, the operations, the events and the behaviours are all
identifiable.

Their names must reflect the names used in the formal predicates of
Sect. 9.5 (on Pages 249–250). These names identify IT System resources that
are spatially related to one another as reflected in the ΦΘ and ΣΠℜ. Each
identifier of any phenomenon or concept can thus be mapped into its “posi-
tion” in the system graph as modelled in Sect. 9.7.

9.8 A Formal Modal of IT Security Code of Practice

Very preliminary remarks: We model the “code[s] of practice” as well-formed
formula (wff) in a first order predicate calculus. The ground (mostly non-
Boolean valued) terms denote entities in Ω. Predicate symbols denote predi-
cates as we identified them in the logical explication of the code[s] of practice.
Function symbols denote functions as we identified them in the logical expli-
cation of the code[s] of practice. Evaluation of a wff now take place in the
context of some ω ∈ Ω.

276 9 Towards a Model of IT Security

9.8.1 ΨSyntax

We claim that the formal expressions of Sect. 9.5 on page 248 can all be
expressed as well-formed formulas (wff s) in a predicate calculus. Below we
present an (example annotated) abstract syntax for WWFs.

Since this is standard knowledge we make no further comments at this
place, but refer to Sect. 9.5.5 (pages 178–180) of [31].

type

Cn, Vn, Pn, Fn, Tn
Term = TId | TAp
TId :: Vn | Cn
TAp :: (Fn|Pn) Term∗

Atom = Aid | AAp
AId :: Vn | true | false

AAp :: Pn Term∗

wwf:WWF = Atom|NWff|AWff|OWff|IWff|EWff|QWff

NWff :: WFF
AWff :: WFF WFF
OWff :: WFF WFF
IWff :: WFF WFF
EWff :: WFF WFF
QWff :: Quan Vn Tn WFF
Quan == all | exist

examples

cn, vn, fn, pn

cn, vn
pn(t1,t2,...,tm), fn(t1,t2,...,tm)

vn, true, false

pn(t1,t2,...,tm)

∼wff
wff ∧ wff′

wff ∨ wff′

wff ⇒ wff′

wff = wff′

∀ wff, ∃ wff′

9.8.2 ΨSemantics

By the semantics of a language, WFF, of wff s we mean an interpretation of
the wff s in some context. The context assigns meaning to all symbols: The
meaning of a predicate symbol is a predicate function of an arity commensu-
rate with the number of terms following the predicate symbol. The meaning of
a function symbol is a function of an arity commensurate with the number of
terms following the function symbol. The meaning of a variable name is given
by its typed binding in a quantified expression. The meaning of a constant
name is given by the instantiation of a given plant (i.e., by some ω). The
meaning of a type name is the set of all values of that type. And so forth.

All this is standard knowledge we make no further comments at this place,
but refer to Sect. 9.5.7 (pages 181–184) of [31].

There is, however, a small technicality. It has to do with the context in
which the wff s are interpreted. We normally see this context as a map from
constant and variable identifiers, predicate and function symbols, etc., to their

9.8 A Formal Modal of IT Security Code of Practice 277

meaning. So, from the instantiated ω of the IT system being studied we pre-
pare a context which maps all possible component and access (edge) names to
their meaning (the designated physical artifact, including person, or the con-
cept identified) — this was, amongst others, a reason for insisting on unique
component and access names. The predicate and function symbols wff s of
Sect. 9.5 on page 248 are likewise bound in an initial context to their mean-
ing. Pls. observe that some of these predicate and function symbols may not
denote computable functions — so we treat them as oracles.

The Context

type

iΩ = (Cn|Vn|Pn|Fn|...) →m VAL

VAL = (VAL∗ ∼→ VAL) | Bool | Int | ...
value

cω: Ω
∼→ iΩ

The Meaning Functions

value

M: WFF → iΩ → Bool

M(wff)iω ≡
case wff of

mkNWff(wff′) → ∼M(wff′)iω,
mkAWff(wff′,wff′′) → M(wff′)iω ∧ M(wff′′)iω,
mkOWff(wff′,wff′′) → M(wff′)iω ∨ M(wff′′)iω,
mkIWff(wff′,wff′′) → M(wff′)iω ⇒ M(wff′′)iω,
mkEWff(wff′,wff′′) → M(wff′)iω = M(wff′′)iω,
mkQWff(all,v,t,wff′′) → ∀ u ∈ iω(t) • M(wff′′)(iω † [v 7→u],
mkQWff(exist,v,t,wff′′) → ∃ u ∈ iω(t) • M(wff′′)(iω † [v 7→u],

→ A(wff)iω

A: Atom → iΩ → Bool

A(mkAId(v))iω ≡ iω(v)
A(mkAId(true))iω ≡ true

A(mkAId(false))iω ≡ false

A(mkAAp(nm,lt))iω ≡ iω(pn)(〈V(lt(i))iω|i in lt〉)

V: Term → iΩ → VAL
...

The definition of the Term eValuation function follows, as do the predicate
and function symbol meanings, from the instantiated ω under study.

278 9 Towards a Model of IT Security

9.9 Making Use of The Formalisations

We have three formalisations:

• A formalisation of the IT System “Code of Practice” predicates of Sect. 9.5;
• a formalisation of IT Systems, Sect. 9.7; and
• a formalisation of “Code of Practice” predicate evaluation, Sect. 9.8

Now, how are we going to bring these three formalisations together.

• First we have to complete the formalisation of the IT System “Code of
Practice” predicates, Sect. 9.5.

• Then we have to complete the formalisation of IT Systems, Sect. 9.7: that
is, to define all the term functions and the auxiliar predicate used, but not
otherwise defined in Sect. 9.5.

• The former have to be instantiated to a given, specific IT System. Sec-
tion 9.9.1 will sketch how.

• The specific (client) IT System-instantiated predicates now serve as in-
put to the predicate evaluator of Sect. 9.8. That “input” process will be
discussed in Sect. 9.9.2.

9.9.1 Instatiating IT Security Predicates for Evaluation

The reader will have noticed that the predicates presented in Sect. 9.5 were
generic: that is, applied to any IT System. The reader will also have noticed
that there did not appear to be any explicit universal or existensial quantifiers
in the predicates presented in Sect. 9.5. Some of the semantic functions of
Sect. 9.8 were fully defined, notably the overall predicate evaluator, M , but
the term evaluator, V , was not. To define that function would require that
we first completed the formalisation of the IT System “Code of Practice”
predicates, Sect. 9.5, identifying all the auxiliary functions whose arguments
specifically designated fixed and movable resourses and that we also complete
the formalisation of IT Systems, Sect. 9.7. Many of the predicates of Sect. 9.5,
as was commented, are not computable, and many of the auxiliary functions
will, most likely turn out to be not only non-deterministic but also necessarily
underfined (“loosely defined”).

Thus there is a “hidden” universal quantifier that ranges over all IT Sys-
tems, and, thus, for each of these, is bound to a specifically instantiated ωı

and, hence, to a specific iωı. Now, each of the identified constant and vari-
able names, cn : CN, vn : V N , ranges over that which they are intended to
denote: specific physical facilities: plant, installations and movable resources.
Thus the “hidden” universal or existensial quantifiers must be made specific
and their range must be enunciated for every specific embedding. That is: any
one instance of a predicate applies to a (cn or vn) value of iωı. Thus the IT
System “Code of Practice” predicates of Sect. 9.5, shall have to be instanti-
ated for all resources immediately contained in that “layer” (“embedding”),

9.9 Making Use of The Formalisations 279

k, of iω. That value may, for example, be a room (i.e., a plant, etc.) which
has embedded rooms (plants, etc.). Thus the IT System “Code of Practice”
predicates of Sect. 9.5, shall have to be instantiated for these, layer k + 1
embedded facilities, fixed or movable if applicable. And so forth.

9.9.2 Evaluation

Testing for IT Security Dynamically

Thus we can define a function M and apply it to any instantiated state ωı:

M(wffı)(ωı)

where wffı is any conjugated (∧) and instantiated subset of “code[s] of prac-
tice”. If the resulting value is ff the instantiated subset “code[s] of practice”
have been violated. If the resulting value is tt the instantiated subset “code[s]
of practice” have not been violated.

Testing for IT Security Statically

If we evaluate

M(wffı)(ωı)

for any (valid) instantiated ωı then we are, in a sense testing whether the
given set of instantiated wffıs constitutes a relative complete and consistent
“code of practice”.

A Caveat

Of course: we cannot mechanically evaluate M(wff ı)(ωı). Most of the pred-
icates and term functions mentioned in a formalisation of the ISO Code of
Practice are not computable. So what do we do ?

Interactive Evaluation

One can devise the evaluation process such that whenever the evaluator en-
counters a partially defined function then the process interacts with IT Sys-
tem Security stakeholders present the state of evaluation to them and requests
their advice as to which course the ongoing evaluation should take. This in-
teractive evaluation process can be refined to allow for “search trees” of eval-
uation: that is, the interactive evaluator keeps track of non-deterministic and
multiple input choices, and pursues these in turn.

280 9 Towards a Model of IT Security

Conformance

How do we know that the ISO Code of Practice instantiation is commensurate
with the un-instantiated version of the ISO Code of Practice axioms ? Well,
since the un-instantiated, formal version is not computable we shall have to
prove the correctness of the refinement, i.e., the instantiations. And that proof
cannot be mechanised. It is a classical mathematical (logic) proof: a lot of
brain-power and a lot of writing.

9.10 Closing

9.10.1 What is IT Security ?

The International ISO/IEC Standard 17799: Information technology: security
techniques — code of practice for information security management does not
provide any briefer characterisation of what is meant by IT System security
than its approximately 135 pages of detailed, operational description.

This may be acceptable. An IT system is a very operational “affair”. It
embodies few abstractions. What we would like to see in the direction of a
characterisation of “what IT System Security” is, is illustrated next.

When is an IT System Secure ?

An IT System is secure when an un-authorised user, after periods of trying
to “enter” the system (1) cannot find out what it is doing (i.e., protecting),
(2) cannot find out how it is doing (whatever it is doing), (3) and does not
know that she, the user, does not know (1–2) !

The third part is introspective9 wrt. the first two parts.
This “definition” is, of course, highly debatable. But it makes a point:

namely that one cannot pursue the issue of IT System Security without having
a proper, not too long, and certainly not an approximately 135 page long, and
definitely not an implicit “definition” such as the ISO/IEC Standard 17799.
One must do far better than that. Whether our definition is a feasible one,
or, with some preamble definitions could be made feasible we shall leave as
an open question

9.10.2 What Have We Achieved?

We have “achieved” the following: (i) indicated, while providing formal “ar-
guments” for, how IT System Codes of Practice rules could be formalised;
(ii) indicated, while providing formal “arguments” for, how the context in
which these IT System Codes of Practice rules must be understood; and (iii)
indicated, while providing formal “arguments” for, how the [(i)] rules can be
interpreted in their contexts [(ii)].

9cf. introspective logic of belief ...

9.10.3 Issues of Contention

But the “formalised indications” (of Sect. 9.10.2) are merely sketches. And
not all issues have been resolved. There are many “dangling”, i.e., unresolved
issues: (i) completion of formalisation of IT System Codes of Practice; (ii)
completion of formalisation of IT System facilities and resources; (iii) com-
pletion of semantic interpretation functions; and (iv) clarification of exactly
how the free identifiers in the formalisation of the predicates and the auxiliary
term functions of (i) shall be bound to the entities of (ii).

9.10.4 Future Work

The (i–iv) of the previous paragraph (Sect. 9.10.3) points out to a serious
experimental research activity. It is hoped that work on (i–iv) (Sect. 9.10.3)
will lead to the identification of a number of “lifted” predicates and func-
tions that can vastly simply the masses of the formal predicates, (i), that
are now so detailed and specific. Let us indicate what we mean by a first
set of “lifted” predicates (we refer to Sect. 9.4): Chapters 9 and 10 of the
ISO Standard appears to address very similar issues: Chap. 9 mostly related
to computers and Chap. 10 mostly related to communications. (One could
imagine that IBMs representative in the IT System Security effort had fo-
cused their contributions wrt. Chap. 9 and that CISCO’s representative in
the IT System Security effort had focused their contributions wrt. Chap. 10,
respectively.) The technical/scientific (read: engineering/research) questions
is therefore: would it be possible and beneficial to “lift” a number of relevant
predicates of Chaps. 9 and 10 such that the specific predicates of these two
chapters could be simpler expressed in terms of a number of parametrised
predicates and auxiliary term functions. These parametrised predicates and
auxiliary term functions are what we mean by “lifting”.

Similar R&D issues can be raised wrt. a great number of ‘Code of Practice’
predicates and auxiliary term functions from usually two or more chapters.

In other words: Quite, I think, an exciting PhD topic!

10

A Family of Script Languages
Licenses and Contracts — Incomplete Sketch1

Drs. Arimoto Yasuhito, Chen Xiaoyi and Xiang Jianwen were co-partners in this study

Caveat

This chapter is incomplete. Its basis, [62], is even more so. We leave a number
of formal semantic function definitions undefined.

Summary

Classical digital rights license languages, [3,9,10,72,74–76,113,117,141,
154,166,167,177,188,189,206,207,220] applied to the electronic “down-
loading”, payment and rendering (playing) of artistic works (for example
music, literature readings and movies). In this chapter we generalise such
applications languages and we extend the concept of licensing to also
cover work authorisation (work commitment and promises) in health care
and in public government. The digital works for these two new applica-
tion domains are patient medical records, public government documents
(Sects. 10.2–10.4.3) and bus transport contracts (Sect. 10.6).

Digital rights licensing for artistic works seeks to safeguard against
piracy and to ensure proper payments for the rights to render these
works. Health care and public government license languages seek to en-
sure transparent and professional (accurate and timely) health care, re-
spectively ‘good governance’. Bus transport contract languages seeks to
ensure timely and reliable bus services by an evolving set of transport
companies.

Proper mathematical definition of licensing languages seeks to ensure
smooth and correct computerised management of licenses and contracts.

In this chapter we shall motivate and exemplify four license languages,
the pragmatics and syntax of four (Sects. 10.2–10.6) of them as well as
the formal semantics of one of them (Sect. 10.6).

1This is an edited version of [62].
Section 10.6 (Pages 309–326) is new and authored only by Dines Bjørner.

284 10 Towards a Family of Script Languages

10.1 Introduction

10.1.1 Computing Science cum Programming Methodology

• This chapter is not about [so-called Theoretical] Computer Science:
⋆ The study & knowledge of concepts that can ∃ “inside” computers.
⋆ Establishing computational models.
⋆ Proving foundational lemmas.

• This chapter is about Computing Science
⋆ The study & knowledge of how to construct “those” things !
⋆ No proving foundational lemmas as in TCS.
⋆ Instead establishing method principles, techniques and tools
⋆ for formal specification and design calculi,
⋆ and verifying, model checking and formally testing properties.

10.1.2 Caveats

This document constitutes a comprehended set of R&D development notes.
It is not a report, let alone a JAIST report, and it is certainly not a publish-
able science and/or technology paper. This document is to serve as a basis
for further work on the design, pragmatics, semantics and syntax of license
languages, for upcoming work on understanding permissions and obligations,
for upcoming work on studying possible understandings of license languages
in terms of game theory, transaction costs, and possibly other issues such as
technological feasibilities. This document is grossly incomplete.

We paraphrase the above. We do so since it has shown difficult for some to
understand that this is not a paper anywhere close to submission for publica-
tions, let alone an internal JAIST report. To repeat: these are working notes.
They are being “constantly” revised2.

The formal semantics given “late” in the chapter (Sect. 10.6) is a standard,
near “classical” way of (i) securing that the author of that formalisation has
understood the design of the language. (ii) That CSP + RSL3 definition can
be used to write users reference manuals for constructing, issuing and acting
upon licenses, and (ii) as a basis for implementing trustworthy interpreters
for licenses and contracts and for license contract uses; that is for possibly
provably correct implement a distributed license and contract management
(monitoring and control) system.

If you are looking for “deeper” results, results that span any family of
license languages adhering to the basic semantic principles developed in this
document, then this is not the document to read. Well, you had better first
read this document, or the reports and paper(s) that are planned to emanate

2Well, they have not been worked on since late 2006. I hope, during the summer
of 2009, to be able to completely revise this chapter into a publishable paper.

3CSP: [137,138,218,222], RSL: [31–33,44,101,104,106]

10.1 Introduction 285

from this document. Then you may have to do the research that may lead to
generic results. It is to be expected from such theoretical computer science
work that a mathematical notation — invented explicitly for the purpose
— will then “redefine” a suitably commensurate (congruent) and perhaps
“vastly” generic sub-language, and the desired generic results are then proved
to hold of that special notation “semantics”.

10.1.3 On Licenses

License:

a right or permission granted in accordance with law by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful

Merriam Webster Online [232]

The concepts of licenses and licensing express relations between (i) actors
(licensors (the authority) and licensees), (ii) entities (artistic works, hospital
patients, public administration, citizen documents) and bus transport con-
tracts and (iii) functions (on entities), and as performed by actors. By issuing
a license to a licensee, a licensor wishes to express and enforce certain permis-
sions and obligations: which functions on which entities the licensee is allowed
(is licensed, is permitted) to perform. In this chapter we shall consider four4

kinds of entities: (i) digital recordings of artistic and intellectual nature: mu-
sic, movies, readings (“audio books”), and the like, (ii) patients in a hospital
as represented also by their patient medical records, (iii) documents related
to public government, and (iv) busses, time tables and road nets (of a bus
transport system).

The permissions and obligations issues are, (1) for the owner (agent) of
some intellectual property to be paid (an obligation) by users when they per-
form permitted operations (rendering, copying, editing, sub-licensing) on their
works; (2) for the patient to be professionally treated — by medical staff who
are basically obliged to try to cure the patient; (3) for public administrators
and citizens to enjoy good governance: transparency in law making (national
parliaments and local prefectures and city councils), in law enforcement (i.e.,
the daily administration of laws), and law interpretation (the judiciary) — by
agents who are basically obliged to produce certain documents while being
permitted to consult (i.e., read, perhaps copy) other documents; and (4) for
bus passengers to enjoy reliable bus schedules — offered by bus transport com-
panies on contract to, say public transport authorities and on sub-contract
to other such bus transport companies where these transport companies are
obliged to honour a contracted schedule.

4During our 2006 study we only studied and in [62] we only reported on the li-
cense languages related to (i–iii) below. The bus transport contract language, related
to (iv), emerged during late 2008.

286 10 Towards a Family of Script Languages

10.1.4 What Kind of Science Is This?

It is experimental computing science: The study and knowledge of how to de-
sign and construct software that is right, i.e., correct, and the right software,
i.e., what the user wants. To study methods for getting the right software is
interesting. To study methods for getting the software right is interesting. Do-
main development helps us getting the right software. Deriving requirements
from domain descriptions likewise. Designing software from such requirements
helps us get the software right. Understanding a domain and then designing
license languages from such an understanding is new. We claim that computer-
supported management of properly designed license languages is a hallmark
of the e-Society.

10.1.5 What Kind of Contributions?

The experimental nature of the project being reported on is as follows: Pos-
tulate four domains. Describe these informally and formally. Postulate the
possibility of license languages (LLs) that somehow relate to activities of re-
spective domains. Design these – experimentally. Try discover similarities and
differences between the four LLs (LLDRM, LLHHLL, LLPALL, CLBUS). Formalise
the common aspects: CLL. Formalise the three LLs — while trying to “param-
eterise” the CLL to achieve LLDRM, LLHHLL, LLPALL, CLBUS. This investigation
is bound to tell us something, we hope.

The above outlines our ultimate goals. In reality, this chapter brings us
only part of the way towards such a goal. To do the study as outlined in this
section we first need complete the formal semantics of all the four languages.

10.2 Pragmatics of Three License Languages

• By pragmatics we understand the study and practice of the factors that
govern our choice of language in social interaction and the effects of our
choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the three
domains of (1) production, distribution and consumption of artistic works, (2)
the hospitalisation of patient, i.e., hospital health care and (3) the handling of
law-based document in public government. The emphasis is on the pragmatics
of the terms, i.e., the language used in these three domains. We leave the
discussion of the bussing contract language till Sect. 10.6.

10.2.1 The Performing Arts: Producers and Consumers

The intrinsic entities of the performing arts are the artistic works: drama
or opera performances, music performances, readings of poems, short stories,

10.2 Pragmatics of Three License Languages 287

novels, or jokes, movies, documentaries, newsreels, etc. We shall limit our
span to the scope of electronic renditions of these artistic works: videos, CDs
or other. In this paper we shall not touch upon the technical issues of “down-
loading”(whether ”streaming” or copying, or other). That and other issues
should be analysed in [245].

Operations on Digital Works

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while
protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

License Agreement and Obligation

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

The Artistic Electronic Works: Two Assumptions

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from
the fulfilment of the first). The second assumption is that the consumer is
not allowed to, or cannot operate5 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results
in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

5render, copy and edit

288 10 Towards a Family of Script Languages

Protection of the Artistic Electronic Works

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

10.2.2 Hospital Health Care: Patients and Medical Staff

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients, in
a sense, issue a request to be treated with the aim of full or partial restitution.
This request is directed at medical staff, that is, the patient authorises medical
staff to perform a set of actions upon the patient. One could claim, as we shall,
that the patient issues a license.

Hospital Health Care: Patients and Patient Medical Records

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

Hospital Health Care: Medical Staff

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

10.2.3 Public Government and the Citizens

The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)6, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of public

6De l’esprit des lois (The Spirit of the Laws), published 1748

10.2 Pragmatics of Three License Languages 289

government. Typically national parliament and local (province and city) coun-
cils are part of law-making government. Law-enforcing government is called
the executive (the administration). And law-interpreting government is called
the judiciary [system] (including lawyers etc.).

Documents

A crucial means of expressing public administration is through documents.7

We shall therefore provide a brief domain analysis of a concept of documents.
(This document domain description also applies to patient medical records
and, by some “light” interpretation, also to artistic works — insofar as they
also are documents.)

Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

Document Attributes

With documents one can associate, as attributes of documents, the actors who
created, edited, read, copied, distributed (and to whom distributed),shared,
performed calculations and shredded documents.

With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

Actor Attributes and Licenses

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as
licenses.

Document Tracing

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

7Documents are, for the case of public government to be the “equivalent” of
artistic works.

290 10 Towards a Family of Script Languages

10.3 The Semantic Intents of Licensor and Licensee Actions

10.3.1 Overview

There are two parties to a license: the licensor and the licensee. And there is
a common agreement concerning a shared “item” between them, namely: the
license and the work item: the artistic work, the patient, the document.

The licensor gives the licensee permission, or mandates the licensee to be
obligated to perform certain actions on designated “items”.

The licensee performs, or does not perform permitted and/or obligated
actions

And the licensee may perform actions not permitted or not obligated.
The license shall serve to ensure that only permitted actions are carried

out, and to ensure that all obligated actions are carried out.
Breach of the above, that is, breach of the contracted license may or shall

result in revocation of the license.

10.3.2 Licenses and Actions

Licenses

Conceptually a licensor o (for owner) may issue a license named ℓ to licensee
u (for user) to perform some actions. The license may syntactically appear as
follows:

ℓ : licensor o licenses licensee u to

perform actions {a1,a2,...,an} on work item w

Actions

And, conceptually, licensee (u) may perform actions which can be expressed
as follows:

ℓ:a(w); ℓ:a′(w); ...; ℓ:a′′(w); ...; ℓ:a′′′(w)

These actions (a, a′, ..., a′′, ..., a′′′) may be in the set {a1,a2,...,an}, mentioned
in the license, or they may not be in that set. In the latter case we have a
breach of license ℓ.

Any one licensee may have licensed several licenses ℓ1, ℓ2, . . . , ℓn. And such
a licensee may, in an interleaved fashion, perform actions referring to different
licenses:

ℓi : ai(w); ℓj : a′
j(w); ...; ℓk : a′′

k(w); ...; ℓn : a′′′
n (w)

10.3 The Semantic Intents of Licensor and Licensee Actions 291

Two Languages

Thus there is the language of licenses and the language of actions.
We advise the reader to take note of the distinction between the permitted

or obligated actions enumerated in a license and the license name labelled
actions actually requested by a licensee.

10.3.3 Sub-licensing, Scheme I

A licensee u may wish to delegate some of the work associated with performing
some licensed actions to a colleague (or customer). If, for example the license
originally stated:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

the licensee (u) may wish a colleague u′ to perform a subset of the actions,
for example

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Therefore u would like if the above license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

instead was formulated as:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

where

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Now licensee u can perform the action

ℓ : license actions {a′,a′′,a′′′} to u′

The above is an action designator. Its practical meaning is that a license is
issued by u:

η(ℓ,u,t): licensor u licenses licensee u′

to perform actions {a′,a′′,a′′′} on work item w

The above license can be easily “assembled” from the action including the
action named license: the context determines who (namely u) is issuing the
license, and who or which is the work item. η is a function which applies to
license name, agent identifications and time and yields unique new license
names.

292 10 Towards a Family of Script Languages

10.3.4 Sub-licensing, Scheme II

The subset relation

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

mentioned in the sub-licensing part of license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

may be omitted. In fact one could relax the relation completely and allow
any actions {ai,aj,...,ak} whether in {a1,a2,...,an} or not ! That is, the orig-
inal licensor may mandate that a licensee allow a sub-licensee to perform
operations that the licensee is not allowed to perform. Examples are: a li-
censee may break the shrink-wrap around some licensed software package —
an action which may not be performed by the licensor; a medical nurse (i.e.,
a licensee) may perform actions on patients not allowed performed by the
licensor (say, a medical doctor); and a civil servant (say, an archivist) may
copy, distribute or shred documents, actions that may not be allowed by the
licensor (i.e., the manager of that civil servant), while that civil servant (the
archivist) is not allowed to create or read documents.

10.3.5 Multiple Licenses

Consider the following scenario: A licensee u is performing actions ap, aq, . . . ,
ar, on work item ω, and has licensed u′ to perform actions ai, aj , . . . , ak, also
on work item ω. The action whereby u licenses u′ occurs at some time. At
that time u has performed none or some of the actions ap, aq, . . . , ar (on work
item ω), but maybe not all. What is going to happen? Can u and u′ go on, in
parallel, performing actions on the same work item (ω) ? Our decision is yes,
and they can do so in an interleaved manner, not concurrently but alternating,
i.e., not accessing the same work item simultaneously.

10.4 Syntax and Informal Semantics

We distinguish between the pragmatics, the semantics and the syntax of lan-
guages. Leading textbooks on (formal) semantics of programming languages
are [82, 114,215,221,236,241].

We have already covered the concept of pragmatics and illustrated its
application to some issues of license language design.

We shall now illustrate the use of syntax and semantics in license language
design.

10.4 Syntax and Informal Semantics 293

• By syntax we mean (i) the ways in which words are arranged to show mean-
ing (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences.

• By semantics we mean the study and knowledge [incl. specification] of mean-
ing in language [79].

• By informal semantics we mean a semantics which is expressed in concise
natural language, for example, as here, English.

10.4.1 General Artistic License Language

We refer to the abstract syntax formalised below (that is, formulas 0.–14.).
The work on the specific form of the syntax has been facilitated by the work
reported by Xiang JenWen [245].8

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

Syntax

We first present an abstract syntax of the language of licenses, then we an-
notate this abstract syntax, and finally we present an informal semantics of
that language of licenses.

type

0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′readme′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

8As this work, [245], has yet to be completed the syntax and annotations given
here may change.

294 10 Towards a Family of Script Languages

Syntax Annotations

0: Syntax Sorts (0.) Licenses are given names, ln:Ln, so are actors (owners,
licensors, and users, licensees), nn:Nm. By w:W we mean a (net) reference to
(a name of) the downloaded possibly segmented artistic work being licensed,
where segments are named (s:S), that is, s:S is a selector to either a segment
of a downloaded work or to a segment of a copied and or and edited work.

(1.) Every license (lic:Lic) has a unique name (ln:Ln).
(2.) A license (lic:Lic) contains four parts: the name of the licensor, the

name of the licensee, a reference to (the name of) the work, a set of commands
(that may be permitted to be performed on the work).

(3.) A command is either a render, a copy or an edit or a readme command,
or a sub-licensing (sub-license) command.

(4.–6.) The render, copy and edit commands are each “decorated” with
an ordered list of selectors (i.e., selector names) and a (work) variable name.
The license command

copy 〈s1,s2,s7〉 v

means that the licensed work, ω, may have its sections s1, s2 and s7 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands.

(7.) The ”readme” license command, in a license, ln, referring, by means of
w, to work ω, somehow displays a graphical/textual “image” of, that is, infor-
mation about ω. We do not here bother to detail what kind of information may
be so displayed. But you may think of the following display information names
of artistic work,artists, authors, etc., names and details about licensed com-
mands, a table of fees for performing respective licensed commands, etcetera.

(8.) The license command

license cmd1,cmd2,...,cmdn on work v
mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensee to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one to reflect such
constraints. The license also do not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted.

Informal Semantics

A license licenses the licensee to render, copy, edit and license (possibly the
results of editing) any selection of downloaded works. In any order — but see
below — and any number of times. For every time any of these operations

10.4 Syntax and Informal Semantics 295

take place payment according to the payment function occurs (that can be
inspected by means of the read license command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied
versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function.

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” (see next section) functions are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage.

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary.

Actions

Syntax

type

9. V
10. Act = Ln × (Rndr|Copy|Edit|License)
11. Rndr == mkR(sel:S∗,wrk:(W|V))
12. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
13. Edit == mkE(wrks:V∗,into:V)
14. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

Annotations and Informal Semantics:

9: Variables By V we mean the name of a variable in the users own storage
into which downloaded works can be copied (now becoming a local work. The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested.

296 10 Towards a Family of Script Languages

10: Actions Every action of a licensee is tagged by the name of a relevant
license. If the action is not authorised by the named license then it is re-
jected. Render and copy actions mention a specific sequence of selectors. If
this sequence is not an allowed (a licensed) one, then the action is rejected.
(Notice that the license may authorise a specific action, a with different sets
of sequences of selectors — thus allowing for a variety of possibilities as well
as constraints.)

11: Render The licensee, having now received a license, can render selections
of the licensed work, or of copied and/or edited versions of the licensed work.
No reference is made to the payment function. When rendering the semantics
is that this function is invoked and duly applied. That is, render payments
are automatically made: subtracted from the licensees account and forwarded
to the licensor.

12: Copy The licensee can copy selections of the licensed work, or of previously
copied and/or edited versions of the licensed work. The licensee identifies a
name for the local storage file where the copy will be kept. No reference is made
to the payment function. When copying the semantics is that this function
is invoked and duly applied. That is, copy payments are automatically made:
subtracted from the licensees account and forwarded to the licensor.

13: Edit The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function.
When copying the semantics is that this function is invoked and duly applied.
That is, copy payments are automatically made: subtracted from the licensees
account and forwarded to the licensor. Although no reference is made to any
edit functions these are made available to the licensee when invoking the edit
command. You may think of these edit functions being downloaded at the
time of downloading the license. Other than this we need not further specify
the editing functions. Same remarks apply to the above copying functions.

14: Sub-Licensing The licensee can further sub-license copied and/or edited
work. The licensee must give the license being assembled a unique name. And
the licensee must choose to whom to license this work. A sub-license, like does
a license, authorises which actions can be performed, and then with which one
of a set of alternative selection sequences. No payment function is explicitly
mentioned. It is to be semi-automatically derived (from the originally licensed
payment fee function and the licensee’s payment demands) by means of func-
tionalities provided as part of the licensed payment fee function.

The sub-license command information is thus compiled (assembled) into a
license of the form given in (1.–3.). The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
issuing the sub-license. From the license label of the command it is known

10.4 Syntax and Informal Semantics 297

whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

10.4.2 Hospital Health Care License Language

We refer to the abstract syntax formalised below (that is, formulas 1.–5.).
The work on the specific form of the syntax has been facilitated by the work
reported in [8].9

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

A Notion of License Execution State

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations on local works could
not be done before these had been created — say by copying. Editing could
only be done on local works and hence required a prior action of, for example,
copying a licensed work. In the context of hospital health care most of the
actions can only be performed if the patient has reached a suitable state in
the hospitalisation. We refer to Fig. 10.1 on the following page for an idealised
hospitalisation plan.

We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same !) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice ! One cannot design a language and
prevent it being misused!

Licenses

type

0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt

9As this work, [8], has yet to be completed the syntax and annotations given
here may change.

298 10 Towards a Family of Script Languages

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. 10.1. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL [31–33,44,101,104,106]. But it is decorated!
The subtypes {|boldface keyword|} are inserted for readability.

Syntax Annotations

(0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for CoL) the
licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative.

(5.) A command (Cmd) is a state-labelled statement.

10.4 Syntax and Informal Semantics 299

(3.) A sub-license just states the command set that the sub-license licenses.
As for the Artistic License Language the licensee chooses an appropriate sub-
set of commands. The context “inherits” the name of the patient. But the
sub-licensee is explicitly mandated in the license!

(6.) An alternative is also just a set of commands. The meaning is that
either the licensee choose to perform the designated actions or, as for ML, but
now freely choosing the sub-licensee, the licensee (now new licensor) chooses
to confer actions to other staff.

(7.) A statement is either an admit, an interview, a plan analysis, an
analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive Information given in the patient medical report for the designated
state inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc.

Actions

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

Syntax Annotations

(8.) Each action actually attempted by a medical staff refers to the license,
and hence the patient name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analy-
sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap-
pears in the named license and the patient (medical record) designates state
σ.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3.) is compiled from contextual information.

Informal Semantics

An informal, rough-sketch semantics (here abbreviated) would state that a
prescribed action is only performed if the patient, cum patient medical record
is in an appropriate state; and that the patient is being treated according
to the action performed; that records of this treatment and its (partially)
analysed outcome is introduced into the patient medical record. The next
state of the patient, cum patient medical record, depends on the outcome
of the treatment10; and hence the patient medical record carries with it, i.e.,
embodies a, or the, hospitalisation plan in effect for the patient, and a reference
to the current state of the patient.

10Cf. the diamond-shaped decision boxes in Fig. 10.1 on the preceding page.

300 10 Towards a Family of Script Languages

10.4.3 Public Administration License Language

We refer to the abstract syntax formalised below (that is, formulas 1.–15.).
The work on the specific form of the syntax has been facilitated by the work
reported in [26, 46, 73].11

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

License Classes

type

0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

Licensed Operations

type

7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12. Licn == mkLi(kind:LiTy)
13. LiTy == grant | extend | restrict | withdraw
14. Shar == mkSh(doc:UDI,with:An-set)
15. Rvok == mkRv(doc:UDI,from:An-set)
16. Rlea == mkRl(dn:Dn)
17. Rtur == mkRt(dn:Dn)
18. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
19. Shrd == mkSh(doc:UDI)

11As part this work, [73], has yet to be completed the syntax and annotations
given here may change.

10.4 Syntax and Informal Semantics 301

Syntax & Informal Semantics Annotations

(0.) The are names of licenses (Ln), actors (An), documents (UDI), document
classes (DCn) and calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and
withdrawing.

(2.) Actors (licensors) grant licenses to other actors (licensees). An actor
is constrained to always grant distinctly named licenses. No two actors grant
identically named licenses.12 A set of operations on (named) documents are
granted.

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations, or fully).

(6.) There are nine kinds of operation authorisations. Some of the next
explications also explain parts of some of the corresponding actions (see (16.–
24.).

(7.) There are names of documents (Dn), names of classes of documents
(DCn), and there are unique document identifiers (UDI).

(8.) Creation results in an initially void document which is
not necessarily uniquely named (dn:Dn) (but that name is uniquely as-

sociated with the unique document identifier created when the document is
created13) typed by a document class name (dcn:DCn) and possibly based
on one or more identified documents (over which the licensee (at least) has
reading rights). We can presently omit consideration of the document class
concept. “based on” means that the initially void document contains refer-
ences to those (zero, one or more) documents.14 The “based on” documents
are moved from licensor to licensee.

(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved from licensor to licensee — if not al-
ready so moved as the result of the specification of other authorised actions.

(10.) Reading a document only changes its “having been read” status (etc.)
— as per [26]. The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions.

(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied

12This constraint can be enforced by letting the actor name be part of the license
name.

13— hence there is an assumption here that the create operation is invoked by
the licensee exactly (or at most) once.

14They can therefore be traced (etc.) — as per [26].

302 10 Towards a Family of Script Languages

document is marked to be a copy (etc.) — as per [26]. The master document,
if not the result of a create or copy, is moved from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions.

(12.) A licensee can sub-license (sL) certain operations to be performed by
other actors.

(13.) The granting, extending, restricting or withdrawing permissions, can-
not name a license (the user has to do that), do not need to refer to the licensor
(the licensee issuing the sub-license), and leaves it open to the licensor to freely
choose a licensee. One could, instead, for example, constrain the licensor to
choose from a certain class of actors. The licensor (the licensee issuing the
sub-license) must choose a unique license name.

(14.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead the licensing actions with a shared attribute.) The
shared document, if not the result of a create and edit or copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions. Sharing a document does not move nor copy it.

(15.) Sharing documents can be revoked. That is, the reading rights are
removed.

(16.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy.

(17.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document.

(18.) Two or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of a creates
and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(19.) A document can be shredded. It seems pointless to shred a document
if that was the only right granted wrt. document.

Actions

20. Action = Ln × Clause
21. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
22. Cre == mkCre(dcn:DCn,based on docs:UID-set)
23. Edt == mkEdt(uid:UID,based on docs:UID-set)
24. Rea == mkRea(uid:UID)

10.4 Syntax and Informal Semantics 303

25. Cop == mkCop(uid:UID)
26. Lic == mkLic(license:L)
27. Sha == mkSha(uid:UID,with:An-set)
28. Rvk == mkRvk(uid:UID,from:An-set)
29. Rel == mkRel(dn:Dn,uid:UID)
30. Ret == mkRet(dn:Dn,uid:UID)
31. Cal == mkCal(fct:Cfn,over docs:UID-set)
32. Shr == mkShr(uid:UID)

Preliminary Remarks

A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”.

Syntax & Informal Semantics Annotations

(20.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited.

(21.) Actions clauses are either create, edit, read, copy, sub-license, share,
revoke, release, return, calculate or shred.

(22.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(23.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(24.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(25.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy.

(26.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if
any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.

(27.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,

304 10 Towards a Family of Script Languages

for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(28.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.

(29.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created now is being able to
see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(30.) A document may be returned. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it.

(31.) A license may (conditionally) apply any of a licensed set of calculation
functions to “downloaded” (edited, copied, etc.) documents, or can (uncondi-
tionally) apply any of a licensed set of calculation functions to created (etc.)
documents. The result of a calculation is a document. The licensee obtains all
operation authorisations to this document (— as for created documents).

(32.) A license may (conditionally) shred a “downloaded” (etc.) document.

10.4.4 Discussion

Comparisons

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages.

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

Differences

Work Items The work items of the artistic license language(s) are essentially
“kept” by the licensor. The work items of the hospital health care license
language(s) are fixed and, for a large set of licenses there is one work item,
the patient which is shared between many licensors and licenses. The work
items of the public administration license language(s) — namely document
— are distributed to or created and copied by licenses and may possibly be
shared.

Operations The operations of the artistic license language(s) are are essen-
tially “kept” by the licensor. The operations of the hospital health care license
language(s) are are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct). The operations of the public administration
license language(s) are essentially “kept” by the licensees (as reflected in their
professional training and conduct).

10.5 Formal Semantics 305

Permissions and Obligations Generally we can say that the modalities of the
artistic license language(s) are essentially permissions with payment (as well
as use of licensor functions) being an obligation; that the modalities of the
hospital health care license language(s) are are essentially obligations; and,
as well, that the modalities of the public administration license language(s)
are essentially obligations We shall have more to say about permissions and
obligations later (much later).

10.5 Formal Semantics

By formal semantics we understand a definition expressed in a formal lan-
guage, that is, a language with a mathematical syntax, a mathematical se-
mantics, and a consistent and relative complete proof system. We shall deploy
the CSP [137, 138, 218, 222] Specification Language embedded in a Landin–
like notation of let clauses15. We hope someone will complement our definition
with a commensurate CafeOBJ [89,90, 99, 100] definition.

10.5.1 A Model of Common Aspects

Actors: Behaviours and Processes

We see the system as a set of actors. An actor is either a licensor, or a licensee,
or, usually, such as we have envisaged our license languages, both. To each
actor we associate a behaviour — and we model actor behaviours as CSP
processes. So the system is then modelled as a set of concurrent behaviours,
that is, parallel (‖) CSP processes. Actors are uniquely identified (Aid).

System States

With each actor behaviour we associate a state (ω : Ω). “Globally” initial
such state components are modelled as maps from actor identifiers to states.
We shall later analyse these states into major components.

type

Aid, Ω
Ωs = Aid →m Ω

System Processes

Actor processes communicate with one another over channels. There is a set of
actor identifier indexed channels. Potential licensees request licenses. Licensors
issue licenses in response to requests. Work items are communicated over
these channels. As are payments and reports on use of licensed operations on

15— known since the very early 1960’s

306 10 Towards a Family of Script Languages

licensed work items. An actor is either pro-active, requesting licenses, sending
payment or reports, or re-active: responding to license requests, sending work
items. An actor non-deterministically (⌈⌉) alternates between these activities.

type

M = Lic | Pay | Rpt | ...
channel

{a[i]|i:Aid} (Aid×M)
value

actor: j:Aid × Ω → in,out {a[i]|i:Aid•i6=j} Unit

actor(j)(ω) ≡ let ω′ = pro act(j)(ω)⌈⌉re act(j)(ω) in actor(j)(ω′) end

system: Ωs → Unit

system(ωs) ≡ ‖ {actor(i)(ωs(i))|i:Aid}

Actor Processes

We have identified two kinds of actor processes: pro-active, during which the
actor, by own initiative, (as a prospective licensee) may request a license from
a prospective licensor, or, (as an actual licensee) as the result of performing
licensed actions sends payments or reports (or other) to the licensor. and re-
active, during which the actor, in response to requests (as a licensor) sends
a requesting actor a license (whereby the requester becomes a licensee), or
“downloads” (access to) requested works or functions. functions.

The Pro-active Actor Behaviour In the pro-active behaviour an actor, at will,
i.e., non-deterministically internal choice (⌈⌉), decides to either request a li-
cense (rl) or to perform some action (op). In the former case the actor inquires
(l iq) an own state to find out from which licensor (aid) which kind of license
requirements (l rq) is to be requested. This licensor and these requirements
are duly noted in the state. After sending the request the actor continues
being an actor in the duly noted state. In the latter case (op) there may be
many “next” actions to do (act). The actor inquires (a iq) an own state to
find out which action (designated by op i) is “next”. The actor them per-
forms (act) the designated operation. It is here, for simplification assumed
that all operation completions imply a “completion” message (a payment, a
report, or other) to the operation licensing actor. So such a message is sent
and the operation updated local state is yielded — whereby the pro-active
actor “resumes” being an actor as from that state.

type

M = Lic | Pay | Rpt | ...
channel

{a[i]|i:Aid} (Aid×M)
value

pro act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω

10.5 Formal Semantics 307

pro act(j)(ω) ≡
let what to do = rl ⌈⌉ op in

case what to do of

rl → let (k,l rq,ω′)=iq l Ω(ω) in

a(aid)!(j,l rq);ω′ end

op → let op i=iq a Ω(ω) in

let (k,m,ω′)=act(op i)(ω) in

a(k)!(j,m) ; ω′ end end

end end

The Re-active Actor Behaviour In the re-active behaviour an actor (j), is
willing to engage in communication with other actors. This is formalised by a
non-deterministic external choice (⌈⌉⌊⌋) between either of a set ({...}) of (zero, or
more) other actors (k:Aid\{j}) who are trying to contact the re-active actor.
The communicated message reveals the identity (k) of the requesting, i.e.,
the pro-active actor,16 The message, m, reveals what action (act(m)) the re-
active actor is requested to perform. The actor does so/ This results in a reply
message m′ and a state change. The reply message is sent to the requesting
actor; and the re-active actor yields the requested action-updated state —
whereby the re-active actor “resumes” being an actor as from that state.

type

M = Lic | Pay | Rpt | ...
channel

{a[i]|i:Aid} (Aid×M)
value

re act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω
re act(j)(ω)≡

let (k,m)=⌈⌉⌊⌋{a(k)?|k:Aid} in

let (m′,ω′)=act(m)(ω) in

a(k)!(j,m′);ω′ end end

Functions

We first list (and “read”) the signatures of the two auxiliary (iq l Ω, iq a Ω)
and one elaboration (act) function assumed in the definition of the pro- and
re-active actor processes. After that we discuss the former and suggest defini-
tions of the latter.

16Do not get confused by the two k’s on either side of the let clause. The left k is
yielded by the (input) communication a(k)?. The defining scope of the right side k,
as in a(k), is just the right-hand side of the left clause.

308 10 Towards a Family of Script Languages

Auxiliary Function Signatures

The inquire license function (iq l Ω) inspects the actor’s state to (“eureka”)
determine which most desirable licensor (Aid) offers which one kind of de-
sired license requirements (License Requirements). The inquire action func-
tion (iq a Ω) inspects the actor’s state to (somewhat “eureka”) determine
which action is “next” in tine to be performed. That action is being designated
(Action Designator).

type

License Requirements,Action Designation
value

iq l Ω: Ω → Aid × License Requirements × Ω
iq a Ω: Ω → Action Designator

By ‘eureka’17 is meant that the inquiry is internal non-deterministic that is,
is not influenced by an outside, could have any one of very many outcomes,
and can thus only be rather loosely defined.

Elaboration Function Signature

The action performing function (act) “finds” the designated operation in the
current state, applies it in the current state, and yields (“read” backwards)
a possibly new state (ω : Ω), a message (M) to be sent to the licensor (Aid)
who authorised the operation and may need or which to have a payment, a
report, or some such thing “back”!

type

Action Designation
value

act: Action Designation → Ω → Aid × M × Ω

Discussion of Auxiliary Functions

The auxiliary functions are usually not computable functions. The actors are
not robots. And it is not necessary to further define these functions beyond
stating their signatures as they are usually performed by human actors. The
signature of the inquire license function expresses a possible change to the
inquired state. One would think of the inquiring actor somehow noting down,
remembering, as it were, which inquiries were attempted or had been made.
The signature of the inquire actions function does not express such a state
change. But it could be expressed as well.

17“Eureka” used to express triumph on a discovery, heuristics

10.6 A Transport Contract Language 309

Schema Definitions of Elaboration Functions

10.6 A Transport Contract Language

10.6.1 Narrative

Preparations

In a number of steps (‘A Synopsis’, ‘A Pragmatics and Semantics Analysis’,
and ‘Contracted Operations, An Overview’) we arrive at a sound basis from
which to formulate the narrative. We shall, however, forego such a detailed
narrative. Instead we leave that detailed narrative to the reader. (The detailed
narrative can be “derived” from the formalisation.)

A Synopsis

Contracts obligate transport companies to deliver bus traffic according to
a timetable. The timetable is part of the contract. A contractor may sub-
contract (other) transport companies to deliver bus traffic according to timeta-
bles that are sub-parts of their own timetable. Contractors are either public
transport authorities or contracted transport companies. Contracted trans-
port companies may cancel a subset of bus rides provided the total amount
of cancellations per 24 hours for each bus line does not exceed a contracted
upper limit18. The cancellation rights are spelled out in the contract19. A sub-
contractor cannot increase a contracted upper limit for cancellations above
what the sub-contractor was told (in its contract) by its contractor20. Etcetera.

A Pragmatics and Semantics Analysis

The “works” of the bus transport contracts are two: the timetables and, im-
plicitly, the designated (and obligated) bus traffic. A bus timetable appears
to define one or more bus lines, with each bus line giving rise to one or more
bus rides. We assume a timetable description along the lines of Appendix G.
Nothing is (otherwise) said about regularity of bus rides. It appears that bus
ride cancellations must be reported back to the contractor. And we assume
that cancellations by a sub-contractor is further reported back also to the sub-
contractor’s contractor. Hence eventually that the public transport authority
is notified.

Nothing is said, in the contracts, such as we shall model them, about
passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be
paid back from a sub-contractor to the contractor. So we shall not bother,
in this example, about transport costs nor transport subsidies. But will leave
that necessary aspect as an exercise.

18We do not treat this aspect further in this chapter.
19See Footnote 18.
20See Footnote 18.

310 10 Towards a Family of Script Languages

The opposite of cancellations appears to be ‘insertion’ of extra bus rides,
that is, bus rides not listed in the time table, but, perhaps, mandated by
special events21 We assume that such insertions must also be reported back
to the contractor.

We assume concepts of acceptable and unacceptable bus ride delays. De-
tails of delay acceptability may be given in contracts, but we ignore further
descriptions of delay acceptability. but assume that unacceptable bus ride
delays are also to be (iteratively) reported back to contractors.

We finally assume that sub-contractors cannot (otherwise) change timeta-
bles. (A timetable change can only occur after, or at, the expiration of a
license.) Thus we find that contracts have definite period of validity. (Expired
contracts may be replaced by new contracts, possibly with new timetables.)

Contracted Operations, An Overview

So these are the operations that are allowed by a contractor according to a
contract: (i) start: to perform, i.e., to start, a bus ride (obligated); (ii) cancel:
to cancel a bus ride (allowed, with restrictions); (iii) insert: to insert a bus
ride; and (iv) subcontract: to sub-contract part or all of a contract.

10.6.2 A Formalisation

Syntax

We treat separately, the syntax of contracts (for a schematised example see
Page 310) and the syntax of the actions implied by contracts.

Contracts

A concrete example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (including
contracting) takes place and in which the implicit transport net (see Ap-
pendix B) is defined.

63. contracts, contractors and sub-contractors have unique identifiers CId,
CNm, CNm.

21Special events: breakdown (that is, cancellations) of other bus rides, sports event
(soccer matches), etc.

10.6 A Transport Contract Language 311

64. A contract has a unique identification, names the contractor and the sub-
contractor (and we assume the contractor and sub-contractor names to be
distinct). A contract also specifies a contract body.

65. A contract body stipulates a timetable and the set of operations that are
mandated or allowed by the contractor.

66. An Operation is either a "start" (i.e., start a bus ride), a bus ride
"cancel"lation, a bus ride "insert", or a "subcontrat"ing operation.

type

63. CId, CNm
64. Contract = CId × CNm × CNm × Body
65. Body = Op-set × TT
66. Op == ′′start′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

An abstract example contract:

(cid,cnmi,cnmj ,({′′start′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

Actions

Example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 310) shown earlier is almost like an action; here
is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

All actions are being performed by a sub-contractor in a context which defines
that sub-contractor cnm, the relevant net, say n, the base contract, referred
here to by cid (from which this is a sublicense), and a timetable tt of which tt′

is a subset. contract name cnm′ is new and is to be unique. The subcontracting
action can (thus) be simply transformed into a contract as shown on Page 310.

type

Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

312 10 Towards a Family of Script Languages

examples:

(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,

mkCon(cid′,
({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 69

We observe that the essential information given in the start, cancel and insert
action prescriptions is the same; and that the RSL record-constructors (mkSta,
mkCan, mkIns) make them distinct.

Contract Identification

67. There is a “root” contract name, rcid.
68. There is a “root” contractor name, rcnm.

value

67 rcid:CId
68 rcnm:CNm

All other contract names are derived from the root name. Any contractor can
at most generate one contract name per time unit. Any, but the root, sub-
contractor obtains contracts from other sub-contractors, i.e., the contractor.
Eventually all sub-contractors, hence contract identifications can be referred
back to the root contractor.

69. Such a contract name generator is a function which given a contract iden-
tifier, a sub-contractor name and the time at which the new contract
identifier is generated, yields the unique new contract identifier.

70. From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its cre-
ation.

value

69 gen CId: CId × CNm × Time → CId

70 obs CId: CId
∼→ CIdL [pre obs CId(cid):cid6=rcid]

70 obs CNm: CId
∼→ CNm [pre obs CNm(cid):cid6=rcid]

70 obs Time: CId
∼→ Time [pre obs Time(cid):cid6=rcid]

71. All contract names are unique.

10.6 A Transport Contract Language 313

axiom

71 ∀ cid,cid′:CId•cid6=cid′⇒
71 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
71 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
71 ⇒ obs Time(cid)6=obs Time(cid′)

72. Thus a contract name defines a trace of license name, sub-contractor name
and time triple, “all the way back” to “creation”.

type

CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value

72 contract trace: CId → LCIdCNmTTrace
72 contract trace(cid) ≡
72 case cid of

72 rcid → 〈〉,
72 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
72 end

72 obs TraceTriple: CId → TraceTriple
72 obs TraceTriple(cid) ≡
72 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

The trace is generated in the chronological order: most recent contract name
generation times last.

Well, there is a theorem to be proven once we have outlined the full formal
model of this contract language: namely that time entries in contract name
traces increase with increasing indices.

theorem

∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

Semantics

Execution State

Local and Global States Each sub-contractor has an own local state and has
access to a global state. All sub-contractors access the same global state. The
global state is the bus traffic on the net. There is, in addition, a notion of
running-state. It is a meta-state notion. The running state “is made up” from
the fact that there are n sub-contractors, each communicating, as contractors,

314 10 Towards a Family of Script Languages

over channels with other sub-contractors. The global state is distinct from
sub-contractor to sub-contractor – no sharing of local states between sub-
contractors. We now examine, in some detail, what the states consist of.

Global State The net is part of the global state (and of bus traffics). We
consider just the bus traffic.

type

133. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI) 420

183. BusTraffic = T →m (N × (BusNo →m (Bus × BPos))) 425
184. BPos = atHub | onLnk | atBS
185. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
186. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
187. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

We shall consider BusTraffic (with its Net) to reflect the global state.

Local sub-contractor contract States: Semantic Types A sub-contractor state
contains, as a state component, the zero, one or more contracts that the sub-
contractor has received and that the sub-contractor has sublicensed.

type

Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm →m (LicNm →m (Body×TT))
SubLicΣ = LeeNm →m (LicNm →m Body)
LorBusΣ ... [see below and Page 315] ...

(Recall that LorNm and LeeNm are the same.)
In RecvLics we have that LorNm is the name of the contractor by whom

the contract has been granted, LicNm is the name of the contract assigned by
the contractor to that license, Body is the body of that license, and TT is that
part of the timetable of the Body which has not (yet) been sublicensed.

In DespLics we have that LeeNm is the name of the sub-contractor to whom
the contract has been despatched, the first (left-to-right) LicNm is the name
of the contract on which that sublicense is based , the second (left-to-right)
LicNm is the name of the sublicense, and License is the contract named by the
second LicNm.

Local sub-contractor Bus States: Semantic Types The sub-contractor state
further contains a bus status state component which records which buses are
free, FreeBusΣ, that is, available for dispatch, and where “garaged”, which
are in active use, ActvBusΣ, and on which bus ride, and a bus history for
that bus ride, and histories of all past bus rides, BusHistΣ. A trace of a bus
ride is a list of zero, one or more pairs of times and bus stops. A bus history,

10.6 A Transport Contract Language 315

BusHistory, associates a bus trace to a quadruple of bus line identifiers, bus
ride identifiers, contract names and sub-contractor name.22

type

BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId) →m (BNo×BusTrace)))

A bus is identified by its unique number (i.e., registration) plate (BusNo).
We could model a bus by further attributes: its capacity, etc., for for the
sake of modelling contracts this is enough. The two components are modified
whenever a bus is commissioned into action or returned from duty, that is,
twice per bus ride.

Constant State Values There are a number of constant values, of various
types, which characterise the “business of contract holders”. We define some
of these now.

73. For simplicity we assume a constant net — constant, that is, only with
respect to the set of identifiers links and hubs. These links and hubs ob-
viously change state over time.

74. We also assume a constant set, leens, of sub-contractors. In reality sub-
contractors, that is, transport companies, come and go, are established and
go out of business. But assuming constancy does not materially invalidate
our model. Its emphasis is on contracts and their implied actions — and
these are unchanged wrt. constancy or variability of contract holders.

75. There is an initial bus traffic, tr.
76. There is an initial time, t0, which is equal to or larger than the start of

the bus traffic tr.
77. To maintain the bus traffic “spelled out”, in total, by timetable tt one

needs a number of buses.
78. The various bus companies (that is, sub-contractors) each have a number

of buses. Each bus, independent of ownership, has a unique (car number
plate) bus number (BusNo).
These buses have distinct bus (number [registration] plate) numbers.

79. We leave it to the reader to define a function which ascertain the minimum
number of buses needed to implement traffic tr.

22In this way one can, from the bus history component ascertain for any bus which
for whom (sub-contractor), with respect to which license, it carried out a further
bus line and bus ride identified tour and its trace.

316 10 Towards a Family of Script Languages

value

73. net : N,
74. leens : LeeNm-set,
75. tr : BusTraffic, axiom wf Traffic(tr)(net)
76. t0 : T • t0 ≥ mindom tr,
77. min no of buses : Nat • necessary no of buses(itt),
78. busnos : BusNo-set • cardbusnos ≥ min no of buses

79. necessary no of buses: TT → Nat

80. To “bootstrap” the whole contract system we need a distinguished con-
tractor, named init leen, whose only license originates with a “ghost”
contractor, named root leen (o, for outside [the system]).

81. The initial, i.e., the distinguished, contract has a name, root licn.
82. The initial contract can only perform the "sublicense" operation.
83. The initial contract has a timetable, tt.
84. The initial contract can thus be made up from the above.

value

80. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
81. root licn : LicNm
82. iops : Op-set = {′′sublicense′′},
83. itt : TT,
84. init lic:License = (root licn,root leen,(iops,itt),init leen)

Initial sub-contractor contract States

type

InitLicΣs = LeeNm →m LicΣ
value

ilσ:LicΣ=([init leen 7→ [root leen 7→ [iln 7→ init lic]]]
∪ [leen 7→ [] | leen:LeeNm • leen ∈ leenms\{init leen}],[],[])

Initial sub-contractor Bus States

85. Initially each sub-contractor possesses a number of buses.
86. No two sub-contractors share buses.
87. We assume an initial assignment of buses to bus stops of the free buses

state component and for respective contracts.
88. We do not prescribe a “satisfiable and practical” such initial assignment

(ibσs).
89. But we can constrain ibσs.
90. The sub-contractor names of initial assignments must match those of ini-

tial bus assignments, allbuses.
91. Active bus states must be empty.

10.6 A Transport Contract Language 317

92. No two free bus states must share buses.
93. All bus histories are void.

type

85. AllBuses′ = LeeNm →m BusNo-set
86. AllBuses = {|ab:AllBuses′•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
87. InitBusΣs = LeeNm →m BusΣ
value

86. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

87. ibσs:InitBusΣs
88. wf InitBusΣs: InitBusΣs → Bool

89. wf InitBusΣs(iσs) ≡
90. dom iσs = leenms ∧
91. ∀ (,abσ,):BusΣ•(,abσ,) ∈ rng iσs ⇒ abσ=[] ∧
92. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

92. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
92. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)
92. ⇒ rng fbiσ ∩ rng fbjσ = {}
93. ∧ actiσ=[]=actjσ

Communication Channels The running state is a meta notion. It reflects the
channels over which contracts are issued; messages about committed, cancelled
and inserted bus rides are communicated, and fund transfers take place.

Sub-Contractor↔Sub-Contractor Channels Consider each sub-contractor
(same as contractor) to be modelled as a behaviour. Each sub-contractor (li-
censor) behaviour has a unique name, the LeeNm. Each sub-contractor can
potentially communicate with every other sub-contractor. We model each such
communication potential by a channel. For n sub-contractors there are thus
n × (n − 1) channels.

channel { l to l[fi,ti] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi6=ti } LLMSG
type LLMSG = ...

We explain the declaration: channel { l to l[fi,ti] | fi:LeeNm, ti:LeeNm • fi 6=ti
} LLMSG. It prescribes n × (n − 1) channels (where n is the cardinality of
the sub-contractor name sets). Each channel is prescribed to be capable of
communicating messages of type MSG. The square brackets [...] defines l to l
(sub-contractor-to-sub-contractor) as an array.

We shall later detail the BusRideNote, CancelNote, InsertNote and FundXfer
message types.

Sub-Contractor↔Bus Channels Each sub-contractor has a set of buses.
That set may vary. So we allow for any sub-contractor to potentially commu-
nicate with any bus. In reality only the buses allocated and scheduled by a
sub-contractor can be “reached” by that sub-contractor.

318 10 Towards a Family of Script Languages

channel { l to b[l,b] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

Sub-Contractor↔Time Channels Whenever a sub-contractor wishes to
perform a contract operation that sub-contractor needs know the time. There
is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[l] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

Bus↔Traffic Channels Each bus is able, at any (known) time to ascertain
where in the traffic it is. We model bus behaviours as processes, one for each
bus. And we model global bus traffic as a single, separate behaviour.

channel { b to tr[b] | b:BusNo • b ∈ busnos } LTrMSG
type

BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

Buses↔Time Channel Each bus needs to know what time it is.

channel { b to t[b] | b:BNo • b ∈ busnos } BTMSG
type

BTMSG ...

Local sub-contractor Bus States: Update Functions

value

update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡

let (blid,bid,licn,leen,trace) = actσ(bno) in

actσ†[bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉)] end

pre bno ∈ dom actσ

value

update FreeΣ ActΣ:
BNo×BusStop→BusΣ→BusΣ

update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡
let (, , , ,trace) = actσ(b) in

let freeσ′ = freeσ†[bs 7→ (freeσ(bs))∪{b}] in

(freeσ′,actσ\{b}) end end

pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

10.6 A Transport Contract Language 319

value

update LorBusΣ:
LorNm×lin:LicNm×len:LeeNm×(BLId×BId)×(BNo×Trace)→LorBusΣ

→ out {l to l[len,lorn]|lon:LorNm•lon ∈ leens\{len}} LorΣ
update LorBusΣ(lon,lin,len,(bli,bi),(bno,tr))(lbσ) ≡

l to l[len,lon]!Licensor BusHistΣMsg(bno,bli,bi,lin,len,tr) ;
lbσ†[len7→(lbσ(len))†[lin7→((lbσ(len))(lin))†[(bli,bi)7→(bno,trace)]]]
pre len ∈ dom lbσ ∧ lin ∈ dom (lbσ(len))

value

update ActΣ FreeΣ:
LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo

update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡
let bno:Bno • bno ∈ freeσ(bs) in

((freeσ\{bno},actvσ ∪ [bno 7→(blid,bid,licnm,leenm,〈〉)]),bno) end

pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ ...

Run-time Environment So we shall be modelling the transport contract do-
main as follows: As for behaviours we have this to say. There will be n
sub-contractors. One sub-contractor will be initialised to one given license.
You may think of this sub-contractor being the transport authority. Each
sub-contractor is modelled, in RSL, as a CSP-like process. With each sub-
contractor, li, there will be a number, bi, of buses. That number may vary
from sub-contractor to sub-contractor. There will be bi channels of commu-
nication between a sub-contractor and that sub-contractor’s buses, for each
sub-contractor. There is one global process, the traffic. There is one channel
of communication between a sub-contractor and the traffic. Thus there are n
such channels.

As for operations, including behaviour interactions we assume the follow-
ing. All operations of all processes are to be thought of as instantaneous, that
is, taking nil time ! Most such operations are the result of channel communi-
cations either just one-way notifications, or inquiry requests. Both the former
(the one-way notifications) and the latter (inquiry requests) must not be in-
definitely barred from receipt, otherwise holding up the notifier. The latter
(inquiry requests) should lead to rather immediate responses, thus must not
lead to dead-locks.

The System Behaviour

The system behaviour starts by establishing a number of licenseholder and
bus ride behaviours and the single time clock and bus traffic behaviours

value

system: Unit → Unit

system() ≡

320 10 Towards a Family of Script Languages

licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})
‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)

| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})
‖ time clock(t0) ‖ bus traffic(tr)

The initial licenseholder behaviour states are individually initialised with ba-
sically empty license states and by means of the global state entity bus states.
The initial bus behaviours need no initial state other than their bus regis-
tration number, a “nil” route prescription, and their allocation to contract
holders as noted in their bus states.

Only a designated licenseholder behaviour is initialised to a single, received
license.

Semantic Elaboration Functions

The Licenseholder Behaviour

94. The licenseholder behaviour is a sequential, but internally non-deterministic
behaviour.

95. It internally non-deterministically (⌈⌉) alternates between
(a) performing the licensed operations (on the net and with buses),
(b) receiving information about the whereabouts of these buses, and in-

forming contractors of its (and its subsub-contractors’) handling of
the contracts (i.e., the bus traffic), and

(c) negotiating new, or renewing old contracts.

94. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit

95. licenseholder(leen)(licσ,busσ) ≡
95. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

The Bus Behaviour

96. Buses ply the network following a timed bus route description.
A timed bus route description is a list of timed bus stop visits.

97. A timed bus stop visit is a pair: a time and a bus stop.
98. Given a bus route and a bus schedule one can construct a timed bus route

description.
(a) The first result element is the first bus stop and origin departure time.
(b) Intermediate result elements are pairs of respective intermediate sched-

ule elements and intermediate bus route elements.
(c) The last result element is the last bus stop and final destination arrival

time.
99. Bus behaviours start with a “nil” bus route description.

10.6 A Transport Contract Language 321

type

96. TBR = TBSV∗

97. TBSV = Time × BusStop
value

98. conTBR: BusRoute × BusSched → TBR
98. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
98(a)) 〈(dt,bs1)〉
98(b)) ̂ 〈(til[i],bsl[i])|i:Nat•i:〈1..len til〉〉
98(c)) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type

99. BRD == ′′nil′′ | TBR

100. The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

101. The bus repeatedly observes the time, t, and its position, po, in the traffic.
102. There are now four case distinctions to be made.
103. If the bus is idle (and a a bus stop) then it waits for a next route, brd′ on

which to engage.
104. If the bus is at the destination of its journey then it so informs its owner

(i.e., the sub-contractor) and resumes being idle.
105. If the bus is ‘en route’, at a bus stop, then it so informs its owner and

continues the journey.
106. In all other cases the bus continues its journey

value

100. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
100. in,out l to b[leen,bno], in,out b to tr[bno], in b to t[bno] Unit

100. bus ride(leen,bno)(licn,brd) ≡
101. let t = b to t[bno]? in

101. let (bus,pos) = (b to tr[bno]!reqBusAndPos(bno,t) ; b to tr[bno]?) in

102. case (brd,pos) of

103. (′′nil′′,mkAtBS(, , ,)) →
103. let (licn,brd′) = (l to b[leen,bno]!reqBusRid(pos);l to b[leen,bno]?) in

103. bus ride(leen,bno)(licn,brd′) end

104. (〈(at,pos)〉,mkAtBS(, , ,)) →
104s l to b[l,b]!BusΣMsg(t,pos);
104 l to b[l,b]!BusHistΣMsg(licn,bno);
104 l to b[l,b]!FreeΣ ActΣMsg(licn,bno) ;
104 bus ride(leen,bno)(ilicn,′′nil′′),
105. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS(, , ,)) →
105s l to b[l,b]!BusΣMsg(t,pos) ;
105 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),
106. → bus ride(leen,bno)(licn,brd) end end end

322 10 Towards a Family of Script Languages

In formula line 101 of bus ride we obtained the bus. But we did not use “that”
bus ! We we may wish to record, somehow, number of passengers alighting
and boarding at bus stops, bus fees paid, one way or another, etc. The bus,
which is a time-dependent entity, gives us that information. Thus we can revise
formula lines 104s and 105s:

Simple: 104s l to b[l,b]!BusΣMsg(pos);
Revised: 104r l to b[l,b]!BusΣMsg(pos,bus info(bus));

Simple: 105s l to b[l,b]!BusΣMsg(pos);
Revised: 105r l to b[l,b]!BusΣMsg(pos,bus info(bus));

type

Bus Info = Passengers × Passengers × Cash × ...
value

bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

It is time to discuss our description (here we choose the bus ride behaviour)
in the light of our claim of modeling “the domain”. These are our comments:

• First one should recognise, i.e., be reminded, that the narrative and formal
descriptions are always abstractions. That is, they leave out few or many
things. We, you and I, shall never be able to describe everything there is
to describe about even the simplest entity, operation, event or behaviour.

The Global Time Behaviour

107. The time clock is a never ending behaviour — started at some time t0.
108. The time can be inquired at any moment by any of the licenseholder

behaviours and by any of the bus behaviours.
109. At any moment the time clock behaviour may not be inquired.
110. After a skip of the clock or an inquiry the time clock behaviour continues,

non-deterministically either maintaining the time or advancing the clock!

value

107. time clock: T →
107. in,out {l to t[leen] | leen:LeeNm • leen ∈ leenms}
107. in,out {b to t[bno] | bno:BusNo • bno ∈ busnos} Unit

107. time clock:(t) ≡
109. (skip ⌈⌉
108. (⌈⌉⌊⌋{l to t[leen]? ; l to t[leen]!t | leen:LeeNm•leen ∈ leens})
108. ⌈⌉ (⌈⌉⌊⌋{b to t[bno]? ; b to t[bno]!t | bno:BusNo•bno ∈ busnos})) ;
110. (time clock:(t) ⌈⌉ time clock(t+δt))

10.6 A Transport Contract Language 323

The Bus Traffic Behaviour

111. There is a single bus traffic behaviour. It is, “mysteriously”, given a con-
stant argument, “the” traffic, tr.

112. At any moment it is ready to inform of the position, bps(b), of a bus, b,
assumed to be in the traffic at time t.

113. The request for a bus position comes from some bus.
114. The bus positions are part of the traffic at time t.
115. The bus traffic behaviour, after informing of a bus position reverts to

“itself”.

value

111. bus traffic: TR → in,out {b to tr[bno]|bno:BusNo•bno ∈ busnos} Unit

111. bus traffic(tr) ≡
113. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[b]? in assert b=bno
112. if time 6∈ dom tr then chaos else

114. let (,bps) = tr(t) in

112. if bno 6∈ dom tr(t) then chaos else

112. b to tr[bno]!bps(bno) end end end end | b:BusNo•b ∈ busnos} ;
115. bus traffic(tr)

License Operations

116. The lic ops function models the contract holder choosing between and
performing licensed operations.
We remind the reader of the four actions that licensed operations may
give rise to; cf. the abstract syntax of actions, Page 311.

117. To perform any licensed operation the sub-contractor needs to know the
time and

118. must choose amongst the four kinds of operations that are licensed.
The choice function, which we do not define, makes a basically non-
deterministic choice among licensed alternatives. The choice yields the
contract number of a received contract and, based on its set of licensed
operations, it yields either a simple action or a sub-contracting action.

119. Thus there is a case distinction amongst four alternatives.
120. This case distinction is expressed in the four lines identified by: 120.
121. All the auxiliary functions, besides the action arguments, require the same

state arguments.

value

116. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
116. lic ops(leen)(licσ,busσ) ≡
117. let t = (time channel(leen)!req Time;time channel(leen)?) in

118. let (licn,act) = choice(licσ)(busσ)(t) in

119. (case act of

120. mkCon(blid,bid) → cndct(licn,leenm,t,act),

324 10 Towards a Family of Script Languages

120. mkCan(blid,bid) → cancl(licn,leenm,t,act),
120. mkIns(blid,bid) → insrt(licn,leenm,t,act),
120. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

Bus Monitoring Like for the bus ride behaviour we decompose the bus monitoring
behaviour into two behaviours. The local bus monitoring behaviour mon-
itors the buses that are commissioned by the sub-contractor. The licen-
sor bus monitoring behaviour monitors the buses that are commissioned by
sub-contractors sub-contractd by the contractor.

value

bus mon: l:LeeNm → (LicΣ×BusΣ)
→ in {l to b[l,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)

bus mon(l)(licσ,busσ) ≡
local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

122. The local bus monitoring function models all the interaction between a
contract holder and its despatched buses.

123. We show only the communications from buses to contract holders.
124. Etcetera.

122. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
123. → in {l to b[leen,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
122. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
124. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[l,b]?)|b:BNo•b ∈ allbuses(leen)} in

124. let (blid,bid,licn,lorn,trace) = abσ(bno) in

124. case msg of

124. BusΣMsg(t,bs) →
124. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in

124. (licσ,(fbσ,abσ′,histσ)) end,
124. BusHistΣMsg(licn,bno) →
124. let lbσ′ = update LorBusΣ
124. (obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in

124. l to l[leen,obs LorNm(licn)] !
124. Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
124. ((rlσ,slσ,lbσ′),busσ) end

124. FreeΣ ActΣMsg(licn,bno) →
124. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in

124. (licσ,(fbσ′,abσ′)) end

124. end end end

10.6 A Transport Contract Language 325

125. Reader is to provide the narrative!

125. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
125. → in {l to l[lorn,leen]|leen:LeeNm•leen ∈ leenms\{lorn}}
125. (LicΣ×BusΣ)
125. licensor bus mon(lorn)(licσ,busσ) ≡
125. let (rlσ,slσ,lbhσ) = licσ in

125. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))
125. = ⌈⌉⌊⌋{(leen′,l to l[lorn,leen′]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in

125. let lbhσ′ =
125. update BusHistΣ
125. (obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in

125. l to l[leenm,obs LorNm(licnm)] !
125. Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
125. ((rlσ,slσ,lbhσ′),busσ)
125. end end end

The Conduct Bus Ride Action

126. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that the timetable in the contract named ln does

indeed provide a journey, j, indexed by bli and (then) bi, and that that
journey starts (approximately) at time t′ which is the same as or later
than t.

(c) Being so the action results in the contractor, whose name is “embed-
ded” in ln, receiving notification of the bus ride commitment.

(d) Then a bus, selected from a pool of available buses at the bust stop of
origin of journey j, is given j as its journey script, whereupon that bus,
as a behaviour separate from that of sub-contractor li, commences its
ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this is
reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ notifi-
cation, records the bus as no longer in actions but available at the
destination bus stop.

The Cancel Bus Ride Action

127. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes place
in a context and shall have the following effect:

326 10 Towards a Family of Script Languages

(a) The action is performed by contractor li and at time t. This is known
from the context.

(b) First a check like that prescribed in Item 126(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the bus ride can-
cellation.
That’s all !

The Insert Bus Ride Action

128. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes place in
a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First a check like that prescribed in Item 126(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the new bus ride
commitment.

(d) The rest of the effect is like that prescribed in Items 126(d))–126(g)).

The Contracting Action

129. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes
place in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that timetable tt is a subset of the timetable con-

tained in, and that the operations ops are a subset of those granted
by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,-
tt′),li′). ln′ is a unique new contract name computed on the basis of
ln, li, and t. li′ is a sub-contractor name chosen by contractor li. tt′ is
a timetable chosen by contractor li. ops′ is a set of operations likewise
chosen by contractor li.

(d) This contract is communicated by contractor li to sub-contractor li′.
(e) The receipt of that contract is recorded in the license state.
(f) The fact that the contractor has sublicensed part (or all) of its obli-

gation to conduct bus rides is recorded in the modified component of
its received contracts.

10.6.3 Discussion

10.7 Conclusion

It really is too early — in the development of the topic of this chapter — to
conclude!

10.7.1 Achievements

What Did We Wish to Achieve?

Or rather, at this early, incomplete stage, what do we wish to achieve? In
a first round we wish to achieve the following: an understanding of different
kinds of license languages; an understanding of obligations and permissions
(yet to be “designed” more explicitly into the three languages; a formalisation
of both common aspects of the license systems (as a “vastly” distributed set
of very many actors acting on even more licenses “competing” for resources,
etc.), as well as of each individual language.

What Have We Achieved?

We think we have achieved what we set out to achieve.

What Do We Now Wish to Achieve?

First we would like to complete the full formalisation of each of the four lan-
guages: three license languages and one contract language. Based on those
four formalisations we hope to be able to identify some common, better for-
malised, i.e., parametrised, license and contract concepts and thus to “lift”
the four sets of syntaxes, well-formedness predicates and semantic functions
into one set of parametrised functions and syntaxes. We think that given such
four, widely separate examples and their parametrised “lifting” we can offer
better contract and license language design, parametrised formalisations and
common parametrised implementation software designs.

Part IV

Example Appendices

Appendices A–E (Pages 331–411) were respective appendices of JAIST
Technical Memorandum [28]. Relative to the purposes of issuing [28] these
appendices were meant as examples — of a sufficient “spread” — intended
to “convince” management, i.e., the readers of [28], that domain engineering
does indeed address their concerns.

A

Business Processes (BP) and BP Reengineering

Summary

By a business process we understand a behaviour, usually involving several
actors, that is, staff of the domain enterprise(s), whose purpose it is to
fulfil a business objective: a transaction, a production, a service.

By business process reengineering we understand a design that pro-
poses changes to the current business processes of the domain enter-
prise(s).

We refer to Sect. 1.1.5 on page 10 for a first mentioning of the concept
of business processes and business process reengineering.

We repeat that section:

Crucial elements in software engineering and in providing ser-
vices to IT clients is that of identifying the business processes
and suggesting the revision of business processes. With care-
fully worked-out domain descriptions the pursuit of business
process engineering and reengineering takes on a far more pro-
fessional rôle. We therefore claim that pursuing serious domain
engineering helps consultancy firms better advise their clients.

A.1 Business Process Engineering

We rough-sketch a number of business process examples. In each example
we start, according to the principles and techniques enunciated above, with
identifying behaviours, events, and hence channels and the type of entities
communicated over channels, i.e. participating in events. Hence we shall em-
phasise, in these examples, the behaviour, or process diagrams. We leave it
to other examples to present other aspects, so that their totality yields the
principles, the techniques and the tools of domain description.

332 A Business Processes (BP) and BP Reengineering

A.1.1 Air Traffic Business Processes

The main business process behaviours of an air traffic system are the follow-
ing: (i) the aircraft, (ii) the ground control towers, (iii) the terminal control
towers, (iv) the area control centres and (v) the continental control centres
Cf. Fig. A.1.

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Fig. A.1. An air traffic behavioural system abstraction

We describe each of these behaviours separately:
(i) Aircraft get permission from ground control towers to depart; proceed

to fly according to a flight plan (an entity); keep in contact with area control
centres along the route, (upon approach) contacting terminal control towers
from which they, simplifying, get permission to land; and upon touchdown,
changing over from terminal control tower to ground control tower guidance.

(ii) The ground control towers, on one hand, take over monitoring and
control of landing aircraft from terminal control towers; and, on the other
hand, hand over monitoring and control of departing aircraft to area control
centres. Ground control towers, on behalf of a requesting aircraft, negotiate
with destination ground control tower and (simplifying) with continental con-
trol centres when a departing aircraft can actually start in order to satisfy
certain “slot” rules and regulations (as one business process). Ground control
towers, on behalf of the associated airport, assign gates to landing aircraft,
and guide them from the spot of touchdown to that gate, etc. (as another
business process).

(iii) The terminal control towers play their major rôle in handling air-
craft approaching airports with intention to land. They may direct these to
temporarily wait in a holding area. They — eventually — guide the aircraft
down, usually “stringing” them into an ordered landing queue. In doing this
the terminal control towers take over the monitoring and control of landing

A.1 Business Process Engineering 333

aircraft from regional control centres, and pass their monitoring and control
on to the ground control towers.

(iv) The area control centres handle aircraft flying over their territory:
taking over their monitoring and control either from ground control towers,
or from neighbouring area control centres. Area control centres shall help en-
sure smooth flight, that aircraft are allotted to appropriate air corridors, if
and when needed (as one business process), and are otherwise kept informed
of “neighbouring” aircraft and weather conditions en route (other business
processes). Area control centres hand over aircraft either to terminal con-
trol towers (as yet another business process), or to neighbouring area control
centres (as yet another business process).

(v) The continental control centres monitor and control, in collaboration
with regional and ground control centres, overall traffic in an area comprising
several regional control centres (as a major business process), and can thus
monitor and control whether contracted (landing) slot allocations and sched-
ules can be honoured, and, if not, reschedule these (landing) slots (as another
major business process).

From the above rough sketches of behaviours the domain engineer then
goes on to describe types of messages (i.e., entities) between behaviours, types
of entities specific to the behaviours, and the functions that apply to or yield
those entities.

A.1.2 Freight Logistics Business Processes

The main business process behaviours of a freight logistics system are the
following: (i) the senders of freight, (ii) the logistics firms which plan and
coordinate freight transport, (iii) the transport companies on whose conveyors
freight is being transported, (iv) the hubs between which freight conveyors
“ply their trade”, (v) the conveyors themselves and (vi) the receivers of freight
(Fig. A.2 on the next page). A detailed description for each of the freight
logistics business process behaviours listed above should now follow. We leave
this as an exercise to the reader to complete.

A.1.3 Harbour Business Processes

The main business process behaviours of a harbour system are the following:
(i) the ships who seek harbour to unload and load cargo at a harbour quay, (ii)
the harbourmaster who allocates and schedules ships to quays, (iii) the quays
at which ships berth and unload and load cargo (to and from a container area)
and (iv) the container area which temporarily stores (“houses”) containers
(Fig. A.3 (Page 335)). There may be other parts of a harbour: a holding area
for ships to wait before being allowed to properly enter the harbour and be
berthed at a buoy or a quay, or for ships to rest before proceeding; as well
as buoys at which ships may be anchored while unloading and loading. We

334 A Business Processes (BP) and BP Reengineering

S[1]

S[2]

S[s]

T[1] T[2] T[t]

R[1]

R[2]

R[r]

C[c]C[2]C[1]H[h]H[2]H[1]

......

...
...

...
...

F[1] F[2] F[f]

th/ht[1..t,1..h]:TH|HT

hc/ch[1..h,1..c]:HC|CH

sf
/f

s[
1.

.s
,1

..f
]:

S
F

|F
S

fh
/h

f[
1.

.f
,1

..h
]:

F
G

|H
F

tc
/c

t[
1.

.t
,1

..c
]:

T
C

|C
T

fr/rf[1..f,1..r]:FR|RF

sr/rs[1..s,1..r]:SR|RS

ft/tf[1..f,1..t]:FT|TF

Logistics Firms Transport Companies

Hubs

Senders Receivers

Conveyors

Fig. A.2. A freight logistics behavioural system abstraction

shall assume that the reader can properly complete an appropriate, realistic
harbour domain.

A detailed description for each of the harbour business process behaviours
listed above should now follow. We leave this as an exercise to the reader to
complete.

A.1.4 Financial Service Industry Business Processes

The main business process behaviours of a financial service system are the fol-
lowing: (i) clients, (ii) banks, (iii) securities instrument brokers and traders,
(iv) portfolio managers, (v) (the, or a, or several) stock exchange(s), (vi) stock
incorporated enterprises and (vii) the financial service industry “watchdog”.
We rough-sketch the behaviour of a number of business processes of the fi-
nancial service industry.

(i) Clients engage in a number of business processes: (i.1) they open, de-
posit into, withdraw from, obtain statements about, transfer sums between
and close demand/deposit, mortgage and other accounts; (i.2) they request
brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers
to look after their bank and securities instrument assets, and occasionally they
reinstruct portfolio managers in those respects.

A.2 Business Process Reengineering Requirements 335

...

...

......

...

...

... ...

Harbour Master

Quay
Q1

Quay
Q2

Quay
Qq

Ship
S1

Ship

Ship
Ss

C
o

n
ta

in
er

 A
re

a

qh/hq[2]:QH|HQ

sh/hs[s’]:SH|HS

Ss’
sq/qs[s’,2]:SQ|QS

Fig. A.3. A harbour behavioural system abstraction

(ii) Banks engage with clients, portfolio managers, and brokers and traders
in exchanges related to client transactions with banks, portfolio managers, and
brokers and traders, as well as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio
managers and the stock exchange(s) in exchanges related to client transactions
with brokers and traders, and, for traders, as well as with the stock exchange(s)
on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders
in exchanges related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog,
with brokers and traders, and with the stock listed enterprises, reinforcing
trading practices, possibly suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They
send reports, according to law, of possible major acquisitions, business devel-
opments, and quarterly and annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.

A.2 Business Process Reengineering Requirements

Characterisation 1 (Business Process Reengineering) By business pro-
cess reengineering we understand the reformulation of previously adopted
business process descriptions, together with additional business process engi-
neering work.

336 A Business Processes (BP) and BP Reengineering

Clients

Banks

B[1] B[2] B[b]

P[1] P[2] P[p]

C[c]

C[2]

C[1]

Brokers
Traders

T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

p
b

/b
p

[1
..p

,1
..b

]:
P

B
|B

P

Portfolio Managers

T
h

e
F

in
an

ce
 In

d
u

st
ry

 "
W

at
ch

d
o

g
"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]

...

...

...

... ...

is/si[1..i]:IS|SI

Fig. A.4. A financial behavioural system abstraction

Business process reengineering (BPR) is about change, and hence BPR is also
about change management. The concept of workflow is one of these “hyped” as
well as “hijacked” terms: They sound good, and they make you “feel” good.
But they are often applied to widely different subjects, albeit having some
phenomena in common. By workflow we shall, very loosely, understand the
physical movement of people, materials, information and “centre (‘locus’) of
control” in some organisation (be it a factory, a hospital or other). We have,
in Vol. 1, Chap. 12 (Petri Nets), in Sect. 12.5.1 covered the notion of work
flow systems.

A.2.1 Michael Hammer’s Ideas on BPR

Michael Hammer, a guru of the business process reengineering “movement”,
states [119]:

1. Understand a method of reengineering before you do it for serious.

So this is what this appendix is all about!

2. One can only reengineer processes.

Clearly Hammer utters an untenable dogma!

3. Understanding the process is an essential first step in reengineering.

And then he goes on to say: “but an analysis of those processes is a waste
of time. You must place strict limits, both on time you take to develop this
understanding and on the length of the description you make.” Needless to say
we question this latter part of the third item. We think it is very dangerous to

A.2 Business Process Reengineering Requirements 337

not do a careful analysis of the business processes, yes, indeed of their entire
domain!

4. If you proceed to reengineer without the proper leadership, you are making
a fatal mistake. If your leadership is nominal rather than serious, and isn’t
prepared to make the required commitment, your efforts are doomed to
failure.

By leadership is basically meant: “upper, executive management”.

5. Reengineering requires radical, breakthrough ideas about process design.
Reengineering leaders must encourage people to pursue stretch goals1 and
to think out of the box; to this end, leadership must reward creative
thinking and be willing to consider any new idea.

This is clearly an example of the US guru, “new management”-type ‘speak’ !

6. Before implementing a process in the real world create a laboratory version
in order to test whether your ideas work. . . . Proceeding directly from idea
to real-world implementation is (usually) a recipe for disaster.

Our careful both informal and formal description of the existing domain pro-
cesses as well as the similarly careful prescription of the reengineered business
processes shall, in a sense, make up for this otherwise vague term “laboratory
version”.

7. You must reengineer quickly. If you can’t show some tangible results within
a year, you will lose the support and momentum necessary to make the
effort successful. To this end “scope creep” must be avoided at all cost.
Stay focused and narrow the scope if necessary in order to get results fast.

We obviously do not agree, in principle and in general, with this statement.

8. You cannot reengineer a process in isolation. Everything must be on the
table. Any attempts to set limits, to preserve a piece of the old system,
will doom your efforts to failure.

We can only agree. But the wording is like mantras. As a software engineer,
founded in science, such statements as the above are not technical, are not
scientific. They are “management speak”.

9. Reengineering needs its own style of implementation: fast, improvisational,
and iterative.

We are not so sure about this statement either! Professional engineering work
is something one neither does fast nor improvisational.

1A ‘stretch goal’ is a goal, an objective, for which, if one wishes to achieve that
goal, one has to stretch oneself.

338 A Business Processes (BP) and BP Reengineering

10. Any successful reengineering effort must take into account the personal
needs of the individuals it will affect. The new process must offer some
benefit to the people who are, after all, being asked to embrace enormous
change, and the transition from the old process to the new one must be
made with great sensitivity as to their feelings.

This is nothing but a politically correct, pat statement! It would not pass the
negation test: Nobody would claim the opposite. Real benefits of reengineering
often come from not requiring as many people, i.e., workers and management,
in the corporation as before reengineering. Hence: What about the “feelings”
of those laid off?

A.2.2 What Are BPR Requirements?

Two “paths” lead to business process reengineering:

• A client wishes to improve enterprise operations by deploying new comput-
ing systems (i.e., new software). In the course of formulating requirements
for this new computing system a need arises to also reengineer the human
operations within and without the enterprise.

• An enterprise wishes to improve operations by redesigning the way staff
operates within the enterprise and the way in which customers and staff
operate across the enterprise-to-environment interface. In the course of for-
mulating reengineering directives a need arises to also deploy new software,
for which requirements therefore have to be enunciated.

One way or the other, business process reengineering is an integral component
in deploying new computing systems.

A.2.3 Overview of BPR Operations

We suggest six domain-to-business process reengineering operations:

1. introduction of some new and removal of some old intrinsics;
2. introduction of some new and removal of some old support technologies;
3. introduction of some new and removal of some old management and or-

ganisation substructures;
4. introduction of some new and removal of some old rules and regulations;
5. introduction of some new and removal of some old work practices (relating

to human behaviours); and
6. related scripting.

A.2 Business Process Reengineering Requirements 339

A.2.4 BPR and the Requirements Document

The reader must be duly “warned”: The BPR requirements are not for a
computing system, but for the people who “surround” that (future) system.
The BPR requirements state, unequivocally, how those people are to act, i.e.,
to use that system properly. Any implications, by the BPR requirements, as
to concepts and facilities of the new computing system must be prescribed
(also) in the domain and interface requirements.

Intrinsics Review and Replacement

Characterisation 2 (Intrinsics Review and Replacement) By intrin-
sics review and replacement we understand an evaluation as to whether cur-
rent intrinsics stays or goes, and as to whether newer intrinsics need to be
introduced.

Example A.1 Intrinsics Replacement: A railway net owner changes its busi-
ness from owning, operating and maintaining railway nets (lines, stations and
signals) to operating trains. Hence the more detailed state changing notions
of rail units need no longer be part of that new company’s intrinsics while the
notions of trains and passengers need be introduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the business
and are usually not done in connection with subsequent and related software
requirements development.

Support Technology Review and Replacement

Characterisation 3 (Support Technology Review and Replacement)
By support technology review and replacement we understand an evaluation
as to whether current support technology as used in the enterprise is adequate,
and as to whether other (newer) support technology can better perform the
desired services.

Example A.2 Support Technology Review and Replacement: Currently the
main information flow of an enterprise is taken care of by printed paper, copy-
ing machines and physical distribution. All such documents, whether originals
(masters), copies, or annotated versions of originals or copies, are subject to
confidentiality. As part of a computerised system for handling the future in-
formation flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private keys,
and digital signatures. However, it is realised that there can be a need for
taking physical, not just electronic, copies of documents. The following busi-
ness process reengineering proposal is therefore considered: Specially made
printing paper and printing and copying machines are to be procured, and

340 A Business Processes (BP) and BP Reengineering

so are printers and copiers whose use requires the insertion of special signa-
ture cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document. All copiers will refuse to copy such copied documents — hence the
special paper. Such paper copies can thus be read at, but not carried outside
the premises (of the printers and copiers). And such printers and copiers can
register who printed, respectively who tried to copy, which documents. Thus
people are now responsible for the security (whereabouts) of possible paper
copies (not the required computing system). The above, somewhat construed
example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business reengineered”
persons authorised to print and possess confidential documents.

It is implied in the above that the reengineered handling of documents
would not be feasible without proper computing support. Thus there is a
“spill-off” from the business reengineered world to the world of computing
systems requirements.

Management and Organisation Reengineering

Characterisation 4 (Management and Organisation Reengineering)
By management and organisation reengineering we understand an evaluation
as to whether current management principles and organisation structures as
used in the enterprise are adequate, and as to whether other management
principles and organisation structures can better monitor and control the
enterprise.

Example A.3 Management and Organisation Reengineering: A rather com-
plete computerisation of the procurement practices of a company is being
contemplated. Previously procurement was manifested in the following phys-
ically separate as well as design-wise differently formatted paper documents:
requisition form, order form, purchase order, delivery inspection form, rejec-
tion and return form, and payment form. The supplier had corresponding
forms: order acceptance and quotation form, delivery form, return acceptance
form, invoice form, return verification form, and payment acceptance form.
The current concern is only the procurement forms, not the supplier forms.
The proposed domain requirements are mandating that all procurer forms
disappear in their paper version, that basically only one, the procurement
document, represents all phases of procurement, and that order, rejection
and return notification slips, and payment authorisation notes, be effected by
electronically communicated and duly digitally signed messages that represent
appropriate subparts of the one, now electronic procurement document. The
business process reengineering part may now “short-circuit” previous staff’s
review and acceptance/rejection of former forms, in favour of fewer staff in-
terventions.

A.2 Business Process Reengineering Requirements 341

The new business procedures, in this case, subsequently find their way into
proper domain requirements: those that support, that is monitor and control
all stages of the reengineered procurement process.

Rules and Regulations Reengineering

Characterisation 5 (Rules and Regs. Reengineering) By rules and reg-
ulations reengineering we understand an evaluation as to whether current rules
and regulations as used in the enterprise are adequate, and as to whether other
rules and regulations can better guide and regulate the enterprise.

Here it should be remembered that rules and regulations principally stipulate
business engineering processes. That is, they are — i.e., were — usually not
computerised.

Example A.4 Rules and Regulations Reengineering: Assume now, due to
reengineered support technologies, that interlock signalling can be made mag-
nitudes safer than before, without interlocking. from: In any three-minute in-
terval at most one train may either arrive to or depart from a railway station
into: In any 20-second interval at most two trains may either arrive to or
depart from a railway station.

This reengineered rule is subsequently made into a domain requirements,
namely that the software system for interlocking is bound by that rule.

Human Behaviour Reengineering

Characterisation 6 (Human Behaviour Reengineering) By human be-
haviour reengineering we understand an evaluation as to whether current
human behaviour as experienced in the enterprise is acceptable, and as
to whether partially changed human behaviours are more suitable for the
enterprise.

Example A.5 Human Behaviour Reengineering: A company has experienced
certain lax attitudes among members of a certain category of staff. The
progress of certain work procedures therefore is reengineered, implying that
members of another category of staff are henceforth expected to follow up on
the progress of “that” work.

In a subsequent domain requirements stage the above reengineering leads
to a number of requirements for computerised monitoring of the two groups
of staff.

Script Reengineering

On one hand, there is the engineering of the contents of rules and regulations,
and, on another hand, there are the people (management, staff) who script
these rules and regulations, and the way in which these rules and regulations
are communicated to managers and staff concerned.

Characterisation 7 (Script Reengineering) By script reengineering we
understand evaluation as to whether the way in which rules and regulations
are scripted and made known (i.e., posted) to stakeholders in and of the
enterprise is adequate, and as to whether other ways of scripting and posting
are more suitable for the enterprise.

Example A.6 Script Reengineering: They illustrated the description of a
perceived bank script language. One that was used, for example, to explain to
bank clients how demand/deposit and mortgage accounts, and hence loans,
“worked”.

With the given set of “schematised” and “user-friendly” script commands,
such as they were identified in the referenced examples, only some banking
transactions can be described. Some obvious ones cannot, for example, merge
two mortgage accounts, transfer money between accounts in two different
banks, pay monthly and quarterly credit card bills, send and receive funds
from stockbrokers, etc.

A reengineering is called for, one that is first to be done in the basic
business processes of a bank offering such services to its customers.

A.2.5 Discussion: Business Process Reengineering

Who Should Do the Business Process Reengineering?

It is not in our power, as software engineers, to make the kind of business
process reengineering decisions implied above. Rather it is, perhaps, more the
prerogative of appropriately educated, trained and skilled (i.e., gifted) other
kinds of engineers or business people to make the kinds of decisions implied
above. Once the BP reengineering has been made, it then behooves the client
stakeholders to further decide whether the BP reengineering shall imply some
requirements, or not.

Once that last decision has been made in the affirmative, we, as software
engineers, can then apply our abstraction and modelling skills, and, while
collaborating with the former kinds of professionals, make the appropriate
prescriptions for the BPR requirements. These will typically be in the form
of domain requirements.

General

Business process reengineering is based on the premise that corporations must
change their way of operating, and, hence, must “reinvent” themselves. Some
enterprises are “vertically” structured along functions, products or geographi-
cal regions. Others are “horizontally” structured along coherent business pro-
cesses. In either case adjustments may need to be made as the business (i.e.,
products, sales, markets, etc.) changes.

B

Towards a Domain Model of Transportation

Summary

In this appendix we show a fragment of a domain model of transportation
nets. The presentation follows some of our description dogmas: Precise,
enumerated narratives: short sentences, carefully ordered and structured
— followed by formalisations whose lines are related back to the enumer-
ated narratives.

The entire appendix, Pages 343–369, covers only entities of the trans-
portation domain. Thus there is no coverage of operations, events and
behaviours. This, in the ears of most good programmers and of some
algebraic specification language afficionados, is contrary to their ’beliefs’.
Usually a data type is understood in terms of the operations upon data
values. But for such very concrete phenomena as transport[ation] nets,
such as we do indeed observe them, “out there”, in the actual domain,
for such entities we can spend a long time and quite some space just
trying to understand these concrete phenomena.

For the uninitiated reader we annotate the RSL formula, that is, explain
what these mean.

B.1 Net Topology

We conceptualise as segments the physically manifest phenomena of roads
(between adjacent street intersections), rail tracks (between adjacent train
stations), air-lanes (between adjacent airports) and shipping lanes (between
adjacent harbours). We likewise conceptualise as junctions the physically man-
ifest phenomena of street intersections, train stations, airports and harbours.

B.1.1 Nets, Segments and Junctions

1. Nets consists of one or more segments and two or more junctions.

344 B Towards a Domain Model of Transportation

type

N, S, J
value

obs Ss: N → S-set

obs Js: N → J-set
axiom

∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2

Annotations:
• N, S, J are considered abstract types, i.e., sorts. N, S and J are type

names, i.e., names of types of values. Values of type N are nets, values
of type S are segments and values of type J are junctions.

• One can observe from nets, n, their (one or more) segments (obs Ss(n))
and their (two or more) junctions (obs Js(n)); n is a value of type N.

• Functions have names, obs Ss, and obs Cs, and functions, f, have
signatures, f: A → B (not illustrated), where A and B are type names.
A designates the definition set of f and B the range set.

• A-set is a type expression. It denotes the type whose values are finite,
possibly empty set of A values.

• These observer functions are postulated.
• They cannot be formally defined.
• They are “defined” once a net has been pointed out1

• The axiom expresses that in any net there is at lest one segment and
at least two junctions.

sa

sc

sf

sd
se

sb

sh c5
sg

sj

sk

j6

j4

j7

j8

j2

j3

j1

Fig. B.1. A simple net of segments and junctions

Applying the observer functions to the net of Fig. B.1 yields:

1Take the transportation net Europe. By inspecting it, and by deciding which
segments and which associated junctions to focus on (i.e., “the interesting ones”)
we know which are all the interesting roads, rail tracks, air-lanes and shipping lanes,
respectively the interesting (associated) street intersections, trains stations, airports
and harbours.

B.1 Net Topology 345

obs Ss(n) = {sa,sb,sc,sd,se,sf,sg,sh,sj,sk}
obs Js(n) = {j1,j2,j3,j4,j5,j6,j7,j8}

Nets, segments and junctions are physically manifest, i.e., are phenomena.

B.1.2 Segment and Junction Identifications

2. We now assume that segments and junctions have unique identifications.

type

Si, Ji
value

obs Si: S → Si
obs Ji: J → Ji

Segment and junction identifications are mental concepts.
3. No two segments have the same segment identifier. And no two junctions

have the same junction identifier.

axiom

∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}

Annotations:
• card set expresses the cardinality of the set set, i.e., its number of

distinct elements.
• {f(a)|a:A • p(a)} expresses the set of all those B elements f(a) where a

is of type A and has property p(a) [where we do not further state f, A
and B. p is a predicate, i.e., a function, here from A into truth values
of type Bool, for Boolean].

• The axioms now express that the number of segments in n is the same
as the number of segment identifiers of n — which is a circumscription
for: No two segments have the same segment identifier.

• Similar for junctions.
The constraints that limit identification of segments and junctions can be
physically motivated: Think of the geographic (x, y, z co-ordinate) point
spaces “occupied” by a segment or by a junction. They must necessarily be
distinct for otherwise physically distinct segments and junctions. Segments
may thus cross each other without the crossing point (in x, y space) being
a junction, but, for example, one segment may, at the crossing point be
physically above the other segment (tunnels, bridges, etc.).

B.1.3 Segment and Junction Reference Identifications

4. Segments are delimited by two distinct junctions. From a segment one can
also observe, obs Cis, the identifications of the delimiting junctions.

346 B Towards a Domain Model of Transportation

type

Jip = {|{ji,ji′}:Ji-set • ji6=ji′|}
value

obs Jis: S → Jip

Annotations:
• {|a:A • p(a)|} is a subtype expression. It expresses a subset of type A,

namely those A values which enjoys property p(a) [p is a predicate,
i.e., a function, here from A into truth values in the type Bool]. In the
above p(a) is ji6=ji′.

• In this case Jip is the subtype of Ji-set whose values are exactly 2
element sets of Ji elements.

5. Any junction has a finite, but non-zero number of segments connected to
it. From a junction one can also observe, obs Sis, the identifications of
the connected segments.

type

Si1 = {|sis:Si-set•card sis ≥1|}
value

obs Sis: J → Si1

Annotations:
• Si1 is the type whose values are non-empty, but still finite sets of Si

values.
One cannot from a segment alone observe the connected junctions. One
can only refer to them. Similarly: one cannot from a junction alone observe
the connected segments. One can only refer to them. The identifications
serve the role of being referents.

6. In any net, if s is a segment connected to connectors identified by ji and
ji′, respectively, then there must exist connectors j and j′ which have these
identifications and such that the identification si of s is observable from
both j and j′.

axiom

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in

∃! j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ∧
obs Si(s) ∈ obs Sis(c) ∩ obs Sis(c′) end

Annotations:
• We read the above axiom:

⋆ for all nets n and for all segments s in n
⋆ let ji and ji′be the two distinct junction identifications observable

from s, then
⋆ exists exactly two distinct junctions, j and j′ of the net, such that
⋆ the segment identification of s is in both the sets of segment iden-

tifications observable from j and j′.

B.1 Net Topology 347

sf, sfi, {j4i,j8i}

se, sei, {j8i,j2i}

j8, j8i, {sei,sfi,ski}

sk, ski, {j7i,j8i}

Fig. B.2. One junction and its connected segments

Figure B.2 illustrates the relation between observed identifications of seg-
ments and junctions.
The above constraints take on the mantle of being laws of nets: If segments
and junctions otherwise have distinct identifications, then the above must
follow as a law of man-made artifacts.

7. Vice-versa: In any net, if j is a junction connecting segments identified by
si, si′, . . . , si′′ then there must exist segments s, s′, . . . , s′′ which have
these identifications and such that the identification ji of j is observable
from all s, s′, . . . , s′′.

axiom

∀ n:N, j:J • j ∈ obs Js(n) ⇒
let sis = obs Sis(c), ji = obs Ji(j) in

∃! ss:S-set • ss⊆obs Ss(n) ∧ card ss=card sis ∧
sis = {|obs Si(s)|s:S•s ∈ ss|} end

Annotations:
• Let us read the above axiom:

⋆ for all nets, n, and all junctions, j, of that net
⋆ let sis be the set of segment identifications observed from j, and let

ji be the junction identifier of j, then
⋆ there exists a unique set, ss, of segments of n with as many segments

as there are segment identifications in sis, and such that
⋆ sis is exactly the set of segment identifications of segments in ss.

B.1.4 Paths and Routes

8. By a path we shall understand a triplet of a junction identification, a
segment identification and a junction identification.

type

P = Ji × Si × Ji
value

348 B Towards a Domain Model of Transportation

paths: N → P-set

paths(n) ≡
{(ji,si,ji′) | s:S,ji,ji′:Ji,si:Si •

s ∈ obs Ss(n)∧{ji,ji′} ∈ obs Jis(s)∧si=obs Si(s)}

Annotations:
• Paths are modelled as Cartesians.
• One can generate all the paths of a net.
• It is the set of path triplets, two for each segment of the net and such

that the pair of junction identifications, ji and ji′, observable from a
segment is at either “end” of the triplet, and such that the segment
identification is common to the two triplets (and in the “middle”).

Paths, and as we shall see next, routes are mental concepts.
9. By a route of a net we shall understand a list, i.e., a sequence of paths as

follows:
• A sequence of just one path of the net is a route.
• If r and r′ are routes of the net such that the last junction identification,

ji, of the last path, (, ,ji) of r and the first junction identification,
ji′, of the first path (ji′, ,) of r′ are the same, i.e., ji=ji′, then r̂r′

is a route.
• Only routes that can be generated by uses of the first (the basis) and

the second (the induction) clause above qualify as proper routes of a
net.

type

R = {|r:P∗
•wf R(r)|}

value

wf R: P∗ → Bool

wf R(r) ≡
∀ i:Nat • {i,i+1}⊆inds(r) ⇒

let (, ,ji)=r(i), (ji′, ,)=r(i+1) in ji = ji′ end

routes: N → R-infset

routes(n) ≡
let rs = {〈p〉|p:P•p ∈ paths(n)}

∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)} in

rs end

Annotations:
• Routes are well-formed sequences of paths.
• A sequence of paths is a well-formed route if adjacent path elements

of the route share junction identification.
• Give a net we can compute all its routes as follows:

⋆ let rs be the set of routes to be computed. It consists first of all the
single path routes of the net.

B.1 Net Topology 349

⋆ Then rs also contains the concatenation of all pairs of routes, r and
r′, such that these are members of rs and such that their concate-
nation is a well-formed route.

⋆ If the net is circular then the set rs is an infinite set of routes. The
least fix point of the recursive equation in rs is the solution to the
“routes” computation.

B.1.5 Segment and Junction Identifications of Routes

10. For future purposes we need be able to identify various segment and junc-
tion identifications as well as various segments and junctions of a route.

value

xtr Jis: R → Ci-set, xtr Sis: R → Si-set
xtr Jis(r) ≡ case r of 〈〉 → {}, 〈(ji, ,ji′)〉̂r′ → {ji,ji′}∪ xtr Jis(r′) end

xtr Sis(r) ≡ case r of 〈〉 → {}, 〈(,si,)〉̂r′ → {si}∪ xtr Sis(r′) end

xtr Ss: N × Ji → S-set

xtr Ss(n,ji) ≡ {s|s:S•s ∈ obs Ss(n) ∧ ji ∈ obs Jis(s)}

xtr C: N × Ji → C, xtr S: N × Si → S
xtr C(n,ji) ≡ let j:J • j ∈ obs Js(n) ∧ ji=obs Ji(j) in j end

xtr S(n,si) ≡ let s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) in s end

first Ji: R
∼→ Ji, last Ji: R

∼→ Ji
first Ji(r) ≡ case r of 〈〉 → chaos, 〈(ji, ,)〉̂r′ → ji end

last Ji(r) ≡ case r of 〈〉 → chaos, r′̂〈(, ,ji)〉 → ji end

first Si: R
∼→ Si, last Si: R

∼→ Si
first Si(r) ≡ case r of 〈〉 → chaos, 〈(,si,)〉̂r′ → si end

last Si(r) ≡ case r of 〈〉 → chaos, r′̂〈(,si,)〉 → si end

first J: R × N
∼→ J, last J: R × N

∼→ J
first J(r,n) ≡ xtr J(first Ji(r),n)
last J(r,n) ≡ xtr J(last Ji(r),n)

first S: R × N
∼→ S, last S: R × N

∼→ S
first S(r,n) ≡ xtr S(first Si(r),n)
last S(r,n) ≡ xtr S(last Si(r),n)

Annotations:
• Given a route one can extract the set of all its junction identifications.

⋆ If the route is empty, then the set is empty.

350 B Towards a Domain Model of Transportation

⋆ If the route is not empty than it consists of at least one path and
the set of junction identifications is the pair of junction identifica-
tions of the path together with set of junction identifications of the
remaining route.

⋆ Possible double “counting up” of route adjacent junction identifica-
tions “collapse”, in the resulting set into one junction identification.
(Similarly for cyclic routes.)

• Given a route one can similarly extract the set of all its segment iden-
tifications.

• Given a net and a junction identification one can extract all the seg-
ments connected to the identified junction.

• Given a net and a junction identification one can extract the identified
junction.

• Given a net and a segment identification one can extract the identified
segment.

• Given a route one can extract the first junction identification of the
route.
⋆ This extraction should not be applied to empty routes.
⋆ A non-empty route can always be thought of as its first path and

the remaining route. The first junction identification of the route
is the first junction identification of that (first) path.

• Given a route one can similarly extract the last junction identification
of the route.

• Given a route one can similarly extract the first segment identification
of the route.

• Given a route one can similarly extract the last segment identification
of the route.

• And similarly for extracting the first and last junctions, respectively
first and last segments of a route.

B.1.6 Circular and Pendular Routes

11. A route is circular if the same junction identification either occurs more
than twice in the route, or if it occurs as both the first and the last junction
identification of the route. Given a net we can compute the set of all non-
circular routes by omitting from the above pairs of routes, r and r′, where
the two paths share more than one junction identification.

non circular routes: N → R-set

non circular routes(n) ≡
let rs = {〈p〉|p:P•p ∈ paths(n)}

∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)∧non circular(r,r′)} in

rs end

non circular: R×R → Bool

non circular(r,r′) ≡ card xtr Jis(r) ∩ xtr Jis(r′) =1

B.1 Net Topology 351

Annotations:
• To express the finite set of all non-circular routes

⋆ is to re-express the set of all routes
⋆ except constrained by the further predicate: non circular.

• An otherwise well-formed route consisting of a first part r and a re-
maining part r′

⋆ is non-circular if the two parts share at most one junction identifi-
cation.

sa

sc

sf

c4

sd

sh

sb
se

sj sk

sg

j1

j3

j2

j8

j7
j5

j6

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i)>

Fig. B.3. A route, graphically and as an expression

sa

sc

sd

sb

sh

sk

sg

sf

se

sj

j1
j2

j3

j8

j7

j4

j6

j5

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i),(j8i,sfi,j4i),(j4i,sci,j7i)>

Fig. B.4. A circular route, graphically and as an expression

12. Let a path be (jif , si, jit), then (jit, si, jif) is a reverse path. That is:
the two junction identifications of a path are reversed in the reverse path.
A route, rr, is the reverse route of a route r if the ith path of rr is the

352 B Towards a Domain Model of Transportation

reverse path of the n− i+1’st path of r where n is the length of the route
r, i.e., its number of paths. A route is a pendular route if it is of an even
length and the second half (which is a route) is the reverse of the first half
route.

value

reverse: P → P
reverse(jif,si,jit) ≡ (jit,si,jif)

reverse: R → R
reverse(r) ≡

case r of

〈〉 → 〈〉,
〈(jif,si,jit)〉̂r′ → reverse(r′)̂〈(jit,si,jif)〉

end

reverse(r) ≡ 〈reverse(r(i))|i in [n..1]〉

pendular: R → R
pendular(r) ≡ r̂reverse(r)

is pendular(r) ≡ ∃ r′,r′′:R • r′̂r′′ = r ∧ r′′=reverse(r′)

Annotations:
• The reverse of a path is a path with the same segment identification,

but with reverse junction identifications.
• The reverse of a route, r, is

⋆ the empty route if r is empty, and otherwise
⋆ it is the reverse route of all of r except the first path of r concatenate

(juxtaposed) with the singleton route of the reverse path of the first
path of r.

• Given a route, r, we can construct a pendular route whose first half is
the route r and whose last half is the reverse route of r.

• A (an even length) route is a pendular route if it can be expressed as
the concatenation of two (equal length) routes, r′ and r′′ such that r′′

is the reverse of r′, that is, if its second half is the reverse of its first
half.

B.1.7 Connected Nets

13. A net is connected if for any two junctions of the net there is a route
between them.

value

is connected: N → Bool

is connected(n) ≡

B.1 Net Topology 353

∀ j,j′:J • {j,j′}⊆obs Js(n) ∧ j6=j′ ⇒
let (ji,ji′) = (obs Ji(j),obs Ji(j′)) in

∃ r:R • r ∈ routes(n) ∧
first Ji(r) = ji ∧ last Ji(r) = ji′ end

Annotations:
• A net n is connected if

⋆ for all two distinct connectors of the net
⋆ where ji and ji′ are their junction identifications,
⋆ there exists a route, r, of the net,
⋆ whose first junction identification is ji and whose last junction iden-

tification is ji′.

B.1.8 Net Decomposition

14. One can decompose a net into all its connected subnets. If a net exhaus-
tively consists of m disconnected nets, then for any pair of nets in different
disconnected nets it is the case that they share no junctions and no seg-
ments. The set of disconnected nets is the smallest such set that together
makes up all the segments and all the junctions of the (“original”) net.

value

decompose: N → N-set

decompose(n) as ns
obs Ss(n) = ∪{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
obs Js(n) = ∪{obs Js(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Js(n′)|n′:N•n′ ∈ ns} ∧
∀ n′:N•n′ ∈ ns ⇒ connected(n′) ∧ ...

Annotations:
• A set ns of nets constitutes a decomposition of a net, n,

(a) if all the segments of n appear in some net of ns,
(b) if all the junctions of n appear in some net of ns,
(c) if no two or more distinct nets of ns share segments,
(d) if no two or more distinct nets of ns share junctions, and
(e) if all nets of ns are connected.

• Comment: It appears that items 3 and 4 are unnecessary, that is, are
properties once items 1, 2 and 5 hold.

That is, we have the following:

Lemma:

∀ n:N •

let ns = decompose (n) in

∀ n′,n′′:N • {n′,n′′}⊆ns ∧ n′6=n′′ ⇒

354 B Towards a Domain Model of Transportation

obs Ss(n′) ∩ obs Ss(n′′) = {} ∧
obs Js(n′) ∩ obs Js(n′′) = {} end

The above 14 items define a lot of what there is to know about transporta-
tion nets if we only operate with the sorts that have been introduced (N,
S, Si, J, Ji) and the observer functions that have likewise been introduced
(obs Ss, obs Js, obs Si, obs Ji, obs Jis and obs Sis). The relationships be-
tween sorts, i.e., net, segment, segment identification, junction and junction
identification values are expressed by the axioms. The above is a so-called
property-oriented model of the topology of transportation nets. That model
is abstract in that it does not hint at a mathematical model or at a data struc-
ture representation of nets, segments and junctions, let alone their topology.
By topology we shall here mean how segments and junctions are “wired up”.
The axioms above guarantee that no segment of a net is left “dangling”: It is
always connected to two distinct junctions; and no junctions of a net is left
isolated: It is always connected to some segments of the net.

We have tacitly assumed that all segments are two way segments, that is,
transport can take place i either direction. Hence a segment gives rise to two
paths.

B.2 Multi-Modal Nets

Interesting transportation nets are multi-modal. That is, consists of segments
of different transport modalities: roads, rails, air-lanes, shipping lanes, and,
within these of different categories. Thus roads can be either freeways, motor-
ways, ordinary highways, and so on.

B.2.1 General Issues

15. We introduce a concept, M, of transport mode. M is a small set of distinct,
but otherwise further undefined tokens. An m in M designates a transport
modality.

type

M

B.2.2 Segment and Junction Modes

16. With each segment, s, we can associate a single mode, m, and with each
junction we can associate the set of modes of its connected segments.

value

obs M: S → M
obs Ms: J → M-set

B.2 Multi-Modal Nets 355

axiom

∀ n:N, j:J • j ∈ obs Js(n) ⇒
let ss = xtr Ss(n,obs Ji(j)) in

obs Ms(j) = {obs M(s)|s:S • s ∈ ss} end

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in

let {j,j′} = {xtr J(n,ji),xtr J(n,ji′)} in

obs M(s) ∈ obs Ms(j) ∩ obs Ms(j′) end end

Annotations:
• From a segment one can observe its mode.
• From a junction one can observe its set of modes.
• Let us read the first axiom:

⋆ for all net, n, and all junctions, j, of that net
⋆ let ss be the set of segments connected to j,
⋆ now the set of modes of c is equal to the set of modes of the

segments in ss.
• Let us read the second axiom:

⋆ for all net, n, and all segments, s, of that net
⋆ let ji and ji′ be the junction identifiers of the two junctions to which

s is connected, and
⋆ let j and j′ be the two corresponding junctions,
⋆ then the segment mode is in both the set of modes of the two

junctions.
• We can define a function, xtr Ss, which from a net, n, and a junction

identification, ji, extracts the set of segments, ss, connected to the
junction identified by ji.

• xtr Ss(n,ji) yields the set of segments, ss, in the net n for which ji is
one of the observed junction identifications of s.

• And we can define a function, xtr J, of signature N × Ji → J, which
when applied to a net, n, and a junction identification, ji,

• extracts the junction in the net which has that junction identifier.

B.2.3 Single-Modal Nets and Net Projection

17. Given a multi-modal net one can project it onto a set of single modality
nets, namely one for each modality registered in the multi-modal net.

type

mmN = {|n:N • card xtr Ms(n) > 1|}
smN = {|n:N • card xtr Ms(n) = 1|}

value

xtr Ms: N → M-set

xtr Ms(n) ≡ {obs M(s) | s:S • s ∈ obs Ss(n)}

356 B Towards a Domain Model of Transportation

projs: N → smN-set

projs(n) ≡ {proj(n,m) | m:M • m ∈ xtr Ms(n)}

proj: N × M → smN
proj(n,m) as n′

post

let ss = obs Ss(n), ss′ = obs Ss(n′),
js = obs Js(n), js′ = obs Js(n′) in

ss′ = {s | s:S • s ∈ ss ∧ m=obs M(s)} ∧
js′ = {j | j:J • j ∈ js ∧ m ∈ obs Ms(j)}
end

Annotations:
• A multi-modal net is a net with more than one mode. mmN is thus

the subtype of nets, n:N, which are multi-modal.
• A single-modal net is a net with exactly one mode. smN is thus the

subtype of nets, n:N, which are multi-modal.
• The xtr Ms function extracts the mode of every segment of a net.
• The projs function applies to any net, n:N, and yields the set of single-

modal subnets of n, one for each mode of n. The projs function makes
use of the proj function.

• The proj function applies to any n, n:N, and any mode of that net, and
yields the single-modal subnet on n whose mode is the given mode.
⋆ The proj function is expressed by a post condition, i.e., a predicate

that characterises the necessary and sufficient relation between the
argument net, n, and the result net n′.

⋆ In a single-modal net, n′, projected from a multi-modal net, n, and
of mode m, we keep exactly those segments, ss′, of n whose mode
is m,

⋆ and we keep exactly those junctions, js′, of n whose mode contains
m.

⋆ No more is needed in order to express the necessary and sufficient
condition for a single-modal net to be a subnet of a proper net.

⋆ That is, some single-modal nets are not proper nets since in proper
nets every junction have the set of modes of all the segments con-
nected to the junction.

B.3 Segment and Junction Attributes

B.3.1 Segment and Junction Attribute Observations

We now enrich our segments and junctions.

18. Segments have lengths.

B.3 Segment and Junction Attributes 357

19. Junctions have modality-determined lengths between pairs of (same such
modality) segments connected to the junction.

20. Segments have standard transportation times, i.e., time durations that
it takes to transport any number of units of freight from one end of the
segment to the other.

21. Junctions have standard transfer time per modality of transport between
pairs of segments connected to the junction.

22. Junctions have standard arrival time per modality of transport.
23. Junctions have standard departure times per modality of transport.
24. Segments have standard costs of transporting a unit of freight from one

end of the segment to the other end.
25. Junctions have standard costs of transporting a unit of freight from the

end of one connecting segment to the beginning of another connecting
segment.

We can now assess

• (i) length of a route,
• (ii) shortest routes between two junctions,
• (iii) duration time of standard transport along a route, including transfer,

stopover and possible reloading times at junctions, and
• (iv) shortest duration time route of standard transport between two junc-

tions.

type

L, TI
value

ms:M-set, axiom ms 6={}
obs L: S → L
obs L: Si × J × M × Si → L
obs TI: S → TI
obs TI: Si × J × Si → TI

obs TI: J × M
∼→ TI, pre obs TI(j,m): m ∈ obs Ms(j)

obs TI: J × M × M
∼→ TI, pre obs TI(j,m,m′): {m,m′}⊆obs Ms(j)

obs arr TI: J × M
∼→ TI, pre obs arr TI(j,m): m ∈ obs Ms(j)

obs dep TI: J × M
∼→ TI, pre obs dep TI(j,m): m ∈ obs Ms(j)

+: L × L → L
+: TI × TI → TI

Annotations:

• L and Ti are sorts designating length and time values.
• ms denotes a non-empty set of modes.
• From a segment one can observe, obs L, its length.
• From a segment one can observe, obs TI, a time duration for a normal

conveyor of the mode of the segment to travel the length of the segment.

358 B Towards a Domain Model of Transportation

• From a junction and a mode (of that junction) one can observe, obs TI,
a time duration for a normal conveyor of the mode to cross, i.e., to travel
through the junction.

• From a junction and a pair of modes (m and m′ of that junction) one
can observe, obs TI, a time duration which represents the normal time it
takes to transfer freight from a conveyor of mode m to a conveyor of mode
m′. (The two modes may be the same.)

• From a junction and a mode (of that junction) one can observe, obs arr TI,
a time duration for an item of freight destined for a normal conveyor of
the mode to arrive and be “entry” processed (including loaded) at that
junction.

• From a junction and a mode (of that junction) one can observe, obs dep TI,
a time duration for an item of freight destined for a normal conveyor of
the mode to arrive and be “exit” processed (including unloaded) at that
junction.

• One can add lengths.
• One can add time durations.

B.3.2 Route Lengths

26. One can compute the length of a route of a net and one can find the
shortest such route between two identified junctions.

value

length: R → N
∼→ L

length(r)(n) ≡
case r of

〈〉 → 0,
〈(jf,si,jt)〉 → obs L(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in

obs L(si) +
obs L(sii,xtr J(ji2,n),sij) +
length(〈(jj1,sij,jj2)〉̂r′)

end end

pre: r ∈ routes(n) ∧ ji2=jj1

value

shortest route: Ji × Ji → N
∼→ R

shortest route(jf,jt)(n) ≡
let rs = routes(n) in

let crs = {r|r:R•r ∈ rs∧first Ji(r)=jf∧last Ji(r)=jt} in

let sr:R • sr ∈ crs∧∼∃ r:R•r ∈ crs∧length(r)(n)<length(sr)(n) in

sr end end end

pre: {jf,jt}⊆obs Jis(n) ∧ jf6=jt

B.3 Segment and Junction Attributes 359

Annotations:
• The length of a single modality route of a net

⋆ is 0 if the route is empty,
⋆ otherwise it is the length of the first segment of the route plus the

length of the rest of the route computed as follows:
⋄ If the route consists of just one segment, then 0,
⋄ else, the length of the junction from incident segment to ema-

nating segment plus
⋄ the length of the rest of the route computed as otherwise spec-

ified above.
• The shortest route of a net between two of its identified junctions (the

precondition) can be abstractly determined as follows:
⋆ First we find all the routes, rs, of the net.
⋆ Then we find those routes, crs, whose first and last connection

identifications are the given ones, cf and ct.
⋆ Amongst those we find a shortest one, that is, one, in crs, for which

there are no shorter routes, r, in crs.

B.3.3 Route Traversal Times

27. One can find the total time it takes to traverse a route, including the times
it takes to pass through a junction, and one can find the quickest route
between two identified junctions.

all time: R → N → TI
all time(r)(n) ≡

obs arr TI(xtr J(first J(r),n),obs M(first S{r}))
+ time(r)(n)
+ obs dep TI(xtr J(last J{r},n),obs M(last S(r)))

time: R → N → TI
time(r)(n) ≡

case r of

〈〉 → 0,
〈(jf,si,jt)〉 → obs TI(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in

obs TI(si) +
obs TI(sii,xtr J(ji2,n),sij) +
time(〈(jj1,sij,jj2)〉̂r′)

end end

pre: r ∈ routes(n) ∧ ji2=jj1

quickest route: Ji × Ji → N → R

360 B Towards a Domain Model of Transportation

quickest route(jf,jt)(n) ≡
let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in

let qr:R •

qr ∈ crs∧∼∃ r:R•r ∈ crs∧all time(r)(n)<all time(qr)(n)
in qr end end end

B.3.4 Function Lifting

28. Notice how the two functions shortest route and quickest route differ
only by the length, respectively the time functions. Hence:

type

Q
FCT = R → N → Q

value

less: Q × Q → Bool

lowest: Ji × Ji → N → FCT → R
lowest(jf,jt)(n)(fct) ≡

let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in

let lr:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ less(fct(r)(n),fct(qr)(n)) in

lr end end end

29. Similarly one could also lift the ‘less’ predicate:

Q
PRE = Q × Q → Bool

FCT = R → N → Q
value

best: Ji × Ji → N → FCT → PRE → R
best(cf,ct)(n)(fct)(pre) ≡

let rs = routes(n) in

let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=cf ∧ last Ji(r)=ct} in

let br:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ pre(fct(r)(n),fct(qr)(n)) in

br end end end

And so on.

B.3.5 Transportation Costs

30. We can further assess (i) transport costs, (ii) lowest (per unit) freight cost
between two junctions, etc. We assume that if a freight item is transported

B.4 Road Nets 361

into a junction and out of that junction by the same modality conveyour,
then it is not reloaded, i.e., along segments of the same modality.2

type

K, F
value

obs K: (S|J) → K
obs F: (S|J) → F

+: K × K → K

cost: R → N → K
cost(r)(n) ≡

case r of

〈〉 → 0,
〈(jf,si,jt)〉 →

obs K(xtr J(jf,n)) +
obs K(xtr S(si,n)) +
obs K(xtr J(jt,n))

〈(jf,si,jt),(jf′,si′,jt′)〉̂r′ → assert: jt=jf′

obs K(xtr J(jf,n)) +
obs K(xtr S(si,n)) + ... +
cost(r′)

end

cheapest: Ji×Ji → N → ((K×K)→K) → ((K×K)→Bool) → R
cheapest(jf,jt)(n) ≡

best(jf,jt)(n)(λ(k1,k2):(K×K)•k1+k2)(λ(k1,k2):(K×K)•k1<k2)

B.4 Road Nets

We wish to view road nets at different levels of abstraction. At a most detailed
such level we make no distinction between the road kinds, whether community
roads, provincial roads, motor roads or freeways. At another level of abstrac-
tion we wish to make exactly those distinctions. And at least detailed level
of abstraction we consider certain road junctions to designate road nets of
smaller or larger communities.

31. Figure [A] B.5 on the next page shows a road net. Instead of showing
junctions J1, J2 and J3 as small black disks we show them as larger circles
— for reasons that transpires from Fig. [B] B.5 on the following page.

2This grossly simplifying assumption will be removed later. For the time being
it allows us to operate with the simple notion of routes that was introduced above.
For the reloading case we need to decorate the route notion, effectively making it
into a bill of ladings notion: one that prescribes possible reloading at junctions.

362 B Towards a Domain Model of Transportation

J5 J6

J7

J1

J3

J2

J4

J8

[A]

J5 J6

J7

J4

J8

J1

J3

j11

j12

j21 j23
j13

j31

j32

j33

j34

j22 J2

j35

[B]

J1

J3

J2

j13

j11

j33

j31

j32

j34j35

j23j21

j22

j12

[C]

Fig. B.5. Gross [A] versus semi-detailed [B] road net — and community road nets
[C]

32. Junctions J1, J2 and J3 are considered composite, that is, to represent
communities.

33. We may consider the road net of Fig.[A] B.5 to be an abstraction of the
road net hinted at in Fig.[B] B.5.

34. Junctions j11, j12, . . . , j35 are considered simple embedded junctions.
35. We decide to allow three kinds of junctions:

(a) composite,
(b) simple embedded and
(c) simple.

They are as follows:

(a) Composite junctions stand for road nets themselves. The junctions of
those road nets are all simple embedded junctions.

(b) Simple embedded junctions are the junctions, hence, of composite
junction road nets.

(c) Simple junctions are those junctions which are not composite (that is:
are not standing for road nets) and are not simple embedded junctions
(that is: simple, hence un-embedded junctions are those remaining
junctions of a net which include modality road).

36. In Fig. [B] B.5 we have left out the internal roads, that is, segments of
junctions J1, J2 and J3, that is between the simple embedded junctions
j11, j12 and j13, between j21, j22 and j23, and between j31, j32, j33, j34
and j35.

37. The internal segments of junctions J1, J2 and J3 are shown in Fig. [C] B.5.
They are to be considered complete nets “in and by” themselves.

38. We may consider the implied junction identifications Ji1, Ji2 and Ji3 to
be names of communities.

39. We may consider the implied junction identifications ji11, ji12 and ji13 to
abstract to J1, ji21, ji22 and ji23 to abstract to J2, and ji31, ji32, ji33,
ji34 and ji35 to abstract to J3.

40. We shall assume that from these junction identifications, say jikℓ, one can
observe the more abstract junction identifications, i.e., Jik.

B.4 Road Nets 363

41. We shall, conversely, assume that from segment junction identifications
one can observe whether they are identifications of composite, of simple
embedded or of simple junctions, and, if of composite junctions, that one
can further observe which simple embedded junction of the composite
junction the segment is connected to.

42. In summary: When consider any multi-modality net and from it project,
that is, consider only the net, nr, of modality road, then we may find that
some junctions are composite while are are simple. When then examining
the road nets, rn, contained in composite junctions then we will find that
their junctions are simple embedded. The embedded road nets, rn, other-
wise satisfy all the properties (i.e., axioms) of nets in general. To link up
the segments of nr incident upon, that is, connected to composite junc-
tions (in nr) we provide their junction identifications with two levels of
observability: the abstract one that made us see that they were connected
to composite junctions (cf. Fig. [A] B.5 on the preceding page), and a
concrete one that enables us to decide which ones of the simple embedded
junctions they are “finally” linked to (cf. Fig. [B] B.5 on the facing page).

type

M == road | ...
Jc, Js, Jse
Jic, Jis, Jise
J = Jc | Js | Jse
Cn

value

is composite J: J → Bool

is simple J: J → Bool

is simple embedded J: J → Bool

obs N: Jc → N
obs Jic: Jc → Jic, obs Jis: Js → Jis, obs Jise: Jse → Jise
obs Cn: Jic → Cn, obs Cn: Jise → Cn
obs Jise: Jic → Jise

axiom

∀ j:Jc • is composite J(j) ∧ xtr Ms(obs N(j,road))={road},
∀ j:Js • is simple J(j),
∀ j:Jse • is simple embedded J(j)

∀ n:N,j:J • j ∈ obs Js(n) ∧ is composite J(j) ⇒
let rn = obs N(j) in

end

364 B Towards a Domain Model of Transportation

B.5 Railway Nets

B.5.1 General

A transportation net of modality railway has segments be lines between sta-
tions and have junctions be stations.

43. We concretise the concept of modes. Mode m=railway will now designate
railway nets:

type

M == road | railway | ...

44. From a multi-modal transportation net we can project the railway net,
rn:RN:

value

proj: N × {railway} → RN

45. Junctions of a transportation net of modality railway have sub-junctions
which are stations:

value

proj: J × {railway} → ST

46. Segments of a transportation net of modality railway become lines:

value

proj: S × {railway} → LI

B.5.2 Lines, Stations, Units and Connectors

Railway segments are thus called lines, and railway sub-junctions are thus
called stations. A notion of connectors is introduced. It is not to be confused
with the previous notion of junctions.

47. A railway net is a net of mode railway.
48. Its segments are lines of mode railway.
49. Its junctions are stations of mode railway.
50. A railway net consists of one or more lines and two or more stations.
51. A railway net consists of rail units.
52. A line is a linear sequence of one or more linear rail units.
53. The rail units of a line must be rail units of the railway net of the line.
54. A station is a set of one or more rail units.
55. The rail units of a station must be rail units of the railway net of the

station.
56. No two distinct lines and/or stations of a railway net share rail units.

B.5 Railway Nets 365

57. A station consists of one or more tracks.
58. A track is a linear sequence of one or more linear rail units.
59. No two distinct tracks share rail units.
60. The rail units of a track must be rail units of the station (of that track).
61. A rail unit is either a linear, or is a switch, or a is simple crossover, or is

a switchable crossover, etc., rail unit.
62. A rail unit has one or more connectors.
63. A linear rail unit has two distinct connectors. A switch (a point) rail

unit has three distinct connectors. Crossover rail units have four distinct
connectors (whether simple or switchable), etc.

64. For every connector there are at most two rail units which have that
connector in common.

65. Every line of a railway net is connected to exactly two distinct stations of
that railway net.

66. A linear sequence of (linear) rail units is an acyclic sequence of linear units
such that neighbouring units share connectors.

type

47. RN = {| n:smN • obs M(n)=railway |}
48. LI = {| s:S • obs M(s)=railway |}
49. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value

50. obs LIs: RN → LI-set
50. obs STs: RN → ST-set

51. obs Us: RN → U-set

52. obs Us: LI → U-set

54. obs Us: ST → U-set

57. obs Trs: ST → Tr-set
61. is Linear: U → Bool

61. is Switch: U → Bool

61. is Simple Crossover: U → Bool

61. is Switchable Crossover: U → Bool

62. obs Ks: U → K-set

66. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom

366 B Towards a Domain Model of Transportation

50. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

52. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

53. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

54. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

55. ∀ n:RN, s:ST • s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

56. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

56. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

56. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

57. ∀ s:ST•card obs Trs(s)≥1

58. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

59. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

64. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

65. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in

∃ u,u′,u′′,u′′′:U • u ∈ sus ∧
u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in

∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}
end end

B.6 Net Dynamics

By net dynamics we shall mean the changing possibilities of flow of conveyors
(cars, trains, aircraft, ships, etc.) along segments and through junctions. We
speak of direction of flow along segments in terms of “from the junction at
one end of the segment to the junction at the other end”. And we speak of

B.6 Net Dynamics 367

flow through a junction as “proceeding from one segment incident upon the
junction into a (usually different) segment emanating from that junction”.
Segments connected to a junction are both incident upon that junction and
emanates from that junction.

B.6.1 Segment and Junction States

67. Segments may be open for traffic in either or both directions (between the
segments’ two junctions [identified by jix and jiy]) or may be closed.

68. We model the state, sσ : SΣ, of a segment, s : S, as a set of pairs of
junction identifications, namely of the two identifications of the junctions
that the segment connects. This state, sσ : SΣ, is
(a) either empty, i.e., the segment is closed ({}),
(b) or has one pair, {(jix, jiy)}, that is, the segment is open in direction

from junction jix to junction jiy,
(c) or another pair {(jiy, jix)},
(d) or both pairs {(jix, jiy), (jiy, jix)}, that is, is open in both directions.

69. Junctions may direct traffic from any subset of incident segments to any
subset of emanating segments.

70. We model the state, jσ : JΣ, of a junction, j : J , as a set of pairs of
segment identifications, namely of identifications of segments connected
to the junction.
(a) Let the set of identifications of segments connected to junction j be

{si1, si2, ..., sim)}.
(b) If, in some state, jσ of the junction, it is possible (allowed) to pass

through the junction from the segment identified by sij to the segment
identified by sik, then the pair (sij , sik) is in jσ.

(c) The junction state may be empty, i.e., closed: no traffic is allowed
through the junction.

(d) Or the junction state may be “anarchic full”, that is, it contains all
combinations of the pairs of identifiers of segments incident upon the
junction.

type

SΣ = (Ji×Ji)-set
JΣ = (Si×Si)-set

value

obs SΣ: S → SΣ
obs JΣ: J → JΣ

xtr Jis: SΣ → Ji-set
xtr Jis(sσ) ≡ {ji|ji:Ji • (ji,) ∈ obs sσ ∨ (,ji) ∈ obs sσ}
xtr Sis: JΣ → Si-set
xtr Sis(jσ) ≡ {si|si:Si • (si,) ∈ obs jσ ∨ (,si) ∈ obs jσ}

axiom

368 B Towards a Domain Model of Transportation

∀ s:S • xtr Jis(obs SΣ(s)) ⊆ xtr Jip(s),
∀ j:J • xtr Sis(obs JΣ(j)) ⊆ xtr Sis(j)

Observations:

• A junction, j : J , of just one segment, s : S, that is, s is a cul de sac, may
either be closed, and vehicles trying to enter j will be queued up, or it is
open, and vehicles entering j will be lead back to s.

• As a consequence segment s, in order for this latter routing to happen,
must be open in both directions when j is “open”.

• In general, if the state of a junction j (identified by ji) contains a pair
(six, siy) then the state of the designated segments, sx and sy, must re-
spectively contain pairs (ji′, ji), respectively (ji, ji′′), where {ji, ji′} and
(ji, ji′′} are the pairs of junction identifications associated with six and
siy respectively.

• And this must hold for all states of junctions and adjacent segments.
• This is captured in the axioms below.

axiom

...

A

C

B

D

Y

X

J

Fig. B.6. A Special “Carrefour” Junction

71. The junction of Fig. B.6 shows four segments, identified by A, B, C and
D.

72. The figure also suggests a state in which traffic lights prohibit movements
from A into J, from B into J,

73. from C via J into A, and from D via J into B.

74. The “bypass” from A/X into Y/D appears to be such that traffic can
always pass from A into D.

75. The current state alluded to in Fig. B.6 on the preceding page appears to
be:

jσJ : {(A, D), (C, B), (C, D), (D, A), (D, C)}
76. (A, D) is potentially a member of every state that the junction can possi-

bly be in — see next section.

B.6.2 Segment and Junction State Spaces

type

SΩ = SΣ-set

JΩ = JΣ-set

value

obs SΩ: S → SΩ
obs JΩ: J → JΩ

axiom

∀ s:S • obs SΣ(s) ⊆ obs SΩ(s),
∀ j:J • obs JΣ(j) ⊆ obs JΩ(j)

Etcetera!

B.7 Conclusion

We have shown but a fragment of a carefully worked-out transport net domain
model of just some simple entities and some auxiliary functions over these.
By saying that we mean to alert the reader to the fact that working out, i.e.,
experimentally resarching and developing any realistic domain model takes
time and the result takes much space to present. But it is fun.

C

Towards a Domain Model of Manufacturing

Summary

We bring a fragment of a domain model of manufacturing. The model,
in effect, is also, more generally, a model of data flow. And, hence, the
model is really a model of applied Petri nets [148,199,210–212].

C.1 Introduction

C.1.1 Definitions

In this chapter we present a model of a number of aspects of manufacturing. By
manufacturing Merriam-Webster’s (MW) Collegiate Dictionary understands:
to make into a product suitable for use; to make from raw materials by hand or
by machinery; to produce according to an organized plan and with division of
labor. Anther term is production. Again MW, amongst several alternatives,
understands: the act or process of producing; the creation of utility; espe-
cially: the making of goods available for use. We equate the composite terms:
manufacturing plant, production facility and factory. The latter, according
to MW: a building or set of buildings with facilities for manufacturing; the
seat of some kind of production. By plant, in our context, MW means: the
land, buildings, machinery, apparatus, and fixtures employed in carrying on
a trade or an industrial business; a factory or workshop for the manufacture
of a particular product; the total facilities available for production or service;
the buildings and other physical equipment of an institution.

Central to the concept of manufacturing are the concepts of machines
and products. By a machine MW means: an assemblage of parts that trans-
mit forces, motion, and energy one to another in a predetermined manner;
an instrument (as a lever) designed to transmit or modify the application of
power, force, or motion; a mechanically, electrically, or electronically operated

372 C Towards a Domain Model of Manufacturing

device for performing a task. By a product MW means: something produced
(produce: to compose, create, or bring out by intellectual or physical effort).
Central to the concept of production is the concept of part: one of the of-
ten indefinite or unequal subdivisions into which something is or is regarded
as divided and which together constitute the whole; an essential portion or
integral element; one of several or many equal units of which something is
composed or into which it is divisible (MW).

C.1.2 Examples of Machines

The concept of machine in this chapter is best understood by bringing some
examples: lathe, band saw, belt sander, milling machine, drill press, grinder,
shear, notscher, and press brake. If you are not familiar with these names
perhaps a look at:

• http://www-me.mit.edu/Lectures/MachineTools/outline.html

might help!

C.1.3 Structure of Chapter

General

From models of “smallest”, atomic, phenomena and concepts we build up
models of increasingly more complex phenomena and concepts, ending with
models of manufacturing plants.

These models are very general. The reader may think: far too general. That
may very well be so. In Sect. C.7 we shall instantiate our models to models
of manufacturing plants that are claimed to be typical of specific factories.

Reading Guide

The text consists of sequences of one, two, three or four sub-texts. Always
a narrative explication of a phenomenon or a concept. Additionally a formal
model of that phenomenon or a concept. Then, in most cases, at least in
this chapter, an annotation which explains the formal notation. And, some-
times some observations. Readers with a background in formal specifica-
tion languages a la B [1, 71], RAISE’s RSL [31–33, 44, 101, 104, 106], VDM-
SL [55, 56, 95, 96] or Z [132, 133, 229, 230, 242] can skip the annotations. The
formal notation that is used is RSL [104]. We refer to [31–33] for a thorough
introduction to abstract and modelling using RSL.

C.2 Parts 373

C.2 Parts

77. An atomic part is a smallest unit of man-made production.

type

P
value

is atomic P: P → Bool

Annotations:

• P is a type name, that is, stands for a set of values. We shall think of these
values as parts.

• is atomic is an observer function, i.e.., a postulated predicate which when
applied to parts (i.e., to entities of type P) yield truth if they are atomic,
false otherwise.

78. An atomic part has a part number, as has all parts, whether atomic or
composite.

type

Pn
value

obs Pn: P → Pn

Annotations:

• Pn is a type name, that is, a set of values. We shall think of these values
as part numbers.

• obs Pn is an observer function, that is a postulated function which when
applied to values of type P yields their part numbers.

79. A composite part consists of two or more parts which have been manufac-
tured (fitted, assembled, welded, etc.) together according to some mere-
ology.

value

is composite P: P → Bool

axiom

∀ p:P•

is atomic P(p)∧∼is composite P(p) ∨
is composite P(p)∧∼is atomic P(p)

80. A composite part may have two or more occurrences (components) of parts
of the same part number. Mereologically they appear (occur) in distinct
“locations” of the whole part. We abstract locations (etc.) by associating
with each part a unique identification, π : Π .

374 C Towards a Domain Model of Manufacturing

type

Π
COMPS = P-set

value

obs Π : P → Π
obs COMPS: P → COMPS

no of occurrences: P × P
∼→ Nat

no of occurrences(cp,p) ≡
card {p′|p′:P • p′ ∈ obs COMPS(cp) ∧ obs Pn(p′)=obs Pn(p)}
pre: is composite P(cp)

axiom

∀ p:P •

is atomic P(p) ⇒ obs COMPS(p)={} ∧
is composite P(p) ⇒

obs COMPS(p)6={} ∧
∀ p′,p′′:P • {p′,p′′}⊆dom obs COMPS(p) ∧ p6=p′ ∧

p′6=p′′ ⇒ obs Π(p′) 6= obs Π(p′′) ∧
obs Π(p) 6= obs Π(p′)

Annotations:

• Π is a type name. We shall think of these values as part identifiers.
• COMPS is a type name. Its values are sets of parts.
• obs Π names an observer function which, when applied to values of type

part yields their part identification.
• obs COMPS names an observer function.
• no of occurrences names a function which, when applied to a pair of

parts, (cp,p) yields the number of occurrences of p in cp — where cp is
assumed to be a composite part. The function is not defined for cp being
atomic. If p is not a sub-component of cp then the function value is zero.

• When obs COMPS is applied to values of type part yields the set of
their sub-components. An atomic part has no such. A composite part has
one or more sub-components which are parts (i.e., are part values). Part
identifiers of distinct subcomponents are distinct and different also from
the “mother” component.

• In the following we shall say no more about part identifiers, and hence we
consider them atomic.

81. From the above we observe that no two physically manifest parts are
identical: They may be of the same kind, i.e., part number, but they will,
as a “law of nature” have distinct identifications. We are not saying that
these identifications are physically manifest things, i.e., “labels” the part.
We are saying that these identifications are concepts.1

1It is like the coins in your pocket: There may be several instances of a shilling
but they are all distinct in space (and otherwise).

C.3 Machines 375

C.3 Machines

82. A machine basically offers a function which takes a non-zero number of
parts and produces a non-zero number of other, distinct parts.

type

Parts′ = P-set

Parts = {| parts:Parts′ • parts 6={} |}
MOp
MFct = Parts → Parts

value

obs MFct: MOp → MFct
axiom

∀ mop:MOp • {obs Pn(p)|p:P•p ∈ D} ∩ {obs Pn(p)|p:P•p ∈ D} = {}

D, the definition set function, is a non-computable function. So is R, the range
set function.
Annotations:

• Parts is a type name which denotes a non-empty set of parts.
• MOp is a type name which denotes a set of machine operations.
• MFct is a type name which denotes a set of machine functions. Machine

functions are total functions which when applied to a set of not necessarily
part number distinct parts yields a set of not necessarily part number
distinct parts. Thus a machine operation (i.e., machine function) may take
more than one part of a given part number, and may yield not only one
or more parts, but also such that two or more of these may have the same
part number.

• obs MFct names an observer function which when applied to a machine
operation yields a machine function.

• None of the yielded parts of a machine function have the same part number
as any of the input parts.

83. We can characterise the functionality of a machine by the signature of the
machine function mop:MOp.

type

Config′ = Pn →m Nat

Config = {| c:Config′ • 0 6∈ rng c |}
Input,Output = Config
MSig′ = Input × Output
MSig = {| (i,o):MSig′ • dom i ∩ dom o = {} |}

Annotations:

• Config is a type name. It denotes a map from part numbers to non-zero
natural numbers.

376 C Towards a Domain Model of Manufacturing

• Input and Output are type names of the same configuration type.
• MSig is a type name. It denotes the set of pairs of respectively input and

output configurations where none of the input part numbers are the same
as the output part numbers. The idea is that MSig designates a machine
function signature. If in an input configuration, i, part number pnj maps
into quantity n = i(pnj) then the machine function to which the machine
signature will be associated (see below) shall require n occurrences of parts
p1, p2, . . . , pn — all having the same part number pnj .

84. A machine proper can pragmatically be thought of as an “optional formal
machine and zero, one or more workers”. If the “optional formal” machine
is not there, then the machine “embodies” at least one worker. In any
case we consider the “optional formal machine and zero, one or more
workers” as a unit. The machine, in addition to its machine operation2,
can be thought of as also being represented by the machine signature and
a machine in-tray and a machine out-tray. The in- and out-trays, at one
one moment, consists of zero, one or more parts. The parts may, or may
not be relevant to the machine operation. Usually they are. We shall, in
fact, expect that the in-tray [out-tray] parts are of the kind (i.e., having
the input [output] part numbers) of the machine signature.

type

MC
MACH′ = Input × MSig × MOp × Output
MACH = {| mach:MACH′

• wf MACH(mach) |}
value

obs MACH: MC → MACH
wf MACH(i,(isig,osig),op,o) ≡

dom i ⊆ dom isig ∧ dom o ⊆ dom osig ∧
dom i = {pn | pn:Pn • ∃ p:P • p ∈D(op)∧pn=obs Pn(p)}∧
dom o = {pn | pn:Pn • ∃ p:P • p ∈R(op)∧pn=obs Pn(p)}

Annotations:

• MC is a type name. It denotes a sort.
• MACH is a type name. It denotes the set of machine well-formed quadru-

ples (i.e., Cartesians) of inputs, machine signatures, (associated) machine
operations, and outputs. The idea is that inputs stand for machine in-
trays, outputs for machine out-trays, and that the machine signature is
associated the machine operation.

• obs MACH names an observer function which, when applied to values of
type MC yields values of type MACH.

2The machine operation is performed either by the “optional formal machine”
or the “optional formal machine and one or more workers” or, when the “optional
formal machine” is not there, the “one or more workers”.

C.4 Machine Operation 377

• wf MACH names a predicate. Its definition expresses the well-formedness
of machine. A machine quadruple (i,(isig,osig),op,o) is well-formed if the
in-tray [out-tray] does not contain parts of types that are not of interest
to the machine (that is, which does not contain parts which (for i:) are
not needed in order for the machine to perform its operation [(for o:) are
not yielded by the machine operation]).

• Note: We have modelled the occurrence of actual parts in the trays, not
by their real sets of parts, but by a recording of how many parts there is
of given part numbers.

In Tray Machine Operation Out Tray

ip1
ip1’

...
ip1’’

ip2
ip2’

...
ip2’’

...

ipm
ipm’

...
ipm’’

...

...

...

op1
op1’

op1’’

opn
opn’

opn’’

Fig. C.1. A schematic machine

85. Figure C.1 intends to illustrate that a machine can be considered to consist
of an in tray, a facility for performing the machine operation and an out
tray.

C.4 Machine Operation

86. Figure C.1 also intends to show that a machine operation consumes one or
more occurrences (ip1, ip1′, . . . , ip1′′) of parts of one part number (ip1),
one or more occurrences (ip2, ip2′, . . . , ip2′′) of parts of another part
number (ip2), etc., and one or more occurrences (ipm, ipm′, . . . , ipm′′) of
parts of yet another part number (ipm),

87. For a machine operation to take place it must be enabled. A machine is
enabled if the in-tray contains at least the number of parts for each of

378 C Towards a Domain Model of Manufacturing

the parts required in the machine operation, that is, as designated in the
machine operation signature.

value

is enabled: MACH → Bool

is enabled(input,(isig,osig),op,output) ≡
dom input = dom isig ∧
∀ pn:Pn • pn ∈ dom input ⇒ input(pn)≥isig(pn)

Annotations:

• is enabled names a predicate. When applied to machines it checks (tests)
whether

• the in-tray of the machine has exactly the kind (i.e., type) of parts needed
for the machine operation: of the right part number

• and at least in the required quantity.

88. An enable machine can fire. Firing means that the machine performs its
function: consumes an appropriate number of parts (removes them) from
the in-tray and produces another appropriate number of parts (adds them)
to the out-tray.

value

fire: MACH → MACH
fire(input,(isig,osig),op,output) as (input′,(isig′,osig′),op′,output′)

pre: is enabled(input,(isig,osig),op,output)
post: isig′ = isig ∧ osig′ = osig ∧ op′ = op ∧

input′ = input \ D op ∧ output′ = output ∪ R op

Annotations:

• fire is a generator function: from a machine it generates a new machine.
• The fire function is defined by a pre/post pair of predicates.
• In order to perform the machine operation the machine must be (in an)

enabled (state).
• Once a machine operation has been performed (by an enabled machine)

the parts required for the operation has been removed from the in-tray
and the parts produced by the machine operation as been added to the
out-tray.

C.5 Production Floors

89. A production floor of a manufacturing plant, MP, consists of a non-zero
number of uniquely identified machines.

C.5 Production Floors 379

type

MP, PFId, MId
PFs′ = PFId →m PF, PFs = {|pfs:PFs′ • pfs 6=[]|}
PF′ = Mid →m MC, PF = {|pf:PF′

• pf6=[]|}
value

obs PFs: MP → PFs
obs PF: MP × PFid −∼> PF, pre obs PF(mp)(pfid): pfig ∈ dom mp

Annotations:

• MP is a type name. It designates the set of all manufacturing plants.
• PFId is a type name. It designates the set of all production floor identifiers.
• MId is a type name. It designates the set of all machine identifiers.
• PFs is a type name. It designates the set of all uniquely identified, non-

empty production floors.
• PF is is a type name. It designates the set of all production floors — which

are here modelled as non-empty sets of uniquely named machine.s
• From (or in) a manufacturing plant one can observe, obs PFs, its set of

uniquely identified production floors.
• Given a manufacturing plant and a valid production floor identifier of that

plant one can observe, obs PF, the identified plant.

Observations:

• This we allow a manufacturing plant to consist of more than one produc-
tion floor.

• A manufacturing plant may have two or more occurrences of what might
otherwise be considered identical production floors — only they are dis-
tinguished by distinct production floor identifiers.

• A production floor may have two or more occurrences of what might oth-
erwise be considered identical machines — only they are distinguished by
distinct machine identifiers.

90. We can think of a production floor as shown in Fig. C.2.

91. Let us focus on the central — what we call — the Input/Machine/Output
Machinery in that figure. Machine M potentially receives one or more
parts of possibly different part numbers from machine Mj1 , one or more
parts of possibly different part numbers from machine Mj2 , etc., and one
or more parts of possibly different part numbers from machine Mjn

. And
machine M potentially delivers one or more parts of possibly different
part numbers to machine Mk1

, one or more parts of possibly different part
numbers to machine Mk2

, etc., and one or more parts of possibly different
part numbers to machine Mkm

. We say “potentially” since, as wee shall
see later, machine M may receive or deliver parts from, respectively to
other machines.

380 C Towards a Domain Model of Manufacturing

M

Mj1

Mj2

Mjn

Mkm

Mk2

Mk1

Mo2

Mo1

Moo

Input/Machine/Output Machinery

Mi1

Mi2

Mii

...

...

Fig. C.2. A schematic production floor

For a machine to “potentially receive” parts from another machine means
two things: the parts received are necessary for machine M to perform its
operation, i.e., are required inputs to M .
For a machine to “potentially deliver” parts to another machine means two
things: the parts delivered are produced by machine M , i.e., are output
from M .

92. Figure C.3 shows a more general situation for the input/machine/output
machinery of Fig. C.2.

M

Mj1

Mjn

Mkm

Mk1

Input/Machine/Output Machinery

From

Input

To

Output
Warehouse Warehouse

Fig. C.3. A general input/machine/output machinery

93. Whereas Fig. C.2 could be construed as expressing that all inputs to
the central machine M came from other machines, Fig. C.3 hints at the
possibility that some, or all, parts input to a machine operation may come
from an input warehouse.

C.5 Production Floors 381

The same wrt. outputs. Instead of all central machine M outputs being
delivered to other machines, some, or all, may go to an output warehouse.

94. It is thus that we arrive at a production unit consisting of a production
floor and an input and an output warehouse.

type

InWh,OutWh
value

obs Ps: (InWh|OutWh) → P-set

obs InWh: MP → InWh
obs OutWh: MP → OutWh
xtr Pns: (InWh|OutWh) → Pn-set

xtr Pns(wh) ≡ {pn|pn:Pn,p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)}
type

BoM = Pn →m Nat

value

xtr BoM: (InWh|OutWh) → BoM
xtr BoM(wh) ≡

[pn7→n|pn:Pn,p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)∧
n=card{p|p:P•p ∈ obs Ps(wh)∧pn=obs Pn(p)}]

Annotations:

• InWh and OutWh are type names. They designate input, respectively
output warehouses.

• From a input and output warehouses one can observe, obs Ps, their parts.
• From a manufacturing plant one can observe, obs InWh and obs OutWh,

their input and output warehouses.
• From a warehouse one can extract the part numbers of the parts housed

in that warehouse.
• BoM is a type name. It designates the set of all Bills-of-Material. A Bills-

of-Material is like a table which to distinct part numbers list a number of
occurrences.

• From a warehouse one can extract a Bills-of-Material:
⋆ The Bill-of-Material maps part numbers of parts in the warehouse
⋆ into their number of occurrences in that warehouse.

Observations:

• Notice that we only observe one input and one output warehouse with a
given manufacturing plant.

• That is, we consider the input and output warehouses shared between all
the production floors of a manufacturing plant.

• A Bills-of-Material may list a part as having no, i.e., zero occurrences —
but the Bills-of-Materials extracted from a warehouse will always have
non-zero numbers of occurrence of its parts.

382 C Towards a Domain Model of Manufacturing

C.6 Production Plans

C.6.1 Production Layouts

95. By a production layout we mean any arbitrary composition (i.e., set) of
machines on a production floor, pf:PF.

96. The definition of PF given in item 89 is a model of a production layout.
97. Assume, as a thought experiment, that there is such a pf:PF. It consists

on n machines: m1, m2, . . . , mn.
98. A number of situations can now occur:

(a) The operation of machine mi requires parts that can all be provided
by other machines mjk

in the set {M1, m2, . . . , mn}\{mi}.
(b) Some parts necessary for the operation of machine mi cannot be pro-

vided by any machine mjk
the set {M1, m2, . . . , mn}\{mi}. They

must hence be available, i.e., provided by, the in ware house.
(c) The operation of machine mi produces parts that are not provided

to any of the machines mjk
in the set {M1, m2, . . . , mn}\{mi}. They

must hence be sent to the out ware house.
(d) Any realistic production floor is a combination of the above (items 98(a)–

98(c)).
99. We decide not to model, as part of the individual machines, from where

they obtain their input production parts or to where they provide their
output production parts.

100. Instead we decide to model this aspect of production in the form of a
production plan.

C.6.2 Production Targets

101. By a production target we mean the number of products of a finite number
of distinct part numbers

102. A production target could be expressed, as intimated in Fig. C.4, by a set
of pairs of non-zero natural numbers and part numbers.
(a) The m : p pairs in out-tray boxes mean that each machine operation

produces m “copies” of part p.
(b) The m : p pairs on arrows into a specific machine means that that

machine, in order to perform a machine operation, consumes n copies
of part p.

103. In order to fulfill a production target one or more of the machines which
provide the target parts may need more than one machine operation each.

104. If such a machine, say Mi, requires nMi
operations and each of these

require (mMi
: p), (m′

Mi
: p′), . . . , (m′′

Mi
: p′′) input parts, then machine

Mi requires an input production target of (nMi
×mMi

: p), (nMi
×m′

Mi
:

p′), . . . , (nMi
× m′′

Mi
: p′′).

105. And so on.

C.6 Production Plans 383

Mi

Mj

Mk

Mx

Mz

Mq

Mr

My

n2:p2

n1:p1

n3:p3

n4:p4

n61:p6

n62:p6

n63:p6

n7
1:

p7
n72:p7

n8:p8

n92:p9

n9
1:

p9

n10:p10

Production target:

na:p11

nb:p12

n5:p5

m
5:

p
5

m
6:

p
6

m
7:

p
7

m
9:

p
9

m
8:

p
8

m
10

:p
10

m
11

:p
11

m
12

:p
12

Fig. C.4. A production layout

type

PP
PT′ = Pn →m Nat, PT = {|pt:PT′:∀ n:Nat•n ∈ rng pt ⇒ n≥0|}

value

obs PT: PP → PT

Annotations:

• PP names the sort of production plans.
• PT names the concrete type of production targets. A production target is

a map from part numbers to non-zero natural numbers.

C.6.3 Part Dependencies

106. Figure C.4 instantiates a rather general layout. Same kind (i.e., part num-
ber) input parts may come from different machines, etc.

107. Given that p is a part of part number pi, and given a layout as formalised
by PF, one can raise the question: are there machines in that layout which
produces every part required in the production of p?

108. To answer that question we first perform the following investigation. This
investigation examines proper input/output part precedence relations be-
tween machines on the production floor (and the input warehouse of
parts).

109. Let us examine Fig. C.3 on page 380 and Fig. C.4. Some machine input
parts are (expected to be) provided by other machines on the factory floor
while the remaining are (expected to be) provided by the input warehouse.
Let us assume that parts p1–p4 (of Fig. C.4) are provided by the input
warehouse. We must now assume that all other parts are provided by
other machines from the same floor. We must further assume that there
are no cycles of parts provision: That some machine m provides parts to

384 C Towards a Domain Model of Manufacturing

a subsequent machine m′ which provides parts to a subsequent machine
m′′ which . . . provides parts to a machine m′···′ which provides parts to
machine m.

110. To express this formally, and thus precisely, we simplify some aspects
of machines: The abstract from machine signatures pairs of sets of part
numbers. (To express that there are indeed machine which can provide
necessary parts, and to express non-circularity one does not need to know
the quantities of parts consumed and produced.)

type

MP, PFId, MId
PFs′ = PFId →m PF, PFs = {|pfs:PFs′ • pfs 6=[]|}
PF′ = Mid →m MC, PF = {|pf:PF′

• pf6=[]|}
MCSign′ = Pn-set × Pn-set

MCSign = {|(ips,ops):MCSign′
• ips ∩ ops = {}|}

value

obs PFs: MP → PFs
obs PF: MP × PFid −∼> PF, pre obs PF(mp)(pfid): pfig ∈ dom mp
obs InWhPns: MP → Pn-set

obs OutWhPns: MP → Pn-set

obs MCSign: MC → MCSign
wf MP: Plant → Bool

wf PM(mp) ≡
let iws,ows = (obs InWhPns(mp),obs OutWhPns(mp)),

pfs = obs PFs(mp) in

∀ pf:PF • pf ∈ pfs ⇒
let ... in

...
end end

C.6.4 Production Plans

Etcetera.

C.7 Interpretations of the Model — So Far!

We present a few examples of “near”-realistic production facilities.

C.7.1 A Matchbox Factory

111. Figure C.5 intends to show the production floor of a simple minded match
factory.

112. Descriptions of machines are only indicative of what “goes on”!

C.7 Interpretations of the Model — So Far! 385

MsMt

Mp...

MmbMb

Machine Mmb inputs

Machine Mp inputs
various chemical
ingredients and
produces a liquid

of match phosphor

1mm by 1mm sticks
batches of 6 by 40
and machines them
6’ X 1" X 6" planks
Machine Ms inputs

Machine Mb inputs
misc. rectangles of
raw veneer (9 pcs.)
and strips of paper

and produces a match
box in 2 pieces.

into 6’ by 1" by 6" planks.
trunks and nachines them
Machine Mt inputs raw tree

6 by 40 1mm by 1mm
sticks, empty match
boxes, and 8ml of

match−phosphor to
produce a matchbox

Fig. C.5. A match factory

113. The reader may wish to make these descriptions more complete.

114. Leftmost and rightmost “dangling” arrows designate input from the in
warehouse, respectively output to the out warehouse.

115. The reader may ponder about such questions as:

(a) How is the output production capacity of machine Mt “tuned” to the
input production capacity of machine Ms,

(b) How is the output production capacity of machine Ms “tuned” to the
input production capacity of machine Mmb,

(c) How is the output production capacity of machine Mb “tuned” to the
input production capacity of machine Mmb and

(d) How is the output production capacity of machine Mp “tuned” to the
input production capacity of machine Mmb.

116. So do we!
117. Please not that this is just one interpretation of the concept of machines,

warehouses and production floors.
118. For more realistic pictures of match production, please see:

(a) http://server18.joeswebhosting.net/˜xx9185/english/variety/variety01.html.
(b) http://server18.joeswebhosting.net/ xx9185/english/column/column03.html
(c) http://phillumeny.onego.ru/collect/articles/phil36/1.html

C.7.2 A Hot Strip Mill

119. For an intuition of hot strip tubular and sheet production, please see:

(a) http://www.ussteel.com/corp/sheet/hr/pmcpline.htm
(b) http://www.wcisteel.com/operations/main.html

C.7.3 Cog Wheel Factory

120. For an intuition of cog wheel production, please see:

• http://www.hero.dk/engelsk/
Click successive images in left quadrangle

C.8 Conclusion

We can say this about the treatment given in this domain model of manufac-
turing: It is a rather conventional abstraction; it leaves much to be desired:
many aspects are just barely sketched, some aspects not treated at all, modern
machine cells are there, but are abstracted to almost not being recognisable,
etcetera. We have, we think, however, achieved a main purpose of this ap-
pendix, namely: that one can and, we therefore conclude, must provide clear
domain models of manufacturing, such as they are today, “out there”, with
all their uncertainties, non-determinism, faults, so that we can perform more
appropriate business process reengineering and design of next generation IT
systems for manufacturing. Much R&D work is needed.

D

Towards a Model of CyberRail1

Summary

CyberRail is a vision of how road/rail transport may be semi-automated.
It is a vision of the Japan Railway Technical Research Institute (2-8-
38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan) together with its
railway partners in Japan. The present appendix “speculates” on the form
of a possible formal model of CyberRail.

Our domain model is behaviour-oriented and uses CSP. It also reflects
a “high degree” of internal non-determinism.

D.1 Background

The background for the work reported in this extended abstract is threefold:
(i) Many years of actual formal specification as well as research into how to en-
gineer such formal specifications, by the first author, of domains, including the
railway domain [47] [52] [60] [61] [18] [53] [21] [20] [50] — using abstraction
and modelling principles and techniques extensively covered in three forth-
coming software engineering textbooks [31–33]. (ii) A term project with four
MSc and one PhD students2. And (iii) Some fascination as whether one could
formalise an essence of the novel ideas of CyberRail. We strongly believe that
we can capture one crucial essence of CyberRail3 — such as this paper will
show.

The formalisation of CyberRail is expressed in the RAISE [106] Specifica-
tion Language, RSL [104]. RAISE stands for Rigorous Approach to Industrial
Software Engineering. In the current abstract model we especially make use of

1This is an edited version of [24].
2Peter Chiang, Morten S. T. Jacobsen, Jens Kielsgaard Hansen, Michael P. Mad-

sen and Martin Pěnička
3See Sect. D.3 (Page 393) for references to literature on CyberRail.

388 D Towards a Model of CyberRail

RSL’s parallel process modeling capability. It builds on, ie., borrows from Tony
Hoare’s algebraic process concept of Communicating Sequential Processes, CSP
[137].

D.2 A Rough Sketch Formal Model

D.2.1 An Overall CyberRail System

CyberRail consists of an index set of traveller behaviours and one cyber be-
haviour “running” in parallel. Each traveller behaviour is uniquely identified,
p:Tx. Traveller behaviours communicate with the cyber behaviour. We ab-
stract the communication medium as an indexed set of channels, ct[p], from
the cyber behaviour to each individual traveller behaviour, and tc[p], from
traveller behaviours to the cyber behaviour. Messages over channels are of
respective types, CT and TC. The cyber behaviour starts in an initial state
ωi, and each traveller behaviour, p, starts in some initial state mσi(p).

type

Tx, Σ, Ω, CT, TC
MΣ = Tx →m Σ

channel

{ct[p]:CT,tc[p]:TC|p:Tx}, cr:CR, rc:RC
value

mσi:MΣ, ωi:Ω

cyberrail system: Unit → Unit

cyberrail system() ≡
‖ { traveller(p)(mσi(p)) | p:Tx } ‖ cyber(ω)

cyber: Ω → in {tc[p]|p:Tx},cr out {ct[p]|p:Tx},rc Unit

cyber(ω) ≡
cyber as server(ω) ⌈⌉
cyber as proactive(ω) ⌈⌉
cyber as co director(ω)

traveller: p:Tx → Σ → in ct[p] out tc[p] Unit

traveller(p)(σ) ≡
active traveller(p)(σ) ⌈⌉
passive traveller(p)(σ)

The cyber behaviour either acts as a server: Ready to engage in com-
munication input from any traveller behaviour; or the cyber behaviour acts
pro–actively: Ready to engage in performing output to one, or some traveller
behaviours; or the cyber behaviour acts in consort with the “rest” of the trans-
portation market (including rail infrastructure owners, train operators, etc.),

D.2 A Rough Sketch Formal Model 389

in improving and changing services, and in otherwise responding to unforeseen
circumstances of that market.

Similarly any traveller behaviour acts as a client: Ready to engage in per-
forming output to the cyber behaviour; or its acts passively: Ready to accept
input from the cyber behaviour.

D.2.2 Travellers

Active Travellers

Active traveller behaviours alternate internally non–deterministically, ie., at
their own choice, between start (travel) planning st pl, select (among sug-
gested) travel plan(s) se pl, change (travel) planning ch pl, begin travel
be tr, board train bo tr, leave train lv tr, ignore train ig tr, cancel travel
ca tr, seeking guidance se gu, notifying cyber no cy, entertainment ent, de-
posit resource de re (park car, . . .), claim resource cl re (retreive car, . . .),
get resource ge re (rent a car, . . .), return resource re re (return rent-car,
. . .), going to restaurant rest (or other), change travel ch tr, interrupt travel
in tr, resume travel re tr, leave train le tr, end travel en tr, and many other
choices. Each of these normally entail an output communication to the cyber
behaviour, and for those we can assume immediate response from the cyber
behaviour, where applicable.

value

active traveller: p:Tx → Σ → out tc[p] in ct[p] Unit

active traveller(p)(σ) ≡
let choice = st pl ⌈⌉ ac pl ⌈⌉ ch pl ⌈⌉ en tr ⌈⌉ ... ⌈⌉ le tr ⌈⌉ te tr in

let σ′ = case choice of

st pl → start planning(p)(σ),
se pl → select travel plan(p)(σ),
ch pl → change trael plan(p)(σ),
be tr → begin travel(p)(σ),
bo tr → board train(p)(σ),
... → ..,
le tr → leave train(p)(σ),
en tr → end travel(p)(σ),
... → ..

end in

traveller(p)(σ′) end end

start planning: p:Tx → Σ → out tc[p] in ct[p] Σ
start planning(p)(σ) ≡

let (σ′,plan) = magic plan(σ) in

tc[p]!plan;
let sps = ct[p]? in updateΣ((plan,sps))(σ′) end end

390 D Towards a Model of CyberRail

...
updateΣ: Update → Σ → Σ

type

Update == mkInPlRes(ip:InitialPlan,ps:Plan-set) | ...

Passive Travellers

When not engaging actively with the cyber behaviour, traveller behaviours are
ready to accept any cyber initated action. The traveller behaviour basically
“assimilates” messages received from cyber — and may make use of these in
future.

value

passive traveller: p:Tx → Σ → in ct[p] out tc[p] Unit

passive traveller(p)(σ) ≡ let res = ct[p]? in updateΣ(res)(σ) end

Active Traveller Actions

The active traveller behaviour performs either of the internally non–deter-
ministically chosen actions: start planning, select travel plan, change tra-
vel plan, begin travel, board train, . . . , leave train, or end travel. They
make use only of the “sum total state” (σ) that that traveller behaviour “is
in”. Each such action basically communicates either of a number of plans (or
parts thereof, here simplified into plans). Let us summarise:

type

Plan
Request = Initial Plan | Selected Plan | Change Plan | Begin Travel

| Board Train | ... | Leave Train | End Travel | ...
Initial Plan == mkIniPl(pl:Plan)
Selected Plan == mkSelPl(pl:Plan)
Change Plan == mkChgPl(pl:Plan)
Begin Travel == mkBTrav(pl:Plan)
Board Train == mkBTrai(pl:Plan)
...
Leave Train == mkLeTr(pl:Plan)
End Travel == mkEnTr(pl:Plan)

value

∀ f: p:Tx → Σ → out tc[p] Σ
magic f: Σ → Σ × Request

f(p)(σ) ≡ let (σ′,req) = magic f(σ) in tc[p]!req;σ′ end

D.2 A Rough Sketch Formal Model 391

The magic functions access and changes the state while otherwise yielding
some request. They engage in no events with other than the traveller state.
There are the possibility of literally “zillions” such functions, all fitted into
the above sketched traveller behaviour.

D.2.3 cyber

cyber as Server

cyber is at any moment ready to engage in actions with any traveller be-
haviour. cyber is assumed here to respond immediately to “any and such”.

value

cyber rail as server: Ω → in {tc[p]|p:Tx} out {ct[p]|p:Tx} Unit

cyber rail as server(ω) ≡
⌈⌉⌊⌋ {let req = tc[p]? in cyber(serve traveller(p,req)(ω)) end | p:Tx}

serve traveller: p:Tx × Req → Ω → in {tc[p]|p:Tx} out {ct[p]|p:Tx} Ω
serve traveller(p,req)(ω) ≡

case req of

mkIniPl(pl) →
let (ω′,pls) = sugg pls(p,pl)(ω) in ct[p]!pls;cyberrail(ω′) end

mkSelPl(pl) →
let (ω′,res) = res pl(p,pl)(ω) in ct[p]!book;cyberrail(ω′) end

mkChgPl(pl) →
let (ω′,pl′) = chg pl(p,pl)(ω) in ct[p]!pl′;cyberrail(ω′) end

mkBTrav(pl) → ...
mkBTrai(pl) → ...
...
mkLeTr(pl) → ...
mkEnTr(pl) → ...

end

cyber as Pro–Active

cyber, on its own volition, may, typically based on its accumulated knowledge
of traveller behaviours, engage in sending messages of one kind or another
to selected groups of travellers. Section D.2.3 rough sketch–formalises one of
these.

type

CR act == gu tr | no tr | co tr | wa tr | ...
value

cyber as proactive: Ω → out {ct[p]|p:Tx} Unit

cyber as proactive(ω) ≡

392 D Towards a Model of CyberRail

let cho = gu tr ⌈⌉ no tr ⌈⌉ co tr ⌈⌉ wa tr ⌈⌉ ... in

let ω′ = case cho of gu tr → guide traveller(ω),
no tr → notify traveller(ω),
co tr → commercial to travellers(ω),
wa tr → warn travellers(ω),
... → ... end in

cyber(ω′) end end

cyber as Co–Director

We do not specify this behaviour. It concerns the actions that cyber takes
together with the “rest” of the transportation market. One could mention
input from cyber as co director to the train operators as to new traveller
preferences, profiles, etc., and output from the rail (ie., net) infrastructure
owners or train operators to cyber as co director as to net repairs or train
shortages, etc. The decomposition of CyberRail into cyber and the “rest”, may
— to some — be articificial, namely in countries where there is no effective
privatisation and split–up into infrastructyre owners and train operators. But
it is a decomposition which is relevant, structurally, in any case.

cyber Server Actions

We sketch:

value

sugg plans: p:Tx × Plan → Ω → Ω × Plan-set

res pl: p:Tx × Plan → Ω → Ω × Plan
chg pl: p:Tx × Plan → Ω → Ω × Plan
...

There are many other such traveller instigated cyber actions.

Pro–Active cyber Actions

We rough sketch just a single of the possible “dozens” of cyber inititated
actions versus the travellers.

value

guide traveller: Ω → out {ct[p]|p:Tx} Ω
guide traveller(ω) ≡

let (ω′,(ps,guide)) = any guide(ω) in broadcast(ps,guide) ; ω′ end

any guide: Ω → Ω × (Tx-set × Guide)

D.3 A CyberRail Bibliography 393

notify traveller: Ω → out {ct[p]|p:Tx} Ω
commercial to travellers: Ω → out {ct[p]|p:Tx} Ω
warn traveller: Ω → out {ct[p]|p:Tx} Ω
...

broadcast: Tx-set × CT → Unit

broadcast(ps,msg) ≡
case ps of {}→skip,{p}∪ ps′→ct[p]!msg;broadcast(ps′,msg) end

type

CT = Guide | Notification | Commercial | Warning | ...
Guide == mkGui(...)
Notification == mkNot(...)
Commercial == mkCom(...)
Warning == mkWar(...)
...

D.3 A CyberRail Bibliography

1. Takahiko Ogino: ”Advanced Railway Transport Systems and ITS”, RTRI Report
Vol 13, No. 1, January 1999 (in Japanese)

2. Takahiko Ogino, Ryuji Tsuchiya: ”CyberRail: A Probable Form of ITS in Japan”,
RTRI Report Vol 14, No. 7, July 2000 (in Japanese)

3. Takahiko Ogino: ”CyberRail: An Enhanced Railway System for Intermodal Trans-
portation”, Quarterly Report of RTRI, Vol 42, No. 4, November 2001

4. Takahiko Ogino: ”When Train Stations become cyber Stations”, Japanese Railway
Technology Today, pp 209-219, December 2001

5. Takahiko Ogino: ”CyberRail Study Group Activities and Achievements”, RTRI Re-
port Vol 16, No.11, November 2002 (in Japanese)

6. Takahiko Ogino, Ryuji Tsuchiya, Akihiko Matsuoka, Koichi Goto: ”A Realization
of Information and Guidance function of cyber”, RTRI Report Vol 17, No. 12,
December 2003 (in Japanese)

7. Takahiko Ogino:”CyberRail - In search of IT infrastracture in intermodal transport”,
JREA, Vol.45., No.1 (2002) (in Japanese)

8. Ryuji Tsuchiya, Koichi Goto, Akihiko Matsuoka, Takahiko Ogino, ”CyberRail and
its significance in the coming ubiquitous society”, Proc. of the World Congress on
Railway Research 2003 (2003-9) (in Japanese)

9. Takashi Watanabe, :”Experiment ofCyberRail Passenger guidance using Bluetooth”,
Preprint of RTRI Annual Lecture Meeting in 2000 (in Japanese)

10. Takashi Watanabe, et. al.: ”Personal Navigation System Using Bluetooth”, Tech-
nical Report of ITS-SIG,IPSJ(2001-ITS-4), p.55 (in Japanese)

11. Ryuji Tsuchiya, Koichi Goto, Akihiko Matsuoka, Takahiko Ogino, ”Deriving in-
teroperable traveler support system specification through requirements engineering
process”, Proc. of the 7th World Multiconference on Systemics, Cybernetics and
Informatics (July, 2003)

394 D Towards a Model of CyberRail

12. Ryuji Tsuchiya, Takahiko Ogino, Koichi Goto, Akihiko Matsuoka, ”Personalized Pas-
senger Information Services and cyber”, Technical Report of SIG-IAC, IPSJ (2002-
IAC-4), p15 (in Japanese)

13. Akihiko Matsuoka, Ryuji Tsuchiya: ”Current Status of cyber SIG”,Technical Report
of SIG-ITS, IPSJ, p.45 (2002-ITS-11) (in Japanese)

14. Akihiko Matsuoka, Koichi Goto, Ryuji Tsuchiya, Takahiko Ogino: ”CyberRail and
new passengers information services”, IEE Japan, TER-03-22 (2003-6) (in Japanese)

15. Yuji Shinoe, Ryuji Tsuchiya, ”Personalized Route Choice Support System for
Railway Passengers”, Technical Report of SIG-ITS, IPSJ (2001-ITS-6), p.23 (in
Japanese)

16. Hiroshi Matsubara, Noriko Fukasawa, Koichi Goto, ”Development of Interactive
Guidance System for Visually Disabled”, Technical Report of SIG-ITS, IPSJ (2001-
ITS-6), p.75 (in Japanese)

17. Ryuji Tsuchiya, Takahiko Ogino, Koichi Goto, Akihiko Matsuoka, ”Location-sensitive
Itinerary-based Passenger Information System”, Technical Report of ITS-SIG, IPSJ,
p.85 (2003-ITS-6) (in Japanese)

18. Ryuji Tsuchiya, Kiyotaka Seki, Takahiko Ogino, Yasuo Sato: ”User services ofCyber-
Rail - toward system architecture of future railway-”, Proc. of the World Congress
on Railway Research 2001 (2001-11)

19. Takahiko Ogino, Ryuji Tsuchiya, Kiyotaka Seki, Yasuo Sato: ”CyberRail - infor-
mation infrastructure for intermodal passengers-”, Proc. of the World Congress on
Railway Research 2001 (2001-11)

20. Kiyotaka Seki, Ryuji Tsuchiya, Takahiko Ogino, Yasuo Sato: ”Construction of future
railway system utilizing information and telecommunication technologies”, Proc. of
the World Congress on Railway Research 2001 (2001-11)

21. Ryuji Tsuchiya, Akihiko Matsuoka, Takahiko Ogino, Kouich Goto, Toshiro Nakao,
Hajime Takebayashi: ”Experimental system for CyberRail passenger information pro-
viding and guidance”, 40th Railway-Cybernetics Symposium (2003-11) (in Japanese)

22. Akihiko Matsuoka, Ryuji Tsuchiya, Takahiko Ogino, Toshio Hirota: ”CyberRail Sys-
tem Architecture”, 40th Railway-Cybernetics Symposium (2003-11) (in Japanese)

23. Ryuji Tsuchiya, Akihiko Matsuoka, Takahiko Ogino, Kouich Goto, Toshiro Nakao,
Hajime Takebayashi: ”Location-sensitive Itinerary-based Passenger Information Sys-
tem”, Applying to IEE Journal (in Japanese)

D.4 Conclusion

A formalisation of a crucial aspect of CyberRail has been sketched. Namely
the interplay between the rôles of travellers and the central CyberRail system.

Next we need analyse carfully all the action functions with respect to the
way in which they use and update the respective states (σ : Σ) of traveller
behaviours and the cyber behaviour (ω : Ω). At the end of such an analysis
one can then come up with precise, formal descriptions, including axioms, of
a CyberRail information infrastructure. We look forward to report on that in
a near future.

The objective of this work is to provide a foundation, a domain theory,
for CyberRail. A set of models from which to “derive”, in a systematic way,
proposals for computing systems, including software architectures.

We have sketched a model of CyberRail such as we have understood in from
several of the English language sources referenced in the previous section. Our
aim, when we first made the model, was to show our Japanese colleagues that
abstraction can be useful in understanding new ideas, in discovering further
new transportation concepts, etc. Our objectives are unchanged and derived
from the aims: to actually see abstractions and formalisations being applied
in industries such as the railway industry.

E

Towards a Domain Model of ‘The Market’1

By a domain we understand an area of human (or other) activity. Exam-
ples are: “the railway domain”, “the health–care domain”, the domain of the
“financial service industry”, etc. Elsewhere the composite term ‘application
domain’, where ‘application’ signals that the person who utters the compos-
ite term intends to apply computers & communication to problems of the
domain.

We present our understanding of a domain through documents. Software
development is focused on the development of (semantically meaningful) doc-
uments.

We present a fair selection of parts of descriptive documents.

E.1 A Rough Sketch and its Analysis

We first bring an example rough sketch, then its analysis. After that we bring
both rough sketches and analyses.

E.1.1 Buyers and Sellers

First a rough sketch of what is meant by buyers and sellers, then its analysis.

Rough Sketch

Consumers, retailers, wholesalers and producers form the major “players” in
the market.

A consumer may inquire with a supposedly appropriate retailer as to the
availability of certain products (cum merchandise): Their price, delivery times,
other delivery conditions (incl. quantity rebates), and financing (ie., payment).
A retailer may respond to a consumer inquiry with either of the following

1This is an extensive pre-version of [19].

398 E Towards a Domain Model of ‘The Market’

responses: A quote of the requested information, or a (courteous) declination,
or a message that the inquiry was misdirected (refusals), or the retailer may
decide to not, or fail to, respond ! A consumer may decide to order products
with a supposedly appropriate retailer, whether such an order has been or
has not been preceded by a related inquiry. The retailer may respond to a
consumer order with either of the following responses: Confirming, declining
or “no–response”, with a confirmation being following either by a delivery,
or no delivery — or the retailer may just provide a delivery, or inform the
consumer that a back–order has been recorded: The desired products may
not be in store, but has been (or will be) ordered from a wholesaler — for
subsequent delivery. A delivery may deliver the ordered or some other, not
ordered, products ! The consumer may decide to not accept, or to accept a
delivery. The retailer may invoice the consumer before, at the same time as,
or after delivery. The consumer may pay, or not pay an invoice, including
performing a payment based on no invoice, for example at the same time as
placing the order. The retailer may acknowledge payments. The consumer may
find faults with a previously accepted delivery and return that (or, by mistake,
another) delivery. The retailer may refund, or not refund such a return.

Analysis

Based on an analysis of the above rough sketch we suggest to treat market
interactions between retailers and wholesalers, and between wholesalers and
producers in exactly the same way as interactions between consumers and
retailers. That is: we observe that retailers acts as (a kind of) “consumers”
vis-a–vis wholesalers (who, similarly acts as retailers).

We thus summarise the interactions into the following enumeration: in-
quiries, quotes, declinations, refusals, orders, confirmations, deliveries, accep-
tances, invoicings, payments, acknowledgments, returns, and refunds.

Figure E.1 on the next page attempts to illustrate possible transaction
transitions between buyers and sellers.

E.1.2 Traders

As a consequence of the analysis we shall “lift” the labels ‘consumer’, ‘retailer’,
‘wholesaler’ and ‘producer’ into the labels ‘buyer’ and ‘seller’. And we shall
use the term ‘trader’ to cover both a buyer and a seller. Since the consumers
and producers mentioned in the rough sketch above may also act as any of
the other kinds of traders, all will be labeled traders.

Figure E.2 on the facing page attempts to show that a trader can be both
a buyer and a seller. Thus traders “alternate” between buying and selling,
that is: Between performing ‘buy’ and performing ‘sell’ transactions.

E.1 A Rough Sketch and its Analysis 399

Inquiry

Quote,Decline,Wrong

Order, Decline, Wrong

Delivery,Sorry

Confirm,Decline,Wrong

Accept,Reject,Wrong

Invoice, Wrong

Payment,Wrong

Acknowledgement

Return

Refund

BUYER SELLER

Buyer initiative Seller initiative

"Follows, as a consequence of"

Fig. E.1. Buyer / Seller Protocol

TRADER TRADER TRADER

SELLER
BUYER

BUYER
SELLER

inquiry
order

accept
payment
return...

quote
confirm

...

quote
confirm
deliver
invoice
acknow.
refund...refund

acknow.
invoice
deliver

inquiry
order

accept
payment
return...

Atomic Transactions, One way or the Other !

Fig. E.2. Trader=Buyer+Seller

E.1.3 Supply Chains

Figure E.3 on the next page attempts to show “an arbitrary” constellation of
buyer and seller traders. It highlights three supply chains. Each chain, in this
example, consists, in this example, of a “consumer”, a retailer, a wholesaler,
and a producer.
A collection, a set, of traders may thus give rise to any set of supply chains,
with each supply chain consisting of a sequence of two or more traders. Supply
chains are not static: They form, act and dissolve. They are a result of positive
inquiries, orders, deliveries, etc.

‘Likeness’, ‘Kinds’, ‘Adjacency’, and ‘Supply Chain Instances’

As a result of analysis we identify a need for some abstract concepts: ‘likeness’,
‘kinds’, and ‘supply [chain] instances’ (where [. . .] expresses that we can omit
the . . .).

400 E Towards a Domain Model of ‘The Market’

A
B

D

C

H

(Example Supply Chains: ABCG, HDBF, BGAE, ...)

GE

F

Fig. E.3. A Network of Traders and Supply Chains

Like traders are of the same ‘kind’, where the ‘kind’ of a trader is either
consumer, retailer, wholesaler, or producer.

We can also speak of the ‘kind’ of a transaction.
The ‘kind’ of a transaction is either than of inquiry, quote, declination,

refusal, order, confirmation, delivery, acceptance, invoice, payment, acknowl-
edgment, return, or refund.

There may be chains of one or more wholesalers: Global, regional, na-
tional, or, within a state, area wholesalers. We therefore allow for the following
kinds of adjacent traders: (consumer,retailer), (retailer,wholesaler), (whole-
saler,wholesaler), and (wholesaler,producer).

A supply [chain] instance is a specific and related occurrence of two or
more transactions. The following is an elaborate supply chain instances —
where we omit reference to the specifics by only mentioning the transaction
kinds: (i) inquiry (consumer to retailer), → inquiry (retailer to wholesaler), →
quote (wholesaler to retailer), → quote (retailer to consumer), → order (con-
sumer to retailer), → order (retailer to wholesaler), → order (wholesaler to
producer), → confirm (producer to wholesaler), → confirm (wholesaler to re-
tailer), → confirm (retailer to consumer), → delivery (producer to wholesaler),
→ acceptance (wholesaler to producer), → delivery (wholesaler to retailer),
→ acceptance (retailer to wholesaler), → delivery (retailer to consumer), →
acceptance (consumer to retailer), → invoice (retailer to consumer), → pay-
ment (etc., the reader fills in possible details), → acknowledge, → invoice, →
invoice, → payment, → payment, → acknowledge, → acknowledge, → return,
and → refund.

E.1.4 Agents and Brokers

Although not formalised explicitly in the present paper we discuss the concepts
of brokers and traders. We then, later on, “reduce” agents and brokers to
become like traders are.

E.1 A Rough Sketch and its Analysis 401

Agents

An agent, α, in the domain, is any human or any enterprise, including media
advertisement, who, or which, acts on behalf of one trader, t1, in order to
mediate possible purchase (or sale) of goods from another trader, t2. So t1
may be a consumer, or a retailer, or a wholesaler who, through α acquires
goods from t2 who, respectively, is a retailer, a wholesaler and a producer.
Or t1 may be a retailer, or a wholesaler, or a producer who, through α sells
to t2 who, respectively, is a consumer, a retailer, and a wholesaler. One can
generalise the notion of agents to such who (or which) acts on behalf of a
group of like traders to “reach” a corresponding group of like and adjacent
traders.

Figure E.4 attempts to show a buyer–agent (left hand figure), respectively
a seller–agent (right hand figure). The buyer–agent “searches” the market for
suitable sellers of a specific product. The seller–agent searches the market for
suitable buyers of a specific product.

Buyer

Buyer

Buyer

Buyer

Seller

Seller

Seller

Seller

Seller

Seller

Buyer

Agent

...

...

...

...

...

...

Buyer

Buyer

Seller

Seller

Seller

Seller

Agent

Buyer

Buyer

Buyer

Seller

...

...

...

... ...

...

Fig. E.4. Buyer and Seller Agents

The idea is that the two kinds of agents behave like buyers, respectively like
sellers: The buyer–agent “learns” from the buyer about what is to be in-
quired, is instructed when to order, etc. (This is designated by the single line
(between the Buyer and the Buyer Agent rectangles) of the left–hand side
of Figure E.4.) The buyer–agent then iterates over a set of sellers known to
meet inquired expectation. (This is designated by the mostly slanted lines
(between the Buyer Agent and the Seller Agent rectangles) of the left–hand
side of Figure E.4.)

Similarly for seller–agents (the right–hand side of Figure E.4).

402 E Towards a Domain Model of ‘The Market’

Brokers

A broker, β, in the domain, is any human or any enterprise, including media
advertisement, who, or which, acts on behalf of two (or more, respectively)
adjacent groups of like traders, bringing them together in order to effect in-
stances of supplies.

Buyer

Seller

Seller

Seller

Seller

Seller

Seller

...

...

...

...

...

...

Buyer

Buyer

Buyer

Buyer

...

...

Broker

Buyer

Fig. E.5. A Simple (“One Stage”) Broker

Figure E.5 attempts to diagram a broker mediating between m buyers and
n (adjacent kind) sellers.

The idea is that a combination of buyer and seller searches, and hence a
combination of the buyer– and seller–agent behaviours are needed.

Brokers can span more than one stage.
Figure E.6 on the facing page attempts to diagram a broker mediating

between m1 consumers, m2 retailers, m3 wholesalers and m4 producers —
subsets of all the known such.

The three sets of dashed lines in the three vertical “stems” of the broker
shall designate “local” brokerage between adjacent pairs of buyers and sellers.
The set of dashed lines in the horisontal branch of the broker shall designate
overall, “global” brokerage between all parties.

The aim of the mediation is to create a consortium of subsets of consumers,
retailers, wholesalers and producers. The objective of the consortium is, like
a “Book of the Month Club”, to create a stable set of complete supply chains
for a given set of products.

As for simple brokers we shall (ever so briefly) argue that the same iter-
ated searching of resolution protocols and mechanisms as for agents are to be

E.1 A Rough Sketch and its Analysis 403

...

...

...

...

...

... ...

...

... ...

...

...

S

B

B

B

B

B

B

B

B

B

B

B

B

B

S

S

S

S S

S

S

S

S S

S

S

S

S

B

B

Consumers Retailers ProducersWholesalers

Broker

Fig. E.6. A Multiple (here: Three) Stage Broker

deployed, and that these are based on the all the transaction kinds as first
sketched.

E.1.5 Catalogues

An important concept of the market is that of a catalogue. It may be implicit,
or it may exist explicitly. A catalogue, in a widest sense of that term, is any
form of recording that lists what merchandise is for sale, its price, conditions
of delivery, payment, refund, etc. An ordinary retailer — your small neigh-
borhood “Mom & Pop” store — may not be able to display a catalogue in
the form of, for example, a ring binder each of whose pages lists, in some
order, the merchandise by name, order number, producer, etc., and which
records the above mentioned forms of information. But, from the shelves of
that store one can “gather” that information. For wholesalers and producers
we can probably assume such more formal catalogues. But, as a concept, we
can in any case speak of catalogues. And hence we can speak of such concepts
as searching in a catalogue, marking entries as being out of stock, how many
sold, when, to whom etc.

E.1.6 The Transactions

We have, above, just hinted at the kind of transactions, to wit: inquiry, quote,
declination, refusal, order, confirm, delivery, acceptance, invoice, payment,
acknowledge, return, and refund. Instead of treating them in more detail —
as part of a narrative — we relegate, for the sake of brevity, such a treatment
to the terminology section, next, and to the formalisation, following.

404 E Towards a Domain Model of ‘The Market’

E.1.7 Contractual Relations

Issuance of orders, order confirmations, acceptance of deliveries, issuance of
invoices and attemots of payments, etc., imply a number of contractual rela-
tions. Again notions of ‘parties to the contract’, ‘subject matter’, and ‘con-
siderations’ arise. For the first two is seems reasonably as to what is meant.
With respect to considerations we briefly mention such things as conditions
of delivery, conditions of acceptance (testing), and whether credit worthyness,
specific forms of payments, and credit period have been established, are being
fullfilled, and the extension or termination of credit lines.

We shall not go into whether new kinds a transactions are needed to deal
with contractual considerations — other than suggesting that the ones already
implied (inquiry, quotation, reject, order, conform, delivery, acceptance, in-
voicing, payments, acknowledment, return and refund) — used, in a sense, at
a meta–level — already suffice ! But to justify this, perhaps cryotic remark,
requires a proper demonstration — which will not be given in the current
paper.

• • •

This completes our, lengthy, rough sketch of “The Market” domain. It was
made deliberately long in order to make the point: That rough sketching is
an important process, and that rough sketches serve a purpose — as we shall
subsequently see.

E.2 Narrative and Formal Model

We combine, into one document, the informal description and the formal
description of the domain of traders. We describe only the basic protocols for
inquiry, quote, order, confirmation, delivery, acceptance, invoice, payment,
etc. transactions. We thus do not describe agents and brokers. We leave that
to a requirements modeling phase.

Please observe the extensive need for expressing selection of and responses
to transactions non–deterministically. In the real world, ie., in the domain, all
is possible: Diligent staff will indeed follow–up on inquiries, orders, payments,
etc. Loyal consumers will indeed respond likewise. But sloppy such people may
not. And outright criminals may wish to cheat, say on payments or rejects.
And we shall model them all. Hence non–determinism.

E.2.1 Formalisation of Syntax

type

Trans == Inq|Ord|Acc|Pay|Ret
| Qou|Con|Del|Acc|Inv|Ref
| NoR|Dec|Mis

E.2 Narrative and Formal Model 405

The first two lines above list the ‘buyer’, respectively the ‘seller’ initiated
transaction types. The third line lists common transaction types.

In the domain we can speak of the uniqueness of a transaction: “it was
issued at such–and–such time, by such–and–such person, and at such–and–
such location,” etcetera.

U below stand for (supposedly, or possibly) unique identifications, includ-
ing time, location, person, etc., stamps (T, P, L), Sui (where i=1,2) stands
for surrogate information, and MQP alludes to Merchandise identification,
Quantity, and Price.

type

U, M, Q, P, T, Su1, Su2, Inf
Inq :: MQP × U
MQP == mk(m:M,q:Q,p:P,...)
Quo :: ((Inq|Su1) × Inf) × U
Ord :: Qou|Su2 × U
Con :: Ord × U
Del :: Ord × U
Acc :: Del × U

Inv :: Ord × U
Pay :: Inv × U
Ret :: Del × U
Ref :: Pay × U
NoR :: Trans × U
Dec :: Trans × U
Mis :: Trans × U

value

obs T: U → T

The above defines the syntax of classes of disjoint transation commands, of
the abstract form mk Name(kind,u) where Name is either of Inq, Quo, Ord,
Con, Del, . . . or Mis.

An inquiry:Inq consists of a pair, some (desired) merchandise, (desired)
quantity and (desired) price information, and a supposedly unique identifi-
cation (of time, location, person, etc.) of issue – this “mimics” a consumer
inquiry of the form “I am in the market for such–and–such merchandise, in
such–and–such a quantity, and at such–and–such prices. What can you of-
fer ?”..

An quote:Quo either refers to the inquiry in which the quote is a response or
presents surrogate information — typically (where the seller takes the initia-
tive to advertise some merchandise and then) of a form similar to an inquiry:
“If you are in the market for such–and–such merchandise, in such–and–such
a quantity, and at such–and–such prices, then here is what we offer”.

information:Inf is then what is offered.
In general we model, in the domain, a “subsequent” transaction by refer-

ring to a complete trace of (supposedly) unique time, location, person, etc.,
stamped transactions. Thus, in general, a transaction “embodies” the trans-
action it is a manifest response to, and time, location, person, etc. of response.

Do not mistake this for a requirement. A requirement may or may not
impose unique identification wrt. time and location and person etc. Therefore
we do not detail U. Nor do we actually say that no two transactions can be
issued with the same uniqueness.

406 E Towards a Domain Model of ‘The Market’

E.2.2 Formalisation of Semantics of Market Interactions

“The Market” consist of n traders, whether buyers, or sellers, or both; whether
additionally agents or brokers. Each trader τi is able, potentially to commu-
nicate with any other trader:

{τ1, . . . , τi−1, τi+1, . . . , τn}.
We omit formal treatment of how traders come to know of one another. An

arbiter for such information is just like a trader. Other traders sell information
about their existence to such an arbiter. Thus no special formal treatment is
necessary.

We focus on the internal and external non–determinism which is always
there, in the domain, when transactions are selected, sent and received.

Our model is expressed in a variant of CSP, as “embedded” in RSL [104].

type

[0] Θ, MSG
[1] Idx = {| 1..n |}

value

[2] sys: (Idx →m Θ) → Unit

[3] sys(mθ) ≡ ‖ { tra(i)(mθ(i)) | i:Idx }

channels {tc[i,j]:MSG | i,j:Idx • i< j}

value

[4] tra: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} out {tc[i,j]|j:Idx•i6=j} Unit

[5] tra(i)(θ) ≡ tra(i)(nxt(i)(θ))

[6] nxt: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} out {tc[i,j]|j:Idx•i6=j} Θ
[7] nxt(i)(θ) ≡
[8] let choice = rcv ⌈⌉ snd in

[9] cases choice of rcv→receive(i)(θ), snd→send(i)(θ) end end

(0) Θ is the state space that any trader may span. MSG is type space of all
messages that can be exchanged between traders (ie., over channels). We de-
tail neither Θ nor MSG: In the “real world”, ie., in the domain, all is possible.
Determination of Θ and MSG is usually done when “deriving” the functional
requirements from the domain model. (1) Idx is the set of n indexes, where each
trader has a unique index. We do not detail Idx. That usually is done as late
as possible, say during code implementation. (2) The system initialises each
trader with a possibly unique local state (from its only argument). (3) The
system is the parallel combination of n traders. (4) A trader has a unique, con-
stant index, i, and is, at any moment, in some state θ. (4) Traders communicate
(both input and output) over channels: tc[i,j] — from trader i to trader j. (5)

E.2 Narrative and Formal Model 407

Each trader is modeled as a process which “goes on forever”, (5) but in steps
of next state transitions. (8) The next state transition non—deterministically
(internal choice, ⌈⌉) “alternates” between (9) expressing willingness to receive,
respectively desire to send.

In “real life”, ie. in the domain, the choice as to which transactions are
pursued is non–deterministic. And it is an internal choice. That is: The choice
is not influenced by the environment.

We model receiving as something “passive”: No immediate response is
made, but a receive state component of the trader state is updated. A trader
that has decided to send (something), may non–deterministically decide to
inspect the receive component of its state so as to ascertain whether there are
received transactions pending that ought or may be responded to.

The update rcv state invokes further functions.

receive: i:Idx → Θ → in {tc[j,i]|j:Idx•i6=j} Θ
receive(i)(θ) ≡

⌈⌉⌊⌋ {let msg=tc[j,i]? in update rcv state(msg,j)(θ) end | j:Idx}

Once the internal non–deterministic choice (⌈⌉) has been made ((8) above):
Whether to receive or send, the choice as to whom to ‘receive from’ is also
non–deterministic, but now external (⌈⌉⌊⌋). That is: receive expresses willingness
to receive from any other trader. But just one. As long as no other trader j
does not send anything to trader i that trader i just “sits” there, “waiting” —
potentially forever. This is indeed a model of the real world, the domain. A
subsequent requirement may therefore, naturally, be to provide some form of
time out. A re–specification of receive with time out is a correct implementation
of the above.

[2] update rcv state: MSG × i:Idx → Θ → Θ
[3] update rcv state(msg,j)(θ) ≡
[4] cases obs Trans(msg) of

[5] mk Del(,)
[6] → upd rcv(msg,j)(upd del(msg,j)(θ)),
[7] mk Ret(,)
[8] → upd rcv(msg,j)(upd ret(msg,j)(θ)),
[9] → upd rcv(msg,j)(θ)
[10] end

(2) any message received leads to an update of a ’receive’ component of the
local trader state (upd rec). (5–6) If the received “message” constitutes a
(physical package) delivery, then a ‘Merchandise’ component of the local trader
state is first updated (deposit delivery). (7–8) If the received “message” con-
stitutes the return (of a physical package), then the ‘merchandise’ component
of the local trader state is first updated (remove return).

[0] upd rec(msg,j)(θ) ≡ deposit trans((sU(msg),j),msg)(cond rec(msg,j)(θ))

408 E Towards a Domain Model of ‘The Market’

[1] upd del(msg,j)(θ) ≡ deposit delivery((sU(msg),j),msg)(θ)
[2] upd ret(msg,j)(θ) ≡ remove return((sU(msg),j),msg)(θ)

[3] cond rcv(msg,j)(θ) ≡
[4] if intial trans(msg)(θ)
[5] then θ
[6] else remove prior trans(sU(msg),j)(θ) end

sU: Trans → U, sU(,u) ≡ u

(0) The upd rec operation invokes the cond rec operation and then extends
the possibly new state by depositing the argument message under the unique
identification and message–sending trader identification. (3–6) The cond rec
operation examines ((4) initial trans) whether the received message is a first
such, ie., “contains” no prior transactions, or whether it contains such prior
transactions. In this latter case (6) the prior transaction may be conditionally
removed (remove prior trans) — this is not shown here, but commented upon
below.

[0] send: i:Idx → Θ → in {tc[i,j]|j:Idx•i6=j} Θ
[1] send(i)(θ) ≡
[2] let choice = ini ⌈⌉ res ⌈⌉ nor in

[3] cases choice of

[4] ini → send initial(i)(θ),
[5] res → send response(i)(θ),
[6] nor → remove received msg(θ) end end

Either a trader, when communicating a transaction chooses (2,4) an initial
(ini) one, or chooses (2,5) one which is in response (res) to a message received
earlier, or chooses (2,6) to not respond (nor) to such an earlier message The
choice is again non–deterministic internal (2). In the last case (6) the state
is thus non–deterministically internal choice updated by removing the, or an
earlier received message.

Note that the above functions describe the internal as well as the external
non–determinism of protocols. We omit the detailed description of those func-
tions which can be claimed to not be proper protocol description functions
— but are functions which describe updates to local trader states. We shall,
below, explain more about these state–changing functions.

send initial: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send initial(i)(θ) ≡

let choice = buy ⌈⌉ sell in

cases choice of

buy → send init buy(i)(θ),
sell → send init sell(i)(θ) end end

E.2 Narrative and Formal Model 409

send response: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send response(i)(θ) ≡

let choice = buy ⌈⌉ sell in

cases choice of

buy → send res buy(i)(θ),
sell → send res sell(i)(θ) end end

In the above functions we have, perhaps arbitrarily chosen, to distinguish be-
tween buy and sell transactions. Both send initial and send response functions
— as well as the four auxiliary functions they invoke — describe aspects of
the protocol.

send init buy: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send init buy(i)(θ) ≡

let choice = inq ⌈⌉ ord ⌈⌉ pay ⌈⌉ ret ⌈⌉ ... in

let (j,msg,θ′) = prepare init buy(choice)(i)(θ) in

tc[i,j]!msg ; θ′ end end

send init sell: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send init sell(i)(θ) ≡

let choice = quo ⌈⌉ con ⌈⌉ del ⌈⌉ inv ⌈⌉ ... in

let (j,msg,θ′) = prepare init sell(choice)(i)(θ) in

tc[i,j]!msg ; θ′ end end

prepare init buy is not a protocol function, nor is prepare init sell. They both
assemble an initial buy, respectively sell message, msg, a target trader, j, and
update a send repository state component.

send res buy: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send res buy(i)(θ) ≡

let (θ′,msg)=sel update buy state(θ), j=obs trader(msg) in

let (θ′′,msg′) = response buy msg(msg)(θ′) in

tc[i,j]!msg′; θ′′ end end

send res sell: i:Idx → Θ → out {tc[i,j]|j:Idx•i6=j} Θ
send res sell(i)(θ) ≡

let (θ′,msg)=sel update sell state(θ), j=obs trader(msg) in

let (θ′′,msg′) = response sell msg(msg)(θ′) in

tc[i,j]!msg′; θ′′ end end

sel update buy state is not a protocol function, neither is sel update sell -
state. They both describe the selection of a previously deposited, buy, respec-
tively a sell message, msg, (from it) the index, j, of the trader originating that
message, and describes the update of a received messages repository state
component. response buy msg and response sell msg both effect the assem-
bly, from msg, of suitable response messages, msg′. As such they are partly

410 E Towards a Domain Model of ‘The Market’

protocol functions. Thus, if msg was an inquiry then msg′ may be either a
quote, decline, or a misdirected transaction message. Etcetera.

E.2.3 On Operations on Trader States

We have left a number of trader state operations undefined. In fact we have not
said anything about ‘the state’ — other than it may have a ‘received messages’
component. It likewise is expected to have a ‘sent messages’ component, a
‘catalogue’, and a ‘merchandise (wharehouse)’ component. Etcetera. To be too
specific would unnecesaruly bind requirements development and bias possible
software implementations.

Below we give their signature and otherwise comment informally. The
reason for not formally defining them is simple: Since we are modeling the
domain, and since, in the domain, these updates are typically performed by
humans, and since these humans are either diligent, or sloppy, or delinquent,
or outright criminal in the dispatch of their duties we really cannot define the
operations as we would really like to see them dispatched — namely diligently.

value

deposit trans: (U × Idx) × MSG → Θ → Θ
deposit delivery: (U × Idx) × MSG → Θ → Θ
remove return: (U × Idx) × MSG → Θ → Θ
initial trans: MSG × Idx → Θ → Bool

remove prior trans: U × Idx → Θ → Θ
remove received msg: Θ → Θ

The above operations have all basically been motivated earlier. The de-
posit trans unconditionally deposits a received message, for example in a part
of the local trader state that could be characterised as a repository for received
transactions. That repository may have messages identified by the sender and
the unique identification. To specify so is not a matter of binding future re-
quirements and therefore also not future implementations. It just models that
one can, in the domain “talk” about these things.

An initial transaction is one which does not contain prior transactions,
that is: Is one which is either an inquiry transaction or contains surrogates
(Sur1, Sur2).

To remove a prior transaction models that people may no longer keep a
record of such a transaction — since it is embedded in the message in response
to which this removal is invoked. We do not show the details of removal, but
expect a model to capture that such prior transactions need not be removed. In
other words: The removal may be internal non–deterministically “controlled”.

remove received msg unconditionally removes a message: This models
that people and institutions (internal non–deterministically) may choose to
ignore inquiries, quotations, orders, confirmations, deliveries, etc.

prepare init buy: Choice → Idx → Θ → Idx × MSG × Θ
prepare init sell: Choice → Idx → Θ → Idx × MSG × Θ

The above operations internal deterministically chooses which prior transac-
tions to respond to.

obs trader: MSG → Idx

No matter which transaction (ie., message) one can always identify, say from
the unique identification, which trader originated that message. We do not
specify how since that might bias an implementation.

For the sake of completeness we also state the signatures of remaining and
previously described operations:

value

upd rec: MSG × Idx → Θ → Θ
upd del: MSG × Idx → Θ → Θ
upd ret: MSG × Idx → Θ → Θ
cond rcv: MSG × Idx → Θ → Θ

sel update buy state: Θ → Θ × MSG
sel update sell state: Θ → Θ × MSG

response buy msg: MSG → Θ → Θ × MSG
response sell msg: MSG → Θ → Θ × MSG

In summary: All operations on local trader states are, in the domain, basically
under–specified. It will be a task for requirements to, as we shall call it,
determine precise functionalities for each of these operations.

E.3 Discussion

As for local trader state operations, so it is for the possible sequences of
transactions between “market players” (ie., the traders): They are all, in the
above model, left “grossly” non–deterministic.

Those trader who initiate transactions toward other traders can be viewed
as “clients”, while those others are seen as “servers”. Thus it is that we see that
“clients” are characterisable by internal non–determinism, while “servers” are
characterisable by external non–determinism.

It is now a task for requirements to determine the extent of non–determinisms
and the more precise rôles of ‘clients’ and ‘servers’.

Part V

Support Example Appendices

Appendices F–H (Pages 415–441) bring material in support of Chap. 7,
10 and 10 respectively. This material was not present in any of the JAIST
Technical Memoranda.

F

Time and Time/Space — Two Axiom Systems

Borrowed Material: Johan van Benthem and Wayne Blizzard

Why This Appendix ?

This appendix contains some basic material on the concepts of time and of
time/space. This material is, in a strict sense, required in Sects. 7.3.10 and
7.3.12 as well as in Appendix G: Time is first used in a syntactic sense, in
Sect. G.2 and then in a semantics sense in Sect. G.4.

Time is ever pervasive — used in well-nigh all domain descriptions.
In those that we show we model time. More axiomatic (logic) approaches
to formalising time properties make use of temporal logics (DC [Duration
Calculus] [247, 248] and TLA+ [155, 156, 175, 176]). They are not covered in
this monograph.

F.1 van Benthem’s Theory of Time

The following is taken from Johan van Benthem [239]: Let P be a point
structure (for example, a set). Think of time as a continuum; the following
axioms characterise ordering (<, =, >) relations between (i.e., aspects of)
time points. The axioms listed below are not thought of as an axiom system,
that is, as a set of independent axioms all claimed to hold for the time concept,
which we are encircling. Instead van Benthem offers the individual axioms as
possible “blocks” from which we can then “build” our own time system —
one that suits the application at hand, while also fitting our intuition.

Time is transitive: If p<p′ and p′<p′′ then p<p′′. Time may not loop, that
is, is not reflexive: p 6< p. Linear time can be defined: Either one time comes
before, or is equal to, or comes after another time. Time can be left-linear,
i.e., linear “to the left” of a given time. One could designate a time axis as
beginning at some time, that is, having no predecessor times. And one can
designate a time axis as ending at some time, that is, having no successor
times. General, past and future successors (predecessors, respectively succes-
sors in daily talk) can be defined. Time can be dense: Given any two times
one can always find a time between them. Discrete time can be defined.

416 F Time and Time/Space — Two Axiom Systems

axiom

[TRANS: Transitivity] ∀ p,p′,p′′:P • p < p′ < p′′ ⇒ p < p′′

[IRREF: Irreflexitivity] ∀ p:P • p 6< p

[LIN: Linearity] ∀ p,p′:P • (p=p′ ∨ p<p′ ∨ p>p′)

[L−LIN: Left Linearity]
∀ p,p′,p′′:P • (p′<p ∧ p′′<p) ⇒ (p′<p′′ ∨ p′=p′′ ∨ p′′<p′)

[BEG: Beginning] ∃ p:P • ∼∃ p′:P • p′<p

[END: Ending] ∃ p:P • ∼∃ p′:P • p<p′

[SUCC: Successor]
[PAST: Predecessors] ∀ p:P,∃ p′:P • p′<p
[FUTURE: Successor] ∀ p:P,∃ p′:P • p<p′

[DENS: Dense] ∀ p,p′:P (p<p′ ⇒ ∃ p′′:P • p<p′′<p′)

[DENS: Converse Dense] ≡ [TRANS: Transitivity]
∀ p,p′:P (∃ p′′:P • p<p′′<p′ ⇒ p<p′)

[DISC: Discrete]
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p<p′′ ∧ ∼∃ p′′′:P • (p<p′′′<p′′))) ∧
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p′′<p′ ∧ ∼∃ p′′′:P • (p′′<p′′′<p′)))

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF.
TRANS, IRREF and SUCC imply infinite models. TRANS and SUCC may
have finite, “looping time” models.

F.2 Blizard’s Theory of Time-Space

We shall present an axiom system (Wayne D. Blizard, 1980, [63]) which relates
abstracted entities to spatial points and time. Let A, B, . . . stand for entities,
p, q, . . . for spatial points; and t, τ for times. 0 designates a first, a begin time.
Let t′ stand for the discrete time successor of time t. Let N(p, q) express that
p and q are spatial neighbours. Let = be an overloaded equality operator
applicable, pairwise to entities, spatial locations and times, respectively. At

p

expresses that entity A is at location p at time t. We omit (obvious) typings of

F.2 Blizard’s Theory of Time-Space 417

A, B, P, Q, and T. The suffix prime, ′, designates the time successor function.
Thus t′ designates the next time after t.

(I) ∀A∀t∃p : At
p

(II) (At
p ∧ At

q) ⊃ p = q

(III) (At
p ∧ Bt

p) ⊃ A = B

(IV) (At
p ∧ At′

p) ⊃ t = t′

(V i) ∀p, q : N(p, q) ⊃ p 6= q Irreflexivity
(V ii) ∀p, q : N(p, q) = N(q, p) Symmetry
(V iii) ∀p∃q, r : N(p, q) ∧ N(p, r) ∧ q 6= r No isolated pts.

(V I i) ∀t : t 6= t′

(V I ii) ∀t : t′ 6= 0
(V I iii) ∀t : t 6= 0 ⊃ ∃τ : t = τ ′

(V I iv) ∀t, τ : τ ′ = t′ ⊃ τ = t

(V II) At
p ∧ At′

q ⊃ N(p, q)

(V III) At
p ∧ Bt

q ∧ N(p, q) ⊃ ∼ (At′

q ∧ Bt′

p)

• (II–IV,VII, VIII): The axioms are universally ‘closed’, that is, we have
omitted the usual ∀A, B, p, q, ts.

• (I): For every entity, A, and every time, t, there is a location, p, at which
A is located at time t.

• (II): An entity cannot be in two locations at the same time.
• (III): Two distinct entities cannot be at the same location at the same

time.
• (IV): Entities always move: An entity cannot be at the same location at

different times. This is more like a conjecture, and could be questioned.
• (V): These three axioms define N .
• (V i): Same as ∀p :∼ N(p, p). “Being a neighbour of”, is the same as “being

distinct from”.
• (V ii): If p is a neighbour of q, then q is a neighbour of p.
• (V iii): Every location has at least two distinct neighbours.
• (VI): The next four axioms determine the time successor function ′.
• (VI i): A time is always distinct from its successor: Time cannot rest. There

are no time fix points.
• (VI ii): Any time successor is distinct from the begin time. Time 0 has no

predecessor.
• (VI iii): Every nonbegin time has an immediate predecessor.
• (VI iv): The time successor function ′ is a one-to-one (i.e., a bijection)

function.
• (VII): The continuous path axiom: If entity A is at location p at time t,

and it is at location q in the immediate next time t′, then p and q are
neighbours.

• (VIII): No “switching”: If entities A and B occupy neighbouring locations
at time t the it is not possible for A and B to have switched locations at
the next time t′.

Discussion of the Blizard Model of Space/Time

Except for axiom (IV) the system applies to systems of entities that “some-
times” rest, i.e., do not move. These entities are spatial and occupy at least a
point in space. If some entities “occupy more” space volume than others, then
we may suitably “repair” the notion of the point space P (etc.), however, this
is not shown here.

G

Timetable Scripts

Summary

In this appendix we cover two notions: timetables and scripts (the latter
with focus on timetables as scripts).

We shall view timetables as scripts.
In this appendix we shall first narrate and formalise the syntax, including

the well-formedness of timetable scripts, then we consider the pragmatics
of timetable scripts, including the bus routes prescribed by these journey
descriptions and timetables marked with the status of its currently active
routes, and finally we consider the semantics of timetable, that is, the traffic
they denote.

In the next section, Sect. 10.6, on licenses for bus traffic, we shall assume
the timetable scripts of this section.
What we shall capture is, of course, an abstraction of “such timetables”. We
claim that the enumerated narrative which now follows and its accompanying
formalisation represents an adequate description. Adequate in the sense that
the reader “gets the idea”, that is, is shown how to narrate and formalise
when faced with an actual task of describing a concept of timetables.

In the following we distinguish between bus lines and bus rides. A bus line
description is basically a sequence of two or more bus stop descriptions. A
bus ride is basically a sequence of two or more time designators.1 A bus line
description may cover several bus rides. The former have unique identifica-
tions and so has the latter. The times of the latter are the approximate times
at which the bus of that bus line and bus identification is supposed to be at
respective stops. You may think of the bus line identification to express some-
thing like “The Flying Scotsman”, and the bus ride identification something
like “The 4.50 From Paddington”.

1We do not distinguish between a time and a time description. That is, when
we say February 16, 2009, 16: 58 we mean it either as a description of the time at
which this text that you are now reading was LATEX compiled, and as “that time !”.

420 G Timetable Scripts

G.1 The Syntax of Bus Lines

121. A line sector is a triple: the “from” hub, to “on” link an the “to” hub.
122. A line sector description is a triple: the “from” hub identifier, to “on” link

identifier and the “to” hub identifier.
123. Line sectors must be well-defined.
124. So must line sector descriptions.
125. A line is a sequence of one or more sectors
126. and its representation must be well-defined.

type

121. Sect′ = H × L × H,
122. SectDescr′ = HI × LI × HI
123. Sect = {|(h,l,h′):Sect′ • obs HIs(l)={obs HI(h),obs HI(h′)}|}
124. SectDescr = {|(hi,li,hi′):SectDescr′ •

∃ (h,l,j′):Sect•obs HIs(l)={obs HI(h),obs HI(h′)}|}
125. Line′ = Sect∗,
126. Line = {|line:Line′•wf Line(line)|}
value

wf Line: Line′ → Bool

wf Line(line) ≡
∀ i:Nat • {i,i+1}⊆inds(line) ⇒

let (,l,h)=line(i),(h′,l′,)=line(i+1) in h=h′ end

G.2 The Syntax of Timetable Scripts

127. Time is a concept covered earlier. Bus lines and bus rides have unique
names (across any set of time tables). Hub and link identifiers, HI, LI,
were treated from the very beginning.

128. A TimeTable associates to Bus Line Identifiers a set of Journies.
129. Journies are designated by a pair of a BusRoute and a set of BusRides.
130. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more

intermediate Bus Stops and a destination Bus Stop.
131. A set of BusRides associates, to each of a number of Bus Identifiers a Bus

Schedule.
132. A Bus Schedule a triple of the initial departure Time, a list of zero, one

or more intermediate bus stop Times and a destination arrival Time.
133. A Bus Stop (i.e., its position) is a Fraction of the distance along a link

(identified by a Link Identifier) from an identified hub to an identified
hub.

134. A Fraction is a Real properly between 0 and 1.
135. The Journies must be well formed in the context of some net.

G.3 Well-formedness of Journies 421

type

127. T, BLId, BId
128. TT = BLId →m Journies
129. Journies′ = BusRoute × BusRides
130. BusRoute = BusStop × BusStop∗ × BusStop
131. BusRides = BId →m BusSched
132. BusSched = T × T∗ × T
133. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
134. Frac = {|r:Real•0<r<1|}
135. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license.

G.3 Well-formedness of Journies

136. A set of journies is well-formed
137. if the bus stops are all different2,
138. if a defined notion of a bus line is embedded in some line of the net, and
139. if all defined bus trips (see below) of a bus line are commensurable.

value

136. wf Journies: Journies → N → Bool

136. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
137. diff bus stops(bs1,bsl,bsn) ∧
138. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
139. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

140. The bus stops of a journey are all different
141. if the number of elements in the list of these equals the length of the list.

value

140. diff bus stops: BusStop × BusStop∗ × BusStop → Bool

140. diff bus stops(bs1,bsl,bsn) ≡
141. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉)
of all bus stops as the bus line.

142. To explain that a bus line is embedded in a line of the net
143. let us introduce the notion of all lines of the net, lns,
144. and the notion of projecting the bus line on link sector descriptors.

2This restriction is, strictly speaking, not a necessary domain property. But it
simplifies our subsequent formulations.

422 G Timetable Scripts

145. For a bus line to be embedded in a net then means that there exists a line,
ln, in the net, such that a compressed version of the projected bus line is
amongst the set of projections of that line on link sector descriptors.

value

142. is net embedded bus line: BusStop∗ → N → Bool

142. is net embedded bus line(bsl)(hs,ls)
143. let lns = lines(hs,ls),
144. cbln = compress(proj on links(bsl)(elems bsl)) in

145. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

146. Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a list of
Sector Descriptors ((hi,li,hi′))

147. we recursively unravel the list from the front:
148. if there is no front, that is, if the whole list is empty, then we get the

empty list of sector descriptors,
149. else we obtain a first sector descriptor followed by those of the remaining

bus stop descriptors.

value

146. proj on links: BusStop∗ → SectDescr∗

146. proj on links(bsl) ≡
147. case bsl of

148. 〈〉 → 〈〉,
149. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
149. end

150. By compression of an argument sector descriptor list we mean a result
sector descriptor list with no duplicates.

151. The compress function, as a technicality, is expressed over a diminishing
argument list and a diminishing argument set of sector descriptors.

152. We express the function recursively.
153. If the argument sector descriptor list an empty result sector descriptor list

is yielded;
154. else
155. if the front argument sector descriptor has not yet been inserted in the

result sector descriptor list it is inserted else an empty list is “inserted”
156. in front of the compression of the rest of the argument sector descriptor

list.

150. compress: SectDescr∗ → SectDescr-set → SectDescr∗

151. compress(sdl)(sds) ≡
152. case sdl of

153. 〈〉 → 〈〉,
154. 〈sd〉̂sdl′ →

G.3 Well-formedness of Journies 423

155. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
156. ̂compress(sdl′)(sds\{sd}) end

In the last recursion iteration (line 156.) the continuation argument sds\{sd}
can be shown to be empty: {}.

157. We recapitulate the definition of lines as sequences of sector descriptions.
158. Projections of a line generate a set of lists of sector descriptors.
159. Each list in such a set is some arbitrary, but ordered selection of sector

descriptions. The arbitrariness is expressed by the “ranged” selection of
arbitrary subsets isx of indices, isx⊆inds ln, into the line ln. The “ordered-
ness” is expressed by making that arbitrary subset isx into an ordered list
isl, isl=sort(isx).

type

157. Line′ = (HI×LI×HI)∗ axiom ... type Line = ... Page 420
value

158. projs on links: Line → Line′-set
158. projs on links(ln) ≡
159. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

160. sorting a set of natural numbers into an ordered list, isl, of these is ex-
pressed by a post-condition relation between the argument, isx, and the
result, isl.

161. The result list of (arbitrary) indices must contain all the members of the
argument set;

162. and “earlier”elements of the list must precede, in value, those of “later”
elements of the list.

value

160. sort: Nat-set → Nat∗

160. sort(isx) as isl
161. post card isx = lsn isl ∧ isx = elems isl ∧
162. ∀ i:Nat • {i,i+1}⊆inds isl ⇒ isl(i)<isl(i+1)

163. The bus trips of a bus schedule are commensurable with the list of bus
stop descriptions if the following holds:

164. All the intermediate bus stop times must equal in number that of the bus
stop list.

165. We then express, by case distinction, the reality (i.e., existence) and time-
liness of the bus stop descriptors and their corresponding time descriptors
– and as follows.

166. If the list of intermediate bus stops is empty, then there is only the bus
stops of origin and destination, and they must be exist and must fit time-
wise.

424 G Timetable Scripts

167. If the list of intermediate bus stops is just a singleton list, then the bus
stop of origin and the singleton intermediate bus stop must exist and
must fit time-wise. And likewise for the bus stop of destination and the
the singleton intermediate bus stop.

168. If the list is more than a singleton list, then the first bus stop of this list
must exist and must fit time-wise with the bus stop of origin.

169. As for Item 168 but now with respect to last, resp. destination bus stop.
170. And, finally, for each pair of adjacent bus stops in the list of intermediate

bus stops
171. they must exist and fit time-wise.

value

163. commensurable bus trips: Journies → N → Bool

163. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
164. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
165. case len til of

166. 0 → real and fit((t1,t2),(bs1,bs2))(hs,ls),
167. 1 → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
167. fit((til(1),t2),(bsl(1),bsn))(hs,ls),
168. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
169. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
170. ∀ i:Nat•{i,i+1}⊆inds til ⇒
171. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

172. A pair of (adjacent) bus stops exists and a pair of times, that is the time
interval between them, fit with the bus stops if the following conditions
hold:

173. All the hub identifiers of bus stops must be those of net hubs (i.e., exists,
are real).

174. There exists links, l, l′, for the identified bus stop links, li, li′,
175. such that these links connect the identified bus stop hubs.
176. Finally the time interval between the adjacent bus stops must approximate

fit the distance between the bus stops
177. The distance between two bus stops is a loose concept as there may be

many routes, short or long, between them.
178. So we leave it as an exercise to the reader to change/augment the descrip-

tion, in order to be able to ascertain a plausible measure of distance.
179. The approximate fit between a time interval and a distance must build on

some notion of average bus velocity, etc., etc.
180. So we leave also this as an exercise to the reader to complete.

172. real and fit: (T×T)×(BusStop×BusStop) → N → Bool

172. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
173. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
174. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧

G.4 The Semantics of Timetable Scripts 425

175. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
176. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

177. distance: BusStop × BusStop → N → Distance
178. distance(bs1,bs2)(n) ≡ ... [left as an exercise !] ...

179. afit: TI → Distance → Bool

180. [time interval fits distance between bus stops]

G.4 The Semantics of Timetable Scripts

One form of timetable denotations is the bus traffic implied by a timetable.

181. We postulate a type of Buses.
182. From a bus one can observe the value of a number of attributes: cur-

rent number of passengers, identity of driver, number of passengers who
alighted and boarded at the most recent bus stop, etc. (We let X stand
for any one of these attributes.)

183. Bus traffic maps discrete times into the pair of a bus net and the positions
of buses.

184. A bus positions is either at a hub, on a link or at a bus stop.
185. When a bus is at a hub we can also observe from which link it came and

to which link it proceeds.
186. When a bus is on a link we can observe how far it has progressed down

the link from one of the two hubs it connects.
187. When a bus is at a bus stop — which is like “on a link” — we can observe

that bus stop accordingly.
188. Fractions have also be described earlier.

type

181. Bus
value

182. obs X: Bus → X
type

183. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
184. BPos = atHub | onLnk | atBS
185. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
186. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
187. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
188. Frac = {|r:Real•0<r<1|}

We omit detailing necessary well-formedness constraints – such as (i) all bus
positions being on the designated net, (ii) traffic moving monotonically, (iii)

426 G Timetable Scripts

no two buses of the same pair of bus line and bus identification at the same
time (or otherwise conflicting), (iv) no “ghost” busses, etcetera. ‘
From a bus timetable we can generate the set of all bus traffics that satisfy
the bus timetable. (We have covered this notion earlier.)

value

gen BusTraffic: TT → BusTraffic-infset

gen BusTraffic(tt) as btrfs
post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

We leave it to the reader to define the on time predicate.

G.5 Discussion

We have built the foundations for a theory of timetables. We have not yet
formulated theorems let alone proven any such.

H

The Gunter et al. Model & its Reformulation

Why This Appendix ?

This appendix, based on [113], is brought as a background text for Chap. 10.
[113] appears to represent the first ‘formalisation’ of a license language.

Summary

This appendix presents the essence of a paper by Carl Gunter et al. [113].
That proceedings paper was studied by Drs. Arimoto Yasuhito, Chen Xi-
aoyi, Xiang Jianwen and myself. I presented a reformulation of the paper,
as presented here, expressed in RSL. Mr. Arimoto Yasuhito presented
more-or-less the same reformulation expressed in CafeOBJ, a very noce
abstraction by the way!.

There were some seemingly open issues in [113]. I therefore felt a
need to ‘republish’ an essence of the Gunter et al. paper — with our
“corrections”. The open issues were finally partly resolved in an e-mail
from Carl Gunter, 13 Feb. 2009 (after three attempts over three years).
The open issues are explicitly mentioned in itemized form, in framed
paragraphs.

This written presentation is basically in colloquium form, that is, in
the form of bulleted (etc.) items. Sects. H.1–H.4 “repeats” the Gunter
et al. paper albeit with our “Open Issues” concerns and now with their
partial resolution. Section H.5 presents my reformulation in RSL.

I thank Carl Gunter for his kind reply.

H.1 Digital Rights Licensing

H.1.1 What is Digital Rights?

• Digital rights deal with the rights of owners of artistic expressions

428 H The Gunter et al. Model & its Reformulation

⋆ music, movies, readings, photographs, paintings, ...
• in the context of the downloading of these
• via the Internet to users
• who are then supposed to pay for the right to render,
• i.e., to listen, see, hear, and see–see, ..., these.

H.1.2 Realities by Users and Licenses Issued by Owners

• Users perform payment and rendering events.
• Sequences of events as performed by users make up realities.
• Owners issue licenses which describe which realities are permissible.

H.1.3 Digital Rights Management (DRM)

• DRM is then about
⋆ the design of appropriate license languages
⋆ and the enforcement of user realities
⋆ in order for these to not breach, but to fulfil the licenses.

H.1.4 Structure of Presentation

• First a loyal, but problematic transcription of a published paper.
• Then a “similar”, but believed correct reformulation (in RSL).

H.2 Transcript of the Gunter/Weeks/Wright Paper

H.2.1 Actions, Events, Realities and Licenses

• The model centers around
⋆ a domain of realities and
⋆ a domain of licenses,

• where
⋆ A reality is a sequence of events.
⋆ A license is a set of realities.

• The semantics of a rights management languages can be expressed as a
function

• that maps terms of the language to elements of their domain of licenses.
• Their abstract model

⋆ represents an event, e ∈ Event, as a pair of a time, t ∈ T ime,
⋆ and an action, a ∈ Action:

e ::= t : a

• Time is totally ordered by <.

H.2 Transcript of the Gunter/Weeks/Wright Paper 429

• The function +:
⋆ T ime × Period → T ime
⋆ adds a period, p ∈ Period, to a time.

• There are two kinds of actions:

a ::= render[w, d] | pay[x]

• w ∈ Work denotes a rights-managed work.
• d ∈ Device represents a DRM-enabled device.
• x is a decimal.
• Action render[w, d] represents rendering of work w by rights-enabled device

d.
• Action pay[x] represents a payment of amount x of some currency from a

licensee to a license issuer.
• The event t : render[w, d] means that at time t, work w was rendered on

device d.
• The event t : pay[x] means that at time t, a payment of amount x was

made.

• A reality, r ∈ Reality,
⋆ is a finite set of events,
⋆ such that all events occur at distinct times:

Reality = { E | E:Event-set • t:a ∈ E ∧ t:a′ ∈ E ⇒ a=a′}

where
⋆ P (x) represents the powerset of E (the set of all subsets of E).
⋆ Notation:

⋄ r≤t represents the prefix of r that occurs at or before time t;
⋄ that is: r≤t = {t′ : a ∈ r | t′ ≤ t}.

⋆ Notation:
⋄ r ⊑ r′ indicates that r is a prefix of r′;
⋄ that is, there exists a t such that r = r′≤t.

• In the model, a license, l ∈ License, is a set of realities:

l ∈ License = P (Reality)

• Let us take an example:

lA =

{8 : 00 : pay[$1], 8 : 01 : render[w1, d1]},
{8 : 00 : pay[$1], 8 : 02 : render[w1, d1]},
{8 : 00 : pay[$1], 8 : 03 : render[w1, d1],

8 : 04 : render[w1, d1]},
{8 : 00 : pay[$1]}

• To give a more formal meaning to a license,
• suppose r is the (unique) complete reality

430 H The Gunter et al. Model & its Reformulation

• that actually occurs over the entire lifetime of the DRM system.
• Let r[l] be events of r attributed to license l.
• Definitions

⋆ Reality r ∈ l of license l is viable for r[l] at t iff r[l]≤t ⊑ r.
⋆ License l is fulfilled by r[l] at t iff r[l]≤t ∈ l.
⋆ License l is breached by r[l] at t iff there does not exist r ∈ l that is

viable for r[l] at t.

• Example 1:
r[lA] = { 8:00:pay[$1], 8:01:render[w1, d1], 8:05:render[w1, d1] }.

For r[lA],
⋆ at t < 8:01, all four realities of license lA are viable
⋆ at t, 8:01 ≤ t < 8:05, only the first reality is viable
⋆ at t ≥ 8:05, no reality is viable

• Example 2:
r[lA] = { 8:00:pay[$1], 8:01:render[w1, d1], 8:05:render[w1, d1] }.

License lA is
⋆ unfulfilled by r[lA] for t < 8:00
⋆ fulfilled for 8:00 ≤ t < 8:05
⋆ breached for t ≥ 8:05

• Example 3:
r’[lA] = { 8:00:pay[$1], 8:03:render[w1, d1] }.

license lA is
⋆ unfulfilled for t < 8:00
⋆ fulfilled for 8:03 ≤ t < 8:03
⋆ unfulfilled for 8:03 ≤ t < 8:04
⋆ breached for t ≥ 8:04

H.3 Standard Licenses

H.3.1 Up Front Licenses

• The “UP Front” license provides access
• to any work in set W ∈ P (Work)
• on any device in set D ∈ P (Device)
• beginning at time t0 for period p,
• for an up-front payment of x:

UpFront(t0, x, p, W, D) =
{t0 : pay[x],

t1 : render[w1, d1], ..., tn : render[wn, dn]
| n ≥ 0,

H.3 Standard Licenses 431

t0 < t1 < ... < tn < t0 + p,
w1, ..., wn ∈ W, d1, ..., dn ∈ D }

Open Issues wrt. [113]

• The use of n is confusing.
• On one hand it is used to express up to n renderings.
• On the other hand subscript n is used for ranging both works and devices.
• The three uses of n should be separated into, say, i, j and k.1

• The same comments apply to the Flat Rate and Per Use formulations.
• Why not allow tn ≤ t0 + p?

H.3.2 Flat Rate Licenses

• The “Flat Rate” license provides access
• to any work in set W
• on any device in set D
• beginning at time t0 for period p,
• for a payment of x at the end of the period:

FlatRate(t0, x, p, W, D) =
{t1 : render[w1, d1], ..., tn : render[wn, dn]

tn+1 : pay[x],
| n ≥ 0,
t0 < t1 < ... < tn < tn+1 < t0 + p,
w1, ..., wn ∈ W, d1, ..., dn ∈ D }

Open Issues wrt. [113]

• Why not allow tn ≤ t0 + p?

H.3.3 Per Use Licenses

• The “Per Use” license is provides access
• to any work in set W

1Gunter’s 13 Feb. 2009 e-mail says that their formulation works. I think it does
not: In my reformulation, in RSL, see the M(mkUF(t0,x,p,ws,ds)) function defini-
tion on Page 437. the reader will find that in order to make sure that all relevant
combinations are considered that a trip set of embedded set comprehensions are
necessary.

432 H The Gunter et al. Model & its Reformulation

• on any device in set D
• beginning at time t0
• for a period of length p,
• for a payment of x per use at the end of the period:

PerUse(t0, x, p, W, D) =
{t1 : render[w1, d1], ..., tn : render[wn, dn]

tn+1 : pay[nx],
| n ≥ 0,
t0 < t1 < ... < tn < tn+1 < t0 + p,
w1, ..., wn ∈ W, d1, ..., dn ∈ D }

Open Issues wrt. [113]

• Why not allow tn+1 ≤ t0 + p?

H.3.4 Up to Expiry Date Licenses

• A license that a consumer can accept any time before some future
⋆ can be constructed by quantifying over t0
⋆ for any of the three families defined on preceding slides.

• For example,
⋃

t0<texpires
UpFront(t0, x, p, W, D)

• This license allows the period of the use to begin anytime prior to texpires.

Open Issues wrt. [113]

• Why not allow t0 ≤ texpires?

H.3.5 Non-cancellable Multi-use Licenses

• To construct multi-period non-cancellable licenses
• by composing single-period licenses,
• an operator △ is defined.

l1△l2 = {r1 ∪ r2 | r1 ∈ l1, r2 ∈ l2}
• here all of the events of l1 occur at different times from the events of l2.

H.3 Standard Licenses 433

Open Issues wrt. [113]

• The above is not the same as: l1△l2 = l1 ∪ l2
• How does △ associate? Gunter’s 13 Feb. 2009 e-mail says: right to left.
• We guess: l△ l′△ l′′ = l△ (l′△ l′′)

. Gunter’s 13 Feb. 2009 e-mail says: we were right!

• UpFront△(t0, x, p, W, D, m)
• provides access to any work in set W
• on any device in set D
• beginning at time t0
• for m periods of length p,
• for payments of x at the beginning of each period:

UpFront△(t0, x, p, W, D, m) =
UpFront(t0, x, p, W, D)△...△
UpFront(tm−1, x, p, W, D)

where ti = t0 + ip for i from 0 to m − 1

H.3.6 Cancellable Multi-use Licenses

• With the � operator cancellable multi-period licenses can be defined.

l1 � l2 = {r1 ∪ r2 | r1 ∈ l1, r1 6= Ø, r2 ∈ l2} ∪ {Ø}
• here all of the events of l1 occur at different times from the events of l2.

Open Issues wrt. [113]

• Same question concerning associativity2.
• What, exactly is the rôle of the empty set {}, or, rather, {{}} (in Gunter

et al. paper: {Ø})3.
• We guess: To have only actions from l1 and then “get out”!
• Also: There is a problem with ti: it is defined but never used!4

2From Gunter’s 13 Feb. 2009 e-mail: “The association is to the right in the right
triangle in the UpFront definition. We should have said this since this operation is
NOT associative.”

3From Gunter’s 13 Feb. 2009 e-mail: “Concerning the role of {∅}, I don’t recall
why we wanted it this way but, judging by the definition, we always wanted to
include the empty reality even if no other reality was in the license.”

4From Gunter’s 13 Feb. 2009 e-mail: “The notation with the ti index is a bit
awkward. The idea is that the sequence starts with i = 0 and ends with i = m − 1.

434 H The Gunter et al. Model & its Reformulation

• UpFront�(t0, x, p, W, D, m)
• provides access to any work in set W
• on any device in set D
• beginning at time t0
• for m periods of length p,
• for payments of x at the beginning of each period,
• cancellable after any period:

UpFront�(t0, x, p, W, D, m) =
UpFront(t0, x, p, W, D) � ...�
UpFront(tm−1, x, p, W, D)

where ti = t0 + ip for i from 0 to m − 1

Open Issues wrt. [113]

• Same question concerning associativity.
(See footnote 2 on the previous page.)

• There is still a problem with ti: it is defined but never used!
(See footnote 4 on the preceding page.)

H.4 A License Language

H.4.1 Syntax

The language DigitalRights is defined by the following grammar:

e ::= (at t | until t)
(for p | for [up to] m p)
pay x (upfront | flatrate | peruse)
for W on D

H.4.2 Examples

until 01/01/03
for up to 12 months
pay $ 10.00 upfront
for ”Jazz Classics”
on ”devices registered to license holder”

To make this cleaner one could use some kind of ”big triangle” notation with the
index i on it. The same holds for the UpFront definition at the bottom of the page.”

H.5 An RSL Model 435

H.4.3 Semantics

M[at t z] = M1[z](t)
M[until t z] =

⋃
t′<t M1[z](t′)

M1[for p z](t0, p) = M2[z](t0, p)
M1[for up to m p z](t0) = M2[z](t0, p) � ... � M2[z](tm−1, p)

where ti = t0 + ip for i from 0 to m − 1
M1[for m p z](t0) = M2[z](t0, p)△...△M2[z](tm−1, p)

where ti = t0 + ip for i from 0 to m − 1

M2[pay x upfront for W on D](t, p) = UpFront(t, x, p, W, D)
M2[pay x flatrate for W on D](t, p) = FlatRate(t, x, p, W, D)
M2[pay x peruse for W on D](t, p) = PerUse(t, x, p, W, D)

Open Issues wrt. [113]

• Parameters (t0, p) in first left-hand side of M1 is wrong,
• should be just (t0). (Gunter’s 13 Feb. 2009 e-mail: Yes, the definition is

wrong.

H.5 An RSL Model

H.5.1 Actions, Events, Realities and Licences

type

T, W, D, P
E = T × A
A == mkR(w:W,d:D) | mkP(x:P) or: rndr(w,d) | pay(x)
R = {| evs:E-set • wfEvs(evs) |}

Annotations:

• T, W, D, and P stands for time, work, device and payment.
• Events, e:E, are Cartesian pairs of times (i.e., time stamps) and actions.
• Actions are discriminated, either renderings (which are records mkR(w,d))

of works and devices. or payments (mkP(x)) of currency amounts.
• The trailing “or” shows our schematic way of representing actions.
• Realities, r:R, are well-formed sets of events.

value

wfEvs: E-set → Bool

wfEvs(evs) ≡ ∀ (t,a),(t′,a′):E•{(t,a),(t′,a′)}⊆evs ∧ t=t′ ⇒ a=a′

436 H The Gunter et al. Model & its Reformulation

r≤t: prefix: R → T → R

r≤t ≡ prefix(r)(t) ≡ {(t′,a)|(t′,a):E • (t′,a) ∈ r ∧ t′≤t}

r′ ⊑ r: is prefix: R × R → Bool

r′ ⊑ r ≡ is prefix(r′,r) ≡ ∃ t:T • r′ = prefix(r)(t)

Annotations:

• A set of events form a reality if no two events have the same time stamp.
• The prefix of a reality up to and including time t is the set of all those

events of the reality whose time stamp is equal to or less than t.
• A reality is a prefix of another event if there is a time t such that the

former reality is a prefix of the latter reality.

type

L = R-set

value

/∗ viable: capable of working ∗/
is viable: R → R → L → T → Bool

is viable(r′)(r)(l)(t) ≡ r ∈ l ∧ is prefix(prefix(r′)(t),r)

/∗ fulfilled: a consumer reality r′ satisfies a license reality ∗/
is fulfilled: R → L → T → Bool

is fulfilled(r′)(l)(t) ≡ prefix(r′)(t) ∈ l

is breached: R → L → T → Bool

is breached(r′)(l)(t) ≡ ∼∃ r:R • r ∈ l ∧ is viable(r′)(r)(l)(t)

Annotations:

• A reality r′ is viable at a time t wrt. a reality r of a license l if r′ is a
prefix, at that time, of r.

• A reality r′ is, at time t fulfilled wrt. a license l if the prefix of r′ at time
t is a reality of the license.

• License l is breached by consumer reality r′ if there is no reality r in l that
is viable for r′ at t.

H.5.2 Standard Licences

Syntax

type

I
Std L = UpFront|FlatRate|PerUse|Until|NonCanMuUpFro|CanMuUpFro
Basics = T×P×I×W-set×D-set

H.5 An RSL Model 437

UpFront == mkUF(sb:Basics)
FlatRate == mkFR(sb:Basics)
PerUse == mkPU(sb:Basics)
Until == mkU(sb:Basics,st:T)
NonCanMuUpFro == mkNCMF(sb:Basics,sm:Nat)
CanMuUpFro == mkCMF(sb:Basics,sm:Nat)

Annotations:

• I stands for an interval, i,e,, a time period.
• Std L stands for standard licenses.
• There are six forms of standard licences: UpFront, FlatRate, PerUse, Until,

NonCanMuUpFro and CanMuUpFro.
• They all share some basic information Basics, a Time limit, Payment

amount, Interval, identification of the set of Works covered by the license,
and identification of the set of Devises covered by the license.

• The NonCanMuUpFro and CanMuUpFro commands specify a natural, usu-
ally non-zero number (of times of rendering).

• The Std definition defines the set of commands as a union using the |
type constructor.

• Each individual type is then defined by distinctly named record type con-
structors: mkUF, mkFR, mkPU, mkU, mkNCMF and mkCMF.

• We have for ease of recalling these mnemonics chosen to name the con-
structors with an initial mk (for ‘make’) and then an abbreviation of the
type name being defined.

• The s...: parts of the body of the record type expressions designate selector
functions.

• Meta-linguistically:

type

A, B, ..., C
R == mkR(sa:A,sb:B,...,sc:C)

axiom

∀ r:R, a:A, b:B, ..., c:C •

r = mkR(sa(r),sb(r),...,sc(r)) ∧
a = sa(mkR(a,b,...,c)) ∧
b = sb(mkR(a,b,...,c)) ∧
... ∧
c = sc(mkR(a,b,...,c))

Semantics

value

M: Std L → L
M(mkUF(t0,x,p,ws,ds)) ≡

438 H The Gunter et al. Model & its Reformulation

{{(t0,pay(x))} ∪
let ls = [ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′] in

{(ti,ls(ti))|ti:T•ti ∈ dom ls} end

|n:Nat,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0<min(ts)∧max(ts)≤t0+p}

Annotations:

• The above formulation follows that of Gunter et al.,
• but where their model is plain wrong: it does not designate all combina-

tions of works and devices, ours is right:
⋆ At t0 payment is issued;
⋆ the above expression5 has two set comprehensions:
⋆ {{A} ∪ {B|C•D} | E•F }
⋆ The inner comprehension {B|C•D} expresses all possible sequences of

n renderings involving any combination of works w and devices d from
subsets ws and ds of works and devices.

⋆ The outer comprehension “selects” an arbitrary, finite n, a set ts of
n time points all of which lies between t0 and t0 + p, and arbitrary
subsets ws and ds or works and devices of those given,

⋆ The inner comprehension ensures that all we express all runs of ren-
derings of length n over all combinations of works and devices.

⋆ The outer comprehension ensures that we express all possible and in-
definite length runs.

• A better model would be one which, instead of constructively designating
all possible runs, expresses the property that a run is an up front run and
all such, for the given arguments, are present.

type

PayEvent = T × ({|pay|}×Nat)
RndEvent = T × ({|render|}×W×D)
UpFrontLicense = {| ℓs:L • wf UPL(ℓs) |}

value

wf UPL: L → Bool

wf UPL(ℓ) ≡ ∃ t:T,x:Nat,p:P,ws:W-set,ds:D-set • is ufl(t0,x,p)(ws,ds,ts)(ℓ)

is ufl: (T × Nat × P) → (W-set × D-set × T-set) → L → Bool

is ufl(t0,x,p)(ws,ds,ts)(ℓ) ≡
∃ t′:T,x′:X • (t′,(pay,x′)) ∈ ℓ⇒ t′=t0 ∧ x′=x ∧
∀ ti:T,w:W,d:D • ti ∈ ts ∧ w ∈ ws ∧ d ∈ ds ⇒

(ti,(render,w,d)) ∈ ℓ∧
∼∃ (t,(render,w′,d′)):RndEvent •

(t,(render,w′,d′)) ∈ ℓ∧ t6∈ ts ∧ w′6∈ ws ∧ d′ 6∈ ds

5{ {(t0,pay(x))} ∪ {(ti,rndr(w,d)) | ti:T,w:W,d:D • ti∈ts ∧ w∈ws′ ∧ d∈ds′ } |
n:Nat,ts:T-set,ws′:W-set,ds′:D-set • cardts=n ∧ ws′⊆ws ∧ ds′⊆ds ∧t 0<min(ts) ∧
max(ts)≤t0+p }

H.5 An RSL Model 439

• A set ℓs of licenses
• is the set of all up front licenses
• designated by M(mkUF(t0,x,p,ws,ds))
• if it satisfies are all ufl(t0,x,p)(ws,ds,ts)(ℓs).

value

are all ufl: T × Nat × P × W-set × D-set → L-set → Bool

are all ufl(t0,x,p)(ws,ds,ts)(ℓs) ≡
∀ ℓ:L • ℓ∈ ℓs ⇒

∃ n:Nat,ws′:W-set,ds′:D-set,ts:T-set •

ws′⊆ws ∧ ds′⊆ds ∧ card ts=n ⇒ is ufl(t0,x,p)(ws′,ds′,ts)(ℓ)

Annotations:

• The “do not exists” clauses shall ensure both largest sets of up front li-
censes over appropriate time spans, works, and devices and that there is
no “junk”.

• Otherwise we leave it to the reader to decipher the formulas.

value

M(mkFR(t,x,p,ws,ds)) ≡
{let ls = [ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′] in

{(ti,ls(ti))|ti:T•ti ∈ dom ls} end

∪{(tn′,pay(x))}
|n:Nat,tn′:T,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0≤min(ts)∧ max(ts)<tn′≤t0+p}

value

M(mkPU(t,x,p,ws,ds)) ≡
{let ls = [ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′] in

{(ti,ls(ti))|ti:T•ti ∈ dom ls} end

∪ {(tn′,pay(n∗x))}
|n:Nat,tn′:T,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0≤min(ts)∧ max(ts)<tn′≤t0+p}

value

M(mkU(te,x,p,ws,ds)) ≡ ∪{M(mkUF(t0,x,p,ws,ds))|t0:T•t0≤te}

M(mkNCMF((t,x,p,ws,ds),m)) ≡ UpFront∆((t,x,p,ws,ds),m)

M(mkCMF((t,x,p,ws,ds),m)) ≡ UpFront�((t,x,p,ws,ds),m)

value

∆: L∗ → L
∆(ll) ≡

440 H The Gunter et al. Model & its Reformulation

case ll of

〈l〉 → l,
〈l〉̂ll′ → {r ∪ r′|r,r′:R • r ∈ l ∧ r′ ∈ ∆(ll′)}

end

�: L∗ → L
�(ll) ≡

case ll of

〈l〉 → l,
〈l〉̂ll′ → {r,r ∪ r′|r,r′:R • r ∈ l ∧ r 6={} ∧ r′ ∈ �(ll′)}

end

value

UpFront∆: Basics × Nat → L
UpFront∆((t,x,p,ws,ds),m) ≡

∆(〈M(mkUF(ti,x,p,ws,ds))|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

UpFront�: Basics × Nat → L
UpFront�((t,x,p,ws,ds),m) ≡

�(〈M(mkUF(ti,x,p,ws,ds))|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

H.5.3 A License Language

type

DRExpr = Time × Repetition × Payment × WorksDevices
Time == mkAt(t:T) | mkUntil(t:T)
Repetition == mkFor(p:I) | mkRepeat(m:Nat,p:I) | mkUpTo(m:Nat,p:I)
Payment = P × Kind
Kind == upfront | flatrate | peruse
WorksDevices = W-set × D-set

value

M0(mkAt(t),r,(x,k),wds) ≡ M1(r,(x,k),wds)(t)
M0(mkUntil(t),r,(x,k),wds) ≡ ∪{M1(r,(x,k),wds)(t′)|t′:T•t′<t}

M1(mkFor(p),(x,k),wds)(t) ≡ M2(x,k)(t,p)
M1(mkRepeat(m,p),(x,k),wds)(t) ≡

�(〈M2((x,k),wds)(ti,p)|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)
M1(mkUpTo(m,p),(x,k),wds)(t) ≡

∆(〈M2((x,k),wds)(ti,p)|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

M2((x,upfront),(ws,ds))(t,p) ≡ M(mkUF(t,x,p,ws,ds))
M2((x,upfront),(ws,ds))(t,p) ≡ M(mkFR(t,x,p,ws,ds))
M2((x,upfront),(ws,ds))(t,p) ≡ M(mkPU(t,x,p,ws,ds))

H.6 End of “Gunter” Paper

What have we presented:

• On one hand:
⋆ An introduction to the standard view of digital rights licenses.

• On the other hand:

⋆ An illustration of
⋄ a pseudo-formal erroneous model versus
⋄ a correct formal presentation.

• Now we are ready
⋆ to study digital rights license languages in general.

For that, pls. see Chap. 10.

Part VI

Administrative Appendices

I

RSL: The Raise Specification Language
A Primer

This is an ultra-short introduction to the RAISE Specification Language, RSL.

I.1 Types and Values

Simplifying we consider a type to be a class (a possibly infinite set) of values,
i.e., a set characterised by some unifying properties. Values are then instances
of “things” that satisfy such properties. Examples of values are the numbers
denoted by the numerals: 0, 1, 2, . . . , etc.; the numbers denoted by the nu-
merals: . . . , -2, -1, 0, 1, 2, . . . , etc.; and the numbers denoted by the numerals:
. . . , -5.43, -1.0, 0.0, 1.23· · · , 2,71828183· · · , 3,14159265· · · , 4.56 . . . , etc. We
shall refer to the types of these three example sets by the type names Nat,
Int, Real. As we shall soon see, there are an infinity of types.

I.1.1 Some Distinctions

We distinguish between discrete and continuous types and hence between
discrete and continuous values. By a discrete value we mean a value which
is either atomic discrete or composite discrete: an atomic discrete value is a
value which we are not interested in decomposing into components as it makes
no sense for us to do so; a composite discrete value is a value which can be
decomposed into (one or more) components which are all discrete values.

By a continuous value we mean a value which is either atomic continuous or
composite continuous: an atomic continuous value is a value which we are not
interested in decomposing into components as it makes no sense for us to do
so and where the values of the type lie in some dense point space; a composite
continuous value is a value which can be decomposed into meaningful (one or
more) components some of which (one or more) are continuous values.

446 I RSL: The Raise Specification Language A Primer

An Example: Atomic and Composite Types and Values

An oil pipe is a composite continuous value which consists of a pipe structure
and some oil; the former being of discrete atomic value while the latter is a
continuous atomic value:“from no oil, via a tiny drop of oil, and more, say
a gallon and a third of oil, to several million barrels of oil”. Similarly for
pumps, valves, depots, etc.: all are composite continuous values consisting
of corresponding discrete atomic structures and continuous atomic valued
(amounts of) oil.

I.1.2 An Aside

You might mistakenly think that continuous atomic values are composed from
“subsegments” or “subspaces” or “subvolumes”, etc., of continuous atomic val-
ues. Consider the following examples: (i) Crude oil: one can decompose crude
oil into a very large number of molecules (of different hydrocarbons); the most
commonly found molecules are alkanes (linear or branched), cycloalkanes, aro-
matic hydrocarbons, or more complicated chemicals like asphaltenes; but it is
not a decomposition of a liter of crude oil to divide it up into ten deciliters.
But if our choice of abstraction ignores the molecular structure of oil, then
oil has an atomic, continuous value. (ii) Time: one can decompose time into
years, months, weeks, days, hours, minutes and seconds; but if our choice of
abstraction ignores these units, and just considers the time axis to be a lin-
early ordered dense set of points, then time has an atomic, continuous value.
Thus we must consider the operations to be (i.e., that we wish) performed on
what may appear as continuous values in order to determine our abstraction:
either as atomic continuous values or as composite continuous values. Op-
erations on oil divide a volume of oil into a set of two or more volumes of
oil, displaces a volume of oil from one location into a (usually neighbouring)
locations, etc. Operations on time calculates the time interval between two
time points, adds an interval of time to time to obtain another time, etc. But
in all these examples oil, respectively time remain atomic, continuous values.

I.2 Types

The reader is kindly asked to first study the decomposition of this section into
its sub-parts and sub-sub-parts.

I.2.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite
sets of values (of “that” type).

I.2 Types 447

Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have
no proper constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken
apart”.

RSL has a number of built-in atomic types. There are the Booleans, inte-
gers, natural numbers, reals, characters, and texts.

Basic Types

type

[1] Bool true, false

[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

An Example: Atomic Discrete Types

type

DrainPumpStruct, PipeStruct, ValveStruct, FlowPumpStruct,
FillPumpStruct, DepotStruct, SwitchStruct, ...

An Example: Atomic Continuous Types

type

Time
Oil, Gasoline, Gas, Ethanol, ...

Composite Types

Composite types have composite values. That is, values which we consider to
have proper constituent (sub-)values, i.e., can be meaningfully “taken apart”.
There are two ways of expressing composite types: either explicitly, using
concrete type expressions, or implicitly, using sorts (i.e., abstract types) and
observer functions.

Concrete Composite Types

From these one can form type expressions: finite sets, infinite sets, Cartesian
products, lists, maps, etc.

448 I RSL: The Raise Specification Language A Primer

Let A, B and C be any type names or type expressions, then:

Composite Type Expressions

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B
[13] A → B

[14] A
∼→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., –2, –1, 0, 1, 2,
3. The natural number type of positive integer values 0, 1, 2, ...
4. The real number type of real values, i.e., values whose numerals can be

written as an integer, followed by a period (“.”), followed by a natural
number (the fraction).

5. The character type of character values ′′a′′, ′′b′′, ...
6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7. The set type of finite cardinality set values.
8. The set type of infinite and finite cardinality set values.
9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.
11. The list type of infinite and finite length list values.
12. The map type of finite definition set map values.
13. The function type of total function values.
14. The function type of partial function values.
15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type
expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A →m B),
or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E →m F)), etc.

16. The postulated disjoint union of types A, B, . . . , and C.
17. The record type of mk id-named record values mk id(av,...,bv), where av,

. . . , bv, are values of respective types. The distinct identifiers sel a, etc.,
designate selector functions.

I.2 Types 449

18. The record type of unnamed record values (av,...,bv), where av, . . . , bv,
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

Sorts and Observer Functions

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three
values — and these are of type B, C, . . . , and D. A concrete type definition
corresponding to the above presupposing material of the next section

type

B, C, ..., D
A = B × C × ... × D

I.2.2 Type Definitions

Concrete Types

Types can be concrete in which case the structure of the type is specified by
type expressions:

Type Definition

type

A = Type expr

Some schematic type definitions are:

Variety of Type Definitions

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

450 I RSL: The Raise Specification Language A Primer

where a form of [2–3] is provided by combining the types:

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k
are distinct and due to the use of the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P , constitute the subtype A:

Subtypes

type

A = {| b:B • P(b) |}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type

A, B, ..., C

I.3 The RSL Predicate Calculus 451

I.3 The RSL Predicate Calculus

I.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values (true or false [or chaos]). Then:

Propositional Expressions

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6=
are Boolean connectives (i.e., operators). They can be read as: not, and, or,
if then (or implies), equal and not equal.

I.3.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values and
let i, j, . . ., k designate number values, then:

Simple Predicate Expressions

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

I.3.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and
R(z) designate predicate expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

452 I RSL: The Raise Specification Language A Primer

They are “read” as: For all x (values in type X) the predicate P(x) holds;
there exists (at least) one y (value in type Y) such that the predicate Q(y)
holds; and there exists a unique z (value in type Z) such that the predicate
R(z) holds.

I.4 Concrete RSL Types: Values and Operations

I.4.1 Arithmetic

Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼→Nat | Int×Int

∼→Int | Real×Real
∼→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

I.4.2 Set Expressions

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple
set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate.
It is abstract in the sense that it does not do so by following a concrete
algorithm.

Set Comprehension

type

A, B
P = A → Bool

I.4 Concrete RSL Types: Values and Operations 453

Q = A
∼→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

I.4.3 Cartesian Expressions

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the
below expressions are simple Cartesian enumerations:

Cartesian Enumerations

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

I.4.4 List Expressions

List Enumerations

Let a range over values of type A, then the below expressions are simple list
enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then
expresses the set of integers from the value of ei to and including the value of
ej . If the latter is smaller than the former, then the list is empty.

List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

454 I RSL: The Raise Specification Language A Primer

A, B, P = A → Bool, Q = A
∼→ B

value

comprehend: Aω × P × Q
∼→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

I.4.5 Map Expressions

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T 2, respec-
tively, then the below expressions are simple map enumerations:

Map Enumerations

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u7→v], ..., [u1 7→v1,u2 7→v2,...,un7→vn] ∀ ∈ M

Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type

U, V, X, Y
M = U →m V

F = U
∼→ X

G = V
∼→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

I.4 Concrete RSL Types: Values and Operations 455

I.4.6 Set Operations

Set Operator Signatures

Set Operations

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset

22 ∪: (A-infset)-infset → A-infset

23 ∩: A-infset × A-infset → A-infset

24 ∩: (A-infset)-infset → A-infset

25 \: A-infset × A-infset → A-infset

26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼→ Nat

Set Examples

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

Informal Explication

19. ∈: The membership operator expresses that an element is a member of a
set.

456 I RSL: The Raise Specification Language A Primer

20. 6∈: The nonmembership operator expresses that an element is not a mem-
ber of a set.

21. ∪: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets.

22. ∪: The distributed prefix union operator. When applied to a set of sets,
the operator gives the set whose members are in some of the operand sets.

23. ∩: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.

24. ∩: The prefix distributed intersection operator. When applied to a set of
sets, the operator gives the set whose members are in some of the operand
sets.

25. \: The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.

26. ⊆: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

27. ⊂: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

28. =: The equal operator expresses that the two operand sets are identical.
29. 6=: The nonequal operator expresses that the two operand sets are not

identical.
30. card: The cardinality operator gives the number of elements in a finite

set.

Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

I.4 Concrete RSL Types: Values and Operations 457

I.4.7 Cartesian Operations

Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

I.4.8 List Operations

List Operator Signatures

List Operations

value

hd: Aω ∼→ A

tl: Aω ∼→ Aω

len: Aω ∼→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

List Operation Examples

List Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m

458 I RSL: The Raise Specification Language A Primer

inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in a

list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a

number of elements larger than or equal to i, gives the ith element of the
list.

• ̂: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.
• 6=: The nonequal operator expresses that the two operand lists are not

identical.

The operations can also be defined as follows:

List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

I.4 Concrete RSL Types: Values and Operations 459

q(i) ≡
if i=1

then

if q 6=〈〉
then let a:A,q′:Q • q=〈a〉̂q′ in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

I.4.9 Map Operations

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a2 7→b2,...,an7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a2 7→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′ 7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′ 7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′ 7→b′′]\{a} = [a′7→b′,a′′ 7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′ 7→b′′]/{a′,a′′} = [a′7→b′,a′′ 7→b′′]

460 I RSL: The Raise Specification Language A Primer

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a

map.
• rng: Range/Image Set gives the set of values which are mapped to in a

map.
• †: Override/Extend. When applied to two operand maps, it gives the map

which is like an override of the left operand map by all or some “pairings”
of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these
maps.

• \: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

• =: The equal operator expresses that the two operand maps are identical.
• 6=: The nonequal operator expresses that the two operand maps are not

identical.
• ◦: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, m1, to the range elements
of the right operand map, m2, such that if a is in the definition set of m1

and maps into b, and if b is in the definition set of m2 and maps into c,
then a, in the composition, maps into c.

Map Operation Redefinitions

The map operations can also be defined as follows:

Map Operation Redefinitions

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

I.5 λ-Calculus + Functions 461

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

I.5 λ-Calculus + Functions

I.5.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

I.5.2 Free and Bound Variables

Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

462 I RSL: The Raise Specification Language A Primer

I.5.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P)) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

I.5.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M). We can rename the formal parameter of a λ-function
expression provided that no free variables of its body M thereby become
bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (λx•M)(N)
≡ subst([N/x]M)

I.5.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: B×C → A

I.6 Other Applicative Expressions 463

I.5.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

Implicit Function Definitions

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼→ indicates that the function is partial and thus not defined for

all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

I.6 Other Applicative Expressions

I.6.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

464 I RSL: The Raise Specification Language A Primer

I.6.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

I.6.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

I.6.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

I.6 Other Applicative Expressions 465

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

I.6.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

I.6.6 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒

466 I RSL: The Raise Specification Language A Primer

| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

I.7 Imperative Constructs

I.7.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly
abstract-applicative constructs which, through stages of refinements, are
turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.

Statements and State Change

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit → Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an

argument of type Unit.

I.7.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

I.7 Imperative Constructs 467

I.7.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement
having no value or side-effect.

Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

I.7.4 Imperative Conditionals

Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

I.7.5 Iterative Conditionals

Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

I.7.6 Iterative Sequencing

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

468 I RSL: The Raise Specification Language A Primer

I.8 Process Constructs

I.8.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel
array indexes, then:

Process Channels

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of commu-
nicating values of the designated types (A and B).

I.8.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, thereby commu-
nicating over declared channels. Let P() and Q stand for process expressions,
then:

Process Composition

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice be-
tween two processes: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖)
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.

I.8.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an
input, respectively “writes” an output.

I.8.4 Process Definitions

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

Process Definitions

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

I.9 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes,
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, values (including functions), variables, channels and
axioms:

Simple RSL Specifications

type

...
variable

...
channel

...
value

...
axiom

...

In practice a full specification repeats the above listings many times, once
for each “module” (i.e., aspect, facet, view) of specification. Each of these
modules may be “wrapped” into scheme, class or object definitions.1

1For schemes, classes and objects we refer to [32, Chap. 10]

J

Biography

• Family &c.: Dines Bjørner (DB) was born in Odense, Denmark, 4 October 1937. His
father had an MSc degree in Mathematics (from Copenhagen University, 1931) and
his mother a BA degree in Nordic and Modern English/America Literature (also from
Copenhagen University, 1929). Since 1965 DB has been married to Kari Skallerud
Bjørner (Oslo, Norway). They have two children, Charlotte and Nikolaj, and five
grandchildren.

• Educational Background: DB graduated, in 1956, with a senior high school degree
in Mathematics and Natural Sciences from the Århus Cathedral School (founded in
1142). DB graduated in January 1962 with an MSc in Electronics Engineering and
with a Ph.D. in Computer Science in January 1969 from the Technical University of
Denmark (founded by Hans Christian Ørsted in 1828).

• IBM Career: DB joined IBM in March 1962 at their Nordic Laboratories (founded
by Cai Kinberg) in Stockholm, Sweden (where DB also first met Jean Paul Jacob
and Gunnar Wedell). DB was transferred to the IBM Systems Development Division
(IBM SDD) at San Jose, California, USA, in December 1963. While doing his Ph.D.
(September 1965–January 1969) DB was a lecturing consultant to IBM’s Euro-
pean Systems Research Institute (ESRI) at Geneva, Switzerland (where DB received

472 J Biography

valuable guidance from Carlo Santacroce and where DB’s friendship with Gerald
Weinberg started) (1967–1968). In 1969 DB worked at IBM’s Advanced Computing
Systems (IBM ACS) Laboratory, Menlo Park, California, and, later that year until
early 1973 at IBM Research, San Jose (again Jean Paul Jacob became a colleague).
Transferred to the IBM Vienna Laboratory (directed then by Heinz Zemanek), Aus-
tria, DB resigned from IBM in August 1975 to return to Denmark after basically 13
years abroad.

• Career Outside and After IBM: During his stay at IBM Research DB was a visiting
lecturer, for several quarters, at University of California at Berkeley (1971–1972),
instigated by Lotfi Zadeh whom DB considers his main mentor and for whom DB
has the fondest regards. DB was a visiting guest professor at Copenhagen University
in the academic year 1975–1976, before taking up his chair in September 1976 at
the Technical University of Denmark (DTU). During the summer semester of 1980
DB was the Danish Chair Professor at the Christian-Albrechts University of Kiel,
Germany — hosted by Prof. Dr. Hans Langmaack. Together with a colleague, Prof.
Christian Gram, DB instigated the Dansk Datamatik Center (DDC) in the summer
of 1979. During the 1980s DB was chief scientist of DDC. In 1982–1984 DB was
chairman of a Danish Government (Ministry of Education) Commission on Informat-
ics. DB was the founding and first UN Director of UNU-IIST, the United Nations
University’s International Institute for Software Technology, located in Macau. DB
was a visiting professor at NUS: National University of Singapore in the academic
year 2004–2005, and a research guest professor at JAIST, Japan Advanced Institute
of Science and Technology, Ishikawa Prefecture, Japan for basically the calendar year
2006 — where the work reported in this monograph was begun. DB was a visiting
professor at Université Henri Poincaré and at INRIA/LORIA, Nancy, France, for two
months: Oct.–Dec., 2007. During the fall and spring of 2008–2009 DB was lecturing
at the Techn. Univ. of Graz, Austria and at University of Saarland, Saarbrücken,
Germany (March 2009).

• Lectures and Graduates: DB has lectured and regularly lectures on six continents
in almost 50 countries and territories and has advised more than 130 MSc’s and
almost two dozen PhDs.

• Research &c. Work: At IBM DB first worked in the hardware (logic and systems)
design of such equipment as the IBM 1070 (Sweden), the IBM 1800 and IBM 1130
computers (San Jose), and, finally, with Gene Amdahl and Ed Sussenguth, on the
IBM ACS/1 supercomputer (Menlo Park). At Research DB worked with the late John
W. Backus and the late Ted Codd on Functional Languages, resp. Relational Data
Base Systems. At Vienna, DB, together with such colleagues as Peter Lucas, the
late Hans Bekič, Kurt Walk, and Cliff B. Jones, worked on a Denotational (–like)
Semantics Description of PL/I while, with his colleagues conceiving, researching,
developing and using VDM (the Vienna software Development Method). At DTU
and at DDC, supported by the European Community, DB initiated several advanced
research & development projects: (1) Formal Semantics Description of and (2) full
language compiler for CHILL (the Intl. Telecommunications Unions Communications
[C.C.I.T.T.] High Level Language) — both significantly developed by Peter L. Haff
(and the late Søren Prehn); (3) Formal Semantics Description of and (4) the first
European US DoD officially validated compiler for the US DoD Ada embedded sys-
tems programming language — with significant and indispensable contributions by
DB’s colleague Dr. Hans Bruun and, again, the late Søren Prehn; (5) RAISE (Rig-
orous Approach to Industrial Software Engineering, headed by the late Søren Prehn

J Biography 473

and Chris George); (6) Formal Semantics Definition of VDM–SL (the VDM Speci-
fication Language, Bo Stig Hansen and Peter Gorm Larsen); (7) ProCoS (Provably
Correct Systems) with, amongst others, Profs. Sir Tony Hoare (then Oxford, now
Microsoft Research, Cambridge, UK), Hans Langmaack (Kiel) and Ernst-Rüdiger
Olderog (Oldenburg) and others.

• UNU-IIST: At UNU-IIST DB had a rather free hand, and was able, with a small team
of excellent colleagues (Prof. Zhou Chaochen (Academician, the Chinese Academy of
Science), the late Søren Prehn, Chris W. George, Richard Moore, Tomasz Janowski,
Dang Van Hung, Xu Qi Wen and Kees Middelburg), to further explore the research
issues still occupying DB’s interest, and to apply them (i.e., test them out) in a num-
ber of joint R&D projects with institutions in developing and newly industrialised
countries [including newly independent states] (Argentina, Belarus, Brasil, Camer-
oun, China, Gabon, India, Indonesia, Mongolia, North Korea, Pakistan, Philippines,
Poland, Romania, Russia, South Africa, South Korea, Thailand, Vietnam, Ukraine,
Uruguay, etc.).

• Societal Work: DB was a co-founder of VDM-Europe in 1987 and moved VDM-
Europe onto FME: Formal Methods Europe in 1991. DB co-chaired two of the VDM
Symposia (1987, 1990), and the International Conference on Software Engineering
(ICSE) in 1989 in Pittsburgh, Pennsylvania, USA. DB was chairman of the IFIP
World Congress in Dublin, Ireland in 1986, and was the instigator and General
Chairman of the first World Congress on Formal Methods, FM’99, in Toulouse,
France, September 20–24, 1999. DB has otherwise been involved in about 60 other
scientific conferences.

• Awards &c.: DB is a Knight of The Danish Flag; is a member of Academia Europaea
(MAE) and was chairman of its Informatics Section (2004-2009); is a member of The
Russian Academy of Natural Sciences (MRANS [AB]), and of IFIP Working Groups
2.2 (1980-2004) and 2.3 (1980-2008). DB has received the John von Neumann
Medal of the JvN Society of Hungary and the Ths. Masaryk Gold Medal from the
Masaryk University, Brno, The Czech Republic. DB received the Danish Engineering
Society’s (IDA) Informatics Division’s (IDA–IT) first BIT prize, March 1999. DB was
given the degree of honorary doctor from the Masaryk University, Brno, The Czech
Republic, in 2004. DB is an ACM Fellow and an IEEE Fellow.

• Publications: DB has authored more than 120 published papers and co-authored
and co-edited some 15 books and written three books [31–33,45].

• Research Interests: DB’s research interests, since his Vienna days, have centered
on programming methodology: Methods as sets of principles for selecting and ap-

plying mathematics-based analysis and construction techniques and tools in order

efficiently to construct efficient artefacts — notably software. DB sees his main
contributions to be in the research, development and propagation of formal speci-
fication principles and techniques. Currently DB focuses on the triptych of domain
engineering, requirements engineering and software architecture and program organ-
isation methods — emphasising such that relate these in mathematical as well as
technical ways: (1) Intrinsic, support technology, management & organisation, rules
& regulation, and human behaviour facets of domains; (2) projection, instantiation,
extension and initialisation of domain requirements, etc.; (3) software architectures
as refinements of domain requirements, and program organisation as refinements of
machine requirements — with interface requirements (currently) being refinements
of either and both!

• Acknowledgements: Among the very many people for whom DB has a special,
professional fondness, people who have helped DB in his professional career, he
wishes to bear tribute, in approximate chronological order, to (the late) Cai Kinberg,
Gunnar Wedell, Jean Paul Jacob, Gerald Weinberg, Gene Amdahl, Ed Sussenguth,
Tien Chi (T.C.) Chen, Lotfi Zadeh, (the late) Ted Codd, (the late) John W. Backus,
Peter Lucas, Cliff Jones, (the late) Hans Bekič, Kurt Walk, Christian Gram, Ole N.
Oest, Erich Neuhold, (the late) Søren Prehn, Sir Tony Hoare, Hans Langmaack,
Zhou Chao Chen, Chris George and Kokichi Futatsugi.

Fredsvej 11, DK-2840 Holte, Denmark – February 16, 2009: 16:58

K

Consolidated Bibliography

Specification languages, techniques and tools, that cover the spectrum of do-
main and requirements specification, refinement and verification, are dealt
with in Alloy: [146], ASM: [213,214], B/event B: [1, 71], CSP [137,138,218,
222], DC [247, 248] (Duration Calculus), Live Sequence Charts [80, 128, 153],
Message Sequence Charts [142–144], RAISE [31–33, 44, 101, 104, 106] (RSL),
Petri nets [148, 199, 210–212], Statecharts [123, 124, 126, 127, 129], Temporal
Logic of Reactive Systems [168,169,187,203], TLA+ [155,156,175,176] (Tem-
poral Logic of Actions), VDM [55, 56, 95, 96], and Z [132, 133, 229, 230, 242].
Techniques for integrating “different” formal techniques are covered in [7, 65,
69,111,216]. The recent book on Logics of Specification Languages [54] covers
ASM, B/event B, CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, Eng-
land, 1996.

2. W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, D. Richter, and C. Si-
monyi. Transformation in intentional programming. In Fifth International
Conference on Software Reuse, ICSR’98, Victoria, Canada.

3. Open Mobile Alliance. OMA DRM V2.0 Candidate Enabler.
http://www.openmobilealliance.org/release program/drm v2 0.html,
Sep 2005.

4. Gerald Allwein and Jon Barwise, editors. Logical Reasoning with Diagrams.
Studies in Logic and Computation (Ed. D. M. Gabbay). Oxford Uniersity
Press, 198 Madison Ave., New York, NY 10016, USA, 1996. A collection of 10
papers.

5. Derek Andrews. Report from the BSI Panel for the Standardization of VDM.
In L.M̃arshall R.B̃loomfield and R. Jones, editors, VDM ’88 VDM – The Way
Ahead, pages 74–78. VDM-Europe, Springer-Verlag, September 1988.

6. Derek Andrews. How to Read the VDM-SL SC22/WG13 D152/N418. Tech-
nical report, University of Leicester, May 1991.

476 References

7. Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors. IFM 1999: Inte-
grated Formal Methods, volume 1945 of Lecture Notes in Computer Science,
York, UK, June 1999. Springer. Proceedings of 1st Intl. Conf. on IFM.

8. Yasuhito Arimoto and Dines Bjørner. Hospital Healthcare: A Domain Analysis
and a License Language. Technical note, JAIST, School of Information Science,
1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

9. Alapan Arnab and Andrew Hutchison. Fairer Usage Contracts for DRM.
In Proceedings of the Fifth ACM Workshop on Digital Rights Management
(DRM’05), pages 65–74, Alexandria, Virginia, USA, Nov 2005.

10. Yochai Benkler. Coase’s Penguin, or Linux and the Nature of the Firm. The
Yale Law Journal, 112, 2002.

11. Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP
Series). Springer, 2004. With chapters by T. Mossakowski, D. Sannella, and
A. Tarlecki.

12. G.M. Birtwistle, O.-J.Dahl, B. Myhrhaug, and K. Nygaard. SIMULA begin.
Studentlitteratur, Lund, Sweden, 1974.

13. Dines Bjøner, Chris W. George, and Søren Prehn. Domain Analysis — a Pre-
requisite for Requirements Capture. Technical Report 37, UNU/IIST, P.O.Box
3058, Macau, February 1995. .

14. Dines Bjørner. Programming in the Meta-Language: A Tutorial. In Dines
Bjørner and Cliff B. Jones, editors, The Vienna Development Method: The
Meta-Language, [55], LNCS, pages 24–217. Springer–Verlag, 1978.

15. Dines Bjørner. An Architecture for Running Map Systems. Technical Report
db/arch/01, UNU/IIST, the UN University’s International Institute for Software
Technology, P.O.Box 3058, Macau; E-Mail: library@iist.unu.edu, February
1994.

16. Dines Bjørner. Issues in International Cooperative Research — Why not Asian,
African or Latin American ‘Esprits’ ? Research, Department of Information
Technology, Software Systems Section, Technical University of Denmark, DK–
2800 Lyngby, Denmark, March 1998. Paper presented at the pre–ICSE’98 Asia
Pacific Forum on Software Engineering, Kyoto, Japan, April 20–21, 1998. 25
pages.

17. Dines Bjørner. Synopsis of the AMORE Project at the Technical University of
Denmark: AMoR — Abstract Modelling of Railways and AMoRPH: Abstract
Models of Railway Planning and Handling. Technical notes, Department of
Computing Science, Technical University of Denmark, Building 343, DK–2800
Lyngby, Denmark, November 1999. .

18. Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard
Schnieder, editor, 9th IFAC Symposium on Control in Transportation Systems,
pages 1–12, Technical University, Braunschweig, Germany, 13–15 June 2000.
VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für
Fahrzeug– und Verkehrstechnik. Invited talk.

19. Dines Bjørner. Domain Models of “The Market” — in Preparation for E–
Transaction Systems. In Practical Foundations of Business and System Speci-
fications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands, December
2002. Kluwer Academic Press.

20. Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic
Control and Software Engineering. In CTS2003: 10th IFAC Symposium on
Control in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier

References 477

Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M.
Aoki.

21. Dines Bjørner. New Results and Trends in Formal Techniques for the De-
velopment of Software for Transportation Systems. In FORMS2003: Sympo-
sium on Formal Methods for Railway Operation and Control Systems. Institut
für Verkehrssicherheit und Automatisierungstechnik, Techn.Univ. of Braun-
schweig, Germany, 15–16 May 2003. Conf. held at Techn.Univ. of Budapest,
Hungary. Editors: G. Tarnai and E. Schnieder, Germany.

22. Dines Bjørner. The Grand Challenge – FAQs of the R&D of a Railway Domain
Theory. In IFIP World Computer Congress, Topical Days: TRain: The Railway
Domain, IFIP, Amsterdam, The Netherlands, 2004. Kluwer Academic Press.

23. Dines Bjørner. The TRain Topical Day. In Building the Information Society,
IFIP 18th World Computer Congress, Tpical Sessions, 22–27 August, 2004,
Toulouse, France — Ed. Renéne Jacquart, pages 607–611. Kluwer Academic
Publishers, August 2004. A Foreword.

24. Dines Bjørner. Towards a Formal Model of CyberRail. In Building the Informa-
tion Society, IFIP 18th World Computer Congress, Tpical Sessions, 22–27 Au-
gust, 2004, Toulouse, France — Ed. Renéne Jacquart, pages 657–664. Kluwer
Academic Publishers, August 2004. Original report also listed some of DB’s
students as co–authors.

25. Dines Bjørner. Documents: A Domain Analysis. Techn. Memoranda IS–TM–
2006-005, ISSN 0918-7561, Graduate School of Information Science & Technol-
ogy, JAIST: Japan Adv. Inst. of Sci. and Techn., 1-1 Asahidai, Nomi, Ishikawa
923-1292, Hokuriku, Japan., 19 December 2006.

26. Dines Bjørner. Documents: A Domain Analysis. Technical note, JAIST, School
of Information Science, 1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan
923-1292, Summer 2006.

27. Dines Bjørner. Domains and Problem Frames (Invited keynote at IWAAPF,
ICSE 2006 Satellite Event, Shanghai, May 2006). Techn. Memoranda IS–TM–
2006-006, ISSN 0918-7561, Graduate School of Information Science & Technol-
ogy, JAIST: Japan Adv. Inst. of Sci. and Techn., 1-1 Asahidai, Nomi, Ishikawa
923-1292, Hokuriku, Japan., 27 December 2006.

28. Dines Bjørner. On Domain and Domain Engineering: Prerequisites for Trust-
worthy Software. A Necessity for Believable Management – A Technology Man-
agement Document. Techn. Memoranda IS–TM–2006-001, ISSN 0918-7561,
Graduate School of Information Science & Technology, JAIST: Japan Adv.
Inst. of Sci. and Techn., 1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku,
Japan., 24 November 2006.

29. Dines Bjørner. Possible Collaborative ‘Domain’ Projects – ATechnology Man-
agement Brief. Techn. Memoranda IS–TM–2006-002, ISSN 0918-7561, Grad-
uate School of Information Science & Technology, JAIST: Japan Adv. Inst. of
Sci. and Techn., 1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan., 24
November 2006.

30. Dines Bjørner. Public Government, A Domain Analysis [Presented May 1, 2006
at the UNU-IIST/Macau Government Conference on E–Government]. Techn.
Memoranda IS–TM–2006-004, ISSN 0918-7561, Graduate School of Informa-
tion Science & Technology, JAIST: Japan Adv. Inst. of Sci. and Techn., 1-1
Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan., 19 December 2006.

31. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

478 References

32. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

33. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

34. Dines Bjørner. Verified Software for Ubiquitous Computing, A Proposed VST-
TE/Ubiquitous Computing Foothill Proposal [Presented at 1AWCVS (First
Asian Working Conference on Verified Systems), Macau 29-31 Oct., 2006].
Techn. Memoranda IS–TM–2006-003, ISSN 0918-7561, Graduate School of In-
formation Science & Technology, JAIST: Japan Adv. Inst. of Sci. and Techn.,
1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan., 19 December 2006.

35. Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer
Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

36. Dines Bjørner. MITS: Models of IT Security, Security Rules & Regulations: An
Interpretation. Techn. Memoranda IS–TM–2007-004, ISSN 0918-7561, Grad-
uate School of Information Science & Technology, JAIST: Japan Adv. Inst.
of Sci. and Techn., 1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan.,
January 2007.

37. Dines Bjørner. The Rôle of Domain Engineering in Software Development.
Techn. Memoranda IS–TM–2007-002, Graduate School of Information Science
& Technology, JAIST: Japan Adv. Inst. of Sci. and Techn. ISSN 0918-7561,
1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan., January 2007.

38. Dines Bjørner. The Triptych Process Model: Process Assessment and Improve-
ment. Techn. Memoranda IS–TM–2007-001, Graduate School of Information
Science & Technology, JAIST: Japan Adv. Inst. of Sci. and Techn. ISSN 0918-
7561, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku, Japan., January 2007.

39. Dines Bjørner. Transportation Systems Development. In 2007 ISoLA Work-
shop On Leveraging Applications of Formal Methods, Verification and Valida-
tion; Special Workshop Theme: Formal Methods in Avionics, Space and Trans-
port, ENSMA, Futuroscope, France, December 12–14 2007.

40. Dines Bjørner. Believable Software Management. Encyclopedia of Software
Engineering, 1(1):1–32, 2008. (This is a new journal, published by Taylor &
Francis, New York and London, edited by Philip Laplante).

41. Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, vol-
ume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco
De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

42. Dines Bjørner. Domain Engineering. In The 2007 Lipari PhD Summer School,
Lecture Notes in Computer Science (eds. E. Börger and A. Ferro), pages 1–
102, Heidelberg, Germany, 2009. Springer. To appear. Meanwhile check with
http://www2.imm.dtu.dk/˜db/container-paper.pdf.

43. Dines Bjørner. Domain Engineering. To be submitted to Springer for evalua-
tion in 2009, Expected published 2010. Either this book ms. is submitted or
that of [44] is submitted. Decision on this to be made before Summer 2009. This
book was the basis for guest lectures at University of the Saarland (Germany),
March 2009.

44. Dines Bjørner. Software Engineering, Vol. I: The Triptych Approach, Vol. II:
A Model Development. To be submitted to Springer for evaluation in 2009,

References 479

Expected published 2010. Either this book ms. is submitted or that of [43] is
submitted. Decision on this to be made before Summer 2009. This book was
the basis for guest lectures at Techn. Univ. of Graz, Oct.–Dec. 2008.

45. Dines Bjørner. Domain Engineering. JAIST Press, March 2009. This Research
Monograph is based on the following 2006 Technical Memoranda from JAIST
School of Information Science: [25,27–30,34,36–38,62].

46. Dines Bjørner and XiaoYi Chen. Public Government: A Domain Analysis.
Technical note, JAIST, School of Information Science, 1-1, Asahidai, Tat-
sunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

47. Dines Bjørner, Yu Lin Dong, and Søren Prehn. Domain Analyses: A Case
Study of Station Management. In KICS’94: Kunming International CASE Sym-
posium, Yunnan Province, P.R.of China. Software Engineering Association of
Japan, 16–20 November 1994.

48. Dines Bjørner and Aser Eir. Compositionality: Ontology and Mereology of Do-
mains. Some Clarifying Observations in the Context of Software Engineering.
In Festschrift for Prof. Willem Paul de Roever (Eds. Martin Steffen, Dennis
Dams and Ulrich Hannemann, volume [not known at time of submission of
the current paper] of Lecture Notes in Computer Science (eds. Martin Steffen,
Dennis Dams and Ulrich Hannemann), pages 1–12, Heidelberg, July 2008.
Springer.

49. Dines Bjørner, Chris W. George, Bo Stig Hansen, Hans Laustrup, and Søren
Prehn. A Railway System, Coordination’97, Case Study Workshop Example.
Research Report 93, UNU/IIST, P.O.Box 3058, Macau, January 1997. .

50. Dines Bjørner, Chris W. George, Anne Eliabeth Haxthausen, Christian Krog
Madsen, Steffen Holmslykke, and Martin Pěnička. “UML”–ising Formal Tech-
niques. In INT 2004: Third International Workshop on Integration of Specifica-
tion Techniques for Applications in Engineering, volume 3147 of Lecture Notes
in Computer Science, pages 423–450. Springer–Verlag, 28 March 2004, ETAPS,
Barcelona, Spain. To be published in INT–2004 Proceedings, Springer–Verlag.

51. Dines Bjørner, Chris W. George, and Søren Prehn. Scheduling and Reschedul-
ing of Trains. Research Report 52, UNU/IIST, P.O.Box 3058, Macau, December
1995. .

52. Dines Bjørner, Chris W. George, and Søren Prehn. Scheduling and Rescheduling
of Trains, chapter 8, pages 157–184. Industrial Strength Formal Methods in
Practice, Eds.: Michael G. Hinchey and Jonathan P. Bowen. FACIT, Springer–
Verlag, London, England, 1999.

53. Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for
Railways — A Rôle for Domain Engineering. Relations to Requirements En-
gineering and Software for Control Applications. In Integrated Design and
Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28 June 2002. Society for De-
sign and Process Science.

54. Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages
— see [71,90,95,101,120,132,176,184,214]. EATCS Monograph in Theoretical
Computer Science. Springer, Heidelberg, Germany, 2008.

55. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of LNCS. Springer–Verlag, 1978. This was the
first monograph on Meta-IV. .

56. Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software
Development. Prentice-Hall, 1982.

480 References

57. Dines Bjørner, Dong Yu Lin, and Søren Prehn. Domain Analyses: A Case
Study of Station Management. Research Report 23, UNU/IIST, P.O.Box 3058,
Macau, 9 November 1994. Presented at the 1994 Kunming International CASE
Symposium: KICS’94, Yunnan Province, P.R.of China, 16–20 November 1994.
.

58. Dines Bjørner and Ole N. Oest. The DDC Ada Compiler Development Project.
[59], pages 1–19, 1980.

59. Dines Bjørner and Ole N. Oest, editors. Towards a Formal Description of Ada,
volume 98 of LNCS. Springer–Verlag, 1980.

60. Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Rail-
way Systems: Domains. Technical report, Dept. of IT, Technical University of
Denmark, Bldg. 344, DK–2800 Lyngby, Denmark, September 23 1999. Pre-
sented at the FME Rail Workshop on Formal Methods in Railway Systems,
FM’99 World Congress on Formal Methods, Toulouse, France. Avaliable on
CD ROM.

61. Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway
Systems: Requirements. Technical report, Dept. of IT, Technical University
of Denmark, Bldg. 344, DK–2800 Lyngby, Denmark, September 23 1999. Pre-
sented at the FME Rail Workshop on Formal Methods in Railway Systems,
FM’99 World Congress on Formal Methods, Toulouse, France. Avaliable on
CD ROM.

62. Dines Bjørner, Arimoto Yasuhito, Chen Xiaoyi, and Xiang Jianwen. A Family
of License Languages. Techn. Memoranda IS–TM–2007-003, Graduate School
of Information Science & Technology, JAIST: Japan Adv. Inst. of Sci. and
Techn. ISSN 0918-7561, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Hokuriku,
Japan., January 2007.

63. Wayne D. Blizard. A Formal Theory of Objects, Space and Time. The Journal
of Symbolic Logic, 55(1):74–89, March 1990.

64. B.W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood
Cliffs, NJ., USA, 1981.

65. Eerke A. Boiten, John Derrick, and Graeme Smith, editors. IFM 2004: Inte-
grated Formal Methods, volume 2999 of Lecture Notes in Computer Science,
London, England, April 4-7 2004. Springer. Proceedings of 4th Intl. Conf. on
IFM. ISBN 3-540-21377-5.

66. J.P. Bowen and M. Hinchey. Seven More Myths of Formal Methods. Technical
Report PRG–TR–7–94, Oxford Univ., Programming Research Group, Wolf-
son Bldg., Parks Road, Oxford OX1 3QD, UK, June 1994. Shorter version
published in LNCS Springer Verlag FME’94 Symposium Proceedings.

67. J.P. Bowen and M. Hinchey. Ten Commandments of Formal Methods. Techni-
cal report, Oxford Univ., Programming Research Group, Wolfson Bldg., Parks
Road, Oxford OX1 3QD, UK, 1995.

68. Bureau Veritas. The Bureau Veritas Home Page. Electronically, on the Web:
http://www.bureauveritas.com/homepage frameset.html, 2005.

69. Michael J. Butler, Luigia Petre, and Kaisa Sere, editors. IFM 2002: Integrated
Formal Methods, volume 2335 of Lecture Notes in Computer Science, Turku,
Finland, May 15-18 2002. Springer. Proceedings of 3rd Intl. Conf. on IFM.
ISBN 3-540-43703-7.

70. Dominique Cansell and Dominique Méry. Logical Foundations of the B
Method. Computing and Informatics, 22(1–2), 2003. This paper is one of

References 481

a series: [89, 105, 133, 175, 185, 213] appearing in a double issue of the same
journal: Logics of Specification Languages — edited by Dines Bjørner.

71. Dominique Cansell and Dominique Méry. Logics of Specification Languages,
chapter The event-B Modelling Method: Concepts and Case Studies, pages
47–152 in [54]. Springer, 2008.

72. C.E.C. Digital Rights: Background, Systems, Assessment. Commission of
The European Communities, Staff Working Paper, 2002. Brussels, 14.02.2002,
SEC(2002) 197.

73. XiaoYi Chen and Dines Bjørner. Public Government: A Domain Analysis and
a License Language. Technical note, JAIST, School of Information Science,
1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

74. C. N. Chong, R. J. Corin, J. M. Doumen, S. Etalle, P. H. Hartel, Y. W. Law,
and A. Tokmakoff. LicenseScript: a logical language for digital rights man-
agement. Annals of telecommunications special issue on Information systems
security, 2006.

75. C. N. Chong, S. Etalle, and P. H. Hartel. Comparing Logic-based and XML-
based Rights Expression Languages. In Confederated Int. Workshops: On The
Move to Meaningful Internet Systems (OTM), number 2889 in LNCS, pages
779–792, Catania, Sicily, Italy, 2003. Springer.

76. Cheun Ngen Chong, Ricardo Corin, and Sandro Etalle. LicenseScript: A novel
digital rights languages and its semantics. In Proc. of the Third International
Conference WEB Delivering of Music (WEDELMUSIC’03), pages 122–129.
IEEE Computer Society Press, 2003.

77. G.B. Clemmensen and O. Oest. Formal specification and development of an
Ada compiler – a VDM case study. In Proc. 7th International Conf. on Soft-
ware Engineering, 26.-29. March 1984, Orlando, Florida, pages 430–440. IEEE,
1984.

78. CoFI (The Common Framework Initiative). Casl Reference Manual, volume
2960 of Lecture Notes in Computer Science (IFIP Series). Springer–Verlag,
2004.

79. David Crystal. The Cambridge Encyclopedia of Language. Cambridge Univer-
sity Press, 1987, 1988.

80. Werner Damm and David Harel. LSCs: Breathing life into Message Sequence
Charts. Formal Methods in System Design, 19:45–80, 2001. Early version ap-
peared as Weizmann Institute Tech. Report CS98-09, April 1998. An abridged
version appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open
Object-based Distributed Systems (FMOODS’99), Kluwer, 1999, pp. 293–312.

81. Jim Davies. Announcement: Electronic version of Communicating Sequential
Processes (CSP). Published electronically: http://www.usingcsp.com/, 2004.
Announcing revised edition of [137].

82. J.W. de Bakker. Control Flow Semantics. The MIT Press, Cambridge, Mass.,
USA, 1995.

83. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul De
Roever, editors. FMCO 2005: Formal Methods For Components and Objects,
IV. Fairleigh Dickinson University Press, 1–4 November, 2005.

84. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul De
Roever, editors. FMCO 2006: Formal Methods For Components and Objects,
V, volume to be assigned. to be assigned, 7–10 November, 2006.

85. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul De
Roever, editors. FMCO 2004: Formal Methods For Components and Objects,

482 References

III, volume 3657 of Revised Lecture Series, Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, November 2–5, 2004.

86. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul De
Roever, editors. FMCO 2003: Formal Methods For Components and Objects,
II, volume 3188 of Revised Lecture Series, Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, November 4–7, 2003.

87. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul De
Roever, editors. FMCO 2002: Formal Methods For Components and Objects,
I, volume 2852 of Revised Lecture Series, Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, November 5–8, 2002.

88. Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification:
Introduction to Compositional and Noncompositional Methods. Number 54
in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, UK, November 29, 2001. ISBN 0 52180608 9, xxiv+776
pages, 5 tables, 84 figures, and 156 excercises.

89. Ražvan Diaconescu, Kokichi Futatsugi, and Kazuhiro Ogata. CafeOBJ: Logical
Foundations and Methodology. Computing and Informatics, 22(1–2), 2003.
This paper is one of a series: [70, 105, 133, 175, 185, 213] appearing in a double
issue of the same journal: Logics of Specification Languages — edited by Dines
Bjørner.

90. Răzvan Diaconescu. Logics of Specification Languages, chapter A Methodolog-
ical Guide to the CafeOBJ Logic, pages 153–240 in [54]. Springer, 2008.

91. Roderick W. Durmiendo and Chris W. George. Development of a Distributed
Telephone Switch. In [238], FACIT: Formal Approaches to Computing and
Information Technology, pages 99–130. Springer–Verlag, April 2002.

92. Myatav Erdenechimeg, Yumbayar Namstrai, and Richard C. Moore. Multi–
lingual Document Processing. In [238], FACIT: Formal Approaches to Comput-
ing and Information Technology, pages 155–186. Springer–Verlag, April 2002.

93. Maria Fahlén, editor. FMERail Workshop #3, volume 3 of FMERail Semi-
nars, Falun, Sweden, May 12–14 1998. FME: Formal Methods Europe, Ban-
verket. ESSI Project 26538. Workshop venue: Stockholm, Sweden. Organised
by Banverket (Swedish Rail’s Infrastructure Division), Falun, Sweden.

94. Richard Feynmann, Robert Leighton, and Matthew Sands. The Feynmann
Lectures on Physics, volume Volumes I–II–II. Addison-Wesley, California In-
stitute of Technology, 1963.

95. John S. Fitzgerald. Logics of Specification Languages, chapter The Typed
Logic of Partial Functions and the Vienna Development Method, pages 453–
487 in [54]. Springer, 2008.

96. John S. Fitzgerald and Peter Gorm Larsen. Developing Software using VDM-SL.
Cambridge University Press, The Edinburgh Building, Cambridge CB2 1RU,
England, 1997.

97. John S. Fitzgerald and Sunil Vadera. Unification: Specification and Devel-
opment, and: Building a Theory of Unification. In [151], pages 127–162 and
163–194. Prentice-Hall International, 1990.

98. Bill Flinn and Ib Holm Sørensen. CAVIAR: a case study in specification.
In [130], pages 79–110. Prentice-Hall International, 1987.

99. K. Futatsugi, A.T. Nakagawa, and T. Tamai, editors. CAFE: An Industrial-
–Strength Algebraic Formal Method, Sara Burgerhartstraat 25, P.O. Box 211,

References 483

NL–1000 AE Amsterdam, The Netherlands, 2000. Elsevier. Proceedings from
an April 1998 Symposium, Numazu, Japan.

100. Kokichi Futatsugi and Razvan Diaconescu. CafeOBJ Report The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic Specifica-
tion. AMAST Series in Computing – Vol. 6. World Scientific Publishing Co.
Pte. Ltd., 5 Toh Tuck Link, SINGAPORE 596224. Tel: 65-6466-5775, Fax:
65-6467-7667, E-mail: wspc@wspc.com.sg, 1998.

101. Chris George and Anne E. Haxthausen. Logics of Specification Languages,
chapter The Logic of the RAISE Specification Language, pages 349–399 in [54].
Springer, 2008.

102. Chris W. George. A Theory of Distributing Train Rescheduling. Research
Report 51, UNU/IIST, P.O.Box 3058, Macau, December 1995. Published in:
Marie-Claude Gaudel and James Woodcock (eds.), FME’96: Industrial Benefit
and Advances in Formal Methods, LNCS 1051, Springer-Verlag, 1996, pp. 499–
517. .

103. Chris W. George. Distributed Train Rescheduling. Research Report 42, UN-
U/IIST, P.O.Box 3058, Macau, April 1995. .

104. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen,
Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

105. Chris W. George and Anne E. Haxthausen. The Logic of the RAISE Specifica-
tion Language. Computing and Informatics, 22(1–2), 2003. This paper is one
of a series: [70, 89, 133, 175, 185, 213] appearing in a double issue of the same
journal: Logics of Specification Languages — edited by Dines Bjørner.

106. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne,
Søren Prehn, and Jan Storbank Pedersen. The RAISE Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

107. Chris W. George, Hung Dang Van, Tomasz Janowski, and Richard Moore.
Case Studies using The RAISE Method. FACTS (Formal Aspects of Com-
puting: Theory and Software) and FME (Formal Methods Europe). Springer–
Verlag, London, 2002. This book reports on a number of case studies using
RAISE (Rigorous Approach to Software Engineering). The case studies were
done in the period 1994–2001 at UNU/IIST, the UN University’s International
Institute for Software Technology, Macau (till 20 Dec., 1997, Chinese Teritory
under Portuguese administration, now a Special Administrative Region (SAR)
of (the so–called People’s Republic of) China).

108. Chris W. George and Mario I. Wolczko. Heap Storage, and Garbage Collection.
In [151], pages 195–210, and 21–233. Prentice-Hall International, 1990.

109. Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, 2002. 2nd Edition.

110. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. In Lecture Notes
in Computer Science, Vol. 78. Springer-Verlag, 1980.

111. Wolfgang Grieskamp, Thomas Santen, and Bill Stoddart, editors. IFM 2000:
Integrated Formal Methods, volume of Lecture Notes in Computer Science,
Schloss Dagstuhl, Germany, November 1-3 2000. Springer. Proceedings of 2nd
Intl. Conf. on IFM.

112. C.A. Gunter and J.C. Mitchell. Theoretical Aspects of Object-oriented Pro-
gramming. The MIT Press, Cambridge, Mass., USA, 1994.

484 References

113. Carl A. Gunter, Stephen T. Weeks, and Andrew K. Wright. Models and Lan-
guages for Digtial Rights. In Proc. of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34), pages 4034–4038, Maui, Hawaii,
USA, January 2001. IEEE Computer Society Press.

114. C.A. Gunther. Semantics of Programming Languages. The MIT Press, Cam-
bridge, Mass., USA, 1992.

115. P.L. Haff, editor. The Formal Definition of CHILL. ITU (Intl. Telecmm.
Union), Geneva, Switzerland, 1981.

116. Anthony Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–19,
1990.

117. Joseph Y. Halpern and Vicky Weissman. A Formal Foundation for XrML. In
Proc. of the 17th IEEE Computer Security Foundations Workshop (CSFW’04),
2004.

118. Michael Hammer and James A. Champy. Reengineering the Corporation: A
Manifesto for Business Revolution. HarperCollinsPublishers, 77–85 Fulham
Palace Road, Hammersmith, London W6 8JB, UK, May 1993. 5 June 2001,
Paperback.

119. Michael Hammer and Stephen A. Stanton. The Reengineering Revolutiuon:
The Handbook. HarperCollinsPublishers, 77–85 Fulham Palace Road, Ham-
mersmith, London W6 8JB, UK, 1996. Paperback.

120. Michael R. Hansen. Logics of Specification Languages, chapter Duration Cal-
culus, pages 299–347 in [54]. Springer, 2008.

121. Michael Reichhardt Hansen and Hans Rischel. Functional Programming in
Standard ML. Addison Wesley, 1997.

122. David Harel. Algorithmics —The Spirit of Computing. Addison-Wesley, 1987.
123. David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, 1987.
124. David Harel. On visual formalisms. Communications of the ACM, 33(5), 514–

530 1988.
125. David Harel. The Science of Computing — Exploring the Nature and Power

of Algorithms. Addison-Wesley, April 1989.
126. David Harel and Eran Gery. Executable object modeling with Statecharts.

IEEE Computer, 30(7):31–42, 1997.
127. David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi

Sherman, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. STATEMATE:
A working environment for the development of complex reactive systems. Soft-
ware Engineering, 16(4):403–414, 1990.

128. David Harel and Rami Marelly. Come, Let’s Play – Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

129. David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology (TOSEM),
5(4):293–333, 1996.

130. I. Hayes, editor. Specification Case Studies. Prentice-Hall International, 1987.
131. Ian Hayes and Steve King. Chapters 13–17 on the formal modelling of the IBM

CICS Transaction Processing System. In [130], pages 179–243. Prentice-Hall
International, 1987.

132. Martin C. Henson, Moshe Deutsch, and Steve Reeves. Logics of Specifica-
tion Languages, chapter Z Logic and Its Applications, pages 489–596 in [54].
Springer, 2008.

References 485

133. Martin C. Henson, Steve Reeves, and Jonathan P. Bowen. Z Logic and its
Consequences. Computing and Informatics, 22(1–2), 2003. This paper is one
of a series: [70, 89, 105, 175, 185, 213] appearing in a double issue of the same
journal: Logics of Specification Languages — edited by Dines Bjørner.

134. Michael G. Hinchey and Jonathan P. Bowen, editors. Applications of Formal
Methods. Prentice Hall, 1995.

135. C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing
Research. Journal of the ACM, 50:63–69, January 2003.

136. Charles Anthony Richard Hoare and Ji Feng He. Unifying Theories of Pro-
gramming. Prentice Hall, 1997.

137. Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International, 1985.

138. Tony Hoare. Communicating Sequential Processes. Published electronically:
http://www.usingcsp.com/cspbook.pdf, 2004. Second edition of [137]. See
also http://www.usingcsp.com/.

139. Watts Humphrey. Managing The Software Process. Addison-Wesley, 1989.
ISBN 0201180952.

140. V. Daniel Hunt. Process Mapping: How to Reengineer Your Business Processes.
John Wiley & Sons, Inc., New York, N.Y., USA, 1996.

141. ContentGuard Inc. XrML: Extensible rights Markup Language.
http://www.xrml.org, 2000.

142. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC),
1992.

143. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
144. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.
145. J. Mike Jacka and Paulette J. Keller. Business Process Mapping: Improving

Customer Satisfaction. John Wiley & Sons, Inc., New York, N.Y., USA, 2002.
146. Daniel Jackson. Software Abstractions Logic, Language, and Analysis. The

MIT Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.
147. Michael A. Jackson. Problem Frames — Analyzing and Structuring Software

Development Problems. ACM Press, Pearson Education. Addison–Wesley, Ed-
inburgh Gate, Harlow CM20 2JE, England, 2001.

148. Kurt Jensen. Coloured Petri Nets, volume 1: Basic Concepts (234 pages + xii),
Vol. 2: Analysis Methods (174 pages + x), Vol. 3: Practical Use (265 pages +
xi) of EATCS Monographs in Theoretical Computer Science. Springer–Verlag,
Heidelberg, 1985, revised and corrected second version: 1997.

149. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall,
1986. Superceded by [150].

150. C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

151. C. B. Jones and R. C. Shaw. Case Studies in Systematic Sotware Development.
Prentice-Hall International, 1990.

152. C. B. Jones and R.C.F. Shaw. Case Studies in Systematic Software Develop-
ment. Prentice Hall International, 1990.

153. Jochen Klose and Hartmut Wittke. An automata based interpretation of Live
Sequence Charts. In T. Margaria and W. Yi, editors, TACAS 2001, LNCS
2031, pages 512–527. Springer-Verlag, 2001.

154. R.H. Koenen, J. Lacy, M. Mackay, and S. Mitchell. The long march to inter-
operable digital rights management. Proceedings of the IEEE, 92(6):883–897,
June 2004.

486 References

155. Leslie Lamport. The Temporal Logic of Actions. Transactions on Programming
Languages and Systems, 16(3):872–923, 1995.

156. Leslie Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA,
2002.

157. P.J. Landin. The Mechanical Evaluation of Expressions. Computer Journal,
6(4):308–320, 1964.

158. P.J. Landin. A Correspondence Between ALGOL 60 and Church’s Lambda-
Notation (in 2 parts). Communications of the ACM, 8(2-3):89–101 and 158–
165, Feb.-March 1965.

159. P.J. Landin. A Formal Description of ALGOL 60. In [233], pages 266–294,
1966.

160. P.J. Landin. The Next 700 Programming Languages. Communications of the
ACM, 9(3):157–166, 1966.

161. Peter Gorm Larsen and Wies law Paw lowski. The formal semantics of iso vdm–
sl. “Computer Standards and Interfaces”, 17(5–6):585–602, September 1995.

162. P.G. Larsen, editor. FMERail Workshop #1, volume 1 of FMERail Semi-
nars, Forskerparken, DK–6000 Odense, Denmark, 8–9 June 1998. FME: Formal
Methods Europe, IFAD. ESSI Project 26538. Workshop venue: Breukelen, The
Netherlands. Organised by Origin Nederland, a member of the Philips group of
companies, P.O.Box 1444, NL–3430 BK Nieuwegein, The Netherlands.

163. Thierry Lecomte and Peter Gorm Larsen, editors. FMERail Workshop #5,
volume 5 of FMERail Seminars. FME: Formal Methods Europe, Springer Ver-
lag, September 20–24 1999. ESSI Project 26538. Workshop venue: Toulouse,
France. Organised as part of FM’99: World Congress of Formal Methods.

164. Tran Mai Lien, Le Linh Chi, Phung Phuong Nam, Do Tien Dung, Nguyen Le
Tyhu, and Chris W. George. Developing a National Financial Information
System. In [238], FACIT: Formal Approaches to Computing and Information
Technology, pages 131–. Springer–Verlag, April 2002.

165. Lloyd’s Register. The Lloyd’s Register Home Page. Electronically, on the Web:
http://www.lr.org/code/home.htm, 2005.

166. IPR Systems Pty Ltd. Open Digital Rights Language (ODRL). http://odrl.net,
2001.

167. Gordon E. Lyon. Information Technology: A Quick-Reference List of Organiza-
tions and Standards for Digital Rights Management. NIST Special Publication
500-241, National Institute of Standards and Technology, Technology Admin-
istration, U.S. Department of Commerce, Oct 2002.

168. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems:
Specifications. Addison Wesley, 1991.

169. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems:
Safety. Addison Wesley, 1995.

170. Lynn C. Marshall. Line Representation on Graphics Devices. In [151], pages
337–364. Prentice-Hall International, 1990.

171. John McCarthy. Recursive Functions of Symbolic Expressions and Their Com-
putation by Machines, Part I. Communications of the ACM, 3(4):184–195,
1960.

172. John McCarthy. Towards a Mathematical Science of Computation. In C.M.
Popplewell, editor, IFIP World Congress Proceedings, pages 21–28, 1962.

173. John McCarthy. A Basis for a Mathematical Theory of Computation. In
Computer Programming and Formal Systems. North-Holland Publ.Co., Ams-
terdam, 1963.

References 487

174. John McCarthy. A Formal Description of a Subset of ALGOL. In [233], 1966.
175. Stephan Merz. On the Logic of TLA+. Computing and Informatics, 22(1–2),

2003. This paper is one of a series: [70, 89, 105, 133, 185, 213] appearing in a
double issue of the same journal: Logics of Specification Languages — edited
by Dines Bjørner.

176. Stephan Merz. Logics of Specification Languages, chapter The Specification
Language TLA+, pages 401–451 in [54]. Springer, 2008.

177. S. Michiels, K. Verslype, W. Joosen, and B. De Decker. Towards a Software
Architecture for DRM. In Proceedings of the Fifth ACM Workshop on Digital
Rights Management (DRM’05), pages 65–74, Alexandria, Virginia, USA, Nov
2005.

178. R. Milne and C. Strachey. A Theory of Programming Language Semantics.
Chapman and Hall, London, Halsted Press/John Wiley, New York, 1976.

179. R. Milner. Models of LCF. In K. Apt, editor, Mathematical Centre Tracts 82:
Found. of Comp. Sci. II, part 2, pages 49–63. Mathematisch Centrum, 1976.

180. R. Milner. LCF: A way of doing proofs with a machine. In Proceedings: Math.
Found. of Computer Sci., pages 146–159. Vol. 74 of Lecture Notes in Computer
Science, Springer-Verlag, 1979.

181. Markus Montigel, editor. FMERail Workshop #4, volume 4 of FMERail
Seminars, Herzogenburgerstr. 68, A-3100 St. Pölten, Austria, February 17–19
1999. FME: Formal Methods Europe, Fachhochschulstudiengang St. Pölten.
ESSI Project 26538. Workshop venue: St. Pölten, Austria. Organised by Fach-
hochschulstudiengang St. Pölten and Alcatel, Austria.

182. Richard C. Moore. Muffin: A Proof Assistant. In [151], pages 91–126. Prentice-
Hall International, 1990.

183. Carroll C. Morgan and Bernhard Suffrin. Specification of the UNIX filing
system. In [130], pages 45–78. Prentice-Hall International, 1987.

184. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. Logics of Spec-
ification Languages, chapter Casl – the Common Algebraic Specification Lan-
guage, pages 241–298 in [54]. Springer, 2008.

185. Till Mossakowski, Anne E. Haxthausen, Don Sanella, and Andzrej Tarlecki.
CASL — The Common Algebraic Specification Language: Semantics and Proof
Theory. Computing and Informatics, 22(1–2), 2003. This paper is one of a
series: [70,89,105,133,175,213] appearing in a double issue of the same journal:
Logics of Specification Languages — edited by Dines Bjørner.

186. Peter D. Mosses. Action Semantics. Cambridge University Press: Tracts in
Theoretical Computer Science, 1992. .

187. Ben C. Moszkowski. Executing Temporal Logic Programs. Cambridge Univer-
sity Press, Cambridge, England, 1986.

188. D. Mulligan and A. Burstein. Implementing copyright limitations in rights ex-
pression languages. In Proc. of 2002 ACM Workshop on Digital Rights Man-
agement, volume 2696 of Lecture Notes in Computer Science, pages 137–154.
Springer-Verlag, 2002.

189. Deirdre K. Mulligan, John Han, and Aaron J. Burstein. How DRM-Based
Content Delivery Systems Disrupt Expectations of “Personal Use”. In Proc. of
The 3rd International Workshop on Digital Rights Management, pages 77–89,
Washington DC, USA, Oct 2003. ACM.

190. Quoc Tao Ngo and Hung Dang Van. Formalisation of Realm–Based Spatial
Data Types. In [238], FACIT: Formal Approaches to Computing and Infor-
mation Technology, pages 259–286. Springer–Verlag, April 2002.

488 References

191. J. Nievergelt. Thoughts on Traffic Scheduling and Time Table Design. Tech-
nical Report dyl/9/2, ETH, Zürich, Switzerland, Informatik, ETH, CH-8092
Zurich, Switzerland, January 1994.

192. Norske Veritas. The DNV (Det Norske Veritas) Home Page. Electronically, on
the Web: http://www.dnv.com/, 2005.

193. Ardegboyega Ojo and Tomasz Janowski. Formalsing Production Processes. In
[238], FACIT: Formal Approaches to Computing and Information Technology,
pages 187–217. Springer–Verlag, April 2002.

194. Pak Jong Ok, Ri Hyon Sul, and Chris W. George. A University Library Sys-
tem. In [238], FACIT: Formal Approaches to Computing and Information
Technology, pages 81–98. Springer–Verlag, April 2002.

195. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

196. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
System Guide. Computer Science Laboratory, SRI International, Menlo Park,
CA, September 1999.

197. Sam Owre and N. Shankar. Writing PVS proof strategies. In Myla Archer,
Ben Di Vito, and César Muñoz, editors, Design and Application of Strategies/-
Tactics in Higher Order Logics (STRATA 2003), number CP-2003-212448 in
NASA Conference Publication, pages 1–15, Hampton, VA, September 2003.
NASA Langley Research Center. The complete proccedings are available at
http://research.nianet.org/fm-at-nia/STRATA2003/.

198. Lawrence Paulson. Logic and Computation: Interactive proof with Cambridge
LCF. Cambridge University Press, 1987.

199. Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962.

200. Shari Lawrence Pfleeger. Software Engineering, Theory and Practice. Prentice–
Hall, 2nd edition, 2001.

201. Nico Plat and Peter Gorm Larsen. An overview of the iso/vdm–sl standard.
Sigplan Notices, 27(8):76–82, August 1992.

202. Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

203. Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science, IEEE CS FoCS, pages
46–57. Providence, Rhode Island, IEEE CS, 1977. .

204. S. Prehn. Distributed Train Time-tables and Dispatching. Technical Report
SP/13/2, UNU/IIST, the UN University’s International Institute for Software
Technology, P.O.Box 3058, Macau; E-Mail: library@iist.unu.edu, July 1994.
.

205. Roger S. Pressman. Software Engineering, A Practitioner’s Approach. Interna-
tional Edition, Computer Science Series. McGraw–Hill, 5th edition, 1981–2001.

206. Riccardo Pucella and Vicky Weissman. A Logic for Reasoning about Digital
Rights. In Proc. of the 15th IEEE Computer Security Foundations Workshop
(CSFW’02), pages 282–294. IEEE Computer Society Press, 2002.

207. Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL. In
Proc. of the Workshop on Issues in the Theory of Security (WIST’04), 2004.

208. Martin Pěnička and Dines Bjørner. From Railway Resource Planning to Train
Operation — a Brief Survey of Complementary Formalisations. In Building the

References 489

Information Society, IFIP 18th World Computer Congress, Topical Sessions,
22–27 August, 2004, Toulouse, France — Ed. Renéne Jacquart, pages 629–636.
Kluwer Academic Publishers, August 2004.

209. Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Main-
tenance Routing. In FORMS’2003: Symposium on Formal Methods for Rail-
way Operation and Control Systems. L’Harmattan Hongrie, 15–16 May 2003.
Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany.

210. Wolfang Reisig. A Primer in Petri Net Design. Springer Verlag, March 1992.
120 pages.

211. Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs
in Theoretical Computer Science. Springer Verlag, May 1985.

212. Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis
with Petri Nets. Springer Verlag, December 1998. xi + 302 pages.

213. Wolfgang Reisig. The Expressive Power of Abstract State Machines. Com-
puting and Informatics, 22(1–2), 2003. This paper is one of a series:
[70,89,105,133,175,185] appearing in a double issue of the same journal: Logics
of Specification Languages — edited by Dines Bjørner.

214. Wolfgang Reisig. Logics of Specification Languages, chapter Abstract State
Machines for the Classroom, pages 15–46 in [54]. Springer, 2008.

215. John C. Reynolds. The Semantics of Programming Languages. Cambridge
University Press, 1999.

216. Judi M.T. Romijn, Graeme P. Smith, and Jaco C. van de Pol, editors. IFM
2005: Integrated Formal Methods, volume 3771 of Lecture Notes in Computer
Science, Eindhoven, The Netherlands, December 2005. Springer. Proceedings
of 5th Intl. Conf. on IFM. ISBN 3-540-30492-4.

217. A. W. Roscoe, editor. A Classical Mind: Essays in Honour of C.A.R. Hoare.
Prentice Hall International, January 1994.

218. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Se-
ries in Computer Science. Prentice-Hall, 1997. Now available on the net:
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

219. A. W. Roscoe and J. C. P. Woodcock, editors. A Millenium Perspective on
Informatics. Palgrave, November 2001. Festschrift for Sir Tony Hoare.

220. Pamela Samuelson. Digital rights management {and, or, vs.} the law. Com-
munications of ACM, 46(4):41–45, Apr 2003.

221. David A. Schmidt. Denotational Semantics: a Methodology for Language De-
velopment. Allyn & Bacon, 1986.

222. Steve Schneider. Concurrent and Real-time Systems — The CSP Approach.
Worldwide Series in Computer Science. John Wiley & Sons, Ltd., Baffins Lane,
Chichester, West Sussex PO19 1UD, England, January 2000.

223. Nitesh Shresta and Tomasz Janowski. Model–Based Travel Planning. In [238],
FACIT: Formal Approaches to Computing and Information Technology, pages
219–242. Springer–Verlag, April 2002.

224. C. Simonyi. The Death of Computer Languages, the Birth of Intentional
Programming. In NATO Science Committee Informatics Conference, 1995.
http://scholar.google.com/url?sa=U&q=http://www.cs.wpi.edu/˜gpollice/cs509-
s04/Readings/simonyi95death.pdf.

225. C. Simonyi. The Future is Intentional. Computer, 32(5):56–57, May 1999.

490 References

226. C. Simonyi. Intentional Programming: Asymptotic Fun? In Position Pa-
per, SDP Workshop, Vanderbilt University, December, 2001. http://scholar.-
google.com/url?sa=U&q=http://www.nitrd.% -gov/subcommittee/sdp/van-
derbilt/position papers/simonyi.pdf.

227. Jens Ulrik Skakkebæk. A Larger Case Study: Railway Crossing, chapter 7.
Dept. of Computer Science, Techn. Univ. of Denmark, 1992.

228. Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, 1982–
2001.

229. J. M. Spivey. Understanding Z: A Specification Language and its Formal Se-
mantics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, January 1988.

230. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

231. J. Michael Spivey. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG,
UK, 1989.

232. Staff of Merriam Webster. Online Dictionary: http://www.m-w.com/home.htm,
2004. Merriam–Webster, Inc., 47 Federal Street, P.O. Box 281, Springfield, MA
01102, USA.

233. T. B. Steel, editor. Formal Language Description Languages, IFIP TC-2 Work.
Conf., Baden. North-Holland Publ.Co., Amsterdam, 1966.

234. Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway
Staff Rostering. In FORMS2003: Symposium on Formal Methods for Rail-
way Operation and Control Systems. L’Harmattan Hongrie, 15–16 May 2003.
Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E.
Schnieder, Germany.

235. Toshiyuki Tanaka and Chris W. George. Proving Safety of Authentication
Protocols. In [238], FACIT: Formal Approaches to Computing and Information
Technology, pages 243–258. Springer–Verlag, April 2002.

236. Robert Tennent. The Semantics of Programming Languages. Prentice–Hall
Intl., 1997.

237. TÜV. The TÜV Certification Home Page. Electronically, on the Web:
http://www.tuev-cert.de/index en.html, 2005.

238. Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore, edi-
tors. Specification Case Studies in RAISE. FACIT: Formal Approaches to
Computing and Information Technology. Springer–Verlag, April 2002. ISBN
1-85233-359-6.

239. Johan van Benthem. The Logic of Time, volume 156 of Synthese Library:
Studies in Epistemology, Logic, Methhodology, and Philosophy of Science (Ed-
itor: Jaakko Hintika). Kluwer Academic Publishers, P.O.Box 17, NL 3300 AA
Dordrecht, The Netherlands, second edition, 1983, 1991.

240. Hans van Vliet. Software Engineering: Principles and Practice. John Wiley &
Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England, 2000.
2nd Edition.

241. G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, Cambridge, Mass., USA, 1993.

242. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

243. J. C. P. Woodcock and M. Loomes. Software Engineering Mathematics. Pit-
man, London, 1988.

244. J.C.P. Woodcock, editor. FMERail Workshop #2, volume 2 of FMERail Sem-
inars, Parks Road, Oxford OX1 3QD, England, October 1998. FME: Formal
Methods Europe, Oxford Univ., Computing Lab. ESSI Project 26538. Work-
shop venue: Canary Wharf, London Docklands, England. Organised by Formal
Systems Ltd., Oxford. Hosted by London Underground.

245. JianWen Xiang and Dines Bjørner. The Electronic Media Industry: A Domain
Analysis and a License Language. Technical note, JAIST, School of Informa-
tion Science, 1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292,
Summer 2006.

246. Yu Xinyiao. Stability of Railway Systems. Technical Report 28, UNU/IIST,
P.O.Box 3058, Macau, May 1994.

247. Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Ap-
proach to Real–time Systems. Monographs in Theoretical Computer Science.
An EATCS Series. Springer–Verlag, 2004.

248. Chao Chen Zhou, Charles Anthony Richard Hoare, and Anders P. Ravn. A
Calculus of Durations. Information Proc. Letters, 40(5), 1992.

249. Chao Chen Zhou and Huiqun Yu. A Duration Model for Railway scheduling.
Technical Report 24b, UNU/IIST, P.O.Box 3058, Macau, May 1994.

L

Indexes

L.1 Concept Index

acquisition
of requirements, 113
of domain, 62, 111

action
language, 291
wrt. license, 290

actor, 285
attributes, 215, 289

acyclic
graph, 125

analysis
of requirements, 113
of domain, 62, 111

AOP: aspect-oriented program-
ming, 69

application
domain, 60

ASM, 475
assessment

of software process
Informal Development of

Informative Documents,
131

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 121

Resource Planning, 129
Resource Usage, 130
Staff and Tool Qualifica-

tion, 132
Syntactic Process Compli-

ance, 126
software process, 107

494 L Indexes

attributes
of actors, 215
of documents, 214

authorisation
of document access, 209–211

B, XV, 29, 83, 93, 94, 132, 180, 372,
475

behaviour, 7, 260–262
human, 14, 338
model of railway systems,

387–393
shared phenomenon/concept,

65
BPR, business process reengineer-

ing, 11
broker, 402
business

domain, 60
process, 10, 331

of domain, 111
reengineering, 10, 331, 335

buyer, 397

CafeOBJ, 11, 29, 93, 94, 132, 180,
305

Casl, 93, 94, 132, 180
CBSE: component-based SE, 68
change management, 336
CMM

capability maturity model,
107, 121, 122

level 1, initial, 122
level 2, repeatable, 122
level 3, defined, 123
level 4, managed, 123
level 5, optimised, 123

coding, 116
component

design, 116
-based SE, 68

computational
interface requirements, 20

consumer, 397
contract

language, 309–326
of transaction, 404

conventional SE paradigms, 67–71
CSP, 387
CyberRail, 387–395

data flow, 371–386
DC: duration calculus, 29, 72, 93,

94, 132, 415, 475
dependabilitym machine require-

ments, 21
description

domain, 6, 61
formal, 61, 404
informal, 61
narrative, 404
of domain, 57

descriptive document, 397
design

of component, 116
of module, 116
of software, 58, 66, 107
of software architecture, 116

determination
of the domain, 18
of domain, 167, 170, 172

development
formal, 120

rigorous, 120
systematic, 120
fully formal, 120

informal, 120, 131
of domain, 397
phase, 108
process, 125

digital rights management
domain, 427–443

document, 109
attributes, 214, 289
authorisation, 209–211
class, 212–213
computations, 214
cross-reference, 213–214
descriptive, 397
domain, 179–199

CONCEPT INDEX 495

domain engineering, Fig. 5.3,
111

entities, 183–185
family, 208–209
family tree, 189–195
functions, 185–186, 188–189
history, 208–209
informative, 109
location, 197–198
location and time, 198–199
operation, special edit, 211
operations, 185–186, 188–189,

206–207
requirements engineering,

Fig. 5.7, 116
rough sketch, 397
software design, Fig. 5.10, 118
time, 196–197
time and location, 198–199
traces, 186–188
tracing, 289
version, 208–209

documentation, machine require-
ments, 21

domain, 5
acquisition, 62, 111
administrative forms process-

ing, 45
air traffic, 45–46
airports, 46–47
analysis, 62, 111
application, 60
artistic works, 286–288, 293–

297
bus traffic, 309–326
business processes, 111
contracts, 309–326
data flow, 371–386
description, 6, 57, 61
determination, 18, 167, 170,

172
development, 397
digital rights management,

427–443
document operations, 206–207

documents, 179–199, 289
in public administration,

202–215
engineering, 5, 62, 107

document, Fig. 5.3, 111
phase, 107
process model, 110
stage, 112
step, 112

entities, 373–384
transportation, 343–369

extension, 18, 167, 170, 172
financial service industry,

banks; portfolio manage-
ment; insurance compa-
nies; broker, traders and
exchanges; credit cards;
etc., 47–48

health care, 288, 297–299
patients, family doctors,

hospitals, pharmacies,
reconvalescence clinics,
health insurance, etc.,
48–49

human behaviour, in the do-
main, 10

instantiation, 18, 167, 170, 172
intrinsics, 10, 338
IT Security Code of Practice,

223–281
examples, 225–243
formal example of semantic

functions, 275–277
formal examples, 248–253
formal semantics, 276–277
formal syntax, 276

IT Systems, 262–275
licenses, 286–309
management and organisa-

tion, 10
manufacturing, 49, 371–386
ministry of finance, 40–43
model, 5, 110
modelling, 62, 63, 111
operations, 377–378

496 L Indexes

Petri nets, 371–386
projection, 18, 167, 170, 172
public government and the

citizen, 201–221
public government and the

citizens, 288–289, 300–
304

radio communication, 43–44
railway nets, 86–90, 160–163
railways, 43, 387–395
requirements, 10, 18, 64, 113,

169–174
rules and regulations, 10
script, 10
space & time, 416–418
stakeholder, 62, 111
state, 262–275
support technology, 10
terminology, 111
the market

consumers, retailers, whole
salers, producers, the
supply chain, 49–50

theory, 5, 111
time, 415–418
time table, 166–167
timetable scripts, 419–426
traffic, 166–167
transportation, 343–369

roads, rails, air and sea, 50–
52

transportation nets, 140–167
understanding, 397
validation, 16, 62, 63, 111
verification, 16, 62, 63, 111

e-Government, 215–220
edge of graph, 125
engineering

domain, 5
of domain description, 107
of requirements prescription,

107
rules and regulations, 341

enterprise, 401

entity, entities
documents, 183–185
domain, transportation, 343–

369
manufacturing, 373–384
simple, 6, 254–257

event, 7, 259–260
shared phenomenon/concept,

65
extension

of the domain, 18
of domain, 167, 170, 172

facet, 12
family tree document, 189–195
fitting of requirements, 19
formal

description, 11, 61, 404
development, 120
development, fully, 120
development, rigorous, 120
development, systematic, 120
semantics, 305–309

fully formal development, 120
function, 6, 257–259

documents, 185–186, 188–189
lifting, 327
parametrisation, 327
shared phenomenon/concept,

65

graph, 124
acyclic, 125
edge, 125
node, 125
traversal, 124

hardware, 17
human behaviour, 10, 14, 338

reengineering, 341

improvement
software process, 107

Informal Development of
Informative Documents,
131

CONCEPT INDEX 497

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 122

Resource Planning, 129
Resource Usage, 130
Staff Qualification, 132
Syntactic Process Compli-

ance, 126
Tool Qualification, 133

indicative domain description, 61
informal

description, 61
development, 120, 131

informative document, Fig. 5.2,
109

instantiation
of the domain, 18
of domain, 167, 170, 172

intentional software development,
70

interface
computational requirements,

20
machine-machine dialogue re-

quirements, 20
man-machine dialogue re-

quirements, 20
man-machine physiological re-

quirements, 20
requirements, 10, 19, 65, 113

shared data initialisation,
19

shared data refreshment re-
quirements, 20

internal
non—determinism, 407–411
non-determinism, 387–393

intrinsics, 12
domain, 338
of a domain, 10
requirements, 338
review and replacement, 339

languages

contract, 309–326
license, 286–309
of actions, 291
of licenses, 291

license, 285, 290
action, 290
language, 291
languages, 286–309
obligation, 285
permission, 285
work item, 290

licensee, 285, 290
licensing, 285
licensor, 285, 290
lifting

function, 327
syntax, 327

location
and time

of document, 198–199
of document, 197–198

LSC, live sequence charts, 29, 72,
93, 94, 132, 475

machine, 17, 64, 113
requirements, 10, 21, 65, 113

dependability, 21
documentation, 21
maintainability, 21
performance, 21
platform, 21

machine-machine dialogue inter-
face, 20

maintainability, machine require-
ments, 21

man-machine dialogue, interface
requirements, 20

man-machine physiological, inter-
face requirements, 20

management, 130–135
and organisation, 10, 13, 338

reengineering, 340
of change, 336
of process, 107

manufacturing

498 L Indexes

entities, 373–384
operations, 377–378

middleware software, 37
model

checking of software, 117
of domain, 5, 110
of requirements, 113

modelling
of requirements, 113
of domain, 62, 63, 111

module design, 116
MSC, message sequence charts, 29,

72, 93, 94, 133, 475

narrative, 11
description, 404

node of graph, 125
non-determinism, internal, 387–

393, 407–411

obligation, license, 285
ontology of specifications, 253–262
OO programming, 67
operation

documents, 185–186, 188–189
domain document, 206–207
manufacturing, 377–378
same as function, 6
special edit on documents, 211

organisation and management, 338
reengineering, 340

parametrised
function, 327
syntax, 327

performance, machine require-
ments, 21

permission, license, 285
Petri nets, 29, 72, 93, 133, 371–386,

475
phase

of development, 108
of domain engineering, 107
of requirements engineering,

107

of software design, 107
platform, machine requirements,

21
pragmatics, 286–289
prescription of requirements, 58
process

assessment
Informal Development of

Informative Documents,
131

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 121

Resource Planning, 129
Resource Usage, 130
Staff and Tool Qualifica-

tion, 132
Syntactic Process Compli-

ance, 126
improvement

Informal Development of
Informative Documents,
131

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 122

Resource Planning, 129
Resource Usage, 130
Staff Qualification, 132
Syntactic Process Compli-

ance, 126
Tool Qualification, 133

management, 107
model, 108

of domain engineering, 110
of requirements engineer-

ing, 113
of software design, 115
trace, 124

reengineering, 335
producer, 398
program coding, 116
projection

CONCEPT INDEX 499

of domain, 167, 170, 172
of the domain, 18

public government and the citizen,
201–221

RAISE, 11, 58, 83, 93, 94, 133, 180,
183, 284, 298, 372, 475

reengineering
business process, 335
human behaviour, 341
management and organisa-

tion, 340
rules and regulations, 341
script, 342

regulations, 13
and rules, 338

reengineering, 341
requirements, 17, 64, 167–174

acquisition, 113
analysis, 113
document, Fig. 5.7, 116
domain, 10, 64, 169–174
engineering, 107

phase, 107
process model, 113
stage, 114
step, 114

fitting, 19
interface, 10, 65

shared data initialisation,
19

intrinsics, 338
machine, 10, 21, 65
model, 113
modelling, 113
of domain, 113
of interface, 113
of machine, 113
of interface, 19
of the domain, 18
prescription, 58
rough-sketch, 113
shared phenomena and con-

cepts, 19
stakeholders, 113

terminology, 113
theory, 114
validation, 114
verification, 114

retailer, 397
review and replacement

intrinsics, 339
support technology, 339

rigorous formal development, 120
rough sketch document, 397
rough-sketch of requirements, 113
RSL, 11, 58, 83, 93, 94, 133, 180,

183, 284, 298, 372, 475
rule, 13

and regulations, 10, 338
reengineering, 341

script, 14
reengineering, 342
timetables, 419–426

scripting, 338
seller, 397
semantic

functions, 276–277
intents, 290–292

semantics
formal, 305–309
informal, and syntax, 292–305
of documents, 182
of timetable scripts, 425–426
of transaction, 406

shared
behaviour phenomenon/con-

cept, 65
data

initialisation, interface re-
quirements, 19

refreshment, interface re-
quirements, 20

event function phenomenon/-
concept, 65

phenomenon/concept, 65
simple entity phenomenon/-

concept, 65
shared phenomena and concepts

500 L Indexes

requirements, 19
simple

entity, 6, 254–257
shared phenomenon/con-

cept, 65
software, 17

architecture design, 116
design, 58, 66, 107

document, Fig. 5.10, 118
phase, 107
process model, 115
stage, 118
step, 118

middleware, 37
model checking, 117
testing, 117
verification, 117

software process
assessment, 107

Informal Development of
Informative Documents,
131

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 121

Resource Planning, 129
Resource Usage, 130
Staff and Tool Qualifica-

tion, 132
Syntactic Process Compli-

ance, 126
improvement, 107

Informal Development of
Informative Documents,
131

Planned Syntactic and Se-
mantics Compliance, 127

Process Model Syntax and
Semantics, 122

Resource Planning, 129
Resource Usage, 130
Staff Qualification, 132
Syntactic Process Compli-

ance, 126

Tool Qualification, 133
specification ontology, 253–262
stage

of domain engineering, 112
of requirements engineering,

114
of software design, 118

stakeholder, 11, 62
domain, 111
requirements, 113

state, 258–259, 262–275
of trader, 406, 410–411

Statechart, 29, 72, 93, 94, 133, 475
step

of domain engineering, 112
of requirements engineering,

114
of software design, 118

sub-licensing, 291–292
supply chain, 399
support technology, 10, 13, 338

review and replacement, 339
syntax

and informal semantics, 292–
305

lifting, 327
of documents, 182
of timetable scripts, 420–425
parametrisation, 327
transaction, 404

system of workflow, 336
systematic formal development,

120

technology support, 338
terminology

of requirements, 113
of domain, 111

testing of software, 117
theory

of requirements, 114
of domain, 5, 111

time
and location of document,

198–199

CONCEPT INDEX 501

continuum theory, 415–416
of document, 196–197

timetable scripts, 419–426
timetables, 419–426
TLA+, temporal logic of actions,

72, 93, 94, 133, 415, 475
tool, 132
trace

documents, 186–188
of process model, 124
traversal, 125

trader, state, 406, 410–411
traffic, 425–426
transaction

contract, 404
semantics, 406
syntax, 404

transportation domain, 343–369
traversal trace, 125
triptych dogma, 8, 57

UML, 68

validation
of requirements, 114
of domain description, 16
of domain, 62, 63, 111

VDM, XV, 29, 83, 93, 94, 133, 180,
372, 475

verification
of requirements, 114
of domain, 62, 63, 111
of domain description, 16
of software, 117

wavefront, 125
wholesaler, 398
work item of license, 290
workflow system, 336

Z, XV, 29, 83, 93, 94, 133, 180, 372,
475

502 L Indexes

L.2 Example Index

Behaviours; Example 1.4, 7

Consistency of Transport Net Seg-
ments; Example 1.19, 20

CyberRail, 387–395

Determined Market Domain; Ex-
ample 1.13, 18

digital rights management
domain, 427–443

documents
domain, 179–199

public administration, 202–
215

history, 208
Domain, IT Security Code of Prac-

tice, 223–281
domain

administrative forms process-
ing, 45

air traffic, 45–46
airports, 46–47
artistic works, 286–288, 293–

297
data flow, 371–386
digital rights management,

427–443
documents, 179–199, 289
financial service industry:

banks; portfolio manage-
ment; insurance compa-
nies; broker, traders and
exchanges; credit cards;
etc., 47–48

health care, 288, 297–299
patients, family doctors,

hospitals, pharmacies,
reconvalescence clinics,
health insurance, etc.,
48–49

IT Security Code of Practice
examples, 225

formal example of semantic
functions, 275–277

formal examples, 248–253
formal semantics, 276–277
formal syntax, 276

IT Systems, 262–275
licenses, 286–289
manufacturing, 49, 371–386
ministry of finance, 40–43
Petri nets, 371–386
public government and the

citizens, 288–289, 300–
304

radio communication, 43–44
railway nets, 86–90, 160–163
railways, 43, 387–395
space & time, 416–418
the market: consumers, retail-

ers, whole salers, produc-
ers, the supply chain, 49–
50

time, 415–418
timetable, 166–167

scripts, 419–426
traffic, 166–167
transportation, 343–369

roads, rails, air and sea, 50–
52

transportation nets, 140–167

Entities; Example 1.1, 6
Events; Example 1.3, 7
Extended Travel Planning Do-

main; Example 1.15, 19

Functions; Example 1.2, 6

GUI for Transport Net State Ini-
tialisation; Example 1.20,
20

Human Behaviour, Example 1.11,
14

EXAMPLE INDEX 503

Reengineering; Example A.5,
341

Instantiated Transport Domain;
Example 1.14, 18

Intrinsics of Transportation; Ex-
ample 1.6, 12

Intrinsics Replacement; Example
A.1, 339

Management ane Organisation
Manufacturing; Example 1.8,

13
Reengineering; Example A.3,

340

Projected Transportation Domain;
Example 1.12, 18

public government and the citizen
domain, 201–221

Rules & Regulations: Banking; Ex-
ample 1.9, 14

Rules and Regulations Reengineer-
ing; Example A.4, 341

Satellite System; Example 1.21, 21
script, timetables, 419–426
Script

Reengineering; Example A.6,
342

Digital Rights Management
Licenses; Example 1.10,
14

semantic functions, 276–277
Stakeholders; Example 1.5, 11
Supply Chain

State Initialisation; Example
1.17, 20

State Refreshment; Example
1.18, 20

Support Technology
Transportation; Example 1.7,

13
Review and Replacement; Ex-

ample A.2, 339

timetable scripts, 419–426
timetables, 419–426
transportation domain, 343–369
Two Timetable-Fitted Transport

Domains; Example 1.16,
19

504 L Indexes

L.3 Referenced Author Index

Abrial, Jean–Raymond [1], XV, 29,
83, 93, 94, 132, 180, 372,
475

Bowen, Jonathan P. [134], 25, 26

Damm, Werner, 29, 72, 93, 94, 132,
475

Dang Van, Hung [107], 35
Davies, Jim [81, 242], XV, 29, 83,

93, 94, 133, 180, 372, 475
Diaconescu, Razvan [100], 11, 29,

93, 94, 132, 180, 305

Fitzgerald, John [95, 96], XV, 29,
83, 93, 94, 133, 180, 372,
475

Futatsugi Kokichi [99,100], 11, 29,
93, 94, 132, 180, 305

George, Chris W. [101, 104, 106,
107], 11, 35, 58, 83, 93,
94, 133, 180, 183, 284,
298, 372, 475

Gorm Larsen, Peter [96], XV, 29,
83, 93, 94, 133, 180, 372,
475

Haff, Peter L. [104,115], 372
Hall, Anthony, 24, 25
Hansen, Michael Reichhardt [120,

121, 247], 29, 72, 93, 94,
132, 415, 475

Harel, David [122,125,128], 29, 72,
93, 94, 132, 133, 475

Havelund, Klaus [104,106], 372
Haxthausen, Anne Elisabeth [104,

106], 11, 58, 83, 93, 94,
133, 180, 183, 284, 298,
372, 475

Hayes, Ian, 34
Hinchey, Michael G. [134], 25, 26

Hoare, Sir Tony [136,137,217,219],
XV, 33, 93, 284, 305, 475

Hughes, Stephen [106], 11, 58, 83,
93, 94, 133, 180, 183, 284,
298, 372, 475

Janowski, Tomasz [107], 35
Jensen, Kurt [148], 29, 72, 93, 133,

371, 475
Jones, Clifford Bryn [14, 56, 149,

150, 152], XV, 29, 34, 83,
93, 94, 133, 180, 372, 475

Lamport, Leslie [156], 72, 93, 94,
133, 415, 475

Merz, Stephan [176], 72, 93, 94,
133, 415, 475

Milne, Robert [104, 106, 178], 11,
58, 83, 93, 94, 133, 180,
183, 284, 298, 372, 475

Mosses, Peter D. [186], 93, 94, 132,
180

Nielsen, Claux Bendix [104], 372

Petri, Carl Adam [199], 29, 72, 93,
133, 371, 475

Prehn, Søren [104,106], 11, 58, 83,
93, 94, 133, 180, 183, 284,
298, 372, 475

Reisig, Wolfgang [210–212, 214],
29, 72, 93, 133, 371, 475

Roscoe, A. William [218], XV, 93,
284, 305, 475

Schneider, Steve [222], XV, 93,
284, 305, 475

Shaw, Roger C.F. [152], 34
Spivey, J. “Mike” [229–231], XV,

29, 83, 93, 94, 133, 180,
372, 475

REFERENCED AUTHOR INDEX 505

Storbank Pedersen, Jan [106], 11,
58, 83, 93, 94, 133, 180,
183, 284, 298, 372, 475

Wagner, Kim Ritter [104], 372
Woodcock, James C.P. [242, 243],

XV, 29, 83, 93, 94, 133,
180, 372, 475

Zhou Chaochen [247], 29, 72, 93,
94, 132, 415, 475

506 L Indexes

L.4 Symbol Index

At
p entity A at location p at time

t, 416

Literals, 456–469
Unit, 469
chaos, 456, 458, 459
false, 448, 451
true, 448, 451

Arithmetic Constructs, 452
ai*aj, 452
ai+aj, 452
ai/aj, 452
ai=aj, 452
ai=aj, 451
ai≥aj, 451, 452
ai>aj, 451, 452
ai≤aj, 451, 452
ai<aj, 451, 452
ai 6=aj, 451, 452
ai−aj, 452

Cartesian Constructs, 453, 457
(e1, e2, ..., en), 453

Combinators, 463–467
... elsif ..., 465
case be of pa1 → c1, ..., pan → cn

end, 465
case be of pa1 → c1, ..., pan → cn

end, 467
do stmt until be end, 467
for e in listexpr • P(b) do stm(e)

end, 467
if be then cc else ca end, 467
if be then cc else ca end, 465
let a:A • P(a) in c end, 464
let pa = e in c end, 463
variable v:Type := expression, 466
while be do stm end, 467
v := expression, 466

Function Constructs, 463

post P(args,result), 463
pre P(args), 463
f(args) as result, 463
f(a), 461
f(args) ≡ expr, 463
f(), 466

List Constructs, 453–454, 457–
459

<Q(l(i))|i in<1..lenl> •P(a)>, 454
<e1, e2, ..., en >, 453
<>, 453
ℓ(i), 457
ℓ′ = ℓ′′, 457
ℓ′ 6=ℓ′′, 457
ℓ′ ℓ̂′′, 457
elems ℓ, 457
hd ℓ, 457
inds ℓ, 457
len ℓ, 457
tl ℓ, 457

Logic Constructs, 450–452
bi ∨ bj , 451
∀ a:A • P(a), 451
∃! a:A • P(a), 451
∃ a:A • P(a), 451
∼ b, 451
false, 448, 451
true, 448, 451
bi ⇒ bj , 451
bi ∧ bj , 451

Map Constructs, 454, 459–461
domm, 459
rngm, 459
mi = mj, 460
mi∪ mj , 459
mi† mj , 459
mi 6= mj , 460
mi\ mj , 459
mi/ mj , 459

SYMBOL INDEX 507

mi◦ mj , 460
m(e), 459
[], 454
[u1 7→v1,u2 7→v2,...,un 7→vn], 454
[F(e)7→G(m(e))|e:E•e∈domm∧P(e)],

454

Process Constructs, 468–469
channel c:T, 468
channel{ k[i]:T•i:KIdx }, 468
c ! e, 468
c ?, 468
k[i] ! e, 468
k[i] ?, 468
pi⌈⌉⌊⌋pj , 468
pi⌈⌉pj , 468
pi‖pj , 468
pi–‖pj , 468
P: Unit → in c out k[i] Unit, 469
Q: i:KIdx → out in Unit, 469

Set Constructs, 452–453, 455–
456

∩{s1,s2,...,sn}, 455
∪{s1,s2,...,sn}, 455
card s, 455
e∈s, 455
e 6∈s, 455
si ⊂sj , 455
si ⊆sj , 455
si∩sj , 455
si∪sj , 455
si\sj , 455
si =sj , 455
si 6=sj , 455
{}, 452
{ e1,e2,..., en}, 452
{ Q(a)|a:A• a ∈ s∧P(a)}, 453

Type Expressions, 447–449
Bool, 447
Char, 447
Int, 447
Nat, 447
Real, 447

Text, 447
Unit, 466
T∗, 448
T1×T2 ... ×Tn, 448
Ti →Tj , 448
s1:T1 s2:T2 ... sn:Tn, 448
T-infset, 448
T-set, 448

Type Definitions, 449–450
T = Type Expr, 449
T={| v:T′• P(v)|}, 449, 450
T==TE1 |TE2 | ... TEn, 449

