Some Thoughts on Teaching Software FEngineering*
Central Roles of Semantics

Dines Bjgrner
Computer Science and Engineering
Informatics and Mathematical Modelling
Building 322, Richard Petersens Plads'
Technical University of Denmark
DK-2800 Lyngby, Denmark
E-Mail: db@imm.dtu.dk

19th of May 2002

Abstract

Somehow fitting the occasion for which this essay is written, I reminisce on a quarter
century’s teaching of software engineering. I delineate the sciences of computers and com-
puting, and motivate a triptych of software development: From domain descriptions via
requirements prescriptions to software architecture and component design. Via character-
isations of domain attributes, stake—holder perspectives and facets; domain, interface and
machine requirements and attendant domain projections, domain instantiations, domain
extensions and domain initialisations, I venture into a series of characterisations of var-
ious forms of principles and techniques of abstraction and modelling: Basic (“assembler
language-like”) and conceptual (“modular, procedural”) abstractions and models. From
here I go back into issues of semiotics: Pragmatics, semantics and syntax, and to the art,
craft and discipline of descriptions.

Throughout — ‘framing in boxes‘ — I risk my reputation by uttering dogmas and
prejudices.

As my teaching is based mostly on own research, I will primarily only refer to own
recent reports, lecture notes and publications — as well as to those of Jaco de Bakker’s
which had a deep influence on my work in the 1960s and 1970s.

Contents

1 Some Software Engineering Dogmas

1.1
1.2
1.3

From Science via Engineering to Technology
CS@ CSESE
Informatics Lo
1.3.1 The Quadrant of Informatics
1.3.2 Informatics of Infrastructures

NN M

*This essay is to appear in a Liber Amicorum in honour of Professor, Dr Jaco W. de Bakker on the occassion
of his retirement, 31st of August, 2002.
TProf. Richard Petersen was the instigator of the development and use of the first Danish stored programme
electronic computer

Some Thoughts on

Teaching Software Engineering: Central Rdles of Semantics

1.3.3 A Software Concept of Infrastructure. 5

1.3.4 A Unification Attempt L 5

1.3.5 Discussion e e e e e 5

1.4 A Triptych Software Engineering Dogma 6

2 Formal Techniques vs. “Formal Methods” (]

3 Some Issues of Domain Engineering 6

3.1 Domain Facets L e 6

3.2 Domain Attributes L 7

3.3 Domain Perspectives e 7

3.4 The Evidence e 7

3.5 On Documentation in General e 8

3.6 Discussion e e e 8

4 Some Issues of Requirements Engineering 8

4.1 Domain Requirements L L e 8

4.2 Interface Requirements L. L 9

4.3 Machine Requirements oL L e 9

5 Some Issues of Software Design 10

5.1 Software Architectures L 10

5.2 Software Components e e e e e 10

6 Abstraction and Models 10

6.1 Abstraction e e e e 11

6.2 Models and Modelling L 11

6.3 Basic Modelling Principles & Techniques 11

6.4 Additional Modelling Principles & Techniques 12

7 Complementary Issues 12

7.1 On the Importance of Semiotics 12

7.2 Logics, Agents and Language-based Knowledge Engineering 12

7.3 On Description Principles and Techniques 0. 13

7.4 Towards a Philosophy of Informatics o o oo 14

8 Conclusion 14

9 Acknowledgements 14

References 15
1 Some Software Engineering Dogmas

1.1 From Science via Engineering to Technology

The engineer “walks the bridge” between science and technology: Creates technology based
on scientific insight; and, vice—versa, analyses technological artifacts with a view towards
understanding their possible scientific contents. Both science and technology; both synthesis
and analysis.

In teaching software engineering we must teach both programming methodological, ie. computing
science skills, as well as more mundane computer science skills — in order to walk both ways,
forwards and “backwards”, to, respectively from technology.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 3

Work in the early 1970s, at the IBM Vienna Laboratory [1] on establishing a semantics for
the IBM programming language PL/I, as well as that of my groups in the late 1970s and
early to mid 1980s in establishing semantics for the CHILL and Ada programming languages
[2, 3], clearly, besides a scientific content, had the semantics definition engineers walk the
bridge from the technologies of PL/I, CHILL and Ada “back” to science, trying to discover
whatever scientific values those languages might have had.

Current work on trying to establish a semantics for UML is not of the same nature.
Whereas PL/I, CHILL and Ada could indeed be said, or claimed, to be soundly based on
previous good scientific insight into programming language design, it seems that UML missed
the boat: 20 years of painstaking programming methodological insight appears not to have
been embodied in UML.

In teaching software engineering we are confronted with the recurrent dilemma of being asked
to train in current, fashionable technologies, for which there is little scientific merit. My answer
is one of almost Dutch Reformed Church pietism and strictness: Don't. Instead | focus on the
wonderful, practical theories that ought to have been in those technologies.

1.2 CS & CS @ SE

Computer science, to me, is the study and knowledge of the artifacts that can “exist” in-
side computers: Their mathematical properties: Models of computation, and the underlying
mathematics itself. Computing science, to me, is the study and knowledge of how to construct
those artifacts: (i) Programming languages, their pragmatics, their semantics, including proof
systems, their syntax, and the principles and techniques of use; (ii) computing systems such as
compilers, operating systems, database management systems, data communication systems,
etc.; and (iii) applications — mostly.

The difference, between the computer and the computing sciences, is, somehow, dramatic: One
is more contemplative, analytic, appeals to clever school boys. The other more adventurous,
daring — in my prejudiced mind.

Software engineering is the art, discipline, craft, science and logic of conceiving, constructing,
and maintaining software.

The sciences are those of applied mathematics and computing. I consider myself both a
computing scientist and a software engineer.

Many so—called Computer Science departments, for lack of understanding, or because their
lecturing cum researcher staff can't agree, or other, “waver’ a course of teaching software
engineering that sometimes contain too much theoretical computer science courses in relation to
too few real programming methodological courses, or, vice-versa: contains too little theoretical
computer science courses in relation to too many rather ordinary programming and software
technology courses.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

4 Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

My, ‘ideal’ software engineering candidates have been taught one semester computer science
courses in at least (i) automata theory, formal languages and computability, (ii) algorithms and
complexity theory, and (iii) the theories underlying algebraic, axiomatic and denotational seman-
tics. They have also been taught one or two semester computing science cum programming
methodology courses each in (i) functional, (ii) logic, (iii) imperative, and (iv) parallel program-
ming, in (v) algorithms and data structures (basic, intermediate and advanced), in (vi) real-time,
embedded and concurrent systems design, and a (vii—ix) two—three semester course in the kind
of software engineering outlined in this essay. After all this come courses in (x) compiler design,
(xi) operating systems design, (xii) database management and database system design, (xiii)
distributed systems & protocol design, etc. All of these computing science courses are based on
the use of formal techniques: formal specification, analysis, verification, etc.

1.3 Informatics
1.3.1 The Quadrant of Informatics

Informatics, such as I see it, is a combination of: Mathematics, computer & computing science,
software engineering, and applications. Some “sobering” observation: Informatics relates to
information technology (IT) as biology does to bio—technology; Etcetera ! I am somewhat
“saddened” at the confusion of our field, of informatics, with that of information technology.
The former is based on mathematics: Logic and algebra. The latter on the natural sciences.
The former is a universe of intellectual quality: Elegance, beauty, correctness, fit. The latter
is a universe of material quantity: Faster, smaller size, lower cost, larger capacity.

Many departments, who call themselves ‘Informatics’ departments, do not have a precise under-
standing of what they mean by ‘informatics’, and many computer science, or computing science
(etc.) departments do not make sufficiently clear the relationships between their sciences and
those primarily behind information technology.

1.3.2 Informatics of Infrastructures

What makes informatics interesting, to me at least, is its relations with the concept of infras-
tructures.

The World Bank Concept of Infrastructure: One may speak of a country’s or a region’s
infrastructure.! But what does one mean by that ?

According to the World Bank,? ‘infrastructure’ is an umbrella term for many activities
referred to as ‘social overhead capital’ by some development economists, and encompasses
activities that share technical and economic features (such as economies of scale and spill-
overs from users to non-users).

Our interpretation of the ‘infrastructure’ concept, see below, albeit different, is, however,
commensurate.

"Winston Churchill is quoted to have said, during a debate in the House of Commons, in 1946: ... The
young Labourite speaker that we have just listened to, clearly wishes to impress upon his constituency the fact
that he has gone to Eton and Oxford since he now uses such fashionable terms a ‘infra—structure’ ...

2Dr. Jan Goossenarts, an early UNU/IIST Fellow, is to be credited with having found this characterisation.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 5)

Concretisations: FExamples of infrastructure components are typically: The transporta-
tion infrastructure sub—components (road, rail, air and water [shipping]); the financial services
industry (banks, insurance companies, securities trading, etc.); health—care; utilities (electric-
ity, natural gas, telecommunications, water supply, sewage disposal, etc.); and perhaps also
education, etc. 7

1.3.3 A Software Concept of Infrastructure

At UNU/IIST we took, in the mid 1990s®, a more technical, and, perhaps more general, view,
and saw infrastructures as concerned with supporting other systems or activities.

Software for infrastructures is likely to be distributed and concerned in particular with
supporting communication of information, people and/or materials. Hence issues of (for ex-
ample) openness, timeliness, security, lack of corruption, and resilience are often important.*

1.3.4 A Unification Attempt

We shall accept the two characterisations in the following spirit: For a socio—economically
well-functioning infrastructure (component) to be so, the characterisations of the intrinsics,
the support technologies, the management & organisation, the rules & regulations, and the
human behaviour, must, already in the domain, meet certain “good functionality” conditions.

That is: We bring the two characterisations together, letting the latter “feed” the former.
Doing so expresses a conjecture: One answer, to the question” “What is an infrastructure”, is,
seen from the viewpoint of systems engineering, that it is a system that can be characterised
using the technical terms typical of computing systems.

The Question and its Background: The question and its first, partial answer, only
makes sense, from the point of view of the computer & computing sciences if we pose that
question on the background of some of the achievements of those sciences. We select a
few analysis approaches. These are aspects of denotational, concurrency, type/value, and
knowledge engineering approaches, as well as a computer science approach.

An important aspect of my answer, in addition to be flavoured by the above, derives from
the semiotics distinctions between: pragmatics, semantics, and syntax.

1.3.5 Discussion

The major challenge in software engineering seems to lie in the successful, and in the be-
lievably so, development of trustworthy, very large scale computing systems for world—wide
infrastructure components. Such systems embody well-nigh all facets of computing abstrac-
tions: denotational as well as computational, concurrent and distributed (hence spatial), real-
-time (temporal), and, as we shall comment on later, autonomous multi-agencies probably
embodying mechanised speech acts.

This is what makes informatics fascinating. And this is why Unifying Theories of Pro-
gramming [4] becomes an overriding theoretical concern.

In understanding infrastructures we shall seek the semantics road.

31 write “mid 1990's” since that is what I can vouch for.
“The above wording is due, I believe, to Chris George, UNU/IIST.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

6 Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

1.4 A Triptych Software Engineering Dogma

Before software can be designed, we must understand the requirements. Before requirements
can be expressed we must understand the domain.

Software engineering consists of the engineering of domains, engineering of requirements,
and the design of software. In summary, and ideally speaking: We first describe the domain:
D, from which we prescribe the domain requirements; from these and interface and machine
requirements, ie. from R, we specify the software design: S§. In a suitable reality we secure
that all these are properly documented and related: D,S = R, when all is done !

In proofs of correctness of software (S) wrt. requirements (R) assumptions are often
stated about the domain (D). But, by domain descriptions D we mean “much more” than
just expressing such assumptions.

Domain engineering resembles, but is not the same as knowledge engineering. In the for-
mer we seek only understanding of the domain — through establishing precise, mathematical
models. In the latter, it seems, knowledge engineers seek immediately computable models.

| find, but this may be just my personal “hang up”, that many programming methodology cum
software engineering curricula do not sufficiently enunciate the difference between domain and
requirements engineering.

2 Formal Techniques vs. “Formal Methods”

A significant characteristics in our approach is that of the use of formal techniques: formal
specification, verification & model checking. The area as such is usually — colloquially —
referred to as “formal methods”. By a method we understand a set of principles of analysis
and for selecting techniques and tools in order efficiently to achieve the construction of an
efficient artifact.

As such methods cannot be formal: Being carried out by humans whose ingeniousness or lack
of same cannot be “straight—jacketed” — cannot be formalised.

3 Some Issues of Domain Engineering

Since, as we claim, domain engineering is rather a novel idea, we shall spend some space
enunciating ideas of domain modelling.

3.1 Domain Facets

To understand the application domain we must describe it. We must, I believe, describe it,
informally (ie. narrate), and formally, as it is, the very basics, ie. the intrinsics; the technologies
that support the domain; the management & organisation structures of the domain; the rules
& regulations that should guide human behaviour in the domain; those human behaviours: the
correct, diligent, loyal and competent works; the absent—minded, “casual”, sloppy routines;
and the near, or outright criminal, neglect. &c.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 7

We have not found these domain facet concepts in the software engineering literature — so
perhaps we should advertise, here, their usefulness in directing the software engineering in being
systematic about certain aspects of domains.

For the software engineer, to make effective use of the domain facet concepts, principles and
techniques for their abstraction and modelling must be provided.

In [5] we present some such principles and techniques.

3.2 Domain Attributes

Michael Jackson, in [6], has convincingly, enunciated a number of attributes of phenomena
of domains: Static and dynamic attributes; tangible and intangible attributes — which we
further classify into humanly or otherwise physically perceivable tangible attributes as well as
only conceptually, hence — in a sense — intangible, conceptual attributes; and zero, one or
multi-dimensionality attributes. To these we add: discrete, continuous and chaotic attributes
(not necessarily along a time axis); and temporal, spatial and combined time/space attributes.

For the software engineer, to make effective use of the domain attribute concept, principles and
techniques for their abstraction and modelling must be provided.

In [11] we present some such principles and techniques

3.3 Domain Perspectives

Software serves many masters: Some are themselves machines, others are humans. Some
humans, ie. managers, order software for their enterprise. Others use it daily. yet others “suf-
fer” from such uses. In any software development project it is of interest to try delineate the
spectrum of stake—holders: From enterprise owner, via strategic, tactical and operational en-
terprise management, to “floor” (“blue collar”) workers, enterprise clients, providers of such
software, IT, etc., regulatory agencies, citizens “at large”, and the ever present, talkative
politicians who interfere in almost anything: All have a stake in the computing systems, one
way or another. The art is now to sufficiently identify this spectrum, to identify their perspec-
tive upon the domain, and, hence, to model these perspectives, coherently and consistently.

Too much “softness”, too much politically correct talk is, to my taste, connected with the topic
of securing proper attention to stake—holder perspectives. It need not be so. There simply is an
exciting theory and likewise worthwhile engineering techniques for modelling the stake—holder
perspective notion.

In [5] we present some such principles and techniques. In general, Chapter 15 of our lecture
notes, [7], cover many principles, techniques and tools of domain abstraction and modelling.

3.4 The Evidence

How are we describing the domain ? We are rough sketching it, and analysing these sketches
to arrive at concepts. We establish a terminology for the domain. We narrate the domain:
A concise professional language description of the domain using only (otherwise precisely
defined) terms of the domain. And we formalise the narrative. We then analyse the narrative
and the formalisation with the aims of: validating, “against” domain stake—holders, and
verifying properties of, the domain description.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

8 Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

Software engineering text books perfunctorily cover the subject of documentation, see next,
but rarely enunciate the distinction between rough sketching, terminologisation, narration, and
formalisation. We find it of utmost importance that the software engineer be trained in principles
and techniques of description: Of expressing oneself in natural, albeit the professional language
of the application domain at hand.

3.5 On Documentation in General

In general there will be many documents for each phase®, stage® and step” of development:
Informative documents: Needs and concepts, development briefs, contracts, &c. Descrip-
tive/prescriptive documents: Informal (rough sketches, terminologies, and narratives) and
(formal models) analytic documents: Concept formation, validation, and verification. These
sets of documents are related, and occur and re—occur for all phases.

3.6 Discussion

We find that current, popular software engineering text books let the students down on making
the above distinctions — etcetera !

[8, 9, 10] provide various examples of the application of domain modelling principles and
techniques. [11] provides a summary overview.

‘ In describing domains we shall seek the semantics road.

4 Some Issues of Requirements Engineering

We see requirements prescriptions as composed from three viewpoints: Domain, interface and
machine requirements. We survey these.
Requirements are about the machine: The hardware and software to be designed.

4.1 Domain Requirements

Requirements that can be expressed solely with reference to, ie. using terms of, the domain,
are called domain requirements. They are, in a sense, “derived” from the domain understand-
ing. Thus whatever vagueness, non—determinism and undesired behaviour in the domain, as
expressed by the respective parts of the domain intrinsics, support technologies, management
& organisation, rules & regulations, and human behaviour, can now be constrained, if need
be, by becoming requirements to a desirably performing computing system.

We do not find, in the software engineering literature, this distinction between, on one hand doing
a sufficiently proper at understanding, including, notably, formalising, models of the domain,
and, on the other hand, “deriving”, as it were, domain requirements from domain models. So
perhaps we should advertise, here, their usefulness in directing the software engineering in being
systematic about certain aspects of requirements.

5Domain, requirements and software design are three main phases of software development.

5Phases may be composed of stages, such as for example the domain requirements, the interface require-
ments and the machine requirements stages of the requirements phase, or, as another example, the software
architecture and the software component stages of the software design phase.

"Stages may then consist of one or more steps of development, typically data type reification and operation
transformation — also known as refinements.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 9

The development of domain requirements can be supported by principles and techniques of
projection: Not all of the domain need be supported by computing — hence we project
only part of the domain description onto potential requirements; determination: Usually the
domain description is described abstractly, loosely as well as non—deterministically — and
we may wish to remove some of these properties; extension: Entities, operations over these,
events possible in connection with these, and behaviours on some kinds of such entities may
now be feasibly “realisable” — where before they were not, hence some forms of domain
requirements extend the domain; and initialisation: Phenomena in the world need be rep-
resented inside the computer — and initialising computers is often a main computing task
in itself, as is the ongoing monitoring of the “state” of the ‘outside’ world for the purpose
of possible internal state (ie. database) updates. There are other specialised principles and
techniques that support the development of requirements.

We do not find these domain projection, determination, extension and initialisation concepts in
the software engineering literature — so perhaps we should advertise, here, their usefulness in
directing the software engineering in being systematic about certain aspects of requirements.

In describing domain requirements we shall seek the semantics road.

4.2 Interface Requirements

Requirements that deal with the phenomena shared between external users (human or other
machines) and the machine (hardware and software) to be designed, such requirements are
called interface requirements. Examples of areas of concern for interface requirements are:
Human computer interfaces (HCI, CHI), including graphical user interfaces (GUIs), dialogues,
etc., and general input and output (examples are: Process control data sampling (input
sensors) and controller activation (output actuator)). Some interface requirements can be
formalised, others not so easily, and yet others are such for which we today do not know how
to formalise them.

The old “adage”: ‘User friendliness’ has become ‘pat’. What we increasingly need, and what
we, in fact, increasingly, can also express formally, is what is meant by ‘user friendliness’, namely
that the interface reflects only, and exactly those concepts that are indigenous to the domain —
albeit in some, usually diagrammatically rendered form.

4.3 Machine Requirements

Requirements that deal with the phenomena which reside in the machine are referred to as
machine requirements. Examples of concerns of machine requirements are: performance (re-
source [storage, time, etc.| utilisation), maintainability (adaptive, perfective, preventive, cor-
rective and legacy—oriented), platform constraints (hardware and base software system plat-
form: development, operational and maintenance), business process re-engineering, training
and use manuals, and documentation (development, installation, and maintenance manuals,
etc.).

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

10 Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

Whereas domain requirements seem formalisable, that is, whereas it seems possible to express
domain requirements precisely, such seems not the case, currently with machine requirements:
All right, we can mathematically express for example performance and dependability issues, but
we seem not to know how to “refine” such expressions into provably related implementations —
such as we increasingly know how to do it for domain requirements.

[12] covers notions of domain to requirements “derivation”. So does a later [13]. [14] provides
a summary overview.

5 Some Issues of Software Design

Once the requirements are reasonably well established software design can start. We see
software design as a potentially multiple stage, and, within stages, multiple step process.
Concerning stages one can identify two “abstract” stages.

5.1 Software Architectures

The software architecture design stage in which the domain requirements find an computable
form, albeit still abstract. Some interface requirements are normally also, abstract design—
wise “absolved”.

5.2 Software Components

and the software component design stage in which the machine requirements find a computable
form. Since machine requirements are usually rather operational in nature, the software
component design is less abstract than the software architecture design. Any remaining
interface requirements are also, abstract design—wise “absolved”.

The views that software architectures emerge from domain requirements, and hence have their
“root” in domain models, whereas software component designs emerge from machine require-
ments, and hence have their root in the possibilities of the machine — those views seem different
from that of the prevailing literature. We have had some difficulty, in the past, in getting enthu-
siastically excited about the seemingly, individually isolated concepts of “software architectures”,
respectively “software components’. We now know why. It is all very simple.

[15] covers notions of domain to requirements to software architecture and component design.

6 Abstraction and Models

Whether we describe domain phenomena, or prescribe requirements, or specify software, we
express models. They are just models. They are not the real thing. In expressing models we
abstract. Judicious use of abstraction seems more important to software engineers than to,
for example, automotive engineers, or to chemical engineers.

[16] provides a condensed overview of what I believe to be pertinent abstraction and
modelling techniques.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 11

6.1 Abstraction

To conceive of pleasing and adequate abstractions seems to be an art. But much can be
learned from reading beautiful abstractions. In the following we will mention a few ideas.

It seems, to me, that we, in the computer and computing sciences as well as in the software
engineering education, still have a lot to communicate to our students: The art, the discipline,
the craft, the logic, and the science of abstraction.

In capturing abstractions we shall seek the semantics road. ‘

6.2 Models and Modelling

When describing (as for domains), prescribing (as for requirements) and specifying (as for
software designs), we create models. It is therefore important, for the software engineer,
to decide which aspects these models are to portray and how: Whether they are analogic,
iconic, or analytic models; whether they are prescriptive or descriptive; whether they do
so in extension or in intension; and for what purposes the models are established: to gain
understanding; and/or to get inspiration and to inspire; and/or to present, educate and
train; and/or to assert and predict;and/or to implement. Finally, the principle of modelling,
manifested by the problem domain itself, the mathematical structure of the model, and the
identification between the two, clearly spells out the importance of the software engineer being
conscious about the role, ¢, of models.

It seems that engineers, for example taught control theory or operations research, are made
better aware of the above notions of models and modelling — judging, simply, from the software
engineering versus the respective literatures of control theory and operations research.

In building models we shall seek the semantics road.

6.3 Basic Modelling Principles & Techniques

Distinctions are made between property and model oriented abstract modelling. Property
oriented models are usually algebraically cum axiomatically expressed. Model oriented mod-
els are usually expressed in terms of such mathematical entities as Booleans, numbers, sets,
Cartesians, lists, maps and functions. The type concept, in the early days of Scott’s (and de
Bakkers) contributions to mathematical models for the A-Calculus known as domain theory,
is perhaps the finest contribution computer science has made to mathematics. Specification
languages such as 0BJ, Act One, CafeOBJ, Maude, and CASL facilitate property oriented
specifications. Specification languages such as VDM-SL, Z, RAISE’s RSL, B, and ASM facil-
itate model oriented specifications. All chronologically listed.

In a proper software engineering education we must make sure, | think, that our candidates
know at least one property oriented specification approach, and at least two, reasonably diverse,
model oriented approaches.

Both property oriented and model oriented specification work benefit from focusing first on
semantics.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

12 Some Thoughts on Teaching Software Engineering: Central Réles of Semantics

6.4 Additional Modelling Principles & Techniques

Over and above the basic modelling principles we find a number of additional modelling
paradigms: (i) Non—determinism, internally or externally “chosen”, and looseness; (ii) speci-
fication programming: Applicative (functional), imperative, logic, parallel, and algebraic pro-
gramming — composing functions, dealing with references, propositions, composing processes
or composing algebras; (iii) hierarchical (“top—down”) versus compositional (“bottom—up”)
development and/or presentation of models; (iv) denotational versus computational semantic
models; (v) configurations in terms of a spectrum from the more static contexts (environ-
ments) to the more dynamic states (stores); (vi) temporal, spatial and time/space models;

Ee.

The reader, by now, starts to see a picture emerging: One of a sizable variety of abstraction
and modelling principles, techniques and tools. From the basics of property and model oriented
abstractions, via the one just listed above (i-vi, &c.), and the domain attributes, stake—holder
perspectives, domain facets, to the domain requirements projects, determinations, extensions and
initialisations, and so and and so forth. Software engineering is indeed a universe of intellectual
conceptualisations. And we need study and teach it all !

‘AII of them reflecting, at their core, semantics, in one way or another.

7 Complementary Issues

7.1 On the Importance of Semiotics

“It is not for nothing” that Jaco de Bakker has devoted considerable time to the semantics of
programming languages. It is, without question, the singlemost important issue of software
engineering. Not just as a user of programming languages. But much more because whatever
artifact the software engineer is designing, core issues of pragmatics, semantics and syntax
enter into the design: The input to any software system, however end—user oriented, con-
stitutes a language. Proper attention to what it is, ie. values of which semantic types, that
one wishes to express, is hence of utmost importance. After semantics, in importance, come
syntax.

Pragmatics is being neglected as a scientific and engineering topic although it, without question,
is the most important topic of the three components of semiotics. Probably because it, by its
very nature, cannot be formalised.

The software engineer must be well-versed in semiotics — in particular semantics and syntax
— modelling techniques: denotational, operational, axiomatics, etc. And the software engineer
must well-trained in making appropriate distinctions as to when a problem is a pragmatic, or is
a semantic, or is (“just”) a syntactic problem.

7.2 Logics, Agents and Language—based Knowledge Engineering

There is the knowledge engineering view. In one, of several, variants of this view — and we
shall only cover that variant, albeit ever so briefly — one focuses on logics, agent behaviours
and speech acts.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 13

The logics area has two facets to it: The classical logics which are part also of the de-
notational, concurrency, type system, and formal techniques facets described and assumed
earlier, and the less classical logics of modal logics. Thus, by logics we here mean those of
the epistemic logics of knowledge & belief, the deontic logics of permission & obligation, the
modal logics of possibility & necessity, €c. Other logics are relevant — also when describing
domains: dynamic logics of action, defeasible, uncertainty and possibilistic logics, logics of
belief revision, éc. These are not just logics of Al and logic programming but also logics of
general domain engineering.

We present what may be termed the Al approach to “agency”, but intend to “lift” the Al
“agency” notions to apply, inter alia, to domain engineering as well as to software (require-
ments and design). Agents interact through communication. Agents come in groups: Multi
agent “systems”. Agents perform both competitive and co—operative tasks. Open multi
agent “systems” have agents serve different interests, autonomously and heterogeneously.
Just like humans ! Agent interaction (alphabetically listed)® involves arguments: Formation
of reasons, drawing of conclusions, and applying these actively; commitments, conversations,
co—ordination, dialogue, negotiation, obligation, planning, &c. In doing so agents deploy
various modal logics, and, as we shall next see: Speech acts.

Speech acts are characterised by: Locutions — The physical utterances of speakers; illo-
cutions — The intended meaning of speaker utterances; and perlocutions — The actions that
result from locutions. Wrt. illocutions, speech acts are often classified in the following five
performatives: Assertive, ie. statements of fact; directive, ie. commands, requests or advice;
commissive, eg. promises; expressive, eg. feelings and attitudes; and declarative which entail
the occurrence of an action in themselves. Obviously speech acts and agents relate strongly.

We see an increasing fusion of software engineering, as it is classically known, with knowledge
engineering, as indicated above. We cannot, at all, accept current, separational distinctions
between software engineering and Al.

It is surprising to see how very little work has been actually done, based on 30 years of semantics of
programming language, to formulate clear and concise semantics descriptions of multi-agencies
and speech acts. My student, Mr Hans Madsen Petersen has recently completed a nice MSc
Thesis on this topic (20 June, 2002).

7.3 On Description Principles and Techniques

Michael Jackson, in his delightful [6], espouses a “theory” of descriptions based on designa-
tions, definitions and refutable assertions — with designations centering around notions of
recognition rules and designation sets. Although we do modify Jackson’s description theory
a bit, we wish here to gratefully acknowledge our debt. Jackson refrains, perhaps wisely so,
from providing other than simple propositional logic examples. We advocate, in Chapter 13
of [7], a number of description principles, techniques and tools.

We can not overemphasise the importance of our software engineering candidates becoming far
more capable of succinctly mastering their own, national language. One almost wishes ‘Rhetoric’,
as a university discipline back !

8The listing is extracted from my MSc student, Hans Madsen Petersen’s MSc pre-project report: Agent
Communication Languages and Speech Acts — and their Semantics, October 2001.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

14 Some Thoughts on Teaching Software Engineering: Central Réles of Semantics

7.4 Towards a Philosophy of Informatics

An issue central to description of domains is “What can be described ?” This question
borders to, or is an outright philosophical problem. Such philosophy of logic, of language
and of mathematics topics as mereology [17], epistemology [18], and ontology, are seen as
increasingly important concepts of an emerging philosophy of informatics discipline.

We can only advocate that every software engineer be given serious courses in Theories of
Science, Philosophy of Mathematics, and of Logic, and of Language.

We advice our students to have such books as [19, 20, 21, 22] at their desk for ready consul-
tation.

8 Conclusion

We have surveyed a set of notions of software engineering. Our departure pont, in this dis-
cussion, has been that the underlying science of informatics has a strong base in mathematics
— as well as in the philosophies of logic, mathematics and language: Epistemology, ontology
and mereology, to name a few ingredients. But that it, basically, does not have a basis in the
natural sciences. There is still a long way to go for may computer & computing scientists
before their university colleagues from the natural sciences and mathematics understand that
informatics is a whole new discipline, like theirs are old disciplines.

We have provided the subtitle: A Réle for Semantics to the main title of this essay. Maybe
it has not been sufficiently emphasised above, so let it be emphasised here:

The role of semantics, next to that more elusive one of pragmatics, far overshadows that of syn-
tax. The software engineer must be fluent in semantics modelling, covering as wide a spectrum
of techniques as possible. Here Jaco de Bakkers work over the last almost 40 years, including
his seminal books [23, 24] have played, play, and will continue to play an important research and
teaching function.

In a previous paper [25] we outlined more, including technical, details on the issue of teaching
software engineering. In [26] I outlined the contents of a “massive” set of lecture notes,
perhaps a publishable book [7], for such a set of main courses in formal techniques based
software engineering. These lecture notes represent some 25 years of thinking and practice.
They are nearing an nth iteration (n = 4) of completion ! Together they could easily cover
3—4 semesters of teaching !

9 Acknowledgements

In my earlier years, at the IBM Vienna Laboratory, I came across [27], foreboding exciting
things to come. And they came: Over the next almost 20 years I studied and enjoyed the
contents and the precise style of numerous papers: [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41]. Beyond 1980 the references are too numerous to list: But work on POOL figures
among them. I am sure this Liber Amicorum will bring a comprehensive list of all of Jaco’s
splendrous works. So: Thanks, Jaco, for a lifetime of steadfast insistence on what we now
consider a crowning achievement of yours — as well as of our field: The myriad of principles

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 15

and techniques of describing and analysing the semantics of a great variety of programming
languages.

The reader will be excused: I primarily refer only to my own current reports, lecture notes

and recent publications — and to those of Jaco de Bakker’s !

References

1]

H. Beki¢, Dines Bjgrner, W. Henhapl, C.B. Jones, and P. Lucas. A Formal Definition of
a PL/I Subset. Technical Report 25.139, Vienna, Austria, 20 September 1974.

P.L. Haff, editor. The Formal Definition of CHILL. See [42]. ITU (Intl. Telecomm.
Union), Geneva, Switzerland, 1981.

Dines Bjgrner and O. Oest, editors. Towards a Formal Description of Ada, volume 98
of LNCS. Springer-Verlag, 1980.

C.A.R. Hoare and He Ji Feng. Unifying Theories of Programming. Publ.: Prentice Hall,
1997.

Dines Bjgrner. “What is a Method ?7 — A Study of Some Aspects of Software Engineer-
ing. IFIP WG2.3. MacMillan, Oxford, UK, 2002. Programming Methodology: Recent
Work by Members of IFIP Working Group 2.3. Eds.: Annabelle Mclver and Carrol
Morgan. To be published.

Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, prin-
ciples and prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham,
nr. Reading, England; E-mail: ipc@Qawpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv
+ 228 pages.

Dines Bjgrner. Software Engineering: Theory € Practice. “In publisher’s hand 1”7, ex-
pected out 2003. Presently these lecture notes of around 1,000 pages are in a fourth
phase of rewriting. Earlier phases took place in the mid 1980s, the late 1980s and the
mid to late 1990s. A published book version is to be a “cut” version of the lecture notes.

Dines Bjgrner. Towards the E-Market: To understand the E-Market we must first
understand “The Market”. In Government E—-Commerce Development. Ningbo Science
& Technology Commission, Ningbo, Zhejian Province, China, 23-24 April 2001.

Dines Bjgrner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder,
editor, 9th IFAC Symposium on Control in Transportation Systems, pages 1-12, Techni-
cal University, Braunschweig, Germany, 13-15 June 2000. VDI/VDE-Gesellschaft Mess—
und Automatisieringstechnik, VDI-Gesellschaft fiir Fahrzeug— und Verkehrstechnik. Invited
plenum lecture.

Dines Bjgrner. What is an Infrastructure ? In The UNU/IIST 10th Anniversary Sympo-
stum. UNU/IIST, Springer, March 2002. Eds.: Armando Haeberer, Tom Maibaum and
Carlo Ghezzi.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

16

[11]

[12]

Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

Dines Bjgrner. Domain Engineering — A Prerequisite for Requirements Engineering
— Principles and Techniques. Technical report, Informatics and Mathematical Mod-
elling, Building 322, Richard Petersens Plads, Technical University of Denmark, DK—
2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently being
submitted for publication: [43, 16, 14, 44, 45, 46, 47, 48, 49].

Dines Bjgrner. Domains as Prerequisites for Requirements and Software é/c. In M. Broy
and B. Rumpe, editors, RTSE’97: Requirements Targeted Software and Systems Engi-
neering, volume 1526 of Lecture Notes in Computer Science, pages 1-41. Springer-Verlag,
Berlin Heidelberg, 1998.

Dines Bjgrner. From Domains to Requirements — Some Protocol Challenges. In FORTE:
Formal Protocol Description and Verification Techniques. IFIP WG6.1, Kluwer Press,
2001.

Dines Bjgrner. Requirements Engineering — Some Principles and Techniques — Bridging
Domain Engineering and Software Design. Technical report, Informatics and Mathemat-
ical Modelling, Building 322, Richard Petersens Plads, Technical University of Denmark,
DK—-2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently
being submitted for publication: [43, 16, 11, 44, 45, 46, 47, 48, 49].

Dines Bjgrner. Where do Software Architectures come from ? Systematic Development
from Domains and Requirements. A Re-assessment of Software Engneering 7 South
African Journal of Computer Science, 1999. Editor: Chris Brink.

Dines Bjgrner. Principles and Techniques of Abstract Modelling — Some Basic Classifica-
tions. — Towards a Methodology of Software Engineering. Technical report, Informatics
and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical Univer-
sity of Denmark, DK-2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of
papers currently being submitted for publication: [43, 11, 14, 44, 45, 46, 47, 48, 49].

Peter M. Simons. Foundations of Logic and Linguistics: Problems and their Solutions,
chapter Lesniewski’s Logic and its Relation to Classical and Free Logics. New York,
1985. Georg Dorn and P. Weingartner (Eds.).

Jonathan Dancy and Ernest Sosa, editors. The Blackwell Companion to Epistemology.
Blackwell Companions to Philosophy. Blackwell Publishers, 108 Cowley Road, Oxford
0X4 1JF, UK, 1994.

Rober Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The
Pitt Building, Trumpington Street, Cambridge ¢B2 1rP, England, 1995.

Ted Honderich. The Ozford Companion to Philosophy. Oxford University Press, Walton
St., Oxford 0x2 6DP, England, 1995.

David Crystal. The Cambridge Encyclopedia of Language. Cambridge University Press,
1987, 1988.

Nicholas Bunnin and E.P. Tsui-James, editors. The Blackwell Companion to Philosophy.
Blackwell Companions to Philosophy. Blackwell Publishers, 108 Cowley Road, Oxford
0X4 1JF, UK, 1996.

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 17

[23]
[24]

[25]

[26]

J.W. de Bakker. Mathematical Theory of Programming Correctness. Prentice-Hall, 1980.

J.W. de Bakker and Erik de Wink. Control Flow Semantics. 608 pages The MIT Press,
Cambridge, Mass., USA, April 1, 1996. ISBN: 0262041545

Dines Bjgrner and Jorge Cuellar. Software Engineering Education: The Role of Formal
Specifications and Design Calculi. Annals of Software Engineering, 6 (1998) 365-4009.

Dines Bjgrner. On Teaching Software Engineering based on Formal Techniques, Thoughts
about and Plans for, A Different Software Engineering Text Book. Journal of Universal
Computer Science, Vol.7, no.8, 2001: Colloquium “Formal Aspects of Software Engi-
neering”. Text of a talk given at the Abschieds—Symposium in honour of Professor Peter
Lucas on the occassion of his retirement from The Technical University of Graz, Austria.

Dana S. Scott and Jaco de Bakker. Approx. title: Notes on a Mathematical Model for the
the A—Calculus Informal, handwritten notes: IBM Vienna Laboratory, Vienna, Austria,
1979.

J.W. de Bakker. Axiomatics of simple assignment statements. MR94, Math. Centrum,
Amsterdam, pages 1-37, 1968.

J.W. de Bakker. Semantics of programming languages. In Advances in Information
Systems Sciences, 2, chapter 3, pages 173-227. Plenum Press, 1969.

J.W. de Bakker. Recursive Procedures, volume 24. Math. Centre Tracts, Amsterdam,
1971.

J.W. de Bakker. Axiom systems for simple assignment statements. In [50/, pages 1-22,
1971.

J.W. de Bakker and W.P. de Roever. A calculus for recursive program schemes. In
M. Nivat, editor, International Colloguium on Automata, Languages and Programming,
European Association for Theoretical Computer Science, pages 167-196. North-Holland
Publ.Co., Amsterdam, 1973.

J.W. de Bakker and L.G.L.T. Meertens. On the completeness of the inductive assertion
method. International Journal of Computer and Information Sciences, 11:323-357, 1975.

J.W. de Bakker. The fixed point approach in semantics: Theory and applications. In
J.W. de Bakker, editor, Foundations of Computer Science, pages 3-53. Math. Centre
Tracts 63, Mathematisch Centrum, 1975.

J.W. de Bakker. Semantics and termination of nondeterministic recursive programs. In
S. Michaelson and R. Milner, editors, International Colloguium on Automata, Languages
and Programming, European Association for Theoretical Computer Science, pages 435—
477. Edinburgh Univ. Press, 1976.

J.W. de Bakker. Least fixed points revisited. Theoretical Computer Science, 2:155-181,
1976.

K.R. Apt and J.W. de Bakker. Exercises in denotational semantics. In A. Mazurkiewicz,
editor, Mathematical Foundations of Computer Science, Proceedings, pages 1-11. Lecture
Notes in Computer Science, Vol. 45, Springer-Verlag, 1976.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

18

[38]

[44]

[45]

Some Thoughts on Teaching Software Engineering: Central Rdles of Semantics

K.R. Apt and J.W. de Bakker. Semantics and proof theory of Pascal procedures. In
A. Salomaa and M.Steinby, editors, International Colloquium on Automata, Languages
and Programming, European Association for Theoretical Computer Science, pages 30—44.
Lecture Notes in Computer Science, Vol 52, Springer-Verlag, 1977.

J.W. de Bakker. Semantics and the foundations of program proving. In B. Gilchrist,
editor, IFIP World Congress Proceedings, pages 279-284. North-Holland Publ.Co., Am-
sterdam, 1977.

J.W. de Bakker. Recursive programs as predicate transformers. In [51], pages 165181,
1978.

J.W. de Bakker. A sound and complete proof system for partial program correctness.
In J. Beévar, editor, Mathematical Foundations of Computer Science, Proceedings, pages
1-12, Springer-Verlag, 1979. Lecture Notes in Computer Science, Vol. 74.

Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book
Fascicle VI.12. See [2]. ITU (Intl. Teleemm. Union), Geneva, Switzerland, 1980 — 1985.

Dines Bjgrner. Models, Semiotics, Documents and Descriptions — Towards Software En-
gineering Literacy. Technical report, Informatics and Mathematical Modelling, Building
322, Richard Petersens Plads, Technical University of Denmark, DK-2800 Kgs.Lyngby,
Denmark, 2001. This paper is one of a series of papers currently being submitted for
publication: [16, 11, 14, 44, 45, 46, 47, 48, 49].

Dines Bjgrner. Healthcare Systems. Towards a Domain Theory for Work Flow Sys-
tems. Technical report, Informatics and Mathematical Modelling, Building 322, Richard
Petersens Plads, Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark,
2001. This paper is one of a series of papers currently being submitted for publication:
[43, 16, 11, 14, 45, 46, 47, 48, 49].

Dines Bjgrner. E-Business. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens Plads,
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark, 2001. This paper is
one of a series of papers currently being submitted for publication: [43, 16, 11, 14, 44,
46, 47, 48, 49].

Dines Bjgrner. Logistics. Towards a Domain Theory for Work Flow Systems. Technical
report, Informatics and Mathematical Modelling, Building 322, Richard Petersens Plads,
Technical University of Denmark, DK-2800 Kgs.Lyngby, Denmark, 2001. This paper is
one of a series of papers currently being submitted for publication: [43, 16, 11, 14, 44,
45, 47, 48, 49].

Dines Bjgrner. Projects & Production: Planning, Plans & Execution. Towards a Do-
main Theory for Work Flow Systems. Technical report, Informatics and Mathematical
Modelling, Building 322, Richard Petersens Plads, Technical University of Denmark,
DK-2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers currently
being submitted for publication: [43, 16, 11, 14, 44, 45, 46, 48, 49].

© Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002 19th of May 2002, 08:59

The Jaco W. de Bakker Liber Amicorum, August 2002 19

[48] Dines Bjgrner. Railways Systems: Towards a Domain Theory. Technical report, Infor-
matics and Mathematical Modelling, Building 322, Richard Petersens Plads, Technical
University of Denmark, DK-2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a se-
ries of papers currently being submitted for publication: [43, 16, 11, 14, 44, 45, 46, 47, 49].

[49] Dines Bjgrner. Financial Service Institutions: Banks, Securities Trading, Insurance, &c.
Towards a Domain Theory for Work Flow Systems. Technical report, Informatics and
Mathematical Modelling, Building 322, Richard Petersens Plads, Technical University of
Denmark, DK—2800 Kgs.Lyngby, Denmark, 2001. This paper is one of a series of papers
currently being submitted for publication: [43, 16, 11, 14, 44, 45, 46, 48, 47].

[50] E. Engeler. Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture
Notes in Mathematics. Springer-Verlag, 1971.

[51] E. Neuhold. Formal Description of Programming Concepts (I). North-Holland Publ.Co.,
Amsterdam, Proc. of IFIP TC-2 Work.Conf., St. Andrews Canada, Aug. 1977, 1978.

19th of May 2002, 08:59 © Dines Bjgrner, Fredsvej 11, DK—2840 Holte, Denmark, 2001-2002

