
TOWARDS A FORMAL MODEL OF CyberRail

Dines Bjørner1,2

(1) Department of Computer Science, School of Computing, National University of Singapore, 3

Science Drive 2, Singapore 117543

E–Mail: bjorner@comp.nus.edu.sg, URL: http://www.comp.nus.edu.sg/cs/

Peter Chiang2, Morten S.T. Jacobsen2, Jens Kielsgaard Hansen2, and Michael

P. Madsen2

(2) Section of Computer Science and Engineering, Institute of Informatics and Computer Engi-

neering, Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark

E–Mail: {s001402,s001693,s001842,s001700}@student.dtu.dk

Martin Penicka1,3∗

(3) Czech Technical University, Faculty of Transportation Sciences, Department of Applied

Mathematics, Na Florenci 25, 110 00 Praha 1, Czech Republic

E–Mail: penicka@fd.cvut.cz

Abstract Based on a number of reports and publications, primarily by Takahiko Ogino

[14], [15], [16] (in these proceedings), and [17], on the emerging concept of Cy-

berRail, we attempt to show what a formal domain model of CyberRail might

look like, and what benefits one might derive from establishing and having such

a formal model.

Keywords: CyberRail, Formalisation, Domain Model, RAISE, RSL, CSP, Non–determi-

nism, Abstract Data Types

1. Background

The background for the work reported in this extended abstract is threefold:

(i) Many years of actual formal specification as well as research into how to

engineer such formal specifications, by the first author, of domains, including

the railway domain [8] [7] [9] [10] [1] [6] [3] [2] [5] — using abstraction and

∗MPs work was supported, in part, by the EU 5th IST FP Programme acttion: CoLogNET: The Computa-

tional Logic Network of Excellence.

2

modelling principles and techniques extensively covered in three forthcoming

software engineering textbooks [4]. (ii) A term project with four MSc students.

And (iii) Some fascination as whether one cold formalise an essence of the

novel ideas of CyberRail. We strongly believe that we can capture one crucial

essence of CyberRail — such as this paper will show.

The formalisation of CyberRail is expressed in the RAISE [12] Specifica-

tion Language, RSL [11]. RAISE stands for Rigorous Approach to Industrial

Software Engineering. In the current abstract model we especially make use of

RSL’s parallel process modeling capability. It builds on, ie., borrows from Tony

Hoare’s algebraic process concept of Communicating Sequential Processes,

CSP [13].

2. A Rough Sketch Formal Model

2.1 An Overall CyberRail System

CyberRail consists of an index set of traveller behaviours and one cyber be-

haviour “running” in parallel. Each traveller behaviour is uniquely identified,

p:Tx. Traveller behaviours communicate with the cyber behaviour. We abstract

the communication medium as an indexed set of channels, ct[p], from the cy-

ber behaviour to each individual traveller behaviour, and tc[p], from traveller

behaviours to the cyber behaviour. Messages over channels are of respective

types, CT and TC. The cyber behaviour starts in an initial state ωi, and each

traveller behaviour, p, starts in some initial state mσi(p).

type

Tx, Σ, Ω, CT, TC

MΣ = Tx →m Σ
channel

{ct[p]:CT,tc[p]:TC|p:Tx}, cr:CR, rc:RC

value

mσi:MΣ, ωi:Ω

cyberrail system: Unit → Unit

cyberrail system() ≡ ‖ { traveller(p)(mσi(p)) | p:Tx } ‖ cyber(ω)

cyber: Ω → in {tc[p]|p:Tx},cr out {ct[p]|p:Tx},rc Unit

cyber(ω) ≡
cyber as server(ω) ⌈⌉ cyber as proactive(ω) ⌈⌉ cyber as co director(ω)

traveller: p:Tx → Σ→ in ct[p] out tc[p] Unit

traveller(p)(σ) ≡ active traveller(p)(σ) ⌈⌉ passive traveller(p)(σ)

Towards a Formal Model of CyberRail 3

The cyber behaviour either acts as a server: Ready to engage in commu-

nication input from any traveller behaviour; or the cyber behaviour acts pro–

actively: Ready to engage in performing output to one, or some traveller be-

haviours; or the cyber behaviour acts in consort with the “rest” of the trans-

portation market (including rail infrastructure owners, train operators, etc.), in

improving and changing services, and in otherwise responding to unforeseen

circumstances of that market.

Similarly any traveller behaviour acts as a client: Ready to engage in per-

forming output to the cyber behaviour; or its acts passively: Ready to accept

input from the cyber behaviour.

2.2 Travellers

2.2.1 Active Travellers. Active traveller behaviours alternate internally

non–deterministically, ie., at their own choice, between start (travel) planning

st pl, select (among suggested) travel plan(s) se pl, change (travel) planning

ch pl, begin travel be tr, board train bo tr, leave train lv tr, ignore train ig tr,

cancel travel ca tr, seeking guidance se gu, notifying cyber no cy, entertain-

ment ent, deposit resource de re (park car, . . .), claim resource cl re (retreive

car, . . .), get resource ge re (rent a car, . . .), return resource re re (return

rent-car, . . .), going to restaurant rest (or other), change travel ch tr, interrupt

travel in tr, resume travel re tr, leave train le tr, end travel en tr, and many

other choices. Each of these normally entail an output communication to the

cyber behaviour, and for those we can assume immediate response from the

cyber behaviour, where applicable.

value

active traveller: p:Tx → Σ→ out tc[p] in ct[p] Unit

active traveller(p)(σ) ≡
let choice = st pl ⌈⌉ ac pl ⌈⌉ ch pl ⌈⌉ en tr ⌈⌉ ... ⌈⌉ le tr ⌈⌉ te tr in

let σ′ = case choice of

st pl → start planning(p)(σ),

se pl → select travel plan(p)(σ),

ch pl → change trael plan(p)(σ),

be tr → begin travel(p)(σ),

bo tr → board train(p)(σ),

... → ..,

le tr → leave train(p)(σ),

en tr → end travel(p)(σ),

... → ..

end in

traveller(p)(σ′) end end

4

start planning: p:Tx → Σ → out tc[p] in ct[p] Σ
start planning(p)(σ) ≡

let (σ′,plan) = magic plan(σ) in

tc[p]!plan;

let sps = ct[p]? in updateΣ((plan,sps))(σ′) end end

...

updateΣ: Update → Σ→ Σ
type

Update == mkInPlRes(ip:InitialPlan,ps:Plan-set) | ...

2.2.2 Passive Travellers. When not engaging actively with the cyber

behaviour, traveller behaviours are ready to accept any cyber initated action.

The traveller behaviour basically “assimilates” messages received from cyber

— and may make use of these in future.

value

passive traveller: p:Tx → Σ → in ct[p] out tc[p] Unit

passive traveller(p)(σ) ≡ let res = ct[p]? in updateΣ(res)(σ) end

2.2.3 Active Traveller Actions. The active traveller behaviour per-

forms either of the internally non–deterministically chosen actions: start plan-

ning, select travel plan, change travel plan, begin travel, board train, . . . ,

leave train, or end travel. They make use only of the “sum total state” (σ)

that that traveller behaviour “is in”. Each such action basically communicates

either of a number of plans (or parts thereof, here simplified into plans). Let us

summarise:

type

Plan

Request = Initial Plan | Selected Plan | Change Plan | Begin Travel

| Board Train | ... | Leave Train | End Travel | ...
Initial Plan == mkIniPl(pl:Plan)

Selected Plan == mkSelPl(pl:Plan)

Change Plan == mkChgPl(pl:Plan)

Begin Travel == mkBTrav(pl:Plan)

Board Train == mkBTrai(pl:Plan)

...

Leave Train == mkLeTr(pl:Plan)

End Travel == mkEnTr(pl:Plan)

value

∀ f: p:Tx → Σ → out tc[p] Σ

Towards a Formal Model of CyberRail 5

magic f: Σ→ Σ × Request

f(p)(σ) ≡ let (σ′,req) = magic f(σ) in tc[p]!req;σ′ end

The magic functions access and changes the state while otherwise yielding

some request. They engage in no events with other than the traveller state.

There are the possibility of literally “zillions” such functions, all fitted into the

above sketched traveller behaviour.

2.3 cyber

2.3.1 cyber as Server. cyber is at any moment ready to engage in ac-

tions with any traveller behaviour. cyber is assumed here to respond immedi-

ately to “any and such”.

value

cyber rail as server: Ω→ in {tc[p]|p:Tx} out {ct[p]|p:Tx} Unit

cyber rail as server(ω) ≡
⌈⌉⌊⌋ {let req = tc[p]? in cyber(serve traveller(p,req)(ω)) end | p:Tx}

serve traveller: p:Tx × Req → Ω → in {tc[p]|p:Tx} out {ct[p]|p:Tx} Ω
serve traveller(p,req)(ω) ≡

case req of

mkIniPl(pl) →
let (ω′,pls) = sugg pls(p,pl)(ω) in ct[p]!pls;cyberrail(ω′) end

mkSelPl(pl) →
let (ω′,res) = res pl(p,pl)(ω) in ct[p]!book;cyberrail(ω′) end

mkChgPl(pl) →
let (ω′,pl′) = chg pl(p,pl)(ω) in ct[p]!pl′;cyberrail(ω′) end

mkBTrav(pl) → ...

mkBTrai(pl) → ...

...

mkLeTr(pl) → ...

mkEnTr(pl) → ...

end

2.3.2 cyber as Pro–Active. cyber, on its own volition, may, typically

based on its accumulated knowledge of traveller behaviours, engage in sending

messages of one kind or another to selected groups of travellers. Section 2.3.5

rough sketch–formalises one of these.

type

CR act == gu tr | no tr | co tr | wa tr | ...

6

value

cyber as proactive: Ω → out {ct[p]|p:Tx} Unit

cyber as proactive(ω) ≡
let cho = gu tr ⌈⌉ no tr ⌈⌉ co tr ⌈⌉ wa tr ⌈⌉ ... in

let ω′ = case cho of gu tr → guide traveller(ω),

no tr → notify traveller(ω),

co tr → commercial to travellers(ω),

wa tr → warn travellers(ω),

... → ... end in

cyber(ω′) end end

2.3.3 cyber as Co–Director. We do not specify this behaviour. It con-

cerns the actions that cyber takes together with the “rest” of the transportation

market. One could mention input from cyber as co director to the train opera-

tors as to new traveller preferences, profiles, etc., and output from the rail (ie.,

net) infrastructure owners or train operators to cyber as co director as to net

repairs or train shortages, etc. The decomposition of CyberRail into cyber and

the “rest”, may — to some — be articificial, namely in countries where there

is no effective privatisation and split–up into infrastructyre owners and train

operators. But it is a decomposition which is relevant, structurally, in any case.

2.3.4 cyber Server Actions. We sketch:

value

sugg plans: p:Tx × Plan → Ω→ Ω × Plan-set

res pl: p:Tx × Plan → Ω → Ω × Plan

chg pl: p:Tx × Plan → Ω → Ω × Plan

...

There are many other such traveller instigated cyber actions.

2.3.5 Pro–Active cyber Actions. We rough sketch just a single of the

possible “dozens” of cyber inititated actions versus the travellers.

value

guide traveller: Ω → out {ct[p]|p:Tx} Ω
guide traveller(ω) ≡

let (ω′,(ps,guide)) = any guide(ω) in broadcast(ps,guide) ; ω′ end

any guide: Ω → Ω × (Tx-set × Guide)

notify traveller: Ω → out {ct[p]|p:Tx} Ω

REFERENCES 7

commercial to travellers: Ω→ out {ct[p]|p:Tx} Ω
warn traveller: Ω→ out {ct[p]|p:Tx} Ω
...

broadcast: Tx-set × CT → Unit

broadcast(ps,msg) ≡
case ps of {}→skip,{p}∪ ps′→ct[p]!msg;broadcast(ps′,msg) end

type

CT = Guide | Notification | Commercial | Warning | ...
Guide == mkGui(...)

Notification == mkNot(...)

Commercial == mkCom(...)

Warning == mkWar(...)

...

3. Conclusion

A formalisation of a crucial aspect of CyberRail has been sketched. Namely

the interplay between the rôles of travellers and the central CyberRail system.

Next we need analyse carfully all the action functions with respect to the

way in which they use and update the respective states (σ : Σ) of traveller

behaviours and the cyber behaviour (ω : Ω). At the end of such an analysis one

can then come up with precise, formal descriptions, including axioms, of what

the title of [16] refers to as the Information Infrastructure. We look forward to

report on that in a near future.

The aim of this work is to provide a foundation, a domain theory, for Cyber-
Rail. A set of models from which to “derive”, in a systematic way, proposals

for computing systems, including software architectures.

References

[1] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder,

editor, 9th IFAC Symposium on Control in Transportation Systems, pages 1–12, Braun-

schweig, Germany, 13–15 June 2000. Invited talk.

[2] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control

and Software Engineering. In CTS2003: 10th IFAC Symposium on Control in Transporta-

tion Systems, Oxford, UK, August 4-6 2003. Elsevier Science Ltd.

[3] Dines Bjørner. New Results and Trends in Formal Techniques for the Development of

Software for Transportation Systems. In FORMS2003: Symposium on Formal Methods

for Railway Operation and Control Systems. 2003. Budapest, Hungary. Editors: G. Tarnai

and E. Schnieder, Germany.

8

[4] Dines Bjørner. Software Engineering, volume Vol. 1: Abstraction and Modelling, Vol. 2:

Advanced Specification Techniques, Vol. 3: From Domains via Requirements to Software.

Springer–Verlag, 2004–2005.

[5] Dines Bjørner, Chris George, Anne E. Haxthausen, Christian Krog Madsen, Steffen Holm-

slykke, and Martin P»eni»cka. “UML”–ising Formal Techniques. In INT 2004: Third In-

ternational Workshop on Integration of Specification Techniques for Applications in En-

gineering. 28 March 2004, ETAPS, Barcelona, Spain. INT–2004 Proceedings, Springer–

Verlag.

[6] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways —

A Rôle for Domain Engineering. Relations to Requirements Engineering and Software

for Control Applications. In Integrated Design and Process Technology. Editors: Bernd

Kraemer and John C. Petterson, 24–28 June 2002. Society for Design and Process Sci-

ence.

[7] Dines Bjørner, C.W. George, and S. Prehn. Scheduling and Rescheduling of Trains, chap-

ter 8, pages 157–184. Industrial Strength Formal Methods in Practice, Eds.: Michael G.

Hinchey and Jonathan P. Bowen. FACIT, Springer–Verlag, London, England, 1999.

[8] Dines Bjørner, Dong Yu Lin, and S. Prehn. Domain Analyses: A Case Study of Station

Management. In KICS’94: Kunming International CASE Symposium, Yunnan Province,

P.R.of China. Software Engineering Association of Japan, 16–20 November 1994.

[9] Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems:

Domains. FME Rail Workshop on Formal Methods in Railway Systems, FM’99 World

Congress on Formal Methods, France.

[10] Dines Bjørner, Søren Prehn, and Chris W. George. Formal Models of Railway Systems:

Requirements. FME Rail Workshop on Formal Methods in Railway Systems, FM’99

World Congress on Formal Methods, France.

[11] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne, Claus Bendix

Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The

BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[12] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and

Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-Hall,

Hemel Hampstead, England, 1995.

[13] C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer

Science. Prentice-Hall International, 1985.

[14] Takahiko Ogino. Aiming for Passenger Interoperability. Technical report, Railway Tech-

nical Research Institute, Transport Information Technology Division, Railway Technical

Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo, 185-8540 Japan, 2003.

[15] Takahiko Ogino. CyberRail: For Urban Mobility Tomorrow. Technical report, Railway

Technical Research Institute, Transport Information Technology Division, Railway Tech-

nical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo, 185-8540 Japan, 2004.

[16] Takahiko Ogino. CyberRail: Information Infrastructure for New Intermodal Transport

Business Model. In Topical Days @ IFIP World Computer Congress 2004, IFIP Series.

IFIP, Kluwer Academic Press, August 2004.

[17] Takahiko Ogino, Koivhi Goto, Ryuji Tsuchiya, Kiyotaka Seki, and Akihiko Matsuoka.

CyberRail and its significance in the coming ubiquitous society. In , 2004.

