
“UML–ising” Formal Techniques⋆

Dines Bjørnera, Chris W. Georgeb, Anne E. Haxthausena,
Christian Krog Madsenc, Steffen Holmslykkea, and Martin Pěničkad

a Computer Science and Engineering Dept., Informatics and Mathematical Modelling Inst.,
Technical University of Denmark, DK–2800 Kgs.Lyngby, Denmark,

{db,ah}@imm.dtu.dk+steffen@holmslykke.com;
b Director ai., UNU/IIST, P.O.Box 3058, Macau SAR, China, cwg@iist.unu.edu;

c Rovsing A/S, Dyreg̊ardsvej 2, DK–2740 Skovlunde, Denmark, christian@krog-madsen.dk;
d Faculty of Transportation, Czech Technical University, Na Florenci 25,

CZ-11000 Prague 1, The Czech Republic; penicka@fd.cvut.cz + martin@imm.dtu.dk.

Abstract. This invited paper presents a number of correlated specifications of example railway
system problems. They use a variety of partially or fully integrated formal specification. The
paper thus represents a mere repository of what we consider interesting case studies.

The existence of the Unified Modeling Language [10, 67, 36, 20] has caused, for one reason
or another, the research community to try formalise one or another facet of UML. In this paper
we report on another way to achieve what UML attempts to achieve: Broadness of application,
convenience of notation, and multiplicity of views. Whether these different UML views are unified,
integrated, correlated or merely co–located is for others to dispute. We also seek to support
multiple views, but are also in no doubt that there must be sound, well defined relations between
such views.

We thus report on ways and means of integrating formal techniques such as RAISE (RSL) [58,
59], Petri Nets [56, 62, 37, 61, 41], Message and Live Sequence Charts [42–44, 64, 13], Statecharts [23,
24, 26, 27], RAISE with Timing (TRSL) [18, 45, 46], and TRSL with Duration Calculus [79, 30]. In
this way one achieves a firm foundation for combined uses of these formal development techniques,
one that can be believably deployed for as wide a spectrum, or even a wider spectrum of software
(and hardware) development, as, respectively than UML.

1 The Problem

1.1 The Issues

When we describe, in informal, yet reasonably precise natural (or at least domain specific professional)
language the entities, the functions, the events and behaviours of an application domain, then we
encounter, perhaps, little, if any problem. Our use of natural language is very flexible. Without hardly
noticing it, we slip from one mode of description to another mode. (What these modes are will be
apparent in the next paragraph.)

When, now, on the basis of the informal narrative, we wish to formalise this description, then we
might very well encounter serious problems. We refer here to the current inability of any one formal
specification language to cater for all kinds of modes: Functional, imperative (ie., with states being
changed by assignments to variables), logical, temporal, and concurrency modes, the latter with events
and behaviours. In particular we often slip, in natural language, from describing such qualitative

aspects of timing as concurrent behaviours and their synchronisation and communication, to such
quantitative aspects of timing as absolute and relative time: “12:05 am” to “after 5 minutes and 30

seconds” — without hardly noticing it.

⋆ This invited paper is to be presented at the 3rd International Workshop on Integration of Specification Tech-
niques for Applications in Engineering (INT-Workshop), 28th of March 2004, in Barcelona, Spain, as part of the
German Research Foundation (DFG)’s priority research programme “Integration of Software Specification
Techniques for Applications in Engineering”. The main author’s presentation at this ETAPS related event
is also sponsored by DFG. The present paper is expected to also appear in a Springer–Verlag book which
collects papers from the DG INT project.

2

Put differently: Some formal specification languages may cater, as does RSL, the specification lan-
guage of RAISE [58, 59], for functional, imperative, logical, and parallel behaviours — but RSL does not
cater, neither for “true” concurrency, nor for time. Also: The diagrammatic constructs of Petri Nets

[56, 62, 37, 61], of Statecharts [23, 24], and of Live Sequence Charts [13] cater for the qualitative
facets of concurrency and timing (as does RSL), but they do so diagrammatically, and as such they are
indeed oftentimes more appealing to casual readers than “flat” texts (ie., RSL). Similarly RSL’s “flat
text” module structuring (schemes, classes and objects) are, to some, inferior in communicability to
UML’s Class Diagrams [10, 67, 36].

This therefore is the problem: To combine, to integrate, uses of two or more formalisms in one
specification — such that we can still retain (most of) the virtues of any of the formal notations: For
example abstraction, reasoning, and refinement.

1.2 Integrating Formal Techniques

No one formal specification language can reasonably be expected to cover all modes of descriptions,
all kinds of universes of discourse.

There is, therefore, an effort going on, world–wide, in integrating, in combining, different specifica-
tion paradigms, such as mentioned above. Notable efforts can be referenced:

Combining Statecharts and Z for the design of safety-critical control systems [75] (1996), Integrated

Formal Methods [17] (1996), A combination of Object-Z and CSP [14] (1997), Specifying embedded

systems with Statecharts and Z [19] (1998), An Operational Semantics for Timed RAISE, TRSL [18]
(1999), Linking DC together with TRSL [30] (2000), Study of graphical and temporal specification techniques

[49] (2003), Integration of Specification Techniques [48] (2003).

An underlying theme here is that of Unifying Theories of Programming [32] (1998), Unifying Theories

of Parallel Programming [77] (2002), and Semantic Integration of Heterogeneous Software Specifications

(2003) [65].

Many other references could be given to papers that seeks to provide answers to integration issues:
[75, 17, 14, 32, 19, 11, 60, 77].

1.3 Structure of Paper

The paper is structured as follows: First (Sect. 2) we provide a setting, basically common to the whole
paper, namely a specification, in RSL, of properties of the layout of railway nets. First we present it in
a “flat” version of RSL, ie., without RSL’s parameterised scheme and class facilities. Then we present
“the same” specification with those modularising facilities (Sect. 3). From that, without much analysis,
we present a UML Class Diagram (Sect. 4). Sect. 5 discuses relations between RSL and UML.

Then we “pick” another, albeit related, problem, one of timing, and show (Sect. 6.1) its specification
in RSL extended with timing [18], and Timed RSL extended with durations [30], in the sense of the
Duration Calculus [79] (Sect. 6.2).

Independently we show an example of combining a RSL specification with Petri Nets (Sect. 7),
and finally a specification embodying Live Sequence Charts and Statecharts (Sect. 8)

1.4 Prerequisites

Professional software engineers today are expected to be sufficiently versant in either of the notational
systems and intentions of VDM, Z, RAISE, or B [15, 76, 59, 1]. Enough to understand this paper’s use of
RSL [58]. They are likewise expected to be sufficiently versant in UML’s usage of Petri Nets, Message
Sequence Charts (MSCs) and Statecharts (SCs) to likewise follow the paper’s use of those mechanisms,
including Live Sequence Charts. As for TRSL (Timed RSL) and DC (Duration Calculus) we do not
expect the same insight – so, please consider this paper a good reason for “catching up” by reading
the referenced TRSL paper [18] or PhD Thesis [78], respectively DC book [79] (or original paper [80]).
There will be ample references, later, to books on UML, Petri Nets, MSCs, SCs, etc.

3

2 “Flat” RAISE (DB)

Our “running” example is taken from the domain of railways. First informally, as a rough sketch
supported by a “snapshot” layout diagram. Then formally.

We constrain ourselves to the modeling of just the
static aspects of the topology of a railway net. That
is: Of net, lines and stations. And of units of lines
and station (and hence of nets). And of connectors
of units. Examples of a net, of two lines and two
stations, of both lines consisting each of three lin-
ear units. Of the stations consisting of tracks (ie.,
platform tracks and sidings), and of otherwise also
consisting of simple switch, simple crossover, and of
switchable crossover units.

Line

Platform Linear Unit

SwitchTrack

SidingCrossover

Station

Station Switchable Crossover

2.1 Informal Description

We narrate a precise, yet informal description:

We introduce the phenomena of railway nets, lines,
stations, tracks, (rail) units, and connectors.

1. A railway net consists of one or more lines and two
or more stations.

2. A railway net consists of rail units.
3. A line is a linear sequence of one or more linear rail

units.
4. The rail units of a line must be rail units of the rail-

way net of the line.
5. A station is a set of one or more rail units.
6. The rail units of a station must be rail units of the

railway net of the station.
7. No two distinct lines and/or stations of a railway net

share rail units.
8. A station consists of one or more tracks.
9. A track is a linear sequence of one or more linear rail

units.

10. No two distinct tracks share rail units.
11. The rail units of a track must be rail units of the

station (of that track).
12. A rail unit is either a linear, or is a switch, or a is

simple crossover, or is a switchable crossover, etc.,
rail unit.

13. A rail unit has one or more connectors.
14. A linear rail unit has two distinct connectors, a switch

rail unit has three distinct connectors, crossover rail
units have four distinct connectors (whether simple
or switchable), etc.

15. For every connector there are at most two rail units
which have that connector in common.

16. Every line of a railway net is connected to exactly
two, distinct stations of that railway net.

17. A linear sequence of (linear) rail units is a non-cyclic
sequence of linear units such that neighbouring units
share connectors.

The numbering of the text items is used as cross references in Sects. 2.2, 3 and 4.

2.2 Formal Description

And finally, in this introductory example, we formalise the previous informal narrative.

type

N, L, S, Tr, U, C
value

1. obs Ls: N → L-set,
1. obs Ss: N → S-set
2. obs Us: N → U-set,
3. obs Us: L → U-set

5. obs Us: S → U-set,
8. obs Trs: S → Tr-set
12. is Linear: U → Bool,
12. is Switch: U → Bool

12. is Simple Crossover: U → Bool,

12. is Switchable Crossover: U → Bool

13. obs Cs: U → C-set

17. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ c:C •

obs Cs(q(i)) ∩ obs Cs(q(i+1)) = {c} ∧
len q > 1 ⇒ obs Cs(q(i)) ∩ obs Cs(q(len q)) = {}

Some formal axioms are now given, not all !

4

axiom

1. ∀ n:N • card obs Ls(n) ≥ 1,
1. ∀ n:N • card obs Ss(n) ≥ 2,
3. l:L • lin seq(l)
4. ∀ n:N, l:L • l ∈ obs Ls(n) ⇒ obs Us(l) ⊆ obs Us(n)
5. ∀ n:N, s:S • s ∈ obs Ss(n) ⇒ card obs Us(s) ≥ 1
6. ∀ s:S • obs Us(s) ⊆ obs Us(n)
7. ∀ n:N,l,l′:L•{l,l′}⊆obs Ls(n)∧l 6=l′⇒obs Us(l)∩ obs Us(l′)={}
7. ∀ n:N,l:L,s:S•l ∈ obs Ls(n)∧s ∈ obs Ss(n)⇒obs Us(l)∩ obs Us(s)={}
7. ∀ n:N,s,s′:S•{s,s′}⊆obs Ss(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}
8. ∀ s:S • card obs Trs(s) ≥ 1

9. ∀ n:N, s:S, t:T • s ∈ obs Ss(n) ∧ t ∈ obs Trs(s) ⇒ lin seq(t)
10. ∀ n:N, s:S, t,t′;T •

s ∈ obs Ss(n) ∧ {t,t′} ⊆ obs Trs(s) ∧ t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}
15. ∀ n:N • ∀ c:C •

c ∈ ∪ { obs Cs(u) | u:U • u ∈ obs Us(n) }
⇒ card{ u | u:U • u ∈ obs Us(n) ∧ c ∈ obs Cs(u) } ≤ 2

16. ∀ n:N,l:L • l ∈ obs Ls(n) ⇒
∃ s,s′:S • {s,s′} ⊆ obs Ss(n) ∧ s 6=s′ ⇒

let sus = obs Us(s), sus′ = obs Us(s′), lus = obs Us(l) in

∃ u:U • u ∈ sus, u′:U • u′ ∈ sus′, u′′,u′′′:U • {u′′,u′′′} ⊆ lus •

let scs = obs Cs(u), scs′ = obs Cs(u′),
lcs = obs Cs(u′′), lcs′ = obs Cs(u′′′) in

∃ ! c,c′:C • c 6= c′ ∧ scs ∩ lcs = {c} ∧ scs′ ∩ lcs′ = {c′}
end end

Elsewhere we have shown extensions of the above model into simple dynamics of unit switching [6], of
principles of modeling such domains as railways [8], of possible relations between these kind of railway
models and control theory [7], of using such models as that above for modeling train maintenance [57],
train staff rostering [71], etc. Modeling the scheduling of trains, based on simpler models than the
above, was shown in [9].

3 RAISE Model with Schemes (SH)

The previous specification was expressed in “flat” RSL. Next, and in preparation for the UML Class
Diagram “rendition”, we show a “structured” version of the above “flat” formulas. The structuring is
afforded by RSL’s schema andclass mechanisms. Without much comments we present these schemes.1

The model presented in this section is somehow “equivalent”, we claim, to the model just presented
in section 2.2. The difference is in the use of parameterized schemes. Using schemes we can break the
model into smaller modules. Each sort from the flat model is placed in a separate scheme and the
functions and axioms which are associated with the sort are included with it. This should give an
intuitive division of the flat model which may be more easily comprehended.

scheme Connectors = class type C end

scheme Units(connectors : Connectors) =
class

type U
value

12 is Linear: U→Bool,
12 is Switch: U→Bool,
12 is SimpleCrossover: U→Bool,
12 is SwitchableCrossover: U→Bool,
13 obs Cs: U→connectors.C-set,

17 lin seq: U-set→Bool

lin seq(us) ≡
(∀ u:U•u ∈ us ⇒ is Linear(u)∧
(∃ q:U∗

•len q = card us∧elems q=us∧
(∀ i:Nat•{i,i+1}⊆inds q ⇒
(∃ c:connectors.C•

obs Cs(q(i)) ∩ obs Cs(q(i+1))={c}∧
len q>1 ⇒

obs Cs(q(i)) ∩ obs Cs(q(len q))={}))))
end

We could single out each of the (so far mentioned) four disjoint
kinds of Units, representing them as schemes. We show it only
for the linear case:

scheme Linear(connectors : Connectors) =
extend Units(connectors) with

class

type UL = U
axiom

∀ l:UL•is Linear(l)
∧∼is Switch(l)
∧∼is SimpleCrossover(l)
∧∼is SwitchableCrossover(l),

∀ l:UL: card obs Cs(l)=2
end

We go on:

scheme Sequence(
connectors: Connectors,
units: Units(connectors)) =

class

type Seq
value obs Us: Seq→units.U-set

axiom ∀ s: Seq•units.lin seq(obs Us(s))
end

scheme Lines(
connectors: Connectors,
units: Units(connectors)) =

extend Sequence(connectors,units) with

class

type L
value

obs Seq: L→Seq,
obs Us: L→units.U-set

obs Us(l) ≡ obs Us(obs Seq(l))
end

scheme Tracks(
connectors: Connectors,
units: Units(connectors)) =

extend Sequence(connectors,units) with

class

type Tr
value

obs Seq: Tr→Seq,
obs Us: Tr→units.U-set

obs Us(t) ≡ obs Us(obs Seq(t))
end

scheme Stations(

1 The item numbers of some of the formulas of this section derive from Sect. 2.1.

5

connectors: Connectors,
units: Units(connectors),
tracks: Tracks(connectors,units)) =

class

type S
value

5 obs Us: S→units.U-set,
8 obs Trs: S→tracks.Tr-set
axiom

5 ∀ s:S•card obs Us(s)≥1,
8 ∀ s:S•card obs Trs(s)≥1,
7 ∀ s,s′:S•s6=s′

⇒ obs Us(s) ∩ obs Us(s′)={}
end

scheme Nets(
connectors: Connectors,
units: Units(connectors),
lines: Lines(connectors,units),

tracks: Tracks(connectors,units),
stations: Stations(connectors,units,tracks)) =

class

type N
value

1 obs Ls: N→lines.L-set,
1 obs Ss: N→stations.S-set,
2 obs Us: N→units.U-set

axiom

1 ∀ n:N•card obs Ls(n)≥1,
1 ∀ n:N•card obs Ss(n)≥2,
4 ∀ n:N,l:lines.L•l ∈ obs Ls(n)⇒

lines.obs Us(l)⊆obs Us(n),
6 ∀ n:N,s:stations.S•s ∈ obs Ss(n)⇒

stations.obs Us(s)⊆obs Us(n),
7 ∀ n:N,l:lines.L,s:stations.S•

l ∈ obs Ls(n)∧s ∈ obs Ss(n)
⇒lines.obs Us(l) ∩ stations.obs Us(s)={}

end

4 The UML Model (SH)

The two formal models of Sect. 2.2 and Sect. 3 were based on the informal description of railway
nets (Sect. 2.1). The model in this section is expressed in UML but reflects the parameterised scheme
model (of Sect. 3). This should of course amount to a model that is “equivalent” to the formal models.
It is however known that the language of Class Diagrams is not as powerful an expression tool as
is, for example, RSL. Properties expressible in, for example RSL, cannot be expressed by the Object

Constraint Language, OCL [73, 74], of UML.
Notwithstanding, it is still a good idea to try express certain of the properties of the formal models

in class diagrams. Our model is presented in figure 1.

Station

Line

Net

Unit

Linear

Switch

SwitchCross

SimpleCross

Track

Connector

Sequence

2..*

consists of

1..*

consists of

2

1..*

connected to

1..*

consists of

1..* set of

1..*

consists of

1..* sequence of

0..2
4

0..2

4

0..2

3

0..2

2

*

consists of

Fig. 1. UML Class Diagram for Rail Nets

In our class diagram for rail nets, the model has been divided into several “smaller” pieces which
describe “smaller” parts. In this case the classes represent the phenomena introduced in the informal
description and corresponding to the schemes of Sect. 3.

Items 12, 2, and 8 describe a consist of relationship between two phenomena. The latter item
describes that a station consists of one or more tracks. This fits with the whole–part relationship that
composition provides for in class diagrams. Here the station is the whole and it is not complete unless
it has tracks and the tracks cannot exist without a station. As an example, item 8 is depicted, in the
class diagram, as a solid line between the Station and Track classes; the first is marked with a filled
diamond at the end of the line — indicating that it is the whole.

2 The item numbers of this section derive from Sect. 2.1.

6

Items 3, 9, and 5 use respectively a sequence of and a set of to describe a relationship. This is again
a whole–part relationship. The parts are, however, already part of the net. So to be able to maintain
a reference to an existing part a shareable aggregation is used as a relation. As an example, item 3
is depicted, in the class diagram, as a solid line between the Station and the Unit classes; the first is
marked with an hollow diamond at the end of the line — indicating that it is the whole.

In item 12 a unit is described as being either a Linear, Switch, SimpleCross, or SwitchCross. In the
class diagram this is expressed by a generalization relationship where the Unit is an abstract class. Its
class name is written in italics — so it cannot be instantiated.

Both the informal description in item 12 and the corresponding way it is modeled in the class
diagram suggests that another axiom should be added. In the formal model four boolean functions are
used to determine which type a given unit is. Here an axiom could be added, one which ensures that a
unit only can be of one type. This is achieved in the class diagram since an object only can instantiate
one class. The axiom could be as follows:

∀ u:U•is Linear(u)⇒∼(is Switch(u)∨is SwitchableCrossover(u)∨is SimpleCrossover(u))

Additional axioms should be added for each of the three other possible situations.
The two items 13 and 14 are overlapping. The latter expresses more properties. The latter explicitly

describes the number of connectors which a given unit must have, while the former just states that a
unit has at least one connector attached. If the latter is fulfilled then so is the former which makes it
superfluous in this model. This was noticed while drawing the associations between the Unit class and
its specializations. Here item 14 would in the class diagram amount to an association between each
of the specialized classes of Unit and (and to) the Connector class. Item 13 would be an association
between the abstract Unit class and (and to) the Connector class. If these were to be added to the
class diagram, then it would mean that each of the specialisations, due to inheritance, also would have
this relation (through generalisation), which is, however, not intended.

It is not possible to diagram items 4, 6, 7, 10, 11, 15, 16, and 17 in a class diagram, since they
describe requirements to the instances of the static structure. As an example, item 4 is used and
redisplayed for convenience: “The rail units of a line must be rail units of the railway net of the line.”
To be able to express this requirement we must be able to identify a particular unit and if it is part
of a line then it must also be part of the net. This could, however, be achieved by using the Object

Constraint Language [20, sec. 6]. We will not do so here.

5 Discussion: RSL and UML (SH)

During the creation of the RSL and the UML class diagram models, some observations have been made.
These will be discussed in this section.

5.1 UML and RSL Relationship

While making the modular RSL model of Sect. 3, and the UML model of Sect. 4, it was intuitively
decided which constructs to use in the languages. These choices are commented upon with regard to
a more general relationship between the two languages.

Entity sets described in the informal description have in the RSL model been represented by sorts:
Besides a few observer functions they are further unspecified. In the class diagram they are represented
by classes which can be instantiated as objects. There is a resemblance here with RSL schemes since
they also can be instantiated (as RSL objects). The style which have been chosen in the RSL model is
applicative (ie., functional). There is perhaps a closer relationship between schemes and classes if an
imperative modeling style had been used since the object in RSL would then contain a state.

One could argue that the models described are still in an initial phase and it is too early to determine
what a state for a given phenomena should consist of. This is also apparent in the class diagram since
none of the classes have any attributes nor operations which is also the reason for not including the
compartments in the diagram.

7

The associations used in the class diagram are in the RSL specification described using observer
functions on the sorts. Links, which in UML are instances of associations, are in UML models terms used
to communicate messages; that is, invoke a method at the target object. As an alternative to the
observer functions in RSL channels might be used as a representation.

The generalization relationship in UML and the extend construct in RSL seem quite similar since
they both take respectively a class and a scheme and adds more information. A specialised class in UML

can add attributes or operations to the ones already present in the generalised class. This is also possible
with the extend construct of RSL. However before the generalisation versus extend relationship can
be discussed it should be determined whether or not the UML class can be represented by schemes in
RSL.

There are of course many more elements in UML but those used in the Fig. 1 are the most essential.
Therefore this discussion will be constrained to those.

5.2 References

Although RSL has modules, it may be claimed not to be “a true” object oriented ("OO") language. This
does not, however, mean that it is impossible to express object oriented models in RSL. The reason
that RSL may be judged not to be “immediately” object oriented may be the claim that RSL does not
provide for object references. But since objects of RSL can be grouped into object arrays, indexing
can replace linking.

As an example the three schemes Connectors, Units, and Lines from section 3 can be used. The
headers of the mentioned schemes are replicated below for convenience. The first scheme has no pa-
rameters since it does not use any sorts or functions from outside its own scheme. The Units scheme
needs to know of the Connectors scheme since it uses its sort.

scheme Connectors = class ... end,
scheme Units(connectors:Connectors) = class ... end

The Lines scheme need only information from the Units scheme and not from the Connectors scheme.
However to be able to instantiate the Units scheme an object instantiated from the Connectors scheme
must be provided. It is not possible to pass an already instantiated object of units as the only parameter
to the Lines scheme or formulated in another way it is not possible to pass an object by reference.
This is a major difference between RSL and object oriented modeling. Thus it is necessary to give an
object of type Connectors as parameter although it is not used by the Lines scheme.

scheme Lines(connectors:Connectors,units:Units(connectors)) = class ... end

It is, however, all a matter of how one approaches the modeling, the abstraction level and the
refinement of models. Through a suitably chosen approach one may claim that RSL provides for all
that "OO" provides.

5.3 Circularity

An association with composite aggregation in the class diagram which has the same class at each end
introduces a recursive description. It is possible to define recursive structures in RSL using variants
however it is not permitted to make a recursive type definition nor recursive modules. In this case a
scheme is not a good choice for representing a UML class.

Recursive definitions have not been used in any of the RSL models nor in the UML models but was
considered with respect to units and connectors. The question is whether a connector is an independent
phenomena or a part of a unit. The latter seems to be best for describing railway nets. If a connector
is part of a unit then aggregation should be used where a unit specialisation is the whole and the
connector is the part. This would also mean that it is actually two connectors which is connected or,
perhaps a better way to express it, is that when to units are connected then the connectors at the ends
merge into one connector.

8

Connector

connects
Linear

SimpleCross

Switch

SwitchCross4

2

4

3

Fig. 2. Alternative model for connectors and specialized units.

The actual recursive solution was considered in the case where there still would be two connectors
when two units are connected. That is the connectors are connected to each other. This would mean
that a connector is part of a unit which would be modelled with aggregation and it would be connected
to another connector which would be modelled with a ordinary association from the Connector class
to itself; Hence the recursive definition.

5.4 Class Diagram Limitations

As mentioned in section 4 the class diagram could not contain all the information given in the (in)formal
description(s) of railway nets. Particularly information that referred to the unique identity of an
instance. Here it is necessary to use the Object Constraint Language.

It is possible to express some information in the diagram which in the RSL models are described
using axioms. Examples are constraints on numbers, such as the minimum number of stations in a net.
This is expressed in class diagrams using multiplicity.

• • •

In [16] a formal model has been presented, in RSL, of UML’s Class Diagram concept, together with a
mechanism, a kind of “compiling algorithm” which translates UML Class Diagrams into RSL. Ongoing
work at the first (DB) and second (CWG) co–authors’ institutions, are carrying on this work of
combining RSL with the graphics of UML’s Class Diagrams. The fifth co–author (SH) is involved in this
work.

6 RAISE and Temporality (CWH+AH)

6.1 Timing and RAISE: TRSL

‘Timed RSL’, TRSL, was first treated in [18].
RSL originally had no built–in way to model time. Time could of course be modeled using RSL, but

this is not in general very satisfactory. Without a built–in notion of time it would be impossible, for
example, to specify basic components of timed systems such as “time out”.

The extension of RSL to Timed RSL (TRSL) is minimal syntactically: there are just two additions.
First is the type Time, just a synonym for the non–negative subtype of the existing type Real. Second
is the new expression “wait e”, where e is an expression of type Time.

The semantic changes are, of course, more considerable, but still largely confined to the constructs
intended to specify communication and concurrency. The semantics is based on Wang Yi’s work on
Timed ccs [78], adapted to support value passing communication. It assumes that only the wait
expression, input and output can consume time, adopts the principle of maximal progress, and includes
time dependence. Time dependence enables a parallel expansion rule, but also adds expressiveness.

Methodologically, the intention is to develop specifications initially without regard to time, following
the normal RAISE method, reaching an imperative concurrent specification: essentially a collection of
communicating processes. At this point time is introduced in terms of wait expressions, and possibly
extra choices for detections of time outs or other time dependent behaviour. There is more on the
method in section 6.2.

We give here a few illustrative fragments. First, wait may just indicate a delay. Execution of the
expression:

9

sensor state := high ; wait δ ; sensor state := low

will set and keep sensor state high for precisely time δ, and then make it low.
A time out can be modeled by an external choice involving a wait. Suppose we need to take some

special (abnormal) actions if a signal normal does not occur within time t. The expression:

normal? ; ...

⌈⌉⌊⌋
wait t ; abnormal!()

will take the first choice provided an output on the channel normal occurs within time t. Otherwise,
at time t, the wait terminates and the second choice becomes available. Provided there is some process
waiting to handle the output abnormal, the principle of maximal progress will ensure the second choice
occurs, and we would say the normal behaviour has timed out.

An example illustrating the use of time dependence will be given in section 6.2.
In [46, 45] denotational semantics of Timed RSL are given using Duration Calculus, to the combi-

nation of which we now turn.

6.2 TRSL and Duration Calculus

The Duration Calculi are covered in the seminal [79].
While TRSL is well–suited for timed design specifications, DC is well-suited for timed requirement

specifications. This suggests the following development method [30] (illustrated in Fig. 3) for real-time
systems integrating TRSL and DC specifications:

RSL Specification

RSL Specification

DC Requirements

DC Requirements

RSL Method DC MethodRefinementRefinement

time addition

TRSL Specification

satis
fie

s

Fig. 3. A Development Method for Real-time Systems

1. The RAISE method [59] is used for stepwise developing a specification of the un–timed properties
of the system, starting with an abstract, property–oriented RSL specification and ending with a
concrete, implementation–oriented RSL specification.

2. In parallel with the RSL development of the un–timed system, a DC requirement specification of
the real time properties of that system is developed. State variables in the DC specification are
variables defined (at least) in the last RSL specification (and in the TRSL specification).

3. Timing information is added to the RSL specification achieving a TRSL specification of a real-time
implementation.

4. It must be verified that the TRSL specification satisfies the DC specification.

Hence, there is no syntactic integration between the DC and TRSL specification, but only a consistency
requirement that state variables used in the DC specification are variables defined in the TRSL specifi-
cation. The integration is made in the form of a satisfaction (or refinement) relation. The approach for
defining this relation has been to make an abstract interpretation within the DC formalism of TRSL

10

process definitions. Technically this is done by extending the operational semantics of TRSL [18] with
behaviours which are DC formulas describing (parts of) the history of the observables of the system.
The satisfaction relation between sentences in the two languages is then defined in terms of behaviours.
The formal definition and proof rules can be found in [30].

Due to space limitations we just show a very simple example illustrating steps 2-4.

Problem description: Our goal is to specify those components of a railway control system that
should perform train detection.

In the considered system sensors are used for train detection. When a train starts passing a sensor,
the sensor should immediately become “high” and after a while it should fall back to “low”. In order
for the control system to be able to detect the high state the sensor must stay in the “high” state for a
certain minimum of time, δ. Because of this requirement, trains should arrive at the sensor at least δ

time apart. It may be safe to just record this as an assumption, because we know it is ensured by other
parts of the system, or because δ (perhaps a fraction of a second for electronic equipment) is orders
of magnitude less than an interval between trains could be. But sometimes such assumptions need to
be checked at runtime, and that is what we assume here, as it gives us an opportunity to illustrate
the use of time dependence. We assume that an error must be recorded if two trains arrive within δ of
each other.

DC requirements: The requirement on the sensor is:

2((⌈sensor state=low⌉ • ⌈sensor state=high⌉ • ⌈sensor state=low⌉) ⇒ ℓ ≥ δ)

This requirement says that any complete period with “high” state (i.e. one with a “low” state before
and after) has a duration (ℓ) of at least δ.

TRSL Specification:

value δ : Time
type SensorState == low | high
channel detect train, error, train detected : Unit

value
detect : Unit → in detect train out train detected, error Unit
detect() ≡

while true do
let t = detect train? in

if t ≤ δ then error!()
else train detected!()
end

end
end,

sensor : Unit → in train detected write sensor state Unit
sensor() ≡

local variable sensor state : SensorState:= low in
while true do

train detected? ; sensor state := high ; wait δ ; sensor state := low
end

end

The channel detect train represents the hardware train detection unit. We assume that every train
enables an output on this channel.

11

The purpose of the process detect is to check that trains are at least time δ apart. Provided trains
are sufficiently separated it signals their arrival to the sensor process; otherwise it signals an error.
detect’s behaviour depends on the time t that it waits for input on the detect train channel.3 If t

is too small an error is signaled. Otherwise the detection event is passed to the sensor process using
another channel train detected. If we had made the assumption that trains could not possibly arrive
within time δ of each other, process detect and the channel train detected would be unnecessary, and
sensor could directly access the channel detect train.

The process sensor controls the sensor state sensor state: In each cycle, right after receiving a
message (on train detected) from the detect process that a train has arrived, sensor state stays
“high” for exactly δ time units and then becomes low. (Hence, it satisfies the DC requirement.)

Note that correct behaviour of detect, in the sense of only reporting actual errors (trains too close
together), assumes that the value t is the same as the time since the last train, i.e. since the last
communication on detect train. This will only be true if there is no wait anywhere in the loop except
for the communication on detect train. This in particular means that the sensor process must always
be ready to input on train detected when detect is ready to do output on train detected, i.e. sensor

must have a cycle time of at most δ. This is clearly satisfied by sensor.

Satisfaction Relation: The following satisfaction relation expresses that the sensor process satisfies
the previously stated DC requirement:

sensor() satisfies
2((⌈sensor state=low⌉ • ⌈sensor state=high⌉ • ⌈sensor state=low⌉) ⇒ ℓ ≥ δ)

It can be proved using proof rules in [30] and DC proof rules.

7 Petri Nets and RAISE

We assume basic knowledge of Petri Nets: [56, 62, 37, 61, 38, 41].

7.1 The RAISE Part (DB)

First we augment our model of railway nets with dynamics of these railway nets. We introduce defined
concepts such as paths through rail units, state of rail units, rail unit state spaces, routes through a
railway network, open and closed routes, trains on the railway net, and train movement on the railway
net.

Informal description:

18. A path, p : P , is a pair of connectors, (c, c′),

19. which are distinct,

20. and of some unit.4

21. A state, σ : Σ, of a unit is the set of all open paths
of that unit (at the time observed).5

22. A unit may, over its operational life, attain any of a
(possibly small) number of different states ω, Ω.

23. A route is a sequence of pairs of units and paths —

24. such that the path of a unit/path pair is a possi-
ble path of some state of the unit, and such that
“neighbouring” connectors are identical.

25. An open route is a route such that all its paths are
open.

26. A train is modelled as a route.

27. Train movement is modelled as a discrete function
(ie., a map) from time to routes

28. such that for any two adjacent times the two corre-
sponding routes differ by at most one of the follow-
ing:

(a) a unit path pair has been deleted (removed)
from one end of the route;

(b) a unit path pair has been deleted (removed)
from the other end of the route;

3 An input or output can optionally return the time that it waited for synchronisation: this supports time
dependence, i.e. following behaviour can depend on the value of this time.

4 A path of a unit designate that a train may move across the unit in the direction from c to c′. We say that
the unit is open in the direction of the path.

5 The state may be empty: the unit is closed.

12

(c) a unit path pair has been added (joined) from
one end of the route;

(d) a unit path pair has been added (joined) from
the other end of the route;

(e) a unit path pair has been added (joined) from
one end of the route, and another unit path par
has been deleted (removed) from the other end
of the route;

(f) a unit path pair has been added (joined) from
the other of the route, and another unit path
par has been deleted (removed) from the one
end of the route;

(g) or there has been no changes with respect to
the route (yet the train may have moved);

29. and such that the new route is a well–formed route.

Formalisation:

type

18. P′ = C × C
19. P = {| (c,c′):P′

• c6=c′ |}
21. Σ = P-set

22. Ω = Σ-set

23. R′ = (U × P)∗

24. R ={| r:R′
• wf R(r) |}

26. Trn = R
27. Mov′ = T →m Trn
28. Mov = {| m:Mov′ • wf Mov(m) |}

value

21. obs Σ: U → Σ

22. obs Ω: U → Ω

axiom

∀ u:U •

let ω = obs Ω(u), σ = obs Σ(u) in

σ ∈ ω ∧ 20.
let cs = obs Cs(u) in

∀ (c,c′):P • (c,c′) ∈ ∪ ω ⇒ {c,c′} ⊆ obs Cs(u)
end end

24. wf R: R′ → Bool

wf R(r) ≡
len r > 0 ∧
∀ i:Nat • i ∈ inds r let (u,(c,c′)) = r(i) in

(c,c′) ∈
⋃

obs Ω(u) ∧ i+1 ∈ inds r ⇒
let (,(c′′,)) = r(i+1) in c′ = c′′ end end

25. open R: R → Bool

open R(r) ≡
∀ (u,p):U×P • (u,p) ∈ elems r ∧ p ∈ obs Σ(u)

27. wf Mov: Mov → Bool

wf Mov(m) ≡ card dom m ≥ 2 ∧
∀ t,t′:T • t,t′ ∈ dom m ∧ t < t′

∧ adjacent(t,t′) ⇒
let (r,r′) = (m(t),m(t′))

(u,p):U×P • p ∈
⋃

obs Ω(u) in

28a. (ld(r,r′,(u,p)) ∨ 28b. rd(r,r′,(u,p)) ∨
28c. la(r,r′,(u,p)) ∨ 28d. ra(r,r′,(u,p)) ∨
28e. ldra(r,r′,(u,p))∨ 28f. rdla(r,r′,(u,p))∨
28g. r=r′) ∧ wf R(r′)

end

adjacent: T × T → Bool

adjacent(t,t′) ≡ ∼∃ t′′:T • t′′ ∈ dom m ∧ t < t′′ < t′

ld,rd,la,ra,ldra,rdla: R × R × P → Bool

ld(r,r′,(u,p)) ≡ r′ = tl r pre len r>1
rd(r,r′,(u,p)) ≡ r′ = fst(r) pre len r>1
la(r,r′,(u,p)) ≡ r′ = 〈(u,p)〉̂r
ra(r,r′,(u,p)) ≡ r′ = r̂〈(u,p)〉
ldra(r,r′,(u,p)) ≡ r′ = tl r̂〈(u,p)〉
rdla(r,r′,(u,p)) ≡ r′ = 〈(u,p)〉̂fst(r)

fst: R
∼

→ R′

fst(r) ≡ 〈 r(i) | i in 〈1..len r−1〉 〉

So the above models that rail units change state. What makes rail units change state ? Well, firstly,
external stimuli may change the state of a switch or a crossover switch; secondly signals, in stations
and along lines imply the closing of sequences of units. Thirdly these signals and switches are according
to certain rail line and station switch interlocking protocols. How the latter protocols are specified will
be the subject of the next subsection, Sect. 7.2 and of Sect. 8.

7.2 The Petri Net Part (MP+CKM)

We shall, in this section, model one set of proper interlocking control requirements. We shal do so by
means of Petri Nets. There are other ways of doing that: [52–55] uses ccs ([51]), [39, 3] uses Z ([70, 70,
76]), [69] uses CSP ([33, 66, 68]), and [47, 28] uses RAISE, and so forth. Others have used Petri Nets: [4,
5, 72]. What we shal show is another approach.

We shall be using Place Transition Nets for our example.

13

Route Descriptions: Since interlocking has to do with setting up proper routes from station approach
(“line departure”) signals to platform (ec.) tracks, and from these to the lines connecting to other
stations, we shall focus on constructing, for all such “interesting” routes of a station a Petri Net that
models a proper interlocking control scheme.

Routes are described in terms of Units, Switches and Signals. In the previous section (Sect. 7.1)
formulas 23 and 24 defined routes as sequences of pairs of units and paths, such that the path of a
unit/path pair is a possible path of some state of the unit, and such that “neighbouring” connectors
are identical. There can be many such routes in a station. We are interested only in routes which start
at an approach signal and ends either at the track or on the line. In the example station of Fig. 4 there
are 16 such routes.

Fig. 4. Example Station

Interlocking Tables: Now, depending on the local, or national traditions and rules & regulations, there
are such rules & regulations which stipulate how signals and switches are to be set (and reset) in order
to facilitate the safe movement of trains within a station.

One can formalise such rules (see, for example, [39]). From a mechanisation of such a formalisation
and from the specific topology of a station layout, for example that abstracted in Fig. 4, one can then
construct an interlocking table, such as for example the one given Table 1. Each row in this table
corresponds to a proper route. The table expresses for each interesting route the requirements for
switches (points and switchable crossovers) and the requirements for signal states. The table also lists
all units which compose the route. If there are no requirements on the setting of switch or signal, it
is marked with dash (–). In this paper, we do not show, how to formally construct such table, but we
refer to [21, 39, 22, 69].

Requirements: Switches Signals Units
Routes sc1 p2 p3 p4 p6 Sig1L Sig2L SigL1 SigL2 SigL3 SigR SigR1 SigR2 SigR3

1. Sig1L − 1 S – S – – G – – – – – R – R u2, u4, u7

2. Sig1L − 3 T – S – – G – – – – – R – R u2, u4, u5, u8

3. Sig2L − 1 T – T – – R G – – – – R R R u1, u3, u4, u7

4. Sig2L − 2 – – S – – – G – – – – – R – u1, u3, u6

5. Sig2L − 3 S – T – – R G – – – – R R R u1, u3, u4, u5, u8

6. SigL1 − Y – S – S S – – G R R R – – – u10, u13, u14

7. SigL2 − Y – T – S S – – R G R R – – – u9, u10, u13, u14

8. SigL3 − Y – – – T T – – R R G R – – – u11, u13, u14

9. SigR − 1 – S – S S – – R R R G – – – u13, u10, u7

10. SigR − 2 – T – S S – – R R R G – – – u13, u10, u9, u6

11. SigR − 3 – – – T T – – R R R G – – – u13, u10, u11, u8

12. SigR1 − X1 S – S – – R – – – – – G – R u4, u2

13. SigR1 − X2 T – T – – R R – – – – G R R u4, u3, u1

14. SigR2 − X2 – – S – – – R – – – – – G – u3, u1

15. SigR3 − X1 T – S – – R – – – – – R – G u5, u4, u2

16. SigR3 − X2 S – T – – R R – – – – R R G u5, u4, u3, u1

Table 1. Interlocking Table for Routes through the Example Station

14

We can now start to build up Petri Nets for a partial railway net from four subparts: Petri Net for
a Unit, for a Switch (ie., Point or Switchable Crossover), for a Signal, and Petri Net for a Route. Pls.
observe that all units have a basic Petri Net. Additionally Switches have additional basic Petri Nets —
as we shall soon see. And, finally, although Routes are basically sequences of Units, also Routes have
their separate basic Petri Nets. The Petri Net of a Route is then a composition of all its Unit, all its
Switch, and all its Signal Petri Nets — where the composition is specified by the Interlocking Table.

Petri Net for Units: A Unit can be in two basic states. It is either free (a new route can be opened
through the unit) or not (ie., blocked, there is an already opened route through the unit).

The Petri Net for Units is shown in Fig, 5(a). Two places represent the two states Free and Blocked.
The initial marking consists of a token at the Free place.

One can notice, that Petri Net for a Unit in Fig. 5(a) will interminably circulate (“oscillate”). But
this is not the final Petri Net for a route. It is just one component. Later on, extra arcs will be added.
They will prevent “oscillations”.

Petri Net for Switches: A Switch can be either a point or switchable-crossover. A typical switch has
two states: Straight and Turn. A switch may be required to be set in certain state in two ways: as
a direct part of a route, or because it must be set for side protection (to avoid trains touching each
other). In the both cases, if there is a open route through switches, these switches must never change
their states.

Fig. 5. Petri Nets for (a) Units, (b) Switches, (c) Signals, and (d) Routes

Thus the Petri Net for a switch has two places representing the two mentioned states Straight and
Turn. The initial marking consists of n tokens at the Straight place, where n is the total number of
routes which require settings of that switch. This number can be found from the Interlocking Table
(here Table 1) as a count of required setting in the switch column. For the example station in Fig. 4,
one finds that for switchable–crossover sc1, n is 8; for point p2, n is 4; etc.

The switch can change state if and only if all n tokens are available. Later on, when the whole
Petri Net will be constructed, open routes though the switch cause decreases of switch token numbers.
This will ensure that the switch can only change its state when no route — that requires the actual
state — is active. But still the switch can be part of several routes, as long as these routes require the
switch to be in the same state. These requirements are captured by the Petri Net in Fig. 5(b).

Petri Net for Signals: A signal has two states: Hold and Proceed6. The Petri Net for a signal has two
places representing the two settings Hold and Proceed. The initial marking consists of m tokens at the
Hold place, where m is the number of routes which require setting of that signal. With Table 1, for
the example station in Fig. 4, one finds that for for signal Sig1L, m is 8, for signal Sig2L, n is 6, etc.

The signal can only change setting if all m tokens are available. This will ensure that the signal
can only change its state when no route that requires the actual state is active; but still the signal
can be part of several routes, as long as these routes require the signal to be in the same state. These
requirements are captured by the Petri Net in Fig. 5(c).

6 This is a simplistic view – a real signal is able to indicate the speed with which it may be passed.

15

Petri Net for Routes: In formula 25 of Sect. 7.1 you can find that routes can be open or close. A route
can be open only when all its requirements on switch settings, signal settings and units occupancies
are fulfilled.

The Petri Net for a route also has two places representing the two states: Open and Closed. The
initial marking consists of one token at the Closed place. The basic Petri Net for a route is shown in
Figure 5(d). This corresponds to the route that has no requirements on switches, signals or units.

Construction of Petri Net for Interlocking Tables: In this paragraph we will show, how to construct
the Petri Net, for the interlocking table of a station, from the four components already described
(unit, switch, signal and route). This Petri Net will be made by adding extra pairs of arcs for each
requirement between these components.

The example station of Fig. 4 will be composed by these components: 16 Petri Nets for routes, 14
Petri Nets for units, 5 Petri Nets for switches and 9 Petri Nets for signals — the station shown has
these numbers.

A route can be open, when all units, that the route is composed from, are free (not occupied by
train or blocked by another route in the station). To satisfy this requirement, between each route Petri
Net and all unit Petri Nets that make up the route, a pair of arcs needs to added. Fig. 6.A shows how.

(A) (B) (C)

Fig. 6. Arc additions for Route (A) Units, (B) Switches and (C) Signals

For each switch requirement it must be ensured that the switch cannot change state while the route
thought that switch is open. To satisfy this requirement, between each route Petri Net and all switch
Petri Nets of that route, a pair of arcs have to be added. The particular insertion of arcs depend on
the required state of the switch (as given in the Interlocking table). This insertion is captured in the
Petri Net of Fig. 6.B. Note, that in the figure it is assumed the route requires the switch to be set to
the Turn state. The case for Straight follows.

The signal can be in Proceed state only and only if the route that starts at the signal is open.
How to add a pair of arcs for a signal is illustrated in Figure 6.C. This is clearly the pre–condition for
opening the route, the same as the pre–condition for adding switches.

Summary: The full Petri net for the example railway station and interlocking table thus contains 16
Petri Nets for routes, 14 Petri Nets for units, 5 Petri Nets for switches, and 9 Petri Nets for signals. The
interlocking table then dictates “zillions” of arcs to be inserted — so many that “readable” diagrams
become impossible. Clearly, though, a case for tools. These tools can then create the complete control
program, based on Petri Nets, for a station, and can check for liveness, deadlock, etc.

7.3 Integrating RAISE and Petri Nets

In [48]7 RSL models are given of the static and the dynamic semantics of Condition Event, Place
Transition and Coloured Petri Nets. In ongoing work we are, amongst many other things, exploring
the usefulness of translating Petri Nets to RSL for control purposes [2].

7 See http://www.krog-madsen.dk/page.php?id=10

16

8 RAISE with Live Sequence Charts and Statecharts (CKM+MP)

Live Sequence Charts (LSCs) derive from Message Sequence Charts: [12, 42, 43, 50, 44, 64, 63, 34, 35]
and are first proposed in [13] and further studied in [40, 31].

In [48, 49]8 RSL, respectively process algebraic models are given of Message and of Live Sequence
Charts and of their relation to RSL.

Statecharts were introduced by and in: [23, 24, 26, 27, 25].
In [48, 49]9 models are given of Statecharts in, and of their relation to RSL.
Live Sequence Charts (on one hand) are used to specify the sequences of communication, i.e. the

protocol, between two or more entities. These may be physical phenomena, processes, objects, etc.
Statecharts (on the other hand) are used to describe the sequences of states an entity may pass

through in response to external stimuli.
When combined, these two methods specify both the external behaviour (LSC) and the internal

behaviour (Statechart) of an entitiy.

8.1 Problem Description

The most important safety property of a railway line is that two trains are not allowed to move in
opposite directions on that line. In order to ensure that the two stations at either end of the line agree
on the direction trains are allowed to move at a given time. What is called a Line Direction Agreement
System (LDAS) is thus introduced.

If a station wants to send a train along the line, it must first check with the LDAS if the line is
open in the required direction. If so, the train may proceed along the line. If not, the opposite station
must agree to changing the direction. This is only possible if there are currently no trains en–route.

8.2 External Communication: LSCs

The externally visible behaviour of the LDAS is illustrated using Live Sequence Charts. The three
entities are Station A (SA), the Line Direction Agreement System (LDAS) and Station B (SB). In
addition, the station managers are represented using the notation traditionally used for UML actors.

The charts in Figure 7(a) illustrate the situation when the LDAS has been turned off. One of the
stations asks the LDAS to open the line, and the LDAS passes the request on to the other station,
awaiting a response. The process of reversing the direction of the line is similar, see Figure 7(b).

If the station manager approves the request to reverse the direction, the LDAS will instruct the
stations to open, respectively, close their end of the line, thus effecting the direction reversal, see
Figure 7(c).

If the station manager rejects the request to reverse the direction, the LDAS will notify the re-
questing station to keep its end of the line closed, see Figure 7(d).

8.3 Internal Behaviour: Statecharts

The internal behaviour of the LDAS is illustrated by a Statechart, see Figure 8. The LDAS has some
initial state called DEAD, in which no direction along the line is open. This state can only occur when
the LDAS is powered up after having been shutdown (due to a failure or emergency stop). The LDAS
stays in the initial state until a request to open the line in either the A to B or B to A direction arrives
in the form of the InitAB or InitBA signals. Next, the opposite station will send an Agree or Disagree
signal to either approve or veto the opening of the line. If the opening is vetoed, the LDAS returns to
the DEAD state. If the opening is approved, the LDAS moves into a state where the line is open in
one direction, represented by LockedAB or LockedBA. The station whose end of the line is closed may
request the direction to be reversed by sending the AskChange signal to the LDAS. The LDAS passes
the request on to the other station, awaiting the response. If it is approved, the LDAS moves into the
state where the opposite direction is locked.

8 See http://www.krog-madsen.dk/page.php?id=10
9 See http://www.krog-madsen.dk/page.php?id=10

17

(a)

(b)

(c)

(d)

Fig. 7. (a) Initial LDAS, (b) Request Direction Reversal, (c) Request Approval (d) Request Rejection

Fig. 8. Statechart for LDAS

18

8.4 Relation to RSL Model, Satisfaction Relation

The LSC and the Statechart models prescribe requirements to an orderly protocol aiming at a secure
change of line direction. That is: That protocol is not specified in terms of RSL, but as shown, by the
diagrams. Still the RSL model “survives”: The actions and the state changes implied by the diagrams
and to be effected, can now be individually prescribed in RSL. These RSL prescriptions are rather
directly concerned with the setting of states (ie., signals) as expressed in the dynamic model of the
railway net states.

In [2], and based on the work of [48, 49] we shall explore tools for translating Lice Sequence Charts
(LSCs) and Statecharts (SCs) into RSL.

In [48] it is shown how to establish and verify a criterion of correctness, ie., a satisfaction relation,
between LSC and SC specificatioms, on one hand, and RSL specifications on the other hand. To express
and prove this satisfaction relation, as is noted in [48], clearly needs tool support.

9 Review and Future “Challenges”

9.1 Some Review Comments

The present paper has but shown a number of examples. We claim that several of these link two or
more “formalisms”. Yet not much, really, was said about it (except in Sect. 6.2). To properly “link–up”
is a nice “challenge” — one which is next for several of us. [48] (based on ideas of [30, 29]) provides
several such “link–ups”.

9.2 A Research Programme: Challenge #1

In Sect. 1.2 we mentioned: [75, 17, 14, 32, 19, 11, 60, 77, 49, 48, 65] as indicative of the research in the
“integration” area. We have mostly followed ideas of George and Haxthausen [29]. These, many other
publications, and annual conferences, IFMs: Integrating Formal Methods, together amply cover the
problem area touched upon in this paper. We see it as a Grand Challenge, as a “Man on Mars” project:
To device, ie., to research and develop a complementary set of formal specification languages (SLs),
with comprehensive, cross–SL proof systems, that “covers the ground”. A 20+ year challenge !

9.3 A Software Engineering Programme: Challenge #2

But all this, ie., the R&D hinted at in Sect. 9.2, is in vain if industry, the developers of software, do not
take software (and, in general hardware + software) development seriously. So, commensurate with
advances in our ability to actually develop provably correct, pleasing and effective computing systems,
goes, hand–in–hand, the task, the pedagogic, didactive, educational, training and socio–economically
based challenge of making sure that the software (etc.) engineering graduates that have been taught
this ability, also actually deploy their skills, responsibly, when in industry. Another Grand Challenge,

another “Man on Mars” project. Another, or the same 20 years, to turn our industry into a responsible
one ?

9.4 Acknowledgements

The first author acknowledges, with thanks his co–authors with whom it is a joy to work. Thanks are
also due the organisers of INT 2004, the Third International Workshop on Integration of Specification

Techniques for Applications in Engineering, Barcelona, Spain, March 28, 2004, namely the partners
in the German Research Council’s Priority Programme of the Integration project alluded to above. In
particular the first author’s thanks goes to Prof. Wolfgang Reif of Augsburg for inviting him to write
and present this paper. It’s been a very worthwhile and “revealing” effort !

19

References

1. Jean-Raymond Abrial. The B Book: Assigning Pro-
grams to Meanings. Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cam-
bridge, England, 1996.

2. Steffen Andersen and Steffen Holmslykke. “UML–
ised” Formal Tools for the RAISE Tool Set. M.Sc.
Thesis Project, Department of Computer Science
and Engineering, Institute of Informatics and Math-
ematical Modelling, Technical University of Den-
mark, Building 322, Richard Petersens Plads, DK–
2800 Kgs.Lyngby, Denmark, 2004–2005 2003. Pre–
MSc Thesis project: Spring 2004 Lyngby; main M.Sc.
Thesis Project Fall/Winter 2004/2005 UNU–IIST
Macau / NUS Singapore.

3. Ales J. Anot. Using Z Specification for Railway In-
terlocking Safety. Periodica Polytechnica, Transport
Engineering Series vol.28, no. 1–2, pp 39–53, De-
partment of Information and Safety Systems Faculty
of Electrical Engineering University of Zilina, Vel’ký
diel, Zilina 010 26, Slovak Republic, 2000. .

4. Gérard Berthelot and Laure Petrucci. Specifica-
tion and validation of a concurrent system: an ed-
ucational project. International Journal on Soft-
ware Tools for Technology Transfer, 3(4):372–381,
September 2001. Special section on the practical
use of high-level Petri Nets.

5. J. Billington and C. Janczura. Removing Deadlock
from a Railway Network Specification. In Australian
Engineering Mathematics Conference (AEMC’96),
pages 193–200, Sydney, Australia, July 1996. (Aus-
tralian Engineering Mathematical Society ?).

6. Dines Bjørner. Formal Software Techniques in
Railway Systems. In Eckehard Schnieder, editor,
9th IFAC Symposium on Control in Transportation
Systems, pages 1–12, Technical University, Braun-
schweig, Germany, 13–15 June 2000. VDI/VDE-
-Gesellschaft Mess– und Automatisieringstechnik,
VDI-Gesellschaft für Fahrzeug– und Verkehrstech-
nik. Invited talk.

7. Dines Bjørner. Dynamics of Railway Nets: On an
Interface between Automatic Control and Software
Engineering. In CTS2003: 10th IFAC Symposium on
Control in Transportation Systems, Oxford, UK, Au-
gust 4-6 2003. Elsevier Science Ltd. Symposium held
at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki.

8. Dines Bjørner, Chris W. George, and Søren Prehn.
Computing Systems for Railways — A Rôle for Do-
main Engineering. Relations to Requirements Engi-
neering and Software for Control Applications. In
Integrated Design and Process Technology. Editors:
Bernd Kraemer and John C. Petterson, P.O.Box
1299, Grand View, Texas 76050-1299, USA, 24–28
June 2002. Society for Design and Process Science.

9. Dines Bjørner, C.W. George, and S. Prehn. Schedul-
ing and Rescheduling of Trains, chapter 8, pages
157–184. Industrial Strength Formal Methods in
Practice, Eds.: Michael G. Hinchey and Jonathan P.

Bowen. FACIT, Springer–Verlag, London, England,
1999.

10. Grady Booch, Jim Rumbaugh, and Ivar Jacob-
son. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

11. Robert Büssow, Robert Geisler, and Marcus Klar.
Specifying safety-critical embedded systems with
Statecharts and Z: A case study. In E. Astesiano, ed-
itor, Fundamental Approaches to Software Engineer-
ing: First International Conference, FASE’98, Held as
Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS’98, Lisbon, Por-
tugal, March/April 1998, volume 1382 of Lecture
Notes in Computer Science, pages 71–87. Springer-
Verlag, 1998.

12. CCITT. CCITT Recommendation Z.120: Message
Sequence Chart (MSC), 1992.

13. Werner Damm and David Harel. LSCs: Breath-
ing life into Message Sequence Charts. Formal
Methods in System Design, 19:45–80, 2001. Early
version appeared as Weizmann Institute Tech. Re-
port CS98-09, April 1998. An abridged version ap-
peared in Proc. 3rd IFIP Int. Conf. on Formal
Methods for Open Object-based Distributed Systems
(FMOODS’99), Kluwer, 1999, pp. 293–312.

14. Clemens Fischer. CSP-OZ: A combination of Object-
Z and CSP. Technical Report TRCF-97-2, Universitt
Oldenburg, 1997.

15. John Fitzgerald and Peter Gorm Larsen. Software
System Design: Formal Methods into Practice. Cam-
bridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, 1997. To appear.

16. Ana Funes and Chris W. George. Formal Founda-
tions in RSL for UML Class Diagrams. Research Re-
port 253, UNU/IIST, P.O. Box 3058, Macau, May
2002. Published as chapter VIII Formalizing UML
Class Diagrams of UML and the Unified Process,
Liliana Favre (ed.).

17. A. Galloway. Integrated Formal Methods. PhD the-
sis, University of Teeside, 1996.

18. Chris W. George and Yong Xia. An Operational Se-
mantics for Timed RAISE. In Jeannette M. Wing,
Jim Woodcock, and Jim Davies, editors, FM’99 —
Formal Methods, pages 1008–1027. FME, Springer–
Verlag, 1999.

19. W. Grieskamp, M. Heiseland, and H. Dörr. Spec-
ifying embedded systems with Statecharts and Z:
An agenda for cyclic software components. In
E. Astesiano, editor, Fundamental Approaches to
Software Engineering: First International Confer-
ence, FASE’98, Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March/April 1998, vol-
ume 1382 of Lecture Notes in Computer Science,
pages 88–106. Springer-Verlag, 1998.

20. Object Management Group. OMG Unified
Modelling Language Specification. OMG/UML,
http://www.omg.org/uml/, version 1.5 edition,
March 2003. www.omg.org/cgi-bin/doc?formal/03-
03-01.

20

21. Kirsten Mark Hansen. Validation of a railway inter-
locking model. In M. Bertran M. Naftalin, T. Denvir,
editor, FME’94: Industrial Benefit of Formal Meth-
ods, pages 582–601. Springer-Verlag, October 1994.

22. K.M. Hansen. Linking Safety Analysis to Safety Re-
quirements. PhD thesis, Department of Computer
Science, Technical University of Denmark, Building
344, DK-2800 Lyngby, Denmark, August 1996.

23. David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8(3):231–274, 1987.

24. David Harel. On visual formalisms. Communications
of the ACM, 33(5), 514–530 1988.

25. David Harel and Eran Gery. Executable object mod-
eling with Statecharts. IEEE Computer, 30(7):31–
42, 1997.

26. David Harel, Hagi Lachover, Amnon Naamad, Amir
Pnueli, Michal Politi, Rivi Sherman, Aharon Shtull-
Trauring, and Mark B. Trakhtenbrot. STATEM-
ATE: A working environment for the development
of complex reactive systems. Software Engineering,
16(4):403–414, 1990.

27. David Harel and Amnon Naamad. The STATEM-
ATE semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology (TOSEM),
5(4):293–333, 1996.

28. A. Haxthausen and T. Gjaldbæk. Modelling and Ver-
ification of Interlocking Systems for Railway Lines. In
10th IFAC Symposium on Control in Transportation
Systems, Tokyo, Japan, August 4–6 2003.

29. Anne Haxthausen. Some approaches for integra-
tion of specification techniques (invited extended ab-
stract), 2000.

30. Anne Haxthausen and Yong Xia. Linking DC to-
gether with TRSL. In Proceedings of 2nd Inter-
national Conference on Integrated Formal Methods
(IFM’2000), Schloss Dagstuhl, Germany, November
2000, number 1945 in Lecture Notes in Computer
Science, pages 25–44. Springer-Verlag, 2000.

31. Patrick Heymans and Yves Bontemps. Turning
high-level Live Sequence Charts into automata. In
Tarja Systa and Albert Zundorf, editors, Proceed-
ings of the First International Workshop on Scenarios
and State Machines (SCESM), (ICSE’02 workshop),
2002.

32. C. A. R. Hoare and Jifeng He. Unifying Theories of
Programming. Prentice-Hall, 1998.

33. C.A.R. Hoare. Communicating Sequential Processes.
C.A.R. Hoare Series in Computer Science. Prentice-
Hall International, 1985.

34. ITU-T. ITU-T Recommendation Z.120: Message Se-
quence Chart (MSC), 1996.

35. ITU-T. ITU-T Recommendation Z.120: Message Se-
quence Chart (MSC), 1999.

36. Ivar Jacobson, Grady Booch, and Jim Rum-
baugh. The Unified Software Development Process.
Addison-Wesley, 1999.

37. Kurt Jensen. Coloured Petri Nets – Basic Concepts,
Analysis Methods and Practical Use, Volume 1 Ba-

sic Concepts. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1992.

38. Ekkart Kindler, Wolfgang Reisig, Hagen Volzer, and
Rolf Walter. Petri net based verification of dis-
tributed algorithms: An example. Formal Aspects
of Computing, 9(4):409–424, 1997.

39. T. King. Formalising British Rail’s Signalling
Rules. In M. Bertran M. Naftalin, T. Denvir, edi-
tor, FME’94: Industrial Benefit of Formal Methods,
pages 45–54. Springer-Verlag, October 1994.

40. Jochen Klose and Hartmut Wittke. An automata
based interpretation of Live Sequence Charts. In
T. Margaria and W. Yi, editors, TACAS 2001, LNCS
2031, pages 512–527. Springer-Verlag, 2001.

41. Lars M. Kristensen, Soren Christensen, and Kurt
Jensen. The practitioner’s guide to Coloured Petri
Nets. International Journal on Software Tools for
Technology Transfer, 2(2):98–132, 1998.

42. Peter B. Ladkin and Stefan Leue. Analysis of Mes-
sage Sequence Charts. Technical Report IAM 92-
013, Institute for Informatics and Applied Mathemat-
ics, University of Berne, Bern, Switzerland, 1992.

43. Peter B. Ladkin and Stefan Leue. What do Message
Sequence Charts mean? In FORTE, pages 301–316,
1993.

44. Peter B. Ladkin and Stefan Leue. Interpreting Mes-
sage Flow Graphs. Formal Aspects of Computing,
7(5):473–509, 1995.

45. L. Li and Jifeng He. A denotational semantics of
Timed RSL using Duration Calculus. Research Re-
port 168, UNU/IIST, P.O.Box 3058, Macau, 1999.
Published in Proceedings of The Sixth International
Conference on Real-Time Computing Systems and
Applications (RTCSA’99), pp. 492-503, IEEE Com-
puter Society Press.

46. L. Li and Jifeng He. Towards a denotational seman-
tics of Timed RSL using Duration Calculus. Research
Report 161, UNU/IIST, P.O.Box 3058, Macau, April
1999. Accepted for publication by Chinese Journal
of Advanced Software Research.

47. Morten Peter Lindegaard, Peter Viuf, and Anne Hax-
thausen. Modelling Railway Interlocking Systems. In
Proceedings of the 9th IFAC Symposium on Control
in Transportation Systems 2000, June 13-15, 2000,
Braunschweig, Germany, pages 211–217, 2000.

48. Christian Krog Madsen. Integration of Specifica-
tion Techniques. M.Sc. Thesis Project, Department
of Computer Science and Engineering, Institute of
Informatics and Mathematical Modelling, Technical
University of Denmark, Building 322, Richard Pe-
tersens Plads, DK–2800 Kgs.Lyngby, Denmark, 30
November 2003.

49. Christian Krog Madsen. Study of Graphical and
Temporal Specification Techniques. Pre–Thesis
Project, Department of Computer Science and En-
gineering, Institute of Informatics and Mathemat-
ical Modelling, Technical University of Denmark,
Building 322, Richard Petersens Plads, DK–2800
Kgs.Lyngby, Denmark, June 2003.

21

50. S. Mauw and M. A. Reniers. An algebraic semantics
of basic Message Sequence Charts. The Computer
Journal, 37(4):269–277, 1994.

51. R. Milner. Communication and Concurrency. C.A.R.
Hoare Series in Computer Science. Prentice Hall,
1989.

52. M.J. Morley. Modelling British Rail’s Interlock-
ing Logic: Geographic Data Correctness. Technical
Report ECS-LFCS-91-186, University of Edinburgh,
1991.

53. M.J. Morley. Safety in railway signalling data: A be-
havioural analysis. In J. Joyce and C. Seger, editors,
Proc. 6th annual workshop on higher order logic and
its applications, Vancouver, 4-6 August, pages 465–
474. Springer–Verlag Lecture Notes in Computer Sci-
ence, Vol.780, 1993–4.

54. M.J. Morley. Safety Assurance in Interlocking De-
sign. PhD thesis, University of Edinburgh, 1996.

55. M.J. Morley. Safety-level communication in railway
interlockings. Science of Computer Programming,
29(1-2):147–170, July 1997.

56. Carl Adam Petri. Kommunikation mit Auto-
maten. Bonn: Institut für Instrumentelle Mathe-
matik, Schriften des IIM Nr. 2, 1962.

57. Martin Pěnička, Albena Kirilova Strupchanska,
and Dines Bjørner. Train Maintenance Rout-
ing. In FORMS’2003: Symposium on Formal Meth-
ods for Railway Operation and Control Systems.
L’Harmattan Hongrie, 15–16 May 2003. Conf. held
at Techn.Univ. of Budapest, Hungary. Editors: G.
Tarnai and E. Schnieder, Germany.

58. RAISE Language Group. The RAISE Specification
Language. BCS Practitioner Series. Prentice Hall
Int., 1992.

59. RAISE Method Group. The RAISE Development
Method. BCS Practitioner Series. Prentice Hall Int.,
1995.

60. G. Reggio and L. Repetto. Casl-Chart: A combina-
tion of Statecharts and of the algebraic specifica-
tion language Casl. Technical Report DISI-TR-00-2,
DISI, Università di Genova, 2000.

61. W. Reisig. Elements of Distributed Algorithms: Mod-
elling and Analysis with Petri Nets. Springer Verlag,
1998.

62. Wolfgang Reisig. A Primer in Petri Net Design.
Springer-Verlag, 1992.

63. M. Reniers. Static semantics of Message Sequence
Charts, 1995.

64. M.A. Reniers. Syntax requirements of Message Se-
quence Charts. In R. Braek and A. Sarma, editors,
Proceedings of the 7th SDL Forum, 1995.

65. Martin-Große Rhode. Semantic Integration of Het-
erogeneous Software Specifications. Monographs in
Theoretical Computer Science. An EATCS Series.
Springer–Verlag, Heidelberg and Berlin, Germany,
2004.

66. A.W. Roscoe. Theory and Practice of Concurrency.
C.A.R. Hoare Series in Computer Science. Prentice–
Hall, 1997.

67. Jim Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

68. Steve Schneider. Concurrent and Real–time Sys-
tems — The CSP Approach. Worldwide Series in
Computer Science. John Wiley & Sons, Ltd., Baffins
Lane, Chichester, West Sussex PO19 1UD, England,
January 2000.

69. A.C. Simpson, J.C.P. Woodcock, and J.W. Davies.
The mechanical verification of Solid State Interlock-
ing geographic data. In L. Groves and S. Reeves, ed-
itors, Proceedings of Formal Methods Pacific, pages
223–242, Wellington, New Zealand, 9–11 July 1997.
Springer–Verlag.

70. J. M. Spivey. Understanding Z: A Specification
Language and its Formal Semantics, volume 3 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, January 1988.

71. Albena Kirilova Strupchanska, Martin Pěnička,
and Dines Bjørner. Railway Staff Rostering.
In FORMS2003: Symposium on Formal Meth-
ods for Railway Operation and Control Systems.
L’Harmattan Hongrie, 15–16 May 2003. Conf. held
at Techn.Univ. of Budapest, Hungary. Editors: G.
Tarnai and E. Schnieder, Germany.

72. W.M.P. van der Aalst and M.A. Odijk. Analysis of
railway stations by means of interval timed colored
Petri Nets. Real-Time Systems, 9(3):241–263, 1995.
.

73. Jos Warmer and Anneke Kleppe. The Object
Constraint Language: Precise Modeling with UML.
Addison-Wesley Publ. Co., October 13 1998. 144
pages, ASIN: 0201379406, Paperback.

74. Jos Warmer and Anneke Kleppe. The Object Con-
straint Language: Getting Your Models Ready for
MDA. Addison-Wesley Publ. Co., 2nd edition, Au-
gust 29 2003. 240 pages, ISBN: 0321179366, Pa-
perback.

75. M. Weber. Combining Statecharts and Z for the de-
sign of safety-critical control systems. In M. Gaudel
and J. Woodcock, editors, FME 96: Industrial Bene-
fit and Advances in Formal Methods, volume 1051 of
Lecture Notes in Computer Science, pages 307–326.
Springer-Verlag, 1996.

76. J. C. P. Woodcock and J. Davies. Using Z: Speci-
fication, Proof and Refinement. Prentice Hall Inter-
national Series in Computer Science, 1996.

77. J. C. P. Woodcock and Arthur Hughes. Unifying
theories of parallel programming. In Chris George
and H. Miao, editors, Formal Methods and Software
Engineering: 4th International Conference on Formal
Engineering Methods, ICFEM 2002 Shanghai, China,
volume 2495 of Lecture Notes in Computer Science,
pages 24–37. Springer-Verlag, October 21–25 2002.

78. Wang Yi. A Calculus of Real Time Systems. PhD
thesis, Department of Computer Sciences, Chalmers
University of Technology, Göteborg, Sweden, 1991.

79. Chaochen Zhou and Michael R. Hansen. Duration
Calculus: A Formal Approach to Real–time Systems.

22

Monographs in Theoretical Computer Science. An
EATCS Series. Springer–Verlag, 2004.

80. Chaochen Zhou, C.A.R. Hoare, and A.P. Ravn. A
Calculus of Durations. Information Proc. Letters,
40(5), 1992.

