
Domain Engineering

Dines Bjørner∗

Section on Computer Science and Engineering, Department of Informatics and
Mathematical Modelling (IMM), Technical University of Denmark (DTU),
DK-2800 Kgs. Lyngby, Denmark. bjorner@gmail.com

Before software can be designed we must know its requirements. Before require-
ments can be expressed we must understand the domain. So it follows, from
our dogma, that we must first establish precise descriptions of domains; then,
from such descriptions, “derive” at least domain and interface requirements; and
from those and machine requirements design the software, or, more generally, the
computing systems.

The preceding was an engineering dogma. Now follows a science dogma:
Just as physicists have studied this universe for centuries (and more), and will

continue to do so for centuries (or more), so it is about time that we also study
such man-made universes as air traffic, the financial service industry, health care,
manufacturing, “the market”, railways, indeed transportation in general, and so
forth. Just in-and-by-themselves. No need to excuse such a study by stating only
engineering concerns. To understand is all. And helps engineering.

In the main part of this chapter, Sect. 4, we shall outline what goes into
a domain description2. We shall not cover other domain stages such as stake-
holder identification (etc.), domain acquisition, analysis of domain acquisition
units, domain verification, and domain validation. That is: before we can ac-
quire domain knowledge we must know what are suitable structures of domain
descriptions. Thus we shall outline ideas of modelling (i) the intrinsics (of a
domain), (ii) the support technologies (of ...), (iii) the management and organ-
isation (of ...), (iv) the rules and regulations (including [licence or contract]
scripts) (of ...), and (v) the human behaviours (of a domain).

Before delving into the main part we shall, however first overview what
we see as basic principles of describing phenomena and concepts of domains.

∗ Professor Emeritus
2 We shall use the following three terms: description when we specify what there

is (as for domains), prescription when we specify what we would like there to be
(as for requirements), and specification when we specify software (or hardware)
designs.

2 Dines Bjørner

At the basis of all modelling work is abstraction. Mathematics is a re-
liable carrier of abstraction. Hence our domain modelling will be presented
both as informal, yet short and precise, that is, concise narratives as well as
formal specifications. In this chapter we primarily express the formalisations
in the RAISE [26] specification language, RSL [24]. We refer to [5, 6] for a
comprehensive coverage of formal abstractions and models.

Two remarks are now in order. Firstly, there are other specification (cum
development or design) languages. For example Alloy [41], ASM [13, 63], B
[1], CafeOBJ [23, 22, 19], CASL [4, 16, 56], VDM-SL [9, 10, 21] and Z [70, 71,
75, 37]. But, secondly, none of these suffices. Each, including RSL, have their
limitations in what they were supposed to express with ease. So one needs to
combine, to integrate either of the above formal notations with for example
the notations of Duration Calculus [77, 78] (DC), Message [38, 39, 40] or Live
Sequence Charts (MSCs and LSCs) [17, 35, 50], Petri Nets [49, 58, 60, 61, 62],
Statecharts [31, 32, 34, 36, 33] (SCs), TLA+ [51, 52, 55] etcetera.

Chapters 12–15 of [6] presents an extensive coverage of Petri Nets, MSCs
and LSCs, SCs and DC, respectively. The present chapter presents an essence
of chapters 5, 6 and 11 of [7].

The forthcoming book ‘Logics of Specification Languages’ [8] covers the
following formal notations ASM, B, CafeOBJ, CASL, DC, RAISE, VDM-SL,
TLA+ and Z. [8] represents an extensive revision of the following published
papers: [63, 15, 19, 56, 25, 55, 37].

1 Introduction

1.1 Application cum Business Domains

By ‘domain’ we shall loosely speaking understand the same as by ‘application
(or business) domain’: a ‘universe of discourse’, ‘an area of human and soci-
etal activity’ for which, eventually some support in the form of computing and
(electronic) communication may be desired. Once computing and communi-
cation, that is, hardware and software, that is, machine, has been installed
then the environment for that machine is the former, possibly business pro-
cess re-engineered3, domain, and the new domain includes the machine. The
machine interacts with its possibly business process re-engineered (former)
domain. But we can speak of a domain without ever thinking, or having to
think about computing (etc.) applications.

Examples of domains are: (i) air traffic, (ii) airports, (iii) the financial
service industry (clients, banks, brokers, securities exchange, portfolio man-
agers, insurance companies, credit card companies, financial service indus-
try watchdogs, etc.), (iv) freight logistics, (v) health care, (vi) manufactur-

3 By ‘business process re-engineered domain’ we mean a domain some of whose
facets have been altered without the changes containing computing or communi-
cation. The changes will normally involve interfacing to the machine being sought.

Domain Engineering 3

ing, and (vii) transportation (air lines, railways, roads (private automobiles,
buses, taxis, trucking), shipping). These examples could be said to be “grand
scale”, and to reflect infrastructure components of a society. Less ‘grand’ ex-
amples of domains are: (viii) the interconnect-cabling and the electronic and
electro-mechanical boxes of, for example electronic equipment; or (ix) the in-
terlocking of groups of rail points (switches) of a railway station; or (x) an
automobile (with all its mechanical, electro-mechanical and electronic parts
and the composition of all these parts, and with the driver and zero, one or
more passengers); or (xi) a set of laws (or just rules and regulations) of a
business enterprise. In all of these latter cases we usually include the human
or technological monitoring and control of these domains.

1.2 Physics, Domains and Engineering

Physics has been studied for millenia. Physicists continue to unravel deeper
and deeper understandings of the physically observable universe around us.
Classical engineering builds on physics. Every aeronautical & aerospace, or
chemical, or civil, or electrical & electronics, or mechanical & control engi-
neer is expected to know all the laws of physics relevant to their field, and
much more; and is expected to model, using various branches of mathemat-
ics (calculus, statistics, probability theory, graph theory, combinatorics, etc.)
phenomena of the domain in which their engineering artifacts are placed (as
well as, of course, these artifacts themselves).

Software engineers sometimes know how to model their own artifacts (com-
pilers, operating systems, database management systems, data communication
systems, web services, etc.), but they seldom, if ever are expected to model,
and they mostly cannot, i.e., do not know how to model, the domain in which
their software operates.

1.3 So: What is a Domain ?

We shall use the three terms ‘domain’, ‘domain description’ and ‘domain
model’ quite extensively in this chapter.

Above we briefly characterised the term ‘domain’: By a domain we shall
loosely speaking understand the same as by an application (or business) do-
main: a universe of discourse, an area of human and societal activity, etc.

By a domain description we mean a pair of descriptions: an informal, nat-
ural, but probably a professional technical language narrative text which de-
scribes the domain as it is and a formal, mathematical text which, supposedly
hand-in-hand with the narrative, formalises this description.

By a domain model we mean that which is designated by a domain de-
scription. Two views can be taken here. Either we may claim that the domain
description designates the domain, i.e., an actual universe of discourse “out
there”, in reality. Or we may — more modestly — say that the domain descrip-
tion, denotes a possibly infinite, possibly empty set of mathematical structures

4 Dines Bjørner

which (each) satisfy the formal description. The former view is taken when
the domain describer is validating the description by asking domain stake
holders whether the description corresponds to their view (conceptualisation)
of the domain (in which they work). The latter view is taken when the domain
describer is building a domain theory, that is, proves theorems that hold of
predicates over the mathematical domain model.

1.4 Relation to Previous Work

Considerations of domains in software development has, of course, always been
there. Jackson, already in [42] and especially in the work [43, 44, 45, 76, 47]
leading up to the seminal [48] has, again and again, emphasized the domain,
or as he calls it, the environment aspects. In classical data analysis — in
preparation for the design of data-based information systems — we find a
strong emphasis on domain analysis. In work on ontology as they relate to
software engineering we likewise find this emphasis, notably on the idiosyn-
cratic [69]. We are not claiming that domain analysis, as part of our domain
engineering approach is new. What we are claiming is that the emphasis we
put on describing, also formally, the domain in isolation from any concern
for requirements, let alone software is new. Of course, as one then goes on
to develop requirements prescriptions from domain descriptions and software
from requirements prescriptions, discrepancies and insufficiences of the base
domain description may very well be uncovered — and must be repaired. We
appreciate the approach taken in Jackson’s Problem Frame approach [48] in
alternating between concerns of domain, requirements and software design.

1.5 Structure of Chapter

In Sect. 2 we briefly express the dogma behind the concept of domain en-
gineering and its role in software development. We likewise briefly, outline
basic stages of development of a domain description, i.e., of domain engineer-
ing. Section 3 outline an ontology of concepts that we claim appear in any
interesting model: entities, functions (or relations), events and behaviours.
A new think here, perhaps, is our treatment of the modelling of entities:
atomic in terms of their attributes and composite in terms of their attributes,
their sub-entities and the composition, which we refer to as the mereology of
these sub-entities. Section 4 forms the major part of this chapter. We present
some high level pragmatic principles for decomposing the task of describing
a domain — in terms of what we call domain facets — and we illustrate
facet modelling by some, what you might think as as low level descriptions.
Section 3 and 4 focused on some aspects of domain abstraction. Section 5
comments on a number of abstraction principles and techniques that are not
covered in this chapter. Basically this chapter assumes a number of (other)
abstraction principles and techniques which we cover elsewhere — notably in
[5, 6] and [7, Chaps. 2–10]. First part of Sect. 6 very briefly indicates how

Domain Engineering 5

one may meaningfully obtain major parts of a requirements prescription from
a domain description. Section 6 also contains a discussion of the differences
between domain engineering and requirements engineering. Section 7 takes up
the motivation and justification for domain engineering.

• • •

A word of warning: This chapter only covers one aspect of domain engi-
neering, namely that of domain facets. There are a number of other aspects of
software engineering which underlie professional domain engineering — such
as (i) general principles of abstraction and modelling, (ii) special principles
of modelling languages and systems, and (iii) other special principles of mod-
elling domains. These are extensively covered in [5], [6] and [7, Chaps.2–10]
respectively.

2 Domain Engineering: The Engineering Dogma

• Before software can be designed we must know its requirements.
• Before requirements can be expressed we must understand the domain.
• So it follows, from our dogma, that we must

– first establish precise descriptions of domains;
– then from such descriptions, “derive” at least domain and interface re-

quirements;
– and from those and machine requirements design the software, or, more

generally, the computing systems.

That is, we propose — what we have practised for many years — that the
software engineering process be composed — and that it be iterated over, in
a carefully monitored and controlled manner — as follows:

• domain engineering,
• requirements engineering, and
• software design.

Each with their many stages and many steps.
We see the domain engineering process as composed from, and iterated

over the following stages:4

1. identification of and regular interaction with stakeholders
2. domain (knowledge) acquisition
3. domain analysis
4. domain modelling
5. domain verification
6. domain validation

4 The requirements engineering stages are listed in Sect. 6.1.

6 Dines Bjørner

7. domain theory formation

In this chapter we shall only look at the principles and techniques of domain
modelling, that is, item 4. To pursue items 2.–3. one must know what goes
into a domain description, i.e., a domain model.

• A major part of the domain engineering process is taken up by finding and
expressing suitable abstractions, that is, descriptions of the domain.

• Principles for identifying, classifying and describing domain phenomena and
concepts are therefore needed.

This chapter focuses on presenting some of these principles and techniques.

3 Entities, Functions, Events and Behaviours

In the domain we observe phenomena. From usually repeated such observa-
tions we form (immediate, abstract) concepts. We may then lift such imme-
diate abstract concepts to more general abstract concepts.

Phenomena are manifest. They can be observed by human senses (seen,
heard, felt, smelled or tasted) or by physical measuring instruments (mass,
length, time, electric current, thermodynamic temperature, amount of sub-
stance, luminous intensity). Concepts are defined.

We shall analyse phenomena and concepts according to the following sim-
ple, but workable classification: entities, functions (over entities), events

(involving changes in entities, possibly as caused by function invocations, i.e.,
actions, and/or possibly causing such), and behaviours as (possibly sets of)
sequences of actions (i.e., function invocations) and events.

3.1 Entities

• By an entity we shall understand something that we can point to, something
manifest, or a concept abstracted from such phenomena or concepts.

Entities are either atomic or composite. The decision as to which entities are
considered what is a decision solely taken by the describer.

Atomic Entities

• By an atomic entity we intuitively understand an entity which ‘cannot be
taken apart’ (into other, the sub-entities).

Domain Engineering 7

Attributes — Types and Values:

With any entity we can associate one or more attributes.

• By an attribute we understand a pair of a type and a value.

Example 1. Atomic Entities:

Entity: Person Entity: Bank Account

Type Value Type Value

Name Dines Bjørner number 212 023 361 918
Weight 118 pounds balance 1,678,123 Yen
Height 179 cm interest rate 1.5 %
Gender male credit limit 400,000 Yen

•

‘Removing’ attributes from an entity destroys its ‘entity-hood’, that is, at-
tributes are an essential part of an entity.

Mereology

• By mereology we shall understand a theory of part-hood relations. That is,
of the relations of part to whole and the relations of part to part within a
whole.

The term mereology seems to have been first used in the sense we are using
it by the Polish mathematical logician Stanis law Leśniewski [54, 72].

Composite Entities

• By a composite entity we intuitively understand an entity (i) which “can be
taken apart” into sub-entities, (ii) where the composition of these is described
by its mereology, and (iii) which further possess one or more attributes.

Example 2. Transport Net, A Narrative:

Entity: Transport Net

Subentities: Segments
Junctions

Mereology: “set” of one or more s(egment)s and
“set” of two or more j(unction)s

such that each s(egment) is delimited by two j(unctions)
and such that each j(unction) connects one or more s(egments)
Attributes

Types: Values:

Multimodal Rail, Roads
Transport Net of Denmark
Year Surveyed 2006

8 Dines Bjørner

•

To put the above example of a composite entity in context we give an example
of both an informal narrative and a corresponding formal specification:

Example 3. Transport Net, A Formalisation: A transport net consists of
one or more segments and two or more junctions. With segments [junctions] we
can associate the following attributes: segment [junction] identifiers, the identifiers
of the two junctions to which segments are connected [the identifiers of the one
or more segments connected to the junction], the mode of a segment [the modes
of the segments connected to the junction].

type

N, S, J, Si, Ji, M
value

obs Ss: N → S-set, obs Js: N → J-set
obs Si: S → Si, obs Ji: J → Ji
obs Jis: S → Ji-set, obs Sis: J → Si-set
obs M: S → M, obs Ms: J → M-set

axiom

∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}
...

type

Name, Country, Year
value

obs Name: N → Name, obs Country: N → Country, obs Year: N → Year

Si, Ji, M, Name, Country and Year are not entities. They are names of attribute
types and, as such, designate attribute values. N is composite, S and J are con-
sidered atomic.5 •

States

• By a domain state we shall understand a collection of domain entities chosen
by the domain engineer.

The pragmatics of the notion of state is that states are recurrent arguments
to functions and are changed by function invocations.

5 As remarked by a referee: “using cardinality to express injectivity seems obscure,
reveals a symptom rather than a cause and is useless in proof”. We agree.

Domain Engineering 9

3.2 Functions

• By a function we shall understand something which when applied to some
argument values yield some entities called the result value of the function
(application).

• By an action we shall understand the same things as applying a state-changing
function to its arguments (including the state).

Function Signatures

By a function signature we mean the name and type of a function.

type

A, B, ..., C, X, Y, .., Z
value

f: A × B × ... × C → X × Y × ... × Z

The last line above expresses a schematic function signature.

Function Descriptions

By a function description we mean a function signature and something which
describes the relationship between function arguments and function results.

Example 4. Well Formed Routes:

type

P = Ji × Si × Ji /∗ path: triple of identifiers ∗/
R′ = P∗ /∗ route: sequence of connected paths ∗/
R = {| r:R′

• wf R(r) |} /∗ subtype of R′: those r′s satisfying wf R(r) ∗/
value

wf R: R′ → Bool

wf R(r) ≡
∀ i:Nat•{i,i+1}⊆inds r⇒let (,,ji′)=r(i),(ji′′,,)=r(i+1) in ji′=ji′′ end

•

The last line above describes the route wellformedness predicate. [The mean-
ing of the “(,,” and “,,)” is that the omitted path components “play no rôle”.]

3.3 Events

• By an event we shall understand an instantaneous change of state not directly
brought about by some explicitly willed action in the domain, but either by
“external” forces. or implicitly as a non-intended result of an explicitly willed
action.

10 Dines Bjørner

Events may or may not lead to the initiation of explicitly issued operations.

Example 5. Events: A ‘withdraw’ from a positive balance bank account action
may leave a negative balance bank account. A bank branch office may have to
temporarily stop actions, i.e., close, due to a bank robbery. •

Internal events: The first example above illustrates an internal action.
It was caused by an action in the domain, but was not explicitly the main
intention of the “withdraw” function.

External events: The second example above illustrates an external ac-
tion. We assume that we have not explicitly modelled bank robberies!

Formal modelling of events: With every event we can associate an
event label. An event label can be thought of as a simple identifier. Two or
more event labels may be the same.

3.4 Behaviours

• By a behaviour we shall understand a structure of actions (i.e., function
invocations) and events. The structure may typically be a set of sequences of
actions and events.

We here refrain from stating whether the “set of sequences” is supposed to
model interleaved concurrency, as when we express concurrency in terms of
CSP, or is supposed to model “true” concurrency, as when we express con-
currency in terms of Petri Nets. Such a statement is required, or implied,
however, whenever we present a particular model.

A behaviour is either a simple behaviour, or is a concurrent behaviour, or,
if the latter, can be either a communicating behaviour or not.

• By a simple behaviour we shall understand a sequence of actions and events.

Example 6. Simple Behaviours: The opening of a bank account, the deposit
into that bank account, zero, one or more other such deposits, a withdrawal
from the bank account in question, etc. (deposits and withdrawals), ending with
a closing of the bank account. Any prefix of such a sequence is also a simple
behaviour. Any sequence in which one or more events are interspersed is also a
simple behaviour. •

• By a concurrent behaviour we shall understand a set of behaviours (simple
or otherwise).

Example 7. Concurrent Behaviours: A set of simple behaviours may result
from two or more distinct bank clients, each operating their own, distinct, that
is, non-shared accounts. •

• By a communicating behaviour we shall understand a set of two or more
behaviours where otherwise distinct elements (i.e., behaviours) share events.

Domain Engineering 11

The sharing of events can be identified via the event labels.

Example 8. Communicating Behaviours: To model that two or more clients
can share the same bank account one could model the bank account as one
behaviour and each client as a distinct behaviour. Let us assume that only one
client can open an account and that only one client can close an account. Let
us further assume that sharing is brought about by one client, say the one who
opened the account, identifying the sharing clients. Now, in order to make sure
that at most one client accesses the shared account at any one time (in any one
“smallest” transaction interval) one may model “client access to account” as a
pair of events such that during the interval between the first (begin transaction)
and the second (end transaction) event no other client can share events with the
bank account behaviour. Now the set of behaviours of the bank account and one
or more of the client behaviours is an example of a communicating behaviour. •

Formal modelling of behaviours: Communicating behaviours, the only
really interesting behaviours, can be modelled in a great variety of ways: from
set-oriented models in B, RSL, VDM, or Z, to models using for example
CSP (as for example “embedded” in RSL), or, to diagram models using, for
example, Petri nets, message or live sequence charts, or Statecharts.

3.5 Discussion

The main aim of Sect. 3 is to ensure that we have a clear understanding of the
modelling concepts of entities, functions, events and behaviours. To “reduce”
the modelling of phenomena and concepts to these four kinds of phenomena
and concepts is, of course, debatable. Our point is that it works, that further
classification, as is done in for example John F. Sowa’s [69], is not necessary,
or rather, is replaced by how we model attributes of for example entities6 and
how we model facets, such as we shall call them. The modelling of facets is
the main aim of this chapter.

4 Domain Facets

• By a domain facet we shall understand one amongst a finite set of generic
ways of analysing a domain: a view of the domain, such that the different
facets cover conceptually different views, and such that these views together
cover the domain.

The hedge here is “finite set of generic ways”. Thus there is an assumption,
a conjecture to be possibly refuted. Namely the postulate that there is a
finite number of facets. We shall offer the following facets: intrinsics, support
technology, management and organisation, rules and regulations (and scripts),
and human behaviour.
6 For such issues as static and dynamic attributes, dimensionality, tangibility, time

and space, etc., we refer to Michael A. Jackson’s [46] or [7, Chap. 10].

12 Dines Bjørner

4.1 Intrinsics

• By domain intrinsics we shall understand those phenomena and concepts of
a domain which are basic to any of the other facets (listed earlier and treated,
in some detail, below), with such domain intrinsics initially covering at least
one specific, hence named, stakeholder view.

Example 9. Railway Net Intrinsics: We narrate and formalise three railway
net intrinsics.

• From the view of potential train passengers a railway net consists of lines, l:L,
with names, ln:Ln, stations, s:S, with names sn:Sn, and trains, tn:TN, with
names tnm:Tnm. A line connects exactly two distinct stations.

• From the view of actual train passengers a railway net — in addition to the
above — allows for several lines between any pair of stations and, within
stations, provides for one or more platform tracks, tr:Tr, with names, trn:Trn,
from which to embark on or alight from a train.

• From the view of train operating staff a railway net — in addition to the
above — has lines and stations consisting of suitably connected rail units. A
rail unit is either a simple (i.e., linear, straight) unit, or is a switch unit, or is a
simple crossover unit, or is a switchable crossover unit, etc. Simple units have
two connectors. Switch units have three connectors. Simple and switchable
crossover units have four connectors. A path, p:P, (through a unit) is a pair
of connectors of that unit. A state, σ : Σ, of a unit is the set of paths, in the
direction of which a train may travel. A (current) state may be empty: The
unit is closed for traffic. A unit can be in any one of a number of states of its
state space, ω : Ω.

A summary formalisation of the three narrated railway net intrinsics could be:

• Potential train passengers:

scheme N0 =
class

type

N, L, S, Sn, Ln, TN, Tnm
value

obs Ls: N → L-set, obs Ss: N → S-set
obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom

...
end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line
names. One can observe lines and stations from nets, line and station names
from lines and stations, pair sets of station names from lines, and lines names
(of lines) into and out from a station from stations. Axioms ensure proper
graph properties of these concepts.

Domain Engineering 13

• Actual train passengers:

scheme N1 = extend N0 with

class

type

Tr, Trn
value

obs Trs: S → Tr-set, obs Trn: Tr → Trn
axiom

...
end

The only additions are that of track and track name types, related observer
functions and axioms.

• Train operating staff:

scheme N2 = extend N1 with

class

type

U, C
P′ = U × (C×C)
P = {| p:P′

• let (u,(c,c′))=p in (c,c′)∈ ∪ obs Ω(u) end |}
Σ = P-set

Ω = Σ-set

value

obs Us: (N|L|S) → U-set

obs Cs: U → C-set

obs Σ: U → Σ
obs Ω: U → Ω

axiom

...
end

Unit and connector types have been added as have concrete types for paths, unit
states, unit state spaces and related observer functions, including unit state and
unit state space observers. The reader is invited to compare the three narrative
descriptions with the three formal descriptions, line by line. •

Different stakeholder perspectives, not only of intrinsics, as here, but of any
facet, lead to a number of different models. The name of a phenomenon of one
perspective, that is, of one model, may coincide with the name of a “similar”
phenomenon of another perspective, that is, of another model, and so on. If
the intention is that the “same” names cover comparable phenomena, then
the developer must state the comparison relation.

14 Dines Bjørner

Example 10. Comparable Intrinsics: We refer to Example 9. We claim that
the concept of nets, lines and stations in the three models of Example 9 must re-
late. The simplest possible relationships are to let the third model be the common
“unifier” and to mandate

• that the model of nets, lines and stations of the potential train passengers
formalisation is that of nets, lines and stations of the train operating staff
model; and

• that the model of nets, lines, stations and tracks of the actual train passengers
formalisation is that of nets, lines, stations of the train operating staff model.

Thus the third model is seen as the definitive model for the stakeholder views
initially expressed. •

Example 11. Intrinsics of Switches: The intrinsic attribute of a rail switch
is that it can take on a number of states. A simple switch (

c|
Y

c/

c
) has three

connectors: {c, c|, c/}. c is the connector of the common rail from which one can
either “go straight” c|, or “fork” c/ (Fig. 1). So we have that a possible state
space of such a switch could be ωgs :

{{},
{(c, c|)}, {(c|, c)}, {(c, c|), (c|, c)},
{(c, c/)}, {(c/, c)}, {(c, c/), (c/, c)}, {(c/, c), (c|, c)},
{(c, c|), (c|, c), (c/, c)}, {(c, c/), (c/, c), (c|, c)}, {(c/, c), (c, c|)}, {(c, c/), (c|, c)}}

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. 1. Possible states of a rail switch

The above models a general switch ideally. Any particular switch ωps may have
ωps⊂ωgs . Nothing is said about how a state is determined: who sets and resets
it, whether determined solely by the physical position of the switch gear, or also
by visible or virtual (i.e., invisible, intangible) signals up or down the rail, away
from the switch. •

Domain Engineering 15

Conceptual Versus Actual Intrinsics

In order to bring an otherwise seemingly complicated domain across to the
reader, one may decide to present it piecemeal:7 First, one presents the very
basics, the fewest number of inescapable entities, functions and behaviours.
Then, in a step of enrichment, one adds a few more (intrinsic) entities, func-
tions and behaviours. And so forth. In a final step one adds the last (intrinsic)
entities, functions and behaviours. In order to develop what initially may seem
to be a complicated domain, one may decide to develop it piecemeal: We ba-
sically do as for the presentation steps: Steps of enrichment — from a big lie,
via increasingly smaller lies, till one reaches a truth!

On Modelling Intrinsics

Domains can be characterised by intrinsically being entity, or function, or
event, or behaviour intensive. Software support for activities in such domains
then typically amount to database systems, computation-bound systems, real-
time embedded systems, respectively distributed process monitoring and con-
trol systems. Modelling the domain intrinsics in respective cases can often
be done property-oriented specification languages (like CafeOBJ or CASL),
model-oriented specification languages (like B, VDM-SL, RSL, or Z), event-
based languages (like Petri nets or CSP), respectively process-based specifi-
cation languages (like MSCs, LSCs, Statecharts, or CSP),

4.2 Support Technologies

• By a domain support technology we shall understand ways and means of
implementing certain observed phenomena or certain conceived concepts.

Example 12. Railway Support Technology: We give a rough sketch de-
scription of possible rail unit switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by
railway staff assigned to and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers8 and
steel wires, switches were made to change state by means of “throwing” levers
in a cabin tower located centrally at the station (with the lever then connected
through wires etc., to the actual switch).

(iii) This partial mechanical technology then emerged into electromechanics,
and cabin tower staff was “reduced” to pushing buttons.

7 That seemingly complicated domain may seem very complicated, containing hun-
dreds of entities, functions and behaviours. Instead of presenting all the entities,
functions, events and behaviours in one “fell swoop”, one presents them in stages:
first, around seven such (entities, functions, events and behaviours), then seven
more, etc.

16 Dines Bjørner

(iv) Today, groups of switches, either from a station arrival point to a station
track, or from a station track to a station departure point, are set and reset by
means also of electronics, by what is known as interlocking (for example, so that
two different routes cannot be open in a station if they cross one another). •

It must be stressed that Example 12 is just a rough sketch. In a proper narra-
tive description the software (cum domain) engineer must describe, in detail,
the subsystem of electronics, electromechanics and the human operator inter-
face (buttons, lights, sounds, etc.).

An aspect of supporting technology includes recording the state-behaviour
in response to external stimuli. We give an example.

Example 13. Probabilistic Rail Switch Unit State Transitions: Figure 2
indicates a way of formalising this aspect of a supporting technology. Figure 2
intends to model the probabilistic (erroneous and correct) behaviour of a switch
when subjected to settings (to switched (s) state) and re-settings (to direct (d)
state). A switch may go to the switched state from the direct state when subjected
to a switch setting s with probability psd. •

Input stimuli:

Probabilities: 0 <= p.. <= 1

States:

sw/psd

di/1−pdd−edd

sw/pss

di/1−pds−eds

sw/esssw/esd
sw/1−psd−esd

di/pdd
di/edsdi/edd

sw/1−pss−ess

di/pds

e sd

sw: Switch to switched state
di: Revert to direct state

pss: Switching to switched state from switched state
psd: Switching to switched state from direct state
pds: Reverting to direct state from switched state
pds: Reverting to direct state from direct state
esd: Switching to error state from direct state
edd: Reverting to error state from direct state
ess: Switching to error state from switched state
eds: Reverting to error state from switched state

s: Switched state
d: Direct (reverted) state
e: Error state

Fig. 2. Probabilistic state switching

Another example shows another aspect of support technology: Namely that
the technology must guarantee certain of its own behaviours, so that software

8 http://en.wikipedia.org/wiki/Lever

Domain Engineering 17

designed to interface with this technology, together with the technology, meets
dependability requirements.

Example 14. Railway Optical Gates: Train traffic (itf:iTF), intrinsically, is a
total function over some time interval, from time (t:T) to continuously positioned
(p:P) trains (tn:TN).

Conventional optical gates sample, at regular intervals, the intrinsic train traf-
fic. The result is a sampled traffic (stf:sTF). Hence the collection of all optical
gates, for any given railway, is a partial function from intrinsic to sampled train
traffics (stf).

We need to express quality criteria that any optical gate technology should
satisfy — relative to a necessary and sufficient description of a closeness predicate.
The following axiom does that:

For all intrinsic traffics, itf, and for all optical gate technologies, og, the
following must hold: Let stf be the traffic sampled by the optical gates.
For all time points, t, in the sampled traffic, those time points must also
be in the intrinsic traffic, and, for all trains, tn, in the intrinsic traffic
at that time, the train must be observed by the optical gates, and the
actual position of the train and the sampled position must somehow be
check-able to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any
model of traffic.

type

T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

[close] c: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt ⇒
∀ Tn:TN • tn ∈ dom trf(itt(t))

⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

Check-ability is an issue of testing the optical gates when delivered for confor-
mance to the closeness predicate, i.e., to the axiom. •

On Modelling Support Technologies

Support technologies in their relation to the domain in which they reside typi-
cally reflect real-time embeddedness. As such the techniques and languages for

18 Dines Bjørner

modelling support technologies resemble those for modelling event and pro-
cess intensity, while temporal notions are brought into focus. Hence typical
modelling notations include event-based languages (like Petri nets or CSP),
respectively process-based specification languages (like MSCs, LSCs, State-
charts, or CSP), as well as temporal languages (like the Duration Calculus
and Temporal Logic of Actions, TLA+).

4.3 Management and Organisation

Example 15. Train Monitoring, I: In China, as an example, rescheduling of
trains occurs at stations and involves telephone negotiations with neighbouring
stations (“up and down the lines”). Such rescheduling negotiations, by phone,
imply reasonably strict management and organisation (M&O). This kind of M&O
reflects the geographical layout of the rail net. •

• By domain management we shall understand such people (such decisions)
(i) who (which) determine, formulate and thus set standards (cf. rules and
regulations, Sect. 4.4) concerning strategic, tactical and operational decisions;
(ii) who ensure that these decisions are passed on to (lower) levels of manage-
ment, and to floor staff; (iii) who make sure that such orders, as they were,
are indeed carried out; (iv) who handle undesirable deviations in the carrying
out of these orders cum decisions; and (v) who “backstop” complaints from
lower management levels and from floor staff.

• By domain organisation we shall understand the structuring of management
and non-management staff levels; the allocation of strategic, tactical and op-
erational concerns to within management and non-management staff levels;
and hence the “lines of command”: who does what, and who reports to whom,
administratively and functionally.

Example 16. Railway Management and Organisation: Train Monitor-

ing, II: We single out a rather special case of railway management and or-
ganisation. Certain (lowest-level operational and station-located) supervisors are
responsible for the day-to-day timely progress of trains within a station and along
its incoming and outgoing lines, and according to given timetables. These su-
pervisors and their immediate (middle-level) managers (see below for regional
managers) set guidelines (for local station and incoming and outgoing lines) for
the monitoring of train traffic, and for controlling trains that are either ahead of
or behind their schedules. By an incoming and an outgoing line we mean part
of a line between two stations, the remaining part being handled by neighbouring
station management. Once it has been decided, by such a manager, that a train is
not following its schedule, based on information monitored by non-management
staff, then that manager directs that staff: (i) to suggest a new schedule for the
train in question, as well as for possibly affected other trains, (ii) to negotiate the
new schedule with appropriate neighbouring stations, until a proper reschedule
can be decided upon, by the managers at respective stations, (iii) and to enact

Domain Engineering 19

that new schedule.9 A (middle-level operations) manager for regional traffic, i.e.,
train traffic involving several stations and lines, resolves possible disputes and
conflicts. •

The above, albeit rough-sketch description, illustrated the following manage-
ment and organisation issues: (i) There is a set of lowest-level (as here: train
traffic scheduling and rescheduling) supervisors and their staff; (ii) they are
organised into one such group (as here: per station); (iii) there is a middle-level
(as here: regional train traffic scheduling and rescheduling) manager (possibly
with some small staff), organised with one such per suitable (as here: railway)
region; and (iv) the guidelines issued jointly by local and regional (...) supervi-
sors and managers imply an organisational structuring of lines of information
provision and command.

Conceptual Analysis, First Part

People staff enterprises, the components of infrastructures with which we are
concerned, i.e., for which we develop software. The larger these enterprises
— these infrastructure components — the more need there is for manage-
ment and organisation. The role of management is roughly, for our purposes,
twofold: first, to perform strategic, tactical and operational work, to set strate-
gic, tactical and operational policies — and to see to it that they are followed.
The role of management is, second, to react to adverse conditions, that is, to
unforeseen situations, and to decide how they should be handled, i.e., conflict
resolution.

Policy setting should help non-management staff operate normal situa-
tions — those for which no management interference is thus needed. And
management “backstops” problems: management takes these problems off the
shoulders of non-management staff.

To help management and staff know who’s in charge wrt. policy setting
and problem handling, a clear conception of the overall organisation is needed.
Organisation defines lines of communication within management and staff,
and between these. Whenever management and staff has to turn to others for
assistance they usually, in a reasonably well-functioning enterprise, follow the
command line: the paths of organigrams — the usually hierarchical box and
arrow/line diagrams.

Methodological Consequences

The management and organisation model of a domain is a partial specifica-
tion; hence all the usual abstraction and modelling principles, techniques and

9 That enactment may possibly imply the movement of several trains incident upon
several stations: the one at which the manager is located, as well as possibly at
neighbouring stations.

20 Dines Bjørner

tools apply. More specifically, management is a set of predicate functions, or
of observer and generator functions These either parametrise other, the op-
erations functions, that is, determine their behaviour, or yield results that
become arguments to these other functions.

Organisation is thus a set of constraints on communication behaviours.
Hierarchical, rather than linear, and matrix structured organisations can also
be modelled as sets (of recursively invoked sets) of equations.

Conceptual Analysis, Second Part

To relate classical organigrams to formal descriptions we first show such an
organigram (Fig. 3), and then we show schematic processes which — for a
rather simple scenario — model managers and the managed!

Unit

.....

.....

.....
.....

Staff a Mgr.Staff b

Staff 1 Staff 2 Staff 3

Mgr.

Board Board

Mgr.

Mgr. Mgr. Mgr.

Mgr.

Mgr.

Mgr.

Funct.

Funct.

Admin. Admin.Admin.

Funct.

Unit

Unit

Unit Unit

Unit Unit

Unit

A Hierarchical Organisation A Matrix Organisation

Fig. 3. Organisational structures

Based on such a diagram, and modelling only one neighbouring group of
a manager and the staff working for that manager we get a system in which
one manager, mgr, and many staff, stf, coexist or work concurrently, i.e., in
parallel. The mgr operates in a context and a state modelled by ψ. Each staff,
stf(i) operates in a context and a state modelled by sσ(i).

type

Msg, Ψ , Σ, Sx
SΣ = Sx →m Σ

channel

{ ms[i]:Msg | i:Sx }
value

sσ:SΣ, ψ:Ψ

Domain Engineering 21

sys: Unit → Unit

sys() ≡ ‖ { stf(i)(sσ(i)) | i:Sx } ‖ mg(ψ)

In this system the manager, mgr, (1) either broadcasts messages, m, to all
staff via message channel ms[i]. The manager’s concoction, m out(ψ), of the
message, msg, has changed the manager state. Or (2) is willing to receive
messages, msg, from whichever staff i the manager sends a message. Receipt
of the message changes, m in(i,m)(ψ), the manager state. In both cases the
manager resumes work as from the new state. The manager chooses — in this
model — which of thetwo things (1 or 2) to do by a so-called non-deterministic
internal choice (⌈⌉).

mg: Ψ → in,out {ms[i]|i:Sx} Unit

mg(ψ) ≡
(1) (let (ψ′,m)=m out(ψ) in ‖{ms[i]!m|i:Sx};mg(ψ′)end)

⌈⌉
(2) (let ψ′=⌈⌉⌊⌋{let m=ms[i]? in m in(i,m)(ψ) end|i:Sx} in mg(ψ′) end)

m out: Ψ → Ψ × MSG,
m in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg,
from the manager, and then to change, st in(msg)(σ), state accordingly, or (2)
to concoct, st out(σ), a message, msg (thus changing state) for the manager,
and send it ms[i]!msg. In both cases the staff resumes work as from the new
state. The staff member chooses — in this model — which of thetwo “things”
(1 or 2) to do by a non-deterministic internal choice (⌈⌉).

st: i:Sx → Σ → in,out ms[i] Unit

stf(i)(σ) ≡
(1) (let m = ms[i]? in stf(i)(stf in(m)(σ)) end)

⌈⌉
(2) (let (σ′,m) = st out(σ) in ms[i]!m; stf(i)(σ′) end)

st in: MSG → Σ → Σ,
st out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing
states. The management process non-deterministically, internal choice, “al-
ternates” between “broadcast”-issuing orders to staff and receiving individual
messages from staff. Staff processes likewise non-deterministically, internal
choice, alternate between receiving orders from management and issuing in-
dividual messages to management.

The conceptual example also illustrates modelling stakeholder behaviours
as interacting (here CSP-like) processes.

22 Dines Bjørner

On Modelling Management and Organisation

Management and organisation basically spans entity, function, event and be-
haviour intensities and thus typically require the full spectrum of modelling
techniques and notations — summarised in the two “On Modelling ...” para-
graphs at the end of the two previous sections.

4.4 Rules and Regulations

• By a domain rule we shall understand some text (in the domain) which pre-
scribes how people or equipment are expected to behave when dispatching
their duty, respectively when performing their function.

• By a domain regulation we shall understand some text (in the domain) which
prescribes what remedial actions are to be taken when it is decided that a rule
has not been followed according to its intention.

Example 17. Trains at Stations:

• Rule: In China the arrival and departure of trains at, respectively from, railway
stations is subject to the following rule:

In any three-minute interval at most one train may either arrive to or
depart from a railway station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is
some regulation which prescribes administrative or legal management and/or
staff action, as well as some correction to the railway traffic.

•

Example 18. Trains Along Lines:

• Rule: In many countries railway lines (between stations) are segmented into
blocks or sectors. The purpose is to stipulate that if two or more trains are
moving along the line, then:

There must be at least one free sector (i.e., without a train) between
any two trains along a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is
some regulation which prescribes administrative or legal management and/or
staff action, as well as some correction to the railway traffic.

•

A Meta-characterisation of Rules and Regulations

At a meta-level, i.e., explaining the general framework for describing the syn-
tax and semantics of the human-oriented domain languages for expressing
rules and regulations, we can say the following: There are, abstractly speak-
ing, usually three kinds of languages involved wrt. (i.e., when expressing) rules

Domain Engineering 23

and regulations (respectively when invoking actions that are subject to rules
and regulations). Two languages, Rules and Reg, exist for describing rules,
respectively regulations; and one, Stimulus, exists for describing the form of
the [always current] domain action stimuli.

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from
any configuration to a next configuration, where configurations are those of the
system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands
for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current
and next configurations, (Θ × Θ) → Bool, where these next configurations
have been brought about, i.e., caused, by the stimuli. These stimuli express: If
the predicate holds then the stimulus will result in a valid next configuration.

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool

valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e.,
has as its semantics, its meaning, a semantic regulation, se reg:REG, which is a
pair. This pair consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ ×
Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ, that is, both involving current and next domain
configurations. The two kinds of functions express: If the predicate holds, then
the action can be applied.

The predicate is almost the inverse of the rules functions. The action func-
tion serves to undo the stimulus function.

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg → REG

The idea is now the following: Any action of the system, i.e., the application
of any stimulus, may be an action in accordance with the rules, or it may not.

24 Dines Bjørner

Rules therefore express whether stimuli are valid or not in the current con-
figuration. And regulations therefore express whether they should be applied,
and, if so, with what effort.

More specifically, there is usually, in any current system configuration,
given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such
pair. Let sy sti be any possible stimulus. And let θ be the current config-
uration. Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ violate the
rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the mean-
ing of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning
of the regulation, sy reg, must be applied, act reg(θ), to remedy the situation.

axiom

∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end

It may be that the regulation predicate fails to detect applicability of regula-
tions actions. That is, the interpretation of a rule differs, in that respect, from
the interpretation of a regulation. Such is life in the domain, i.e., in actual
reality

On Modelling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities,
including those grouped into “the state”, functions, events, and behaviours.
Thus the full spectrum of modelling techniques and notations may be needed.
Since rules usually express properties one often uses some combination of ax-
ioms and wellformedness predicates. Properties sometimes include temporality
and hence temporal notations (like Duration Calculus or Temporal Logic of
Actions) are used. And since regulations usually express state (restoration)
changes one often uses state changing notations (such as found in B, RSL,
VDM-SL, and Z). In some cases it may be relevant to model using some
constraint satisfaction notation [2] or some Fuzzy Logic notations [65].

4.5 Scripts and Licensing Languages

• By a domain script we shall understand the structured, almost, if not outright,
formally expressed, wording of a rule or a regulation that has legally binding
power, that is, which may be contested in a court of law.

Domain Engineering 25

Example 19. A Casually Described Bank Script: We deviate, momen-
tarily, from our line of railway examples, to exemplify one from banking. Our
formulation amounts to just a (casual) rough sketch. It is followed by a series of
four large examples. Each of these elaborate on the theme of (bank) scripts.

The problem area is that of how repayments of mortgage loans are to be calcu-
lated. At any one time a mortgage loan has a balance, a most recent previous date
of repayment, an interest rate and a handling fee. When a repayment occurs, then
the following calculations shall take place: (i) the interest on the balance of the
loan since the most recent repayment, (ii) the handling fee, normally considered
fixed, (iii) the effective repayment — being the difference between the repayment
and the sum of the interest and the handling fee — and the new balance, being
the difference between the old balance and the effective repayment.

We assume repayments to occur from a designated account, say a de-
mand/deposit account. We assume that bank to have designated fee and interest
income accounts.

(i) The interest is subtracted from the mortgage holder’s demand/deposit
account and added to the bank’s interest (income) account. (ii) The handling
fee is subtracted from the mortgage holder’s demand/deposit account and added
to the bank’s fee (income) account. (iii) The effective repayment is subtracted
from the mortgage holder’s demand/deposit account and also from the mortgage
balance. Finally, one must also describe deviations such as overdue repayments,
too large, or too small repayments, and so on. •

Example 20. A Formally Described Bank Script:

First we must informally and formally define the bank state:
There are clients (c:C), account numbers (a:A), mortgage numbers (m:M),

account yields (ay:AY) and mortgage interest rates (mi:MI). The bank registers,
by client, all accounts (ρ:A Register) and all mortgages (µ:M Register). To each
account number there is a balance (α:Accounts). To each mortgage number there
is a loan (ℓ:Loans). To each loan is attached the last date that interest was paid
on the loan.

value

r, r′:Real axiom ...
type

C, A, M, Date
AY′ = Real, AY = {| ay:AY′

• 0<ay≤r |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤r′ |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set

Accounts = A →m Balance
M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

26 Dines Bjørner

Then we must define well-formedness of the bank state:

value

ay:AY, mi:MI

wf Bank: Bank → Bool

wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ay<mi [∧ ...]

We — perhaps too rigidly — assume that mortgage interest rates are higher than
demand/deposit account interest rates: ay<mi.

Operations on banks are denoted by the commands of the bank script lan-
guage. First the syntax:

type

Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

value

period: Date × Date → Days [for calculating interest]
before: Date × Date → Bool [first date is earlier than last date]

And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,period(d,d′)),
ℓ′ = ℓ † [m 7→ℓ(m)−(p−i)]
α′ = α † [a 7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end

else

((ρ,α′,µ,ℓ),nok)
end end

pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d′)

interest: MI × Loan × Days → P

Domain Engineering 27

•

The idea about scripts is that they can somehow be objectively enforced:
that they can be precisely understood and consistently carried out by all
stakeholders, eventually leading to computerisation. But they are, at all times,
part of the domain.

Licensing Languages

A special form of scripts are increasingly appearing in some domains, notably
the domain of electronic, or digital media, where these licences express that the
licensor permits the licensee to render (i.e., play) works of proprietary nature
CD ROM-like music, DVD-like movies, etc. while obligating the licensee to
pay the licensor on behalf of the owners of these, usually artistic works. We
refer to [29, 59, 67, 11] for papers and reports on license languages.

On Modelling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions pro-
gram executions). Hence the full variety of techniques and notations for mod-
elling programming (or specification) languages apply [18, 30, 64, 68, 73, 74].
[6, Chaps. 6–9] cover pragmatics, semantics and syntax techniques for defining
languages.

4.6 Human Behaviour

• By domain human behaviour we shall understand any of a quality spectrum
of carrying out assigned work: from (i) careful, diligent and accurate, via (ii)
sloppy dispatch, and (iii) delinquent work, to (iv) outright criminal pursuit.

Example 21. Banking — or Programming — Staff Behaviour: Let us
assume a bank clerk, “in ye olde” days, when calculating, say mortgage repay-
ments (cf. Example 19).

We would characterise such a clerk as being diligent, etc., if that person
carefully follows the mortgage calculation rules, and checks and double-checks
that calculations “tally up”, or lets others do so. We would characterise a clerk
as being sloppy if that person occasionally forgets the checks alluded to above.
We would characterise a clerk as being delinquent if that person systematically
forgets these checks. And we would call such a person a criminal if that person
intentionally miscalculates in such a way that the bank (and/or the mortgage
client) is cheated out of funds which, instead, may be diverted to the cheater.

Let us, instead of a bank clerk, assume a software programmer charged with
implementing an automatic routine for effecting mortgage repayments (cf. Exam-
ple 20).

28 Dines Bjørner

We would characterise the programmer as being diligent if that person care-
fully follows the mortgage calculation rules, and throughout the development
verifies and tests that the calculations are correct with respect to the rules. We
would characterise the programmer as being sloppy if that person forgets cer-
tain checks and tests when otherwise correcting the computing program under
development. We would characterise the programmer as being delinquent if that
person systematically forgets these checks and tests. And we would characterise
the programmer as being a criminal if that person intentionally provides a pro-
gram which miscalculates the mortgage interest, etc., in such a way that the bank
(and/or the mortgage client) is cheated out of funds. •

Example 22. A Human Behaviour Mortgage Calculation:

Example 20 gave a semantics to the mortgage calculation request (i.e., com-
mand) as would a diligent bank clerk be expected to perform it. To express, that
is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could
behave we must modify the int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in

if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/
then

let i = f1(interest(mi,b,period(d,d′))),
ℓ′ = ℓ † [m 7→f2(ℓ(m)−(p−i))]
α′ = α † [a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),

a“staff” 7→f“staff”(α(a“staff”)+i)] in

((ρ,α′,µ,ℓ′),ok) end

else

((ρ,α′,µ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P [typically: f“staff” = λp.p]

•

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 22
are deliberately left undefined. They are being defined by the “staffer” when
performing (incl., programming) the mortgage calculation routine.

The point of Example 22 is that one must first define the mortgage calcula-
tion script precisely as one would like to see the diligent staff (programmer) to
perform (incl., correctly program) it before one can “pinpoint” all the places
where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4 and
f“staff” designate those places.

The point of Example 22 is also that we must first domain-define, “to the
best of our ability” all the places where human behaviour may play other than

Domain Engineering 29

a desirable role. If we cannot, then we cannot claim that some requirements
aim at countering undesirable human behaviour.

A Meta-characterisation of Human Behaviour

Commensurate with the above, humans interpret rules and regulations differ-
ently, and not always consistently — in the sense of repeatedly applying the
same interpretations.

Our final specification pattern is therefore:

type

Action = Θ
∼
→ Θ-infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rules. A human, in carrying out an action, interprets
applicable rules and chooses one which that person believes suits some (pro-
fessional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies
the intent, i.e., yields true on the pre/post-configuration pair, when the ac-
tion is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate
regulation is applied or not.

The above-stated axioms express how it is in the domain, not how we
would like it to be. For that we have to establish requirements.

On Modelling Human Behaviour

To model human behaviour is, “initially”, much like modelling management
and organisation. But only ‘initially’. The most significant human behaviour
modelling aspect is then that of modelling non-determinism and looseness,
even ambiguity. So a specification language which allows specifying non-
determinism and looseness (like CafeOBJ and RSL) is to be preferred.

4.7 Completion

Domain acquisition results in typically up to thousands of units of domain
descriptions. Domain analysis subsequently also serves to classify which facet

30 Dines Bjørner

any one of these description units primarily characterises. But some such
“compartmentalisations” may be difficult, and may be deferred till the step
of “completion”. It may then be, “at the end of the day”, that is, after all of
the above facets have been modelled that some description units are left as
not having been described, not deliberately, but “circumstantially”. It then
behoves the domain engineer to fit these “dangling” description units into
suitable parts of the domain description. This “slotting in” may be simple, and
all is fine. Or it may be difficult. Such difficulty may be a sign that the chosen
model, the chosen description, in its selection of entities, functions, events
and behaviours to model — in choosing these over other possible selections
of phenomena and concepts is not appropriate. Another attempt must be
made. Another selection, another abstraction of entities, functions, etc., may
need be chosen. Usually however, after having chosen the abstractions of the
intrinsic phenomena and concepts, one can start checking whether “dangling”
description units can be fitted in “with ease”.

4.8 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs
not one, but several specification languages. No single specification language
suffices. It seems highly unlikely and it appears not to be desirable to obtain
a single, “universal” specification language capable of “equally” elegantly,
suitably abstractly modelling all aspects of a domain. Hence one must con-
clude that the full modelling of domains shall deploy several formal notations.
The issues are then the following which combinations of notations to select,
and how to make sure that the combined specification denotes something
meaningful. The ongoing series of “Integrating Formal Methods” conferences
[3, 27, 14, 12, 66] is a good source for techniques, compositions and meaning.

5 On Modelling

A number of remarks may be in order — especially given the terseness of
many of the statements and examples given in the previous two sections.

Abstractions: In abstraction we conscientiously omit some properties deciding
instead to focus on other properties. Whenever an abstraction is presented one
should carefully discuss the abstraction choice. This has not been done in this
chapter.

Models: We model both domain phenomena and domain concepts. The lat-
ter are abstractions of phenomena. However, in modelling a phenomenon we
“make it into” a concept. (So models of domain concepts could be said to be
meta-concepts.) The point is: our domain description designates a model, or,
more generally, a class of models each of which satisfies the description. These
models are not the domain, only an abstract and only a model of it.

Domain Engineering 31

Real-world Constraints: Published models of, for example, railways10, contain
axioms that reflect the physical constraints of the world of physics: trains
arrive after they have departed, if a train appears in the traffic at times t and
t′ then it appears at all time in between these times, etc. We have not dealt
with this aspects of modelling here — but see [7, Chap. 10] whose modelling
principles and techniques are covered ”in depth” in [5, 6].

Type Invariants: We have shown a few examples. Usually as part of axioms
that govern type, or as subtype definitions, or as explicitly defined functions
over types, say A, then usually named wf A. Again we have not dwelt on this
modelling aspect here — but see [5, Chaps. 13–18] which also covers principles
and techniques of modelling type invariants.

Vagaries of Domains: Care has to be taken too model the domain not only
as we would prefer the properties of its entities, functions, events and be-
haviours to be, but as they are. Namely stochastically varying, unpredictable,
erroneous, etc. Some modelling aspects of this, notably wrt. human behaviour,
has been mentioned — and again we refer to the full book [5, 6, 7] for a more
comprehensive treatment.

Monitoring of Domain States: In Sect. 4.6 we gave an example varieties of hu-
man behaviour — the second version of int Cmd(mkPM(c,a,m,p,d)) (ρ,α,µ,ℓ).
We did not follow up on any monitoring (audit of bank accounts) wrt. this
behaviour. We could, and should, i.e., must model monitoring (and related
control), if there is a notion of monitoring (etc.) in the domain. We have here
assumed that such a monitoring, viz.: a bank audit, today, 2007, might be
a natural task for computing and would hence not describe it as part of the
domain, but as part of a domain requirements prescription.

Incompleteness and Inconsistency: It is unavoidable that early iterations of
domain description are incomplete, in fact may remain so throughout. It may
not be detrimental to the overall objective of the emerging domain description
as long as the “lacuna” of incompletenesses are well identified and acceptable.
It is also difficult to avoid that early iterations of domain description are
inconsistent. Domain description analysis, in the form of dispatching proof
obligations raised by the formalisation is one source of discovering inconsis-
tencies. Another, earlier source is that of validation in which two forms of
inconsistencies may be identified. One in which an inconsistency has its roots
in conflicting statements about the domain from stakeholders supposedly of
a same tightly knit group. In that case the domain engineer must resolve it
through mediation within such a group. The other source has the inconsistency
take its root in conflicting statements about the domain from stakeholders of
different groups. Here, not the domain engineer, but stakeholder management
must intervene and produce a consistent description.

10 http://www.railwaydomain.org/PDF/tb.pdf

32 Dines Bjørner

6 From Domain Models to Requirements Models

One rôle for Domain descriptions is to serve as a basis for constructing ,
Requirements prescriptions. The purpose of constructing Requirements pre-
scriptions is to specify properties (not implementation) of a Machine. The
Machine is the hardware (equipment) and the software that together imple-
ments the requirements. The implementation relations is

D,M |= R

The Machine is proven to implement the Requirements in the context of
[assumptions about] the Domain. That is, proofs of correctness of the Machine
wrt. the Requirements often refer to properties of the Domain.

The D,M |= R formula expresses a context in which the individual
phases of software development takes place. Awareness of this contextualisa-
tion was the basis for the ProCoS project [57, 53] and is also at the basis of
the later work by Jackson et al. [76, 28].

6.1 Requirements Engineering Stages

As for domain engineering, requirements engineering is pursued in a number
of iterated and sometimes concurrent stages:

1. identification of and interaction with requirements stakeholders,
2. domain requirements development, modelling and analysis,
3. interface requirements development, modelling and analysis,
4. machine requirements development, modelling and analysis,
5. further analysis work,
6. requirements validation, and
7. requirements satisfiability and feasibility study.

In this section we shall only cover the modelling parts of stages 2., 3. and 4.

• • •

In the next three subsections we very briefly sketch the relationships between a
domain description and a requirements prescription. We introduce the notions
of domain requirements (elsewhere called functional requirements), interface
requirements (elsewhere sometimes called user requirements), and machine re-
quirements (elsewhere called non-functional requirements). We find our labels
semantically less “coded”.

Domain Engineering 33

6.2 Domain Requirements

By a domain requirements we understand a requirements (prescription) which
uses only terms from the domain description — and which additionally, in the
requirements narrative uses the terms shall or must (and probably not should
or may).

First, in a concrete sense, you copy the domain description and call it a
requirements prescription. Then that requirements prescription is subjected
to a number of operations: (i) removal (projection away) of all those aspects
not needed in the requirements; (ii) instantiation of remain aspects to the
specifics of the client’s domain; (iii) making determinate what is unnecessarily
or undesirably non-deterministic in the evolving requirements prescription;
(iv) extending it with concepts not feasible in the domain; and (v) fitting
these requirements to those of related domains (say monitoring & control of
public administration procedures). The result is called a domain requirements.

6.3 Interface Requirements

By an interface requirements we understand a requirements (prescription)
which uses terms from both the domain description and the machine termi-
nology — in addition to the terms shall or must. An interface requirements
deal with the entities, functions (relations), events and behaviours that are
share between the domain and the machine.

From the domain requirements one now constructs the interface require-
ments: First one selects all phenomena and concepts, entities, functions, event
and behaviours shared with the environment of the machine (hardware + soft-
ware) being requirements specified11. Then one requirements prescribe how
each shared phenomenon and concept is being initialised and updated: entity
initialisation and refreshment, function initialisation and refreshment (inter-
active monitoring and control of computations), and the physiological man-
machine and machine-machine implements.

6.4 Machine Requirements

By a machine requirements we understand a requirements (prescription) which
basically only uses terms from the machine terminology — in addition to the
terms shall or must. A machine requirements may, however, refer, and then
generically, to entities, functions, event and behaviours of the domain.

Finally one deals with machine requirements performance, dependability,
maintainability, portability, etc., where dependability addresses such issues as
availability, accessability, reliability, safety, security, etc.

11 A domain phenomenon or concept that is also to “appear” in the machine, in
some form or another, is said to be shared.

34 Dines Bjørner

6.5 Domain Descriptions versus Requirements Prescriptions

On the background of the previous subsections (domain, interface and ma-
chine requirements) we can now characterise some differences between domain
descriptions and requirements prescriptions.

Indicative versus Putative: A narrative domain description is indicative. It
uses such verbs is and are. A domain description tells what there is.

A narrative requirements prescription is putative. It uses such verbs as
shall and must. A prescription tells what there will be.

This distinction is not captured by the formalisations that we have shown.
One could think of introducing some keywords for that purpose, but mathe-
matically the meaning of such keywords is doubtful.

Computability: A formal domain description may very well denote mathemat-
ical entities which cannot be represented computationally, or mathematical
functions (or relations) that are not computable. The purpose of a domain
and interface requirements construction (from a domain description) is to
render possibly in-computable entities and possibly in-computable functions
computable (as the objective of software design is to make entity represen-
tations and function computations data structure-wise and algorithmically
efficient).

Stability: It is often claimed that requirements prescriptions are unstable: that
they change repeatedly during software development. We claim, in contrast,
that once a domain description has reached a relative maturity, i.e., being rel-
atively stable, then, using the domain and interface requirements “derivation”
principles and techniques hinted at here (and covered in more details in [7,
Chaps. 17–24]) then the resulting requirements prescriptions will be more, or
even far more stable.

So, we have decomposed the “requirements instability” problem into three
problems: (i) the “domain instability”, (ii) the “domain description insta-
bility”, and (iii) the “requirements prescription instability” problems. The
domain instability problem, (i), has two roots: (i.1) the inherent changes of
domain support technologies, management & organisation, rules & regula-
tions facets etc., and (i.2) the inherent inability of any group of people (i.e.,
the stakeholders and the domain engineers) to express and hence capture all
of a domain. As for (i.1), the scope of facet changes is more well-defined and
their identification seems easier — so we may now be able to better cope with
that part of the (former) “requirements instability” problem. As for (i.2), all
there is to say is: “such is life”! The domain description instability problem,
(ii), is due to misunderstandings, inconsistencies and incompletenesses of the
stakeholders and the domain engineers’ understanding of “their” the domain.
By having decomposed the overall (former) “requirements instability” prob-
lem into smaller, more well defined problem areas, and by decomposing the
domain description problem into several facets as well as forcing their formal-
isation, we can hope to now be better able to deal with this, the (ii), problem.

Domain Engineering 35

Finally, the (new, redefined) “requirements instability” problem area, (iii),
is now of a size which is potentially much “smaller” than the former “re-
quirements instability” problem area. Any actual “requirements prescription
instability” is now due to a wrong decision by the stakeholders and domain
engineers as to the desired projection, instantiation, determination, extension
or fitting of the domain description at hand.

Overall we claim that the requirements engineering process — as we see it
— is now based on a rather dramatically different basis than what is otherwise
reported in the literature and certainly different from what is mostly practised
in industry. Therefore generic claims of “requirements instability” based on
what we obviously consider an antiquated requirements engineering approach,
that such claims must be refined to claims of the kind: (i.1), (i.2), (ii) or (iii).

Domain Engineering versus Requirements Engineering Stages: The domain
engineering phase involves the stages of (D1.) identification of and regular
interaction with stakeholders, (D2.) domain (knowledge) acquisition, (D3.)
domain analysis, (D4.) domain modelling, (D5.) domain verification, (D6.)
domain validation and (D7.) domain theory formation. The requirements
phase involves the stages of (R1.) identification of and regular interaction with
stakeholders, (R2.–R4.) domain, interface and machine requirements develop-
ment, modelling and analysis, (R5.) further analysis work, (R6.) requirements
validation and (R7.) requirements satisfiability and feasibility study. Phases
(D1.,R1.), (D5.,R5.) and (D6.,R6.) have similar names but their inputs, and
hence their procedural steps (principles, techniques and tool) are different.
The same is true, of course, for all phases, but we can say that requirements
engineering phases (R2.), (R3.) and (R4.) each are “similar” to a combination
of domain engineering phases (D2.), (D3.) and (D4.). Space considerations
prevent us from further clarifications.

7 Why Domain Engineering?

7.1 Two Reasons for Domain Engineering

We believe that one can identify two almost diametrically opposed reasons for
the pursuit of domain descriptions. One is utilitarian, concrete, commercial
and engineering goal-oriented. It claims that domain engineering will lead to
better software, and to development processes that can be better monitored
and controlled. and the other is science-oriented. It claims that establishing
domain theories is a necessity, that it must be done, whether we develop
software or not.

We basically take the latter, the science, view, while, of course, noting the
former, the engineering consequences. We will briefly look at these.

36 Dines Bjørner

7.2 An Engineering Reason for Domain Modelling

In a recent e-mail, in response, undoubtedly to my steadfast, perhaps con-
ceived as stubborn insistence, on domain engineering, Tony Hoare summed
up his reaction to domain engineering as follows, and I quote12:

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any
good software design in the area. They describe possible places to define the
system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be
made in any embedded software design, especially one that is going to be
formally proved.

3. They describe the whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
in any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in depth, in Vol. 3 of my
three volume book [7].

7.3 On a Science of Domains

Domain Theories

Although not brought out in this chapter the concept of domain theories must
now be mentioned.

• By a domain theory we shall understand a domain description together with
lemmas, propositions and theorems that can be proved about the description
— and hence can be claimed to hold in the domain.

To create a domain theory the specification language must possess a proof
system. It appears that an essence of possible theorems of — that is, laws
about — domains can be found in laws of physics. For a delightful view of the
law-based nature of physics — and hence possibly also of man-made universes
we refer to Richard Feynman’s Lectures on Physics [20]. But, whereas laws of
physics are conjectures and may basically (still) be refuted, laws of man-made
domains are less conjectural13, but sometimes subject to change14.

12 E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006
13 In early versions of a domain description, one that has yet to be validated by

domain stake holders, one might very well claim that the model is conjectural.
14 Typically we would wish the intrinsics part of a domain model to be invariant, to

reflect innate laws of the domain. And: typically management and organisation

Domain Engineering 37

A Scientific Reason for Domain Modelling

So, inasmuch as the above-listed issues of Sect. 7.2, are of course of utmost
engineering importance, it is really, in our mind, the science issues that are
foremost: We must first and foremost understand. There is no excuse for not
trying to first understand. Whether that understanding can be “translated”
into engineering tools and techniques is then another matter. But then, of
course, it is nice that clear and elegant understanding also leads to better
tools and hence better engineering. It usually does.

8 Conclusion

8.1 Summary

We have introduced the scientific and engineering concept of domain theories
and domain engineering; and we have brought but a mere sample of the prin-
ciples, techniques and tools that can be used in creating domain descriptions.

8.2 Grand Challenges of Informatics

To establish a reasonably trustworthy and believable theory of a domain, say
the transportation, or just the railway domain, may take years, possibly 10–
15! Similarly for domains such as the financial service industry, the market
(of consumers and producers, retailers, wholesaler, distribution cum supply
chain), health care, and so forth.

The current author urges younger scientists to get going! It is about time.

8.3 Acknowledgements

The author thank Springer for allowing this chapter — which is basically a
rewriting and “condensing-editing” of Chaps. 5 and 11 of [7] to appear also
in the present book. The author thanks Paul Boca and Jonathan P. Bowen
for inviting him in the first place to give basically this chapter as a BCS
FACS seminar in the summer of 2005.15 The author thanks Tony Hoare for
permission to quote his characterisation of domain engineering (Sect. 7.2).

and also rules and regulations are contain or reflect laws that may be valid for a
time — only to be replaced by other “laws”.

15 At that time the book [5, 6, 7] was in the hands of the editors of Springer, i.e.,
not yet published.

38 Dines Bjørner

9 Bibliographical Notes

To create domain descriptions, or requirements prescriptions, or software de-
signs, properly, at least such as this author sees it, is a joy to behold. The
beauty of carefully selected and balanced abstractions, their interplay with
other such, the relations between phases, stages and steps, and many more
conceptual constructions make software engineering possibly the most chal-
lenging intellectual pursuit today. For this and more consult [5, 6, 7].

References

1. J.-R. Abrial: The B Book: Assigning Programs to Meanings (Cambridge Uni-
versity Press, Cambridge, England 1996)

2. K.R. Apt: Principles of Constraint Programming (Cambridge University Press,
August 2003)

3. K. Araki, A. Galloway, K. Taguchi, editors. IFM 1999: Integrated Formal Meth-
ods, volume 1945 of Lecture Notes in Computer Science, York, UK, June 1999.
Springer. Proceedings of 1st Intl. Conf. on IFM.

4. M. Bidoit, P.D. Mosses: Casl User Manual (Springer, 2004)
5. D. Bjørner: Software Engineering, Vol. 1: Abstraction and Modelling (Springer,

2006)
6. D. Bjørner: Software Engineering, Vol. 2: Specification of Systems and Lan-

guages (Springer, 2006)
7. D. Bjørner: Software Engineering, Vol. 3: Domains, Requirements and Software

Design (Springer, 2006)
8. Edited by D. Bjørner, M. Henson: Logics of Specification Languages (Springer,

2007)
9. Edited by D. Bjørner, C.B. Jones: The Vienna Development Method: The Meta-

Language, vol 61 of LNCS (Springer–Verlag, 1978)
10. Edited by D. Bjørner, C.B. Jones: Formal Specification and Software Develop-

ment (Prentice-Hall, 1982)
11. D. Bjørner, A. Yasuhito, C. Xiaoyi, X. Jianwen: A Family of License Lan-

guages. Technical Report, JAIST, Graduate School of Information Science, 1-1,
Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292 (2006)

12. E.A. Boiten, J. Derrick, G. Smith, editors. IFM 2004: Integrated Formal Meth-
ods, volume 2999 of Lecture Notes in Computer Science, London, England, April
4-7 2004. Springer. Proceedings of 4th Intl. Conf. on IFM. ISBN 3-540-21377-5.

13. E. Börger, R. Stärk: Abstract State Machines. A Method for High-Level System
Design and Analysis (Springe, 2003) p 452

14. M.J. Butler, L. Petre, K. Sere, editors. IFM 2002: Integrated Formal Methods,
volume 2335 of Lecture Notes in Computer Science, Turku, Finland, May 15-18
2002. Springer. Proceedings of 3rd Intl. Conf. on IFM. ISBN 3-540-43703-7.

15. D. Cansell, D. Méry: Logical Foundations of the B Method. Computing and
Informatics 22, 1–2 (2003)

16. CoFI (The Common Framework Initiative): Casl Reference Manual , vol 2960
of Lecture Notes in Computer Science (IFIP Series) (Springer–Verlag, 2004)

Domain Engineering 39

17. W. Damm, D. Harel: LSCs: Breathing Life into Message Sequence Charts. For-
mal Methods in System Design 19 (2001) pp 45–80

18. J. de Bakker: Control Flow Semantics (The MIT Press, Cambridge, Mass., USA,
1995)

19. R. Diaconescu, K. Futatsugi, K. Ogata: CafeOBJ: Logical Foundations and
Methodology. Computing and Informatics 22, 1–2 (2003)

20. R. Feynmann, R. Leighton, M. Sands: The Feynmann Lectures on Physics, vol
Volumes I–II–II (Addison-Wesley, California Institute of Technology 1963)

21. J.S. Fitzgerald, P.G. Larsen: Developing Software using VDM-SL (Cambridge
University Press, The Edinburgh Building, Cambridge CB2 1RU, England 1997)

22. K. Futatsugi, R. Diaconescu: CafeOBJ Report The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification (World Scientific
Publishing Co. Pte. Ltd., 5 Toh Tuck Link, SINGAPORE 596224. Tel: 65-6466-
5775, Fax: 65-6467-7667, E-mail: wspc@wspc.com.sg 1998)

23. K. Futatsugi, A. Nakagawa, T. Tamai, editors. CAFE: An Industrial–Strength
Algebraic Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE
Amsterdam, The Netherlands, 2000. Elsevier. Proceedings from an April 1998
Symposium, Numazu, Japan.

24. C.W. George, P. Haff, K. Havelund et al: The RAISE Specification Language
(Prentice-Hall, Hemel Hampstead, England 1992)

25. C.W. George, A.E. Haxthausen: The Logic of the RAISE Specification Language.
Computing and Informatics 22, 1–2 (2003)

26. C.W. George, A.E. Haxthausen, S. Hughes et al: The RAISE Method (Prentice-
Hall, Hemel Hampstead, England 1995)

27. W. Grieskamp, T. Santen, B. Stoddart, editors. IFM 2000: Integrated Formal
Methods, volume of Lecture Notes in Computer Science, Schloss Dagstuhl, Ger-
many, November 1-3 2000. Springer. Proceedings of 2nd Intl. Conf. on IFM.

28. C.A. Gunter, E.L. Gunter, M.A. Jackson, P. Zave: A Reference Model for Re-
quirements and Specifications. IEEE Software 17, 3 (2000) pp 37–43

29. C.A. Gunter, S.T. Weeks, A.K. Wright: Models and Languages for Digtial
Rights. In: Proc. of the 34th Annual Hawaii International Conference on System
Sciences (HICSS-34) (IEEE Computer Society Press, Maui, Hawaii, USA 2001)
pp 4034–4038

30. C. Gunther: Semantics of Programming Languages (The MIT Press, Cambridge,
Mass., USA, 1992)

31. D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8, 3 (1987) pp 231–274

32. D. Harel: On Visual Formalisms. Communications of the ACM 33, 5 (1988)
33. D. Harel, E. Gery: Executable Object Modeling with Statecharts. IEEE Computer

30, 7 (1997) pp 31–42
34. D. Harel, H. Lachover, A. Naamad et al: STATEMATE: A Working Environ-

ment for the Development of Complex Reactive Systems. Software Engineering
16, 4 (1990) pp 403–414

35. D. Harel, R. Marelly: Come, Let’s Play – Scenario-Based Programming Using
LSCs and the Play-Engine (Springer-Verlag, 2003)

36. D. Harel, A. Naamad: The STATEMATE Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 5, 4 (1996) pp
293–333

37. M.C. Henson, S. Reeves, J.P. Bowen: Z Logic and its Consequences. Computing
and Informatics 22, 1–2 (2003)

40 Dines Bjørner

38. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992.
39. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
40. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.
41. D. Jackson: Software Abstractions Logic, Language, and Analysis (The MIT

Press, Cambridge, Mass., USA April 2006)
42. M.A. Jackson: Principles of Program Design (Academic Press, 1969)
43. M.A. Jackson: Problems, Methods and Specialisation. Software Engineering

Journal 9, 6 (1994) pp 249–255
44. M.A. Jackson: Problems and requirements (software development). In: Sec-

ond IEEE International Symposium on Requirements Engineering (Cat.
No.95TH8040) (IEEE Comput. Soc. Press, 1995) pp 2–8

45. M.A. Jackson: Software Requirements & Specifications: a lexicon of practice,
principles and prejudices (Addison-Wesley Publishing Company, Wokingham,
nr. Reading, England; E-mail: ipc@awpub.add-wes.co.uk 1995)

46. M.A. Jackson: Software Requirements & Specifications: a lexicon of practice,
principles and prejudices (Addison-Wesley Publishing Company, Wokingham,
nr. Reading, England; E-mail: ipc@awpub.add-wes.co.uk 1995)

47. M.A. Jackson: The Meaning of Requirements. Annals of Software Engineering
3 (1997) pp 5–21

48. M.A. Jackson: Problem Frames — Analyzing and Structuring Software Develop-
ment Problems (Addison–Wesley, Edinburgh Gate, Harlow CM20 2JE, England
2001)

49. K. Jensen: Coloured Petri Nets, vol 1: Basic Concepts (234 pages + xii), Vol.
2: Analysis Methods (174 pages + x), Vol. 3: Practical Use (265 pages + xi) of
EATCS Monographs in Theoretical Computer Science (Springer–Verlag, Heidel-
berg 1985, revised and corrected second version: 1997)

50. J. Klose, H. Wittke: An Automata Based Interpretation of Live Sequence
Charts. In: TACAS 2001 , ed by T. Margaria, W. Yi (Springer-Verlag, 2001)
pp 512–527

51. L. Lamport: The Temporal Logic of Actions. Transactions on Programming Lan-
guages and Systems 16, 3 (1995) pp 872–923

52. L. Lamport: Specifying Systems (Addison–Wesley, Boston, Mass., USA 2002)
53. Edited by H. Langmaack, W.P. de Roever, J. Vytopil: Provably Correct Systems

on Formal Techniques in Real-Time and Fault-Tolerant Systems, vol 863 of
Lecture Notes In Computer Science (Springer, Heidelberg, Germany 1994)

54. E. Luschei: The Logical Systems of Lesniewski (North Holland, Amsterdam, The
Netherlands 1962)

55. S. Merz: On the Logic of TLA+. Computing and Informatics 22, 1–2 (2003)
56. T. Mossakowski, A.E. Haxthausen, D. Sanella, A. Tarlecki: CASL — The Com-

mon Algebraic Specification Language: Semantics and Proof Theory. Computing
and Informatics 22, 1–2 (2003)

57. E.-R. Olderog: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship (Cambridge University Press, 1991 (paperback 2005))

58. C.A. Petri: Kommunikation mit Automaten (Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962)

59. R. Pucella, V. Weissman: A Logic for Reasoning about Digital Rights. In: Proc.
of the 15th IEEE Computer Security Foundations Workshop (CSFW’02) (IEEE
Computer Society Press, 2002) pp 282–294

60. W. Reisig: Petri Nets: An Introduction, vol 4 of EATCS Monographs in Theo-
retical Computer Science (Springer Verlag, 1985)

Domain Engineering 41

61. W. Reisig: A Primer in Petri Net Design (Springer Verlag, 1992)
62. W. Reisig: Elements of Distributed Algorithms: Modelling and Analysis with

Petri Nets (Springer Verlag, 1998)
63. W. Reisig: The Expressive Power of Abstract State Machines. Computing and

Informatics 22, 1–2 (2003)
64. J.C. Reynolds: The Semantics of Programming Languages (Cambridge Univer-

sity Press, 1999)
65. F. Van der Rhee, H. Van Nauta Lemke, J. Dukman: Knowledge Based Fuzzy

Control of Systems. IEEE Trans. Autom. Control 35, 2 (1990) pp 148–155
66. J.M. Romijn, G.P. Smith, J.C. van de Pol, editors. IFM 2005: Integrated Formal

Methods, volume 3771 of Lecture Notes in Computer Science, Eindhoven, The
Netherlands, December 2005. Springer. Proceedings of 5th Intl. Conf. on IFM.
ISBN 3-540-30492-4.

67. P. Samuelson: Digital rights management {and, or, vs.} the law. Communica-
tions of ACM 46, 4 (2003) pp 41–45

68. D.A. Schmidt: Denotational Semantics: a Methodology for Language Develop-
ment (Allyn & Bacon, 1986)

69. J.F. Sowa: Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations (Pws Pub Co, August 17, 1999)

70. J.M. Spivey: Understanding Z: A Specification Language and its Formal Seman-
tics, vol 3 of Cambridge Tracts in Theoretical Computer Science (Cambridge
University Press, 1988)

71. J.M. Spivey: The Z Notation: A Reference Manual , 2nd edn (Prentice Hall
International Series in Computer Science, 1992)

72. Edited by J.T.J. Srzednicki, Z. Stachniak: Lesniewski’s lecture notes in logic
(Dordrecht, 1988)

73. R. Tennent: The Semantics of Programming Languages (Prentice–Hall Intl.,
1997)

74. G. Winskel: The Formal Semantics of Programming Languages (The MIT Press,
Cambridge, Mass., USA, 1993)

75. J.C.P. Woodcock, J. Davies: Using Z: Specification, Proof and Refinement
(Prentice Hall International Series in Computer Science, 1996)

76. P. Zave, M.A. Jackson: Four dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6, 1 (1997) pp 1–30

77. C.C. Zhou, M.R. Hansen: Duration Calculus: A Formal Approach to Real–time
Systems (Springer–Verlag, 2004)

78. C.C. Zhou, C.A.R. Hoare, A.P. Ravn: A Calculus of Durations. Information
Proc. Letters 40, 5 (1992)

42 Dines Bjørner

