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Preface

This book, together with three recently published volumes1 primarily au-
thored by the present author, constitutes the documents submitted for the
defense of the Danish academic degree of Dr.techn.

The present volume was to have been written during a basically 2006 cal-
endar year sabbatical — spent at JAIST: Japan Advanced Institute of Science
and Technology, Ishikawa Prefecture, Japan — on a most kind leave from the
Technical University of Denmark. JAIST, however, put such extraordinary
and unexpected, and I should, for an old man like I was then, heavy strain
on my sabbat time that a major part of the thesis, Part II, could only be
completed after leaving JAIST.2

Now you may rightfully wonder: “Why on earth is Dines Bjørner writing a
Dr.techn. thesis?”. Well there is a simple answer. Why not? A PhD degree in
Denmark is like a PhD in the best countries. A Dr.techn. degree in Denmark
is something substantially more. Whereas a PhD degree attests to the holders
ability to “do science”, i.e., to study appropriate problems according to best
scientific principles, a Danish Dr.techn. degree should attest to something
more substantial: To actual and lasting research results.

I think that the three volumes footnoted below bear witness to substantial,
actual and lasting research results on software engineering. And I will argue
this point in the present volume.

Usually a Danish Dr.techn. degree is attempted in the younger years, and
I reached the mandatory, i.e., the formal retirement age of 70 on October 4,
2007. Usually a Dr.techn. degree ought be a prerequisite for a chair at the

1Software Engineering, Vol. 1: Abstraction and Modelling, Vol. 2: Specification
of Systems and Languages, Vol. 3: Domains, Requirements and Software Design,
Texts in Theoretical Computer Science, the EATCS Series. Springer 2006

2In deference to JAIST it should, however, be mentioned that some of the work
then (instead) done at JAIST (now) appears as some of the appendices to this report
and that the work in general, in the minds of my colleagues at JAIST, supports the
current thesis !
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Technical University of Denmark. But I obtained my chair when I was 38 and
had not yet had the possibility, in industry, to do the research necessary for
such a thesis. And to submit a Dr.techn. thesis while already a professor was
— in my days — not a proposition: “One just did not do that! Imagine if it
was rejected!” Now this thesis may possibly be rejected, but I have retired!

Meanwhile, in the 31 years since I took possession of my chair, I have
been blessed with health and energy (and time also at home (evenings and
weekends) and during vacations and holidays3) to do a lot of thinking and
reflection over the topic of software engineering in the context of formal tech-
niques. This thinking and reflection has been done in an environment of many
industry-oriented development projects where significant fragments of the con-
tributions claimed in this volume were first tried out in ‘actual-life’ and on
large-scale software developments. My university during most of these years,
the Technical University of Denmark, has been my main source of academic
joy for most of those years.

• • •

The current work has been underway now for almost 30 months. The state
of this work is incomplete. There are some loose ends in some of the non-
DrTechn appendices. They have been left dangling. One could go on forever.
So is the case also for the main text and the DrTechn appendices.

Fredsvej 11, Holte, Denmark; August 1, 2008

3The time factor is important: My lovely wife of 42+ years provided for that!

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008
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Part I

THE THESIS

The thesis evolves around the following claimed contribution to a methodology
for the general field of software engineering:

• that domain engineering — for which a set of novel principles and tech- Chap. 10
niques are claimed — is an indispensable part of software;

• that requirements engineering — for which a set of novel principles and Chap. 10
techniques are likewise claimed — must be based on a carefully developed
and documented domain models;

• that descriptions, prescriptions and specifications, both informally, in the
form of narratives, and formally, in the form of mathematical statements, Chap. 7
be built up around a description ontology of simple entities, functions, Chap. 6
events and behaviours;

• that descriptions (etc.) initially be in the form of abstract models of phe- Chap. 8
nomena and concepts in which careful, separate consideration has been Chap. 3
paid to the pragmatics, semantics and syntax of these, and

• that documentation be extensively provided for all aspects of development. Chap. 11

Complementing the above claimed contributions to the methodology of de-
veloping large scale software systems is the emphasis on

• clearly enunciated methodology principles, techniques and tools; Chap. 2
• a clearly understood separation of issues of computer versus issues of com- Chap. 4

puting sciences;
• a clear mandate that the software engineer is comfortably “at home” with

basic mathematical notions (sets, lambda-Calculus, algebra and mathe- Chap. 5
matical logic); and

• that the software engineer is competent in formulating abstract models
both informally and formally. Chap. 9
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1

The Thesis

1.1 On Software Engineering

The focus of our study is software engineering — trying to contribute an
answer to the question: “what is software engineering”. Hence we need first
delineate what we mean by that term before we study it — or, rather, as a
result of practicing and studying the field, we came up with the delineation
found in [87–89]. That three volume book claims to be about software engi-
neering. We must therefore,

• not only delineate the concept of ‘software engineering’ properly, but we
must argue

• that these volumes do indeed cover substantial aspects of that software
engineering concept in a proper manner,

• and that our coverage contributes a number of new ideas to software en-
gineering.

Characterisations of the ‘software engineering’ concept are found in

• Vol. 1 on Pages V–VI, XIII, and 4–7, and in
• Vol. 3 on Pages 3–6.

Pages 3–5 of Vol. 3 brings characterisations by authors of popular textbooks
as well as by some recognised researchers of software engineering.

Section 10.6 (of the present ‘Thesis’) will review these characterisations
critically, and will similarly (i.e., critically) review whether these and our
delineations (Vol. 1, Pages V–VI, XIII, and 4–7 as well as Vol. 3, Page 6)
are indeed properly handled by [87–89]. Section 12.1.1 will critically review
our “grand” omission of verification and Sect. 12.1.2 will critically review our
omission of software engineering management, whether of development or of
products.
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4 1 The Thesis

1.2 The Three Volume Book: Software Engineering

For the sake of good order we list proper references to the three particular
volumes that are at the basis of this thesis:

[87]: Software Engineering, Vol. 1: Abstraction and Modelling, Texts in Theoret-
ical Computer Science, the EATCS Series. Springer. ISBN 3-540-21149-7.
xxxix + 711 pages. Published Dec. 9, 2005.

[88]: Software Engineering, Vol. 2: Specification of Systems and Languages, Texts
in Theoretical Computer Science, the EATCS Series. Springer. ISBN 3-
540-21150-0. xxiv + 779 pages. Published Feb. 9, 2006. Chapters 12–14
of this volume are primarily authored by Christian Krog Madsen.

[89]: Software Engineering, Vol. 3: Domains, Requirements and Software Design,
Texts in Theoretical Computer Science, the EATCS Series. Springer.
ISBN 3-540-21151-9. xxx + 733 pages. Published March 9, 2006..

A total of lxxxxiii + 2223 = 2316 pages.

1.3 Textbook Versus Research Monograph

The three volumes, [87–89], that are at the basis of this thesis, were written
in order to summarise more than 30 years of research. The outward form
of [87–89] is that of a textbook. The principles and techniques propagated
by these texts reflect those many years of research. It is the purpose of the
present thesis document to claim and to show so. Hence the view taken in
this thesis is that the three volumes [87–89], as a whole, also constitutes a
research monograph.

This is not a shift of convenience or of opportunism. This is merely a
reflection on two issues. (1) We are putting forward a thesis for the defense
of the degree of Dr.Techn., hence a thesis that has engineering orientation
and goals of engineering. And (2) our scientific discipline is that of computing
science (CS), not computer science (CS). These two concepts, CS&CS (!), are
treated in Sect. 1.4.3 and in Chap. 4.

1.4 The Thesis and Its Issues

So what, then, is the thesis of the three volumes and, hence of the present
document ? We express this thesis in two parts:

The Thesis Base: The basis for our thesis is that in order to conduct
professional, responsible software development the software engineer must
possess a number of diverse skills and apply these in a methodological
manner.
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1.4 The Thesis and Its Issues 5

These skills, we claim, are hinted at by the following terms — listed in no
particular order of priority:

⊕ mathematics,
⊕ computer and computing science,
⊕ abstraction and modelling,
⊖ refinement calculi, formal testing and verification,
⊕ semiotics: pragmatics, semantics and syntax,
⊕ the ontological notion of specifying concepts,
⊕ the triptych notion of software engineering,
⊖ knowledge science & engineering,
⊕ documentation and
⊖ software project and product management

The concluding part of the thesis formulation now follows:

The Thesis Implementation: The thesis is now that I have contributed
in two ways to secure the base conjecture:
1. I have provided an overall, pragmatic and logically coherent framework

for software engineering in the form of the triptych concept — where
that framework is made up from the constituent issues listed below,
and

2. I have contributed to several of that frameworks’ constituent disciplines
(“the issues”).

The three circled minus (⊖) items above are not seriously covered in [87–89]
and will not be covered in this document, but two of them ((i) refinement
calculi, formal testing and verification, and (ii) software project and product
management) will be discussed in Chap. 12. The ‘software project and product
management’ topic is, however, now covered in Appendix E.

In the following subsections I highlight issues related to the above ‘thesis’
components. In subsequent chapters these issues are then subjected to a closer
analysis. In summary the issues center around:

1. Method and Methodology Sect. 1.4.1 and Chap. 2

The contribution here is that no (method cum software engineer-
ing) textbooks, and hence no claimed methods have heretofore
spelled out the principles, techniques and tools of their method
and that I do so in a rather detailed, consistent and reasonably
complete manner. (I also claim to have provided, in Vol.1, Sect. 1.5
and in Vol.3, Chap. 3, a proper, comprehensive definition of the
‘method’ and ‘methodology’ concepts.)

2. Semiotics: Pragmatics, Semantics and Syntax Sect. 1.4.2 and Chap. 3

The contribution here is that no (method cum software engineer-
ing) textbooks, and hence no claimed methods have heretofore
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6 1 The Thesis

covered semiotics issues and shown their relevance to software en-
gineering, and that I do so in a rather consistent and reasonably
complete manner.

3. Computer and Computing Science Sect. 1.4.3 and Chap. 4

The contribution here is that no (method cum software engineer-
ing) textbooks, and hence no claimed methods have heretofore
spelled out the distinction, such as we make it, between computer
and computing science, nor have they emphasised the need for the
practicing software engineer to possess a firm, but not necessarily
deep base in computer science and a reasonably firmer base in
computing science — such as I provide it in [87–89].

4. Mathematics Sect. 1.4.4 and Chap. 5

The (minor) contribution here is that only few (method) text-
books, and hence few claimed methods have heretofore bothered
to make sure that a mathematics basis a provided — such as I do.

5. Entities, Functions, Events and Behaviour Sect. 1.4.5 and Chap. 6
This is a part of the ontology of specifying concepts.

The not insignificant contribution here is that I provide a simple
description ontology where most (method cum software engineer-
ing) textbooks do not even bother to cover description principles
and techniques.

Chapter 6 also remedies what we now consider to be an inadequate treat-
ment of the entities, functions, events and behaviour ontology. The remedy
amounts to entities and properties being the base and functions, events
and behaviours being derived from that base. Thus properties (which in
my previous treatments were, incorrectly, we now think, seen as attributes
of type and value) are seen as adjunct, that is, inseparable from entities.

6. Phenomena, Concepts and Descriptions Sect. 1.4.6 and Chap. 7
This is another part of the ontology of specifying concepts.

The not insignificant contribution here is that I further elabo-
rate on the simple description ontology where most (method cum
software engineering) textbooks hardly cover these issues. Jack-
sons’s [206] is the sôle exception.

7. Abstraction and Modelling Sect. 1.4.7 and Chap. 8
Although also a part of the ontology of specifying concepts we treat this
issue separately.

The contribution here is that very few (method cum software en-
gineering) textbooks, and hence few claimed methods have fo-
cused so intensely on abstraction in connection with modelling
and that I do so in a rather consistent and reasonably complete
manner — while suggesting new ways of conceptually structur-
ing abstract models (hierarchy and composition, denotation and
computation, configurations: contexts and states, temporality and
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1.4 The Thesis and Its Issues 7

spatiality, etc. — issues covered in Vol. 2). Included in the abstrac-
tion and modelling issue is that I show how to “UML-ise” formal
techniques rather than formalise ‘UML’ (modularity, Petri nets,
message and live sequence charts, and statecharts — issues also
covered in Vol. 2).

8. Informal and Formal Specifications Sect. 1.4.8, Chap. 9
This is yet another part of the ontology of specifying concepts.

The (minor) contribution here is that I very much emphasise the
need for both informal and formal specifications — a need which is
not recognised by (method cum software engineering) textbooks,
and hence by few claimed methods. I also emphasise the interplay
between informal and formal specifications. This is practised and
“preached” by programming methodologists, but rarely subject to
a more systematic treatment — as here.

9. The Triptych of Software Engineering Sect. 1.4.9, Chap. 10

The contribution here (a major one) is that no (method cum soft-
ware engineering) textbook, and hence no claimed methods have
heretofore introduced or covered the notion of domain engineering
and the reliance of requirements engineering on domain models. I
do so in Vol. 3 and rather extensively so.

The books by Jackson [206,207] do indeed cover a number of facets of what
Jackson call ‘the environment’, but not with rigour and ‘consequentiality’
of this thesis.

10. Documentation Sect. 1.4.10, Chap. 11
This is our final part of the ontology of specifying concepts.

The contribution here is that no (method cum software engineer-
ing) textbook, and hence no claimed methods have heretofore
spelled out nor, really, emphasised the pivotal importance of docu-
mentation let alone the various types and kinds of documents that
need be produced as an integral part of software development, and
that I do so in a rather consistent and reasonably complete man-
ner.

11. Omissions Sect. 1.4.11, Chap. 12

There are three disciplines with which a professional software engineer must
be reasonably familiar but which are neither treated here nor in [87–89]. Those
are the disciplines of

• formal testing, model checking and verification,
• knowledge science & engineering and
• philosophy of science.

Formal testing, model checking and verification is omitted simply because we
are ourselves not deeply enough knowledgeable about this field and because
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8 1 The Thesis

we find that we cannot formulate succinct principles and techniques and rec-
ommend such tools that will let the software engineer perform these tasks
short of heroism. See Sect. 1.4.11 and Chap. 12 for more.

With respect to philosophy, some familiarity with the issues of the sub-
disciplines of

• epistemology (the study of knowledge and justified belief),
• mereology (theory of parts and wholes),
• ontology (specification of a conceptualization),

to us, appear relevant to the practicing software engineer as well as the com-
puting scientist who wishes to contribute to the foundations of software en-
gineering. We shall, however, not bring the issue of philosophy in connection
with computing science and software engineering up in this thesis as it has
not been brought up in [87–89].

1.4.1 On Method and Methodology

The concepts of method and methodology and the constituent concepts of
method principles, techniques and tools are covered in

• Vol. 1, Sect. 1.5, Pages 31–33, and
• Vol. 3, Chap. 3, Pages 93–101.

In Chap. 2 we define what we mean by a method, by methodology and by
attendant method principles, techniques and tools. And then we claim to have
systematically applied these concepts by highlighting, throughout all three
volumes of [87–89] the enunciated principles, techniques and tools.

The thesis is that without a proper understanding and grasp of the con-
cepts of method, metodology, principles, techniques and tools, the soft-
ware engineer is unnecessarily and detrimentally constrained in achieving
good designs. We claim that Vols. 1–3 [87–89] provide the basis for ob-
taining such an understanding and acquiring such a grasp.

Section 2.3 on page 25 critically reviews whether we have achieved what we
desired.

1.4.2 On Semiotics

The concept of semiotics and the constituent concepts of pragmatics, seman-
tics and syntax are covered in

• Vol. 1, Sect. 1.6.2, Pages 34–48, and
• Vol. 2, Part IV, Chaps. 6–9, Pages 143–235.
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1.4 The Thesis and Its Issues 9

In Chap. 3 we define what we mean by semiotics and the constituent concepts
of pragmatics, semantics and syntax. And then we claim to have systematically
applied these concepts by highlighting, throughout all three volumes of [87–89]
the enunciated distinctione between pragmatics, semantics and syntax.

The thesis is that without a proper understanding and grasp of the con-
cepts of semiotics, pragmatics, semantics and syntax, the software en-
gineer is unnecessarily and detrimentally constrained in achieving good
designs. We claim that Vols. 1–3 [87–89] provide the basis for obtaining
such an understanding and acquiring such a grasp.

Section 3.4 on page 30 critically reviews whether we have achieved what we
desired.

1.4.3 On Computer and Computing Science

The distinction between computer and computing science is first highlighted
in

• Vol. 1, Sect. 1.1, Pages 3–4.

In Chap. 4 we define what we mean by computer and computing science.
And then we claim to have systematically emphasised, throughout all three
volumes of [87–89] the concept of computing science.

The thesis is that without a proper understanding and grasp of the con-
cepts of computer science and computing science (including the impor-
tance of their distinction), the software engineer is unnecessarily and detri-
mentally constrained in achieving good designs. We claim that Vols. 1–
3 [87–89] provide the basis for obtaining such an understanding and ac-
quiring such a grasp.

Section 4.3 on page 35 critically reviews whether we have achieved what we
desired.

• • •

Thus we critically review the various places in Vols. 1–3 where we, in
contrast to conventional treatments, cover computational models (i.e.,
models usually covered in some “classico-mathematical” style) from
the semiotic and formal specification points of view. We feel compelled
to make some rather negative observations on the use of the “classico-
mathematical”, i.e., computer science, style rather than the, to us,
far more convincing and hence appropriate computing science style
of formal language cum system specification. Thus, except for some
sections of Vol. 2’s Chaps. 14, the computing science view is the view
which dominates [87–89].
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10 1 The Thesis

1.4.4 On Mathematics

Basic aspects of discrete mathematics are covered in

• Vol. 1 Chaps. 2 to 4 and 6 to 9: Numbers, sets, Cartesians1, functions,
λ-calculus, algebras and mathematical logic.

In Sect. 5.1 (starting Page 41) we motivate the need for the use of mathemat-
ics in software engineering, in particular discrete mathematics. Section 5.3
(starting Page 43) then outlines the rôle of a number of disciplines within
discrete mathematics. We then outlinethe use of mathematics in the book,
Sect. 5.4, before reviewing that use critically, in Sect. 5.5.

The thesis is that without a proper understanding and grasp of the notions
of discrete mathematics, the software engineer is unnecessarily and detri-
mentally constrained in achieving good designs. We claim that Vol. 1 [87]
provides the basis for obtaining such an understanding and acquiring such
a grasp.

We do not critically review our use and propagation of mathematics in [87–89].

1.4.5 On Entities, Operations, Events and Behaviour

The notions of simple simple entities, functions, events and behaviour are
covered

• concretely in Vols. 1–2,
• and more conceptually in Vol. 3, Chap. 5
• as well as further exemplified in the rest of Vol. 3.

Simple entities (in domains and requirements) eventually, and typically, “end
up” as data “inside” computers. (ii) Operations eventually, and typically end
up as procedures (“methods”, code) “inside” computers. (iii) Events reflect
interaction with the environment of computers (or interactions between com-
puting processes). And (iv) behaviours (strands of actions and events, with
actions being invocations of functions) reflect computing (and data commu-
nication network) processes.

The thesis is that without a proper understanding and grasp of the notions
of simple entities, operations, events and behaviour, the software engineer
is unnecessarily and detrimentally constrained in achieving good designs.
We claim that Vols. 1–3 [87–89] provide the basis for obtaining such an
understanding and acquiring such a grasp.

1The use of the term ‘Cartesians’ may appear unfamiliar to some readers. By
a Cartesian, after the French mathematician René Descartes (1596–1650), we un-
derstand a fixed grouping, a structure, of entities. In some programming languages
Cartesians are called records.
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1.4 The Thesis and Its Issues 11

Chapter 6 will review the concepts of simple entities, operations, events and
behaviour (Sect. 6.2) and their deployment in the book (Sect. 6.2).

We repeat what was first mentioned in Item 6 on page 6:
Chapter 6 remedies what we now consider to be an inadequate treatment

of the simple entities, operations, events and behaviour ontology. The rem-
edy amounts to simple entities and properties being the base and operations,
events and behaviours being derived from that base. Thus properties (which
in our previous treatments were, incorrectly, we now think, seen as attributes
of type and value) are seen as adjunct, that is, inseparable from entities.

Section 6.3 on page 59 critically reviews the various places in Vols. 1–3 whether
we have achieved what we desired.

1.4.6 On Phenomena and Concepts and Their Description

The notions of phenomena and concepts and their description are covered

• systematically in Vols. 1–2 and
• conceptually in Vol. 3, Chap. 5
• and further illustrated in the rest of Vol. 3.

Phenomena is what is physically manifest. They are specific instances of what
can be seen, heard, smelled, tasted, felt or otherwise physically measured.2

Concepts “lift” such physical instances to classes of phenomena of “same
kind”. From concepts, by further “lifting”, one can form further concepts.
Phenomena and concepts are what we model: in domain descriptions, in re-
quirements prescriptions and in software designs.

The thesis is that without a proper understanding and some grasp of the
notions of phenomena and concepts the software engineer is unnecessarily
and detrimentally constrained in achieving good designs. But the thesis
goes further: From the modelling of phenomena and concepts in domain
descriptions via the modelling of these notions in requirements prescrip-
tions and in software designs there must be a clear line. Coding or code
optimisation which “blurs” the original domain phenomena and concepts
are here conjectured to be “an evil”. We claim that Vol. 3 [89] provides
the basis for obtaining and proper understanding and acquiring such a
grasp.

Section 7.4 on page 66 critically reviews the various places in Vols. 1–3 where we
emphasize the distinctions between phenomena and concepts.

• • •

The concepts of descriptions, prescriptions and specifications are covered in

2The objectivity of what human senses can register is a problem. We shall not
cover this problem in [87–89]. The issue borders to philosophy: “what there exists”.
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12 1 The Thesis

• Vol. 3, Chaps. 5–7.

The term specification is the general term. The term description is used for
specifications of domains and the term prescription is used for the specifica-
tions of requirements. Thus we reserve the use of the term specification for
that of software design.

Descriptions, prescriptions and specifications can either be expressed in-
formally or formally, or both. We shall advocate the latter.

The thesis is that without a proper understanding and grasp of the con-
cepts of descriptions, prescriptions and specifications, the software en-
gineer is unnecessarily and detrimentally constrained in achieving good
designs. We claim that Vol. 3 [89] provide the basis for obtaining such an
understanding and acquiring such a grasp.

Section 7.4 on page 66 also critically reviews the various places in Vols. 1–3 where
we advance these complementary forms of expression: informal and formal.

1.4.7 On Abstraction and Modelling

The concepts of abstraction and of property- and model-oriented abstractions
are first covered in Vol. 1, Chap. 12:

• Abstraction: Sect. 12.1, Pages 232–235, and
• Property-oriented Modelling: Sects. 12.2–.3, Pages 235–250 respectively
• Model-oriented Modelling: Sects. 12.3–.4, Pages 241–254.

and then applied throughout the three volumes [87–89].
Usually formal specification languages are either typically property-orient-

ed, like CafeOBJ [147,148,161,162] and Casl [24,142,241,242], or are typically
model-oriented, like B [1,131], VDM-SL [111,112,157,158] and Z [186,187,283,
284,297]. The formal specification language RSL, however, permits expressing
both properties and models — depending on the extent to which sorts and
axioms are used, or not used, respectively.

That is why we have chosen the RAISE Specification Language, RSL, as our
main tool for formalisation.

The thesis is that without a proper understanding and grasp of the con-
cepts of property-orientedness and model-orientedness, the software en-
gineer is unnecessarily and detrimentally constrained in achieving good
designs. We claim that Vols. 1–3 [87–89] provide the basis for obtaining
such an understanding and acquiring such a grasp.

Section 8.3 on page 72 critically reviews the various places in Vols. 1–3 where we
alternate between property- versus model-oriented abstractions, i.e., models.

• • •
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1.4 The Thesis and Its Issues 13

There is an altogether different dimension to the development and presen-
tation of abstract models. Besides the conventional choice amongst set-,
Cartesian-, list-, map- and function-oriented model-oriented models (covered
in Vol. 1, Chaps. 11-17), we claim that there is additionally the possibility
of emphasising hierarchy or composition, denotation or computation, differ-
ent configuration (context and state) styles, and different space/time aspects
of phenomena and concepts being modelled. Vol. 2 Chaps. 2–5 covers these
aspects.

The thesis is that without a proper understanding and grasp of the con-
cepts of specific model-oriented choices, the software engineer is unneces-
sarily and detrimentally constrained in achieving good designs. We claim
that Vols. 1–2 [87,88] provide the basis for obtaining such an understand-
ing and acquiring such a grasp.

Section 8.3 on page 72 also critically reviews the various places in Vols. 1–3 where
we choose between such model-oriented abstractions.

1.4.8 On Informal and Formal Specifications

The concepts of informal (rough sketch, terminology, narrative) and formal
descriptions, prescriptions and specifications are specifically covered in

• Vol. 3, Chap. 2, Sect. 2.5, Pages 70–84.

By informal expression we mean a precise expression in some natural, but
possibly professional, that is, domain specific language — possibly “mingled”
with “easy-to-grasp” diagrams, drawings, pictures. By a natural language we
mean such as for example English.

By formal expression we mean an expression in a formal, possibly dia-
grammatic language, and at least a language that has a clear formal syntax
and formal semantics and possibly a proof system.

The thesis is that without a proper understanding of the concepts of
informal and formal expressions and of the joint necessity of informal and
formal expressions the software engineer is unnecessarily and detrimentally
constrained in achieving good designs. We claim that Vols. 1–3 [87–89]
provide the basis for obtaining such an understanding and acquiring such
a grasp.

We claim, moreover, that this is a first textbook on software engineer-
ing which systematically show the application of formal techniques in all
phases, stages and steps of software development.

The sans serif slanted text of the above indented claim shall be seen on the
background that some “prominent” textbooks on software engineering may
indeed mention ‘formal methods’, “tucked away” in some isolated chapter,
but that these same textbooks do not take the formal techniques and tools
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14 1 The Thesis

that they refer to serious — as there are no examples of the use elsewhere in
the textbook !

Section 9.3 on page 74 critically reviews the various places in Vols. 1–3 where
we advance these complementary forms of expression: informal and formal.

1.4.9 On The Triptych of Software Engineering

The concept ‘the triptych of software engineering’, with its emphasis on the
initial phase, domain engineering, is covered in

• Vol. 1, Chap. 1, Sect. 1.2, Pages 7–13
• Vol. 3, Chaps. 1, 8, 17 and 26.

The dogma behind this triptych is as follows:

• Before software can be designed (i.e., specified)
⋆ we must understand its requirements.

• And before we can prescribe requirements
⋆ we must understand the domain.

The dogma implies:

• A domain description is a description of the application domain, the uni-
verse of discourse, free from any reference to the requirements (for soft-
ware) that may be about to be established and certainly, and, even more
so, without any reference to that software.

We claim that a major contribution of [89] is that of “prefixing” conventional
software development with an initial phase of domain engineering. Conven-
tionally it is claimed that requirements engineering is a first technical phase
of software development. With [89] we claim to have shown that that is in-
sufficient: that a serious and laborious, but beautiful prior phase of domain
engineering is indispensable.

Appendix D presents a capsule introduction to domain and requirements
engineering. Rather than studying [89, Parts IV and V] we recommend study-
ing instead Appendix D.

The thesis is that without a proper understanding of the concept of the
domain, requirements and software design triptych and of the joint neces-
sity of the domain, requirements and software design triptych, the software
engineer is unnecessarily and detrimentally constrained in achieving good
designs. We claim that Vol. 3 [89] provides the basis for obtaining such
an understanding and acquiring such a grasp.

Section 10.4.3 on page 86 (of this thesis) will critically review the triptych concept.
We will, throughout Chap. 10, point out which aspects of [89, Parts IV and

V] we believe are made more clear by Appendix D [95, to appear].
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1.4 The Thesis and Its Issues 15

1.4.10 On Documentation

The concept of documentation is — and the principles, techniques and tools
of creating and handling documents are — covered in

• Vol. 3, Chap. 2.

By a document we mean a text, informal or formal text, on paper or readable
(say electronically) as would be a paper document. Domain descriptions, re-
quirements prescriptions, software designs, their informative introduction or
their informal or formal analysis are here represented as documents. In the
triptych approach to software development we set great store by documenta-
tion.

The thesis is that without a proper understanding and grasp of the con-
cepts of proper informative, specification and analytic documentation,
the software engineer is unnecessarily and detrimentally constrained in
achieving good designs. We claim that Vol. 3 [89] provide the basis for
obtaining such an understanding and acquiring such a grasp.

Section 11.3 on page 92 critically reviews our treatment of ‘documentation’.

1.4.11 On Omissions

Chapter 12, “On Omissions”, will critically review three “omissions” from
[87–89]. They are:

• verification and Sect. 12.1.1
• management. Sect. 12.1.2

We shall argue in the above-referenced sections why these three issues have
not been given a serious treatment in [87–89].

Verification

Verification is used here in the broadest sense of:

• testing (informal and formal),
• model checking and
• formal verification (i.e., proofs) of theorems

about descriptions, prescriptions and specifications or about implementation
properties.

I decided as from 2003 to omit treating verification for the following rea-
sons:
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16 1 The Thesis

• The state-of-the-art of testing, especially formal testing and formal verifi-
cation was, and I believe still is not settled, that is, not stable: new con-
cepts, new tools are emerging at almost regular intervals, many enough
that any treatment would soon be outdated.

• Even with the better of these formal testing and formal verification
techniques and tools it still, so I think, requires an heroic effort of the
part of any practicing, well-educated, including formal testing and formal
verification-trained software engineer to carry through formal tests and
formal verifications for other that trivial developments.

It is a subsidiary aim of [87–89] to cover only those areas of (formal) software
engineering where there is at least some guarantee that the material that
is put forward can be learned by a fair percentage of today’s BSc and MSc
students and can be deployed by them without heroic efforts.

Management

Management is used here in the broadest sense of:

• software product management: the study and decisions concerning which
software products
⋆ to develop
⋆ market and
⋆ service; and of

• software development management:
⋆ the planning and resourcing of (future) development, and
⋆ the initiation, monitoring and control of (actual, ongoing) development.

In Appendix E, ‘Believable Software Management’ we cover essential parts of
software development management and overview some issues of software prod-
uct management. We consider Appendix E to be part of this Dr. Techn. thesis.

1.5 The Real Thesis

The sum total of the conjectures, the claims, the sub-theses, made above and
expanded upon in Chaps. 2–12, is this:

No heroism: To do proper, professional software development shall not
need heroisms by the software engineers.

What are now heroic achievements must become routine !3

I claim that Vols. 1–3 [87–89] provide a basis for making software devel-
opment less dependent on “super-programmer” heroes !

3This sentence is lifted from a 9 February 2007 e-mail from Sir Tony Hoare on
the occasion of some scientists having proved the correctness of an implementation
of a smart card software package.
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1.6 Treatment 17

I claim that the principles, techniques and tools expounded in [87–89] —
methodologies that are now carefully reviewed in this Dr.Techn. thesis — are
necessary prerequisites for proper software development and can be learned
by a sufficient number of MSc candidates, in any country, yearly.

Notice that I am not claiming that these principles, techniques and tools
are sufficient. Missing are the formal verification principles, techniques and
tools (as well as the overall management principles, techniques and tools).
The former are, I think, today, August 1, 2008, in such a state that their
proper deployment does indeed require heroism.

1.6 Treatment

The presentation of this thesis relies extensively on the reader have ready
access to all of [87–89]. We shall assume that when we refer to a chapter,
a section, or otherwise, in [87–89], then the reader will have first read the
referenced part before going on with the study of this thesis.
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Part II

THE TEN THESIS ISSUES

The ten issues surveyed in Chap. 1 are examined in the next ten chapters.
The order of this treatment is different from the (unnumbered) •-listed

order on Page 1. The reason is that the earlier chapters cover issues that,
albeit implicitly, enter into later chapters’ coverage and are thus a prerequisite
for these.
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2

On Method and Methodology

For our definitions (characterisations) of the concepts of ‘method’ and ‘method-
ology’ we refer to

⋆ Vol. 1, Sects. 1.5.1–1.5.2, Page 32 of [87], and
⋆ Vol. 3, Chap. 3, Pages 93–96 of [89].

We bring a set of these characterisations:

1. By a method we understand a set of principles for selecting amongst, and
applying, a set of designated techniques and tools that allow analysis and
construction of artifacts.

2. By methodology we understand the study of and knowledge about meth-
ods.

For our definitions (characterisations) of the concepts of ‘principle’, ‘tech-
nique’, and ‘tool’ we refer to

⋆ Vol. 1, Sect. 1.5, Page 33 of [87], and
⋆ Vol. 3, Chap. 3, Pages 97–98 of [89].

We repeat the Vol. 3, Chap. 3 characterisations here:

3. A principle is an accepted or professed rule of action or conduct, . . . , a
fundamental doctrine, right rules of conduct.1

4. A technique is the, or a, specific procedure, routine or approach that char-
acterises a technical skill.

5. A tool is an instrument for performing mechanical operations, a person
used by another for his own ends, . . . , to work or shape with a tool.

We refer the reader for the characterisations of analysis and synthesis given in
Vol. 3’s Sects. 3.3.3–.4 (Pages 97–98) [89].

Finally we refer to Vol. 3’s Sect. 3.4.1 (Pages 99) for the meta-principles
governing our intended use of method.

1Jess Stein (Ed.): The Random House American Everyday Dictionary, Random
House, New York, N.Y., USA, 1949, 1961.
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22 2 On Method and Methodology

2.1 Background

Two background issues must be dealt with before we deal with the rôle of the
concept of ’method’ in [87–89]:

• The choice of our definition of the concept of ’method’ in the context of
standard dictionary definitions.

• The background for the emphasis put, in [87–89], on this concept of
methodology and its attendant concepts of ’principle’, ’technique’ and
’tool’.

2.1.1 Definitions of The Concept of ‘Method’

The concept of ‘method’ is not an easy one to define. Our characterisation is
just that: a kind of definition, one that we shall adhere to. But there could be
other characterisations. We refer to Appendix Sect. L.1.1 (starting Page 418),
for characterisations culled from the conventional references.

Discussion of ‘Method’ Definitions

We relate our definition of ‘method’, Item 1 on the preceding page, to those
of Appendix Sect. L.1.1 on page 418.

• The OED definition [Items 1(a)–1(c)] is commensurate with our definition.
• The Cambridge definition [Item 2] sharpens the OED Item 1(a) definition,

but is still commensurate with our definition.
• And so are the three parts [Items 3(a)–3(c)] of The American Heritage

Dictionary definition.
• And likewise for the nine items of the Merriam Webster Unabridged def-

inition [Items 4(a)–4(g)]; Item 4(g) may surprise some — but really, we
are, in a sense, setting up a table of contents of principles, techniques and
tools.

Merriam Webster Synonyms [Items 5(a)–5(f)] elaborate synonyms for the term
‘method’.

‘Method’ Conclusion

The above discussion of our definition versus the standard reference defini-
tions of the concept of ‘method’ amounts to an argument that our definition
is acceptable and useful — it seems that our characterisation is downward
compatible with those of the standard dictionaries..
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2.2 Coverage in Book 23

2.1.2 Why Emphasize the Concept of ‘Method’ ?

We emphasise the concept of ‘method’ for the following reason:

• The book [87–89] is about engineering.
• An engineer, we claim, expects to work according to some method.
• A group of engineers collaborating on the same target construction, e.g.,

the same software development, we claim, had better follow the same,
commonly understood method.

• We claim that most, if not all textbooks on software engineering fail to
enunciate what a method is, and, as a result, do not explicate the con-
stituents of a method (as here: principles, techniques and tools). We claim
to “repair” those omissions. And we claim to have done a first, not in-
significant step towards that.

• In fact, a derivative reason for emphasising the, or at least, a concept of
‘method’ has been to develop, as I wrote the book [87–89], to unravel,
what it meant to delineate and “populate” a concept of ‘method’.

So, as “revealed” by the last item just above, our coverage of ‘method’, as
manifested in the very many enunciations of specific principles, specific tech-
niques and specific tools, should, perhaps, be seen with a grain of salt: Much
work, we think, is still needed to (even) more precisely develop, “mature” the
concept of ‘method’, and to (even) more succinctly express and sub-categorise
the specific principles, specific techniques and specific tools.

2.2 Coverage in Book

The book, that is, the three volumes [87–89], more-or-less systematically “af-
fix” (suffix) most major sections of most chapters, or just these chapters, with
highlighted paragraphs of Principles of X , Techniques of Y , and Tools
of Z. Section L.2 (Pages 421–429) lists all occurrences of such highlighted
paragraphs.

A study of whether these specifically highlighted paragraphs do indeed
cover all the principles, techniques and tools that have indeed been covered
by these sections and chapters reveals the following:

1. Usually no (specific) principles, techniques and tools are identified in in-
troductory chapters of the three volumes.

2. In Vol. 1 [87] we do not identify (specific) principles, techniques and tools
in Chaps. 2–6: These chapters cover what is assumed to be classical math-
ematical notions. We have naturally refrained from enunciating principles
etc. for using mathematics !

3. In Vol. 1 [87] we (almost) systematically “attach” a set of (explicitly enun-
ciated) principles, techniques and tools to every abstract data type being
otherwise covered. We say ‘almost’ because there seems to be a principle
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24 2 On Method and Methodology

for process modelling (Page 421, 21.2.5), but no corresponding (explic-
itly enunciated) techniques and tools — although there should be (and
although they are obvious!).

4. In Vol. 2 [88] we (almost) systematically “attach” a set of (explicitly enun-
ciated) principles
• to each major abstract concept (Chaps. 2–4’s Hierarchy and Composi-

tion, Denotation and Computation, and Configuration: Contexts and
States),

• to each major modelling concept (Chaps. 6–9’s Semiotics components
[Pragmatics, Semantics and Syntax], and Chaps. 10–11, and 13–15’s
Modularity, and Automata and Machines, resp. MSCs and LSCs, Stat-
echarts and Quantitative Models of Time), and

• to the programming language implementation approaches (Chaps. 16-
19’s applicative/functional, imperative, modular and parallel program-
ming language interpreters and compilers).

The principles are not all fully “matched” by techniques and tools. Some of
these ought have been explicitly enunciated. And, it seems, that I missed
out on attaching explicitly enunciated principles, techniques and tools for
(Vol. 2, Chap. 12) Petri Nets [quite a mistake !].2 (The text of the chapter,
as elsewhere, has these, but, to maintain the whole idea of ‘method’, they
ought have been highlighted.)

5. Volume 3 [89] is really the major volume wrt. ‘methodicity’: the principles,
techniques and tools of being methodical. There are indeed very many
explicit formulations of principles, techniques and tools. We will not go
into analytic detail here other than saying the following:
(a) The principles, techniques and tools of Vols. 1–2 were mostly about

general abstraction and modelling methodology (the choice of speci-
fication, syntax and semantics) whereas those of Vol. 3 are primarily
about the engineering choice of phases, stages and steps of develop-
ment, that is, the principles etc. are pragma-driven.

(b) Whereas the principles, techniques and tools of Vols. 1–2 were devel-
oped by many researchers and practitioners over the last more than
30 years those of Vol. 3 were, to a sizable extent developed by us
as from the early 1990s. Those of Vols. 1–2 might have been devel-
oped by many different researchers and practitioners, but we think we
can claim that our contribution here has been to highlight them as
principles, techniques and tools, that is, to enunciate these.

(c) In a sense one could say that the principles, techniques and tools of
Vols. 1–2 are rather stable (in the sense also of being now generally
accepted), but that those of Vol. 3 are less so: several principles and
techniques are put forth in the comprehensive framework of [87–89]
for the first time.

2 Dines:Should you list some such principles here!
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2.3 Critique 25

2.3 Critique

2.3.1 On a Multitude of Principles, Techniques and Tools

The fact that we have put so much emphasis on clarifying, in [87, 89], the
concept of ‘method’, and on summarising in almost every chapter of [87–
89] the ‘principles’, ‘techniques’ and ‘tools’ implied by those chapters, may
leave the impression that it is relatively easy to learn and to adhere to these
methodological issues.

It is not !
There may be two reasons for this:

• It seems almost “against human nature”: One simply cannot remember all
these principles, techniques and tools, and one “sort of gets tired” following
these methodological mandates slavishly.

• And it likewise seems, to some engineers, to “stand in the way of creative-
ness”.

What is our answer to this ? If we maintain the importance of these method-
ological issues, and we do, then we must provide an answer ! And we do:

• The book [87–89] is about principles, techniques and tools, and these prin-
ciples, techniques and tools are there whether we bother or not — hence
they must be emphasised for us to claim that we treat software engineering
professionally !

• Adherence to principles, techniques and tools can be facilitated by proper
(computerised) tools. If in every phase, at every stage and in every step of
development the software engineer — who is anyway using development
tools3 — informs the overall development tool where development is taking
place and with respect to what, then this overall development tool can list
potential and relevant principles, techniques and tools that ought be of
interest to the developer.

2.3.2 On an Ontology of Principles, Techniques and Tools

Almost every chapter of [87–89] contains explicit enunciations of principles,
techniques and tools.

We could have wished to have performed a close analysis of around a
hundred and fifty (150) principle enunciations, around 120 technique enun-
ciations, around 60 tool enunciations. The analysis should have been guided
by a desire to find commonalities amongst the many principle enunciations,

3This reference to “development tools” is somewhat “dubious” as we have yet
(in a Software Engineering volume on ‘Management’) to outline which such tools
are warranted by our triptych.
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26 2 On Method and Methodology

amongst the many technique enunciations, amongst the many tool enuncia-
tions — and, possibly some meta-principles across these (approximately) 320
method constituents.

We have not done so. And that, we think, is a drawback.

2.4 Conclusion

From Sect. 1.4, Item 1 on page 5 we quote (slightly edited):

The contribution of [87–89] is that no (method cum software engineering)
textbooks, and hence no claimed methods have heretofore spelled out the
principles, techniques and tools of their method and that we have done
so in a rather detailed, consistent and reasonably complete manner.

We thus claim that we have shown that [87–89] establish an explicit ‘method-
ology’ base for software engineering, one that has not been elucidated, by
other authors, to anyway near the degree done in [87–89] — perhaps with
the exception of Michael Jackson’s works [203–207] which, albeit, “covers less
ground”.
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3

On Semiotics

For our definitions (characterisations) of the concepts of ‘semiotics’, ‘prag-
matics’, ‘semantics’, and ‘syntax’ we refer to

• Vol. 1, Sect. 1.6.2, Pages 34–38, and
• Vol. 2, Chaps. 6–9 (i.e., Part IV), Pages 145–239.

We bring an edited set of these characterisations:

1. Semiotics = Pragmatics ⊕ Semantics ⊕ Syntax.
2. Pragmatics is the study and practice of the factors that govern our choice of

language in social interaction and the effects of our choice on others [144]
(Chap. 6, Vol. 2). Thus, by the pragmatics of a language we mean its use in
social context: why a particular expression is used, what “ultimate” motive
lies (seems to lie) behind an utterance, an expression? Why a particular
expression used? What “ultimate” motive lies (seems to lie) behind an
utterance, an expression. Pragmatics is thus concerned with bridging the
explanatory gap between sentence meaning and speaker’s meaning.

3. Semantics is the study and knowledge (including specification) of meaning
in language [144] (Chap. 7, Vol. 2). Semantics is about the meaning of
what we express syntactically.

4. By syntax we understand (i) the ways in which words are arranged (cf.
Greek: syntaxis: arrangement) to show meaning (cf. semantics) within
and between sentences, and (ii) rules for forming syntactically correct
sentences [144]. Syntax is about how we can, in our case, write down
specifications: rules of form, basic forms and their proper compositions.
These rules for formal languages are to be of such a nature that the forms,
that is, the language expressions, can be analysed, and such that, from
the analysis, one can ‘construct’ (construe) the meaning.
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28 3 On Semiotics

3.1 Mathematical Semiotics

We shall use the term mathematical semiotics to cover those aspects of semi-
otics which can possibly be expressed mathematically. The resulting formulas
need not, however, be computable.

The emphasis in [87–89] has been on formalisations in the form of various
kinds of formal specification languages (to wit: BNF, RSL, FOL [Axioms]).

3.2 Why the Semiotics Triplet Emphasis ?

Syntax is what you see! The meaning behind it is often obscured. From 45
years use of software, of so-called user interfaces, and from 45 years among
coders, programmers and software engineers, a number of lasting impressions
have left their indelible mark. These coders, programmers and software engi-
neers have spent more time — considerable time — wavering with themselves
and haggling with colleagues about form (i.e., syntax). And most have not
spent any comparable time being concerned about content (i.e., semantics).
And worse, in my mind, most have not considered the issue of any underly-
ing pragmatics. And, what in my mind is worse, they were unaware of the
distinctions between pragmatics, semantics and syntax.

Perhaps I only, myself, got acutely aware of semiotics and “its” con-
stituents (pragmatics, semantics and syntax), such as I see them, by reading
Zemanek’s paper [300] in 1966, and by working in Zemanek’s laboratory in
the early 1970s.

The claim being made here, that is, in [87–89], is that proper software de-
sign can benefit tremendously from the designer having a clear understanding
of the concepts and rôles of pragmatics, semantics and syntax in domains as
well as in software.

Hence the emphasis on clarifying the distinctions (pragmatics, semantics
and syntax) in [87–89].

3.3 Coverage in Book

We take two views of the concept of ‘coverage’: A “syntactic” view and a
“semantic” view. By the syntactic view we mean: Where have we covered the
semiotic notions of pragmatics, semantics and syntax ? And by the semantic
view we mean: Where have we applied those notions, made use of them,
illustrated them ?

3.3.1 Places of Enunciation

We list some of the places where we have enunciated the semiotic ideas:
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3.3 Coverage in Book 29

• Volume 1, Sect. 1.6.2, Pages 34–38.
• Volume 1, Sect. 9.5.5, Pages 178–180.
• Volume 2, Chap. 3: Denotations and Computations, Pages 55–85, in par-

ticular Sect. 3.1.2, Page 56.
• Volume 2, Part IV: linguistics, Pages 145–234:

⋆ Chap. 6: Pragmatics,
⋆ Chap. 7: Semantics,
⋆ Chap. 8: Syntax and
⋆ Chap. 9: Semiotics.

• Volume 2, Part VII: Interpreter and Compiler Definitions, Pages 573–703:
⋆ Chap. 16: SAL: Simple Applicative Language,
⋆ Chap. 17: SIL: Simple Imperative Language,
⋆ Chap. 18: SMIL: Simple Modular Imperative Language and
⋆ Chap. 18: SPIL: Simple Parallel Imperative Language.

• Volume 3, Sects. 6.4–6.5, Pages 163–169 (A Syntax and A Semantics of
Formal Definitions).

The most notable place is, of course Volume 2, Part IV, that is, Chaps. 6–9.

3.3.2 Places of Deployment

The enumeration of Sect. 3.3.1 is, of course, a bit silly; emphasis on “meta-
syntax” usually is. What matters is the semantics and the relationship between
syntax and semantics. And, we think, semantics and the syntax/semantics
relationship permeates all three volumes [87–89]: Vols. 1 and 3 [87, 89] less
explicitly than Vol. 2.

An Aside:

The title of Vol. 2 [88]: Specification of Systems and Languages is,
in this connection, a give-away: We consider, as also expressed in that
volume’s Sect. 9.5 Systems and Languages, computing systems and
programming languages to basically cover similar, i.e., “overlapping”
concepts.

The systems (or domains) considered have configurations (con-
texts and states) and are acted upon. These actions are the semantic
meanings of syntactic commands, like commands of a programming
language.

But the commands may not be so elaborately structured and/or
embedded in syntactic structures like those found in many program-
ming languages.

To program well in any programming language one must under-
stand its configurations (for example, contexts [environments] and
states [activation stacks and storages]) To handle a system well the
system user must likewise understand its configuration components
well.
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30 3 On Semiotics

To end this argument we conclude that most abstractions and
models (cf. title of Vol. 1) and that domains/requirements/software
(cf. title of Vol. 3) are about systems. Semantic and syntactic issues
are highlighted accordingly.

3.4 Critique

3.4.1 The Semiotics Claim

The claims (i) that there is a scientific discipline here called semiotics, (ii)
that it covers an important area of linguistics and (iii) that it is spanned
by pragmatics, semantics and syntax — and not some other finer or coarser
“division” — are just that: conjectures (due to Charles Sanders Peirce [246–
249] and further first studied by Charles Morris [239,240] and Rudolf Carnap
[132–134]).

We do not argue that claim. Rather we find it useful for the kind of lan-
guages (and systems) that we are interested in. Whether a number of facets of
natural, spoken languages can be adequately understood from this semiotics
perspective is of no concern to us.

3.4.2 The Adequacy Claim

When presenting a programming language, as done in for example Vol. 1’s
Chaps. 19–21, and Vol. 2’s Chaps. 3 and 16–19, it is customary to rigidly
present the syntax of programs first and then the semantics. When present-
ing a system, as done in many examples spread over all three volumes, it is
customary to rigidly present the semantic types first, then the primitive (or
basic) operations on values of these types before the syntax of commands are
presented and given meaning. Main examples are those of Vol. 3’s Chaps. 26–
27. But we have not rigidly structured every example that way. Take our
hierarchical and compositional examples of railways of Sect. 2.3 of Vol. 2
(Pages 40–49).

So there is some wavering here; or, you might say, some not so systematic,
or not fully adequate treatment of syntax and semantics wrt. every “darn
little, or not so small” example.

When it comes to pragmatics we must say that the concept of pragmatics
is, maybe, treated (including illustrated) reasonably well in Vol. 2’s Chap. 6
and in Vol. 3’s Sect. 2.3 (Informative Document Parts), but elsewhere in
[87–89] it is not treated very much, if at all. Here the book could have been
more illustrative.

3.5 Conclusion

From Sect. 1.4, Item 2 on page 5 we quote (slightly edited):
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3.5 Conclusion 31

The contribution of [87–89] is that no (method cum software engineering)
textbooks, and hence no claimed methods have heretofore covered semi-
otics issues and shown their relevance to software engineering, and that
I have done so in a rather consistent and reasonably complete manner.
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4

On The Computer and Computing Sciences

The distinction between computer and computing science is first highlighted
in

• Vol. 1, Sect. 1.1, Pages 3–4.

We bring one set of these characterisations:

1. Computer science is the study and knowledge of what kind of “things”
may (or can) exist “inside” computers, that is, data (i.e., values and their
types) and processes, and hence their functions, events and communica-
tion.

2. Computing science is the study and knowledge of how to construct those
“things”.

Computer science, in general, studies computability, whether in the conven-
tional sense of Turing Machines or λ–Calculus, or in the sense of for example
quantum computing, etcetera.

4.1 The Sciences of Computers and Computing

We briefly discuss the above two definitions, i.e., Items 1 and 2.

1. Examples of Computer Science Studies: Included in computer science are
such classical studies (etc.) as Automata Theory (finite state and push-
down automata and machines and their properties), Formal Language
Theory (regular, context free, and context sensitive languages and their
properties), Computational Models (λ-Calculus, Turing Machines, Markov
Normal Algorithm, Post Systems, Petri Nets, etc., and their proper-
ties), Abstract Complexity Theory, Proof Theories, Foundations of For-
mal Specification Languages and Methods (Algebraic Semantics, Model-
oriented Semantics), and Type Theory.
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34 4 On The Computer and Computing Sciences

2. Examples of Computing Science Studies: Included in computing science
are such classical studies (etc.) as Algorithmics (and Concrete Complex-
ity), Functional (or Applicative), Imperative, Parallel, Logic and Object-
oriented Programming, Refinement Calculi, Verification, Model-checking,
and Formal Testing.
We consider [87–89] to cover mostly computing science topics.

3. A “Continuum”: First, the two definitions do not provide for clear-cut
distinctions. Any one study or any one “piece of knowledge” related to
computers or computing may be partly a computer science partly a com-
puting science study or piece of knowledge.
One only has to examine the two discussion items just above to see ex-
amples of “overlap”: Proof Theory versus Verification, Abstract versus
Concrete Complexity, etc.

4. Concretisation: The definitions are abstractly conceptual in the sense that
one needs evidence of a particular study or piece of knowledge before one
can decide “parthood”, i.e., one must weigh that study (etc.) up against
the two definitions in order to decide whether it is a relevant study or
piece of knowledge, and if so, “how much of either”.

5. Computing Science and Programming Methodology: In [87–89] we “equate”
computing science with programming methodology.

6. Interaction: Computer Science & Computing Science: Computing science
generally “builds on” computer science, i.e., the programming method-
ological issues of computing science can typically be explained by reference
to results of computer science.

7. Software Engineering: Software engineering, such as we define it in [87–89],
is the engineering of technological artifacts (software) based on scientific
insight, and that insight is primarily computing “scientific”. To us the
engineer “walks the bridge” between science and technological artifacts:
constructs the latter based on scientific insight, studies the latter in order
to possibly derive new or modify existing scientific insight.

4.2 Coverage in Book

The book [87–89] primarily exhibits, that is, presents a computing science,
that is, a programming methodological study and “body of knowledge”.

Apart from introductory volume chapters and Chaps. 2–9 of Vol. 1, almost
all chapters focus rather “single-mindedly” on programming methodology.
Chaps. 13–14 of Vol. 2 form one exception: The semantics given there of the
Message and Live Sequence Chart and the Statechart formalisms is studied
from a computer science point of view.

Chapter 11 of Vol. 2, Automata and Machines, although conventionally re-
garded a topic of computer science is here treated from the point of computing
science — so we claim.
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4.3 Critique 35

We are not presenting a bouquet of distinct computing science issues, but
rather a comprehensive software engineering methodology borne by a con-
solidated approach to programming methodology. This comprehensive view,
of course, exhibits many aspects, but these aspects, we claim, have all been
“carefully worked into a balanced whole”.

The book [87–89], however, only treats those aspects of programming
methodology which have a firm foundation in computer science (but, as re-
marked just above, the book rarely reveals this foundation).

So, the “coverage” is not “a little bit here, some chapters or even a part
there, etc.”. The coverage is, but I do not really like the term, ‘holistic’.

4.3 Critique

4.3.1 Scant Treatment of Computer Science

A main critique that can be raised about [87–89] is exactly this “single-
mindedness”: the almost exclusive focus on computing science issues. It is
a valid criticism insofar as some applications of method principles, techniques
and tools are predicated, i.e., can only be justified, if certain computer science-
formulated properties hold of the specifications being developed (constructed
or analysed). Such method-issues typically arise in connection with verifica-
tion, model-checking and formal testing. Since we omit serious treatment of
verification, model-checking and formal testing we can partly justify our main
omission of computer science material.

Perhaps the most questionable part of [87–89] — questionable in the
sense only on its lack of proper treatment of computer science foun-
dations — is that of Chap. 16, Vol. 2: the step-wise development
(“refinement”) of an interpreter and compiling algorithms for an ap-
plicative (i.e., a function) language (SAL). We refer to that chapters’
Sect. 16.4.6 Review (Page 588). It reminds the reader that we are
not able to prove the correctness of the step of development from the
denotational semantics definition of that chapters’ Sect. 16.3 to the
first-order semantics definition of Sect. 16.4. The reason is basically
that we cannot provide for a meaningful explanation, in RSL, of the
recursive definition of nρ: let nρ = ρ † [ v 7→ M(λe)nρ ] in M(b)nρ
end, given on Pages 578 (second line of formula [8]) and 582 (both
Vol. 2). The sentence, on lines 11 to 10 from bottom, Page 579: “Such
definitions of higher-order function types are, in general, not possible
in RSL” alludes to the problem: namely that [87–89] does not cover
the computer science aspect of when solutions exists to such such
recursions.

We justify this omission as follows: To cover all the necessary computer sci-
ence foundations for all the computing science techniques and tools (read:
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36 4 On The Computer and Computing Sciences

specification languages) covered in [87–89] would entail a major enlargement
of the book. Such would not, we claim, further the main issue of the book in
this context: namely that its techniques and tools indeed have a theoretical
foundation.

4.3.2 Software Engineering Based on Computing Science

There are many more aspects to software engineering than the programming
methodological (and a few other) issues primarily covered in [87–89]. The “few
other” issues of the book are there in order to provide for a smooth line of
unfolding the relevant methodological issues that are covered. The software
engineering issues that some critics would claim are “lacking” or “missing”
we would normally classify as either being of sociological or of psychological
or of management character. As mentioned elsewhere, we would like to have
been able to also write a volume on “Software Engineering: Management”.
In such a volume we would then have to treat many of these (i) sociological,
(ii) psychological and (iii) management issues — and then primarily as the
two former sets of issues, (i)-(ii), arise in connection with the management,
(iii), of software development and of software products. But our claim would
remain: these sociological, psychological and management issues, if they are
founded, are not founded on theories of computer science, but possibly on
other, perhaps scientific theories.

4.3.3 Missing Computing Science Issues

There are issues of programming methodology, firmly based in computer sci-
ence which are not in the book. Most significantly we are not treating the
very important issues of (i) algorithmics (hence not complexity theory) and
(ii) refinement calculi (hence not implementation relations either).

Here we justify the omission as follows:

1. Completeness: We cannot possibly cover everything, that is, we cover all
those methodological issues that are — “to a first degree of approxima-
tion” — related to the development triptych: from domains via require-
ments to software design. Detailed techniques of functional, imperative,
parallel, object-oriented and logic programming are not covered (although
the first three, in the form of ‘specification programming’, are to some ex-
tent covered in Chaps. 19–21 of Vol. 1).

2. Well-covered by Existing Books: Those issues, like (i) algorithmics and (ii)
refinement calculi, that are not treated, are either, as is the case with
algorithmics reasonably well settled and reasonably covered by existing
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4.4 A Diatribe 37

textbooks1, or, as is the case with refinement calculi are still not finally
settled, but excellent text cum monograph books are readily available.

3. More Serious Omissions: As mentioned earlier and as dealt with more ex-
plicitly in Chap. 12, we are omitting serious treatment of (i) program
verification, (ii) program model checking, and (iii) formal program test-
ing. All of these disciplines have a firm basis in computer science. The
reason for the first omission (i) is simple: For any software engineer well-
trained in what this book covers, it is, today, in any interesting cases, a
heroic effort to conduct a proof of a realistic property of a realistic speci-
fication. Therefore we do not cover program verification. Once principles
and techniques of program (theorem) verification can be enunciated they
should be taught to the “broad masses” of software engineers. Today any
responsible software house will either contract special firms or hire PhDs
to conduct such verifications.
And since we do not cover program verification seriously we also do not
cover model checking and formal testing seriously.

4.4 A Diatribe

Usually the term diatribe is intended, according to Merriam–Webster [288] to
mean: a prolonged discourse, a bitter and abusive speech or writing, ironical
or satirical criticism. Well, we shall, perhaps not be bitter, abusive, ironical
or satirical, but perhaps this section could lead to a prolonged discourse.

The issue of this section is whether the tools that are sometimes used by
some computer scientists are appropriate/ This claim should be seen in the
context of the tools that can be, or are already provided by computing sci-
ence. The contrasting tools in question are those of ordinary mathematics and
those of formal specification languages. Ordinary mathematics is typically de-
ployed by computer scientists when presenting, or studying the foundations of,
typically, computational models. Formal specification languages are typically
deployed by computing scientists and software engineers when presenting or
verifying (checking and formally testing) properties, typically, of domain or of
requirements models or of software designs.

The claim being advanced here is that there are too many examples in
which ordinary mathematical “models” are published where those models
could be more appropriately expressed in some formal specification language.

A classical example is that of automata theory. In Chap. 11 of Vol. 2
we present finite (and infinite) state and push-down automata and machines
using the RAISE specification language (RSL). We could equally well have

1Still, we would like to see a comprehensive treatment of a comprehensive set
of algorithms and their data structures from the point of view of refinement from
domain problem description via requirements and stages of software design to exe-
cutable code.
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38 4 On The Computer and Computing Sciences

expressed these concepts using VDM-SL or Z (or some other model-oriented
or even algebraic specification language). The objection might, seemingly very
valid, be raised that in order to investigate properties of, as here, automata
and machines, it is easier to create an own mathematical sub-language than
using a formal specification language. We seriously doubt that. The formal
specification languages often come with a proof system and its mechanisation,
i.e., a theorem prover. Another, also seemingly very valid, objection may be
raised, namely that these formal specification languages were not around when
the notational foundations were laid for, as here, automata theory.2 That
objection, we claim, is no longer valid today, 2008, with the presence of an
abundance of formal specification languages. The remarks above were tied, as
an example. to automata theory. They could as well, as we shall see next, be
tied to several other branches of computer science.

Perhaps a more telling example is that of Sect. 13.6 of Vol. 2: CTP: Com-
municating Transaction Processes versus [268]. The idea of combining the
Petri Net and the Message (or even Live) Sequence Chart concepts as put
forward by A. Roychoudhury and P.S. Thiagarajan [268] is, to us, a very nice
idea. But their “formalisation”, in the traditional style of presenting math-
ematical semantics of Petri Nets or Message (or Live) Sequence Charts is
fraught with several problems. Dr. Yang ShaoFa, when working out the se-
mantics of CTP using RSL uncovered a, to us alarming, number of open
questions and a, to us alarming, number of “specification” errors. Our claim
is that by using RSL and according to the many principles and techniques
of the method expounded in [87–89], one is lead to discover “dangling”, i.e.,
unresolved issues like those that were problematic in the [268] paper. Fur-
thermore, the “formalisation” of [268] can not be the basis for a systematic
development of an interpreter for CTP. Such an interpreter was developed by
the PhD students of the authors of [268]. But no guarantee could or can be
made as to the correctness of that [or those] interpreter[s]. There simply can-
not be developed a set of formal techniques for “deriving” a software design
from a classical mathematical notation3, and since the model was anyway
wrong no guarantee can be established. An issue, in our “complaint” is, of
course, when the conventional mathematical model has been corrected and is
consistent and complete, whether it would then be more elegant or concise,
or less implementation-biased than an Event B, an RSL, a VDM-SL, or a Z
model. Let us, for the sake of argument, claim that it would not !

• • •

2Dana Scott, Some Definitional Suggestions for Automata Theory Journal of
Computer and System Sciences, Vol. 1 (1967), pp. 187-212. Reviewed by Robert F.
Barnes in The Journal of Symbolic Logic, Vol. 40, No. 4 (Dec., 1975), pp. 615-616.

3If preparing such a notation for such “derivation” (refinement), i.e., implemen-
tation relations, that notation becomes a formal specification language, then all is
OK!
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4.5 Conclusion 39

An example of “almost” the “opposite”: of a pseudo-formal model that is so
wrong that “it gives formal specification a bad name” is that of [172]. Since we,
for better reasons, bring an appendix, Appendix H, on the concept of ‘license
languages’, and since our “almost bad” example, [172], is of a paper in the
area of ‘license languages’, we bring, as Sect. H.7 (Pages 367–380) an excerpt
of [172]. In [172], and thus in that excerpt, you will observe how sloppily an
attempt of formalising a simple license language can be done. The problematic
areas of the formal model in Sect. H.7 are shown as framed texts. The ‘morale’
is this: when one wishes to formalise some relevant language or system then
one has to be utterly precise — even to the level of possibly boring the reader !

4.5 Conclusion

From Sect. 1.4, Item 3 on page 6 we quote (slightly edited):

The contribution here is that no method cum software engineering text-
books, and hence no claimed methods have heretofore spelled out the dis-
tinction, such as we make it, between computer and computing science,
nor have they emphasised the need for the practicing software engineer to
possess a firm, but not necessarily deep base in computer science and a
reasonably firmer base in computing science — such as we suggest it for
the former (computer science) and provide it for the latter (computing
science) in [87–89].

We thus claim that the book covers all the programming methodological cum
computing science issues that are immediately relevant to the overall exposé
of the triptych of software engineering (see Chap. 10). Our major claim, i.e.,
thesis or conjecture here, is that software engineering can be taught, and —
for major kinds of software development — practiced without resorting to
computer science foundations.
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5

Mathematics

Few textbooks on software engineering — a delightful exception is Woodcock
and Loomes’s Software Engineering Mathematics [298]1 — cover mathemat-
ics.

What mathematics must a software engineer be well-versed in — and why ?
We shall answer the last question first.

5.1 Why Mathematics ?

The artefacts that software engineers construct, whether they be domain de-
scriptions, requirements prescriptions or software designs have properties, as
do all human-made artefacts, and these specifications satisfy laws of math-
ematics — where most other human-made artefacts satisfy laws of physics
(including chemistry).

That is the main reason for bringing mathematics into software engineer-
ing.

Expressed more radically: software programs, in a model-oriented sense,
denote mathematical objects.

Now, expressing domain descriptions, requirements prescriptions and soft-
ware designs in one or another formal, i.e., mathematics-based specification
language — be it textual or graphical or both — has some beneficial side-
effects. We cover those next.

1. Objectivity: When informally describing domains or informally prescrib-
ing requirements or informally designing software (say a la UML), we are
modelling domains, requirements, respectively software in the realm of
linguistics. The various metaphors [215] that spring to the mind [214] of
the modellers and to the readers of these informal model specifications are

1— but then [298] is not about software engineering but about some of its math-
ematics
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42 5 Mathematics

not made explicit. The modeller has no control over how the reader under-
stands these specifications. The modeller and the reader interpretations
are subjective.
When describing domains or prescribing requirements or designing soft-
ware formally, i.e., using some mathematics-based specification language,
then the model or models intended by the modeller is, respectively are
those that are also “read” by the readers. The modeller and the reader
interpretations are objective. Also for the accidental, but unfortunately
recurrent situation that the mathematical model denotes chaos, i.e., is
unintentionally wrong.

2. Precision: A correctly expressed mathematical model is precise, even when
it expresses non-determinacy. That is, if looseness (vagueness) is desired,
then it can be precisely expressed: multiple interpretations are then in-
tended — all of them!

3. Engineering Standard: A mathematical model, suitably explained and an-
notated in a precise, but informal, natural language, e.g., English, can
serve as an engineering standard.2

4. Implementability: A software design specification, i.e., a mathematical
model, can serve as a unique basis for further software development.

5. Provability: And such a development, from specification to code, cf. Item 4,
can possibly be verified. Without a precise mathematical model no precise,
objective verification can be done. In fact, as is the intention of Vol. 3’s
coverage of the TripTych dogma, the formalisation of the “path” from
domain models via requirements models to software design specifications
and, finally, code may similarly be subject to formal verification of prop-
erties such as some notion of ‘correctness’.

6. Mathematical Models: In describing the physical world — mechanics,
including celestial mechanics, electricity, electromagnetism, electrody-
namics, quantum mechanics, aerodynamics, fluid- and hydrodynamics,
etcetera — scientists have deployed mathematics. Mathematics have, so
far, been the only available notation in which to objectively and unam-
biguously express models of physics.
Models, as discussed in Vol. 3’s Chap. 4: ‘Models and Modelling’ (Pages
105–117), are either analogic, analytic, or iconic models; models are ei-
ther descriptive or prescriptive, and models are either extensional or in-
tensional, that is, models attributes are combinations of these. Models
are constructed in order to understand, in order to get inspiration and

2So was the case already in the early 1980s when the C.C.I.T.T. (now ITU, Intl.
Telecomms. Union) put forward the CHILL (Communications High-level Language)
Recommendation Z.200 ISO/IEC 9496. See the CHILL “Blue Book”, Geneva 1989
ISBN 92-61-03801-8. The informal, officially binding language description was offi-
cially supported by a formal description [4, 174, 176] (in VDM [111, 112, 157, 158])
under my leadership together with my colleague Dr. Hans Bruun and by my former
students, notably Peter L. Haff.
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to inspire, in order to present, educate and train, in order to assert and
predict, or in order to be “implemented”.
Only mathematics can lend these qualities to models in a believable man-
ner.

5.2 Mathematical Notations

Perhaps we are using the terms ‘mathematics’ and ‘mathematical’ in a mis-
leading way.

5.2.1 Writing Mathematics

Basically we are primarily using mathematical notation rather than extending
mathematics.

That is, the use of formal techniques is not meant as other than using math-
ematical notations and deriving the benefits from doing so — as enumerated
in the 6 items of Sect. 5.1.

That is, we are not expecting the software engineer to become or “mimic”
mathematicians. The software engineer is not expected to extend existing
mathematical theories with new lemmas, propositions and theorems let alone
create new theories such as mathematicians are doing it.

5.2.2 Mathematical Abstractions

But to “transcribe” informal, precise descriptions (prescriptions and specifi-
cations) into formal form, using mathematical abstractions imply and require
mathematical thinking, that is, thinking in terms of concepts and of abstract-
ing these.

We reckon this to be the most important aspect
of description, prescription and specification.

It is a common experience that knowing and practicing a modicum of dis-
crete mathematics in expressing abstractions lead to elegant and pleasing,
sometimes even beautiful [154] and inspiring models.

5.3 Which Mathematics ?

5.3.1 Two Kinds of Mathematics

Two kinds of mathematics apply to software engineering. The mathematics
implied directly by the notations that are being used, and the mathematics
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that was used to explain the semantics of these notations as they were brought
together in a formal specification language. We briefly remark on the latter
first.

Mathematical Underpinnings

Formal specification languages, in order to satisfy the criterion of being formal,
must have a precise semantics and a proof system. The semantics is usually ex-
pressed in some mathematical framework. By the mathematical underpinning
of a formal specification language we mean that mathematical framework. We
shall not here go into the mathematics of the semantics of the formal specifi-
cation language which is mostly used in [87–89] — for the simple, engineering
reason that the software engineer should not be concerned with this mathe-
matical underpinning, i.e., “should not be bothered”. (In Vol. 2, Chaps. 13 and
14 we do, however, present “the” semantics of the Message and Live Sequence
Chart and the Statechart diagrammatic formalisms. The reason for that is to
be able to relate these formalisms to the RAISE specification language RSL.)

Software Engineering Mathematics

By software engineering mathematics we mean the kinds of mathematics that
are expressed by the formal languages used for formal domain descriptions,
formal requirements prescriptions and formal software design specifications.

They includes: numbers, sets, Cartesians, relations (maps and functions),
λ-Calculus, algebras and mathematical logic.

Usually we characterise these kinds of mathematics as “belonging” to ‘dis-
crete mathematics’.

In contrast to discrete mathematics we have the classical calculus, statis-
tics, probability theory, etcetera. With regret these do not figure in [87–89].

5.3.2 Specification Mathematics — which is included

We comment briefly on the some — seemingly arbitrarily chosen — prop-
erties of discrete mathematical entities with respect to their use in formal
specifications.

Numbers: The ability to deploy numbers — in the form of natural numbers,
integers and reals — have proven quite useful in (model-oriented) abstract
specifications. They are, however, not used much. But natural numbers, for
example, appear as indices of sequences of entities. Within computers numbers
are typically restricted to lie within a range (−2n−1..+2n−1, where n, typically
is a so-called ‘word length’ of the computer). In (model-oriented) abstract
specifications there is no need to be concerned with the machine representation
of the values being expressed (even) in (model-oriented) specifications.
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Sets: Sets form the “workhorse” of (model-oriented) abstract specifications.
And, as for reals, there are no concerns with respect to machine representa-
tions: thus also indefinitely large (with respect to number of set members)
and even infinite sets are quite common in (model-oriented) abstract spec-
ifications. One may consider the actual world to be finite or definite, but
abstract concepts formed on the basis of physical, actual phenomena, can of-
ten be modelled in terms of indefinite or infinite sets. (A “classical” example
is the infinite set of routes in a finite transportation network where routes
may be circular, i.e., where parts of a route may be repeated indefinitely.)
Domain descriptions may feature non-computable sets. The full complement
of “standard” set operations apply (∈, =, 6=, ⊂, ⊆, ∪, ∩, card, etc.).

Cartesians: Cartesians are fixed groupings of usually two or more entities. In
programming languages “their equivalent” is called ‘records’ or ‘structures’.
Only the = and 6= operations apply.

Maps and Functions: By functions we mean functions in general, partial or
total, whether defined or just postulated, whether computable or not. By maps
we mean finite or infinite definition set3 enumerations of definition set/range
pairs, whether computable or not. Functions and maps are, perhaps even more
so that sets, the “workhorse” of model-oriented specifications.

A Critique: Relations versus Maps and Functions: One may reasonably
object to my choice of “promoting” maps and functions and not the
more general notion of relations, i.e., from the very beginning present
maps and functions as relations. (Sect. 6.7 (Vol. 1) does, however,
“retell the story” of maps and functions as relations.) So why not
“from the beginning” ? My answer is that I want the specifier to think
in terms more of maps and functions than in terms of relations when
specifying phenomena and concepts. If a phenomenon or concept is
more elegantly abstracted and modelled as a relation, then I want the
specifier to think in terms of sets of (same type) Cartesians. Again we
should recall the distinction between computer and computing science.
In the former relations, as a foundational concept, are preferable to
maps and functions.

λ-Calculus: The λ-Calculus is our basic means to understand a number of
properties of defined functions, their abstraction, their application (i.e., their
“being applied” to arguments), and their fix points. Landin was the first to
really expound on the usefulness of the λ-Calculus in understanding program-
ming language concepts [219].

3By ‘definition set’ we mean the set of values for which the function is defined.
In other texts a ‘definition set’ are referred to as a ‘domain’. To avoid confusion
with the TripTych notion of a domain as a universe of discourse, we choose the term
‘definition set’, but, for reasons of tradition, keep the name of the operator, dom

(for ‘domain’), that applies to enumerable maps and yield their definition sets.
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A Critique: Rather The λ-Notation than the λ-Calculus: Our presen-
tation of the concept of λ-Calculus is not a computer science theoret-
ical, or foundational one, but is a practical one: the λ-Calculus as a
notation, to be used and understood in a practical, engineering way.
Thus, for example, the fix point operator can be used in evaluating
recursively defined functions — but it may not (always) denote the,
or a smallest fix point operator !

Algebras: Algebras — more or less implicitly — play an important rôle in
(abstract) specifications. We think of algebras in the simplest possible sense
of universal algebras: possibly infinite sets of entities and usually finite sets of
operations, of various arities, over these entities. When describing domains,
prescribing requirements or specifying software designs it is useful to think in
terms of defining, possibly heterogeneous algebras: defining sets of classes of
entities in terms of their types and defining operations on possibly Cartesian
compounds of values of these types in terms of function definitions, or just
function signatures. Thinking algebraically helps structure descriptions, pre-
scriptions and specifications. Several specification languages, including RSL,
provide algebraic language constructs such as RSL’s schemes and classes to
focus the specifiers attention.

A Critique: Why not Classes and Schemes ? In view of the last sen-
tence above one may therefore question why I have not presented
many, or most of my examples as class or scheme definitions. Why
not ? My answer is that using any particular formal specification lan-
guage’s modularisation constructs subject me to a number of con-
straints that I am not, at this time, willing to accept. One thing is the
entities and functions (i.e., the algebra) of the phenomenon or concept
that I wish to specify; another thing is the “casting” of that algebra
into some specification language’s modularisation constructs. My posi-
tion is the following: none of the specification language modularisation
constructs that I am familiar with are “optimal”: they constrain your
presentation in one way or another; they more or less force you to set-
tle on a specific set of class and/or scheme definitions “from the very
beginning” — long time before the development of the initial formali-
sations are ready to be “cast” into classes and schemes (as in RSL —
or whatever the modularisation constructs are called). My position is
further: Once a reasonably complete part of a specification (whether
description, prescription or other) has been achieved, then it is time
to analyse that specification and modularise it.
(The TripTych “story” on modularisation is given in Vol. 2, Chap. 10;
and the RSL “story” on modularisation is given in that chapter’s
Sect. 10.2.)

Mathematical Logic: Mathematical logic, in the sense of a notation with se-
mantics and proof system, is a, if not the major “work horse” of abstraction.
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Volume 1’s Chap. 9 presents that view. Sect. 9.2 of Vol. 1 focuses in particular
on the difference between the classical view of a mathematical logician’s view
of mathematical logic and the view with which we wish to guide the software
engineer. In short the difference, “in the vernacular”, is: The mathematical
logician, to put the matter perhaps in the extreme, studies one logic or a vari-
ety of logics with respect to for example decidability properties. The software
engineer selects a logic appropriate to the specification and verification task
at hand, uses its notation and, hopefully, sooner or later, conducts proofs of
properties of the specification using the proof system of the logic.

A Critique: Absence of Material on Verification ! It has been said
before, and it will be said later: we regret to not bring substantial ma-
terial of how to formulate provable (propositions, lemmas and) theo-
rems, and hence we do not bring material of how to conduct proofs
(i.e., proof tactics and proof strategies), let alone even examples of
proofs ! And we repeat the reason for this. The state-of-the-art of
verification is still, unfortunately and despite more than 35 years of
research, to me, in the experimental research stage. It is still too much
of a heroic effort for anyone to carry through any interesting verifica-
tion effort.

5.3.3 Specification Mathematics — which is not included

Calculus: Formal specification languages all lack means for expressing conti-
nuity. This is a serious hindrance to bringing together the control-theoretic
domain modelling of a number of physical systems and the “refinement” of
these into requirements for safety critical, embedded, real-time systems. The
inability of taking the derivative, or integrating over intervals, of continu-
ous, for example partial differential equations severely limits current formal
specification languages.

The main stumbling block for integrating continuity in the sense of classical
calculus seems to be that we cannot establish a proper proof system for the
integrated result. Currently much research is being devoted to integrating
“formal methods” [6,126,129,171,265], but mostly where the integrated sub-
languages are themselves formal; and the languages of (partial) differential
equations are not formal in the sense of having a proof system themselves.

In [303] (An Extended Duration Calculus for Hybrid Real-time Systems)
the Duration Calculus [301] is extended with a first-order mathematical sys-
tem, for example by first-order differential expressions. We have not observed
much further research into, let alone applications of such languages.

Etcetera: There are many other disciplines of mathematics which have been
left out of [87–89], to wit: probability theory, statistics, combinatorics, graph
theory, etcetera. Many of these disciplines are taught to most software engi-
neers in courses separate from software engineering. And their techniques can
be used by software engineers: “on the side”, for example, when determining
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parameters for software implementations; [301] provides one such example.
Software engineering textbooks, for example in database design or in the de-
sign of embedded, safety critical real-time systems, etc., cover such material
better that is necessary in our book.

5.4 Coverage in Book

The use of the discrete mathematics disciplines mentioned in Sect. 5.3.3 per-
meates all of [87–89].

5.5 Critique

Section 5.3.3 brings, in indented environments, a number of critiques of the
specific use of mathematics in [87–89]. In addition this section will bring a
criticism of non-uses of certain forms of ‘mathematics’.

5.5.1 Foundations

From the earliest conception of [87–89] I decided not to present or use any
of the mathematics that is at the foundations of the semantics of the formal
specification language (RSL) used in [87–89]. In fact, the formal specification
language, RSL, used as the foremost language of [87–89], is never “formally”,
i.e., systematically introduced as such a formal language, but is introduced in
conjunction with illustrating suitable abstractions, cf. Chaps. 2, 9, 11, 13–16
of Vol. 1, and then the emphasis is not on the mathematical foundation of
numbers, logic, functions, sets, Cartesians, lists (sequences), and maps and
functions (again), respectively.

[87–89] is no worse off since “all” (known) other textbooks in software
engineering also do not do that.

But there are cases (I do not list them here, but I am sure “critics” can
find them), where [87–89] may “thread too lightly” past foundational issues
that, perhaps should have been referred to in order to secure the proper use of
certain specification language constructs. A case in point is “quote”-indent-
mentioned in Sect. 4.3.1 on page 35.

5.5.2 Continuity

It was mentioned above that current formal specification languages lack the
ability to properly handle continuity. That this presents a problem one can
see, in [87–89], from the treatment, for example, of (continuous) time and
(continuous) space. We refer, for example, to Vol. 2’s Chap. 5: Time, Space
and Space/Time. Although we give an example of an axiomatic foundation for
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time the resulting time concept is not further “exploited”. And no axiomatic
foundation is, for good reason, attempted for space — as that would “lead us
far afield”. Elsewhere, in [87–89], dense sets (like time and space, and usually
these) are mentioned without saying much more than that, and certainly
this “denseness” is not exploited further. Well, there are some attempts to
quantify over these dense sets in order to express properties of functions from
elements of dense sets (i.e., time) to some other entities. And these attempts
are reasonable, i.e., are OK, but if a firmer foundation had been laid, perhaps
more adequate predicates could evolve. The problem is, however, that those
parts of [87–89] would require quite substantial extensions wrt. mathematical
foundations — and most readers would have been unnecessarily “lost”.

In Vol. 2’s Chap. 15, Quantitative Models of Time, a calculus, the Duration
Calculus, is introduced which handle continuous time in a (most) satisfactory
way. Perhaps we should have use the Duration Calculus to express the predi-
cates4 hinted at in the previous paragraph.

5.5.3 Models of “Other” Mathematics

But formal specification languages can be deployed — instead of conventional
mathematical notation — to formalise problems of statistics, probability, com-
binatorics, graph theory, time series, etc.

In Sect. 4.4 on page 37 we “lamented” the practice, usually by our com-
puter scientist colleagues to use more or less ad hoc mathematical notation to
give semantics to computational systems which could, we argued, be better
specified by using a formal specification language.

The same objection can now be raised for the case of our operations re-
search colleagues who also use smatterings of mathematical notations — no-
tably from set theory and graph theory — in their modelling endeavours. In
fact, as long as one does not need continuity formal specification languages
might be a better modelling tool as they are precise and have proof systems.

Appendix J shows the very rough sketch beginnings of an attempt to
model Bayesian Networks [209]. We bring that appendix only for this very
simple reason, namely to support the claim made in the first paragraph of
this section.

4Example of predicates over dense time are:

• Let traffic be a continuous function from a dense time (definition) set to locations
(again a dense set) of vehicles.
⋆ for any two times in the definition set of the traffic, if a given vehicle is in the

traffic at both of these two times then it is in the traffic at all times between
these two times,

⋆ and if the two times are infinitesimally close then the locations of the vehicle
are likewise infinitesimally close.
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5.5.4 Possible “Waverings”

A careful reader of all volumes [87–89] may end up thinking that our choice
of mathematics may not be that consistent across the three volumes [87–89].
This author at least has that nagging “feeling” without, however, being able
to point to specific cases. That is, although “we preach”, or at least deploy
mathematical abstractions and hence notations, we are not claiming these
deployment to be consistent across [87–89]. In some places we abstract in the
property-oriented style of abstract types, i.e., sorts with observer functions and
axioms — such as first illustrated in Vol. 1’s Sect. 8.5 (Specification Algebras),
part of Sect. 9.6.5 (Examples 9.23–9.25), and Sect. 12.2. In other places we
abstract in the model-oriented style of concrete types and explicit function
definitions (Vol. 1, Sect. 11.2). It may seem to many readers that we most
deploy the latter style of specification and that there is not, except in Vol. 1,
Chap. 12, given enough methodological guide lines for which mathematical
approach to choose. And even if that is so, it may be that the author (me !)
does not strictly follow “own” guidelines ! Be that as it may, perhaps some
more explicitly motivated usage might (further) improve that aspect of [87–
89].

5.6 Conclusion

From Sect. 1.4, Item 4 on page 6 we quote (slightly edited):

The (minor) contribution here is that only few (method) textbooks, and
hence few claimed methods have heretofore bothered to make sure that
an introduction to basic mathematics is provided and used — such as we
do.
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6

Simple1 Entities, Operations2, Events and

Behaviours

The notions of simple entities, functions, events and behaviour are covered

• concretely in Vols. 1–2,
• more conceptually in Vol. 3, Chap. 5., and
• with systematic exemplification in the rest of Vol. 3.

The aggregation of simple entities, functions, events and behaviour as a mod-
elling paradigm amounts to an ontology of modelling. There are many on-
tological “theories” of “data modelling”, “data analysis”, etc.2 The perhaps
“grandest” such theory is that of John P. Sowa’s [281] Knowledge Representa-
tion: Logical, Philosophical, and Computational Foundations. Ours is a rather
modest, simple one. And it works !

6.1 Introduction

As the title of this chapter indicates our ‘ontology’ of modelling hinges on
the four notions of simple entities, functions, events and behaviours — to-
gether I shall refer to this ensemble of four concepts as entities. That theory
(of phenomena and concepts) is justified, crudely, along two lines, and as
follows: Firstly we conjecture that these four meta (or ontological) concepts
suffice in modelling domains and requirements, and in achieving elegant mod-
els. Secondly: (i) simple entities (in domains and requirements) eventually,

1In [89] we only used the term ‘entities’, but, as we shall see, now prefer to use
the term ‘entity’ to cover the concept of ‘simple entities, operations, events’ and
“behaviours’.

1We use the terms ‘functions’ and ‘operations’ synonymously, but today prefer
to use the term ‘operation’ in connection with domains and ‘function’ elsewhere.

2The term ‘data’ should be understood in a wider sense than just computer data,
where computer data are formalised representations of entities (incl. information).
To model ‘data’ isolated from the operations, the functions on data makes little
sense.
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and typically end up as data “inside” computers, (ii) operations eventually,
and typically end up as procedures (code) “inside” computers, (iii) events re-
flect interaction with the environment of computers (or interactions between
computing processes), and (iv) behaviours (strands of actions and events, with
actions being invocations of functions) reflect computing (and data commu-
nication network) processes.

Let us mention the concept of an algebra as a possibly infinite set, E, of
entities and a usually finite set of operations, O, such that these operations,
o:O, of arity n, apply to entities e1, en, . . . , en, that is, o(e1, e2, . . . , en),
yielding an entity in the set E. That is, simple entities and operations, our
first two specification concepts thus fit with the notion of specifying algebras.
We shall in general wish to have all entities, that is, also operations, events
and behaviours be the subject of, that is, argument “to” operations. More
about this later.

• • •

A contribution of [87–89] is its promulgation of the quadruple concepts: sim-
ple entities, functions, events and behaviours as technical “cornerstones” in
domain descriptions, requirements prescriptions and software design speci-
fications.

The understanding of the quadruple concepts of simple entities, operations,
events and behaviours have developed noticeably since the writing of [87–89].
In this chapter we shall outline the “improvements”. Hence this chapter will
summarise the “new” treatment of these concepts. And thus this chapter is
slightly different in style and a bit longer than Chaps. 2–5 and 7–11 all of
which also review a more-or-less distinct facet of [87–89].

6.1.1 Entities

An entity is something that has a distinct, separate existence, though it need
not be a material existence, to which we apply functions. With simple entities
we associate properties modelled as types and values: a simple entity is of
some type and has, at the time it is observed, a value (of that type). Simple
entities can be considered either atomic or composite. It is the observer (that
is, the specifier) who decides whether to consider a simple entity to be atomic
or composite. Atomic entities cannot meaningfully be decomposed into sub-
entities, but atomic entities may be analysed into (Cartesian) “compounds”
of properties, that is, attributes. Attributes have name, type and value. Com-
posite entities can be meaningfully decomposed into sub-entities, which are
entities. The composition of sub-entities into a composite entity “reveals” the,
or a mereology of the composite entity: that is, how it is “put together”.
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6.1.2 Operations

By an operation we shall understand something which when applied to some
entities, called the arguments of the operation, yields an entity, called the
result of the operation application (also referred to as the operation invoca-
tion). Operations have signatures, that is, can be grossly described by the
oftentimes compounded (that is, Cartesian) type of its arguments and the
possibly likewise compounded type of its results. Operations may be total
over their argument types, or may be just partial. We shall consider some ac-
ceptable operations as “never terminating” — and shall call them processes.
We shall, for the sake of consistency, consider all operation invocations as pro-
cesses (terminating or non-terminating), and shall hence consider all operation
definitions as also designating process definitions.

We shall also use the term function to mean the same as the term oper-
ation.

6.1.3 States

By a state we shall loosely understand a collection of one or more simple
entities whose value may change.

The concept of state is an elusive one.
Thus, since any collection of simple entities is eligible for “state-hood”, one

may ask for guidance as to what “state-selection” criteria may be advised. On
one hand there may be many simple entities “in play” in any one specification.
So selecting a subset leaves another subset as non-state simple entities. What
are they then ?

Roughly speaking we can group simple entities with respect to their rôle
as arguments to or results of operations into three classes. Those simple
entities which the specifier decides to endow with state-hood; those which are
common (or regular, i.e., repeated) arguments to, but not results of operation
invocations — often referred to as context or environment entities; and those,
occasional, simple entities which, in a loose sense play a rôle of arguments to
operation or results of state non-changing operations. In Vol. 1, Sect. 20.6 and
in Vol. 2, Chap. 4 we discuss, at length, the notion of configurations, namely
that of combinations of states and contexts.

Based on those references we can summarise states as those entities which
changes value “frequently” (whereas contexts change value “less frequently”) !

6.1.4 Actions

By an action we shall loosely understand something which changes a state.
That “something” could be an operation invocation, that is, the application
of an operation to some arguments. In applicative specifications the state is
then part of or the whole of an argument and part, or the whole of the result.
In imperative specifications the state is conventionally represented by a finite
set of assignable (that is, update-able) variables.
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6.1.5 Events

• An event can be characterised by
⋆ a predicate, p and
⋆ a pair of (“before”) and (“after”) of pairs of

· states and
· times:
· p((tb, σb), (ta, σa)).

⋆ Usually the time interval ta − tb
⋆ is of the order ta ≃ next(tb).

Sometimes the event times coincide, tb = ta, in which case we say that the
event is instantaneous. The states may then be equal σb = σa or distinct !

We call such predicates as p for event predicates.
Informally, by an event we shall loosely understand the occurrence of

“something” that may either trigger an action, or is triggered by an action,
or alter the course of a behaviour, or a combination of these.

6.1.6 Behaviours and Processes

By a behaviour we shall informally understand a strand of (sets of) actions
and events. In the context of domain descriptions we shall speak of behaviours
whereas, in the context of requirements prescriptions and software designs we
shall use the term processes.

By a behaviour we, more formally, understand a sequence, q of actions
and/or events q1, q2, . . . , qi, qi+1, . . . , qn such that the state resulting from
one such action, qi, or in which some event, qi, occurs, becomes the state in
which the next action or event, qi+1, if it is an action, is effected, or, if it is
an event, is the event state.

6.1.7 An Improved “Story”

Since the release of [89] we think that the concept of entities can be given a
better presentation than in [89]. We refer to Appendix B, starting Page 155,
for that better “story”!

In Appendix B, [103], we

• give a more precise definition of how we might model events and be-
haviours, and

• speculate on ‘compositionality’ and mereology of composite entities —
whether simple, operations, events or behaviours.

• That is, we “raise” operations, events and behaviours to “first class” enti-
ties — something that was left out of [89] since it would not be appropriate,
in [87–89] to bring research ideas that had yet to mature.

The next three sections, Sects. 6.1.8–6.1.10 (Pages 55–56) summarises our
current position on entities.
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6.1 Introduction 55

6.1.8 Overview of Entities

The above characterisations, indeed the entire conglomerate of simple entity,
operation, event and behaviour concepts, presume a model-oriented “way of
thinking”. In a model-oriented specification there will then be specific lan-
guage constructs covering each of these four notions: (abstract and concrete)
types, (typed) variables and formal (typed) parameters to cover the entity
concept; function definitions (including function signature definition), func-
tion application and function abstraction to cover the operation concept; “in-
put/output alphabet” (composed into suitable [synchronisation & communi-
cation” expressions, as in CSP) to cover an event concept, and sequential (“;”),
parallel (‖), process definition (usually simple function definitions may suffice),
and deterministic and (internal (⌈⌉) and external (⌈⌉⌊⌋)) non-deterministic pro-
cess compositions (as in CSP) to cover the behaviour concept. Model-oriented
specification languages then offer a considerable number of primitive, i.e., so-
called “built-in” functions.

In an algebraic specification language there are basically only the following
language constructs: entity sorts (abstract types) and variables, observer and
generator function signatures, function application and axioms over function
applications and “encoded”3 entities. Algebraic specifications often “spend
some considerable” textual space in order to “construct” the assemblance (i.e.,
appearance) of concrete types, “built-in” operations, events and behaviours.
This part of an algebraic specification can be referred to as an ontology of the
specified language or system.

The names “data analysis” or “data modelling” are basically erroneous
names as the analysis, the modelling, really cannot proceed without any ref-
erence to operations (events and behaviours). Algebras, we conclude, are at
the basis for both algebraic and model-oriented specifications.

6.1.9 Specific

Any attempt, as that of [87–89] and [103], and as that above, to properly
delineate the specification ontological notions of simple entities, operations,
events and behaviours soon “runs into” problems of existential, that is, philo-
sophical nature. One need only “Google” these terms and, for example, se-
lect the ‘Wikipedia’ entries: http://en.wikipedia.org/wiki/Entity, /Operation,
/Event %28philosophy%29, and /Behaviour, to observe that their characteri-
sations are inconclusive. In Appendix B Sect. B.3 (starting on Page 160), bring
a — perhaps — more satisfying essay on this matter — with Sect. B.10.1 on
page 192 briefly referring to the philosophical nature of this topic.

The next subsection addresses this issue.

3By ‘encoded’ entities we mean that non-simple entities have to be “coded”
as if they were simple, un-interpreted entities — as are the models of events and
behaviours in Appendix B, that is, [103].
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56 6 Simple Entities, Operations, Events and Behaviours

6.1.10 Entities and Properties as an Ontological Base

We explain operations, events and behaviours on the basis of simple entities
and their properties. The following explanation is based on [160].

We operate with two concepts: entities and properties. Entities are per-
ceived of through their properties, but properties are not to be considered to
be entities. Amongst properties are those of a simple entity being atomic and
having attributes of types and values, or being composite in which case we
consider the sub-entities and their mereology, i.e., how these sub-entities are
put together, i.e., contribute to the ‘whole’, and the attributes of the compos-
ite entity to all be properties of entities. Amongst properties of entities are also
whether they additionally can be considered operations, event or behaviours.
(This view is not emphasised in [87–89].)

Therefore, as treated in Chap. 10 of Vol. 3, Domain Attributes, and ad-
vancing some of the material that more properly should go into the very
next section (Sect. 6.2), the properties of entities, in addition to those which
can be measured4, include (i) being continuous, discrete or chaotic, Vol. 3,
Sect. 10.2, (ii) those of being static or dynamic (Vol. 3, Sect. 10.3) with the
further dynamic entity properties of being inert, being active with properties
autonomous active, biddable active, and programmable active, or being reac-
tive. (iii) Further properties dealt with are tangible and intangible (in Vol. 3,
Sect. 10.4), and/or “possessing” dimension (Vol. 3, Sect. 10.5).

On this background an entity which has functional property is an opera-
tion, one which satisfies [the] event criteria is an event, and one which satisfies
[the] behavioral criteria is a behaviour. For the sake of generality these con-
ceptual entities may possess either atomic or composite properties — as the
domain engineer decides to abstract them. Thus we allow full generality.

In [87–89] we have taken the view — and we continue to take this view
— that entities are characterised uniquely by their properties and that these
properties must be measurable. Domains, “in the final analysis”, such as we
wish to describe them, “boils” down to observable phenomena and the struc-
tures of concepts that can be (recursively) constructed from these. We are thus
excluded from describing phenomena or concepts that cannot be objectively
measured — such as feelings, moods, sentiments, “what is art” (cf. Vol. 3,
Sect. 6.2), etc. Well, we can write things down about these, but we cannot
formalise them.

6.2 Coverage in Book

We briefly refer to major places in [87–89] where we cover simple entities, op-
erations, states, actions, events and behaviours. By operations we do not mean

4Measurable properties relate to the five human senses and the physically (incl.,
chemically) measurable quantities.
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6.2 Coverage in Book 57

the “built-in” functions on entities but the operations that can be postulated,
given signature and possibly defined over entities.

6.2.1 Simple Entities

The following data types can occur as simple entities, i.e., as arguments to
and results of “built-in” or defined functions: atomic types: numbers, Vol. 1,
Sect. 10.2; enumerated tokens, Vol. 1, Sect. 10.3; characters and texts [char-
acter strings], Vol. 1, Sect. 10.4; and identifiers and general tokens, Vol. 1,
Sect. 10.5; functions (Vol. 1, Chaps. 11 and 17), sets (Vol. 1, Chap. 13), Carte-
sians (Vol. 1, Chap. 14), sequences (lists, Vol. 1, Chap. 15), maps (Vol. 1,
Chap. 16) and functions (Vol. 1, Chaps. 6, 11 and 17). Means of defining
subclasses and compositions of these are covered in Vol. 1, Chap. 18 (Types).

A more general, but, as noted above, not a fully satisfactory treatment of
entities is given in Vol. 3, Sect. 5.3. The next subsections summarise Vol. 3,
Sect. 5.3 (Pages 125–138).

A final treatment on atomic and composite entities, and on operations,
events and behaviors being first class entities is given in Appendix B, Sects. B.3–
B.7.

Atomic and Composite Entities

The story told in Vol. 3, Sect. 5.3 is a bit too complicated, I think in particular
on subsection 5.3.2 ‘Composite Entities’. When writing the paper reproduced
in Appendix A, I believe I got a shorter, more concise exposition of the concept
of entities, atomic and composite, Sect. A.3 starting Page 126.

Atomic Entities

Atomic entities have no sub-entities, and hence no mereology, but atomic
entities may be of, that is, abstractly modelled as a composite type, hence
with composite values. See Example A.1 on page 127.

Composite Entities

Composite entities have proper sub-entities, and hence a mereology. See Ex-
ample A.2 on page 127.

Attributes, Types and Values

We use the term ‘attribute’ to cover both the concept ‘type’ and the associated
concept ‘value’. We speak of composite entities and of compound types. They
are not the same. Entities are the (atomic or composite) things that we model.
Types are part of our way of modelling these entities.

An atomic entity may be modelled in terms of a single atomic type, or
in terms of a compound of (typically, but not necessarily) atomic types. A
composite entity is always modelled in terms of a compound type (and more).
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58 6 Simple Entities, Operations, Events and Behaviours

Entities, Sub-entities and Mereology

The “new” thing in our way of treating composite entities is that of separating
into three concerns the modelling of composite entities: they have sub-entities;
the composition of the sub-entities is according to some mereology; and the
composite entity itself — “independent” of its sub-entities and mereology —
has attributes. Cf. Example A.2 on page 127.

On “Data” Modelling

The above sub-sub-sections and paragraphs have been expressed in a way that
abstracted from the operations (functions) that are to be performed on the
entities. Of course, choosing, for example, set, Cartesian, list or map types, for
the “compositional” mereology is very strongly influenced by considerations
of these operations.

The term ‘data modelling’, in our opinion, may suggest a focus on types
and values which omits consideration of operations.

To us many treatises and so-called methods, cf. UML, on ‘data modelling’,
including [281], suffer from the lack of an appropriate formal linguistic “frame-
work”, one that includes means of expressing types sufficiently flexibly and
expressing operations and defining functions over the ‘data-modelled’ entities.
OK, UML [127, 208, 245, 269] does, as shown in our Vol. 2, Sect. 10.3 (‘UML
and RSL’), have means for lumping entities into object classes and naming
operations (functions), but it is far too rudimentary and an orderly transition
from UML Class diagrams to actual code is somewhat problematic.

6.2.2 Functions

Definition of functions is covered in Vol. 1 [87], Chaps. 6, 7, 11, 16 and 17
and in Vol. 2 [88], Sect. 5.3. In Vol. 1’s Chaps. 6 and 7 from the basic view of
functions as mathematical entities. In Vol. 1’s Chaps. 11, 16 and 17 from the
view of formal specification languages (here RSL).

The use of functions is covered throughout each and every chapter of
Vol. 1–3 [87–89] as from Chap. 11 of Vol. 1 [87]. That chapter introduces the
variety of ways in which to define functions: model-oriented explicit, axiomatic
and pre/post definitions, and property-oriented axiomatic and algebraic (not
that there is much difference !).

6.2.3 Events and Behaviours

The concepts and explicit modelling of events and behaviours are introduced
in Vol. 1 [87], Chap. 21: ‘Concurrent Specification Programming’ — and is
then used throughout all Vols. of [87–89].
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6.4 Conclusion 59

6.3 Critique

Let us recall that the title of this chapter is: ‘Simple Entities, Functions, Events
and Behaviours’ and that we are viewing how the book [87–89] is covering this
modelling paradigm and whether an adequate coverage is provided.

1. Specification Ontology: Since [87–89] is primarily a textbook no compar-
isons are made to other ontologically structured ways of modelling than
focused, “along the ontological dimension” of entities, functions, events
and behaviours. Due references are occasionally made to such other ways,
however, but maybe not very systematically.

2. Mereology: The presentation, in Vol. 3, Sect. 5.3.2 (‘Composite Entities’),
as mentioned on Page 57 (Sect. 6.2.1), can be sharpened, and this was
done in the published paper of Appendix A. Later I got the opportunity to
express the modelling issue of composite entities in the essay contribution
to Willem-Paul de Roever’s Festschrift [103]. I have included a draft of
this essay as Appendix B.

3. Events: We could wish to have defined the concept of events more pre-
cisely (Vol. 1, Sect. 21.3.1 (Page 533), Vol. 3, Sect. 5.5.1 (Page 144)). A
sharper definition has now been provided in Sect. 6.1.5 and an even more
comprehensive one in Appendix Sect. B.6.

4. Behaviours: We could likewise wish to have defined the concept of be-
haviours more precisely (Vol. 3, Sect. 5.5.1 (Page 144)). A sharper defini-
tion has now been provided in Sect. 6.1.6 and an even more comprehensive
one in Appendix Sect. B.7.

We have, throughout [87–89] avoided overly mathematical definitions of even
technical terms such as mereology, event and behaviour. This lack of utter
precision is judged OK in a basically software engineering textbook.

6.4 Conclusion

From Sect. 1.4, Item 5 on page 6 we edit:

The not insignificant contribution here is that we provide a simple de-
scription (prescription, specification) ontology in terms of simple entities,
functions, events and behaviours.

Most (method cum software engineering) textbooks do not even bother to
bring this issue up, let alone follow any one description (etc.) ontology.
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7

Descriptions of Phenomena and Concepts

The notions of description and of phenomena and concepts are covered

• in Vol. 3 [89], Chap. 5:
⋆ phenomena and concepts are specifically defined in Sect. 5.2.3, and
⋆ description notion is specifically defined in Sect. 5.2.6.

• Chap. 6 of Vol. 3 [89] (‘On Defining and on Definitions’) expands on the
concept of description.

7.1 The Issues

7.1.1 Phenomena and Concepts

In the domain there are phenomena, the things we can see, hear, smell, taste
and feel (pressure, touch), or the things that can otherwise be measured by
physical (including chemical) instruments. As also mentioned in Chap. 6, these
phenomena, to us, and according to our modelling paradigm, constitute either
simple entities, functions, events or behaviours. From phenomena we may form
concepts. That is, one or more phenomena may be abstracted into further
concepts — also modelled by simple entities, functions, events and behaviours.

7.1.2 Descriptions

We here use the term ‘description’ in some contexts as description of domains,
in other contexts as prescription of requirements, and in yet other contexts as
specification of software design — whether, for all three kinds, informally or
formally.
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62 7 Descriptions of Phenomena and Concepts

Software Design Specification

Let us take the last first: specifications of software design. Here it is clear that
the specification, when formal, in the final stage of development, amounts to
program code. Therefore, when “informalising” such specifications of software
design we use such Danish, or such English, etcetera, for which there is an
informal mapping from the informal specification text to the formal specifica-
tion text — and we are bound, by the choice of our programming language, in
what we can specify. That which is specified must be according to the syntax
of the programming language.

So, in the phase of software design, we know what we can informally de-
scribe: it must be expressible, also for higher level (than code) design, in the
chosen programming language(s). But we can probably not otherwise describe
that subset of English (or Danish) within which can informally express soft-
ware design.

Requirements Prescription

In the phase of requirements engineering things are not that obvious. We are
not algorithmitising the requirements, we are first-and-foremost prescribing
properties that should hold of any software design which claims to implement
the requirements. And this property description may not itself be executable,
yes, indeed, may not itself be computable. The requirements prescription may
appeal to properties as follows: “such and such a software design which sat-
isfies the following predicates”! This effectively means that we cannot expect
there to be a commonly, say industry-supported requirements prescription
languages like there are industry-supported programming languages.1 The
history of the design of programming languages is long, many diverse pro-
gramming languages have been designed, and, let us hope so, the last has
not yet been designed! There are very many aspects of requirements that we
today, 2008, do not know how to capture formally and in such a way that we
can more-or-less systematically, let alone rigorously or even formally, “derive”
an efficient and provably correct software design.

So, for the phase of requirements engineering we can expect that formal
requirements prescription languages can be, or are proposed or are available,
but that also here the last has yet to be put forward. But we can still not other-
wise describe that subset of English (or Danish) within which can informally
express requirements prescriptions.

What makes the linguistic forms that are allowed in natural language dis-
course about requirements interesting is that whatever is being so spec-
ified must be computable, well, at least implementable in the form of
computing and communication.

1UML may be claimed to be an industry-supported requirements prescription
language, but it is not formal and cannot be formalised.
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7.1 The Issues 63

Domain Description

Thus we reach the issue of domain description languages, both informal and
formal. We can simplify the discussion, at this stage to:

• How can we make sure that some informal English (or Danish) text does
indeed describe some phenomenon?

• What can be described?
• Are there phenomena and concepts (derived, or abstracted from phenom-

ena) that we do not know how to describe informally?

The view taken in the book with respect to thee first of these questions may
best be summarised as done in the next three paragraphs.

Volume 1: Volume 1 [87] emphasises formal specification using the RAISE
specification language RSL. Accordingly Vol. 1 more-or-less implicitly takes
the view that what can be described is what can be formalised in RSL. Now
that is, of course, not a satisfactory point of view, but one must be able to
crawl before one can walk!

Volume 2: Volume 2 [88] then expands the (more-or-less implicit) view of
Vol. 1 by introducing a number of additional formal specification tools, that
is, diagrammatic as well as textual notations: finite and infinite state and tape
machines, Petri nets, Message Sequence Charts (MSCs), Live Sequence Charts
(LSCs), Statecharts and temporal logics, in particular that of the Duration
Calculus. Now the view of what can be described is what can be formalised
using any of these formalisms and RSL. Again that is, of course, not a satis-
factory point of view, but one must be able to walk before one can run!

Volume 3: Volume 3 [89], with Chaps. 5 and 6, now focus on the “art of
describing and defining” (and not on the means of formalising these). So it is
only with Vol. 3 that the book gets concerned with the well-nigh philosophical
(existential) and linguistics issues of that is superficially treated in the next
subsection.

What Can Be Described?

It would be nice if one could say: when expressing yourself, in your informal
English (Danish or other national language),

• if you only use nouns that designate known phenomena or concepts which
are ‘defined’ (Vol. 3, Chap. 6) from known phenomena or already (so)
defined concepts, or concepts that are being defined on that basis;

• if you only use verbs as names for functions that are either already known
(but preferably also ‘defined’) in connection with known phenomena, or
are being defined in connection with already, or with “at the same time”
defined other verbs;

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
64 7 Descriptions of Phenomena and Concepts

• if you only use adjectives that relate to the aforementioned kinds of nouns
(or even, like ‘hedges’ to the aforementioned kinds of verbs) and such that
these themselves are themselves objectively “measurable” (no “feelings”);
and

• if you put these nouns, verbs and adjectives together in definite denoting
phrases,

then, and only then, you are describing something objectively. But it is not
clear whether that is sufficient — as it is quite clear that the wording of the
four (“bulleted”) items can be made more precise.

One can always try to establish such a framework as hinted at above for
natural language expressions (statement), but it seems that such a framework
will always be lacking in being the largest subset, of a natural language, for
expressing descriptions of the kinds we are interested in,

In other words: Vol. 3 [89] has not ventured into such a linguistics discourse.
The author is simply not suitably educated and trained for a study of, let alone
for formulating, such a ‘theory’.

7.1.3 On Russel’s’ Theory of Descriptions

In Appendix K (Pages 413–416) we bring an extensive, slightly edited quote
from the Wikipedia Web page http://en.wikipedia.org/wiki/Theory of De-
scriptions.

• • •

So where does the extensive quote of Russel’s theory of descriptions (Ap-
pendix K on page 413) leave us? Not much, but just a bit wiser! Making
precise that largest subset of our chosen natural, cum national language in
which all sentences describe something definite is not possible.

7.1.4 Conclusion

So, the conclusion made in [87–89] was that we use such sentences for which
we know how to formalise them in at least one of the languages covered
in [87] and [88]: RAISE, FSA/FSM, Petri Nets, MSCs, LSCs, Statecharts and
Duration Calculus.

7.1.5 Caveats: Narratives and Annotations

At times (mostly) we omit the term (or keyword) narrative “in front” of a
narrative, i.e., an English language text which presents a description (pre-
scription or informal specification). At times we use the term ‘annotation’, in
the form of itemised informal text, in lieu of narrative. And sometimes such
‘annotations’ are used to explain formulas.
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7.3 Coverage in Book 65

7.2 What Are Phenomena and Concepts?

So far we have somehow skirted the issue of what we mean by phenomena
and concepts.

7.2.1 Phenomena

We simply say that phenomena are the tings that we, as humans, can sense
with our five sensory organs: vision (eyes), auditory (ears, hearing), so-
matosensory (skin, touch), gustatory (tongue/mouth, taste), olfactory (nose,
smell), and (these are also) the things that can be measured (or recorded, in
terms of IS units) by physical and chemical instruments: length (say metre),
mass (say kilogram), time (say second), electric current(say Ampere), ther-
modynamic temperature (say Kelvin), amount of substance (say mole), and
luminous intensity (say candela).

But this is far from a fully satisfactory explanation of what phenomena
are! Add to the above the following: phenomena are “complexes” of one or
more of the kind of observations that can be made as indicated above with
the addition, to these complexes, of further attributes.

Here is where computing science “goes beyond” physics and mathemat-
ics: in describing domains, in prescribing requirements and in specifying
software we are narrating and formalising universes of discourse, con-
templated software-based systems and actual software that are far more
“complex” in their structure and properties than most, if not all, engi-
neering systems based on the natural sciences only.

7.2.2 Concepts

Combinations of the above International System (IS) of units give us Hertz
(frequency), Newton (weight), Pascal (pressure), Joule (energy), Watt (power),
Coulomb (electric charge), volt (Volterra, voltage), Farad (Faraday, electric
capacitance), Ohm (electric resistance), etcetera, etcetera.

We can say that these and other abstractions of phenomena are concepts,
and that abstractions of concepts are also concepts.

A remark similar to the one “quote”-indented above, at the end of
Sect. 7.2.1, can likewise be made.

7.3 Coverage in Book

All three volumes of [87–89] abound with narratives (as well as annotations)
of phenomena and concepts. Well-nigh any chapter! Each example, basically
and especially, from Vol. 1’s Chap. 12 onwards: all of Vol. 2 and 3 abound
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66 7 Descriptions of Phenomena and Concepts

bears witness to some narration and some formalisation of some phenomena
and/or concept. So there is hardly any reason to emphasise specific places in
[87–89] where narrated and formalised phenomena and concepts are especially
prominent.

7.4 Critique

7.4.1 Lack of Consistent Use of Narrative and Annotations

We can criticize [87–89] (cf. Sect. 7.1.5) for a lack of consistency with re-
spect to the use of the terms narrative and annotation. In general we have
not advocated any strict syntax for informal descriptions, prescriptions and
specifications. A professional software house would either see to it that any
given project or that all projects adhere to a strict syntax.

Appendix F (Pages 292–312), however, shows, what we consider a suitably
consistent use, over a “large” example description, of narratives, formalisations
and annotations.

7.4.2 Critique of Coverage of Concept of Descriptions

As is also clear from this chapter, the three volume book is not especially clear
on the issue of how does one use one’s national, i.e., natural language, in order
to produce succinct narratives. The issue continues to challenge computer and
computing scientists, logicians, linguists and philosophers of language.

7.4.3 Critique of Coverage of Concept of Phenomena and Concepts

As mentioned above, we have not embarked on this, as we shall take it, philo-
sophical area of (Hegelian) phenomenology and epistemology (what can we
know). See Sect. 7.4.5 below.

7.4.4 Critique of Coverage of Descriptions, Phenomena and
Concepts

We have thus chosen to only describe such phenomena and concepts for which
we have a tool, i.e., a formal language, for their formalisation. This means
that there are concepts that we have not described: emotions such as “user-
friendliness”, “legalese” distinctions such as delinquency, sloppiness, etc.; and
others.
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7.5 Conclusion 67

7.4.5 Towards a Philosophy of Descriptions and Phenomena (Etc.)

A general critique could be that one must study the ontology, phenomenology
and epistemology fields of philosophy deeply before “ordaining” principles and
techniques for description and objects of description.

Let us hope that someone will one day do so and then, most likely, realign
our principles and techniques for description and objects of description.

7.5 Conclusion

The not insignificant contribution of [87–89] is that we do try to elaborate
on what it takes to describe (prescribe, specify) and what it is that one
describes (prescribes, specifies).

Most (method cum software engineering) textbooks hardly cover these issues.
Jacksons’s [206] is the sôle exception.

And the similarly, we claim, not insignificant contribution of [87–89] is
the breadth (variety) and depth of exemplified phenomena and concepts.

Examples are good to learn from.
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8

Abstraction and Modelling

an abstraction is an instantiation of some metaphor1

The notions of abstraction and modelling are covered in [87–89] as follows:

• abstraction in Vol. 1, Sect. 12.1, Pages 232–235, and
• models and modelling in Vol. 3, Chap. 4, Pages 105–117.

But, of course, examples as well as principles and techniques of and tools for
abstraction and modelling permeates most of [87–89].

8.1 The Issues

8.1.1 Abstraction

The essay, essentially by Sir Tony Hoare, in Vol. 1, Sect. 12.1.3, lists the issues
of abstraction: (i) the, or an ability to focus on what is essential, and omit
what is not; (ii) the “lifting” of those essential things, from the phenomenolog-
ical level to a conceptual level by means of suitable abstraction and modelling
concepts; (iii) with these “liftings”, these abstractions, being pleasant and
their further properties revealing further essentials. The lifted abstractions,
when relating to simple entities, are typically such as represent mathematical
sets, Cartesians, sequences, maps and functions, that is, model-oriented ab-
stractions, or such as represent algebras, that is sorts, observer and generator
functions and axioms governing these (sorts and functions). Examples of ab-
stractions formed from two or more of these could be: tables, trees, graphs,
etcetera. The lifted abstractions, when relating to operations (functions) on
entities, are typically expressed using pre/post conditions, further axioms, and

1Metaphor: the description of one thing as something else — is one of very many
characterisations of the term ‘metaphor’
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70 8 Abstraction and Modelling

suitable, beneficial non-determinism. Beneficial non-determinism, when used
judiciously, oftentimes better reveal salient properties of the operations (func-
tions) than if such are expressed “algorithmically”. Events and behaviours
are, in [87–89], often, but not always, expressed within CSP.

8.1.2 Models and Modelling

You may think it strange that we postpone till Vol. 3 (Chap. 4) a deeper
treatment of the concept of ‘Models and Modelling’. The reason is this: Vol-
umes 1 and 2, of course, brings models, and says so, by stating, that the
meaning of a specification is a model, or a possibly empty, or a possibly infi-
nite, set of models — after having described what a model is (Example 1.7,
Pages 35–37, Vol. 1). And Vols. 1 and 2 bring “zillions” of models. Usually
these models, that is, their specifications, are from less than a page to 2–3
pages at most. It is not till Vol. 3 that we aim at modelling what may appear
as large: in people’s mind, conceptually, and also physically, in terms of num-
bers of pages of specification. We therefore think it opportune to set aside an
entire chapter to discuss types of models: analogic, analytic and iconic mod-
els (Vol. 3, Sect. 4.2.1, Pages 107–110), descriptive and prescriptive models
(Vol. 3, Sect. 4.2.2, Pages 111-113), extensional and intensional models (Vol. 3,
Sect. 4.2.3, Pages 113–115); and to discuss uses, that is, the rôles of models
(Vol. 3, Sect. 4.3, Pages 115–116). Volume 3’s Chap. 4 applies equally well to
any mathematical modelling, whether control theoretic, operations research
or in computer or computing science or in software engineering.

8.2 Coverage in Book

In this section we re-interpret the notions of ‘abstraction’ and ‘modelling’ as
follows: by ‘abstraction’ we mean the choice of presenting a simple phenom-
ena or concept by a simple mathematical concept (see Sect. 8.2.1), and by
‘modelling’ we mean the choice of presenting a complex phenomena or con-
cept by a composite mathematical concept (see Sect. 8.2.3). So abstractions,
however expressed, denote models. And composing abstractions is then the
act of modelling.

8.2.1 Abstraction

Years of observation has shown that the ability to abstract, to find pleasing,
elegant and inspiring abstractions, cannot really be taught. It seems that
some people have that ability, others not. But one can, or has to elicit it from
those that have the ability — “extract it out of those” — by confronting
them with appropriate abstractions: ‘learn by doing’. Surely there are some
ground rules that must be obeyed. Vol. 1’s Sects. 13.7, 14.6.2, 15.6, 16.6, 17.5
and 18.11.2 summarise their principles, techniques and tools. These and most
other chapters of [87–89] provide many examples of abstractions.
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8.2 Coverage in Book 71

8.2.2 Property- Versus Model-Oriented Abstraction

Characterising phenomena and concepts by their properties, for example in
the form of axioms over sort defined entity types and operations over entities,
is generally thought of as representing “a higher level of abstraction” than
using such mathematical entities as sets, Cartesians, lists, maps and function
(entailing the use of the primitive operations on these “built-in” types). We are
not always convinced. First we discuss property- and model-oriented abstrac-
tion in Vol. 1, Chap. 12. In that chapter, as in later chapters’ use of sorts and
axioms as a mean to achieve property-oriented abstraction, we are quire sat-
isfied with our examples being “more abstract” than possible model-oriented
abstractions. But we have often seen published algebraic specifications (i.e.,
sorts and axioms) which start out by laboriously abstracting sets, list, maps,
etc., in order to use these as auxiliary notions in subsequent “abstraction”.

8.2.3 Composite Modelling Patterns

But there are other abstractions than those based on properties and those
based on sets, Cartesians, lists, maps and lifting (i.e., lifted functions).

We claim that the description patterns discussed next — by being presented
as they are, namely as abstraction and modelling concepts — constitute a
contribution of this Thesis, i.e., of [87–89]:

• Applicativeness Vol. 1, Sect. 19.7.2
• Imperativeness Vol. 1, Sect. 20.6.4
• Concurrency Vol. 1, Chap. 21; Vol. 2, Chaps. 12–14
• Hierarchies versus Compositions Vol. 2, Sect. 2.2.2
• Denotations versus Computations Vol. 2, Chap. 3
• Configurations: Contexts and States Vol. 2, Sect. 4.9
• Time, Space and Space/Time Vol. 2, Chap. 5

Further abstraction and modelling patterns are presented in Vol. 3, Chap. 10:
Domain Attributes.

• • •

When confronted with a “sizable” modelling challenge, the developer has to
choose not only pleasing abstractions for “individual” phenomena and con-
cepts but also how to compose one or more of these abstraction patterns into
larger models. The above-listed “patterns” (styles) suggest alternative means.

These are just some such means. The book abounds with other, perhaps
“less distinguished” patterns (styles).
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72 8 Abstraction and Modelling

8.3 Critique

[A first, minor critique could be that we do not elaborate on the term ‘pattern’
as “first” introduced just above. Our use may conflict with the meaning of
the same term as used in ‘design patterns’2.]

Pursuing abstraction and modelling, as touched upon in this chapter, rep-
resents, perhaps the most intellect-intensive part of engineering. As such it is
hard, if not impossible, to set precise principles for choosing abstraction and
model patterns. Once chosen, the techniques are otherwise covered in listed
sections and chapters. But, again, much more could be said. The book [87–89],
“by design”, cannot detail the abstraction and modelling principles, tech-
niques and tools for other than general cases. By this we man that the book
should be studied as a prerequisite for studying books specialised in specific
areas (cum domains) such as the design of (i) real-time, embedded safety
critical systems, (ii) programming language design and compilers, (iii) infor-
mation [i.e., database] systems, etcetera. Vol. 2, Chap. 15 hints strongly at
development techniques for real-time, embedded safety critical systems, Vol. 2,
Chaps. 16–18 and Vol. 3’s Sect. 28.2 (Translator Architectures) hints strongly
at development techniques for interpreters and compilers, Vol. 3’s Sect. 28.3
(Information Repository Architectures) hints at some issues of database man-
agement system development.

8.4 Conclusion

The contribution wrt. abstraction and modelling is that very few (method
cum software engineering) textbooks, and hence few claimed methods
have focused so intensely on abstraction in connection with modelling
and that we do so in a rather consistent and reasonably complete manner
— while suggesting new ways of conceptually structuring abstract models
(hierarchy and composition, denotation and computation, configurations:
contexts and states, temporality and spatially, etc. — issues covered in
Vol. 2). Included in the abstraction and modelling issue is that we show
how to “UML-ise” formal techniques rather than formalise ‘UML’ (mod-
ularity, Petri nets, Message and Live Sequence Charts, and Statecharts
— issues also covered in Vol. 2).

2A design pattern is a general reusable solution to a commonly occurring problem
in software design. A design pattern is not a finished design that can be transformed
directly into code. It is a description or template for how to solve a problem that
can be used in many different situations. [Wikipedia]
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9

On Informal and Formal Specifications

The notions of informal and formal specification are covered

• across the entire book, as from Vol. 1’s Chap. 12 through Vol. 3’s Chap. 28
— where most examples illustrate both informality and formality, and

• with Vol. 3’s Sect. 2.5, Pages 70–84 highlighting some methodological prin-
ciples and techniques of documentation: rough sketching, terminologisation
and narration.

One way of characterising what we mean by the term ’formal’ is:

• By informal expression we mean a precise expression in some natural,
but possibly professional, that is, domain-specific language — possibly
“mingled” with “easy-to-grasp” diagrams, drawings, pictures.
By a natural language we mean such as for example English.

• By formal expression we mean an expression in a formal, possibly diagram-
matic language, and at least a language that has a clear formal syntax and
formal semantics — and, preferably, also a proof system.

Another, more “exclusive” way of characterising what we mean by the an
informal expression is:

• An expression (a diagram, etc.) is informal if it is not based on a formal
syntax and, even if so, does not have a formal semantics.

9.1 The Issues

9.1.1 The Communication of Descriptions Etc.

A main issue here is that of reading. Although the software engineer de-
velops the description (prescription or specification) for further development
purposes, see next section, that description (etc.) has to be communicated:
descriptions and prescriptions have to be accepted by domain, respectively
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74 9 On Informal and Formal Specifications

requirements stakeholders. (And they do not necessarily [have to] understand
formal expressions.)

9.1.2 Developing Descriptions, Prescriptions and Designs

A main issue here is that of development. Is what has been described (pre-
scribed or specified) what the domain or requirements stakeholders actually
meant ? Developing alongside informal expressions also their formal ‘counter-
parts’ sharpens the developers’ awareness of possible ambiguities of the infor-
mal expressions. And, once formalised, there is now the grounds for proving
properties of what is formalised and for formally deriving, as it were, a num-
ber of aspects of requirements prescriptions from domain descriptions, as well
as the software design specifications from requirements prescriptions — and
proving, model checking or formally testing these developments.

9.2 Coverage in Book

We start by highlighting a specific pair of informal and formal descriptions:

Example 2.5 (Pages 40–41) Vol. 2 illustrates what we would charac-
terise as an appropriate narrative. Example 2.6 (Pages 42–44) Vol. 2 il-
lustrates what we would characterise as an appropriate (i.e., abstract)
formalisation. The two examples taken together illustrate, in the way
we prefer, a pair of coordinated descriptions: the numbered narrative
statements correspond, one-to-one, to the numbered formula lines.

Already Vol. 1’s Examples 8.5 and 8.6 (Sects. 8.5.2–.3, Pages 134–136) illus-
trates the pairing of informal narratives with formal specifications. So does
Example 9.2 (Sect. 9.5.3, Page 173), and so on. We claim that basically all
specification examples, in all volumes of [87–89], present the pairwise illustra-
tion of informal and formal specifications. The last example, most of Chap. 27
(Pages 547–578), likewise presents a stage- and stepwise development in the
form of a formalisation alternating with informal texts.

Appendix F (Pages 292–312) shows, what we consider a suitably consis-
tent use, over a “large” example description, of narratives, formalisations and
annotations.

All these examples show the pairing of informal and formal texts in differ-
ent ways. No strict guidelines are set for these “pairings”.

9.3 Critique

Possible points of critique of our treatment, in [87–89], of ‘Informal and Formal
Specifications’ could be:
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9.4 Some Sociological Aspects of Formal Specifications 75

• Consistency of Informality: By the predicate ‘consistency of informality’
I mean: are the informal, the narrative, including the ’annotation’ nar-
ratives, presented consistently in the same, albeit informal style ? The
answer is, basically yes, but, in general, no !
That is, some readers, some lecturers, some students, may wish for a
more consistent style. Some may even want a single, say annotation style
throughout.
The style changes are deliberate. Each narrator should find an own style
as long as all formalisations are also narrated. For a specific customer a
strict narration style may be preferred.

• Consistency of Formality: By the predicate ‘consistency of formality’ I mean:
are the formalisations presented consistently in the same style ? The an-
swer is yes — with variations in style. The style variations are, in most
chapters of all volumes, kept in the notation of the RAISE specification
language RSL1.

• Derivations: Formulas from Narratives or Vice Versa: As shown in the high-
lighted Example 2.5 (Pages 40–41) of Vol. 2 one could claim that formulas
can be (albeit informally) “derived” from narratives. But one could claim
the converse: that one can derive (“strict”) narratives from formalisations.
Usually, in the engineering work, formulas arise as a result of informal anal-
ysis which includes verbal, usually also written (albeit sometimes rough
sketch) expressions. Thus narratives may appear to precede formalisations
— in time and, as a consequence, perhaps also “on paper”. As a further
result of this and owing to documentary sloppiness the engineer may forget
to update the narrative to express what the formulas express.
We have not “regimented”, let alone advocated, any development process
whereby narratives are “kept ajour” with respect to formalisations. It is
clear, however, that some such document quality assessment and control
should be exercised in at least commercial projects.

A point of critique of whether the various phases, stages and step of software
development prior to coding should be formalised (at all) is dealt with in the
next section (Sect. 9.4).

9.4 Some Sociological Aspects of Formal Specifications

Somewhere in this thesis we must mention — and debate — the strange resis-
tance there has been, in the broader software engineering and even computer
sciences community, to formalisation of the various phases, stages and step
of software development. This resistance continues in some isolated, but not
insignificant quarters of the software community So we do that now.

1Else the formalisations are kept in the notations covered in respective chapters:
Petri nets (Vol. 2, Chap. 12), Message Sequence Charts (Vol. 2, Chap. 12), Live
Sequence Charts (Vol. 2, Chap. 13) and State Charts (Vol. 2, Chap. 14).
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76 9 On Informal and Formal Specifications

The term ‘formal method’ has been attached to a development process
which involves formalised specifications (of domains, or of requirements, or of
“earlier” steps of software design) and therefore the possibility of formalised
transition steps (with the further possibility of formal verification of the cor-
rectness of later steps wrt. earlier steps). From the early 1970s ’formal meth-
ods’ were characterised by some software engineers (and software engineering
scientists) as being too difficult for many, or even most software engineers to
learn, let alone practice. Formal notations were criticized as being too math-
ematical. Lack of support tools were brought forward as an argument (when
others did not suffice). We find that most “brick-heavy” textbooks in Software
Engineering, still today — of course with the exception of [87–89] — either do
not cover ‘formal methods’, or, when they do, “tuck” the treatment away in
a chapter “somewhere”. Some such textbooks even state that ‘formal meth-
ods’ may at best be useful in connection with the development of real-time,
safety-critical embedded systems !

We shall not dwell much on this debate here. But we shall mention the
forceful rebuttals made, over the years and as witnessed by the following
published articles:

• A. Hall: Seven Myths of Formal Methods.
IEEE Software 7, 5 (1990) pp 11–19

• J. Bowen, M. Hinchey:

⋆ Seven More Myths of Formal Methods.
IEEE Software, 7, 5 (1990) pp 34–41

⋆ Ten Commandments of Formal Methods.
IEEE Computer (April 1995) pp 56–63

⋆ Ten Commandments of Formal Methods . . . Ten Years Later
IEEE Computer, pp 58–66 (January 2006).

Section 32.2, Vol. 3 (Pages 680–685) covers these papers.
We do not hesitate to emphasize that [87–89] appears to be the only text-

book cum monograph which fully integrates formal methods with all descrip-
tion (prescription and specification) development phases, stages and steps of
software engineering.

A software engineer who cannot learn the formal techniques of [87–89]
ought find another job. And: not all programmers need to learn these formal
techniques !

9.5 Conclusion

The (minor) contribution here is that we very much emphasise the need
for both informal and formal specifications — a need which is not recog-
nised by most (method cum software engineering) textbooks, and hence
by few claimed methods. We also emphasise the interplay between in-
formal and formal specifications. This is practised and “preached” by
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9.5 Conclusion 77

programming methodologists, but rarely subject to a more systematic
treatment — as here.
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10

On The Triptych of Software Engineering

The concept of ‘software engineering’ is first discussed

• in the Preface of Vol. 1, Page XV.

The concept of ‘a triptych of software engineering’ is first mentioned

• in Vol. 1, Sect. 1.2, Pages 7–12; then re-introduced
• in Vol. 3, Chap. 1; and otherwise covered in detail
• in Vol. 3, Parts IV–VI, Pages 193–668 !

The ‘triptych concept of software engineering’ covers that proper software
development spans three phases:

1. domain engineering Vol. 3, Part IV, Chaps. 8–16,
2. requirements engineering Vol. 3, Part V, Chaps. 17–24,
3. and software design Vol. 3, Part VI, Chaps. 25–30.

I am the one who has given the name ‘triptych’ to the concept presented in [87–
89]. I claim that the tripartite approach to software engineering constitutes a
major concept (and contribution) of [87–89].

10.1 The Triptych

In [87–89] we present the triptych dogma as follows:

• before software can be designed we must understand its requirements,
⋆ and there is nothing new in this: conventional wisdom; and

• before requirements can be expressed we must understand the application
area, or, as we call it, throughout, the domain
⋆ and this is partially new.
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80 10 On The Triptych of Software Engineering

To understand, to us, means that we must first describe the domain, respec-
tively prescribe the required software (by its properties). Describing (pre-
scribing) and subsequently reading, i.e., analysing the domain, respectively
the requirements is our only means, we claim, of understanding.

The dogma implies the ‘ideal demand’ in the development of software
application:

• First develop a domain description covering adequately more than is im-
plied by the foreseen application and according to the principles laid down
in Vol. 3, Part IV;

• then develop a requirements prescription according to the principles laid
down in Vol. 3, Part V;

• finally develop a software design according to the principles outlined in
Vol. 3, Part VI.

We have formulated the above as ‘an ideal demand’. We present the triptych
as such. We only comment, after its presentation, on engineering ways of
“short-cutting” the ‘ideal’. So we study and we teach the ideal in order that
practicing engineers can accommodate to any current reality. That reality, in
our mind, should eventually come close to the ‘ideal’.

10.2 Domain Engineering

The full “ensemble” of domain engineering stages and steps are covered in
Vol. 3, Part IV, Chaps. 8–16.

10.2.1 The Issues

The core issue is that of constructing a model, i.e., a description of the domain,
possibly through one or more refinements.

Ancillary issues are those of (i) acquiring insight into and rough-sketching
a description of the domain, (ii) analysing this insight (the rough sketches),
(iii) establishing a domain terminology, and (v) validating (and verifying) the
model. (iv) The domain description then builds on (i–iii). In the long term, and
as based on stable domain models, (vi) a domain theory ought be established.

Not only do I claim that promulgation of this major part of software
development is a main contribution of [89], but I also claim that the method of
developing domain models by developing them around the concepts of domain
facets:

1. intrinsics,
2. supporting technologies,
3. management and organisation,

4. rules and regulations,
5. scripts, and
6. human behaviour.
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10.2 Domain Engineering 81

We claim that the concepts of domain facets is new and that it has been “pop-
ulated” with an appropriate number of (the above listed) facets. We repeat:
the identification of domain engineering, as a separate software engineering
phase, preceding requirements engineering is new and the domain facets are
new.

10.2.2 Coverage in Book

All of the above stages, (i–v), are covered in Part IV, Chaps. 8–16 of [89].

10.2.3 Critique

Not all issues are covered to my fullest satisfaction. I shall comment on some
of these.

[1] Domain Facets

The research process of identifying exactly the facets listed above (i.e., intrin-
sics, supporting technologies, management and organisation, rules and reg-
ulations, scripts, and human behaviour) evolved, as is natural, over many
years and have stabilised and been subjected to numerous experiments. But
other than each domain facet (after intrinsics) being either a refinement or
a conservative extension of a former domain specification, we cannot char-
acterise these facets as other than pragmatically determined. The question
is therefore: Could there be another decomposition of domain modelling into
other facets ? [90] speculates over this and other of theoretical issues domain
modelling.

[2] Domain Management & Organisation

The treatment of domain management and organisation in Vol.3, Sect. 11.5 is
insufficient. Appendix I offers an alternative, we think, more adequate treat-
ment. Yet, at this stage of development of the textbook1, from an early ver-
sion of which Appendix I is edited, even this appendix does not, in our mind,
present a “best possible” treatment.

The problem, as we currently see it, is that the ’management and organi-
sation’ issue is a much larger and much more evasive issue than first realized.
Much more research need go into understanding the phenomena and concepts
that must and (meaning: ‘or’) should be modelled. We leave that as an open
research problem.

1Dines Bjørner: Software Engineering; approximately 400 pages; expected pub-
lished 2009 by Springer
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82 10 On The Triptych of Software Engineering

[3] Domain Scripts

The method principles and techniques unfolded in Vol. 3, Sect. 11.7, especially
in Examples 11.21–.25 (Pages 288–307) are OK, but the base example is too
“narrow”. We now find, after having worked, meanwhile, on the concept of
license languages, that they, for example, illustrate a “broader” set of exam-
ples of script languages. We refer to Appendix H. With the principles and
techniques of design given in Appendix H, ‘Three License Languages’, we now
think that there is a suitable methodology for the identification and devel-
opment of scripts nicely integrated into the entire methodology and concept
span of [87–89].

[4] Domain Verification, Model Checking and Formal Testing

The broader issue of verification of properties of domain descriptions (require-
ments prescriptions, software designs, and of the relations between domain
and requirements models, requirements models and software designs, and be-
tween refinements of descriptions, prescriptions and designs) is not covered
in [87–89]. It is mentioned in several places, notably in Vol. 3, Sect. 14.2
(Domain Verification) [Vol. 3, Sect. 22.2) (Requirements Verification), Vol. 3,
Sect. 29.5 ([Software Design] Verification, Model Checking and Testing)2], but
no verification principles or techniques are given.

In Vol. 3, Sect. 29.5.1 (Page 656 second half and Page 657) explains our
position: why we do not cover verification (in the form of theorem proving)
in [87–89]. We stand by this position. Please do not confuse the issues: We
think formal specification is a must and can today be taught to an increasing
large number of software engineering students and candidates. But we think
that as of today, 2008, our science of computing has yet to find a suitable
didactics and pedagogics for propagating formal (proof) verification.

The term verification is thus used, above, in the sense of theorem proving.
In Sects. 14.2 and 22.2 (still Vol. 3) we use the term to also cover ‘Model

Checking’ and ‘Formal Testing’. Again the principles, techniques and tools
of model checking and formal verification are also not covered in any seri-
ous depth in [87–89]. The current texts are all very much tool-oriented. The
best book for model checking is still Gerard J. Holzmann’s The SPIN Model
Checker, Primer and Reference Manual [192]. I have yet to find a suitable
textbook on ‘formal testing’. But see John Rushby’s report: Automated Test
Generation and Verified Software3 and [124].

2In Chaps. 14 and 22 we refer to ‘Verification’ and mean ‘[Proof] Verification,
Model Checking and Testing’.

3Invited position paper for ‘Verified Software: Theories, Tools, Experiments’,
Zurich, Switzerland, October 2005. Updated for LNCS volume due 2008 (ed.
Bertrand Meyer): http://www.csl.sri.com/˜rushby/papers/vstte07.pdf.
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[5] Domain Theory

The issue of domain theory is characterised in Vol. 3, Chap. 15, but no actual
illustration, in the form of formal theorems, is shown. The concept of a ‘domain
theory’ is thus left more as a postulate than a reality. This is more-or-less
explicitly acknowledged in Vol. 3, Sect. 32.4.2 (‘Grand Challenges’) where the
grand challenge specter of ‘Domain Theories’ is raised on Page 690.

10.3 Requirements Engineering

The full “ensemble” of requirements engineering stages and steps are covered
in Vol. 3, Part V, Chaps. 17–24.

10.3.1 The Issues

The core issue is that of constructing a model, i.e., a prescription of the
requirements, possibly through one or more refinements.

Ancillary issues are those of (i) acquiring the requirements — such as
covered in Vol. 3, Chap. 20, (ii) establishing a domain terminology (Vol. 3,
Sect. 19.2.3), (iii, v) analysing the rough sketches (Vol. 3, Chap. 21–22) and
the requirements model, and (v) validating (and verifying) the model (Vol. 3,
Chap. 22). (iv) The domain description then builds on (i–iii). (vi) While con-
structing the requirements model it must be regularly checked that it is sat-
isfiable and feasible (Vol. 3, Chap. 23).

Not only do I claim that promulgation of this major part of software
development is a main contribution of [89], but I also claim that the method
of developing requirements models by developing them around the concepts
of domain and interface requirements is also a main contribution:

1. Domain requirements:

(a) projection,
(b) instantiation,
(c) determination,
(d) extension, and
(e) fitting.

2. Interface requirements:

(a) entities: initialisation and re-
freshment,

(b) functions: man-machine and
machine-machine dialogues,

(c) events, and (d) behaviours.

We claim that the reformulation of functional and user requirements in terms
of domain and interface requirements is relatively new and that this reformu-
lation has been “populated” with an appropriate number of (the above listed)
facets.

We also claim that [89] offers a very careful enumeration and analysis of
machine requirements (cf. Item 2((e)iv on page 288) in terms of
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84 10 On The Triptych of Software Engineering

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance

⋆ Adaptive

⋆ Corrective

⋆ Perfective

⋆ Preventive

• Platform

⋆ Development Platform

⋆ Demonstration Platform

⋆ Execution Platform

⋆ Maintenance Platform

• Documentation Requirements

• Other Requirements

10.3.2 Coverage in Book

All of the above stages, (i–vi), are covered in Part V, Chaps. 17–24 of [89].

10.3.3 Critique

Not all requirements engineering issues are covered to my fullest satisfaction.
I shall comment on some of these.

[1] Domain Requirements

The research process of identifying exactly the domain to domain require-
ments operations listed above (i.e., projection, instantiation, determination,
extension, and fitting) evolved, as is natural, over many years and have sta-
bilised and been subjected to numerous experiments. But other than each
domain to domain requirements operation resulting in either a refinement or
a conservative extension, we cannot characterise these operations as other
than pragmatically determined. The question is therefore: Could there be an-
other decomposition of domain requirements modelling by means of other
operations ? We are curious !

[2] Interface Requirements

Interface requirements are covered in Vol. 3, Sect. 19.5 (Pages 429–445). A
sub-division of interface issues is made on Page 430:

• shared data initialisation requirements,
• shared data refreshment requirements,
• computational data and control requirements,
• man-machine dialogue requirements,
• man-machine physiological interface requirements, and
• machine-machine dialogue requirements.
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10.4 Software Design 85

That sub-division is not well motivated. I have later found, what I now think
is a much better way of creating a sub-division. It is based on the ‘specification
ontology’ also highlighted in Chap. 6 of this thesis.

• simple entities,
• functions,
• events, and
• behaviours.

Of main importance in the identification of interface requirements is the notion
of shared phenomena (and concepts), that is, sharing between the domain
and the machine (being requirements prescribed). The concept of a shared
phenomenon is highlighted in Vol. 3’s Sect. 19.5 (Page 429 and Example 19.20–
.21) and in Sect. 19.6.

The new sub-division now comes about as follows: for each of the specifica-
tion ontological categories (simple entities, functions, events and behaviours.)
identify now the shared simple entities, functions, events and behaviours. Out
of such an identification we can finally establish, or at least justify the original
subdivision:

• shared simple entities:
⋆ shared data initialisation requirements and
⋆ shared data refreshment requirements;

• shared operations:
⋆ computational data and control requirements,

• shared events:
⋆ man-machine dialogue requirements and
⋆ machine-machine dialogue requirements.

• shared behaviours — merging several of the above:
⋆ man-machine physiological interface requirements

We refer to Appendix Sect. D.4.4, Pages 242–243. This new sub-division
should be reflected in a new edition of [89]. Most, if not all of the material of
Vol. 3, Sect. 19.5 is, however, still relevant.

[3] Requirements Verification, Model Checking and Formal Testing

We have basically covered this issue in section ‘[3] Domain Verification’ of
Sect. 10.2.3 (Pages 82–82).

10.4 Software Design

A number of principles and techniques of software design are covered in Vol. 3,
Part VI [89] (Pages 527–678). Many additional principles and techniques of
software design are covered in Vols. 1–2 [87, 88], or are assumed covered in

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
86 10 On The Triptych of Software Engineering

texts studied prior to the study of [87–89]. We refer to such courses as are
listed on Fig. 1 (Page XVII) and Fig. 2 (Page XVIII) of Vol. 1 [87].

Vol. 3 Part VI can therefore focus on the issues of software design that are
specifically related to formal techniques as touted by [87–89].

10.4.1 The Issues

The core issue of software design is (i) that of constructing “executable code”.
Subordinate issues of software design are (ii) architecture design, illus-

trating one aspect of ‘refinement’; (iii) a version of component design, illus-
trating another aspect of ‘refinement’; (iv) some aspects of domain specific
software architectures; and (v) a miscellany assortment of software design
issues (Chap. 29).

10.4.2 Coverage in Book

Part VI’s Chaps. 26–28 cover the main issue, (i), of ‘transforming’, in stages,
requirements prescriptions into low level software designs, i.e., a specification
from where the programmers can “write the code”.

Most chapters of preceding volumes also serve to support this main issue.
Part VI does so by focusing, in turn on the specific subordinate issues: (ii)

architecture design (Chap. 26), (iii) a version of component design (Chap. 27),
and (iv) some aspects of domain specific software architectures (Chap. 28).
They, by themselves, constitute major studies and reflect major activities of
software engineers. They are only covered lightly: a major example for each
of (ii) and (iii) and a survey for (iv).

We remind the reader that Vol. 3’s Part VI does rely on the kind of
programming texts that were implicitly referred to above, in the first para-
graph of Sect. 10.4. (A text on object-oriented programming, for example
B. Meyer’s [234], is also recommended.)

10.4.3 Critique

[1] Current Fashions

Some of the “current”, or “ongoing fashions” of software engineering are briefly
mentioned (Vol. 3, Sect. 29.3): (i) ‘extreme programming’ (XP), (ii) ‘chief-
programmer programming’, and (iii) ‘object-oriented programming’ (OO),
but “just so”, that is, only briefly. Other recent fashions, to wit, (iv) ‘aspect-
oriented programming’ and (v) ‘model-oriented development’, are not men-
tioned.

The composite term ‘current fashions’ is, perhaps, a bit too arrogant a use
of that term. A more polite composite term might be: ‘current principles and
techniques’. These ‘fashions’ seem to “come and go”, i.e., to herald “current”
interest for a while.
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10.4 Software Design 87

“Superficial” reasons for their brief or no mentioning are simple (i-ii) ‘ex-
treme programming’ and ‘chief-programmer programming’ while using the
principles and techniques of [87–89] is just fine, that is, can be practised while
otherwise adhering to the principles and techniques espoused by [87–89]; and
(iii) ‘OO-programming’ is covered in Vol. 2, Chap. 10. (iv) ‘Aspect-oriented
programming’ (AOP) must be rethought in the context of the triptych devel-
opment paradigm. The ‘separation of concerns’ (of AOP) is already part of
the triptych paradigm. The “cross-cutting” concerns of AOP must be recorded
already in the requirements prescription process. It seems that “cross-cutting”
concerns expressed in requirements, quantify, thus at a meta-level, over “all”
other, the “1st level” requirements. It also seems that to achieve aspect-
oriented software development (AOSD) one may need a suitably “equipped”
aspect-oriented programming language4. (v) Model-oriented development is
just one of the many approaches that are fully covered in [87–89]. Remarks
similar to the above can be made in connection with other “current software
engineering fashions”.

But, really, there is a deeper reason for our “scant” treatment of the cur-
rent fashions. And that is this: (a) with a comprehensive approach to software
development such as carefully unfolded in [87–89]: from domains via require-
ments to software design, and (b) with concomitant and carefully identified
principles, techniques and tools, these current fashions need be completely
rethought. We have no intention of doing so. Some of them will then turn
out, we think, to not be relevant, and others to loose some of their glamour.
Very often claims are made as to the “huge” benefits of using these current
fashions, claims that are not formulated as scientific statements, but rather
as “hype”.

[2] Software Verification, Model Checking and Formal Testing

The verification of properties (also of software design, including correctness
of ‘refinements’) is also not treated in [87–89].

We have basically covered this issue in section ‘[3] Domain Verification’ of
Sect. 10.2.3 (Pages 82–82).

[3] Transition to Program Texts

We have not, in [87–89], covered in any detail, the final, few steps of software
development from low-abstraction-level software design to actual, specific pro-
gramming language executable code (Vol. 3, Sect. 29.1.5).

Basic features of current programming languages, to wit: Java and C#,
include imperative features, such as covered in Vol. 1, Chap. 20; extensive
type systems that are a subset of that of RSL (and richly covered already in
Vol. 1); and modularity features such as those covered in Vol. 2, Chap. 10.

4— like Aspect J (for Java)
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88 10 On The Triptych of Software Engineering

Given a chosen, current programming language, the software designer then
“steers” the refinement “in the direction” of that language’s imperative, type
system and modularity features.

The “quirks” of current programming languages are such that it would
unnecessarily bias the book if we had chosen a particular one for illustrating
the principles and techniques of transition from low-level RSL abstractions into
that chosen language. Besides our text would increase, to basically little avail,
by hundreds of pages !

The RAISE Tool set, as do other specification languages’ tool sets, provide
for translation from low-level RSL into Ada, SML and Java. Again, for our book
to go into detail on how to “gear” such a translation is not of programming
methodological (cum computing science) interest. The practicing engineers
can easily study that themselves.

10.5 Specific Software Development Models

In Appendix Sect. C.4.3 (starting Page 213) a ‘model’ of development of
classes of software is outlined. The idea is that each class is characterised
by “belonging” to a specific “software intensity”, but that the underlying
domain may vary. There may thus be n kinds of software systems all “fo-
cused” more-or-less on the same software intensity — such as information
handling by means of a database management system — and where the n
software systems range over, for example, (i) transportation systems (i.e., the
transportation domain); (ii) cadestral and cartographic, i.e., geographic in-
formation systems; (iii) manufacturing parts catalogues; etcetera. Different
domains but, for “similar, narrow” (e.g., information intensive) requirements,
basically the same underlying software implementation mechanism.

We should have like to have studied this concept more than just the “pass-
ing mention” in Appendix C. We consider this a major research topic, taking
quite some resources, especially time.

10.6 Characterisations of SE and our Coverage of SE

In Sect. 1.1 of Vol. 3 [89] we bring, in Sect. 1.1.1, some conventional char-
acterisations of software engineering while bringing our own in Sect. 1.1.2.
It should be obvious that we cover, in [87–89], all that our characterisation
touches.

Some characterisations of Sect. 1.1 of Vol. 3 imply one or another, or
several, aspects of what is referred to as ‘management’. We have not covered
those in [87–89]. Section 12.1.2 will comment on this and Appendix E will
partially redress this omission.
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10.7 Conclusion 89

10.7 Conclusion

The contribution here (a major one) is that no (method cum software
engineering) textbook, and hence no claimed methods have heretofore
introduced or covered the notion of domain engineering and the reliance
of requirements engineering on domain models. We do so in Vol. 3, and
rather extensively so.

No-one has taken such a “radical” stand on domain engineering as we
have in [89]. Many have, seriously and substantially, mentioned and given
some examples of domain analysis, but then almost exclusively as part of
the requirements engineering process — not highlighted as an altogether
separable and independent activity.

We take the stand that ideally domain engineering should be dispensed
with before requirements engineering. And we show how to “transform”,
to refine, to extend, a domain description into a domain requirements
prescription and also, partially, because it can only be partially, into an
interface requirements prescription.
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Documentation

The notion of documentation is covered

• in Vol. 1, Sect. 1.3 (Pages 13–25) to some depth, and
• in Vol. 3, Chap. 2 (Pages 53–90), in more detail.

11.1 The Issue

It may appear, to many readers, many students, many software engineer-
ing researchers and teachers, that the “laborious” concept of documentation
brought forward in Vol. 3, Chap. 2 may be a bit of an “overkill”. Obviously we
do not think so. Almost all the results of software development, from domain
engineering via requirements engineering to software design are documents:
either we construct them or we analyse them (and our analysis results in docu-
ments !). In so many actual development projects we find that documentation
is not taken serious.1

Appendix Sect. E.9 (Pages 287–290) lists the very many kinds of docu-
ments that we think should result from a proper software development.

• • •

At this point we kindly ask the reader to browse those pages.

1In traditional engineering, viz., civil engineering, drawings (at all levels of ab-
straction, from the architects’ first conceptions and final drawings via the structural
and other engineers’ various embellishments of the architectural plans: the structural
engineers’ [for example] introduction of reinforced concrete supports, the electrical
engineers’ wiring diagrams, the heating and sanitary engineers’ hot and cold water
and waste piping, etc., to the construction supervisors annotations of these draw-
ing document) are taken very serious: drawings of constructions are kept for as
long as the construction stands, and beyond, and are carefully inspected whenever
construction maintenance is undertaken.
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• • •

The concept of ‘document’ — for whatever purpose — is thought to be so
important that we bring, in Appendix G, a discourse on documents. This
appendix is formulated “sporadically” using some, but not all of the domain
engineering principles, techniques and tools.

11.2 Coverage in Book

When we, for example, say a ‘domain description’ we mean a complete one.
Similar for ‘requirements prescription’ or ‘software design’. We do not illus-
trate such complete documents in [87–89].2 But we claim that the kind of
document extracts that we do show do indeed scale up. And we claim that
we have indeed illustrated (or, where that is sufficient, referred to) each and
every document kind in [89].

11.3 Critique

There are some aspects of our coverage of documentation which could be
improved. Some such are treated next.

11.3.1 Synopsis: Vol. 3, Sect. 2.4.4 (Page 63)

To construct a pertinent synopsis (a capsule description of the “project, at
hand”3 is an art. It involves “telling a story” while “presenting pertinent
texts” from most emerging informative, description (prescription or design),
and relevant analytic documents — even when these may yet have to be
written. My ‘Synopsis’ text could be improved.

2I cannot, off hand, refer to any textbook in programming which brings a
complete program for other than trivial problems. A non-trivial domain descrip-
tion, informal and formal, would require at least around a hundred pages. On
the author’s home page there are URLs to domain description documents which
might eventually stabilise — and then be at least a hundred pages “long” ! Three
such are (i) ‘An Emerging Report on the Financial Services Industry Domain’
http://www2.imm.dtu.dk/˜db/fsi.pdf, (ii) ‘An Emerging Postscript Report on the
Transportation Domain’ http://www2.imm.dtu.dk/˜db/transport.ps and ‘A Con-
tainer Line Industry Domain’ http://www2.imm.dtu.dk/˜db/container-paper.pdf.

3Project Kind: — whether that project be of kind

• a domain engineering,
• a requirements engineering,
• a software design,
• a domain plus requirements engineering,
• a requirements engineering plus software design, or
• a full domain plus requirements engineering plus software design project.
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11.4 Conclusion 93

11.3.2 Implicit/Derivative Goals: Vol. 3, Sect. 2.4.6 (Page 65)

For each project kind4 a different kind of ‘Implicit/Deviate Goals’ section has
to be written. This is not made crystal clear from the text (Vol. 3, Sect. 2.4.6
(Page 65)). It has also not been made clear that it is often hard, if not impos-
sible, to extract, from stakeholders, that which constitute their (sometimes
subliminally “experienced”) goals.

11.3.3 Tools

Implicit, in Vol. 3’s Chap. 2, is the need for documentation tools. Other than
Exercise 2.8’s ‘Requirements for a Document Tool’ (Page 91), I believe that I
have not stressed that aspect sufficiently.

11.4 Conclusion

The contribution here is that no (method cum software engineering) text-
book, and hence no claimed methods have heretofore spelled out nor,
really, emphasised the pivotal importance of documentation let alone the
various types and kinds of documents that need be produced as an inte-
gral part of software development, and that I do so in a rather consistent
and reasonably complete manner.

4Cf. the enumeration of project kinds given in Footnote 3 on the preceding page.
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12

On Omissions

Chapters 2–11 have, in some of their ‘Critique’ sections, covered some of issues
that are normally considered “belonging” to software engineering but which
are not treated in [87–89]. In the present chapter we shall review some of these
as well as take up some other omissions.

12.1 Main Omissions

The two main omissions are at “opposite ends” of some conceived soft-
ware engineering “spectrum”: verification and management. “Opposite” in
the sense that one requires programming methodological and mathematical
(logic) skills, presently of a highly theory-oriented characters, the other re-
quiring practical, economic and organisational skills not specifically related to
computing science.

12.1.1 Verification

We have already, in at least three places:

• Item 3 “More Serious Omissions” (Sect. 4.3.3, Page 37),
• Quote-indented Item “A Critique: Absence of Material on Verification”

(Sect. 5.3.2, Page 47) and
• Item [3] “A Critique: Absence of Material on Verification” (Sect. 10.2.3,

Pages 82–82),

covered the issue of not treating verification to any substantial depth in [87–
89]. We refer the reader to those items.

Here we shall further motivate our decision to not treat verification, espe-
cially in the form of theorem proving, in [87–89].
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98 12 On Omissions

The term ‘verification’, to remind the reader, is, in Sects. 10.2.3, 10.3.3
and 10.4.3, taken to mean theorem proved, model-checked and formally tested
verification. We do consider our treatment of these latter two sufficient: Based
on choices of specific formal specification and of programming languages the
software engineers, familiar with [87–89], can themselves “pick-up” the tools
(and often rather tool-specific, specialised texts) that help in model checking
and in formally testing (formal description, formal prescription, and formal
software design) specifications.

Our main reason for not bringing any substantial material on theorem (and/or
proof assistant) proved verification is this:

We think that current principles, techniques and tools for theorem
(and/or proof assistant) proved verification are such as to demand
“heroic” efforts on behalf of the practicing software engineer.

This is not a critique of these theorem and/or proof assistant verification
techniques and tools. It is merely an assessment of today’s (August 1, 2008)
state–of–the–methodology. Great efforts are being made these years towards
improved techniques and improved tools. But “what is now a heroic achieve-
ment must become routine !”1

A prerequisite for theorem (and/or proof assistant) proved verification, as
for model checked and formal test-based verification, is that there is a formal
specification — and we have covered that, extensively. Formal specification
does not “stand or fall” with the ability or inability to formally theorem
(and/or proof assistant) verify properties of formal specifications or their re-
finements, etc. Formal specifications have many other benefits — as we think
we have already explained in [87–89] — as well as summarised in Items 1–6,
Sect. 5.1 (Pages 41–43).

A Remedy

Section 1.2 of Vol. 2 (Pages 6–8) suggests a remedy. Ten published papers are
listed which can serve as a basis for a course on verification. We bring that
list as Appendix M (Pages 431–432).

1Statement in a Friday, February 9, 2007, 10:25 AM E-mail sent from Sir Tony
Hoare to a group of researchers who had successfully reported on the proven develop-
ment of a Mondex [http://vsr.sourceforge.net/mondex.htm] case study also pursued
by many other researchers, worldwide.
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12.1.2 Management

Pages 5–6 of Vol. 1, Chap. 1, Sect. 1.1 (‘Setting the Stage’) mentions a number
of software development project management issues (choice and planning of
development process, scheduling and allocation of resources, monitoring and
control of work progress, monitoring and control of quality: assurance and
assessment, version control and configuration management, legacy systems,
cost estimation, and legal issues). But other than this no details on these
issues are given in [87–89] !

We see the issue of software management as basically constituted by two
sets of (more-or-less loosely related) management issues: those of projects
aimed at developing an aspect of software ((1) a domain description, (2) a
requirements prescription, (3) a software design, or a subset of two or three
of these [(1–2), (2–3), or (1–3)]; and those of product management (market-
ing survey, product [family] identification, sales, service, etc.). We see many
of the issues as being rather specific to software, and some of the issues as
being common to any product management. We have, in the 1960s and in the
1980–1990s, been involved in the management of several software development
projects and in several product management issues — but, for the latter, not
in any responsible rôle.

Most of the issues of software project development management mentioned
above: choice and planning of development process, scheduling and allocation
of resources, monitoring and control of work progress, monitoring and con-
trol of quality: assurance and assessment, version control and configuration
management take on a new meaning, and, we think, must be rethought “from
scratch”, as compared with the meaning of these issues “in fashion” in the
1980s and 1990s (and as covered in common textbooks such as [251,253,280]).

An attempt at such a re-evaluation has been made and is reported in
Appendix E. In that appendix2 we study the management issues of assessing
and improving the development process. Assessment and improvement is with
respect to the five capability maturity model criteria propagated by Watts
Humphrey [194].

But a larger study of software project and product management in the
context of formal techniques and a corresponding monograph cum textbook
has yet to come. Any takers ?

12.2 Other Omissions

The field of “classical” software engineering, such as described in [169,251,253,
280, 294], posing so very many methodology challenges, attracts many soft-
ware engineers and computing scientists to contribute to their study. In this

2— awaiting publication in Encyclopedia of Software Engineering [93, to appear],
editor: Philip A. Laplante (Taylor & Francis)
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100 12 On Omissions

section we shall very briefly review some of their contributions — otherwise
not covered in [87–89].

12.2.1 Refinement Calculi

An important program development paradigm is that of refinement calculi
[9, 238]. Inasmuch as the refinement calculi provide a fascinating way of de-
veloping programs I do not think it worthwhile to bring material on such
refinements in [87–89]. The kinds of refinement calculi covered by [9, 238]
should most definitely be taught in M.Sc. courses in computing science, but,
at present they do not seem to scale up to software engineering use in the
development of large scale software systems. I hope I am either wrong in this
assessment or that I will someday be proven wrong !

12.2.2 UML

The UML we are referring to is represented, for example, by the three books
by the three “amigos” authors Booch, Jacobson and Rumbaugh [127,208,269].

We have not covered UML as such, but we have done better, I think: we
have, in Vol. 2 [88], presented the very basics of some of the techniques and
tools of UML: finite state automata and machines (Chap. 11), Modularity
(object-orientedness and class diagrams, Chap. 10), Petri nets (Chap. 12),
Message and Live Sequence Charts (Chap. 13) and Statecharts (Chap. 14).

Section 20.4 (basically Page 712) of the closing chapter of Vol. 2 explains
our view on UML.

The strengths of using finite state automata and machines, class diagrams,
Petri nets, message or live sequence charts and statecharts (and hence of their
“counterpart” use in UML) is that they provide for oftentimes pleasing use of
visuality (i.e., of figures, diagrams). That is why “UML-ise” the diagrammatic
formal techniques and tools (finite state automata and machines, class dia-
grams, Petri nets, message or live sequence charts and statecharts) by bringing
them to “blend” with the textual formal techniques and tools of the RAISE
specification language RSL. Much more work need be done to further this
goal of “UML-ising” formal techniques and tools rather than of formalising
UML.

12.2.3 ∃∀: Intentional Programming3

The intentional software development paradigm is the creation of Charles
Simonyi4.

3This section is copy-edited, with permission from IPSJ/SIGSE, from: Dines
Bjørner: The Rôle of Domain Engineering in Software Development. Invited keynote
paper and talk: IPSJ/SIGSE Software Engineering Symposium 2006, Oct. 21, 2006,
Tokyo

4∃∀ Intentional Software, Bellevue, Washington, USA; http://intentsoft.com
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12.2 Other Omissions 101

It appears that little if any literature is readily accessible [3, 277–279]. So
we shall resort to quoting from Intentional Software’s Web page (http://in-
tentsoft.com/technology/glossary.html). The quotes are in slanted font.

Domain: A domain is an area of business, engineering or society for which
a body of knowledge exists. Examples include health care administration,
telecommunications, banking, accounting, avionics, computer games and soft-
ware engineering.

Domain Code: Domain code is the structured code to represent the inten-
tions contributed by subject matter experts for the problem being solved.
Domain code includes contributions from all domains relevant to the software
problem. Domain code is not executable (as traditional source code is - by
compilation or interpretation), but it can be transformed into an implemen-
tation solution when it is input to a generator that has been programmed to
perform that transformation process.

Domain-Oriented Development: Domain-oriented development is the pro-
cess of separating the contributions of subject matter experts and program-
mers to the maximum extent so that generative programming can be applied
to structured domain code. This greatly simplifies improvements to the do-
main and implementation solutions.

Domain Schema: A domain schema is a schema for a specific domain. The
domain schema defines the domain terminology and any other information
that is needed — for the intentional editor and generator to work — such as
parameters, help text, default values, applicable notations and other structure
of the domain code. Domain schemas are created by the subject matter
experts and programmers working together, and are expressed in a schema
language.

Domain Terminology: Domain terminology means the terms of art (words
with a special meaning) in a domain, for example “claim payment” in health
care administration. Domain terminology is important because it is the usual
way to express intentions. Broadly speaking, terminology includes notations
normally used by a subject matter expert, such as tables, flowcharts and
other symbols. The meaning of the terms is part of the domain knowledge
that is shared between subject matter experts and programmers to the extent
necessary and ultimately designed into domain schemas and the generator.

Discussion

Intentional software development, it should be clear from the above builds
on a number of software development tools which are provided with domain
description-like information and which can then significantly automate code
generation. Other than that shall neither comment nor speculate on Charles
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102 12 On Omissions

Simonyi’s characterisations.5 We believe that the reader can easily see the
very tight relations to the triptych phases of development. We find them
fascinating. ∃∀ seems to deserve a rôle in making the triptych approach even
more viable.

12.2.4 Extreme Programming (XP)

We refer to the following Web pages for information about ‘Extreme Pro-
gramming’: http://www.extremeprogramming.org/ and http://en.wikipedi-
a.org/wiki/Extreme Programming#XP values and to [21, 22, 229].

As for other programming “fashions” the ‘value system’ of XP (captured in
the concepts of communication, simplicity, feedback, courage and respect) fit
nicely in with the triptych paradigm and with its insistence on both informal
and formal development. One can consider them “add-on” paradigms.

12.2.5 Web Programming

The Web is a system of interlinked hypertext documents accessed via the
Internet.

As such the Web constitutes a domain6 — and a machine. We consider
the Web domain to be an abstraction of the machine.

By Web programming we mean an activity that results in the establish-
ment and/or linking of hypertext documents accessible via the Internet. The
problem, as I see it, with respect to Web programming, is that there is no
domain description of the Web7, and hence it is somewhat difficult to express
requirements to new Web services in a concise, implementation-free manner.

So I do not cover this most fascinating issue since I have not had the
not inconsiderable resources it takes to dig deeper into the Web standards, to
thus extract a description of the Web domain, and, from that develop example
requirements and software design proposals.

5Well, I cannot, of course, refrain from saying that several of my students have
founded a number of Danish software companies each of whose corporate asset is a
set of domain-specific “automatic” code-generators.

6Here we beg the reader’s indulgence: when we say ‘the Web domain’ we do not
refer to some (decorated) URL, i.e., some domain name etc., but the universe of
discourse that revolves around the Web; that is, we do not refer specifically to the
DNS (domain name system) of the Internet.

7See, however, http://en.wikipedia.org/wiki/Web standards whose referenced
documents describe implementation-oriented issues of the Web.
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12.3 Conclusion 103

Instead I refer in footnote8 to some pertinent literature. I have here, in
footnote 8, emphasised the likewise fascinating use of continuations (Contin-
uations are covered in Vol. 2, Sects. 3.2.4, 3.3.4 and 3.3.5).

12.3 Conclusion

We have covered what appears to be the “most glaring” omissions of [87–89].
In our opinion these omissions are well-justified.

8See: http://www-128.ibm.com/developerworks/java/library/j-cb03216/: Cross-
ing borders: Continuations, Web development, and Java programming. A state-
ful model for programmers, a stateless experience for users. Bruce Tate
(bruce.tate@j2life.com), President, RapidRed.

Survey of Web programming languages: http://www.objs.com/survey/lang.htm.
Some publications:

1. William E. Byrd: Web Programming with Continuations, November 20, 2002,
http://www.double.co.nz/pdf/continuations.pdf.

2. Pettyjohn, G., Clements, J., Marshall, J., Krishnamurthi, S., and Felleisen, M.:
Continuations from Generalized Stack Inspection. In Proceedings of the Special
Interest Group on Programming Languages (SIGPLAN) International Confer-
ence on Functional Programming (Sep 2005), pp. 216-227.

3. Matthews, J., Findler, R. B., Graunke, P. T., Krishnamurthi, S., and Felleisen,
M.: Automatically Restructuring Programs for the Web. Automated Software
Engineering Journal 11, 4 (2004), 337-364.

4. Graunke, P. T., Findler, R. B., Krishnamurthi, S., and Felleisen, M.: Modeling
Web Interactions. In Proceedings of the European Symposium on Programming
(Apr 2003), pp. 238-252.

5. Graunke, P. T., Krishnamurthi, S., van der Hoeven, S., and Felleisen, M.: Pro-
gramming the Web with High-Level Programming Languages. In Proceedings
of the European Symposium on Programming (Apr 2001), pp. 122-136.
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13

The Thesis Reviewed

An Essay: Reflections

We claim that computing science is an empirical science only in-
sofar as observations are made on the quality of software produced by
software engineers before and after they have been taught and learned
to develop selected principles, techniques and tools of software engi-
neering (programming).1

In the above paragraph we first used the term ‘computing science’
and then the term ‘software engineering’: we meant only to include,
in the above use of the term ‘computing science’ those principles,
techniques and tools which carry over to software engineering.

For the purposes of this thesis proposal I do not include obser-
vations of the psychological and sociological behaviour of practicing
software engineers — inasmuch as these may be relevant.

• • •

This thesis proposal brings software development principles, tech-
niques and tools that can be taught to and learned and practiced
by software engineers.

We have observed, through more than 30 years of lecturing, of
tutoring and of guiding major software development projects, that
software development principles, techniques and tools can be success-
fully taught, learned and practiced to — already in the late 1970s —
approximately half our MSc students every year.

Some comparative studies has been made comparing the use and
non-use of formal techniques. A first such is reported in [141]. Another
such is reported inFormal and Informal Specifications of a Secure Sys-
tem Component: Final Results in a comparative study. T.M. Brookes,

1The ‘principles, techniques and tools’ are those of computing science ‘selected’
for use in software engineering.
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108 13 The Thesis Reviewed

J.S. Fitzgerald, and P.G. Larsen; and in FME’96: Industrial Benefit
and Advances in Formal Methods, Springer, March 1996. These and
many other observations have unambiguously shown that it does in-
deed help, one way or the other, to have studied and learned formal
techniques.2 I do not believe in formal techniques. I just think they
are rather more useful and fun to use than not using them.

Thus I am bringing the material of [87–89] simply because it is
possible to develop software using the principles, techniques and tools
of these volumes, because it is fun teaching, learning and using this ap-
proach, and because it is of scientific interest to study these principles,
techniques and tools — and to report on such studies.

13.1 Reminder: Thesis Documents

This Dr.techn. Thesis proposal is made up from the following documents:

1. The three volume book D. Bjørner: Software Engineering [87–89]:

(a) Vol. 1: Abstraction and Modelling (Springer, 2006)
(b) Vol. 2: Specification of Systems and Languages (Springer, 2006)
(c) Vol. 3: Domains, Requirements and Software Design (Springer, 2006)

2. The document in which you are reading this just now:
Software Engineering — an Unended Quest, August 1, 2008:
⋆ Pages V–VIII and 1–120 and Appendices A–F (Pages 123–290).
⋆ Appendices G–L are not to be considered part of the thesis.

13.2 What Is Being Claimed ?

Chapter 1 first surveyed the ten thesis claims. Chapters 2–11 have then ex-
amined these claims in more detail.

We shall summarise these claims, but we shall now reorder the claims such
that what we consider the main contributions are summarised first.

13.2.1 A Contribution of Methodology, Didactics and Pedagogics

[0] Meta Contribution

Claim: We claim that [87–89]’s partial ordering and interweaving of
many topics, the exposition of their interrelations, and their careful
balancing and treatment, contributes to programming methodology
in the area of software engineering (all volumes).

2Please note that this is the first time such a claim is made in this thesis and
in [87–89] — that is: as far as I can recall. It is now at least four years ago I finished
writing (but not copy-editing) [87–89].
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13.2 What Is Being Claimed ? 109

13.2.2 Main Methodology Contributions

We consider the next six claims ([1], [1.1–.5]) justified and necessary and
sufficient, as a whole, to justify the awarding of the degree of Dr.Techn.

[1] The Triptych Paradigm

Claim: We claim that the triptych paradigm of developing software
by first describing the domain, then “deriving” major parts of require-
ments from a domain model, is new and that our treatment of this
paradigm is relevant (Vol. 3, Parts IV–VI).

[1.1] Domain Engineering

Claim: We claim that the concept of domain engineering, in the radi-
cal form present in [89], is new and that our treatment of this concept
is relevant (Vol. 3, Part IV).

[1.2] Domain Facets

Claim: We claim that the concept of domain facets is new and that
their attendant principles and techniques are new and that our treat-
ment of these are relevant (Vol. 3, Chap. 11). We do not claim they
are “final”, “universal” — only that they are of relevance.

[1.3] Domain to Domain Requirements Operations

Claim: We claim that the concept of domain to domain require-
ments operations is new and that their attendant principles and tech-
niques are new and that our treatment of these are relevant (Vol. 3,
Sect. 19.4). We do not claim they are “final”, “universal” — only that
they are of relevance.

[1.4] Domain to Interface Requirements Operations

Claim: We claim that the concept of domain to interface require-
ments operations is new and that their attendant principles and tech-
niques are new and that our treatment of these are relevant (Vol. 3,
Sect. 19.5). We do not claim they are “final”, “universal” — only that
they are of relevance.

[1.5] Machine Requirements

Claim: We claim that the enumeration of machine requirements is
relevant and is a first in a software engineering textbook (Vol. 3,
Sect. 19.6).
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110 13 The Thesis Reviewed

13.2.3 Main Supporting Methodology Contributions

We consider the claims of this section ([2–8]) justified and to justify the claim
([0]) of the proposal offering a contribution to the didactics and pedagogics of
the field of (teaching and studying) software engineering.

[2] Simple Entities, Operations, Events and Behaviours

Claim: We claim that the specification ontology of simple entities,
operations, events and behaviours and that our insistence on their use
throughout constitutes a contribution to software engineering (Vol. 3,
Sects. 5.3–.5).

[3] Informal and Formal Descriptions

Claim: We claim that the suggested (and exemplified) consistent use
of both informal, narrative and terminology, and formal specifications
constitute a contribution to software engineering (Vol. 3, Sect. 2.5).

[4] Phenomena and Concepts

Claim: We claim that our emphasis on considering and the consistent
reference to (domain) phenomena and (domain) concepts constitutes
a contribution to software engineering (Vol. 3, Sect. 5.2).

[5] Method Principles, Techniques and Tools

Claim: We claim that our careful definition of what a method is and
its enunciation in terms of principles, techniques and tools constitute
a contribution to software engineering (Vol. 3, Chap. 3).

[6] Semiotics: Pragmatics, Semantics and Syntax

Claim: We claim that our emphasis, in all phases of software devel-
opment, on the use of the semiotic concepts of pragmatics, semantics
and syntax constitutes a contribution to software engineering (Vol. 3,
Chap. ).

[7] Documentation

Claim: We claim that our identification of the myriad of documents
that need be produced during development and the identification of
their properties (eg., their careful structuring and contents) consti-
tutes a contribution to software engineering (Vol. 3, Chap. 2).
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13.3 Does ‘This’ Constitute A Dr.Techn. Proposal ? 111

[8] Abstraction and Modelling

Claim: We claim that the very many abstraction and modelling con-
cepts, principles and techniques, throughout all volumes of [87–89],
and the myriad of examples of abstract models constitutes a contri-
bution to software engineering (Vols. 1–2 and Vol. 3 Chap. 4).

13.2.4 Ancillary Methodology Contributions

We consider the two “small” claims of this section ([9–10]) to be necessary
and justified — supporting the didactics of our other contributions.

[9] Mathematics

Claim: We claim that the emphasis on using — especially discrete
mathematics — and on models denoting mathematical structures is a
clear textbook contribution (Vol. 1, Part II).

[10] Computer versus Computing Science

Claim: We claim that the clarification of a spectrum from computer
to computing science and the emphasis that software engineering is
“applied” computing science is a clear textbook contribution.

13.3 Does ‘This’ Constitute A Dr.Techn. Proposal ?

13.3.1 An Answer

The answer to the section display line question is yes:

• The three volume book [87–89] together with the present document, con-
tributes to the methodology of (“how to do”) software development, thus
to technology.

• [87–89] etc., does not contribute (much) to computer science, and is thus
not to be reckoned as a Dr.Scient. or a Dr.Phil. thesis proposal.

• The current thesis builds on 30 years of research.
From those years I list, at the end of Sect. 13.3.4, 94 of my publications
whose content has found its way, in one form or another, into this thesis.
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112 13 The Thesis Reviewed

13.3.2 Some Justification

I mention just a few early and one recent industry-related formal techniques
(etc.) activities of mine.

• My work, as from the earliest listed publications, see Sect. 13.3.3, has
influenced mostly researchers and engineers in Europe.

• My students’ work on VDM has lead
⋆ to an ISO VDM Standard3,
⋆ and to an industry-strength VDM Tool Set which was acquired by a

large Japanese software house4.
• Two large, international industry-scale projects, CHILL and Ada were

initiated by me. Their results were:
⋆ a formal definition of CHILL which became part of the official CCITT

(now ITU) CHILL Recommendation [174]5;
⋆ a full CHILL compiler, the only compiler implementing all of CHILL

[176];
⋆ a formal description of Ada [121];
⋆ a full Ada compiler, the first in Europe, [141];
⋆ a commercial (Danish) software house, in existence since 1984, de-

voted to Ada and related products: DDC Inc. (Phoenix, Ariz., USA)
http://www.ddci.com;

⋆ a formal definition of Ada (a joint Danish/Italian project)6.
• With my colleague, Prof. Cliff Jones (then at Manchester Univ., now

at Univ. of Newcastle), I founded VDM Europe in 1987; as chairman i
had VDM Europe renamed into called Formal Methods Europe (FME) in
1991.7 FME is “a worldwide association bringing together researchers and
practitioners in formal methods developing computing systems and soft-
ware”. VDM and Formal Methods Europe have organised international
symposia and conferences every approximately 18 months since March
1987. These are unquestionably the leading international events in formal
methods.

3ISO/IEC 13817-1:1996. An Overview of the ISO/VDM-SL Standard (1992),

Nico Plat, Peter Gorm Larsen, ACM SIGPLAN Notices, September 1992.

http://www.webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2fISO%2fIEC+13817-

1-1996+(R2007)
4CSK Holdings: http://www.csk.com/support e/vdm/index.html
5ITU, CHILL Formal Definition, Volume I, Parts 1, 2, 3, and Volume II, Part 4,

Geneva, 1982.
6(i) Botta, N., Petersen, J. Storbank: The Draft Formal Definition of Ada, The

Static Semantics Definition, Vol 1-4 Jan 87, Dansk Datamatik Center, Lyngby, Den-
mark; (ii) E.Astesiano and J. Storbank Pedersen: An Introduction to the Draft For-
mal Definition of Ada. In Proc. 3rd Workshop on Ada Verification, Triangle Park,
USA, 1986.

7http://www.fmeurope.org/
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13.3 Does ‘This’ Constitute A Dr.Techn. Proposal ? 113

• I was the “founding father” of ForTIA8 which is an association of industrial
organisations who use and/or supply tools, ideas and services in the area
of formal techniques.

13.3.3 Some More Justification

We list some of my publications. All of these reflect the kind of contributions
that are being claimed for this thesis. Some of the publications have, in edited
form, found their way into [87–89]:

• [25,38]: Chap. 16 of Vol. 2 is a rewrite of this 1977 paper (and 1982 chapter).
• [39]: Chap. 27 of Vol. 3 is a rewrite of this 1981–1982 paper.
• [57, 65, 85]: Chap. 26 of Vol. 3 is a rewrite of these (basically) 1997–1998

papers.
• [58, 114]: Chap. 28 of Vol. 3 is a rewrite of this 1996–1997 paper.

Some papers should be referred to as further examples of domain models:

• [74]: Provides an example of the domain of ‘The Market’ of consumers,
retailers, wholesaler and produces. [74] ought be extended with a model of
the ‘Supply Chain’.

• [35,37,115,116]: Provide examples of models of data base models (network,
hierarchical and relational). These papers ought have been rewritten into
a small textbook on databases. We find that the very popular [292] may
be acceptable for a college, but not for an academic university course
on databases — and would prefer to see a textbook alternating between
carefully narrated and annotated formalisations (of database models) and
a few of the kind of example otherwise given in [292]. Now the meaning
of a relational database query can be rigorously (even formally) ‘derived’
from the formalisation.

• [68,77,79,82–84,91,101,105,106,256,257,289]: Provide (overlapping) mod-
els of one or another aspect of transportation systems, specifically railway
systems. Ought be rewritten into a monograph on ‘Transportation Sys-
tems’ (See also: http://www.railwaydomain.org/).

• [54]: Provides an example of a domain model for robots (not robotics).
More research on software structures for robotics, such as suggested in
internal reports, ought be based, I strongly think, on models like [54].

• [96]: Provides a partial model of a container line industry. My hope is to
somehow continue this work.

8http://www.fortia.org/twiki/bin/view/Main/ForTIA
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13.3.4 Some of My Publications

1. [23] H. Bekič, D. Bjørner, W. Hen-
hapl, C.B. Jones, P. Lucas: A Formal
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Renéne Jacquart (Kluwer Academic
Publishers, 2004) pp 607–611

61. [84] D. Bjørner: Towards a Formal
Model of CyberRail. In: Building the
Information Society, IFIP 18th World
Computer Congress, Tpical Sessions,
22–27 August, 2004, Toulouse, France

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
118 13 The Thesis Reviewed
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13.4 An Unending Quest

The sub-title of this thesis is: An Unended Quest.
This thesis summarises 35 years of research, from when I worked with fine

colleagues (notably with the late Hans Bekič, and with Cliff Jones and Peter
Lucas in the early 1970s at the IBM Wiener Labor), till today.

On Page 30 in a Preface section (The Author’s Aspirations) of Vol. 1 [87],
I wrote: “I have written these volumes because I wanted to understand how
to develop large-scale software systems. When I started, some 25 years ago,
writing lecture notes on this subject, I knew less than I do now.”

I was fortunate, at IBM and with DDC (Dansk Datamatik Center), to be
able to see much of what I knew and learned be carried out in “real life”,

I am sure I will learn more as I continue toiling with the issues — such
as I have learned when working on Chaps. 1–12 and Appendices A–G. Right
now, August 1, 2008, I am “halfway” through the writing of a new book [97]!

• • •

The quest goes on.

Fredsvej 11, Holte, Denmark; August 1, 2008
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Part V

DR. TECHN. APPENDICES

Appendices A–E (Pages 123–290) are to be considered part of the thesis as
submitted. They all represent published, or to be published papers.
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A

Domain Engineering

This appendix chapter constitutes the invited chapter [94] for a col-
lection of BCS FACS papers to be published by Springer (UK).

Before software can be designed we must know its requirements. Before re-
quirements can be expressed we must understand the domain. So it follows, from
our dogma, that we must first establish precise descriptions of domains; then from
such, “derive” at least domain requirements; and from those and other (interface
and machine) requirements design the software, or, more generally, the comput-
ing systems. The preceding was an engineering dogma. Now follows a science
dogma: Just as physicists have studied this universe for centuries (and more),
and will continue to do so for centuries (or more), so it is about time that we
also study such man-made universes as air traffic, the financial service industry,
healthcare, manufacturing, “the market”, railways, indeed transportation in gen-
eral, and so forth. Just in-and-by-themselves. No need to excuse such a study by
stating only engineering concerns. To understand is all. And helps engineering.

In the main part of this chapter we shall outline what goes into a domain
description, not so much how we acquire what goes in. That is: before we can
acquire domain “knowledge” we must know what are suitable structures of
domain descriptions. Thus we shall outline ideas of modelling the intrinsics (of
a domain), the support technologies (of ...), the management and organisation
(of ...), the rules and regulations (including [license or contract] scripts) (of
...), and the human behaviours (of a domain).

Before delving into the main part we shall, however first overview what
we see as basic principles of describing phenomena and concepts of domains.

At the basis of all descriptional, prescriptional and specificational modeling
work is abstraction. Mathematics is a reliable carrier of abstraction. Hence our
domain modeling will be presented both as informal, yet short and precise,
that is, concise narratives as well as formally. In this chapter we primarily
express the formalisations in the RAISE [168] specification language, RSL
[166]. We refer to [87,88] for a comprehensive coverage of formal abstractions
and models.
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124 A Domain Engineering

Two remarks are now in order. Firstly, there are other specification (cum
development or design) languages, Alloy [202], ASM [261, 262], B [1, 131],
CafeOBJ [147,148,161,162], CASL [24,142,241,242], VDM-SL [111,112,157,
158] and Z [186,187,283,284,297]. But, secondly, none of these suffices. Each,
including RSL, have their limitations in what they were supposed to express
with ease. So one needs to combine, to integrate either of the above formal
notations with for example the notations of Duration Calculus [301,302] (DC),
Message [199–201] or Live Sequence Charts (MSCs and LSCs) [145,184,212],
Petri Nets [210, 250, 258–260], Statecharts [180–183, 185] (SCs), TLA+ [217,
218,232] etcetera.

Chapters 12–15 of [88] presents an extensive coverage of Petri Nets, MSCs
and LSCs, SCs and DCs, respectively. This chapter presents an essence of
chapters 5, 6 and 11 of [89].

The forthcoming book “Logics of Specification Languages” [108] covers the
following formal notations ASM, B, CafeOBJ, CASL, DC, RAISE, VDM-SL,
TLA+ and Z. [108] represents an extensive revision of the following published
papers: [130, 148,167,187,232,242,261].

A.1 Introduction

A.1.1 Application cum Business Domains

By domain we shall loosely speaking understand the same as by application
(or business) domain: a universe of discourse, an area of human and societal
activity for which, eventually some support in the form of computing and
(electronic) communication (c&c) may be desired. Once such c&c, that is,
hardware and software has been installed the environment for that machine
is the former domain, and the new domain includes the machine, i.e., the
hardware and software c&c. The machine interacts with its new domain (with
its environment). But we can speak of a domain without ever thinking, or
having to think about c&c applications.

Examples of domains are: air traffic, airports, the financial service indus-
try (clients, banks, brokers, securities exchange, portfolio managers, insurance
companies, credit card companies, financial service industry “watchdogs”,
etc.), freight logistics, health care, manufacturing, and transportation (air
lines, railways, roads (private automobiles, busses, taxis, trucking), shipping).
These examples could be said to be “grand scale”, and to reflect infrastructure
components of a society. Less “grand” examples of domains are: the intercon-
nect cabling of and the electronic and electro-mechanical boxes of either a
sound & noise measuring test set-up or a so-called “intelligent” home, the
interlocking of groups of rail points (switches) of a railway station, an auto-
mobile (with all its mechanical, electro-mechanical and electronic parts and
the composition of all these parts, and with the driver and zero, one or more
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A.2 Domain Engineering: The Engineering Dogma 125

passengers), or a set or laws (or just rules and regulations) of business en-
terprise (the domain would then, in this latter cases, include abstractions,
relevant to the laws (etc.) of whatever these laws or rules and regulations
referred to). In all of these latter cases we usually include the human or tech-
nological monitoring and control of these domains.

A.1.2 Physics, Domains and Engineering

Physics, “mother nature” has been studied for millenia. Physicists continue
to unravel deeper and deeper understandings of the physically observable uni-
verse around us. Classical engineering builds on physics. Every aeronautical &
aerospace, chemical, civil, electrical & electronics, and mechanical & control
engineer is expected to know all the laws of physics relevant to their field, and
much more, and is expected to model, using various branches of mathemat-
ics (calculus, statistics, probability theory, graph theory, combinatorics, etc.),
phenomena of the domain in which their engineering artifacts are placed (as
well as, of course, these artifacts themselves).

Software engineers sometimes know how to model their own artifacts (com-
pilers, operating systems, database management systems, data communication
systems, web services, etc.), but they seldom, if ever are expected to model,
and they mostly cannot, i.e., do not know how to model the domain in which
their software operates.

A.2 Domain Engineering: The Engineering Dogma

• Before software can be designed we must know its requirements.
• Before requirements can be expressed we must understand the domain.
• So it follows, from our dogma, that we must

⋆ first establish precise descriptions of domains;
⋆ then from such, “derive” at least domain requirements;
⋆ and from those and other (interface and machine) requirements design the

software, or, more generally, the computing systems.

That is, we propose what we have practiced for many years, that the software
engineering process be composed — and that it be iterated over, in a carefully
monitored and controlled manner — as follows:

• domain engineering,
• requirements engineering, and
• software design.

We see the domain engineering process as composed from, and iterated over:

1. identification of and regular interaction with stakeholders
2. domain (knowledge) acquisition

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42
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126 A Domain Engineering

3. domain analysis
4. domain modelling
5. domain verification
6. domain validation
7. domain theory formation

In this chapter we shall only look at the principles and techniques of domain
modeling, that is, item 4. To pursue items 2.–3. one must know what goes
into a domain description, i.e., a domain model.

• A major part of the domain engineering process is taken up by finding and
expressing suitable abstractions, that is, descriptions of the domain.

• Principles for identifying, classifying and describing domain phenomena and
concepts are therefore needed.

This chapter focuses on presenting some of these principles and techniques.

A.3 Entities, Functions, Events and Behaviours

In the domain we observe phenomena. From usually repeated such obser-
vations we form (immediate, abstract) concepts. We may then “lift” such
immediate abstract concepts to more general abstract concepts.

Phenomena are manifest. They can be observed by human senses (seen,
heard, felt, smelled or tasted) or by physical measuring instruments (mass,
length, time, electric current, thermodynamic temperature, amount of sub-
stance, luminous intensity). Concepts are defined.

We shall analyse phenomena and concepts according to the following sim-
ple, but workable classification: entities, functions (over entities), events
(involving changes in entities, possibly as caused by function invocations, i.e.,
actions, and/or possibly causing such), and behaviours as (possibly sets of)
sequences of actions (i.e., function invocations) and events.

A.3.1 Entities

• By an entity we shall understand something static; although that “thing” may
move, after it has moved it is essentially the same thing, an entity

Entities are either atomic or composite. The decision as to which entities are
considered what is a decision solely taken by the describer.

Atomic Entities

• By an atomic entity we intuitively understand an entity which “cannot be
taken apart” (into other, the sub-entities).

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
A.3 Entities, Functions, Events and Behaviours 127

Attributes — Types and Values:

With any entity we can associate one or more attributes.

• By an attribute we understand a pair of a type and a value.

Example A.1. Atomic Entities:

Entity: Person Entity: Bank Account

Type Value Type Value

Name Dines Bjørner number 212 023 361 918
Weight 118 pounds balance 1,678,123 Yen
Height 179 cm interest rate 1.5 %
Gender male credit limit 400,000 Yen

•

“Removing” an attribute from an entity destroys its “entity-hood”.

Composite Entities

• By a composite entity we intuitively understand an entity (i) which “can be
taken apart” into sub-entities, (ii) where the composition of these is described
by its mereology, and (iii) which further possess one or more attributes.

Example A.2. Transport Net, A Narrative:

Entity: Transport Net

Subentities: Segments
Junctions

Mereology: “set” of one or more s(egment)s and
“set” of two or more j(unction)s

such that each s(egment) is delimited by two j(unctions)
and such that each j(unction) connects one or more s(egments)
Attributes

Types: Values:

Multimodal Rail, Roads
Transport Net of Denmark
Year Surveyed 2006

•

To put the above example of a composite entity in context we give an example
of both an informal narrative and a corresponding formal specification:

Example A.3. Transport Net, A Formalisation: A transport net consists
of one or more segments and two or more junctions. With segments [junctions] we
can associate the following attributes: segment [junction] identifiers, the identifiers
of the two junctions to which segments are connected [the identifiers of the one
or more segments connected to the junction], the mode of a segment [the modes
of the segments connected to the junction].
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invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
128 A Domain Engineering

type
N, S, J, Si, Ji, M

value
obs Ss: N → S-set, obs Js: N → J-set
obs Si: S → Si, obs Ji: J → Ji
obs Jis: S → Ji-set, obs Sis: J → Si-set
obs M: S → M, obs Ms: J → M-set

axiom
∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}
...

type
Nm, Co, Ye

value
obs Nm: N → Nm, obs Co: N → Co, obs Ye: N → Ye

Si, Ji, M, Nm, Co, Ye are not entities. They are names of attribute types and, as
such, designate attribute values. N is composite, S and J are considered atomic.
•

• By mereology we shall understand a theory of part-hood relations. That is,
of the relations of part to whole and the relations of part to part within a
whole.

The term mereology seems to have been first used in the sense we are using
it my the Polish mathematical logician Stanis law Leshniewski [225, 237, 285,
286,290].

States

• By a domain state we shall understand a collection of domain entities chosen
by the domain engineer.

The pragmatics of the notion of state is that states are recurrent arguments
to functions and are changed by function invocations.

A.3.2 Functions

• By a function we shall understand something which when applied to some
arguments (i.e., entities) yield some entities called the result of the function
(application).

• By an action we shall understand the same things as applying a state-changing
function to its arguments (including the state).
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A.3 Entities, Functions, Events and Behaviours 129

[The observer functions of the formal example above are not the kind of func-
tions we are seeking to identify in the domain. They are mere technicalities:
needed, due to the way in which we formalise — and are deployed in order to
express sub-entities, mereologies and attributes.]

Function Signatures

By a function signature we mean the name and type of a function.

type
A, B, ..., C, X, Y, .., Z

value
f: A × B × ... × C → X × Y × ... × Z

The last line above expresses a schematic function signature.

Function Descriptions

By a function description we mean a function signature and something which
describes the relationship between function arguments (the a:A’s, b:B’s, . . . ,
c:C’s and the x:X’s, y:Y’s, . . . , z:Z’s).

Example A.4. Well Formed Routes:

type
P = Ji × Si × Ji /∗ path: triple of identifiers ∗/
R′ = P∗ /∗ route: sequence of connected paths ∗/
R = {| r:R′

• wf R(r) |} /∗ subtype of R′: those r′s satisfying wf R(r) ∗/
value

wf R: R′ → Bool
wf R(r) ≡

∀ i:Nat•{i,i+1}⊆inds r⇒let (,,ji′)=r(i),(ji′′,,)=r(i+1) in ji′=ji′′ end

•

The last line above describes the route well-formedness predicate. [The mean-
ing of the “(,,” and “,,)” is that the omitted path components “play no rôle.]

A.3.3 Events

• By an event we shall understand an instantaneous change of state not directly
brought about by some explicitly willed action in the domain, but either by
“external” forces. or implicitly as a non-intended result of an explicitly willed
action.

Events may or may not lead to the initiation of explicitly issued operations.
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130 A Domain Engineering

Example A.5. Events: A ‘withdraw’ from a positive balance bank account ac-
tion may leave a negative balance bank account. A bank branch office may have
to temporarily stop actions, i.e., close, due to a bank robbery. •

Internal events: The first example above illustrates an internal action.
It was caused by an action in the domain, but was not explicitly the main
intention of the “withdraw” function.

External events: The second example above illustrates an external ac-
tion. We assume that we have not explicitly modelled bank robberies!

Formal modelling of events: With every event we can associate an
event label. And event label can be thought of as a simple identifier. Two or
more event labels may be the same.

A.3.4 Behaviours

• By a behaviour we shall understand a structure of actions (i.e., function
invocations) and events. The structure may typically be a set of sequences of
actions and events.

A behaviour is either a simple behaviour, or is a concurrent behaviour, or, if
the latter, can be either a communicating behaviour or not.

• By a simple behaviour we shall understand a sequence of actions and events.

Example A.6. Simple Behaviours: The opening of a bank account, the de-
posit into that bank account, zero, one or more other such deposits, a withdrawal
from the bank account in question, etc. (deposits and withdrawals), ending with
a closing of the bank account. Any prefix of such a sequence is also a simple
behaviour. Any sequence in which one or more events are interspersed is also a
simple behaviour. •

• By a concurrent behaviour we shall understand a set of behaviours (simple
or otherwise).

Example A.7. Concurrent Behaviours: A set of simple behaviours may result
from two or more distinct bank clients, each operating of their own, distinct, that
is, non-shared accounts. •

• By a communicating behaviour we shall understand a set of two or more
behaviours where otherwise distinct elements (i.e., behaviours) share events.

The sharing of events can be identified via the event labels.

Example A.8. Communicating Behaviours: To model that two or more
clients can share the same bank account one could model the bank account as
one behaviour and each client as a distinct behaviour. Let us assume that only
one client can open an account and that only one client can close an account. Let
us further assume that sharing is brought about by one client, say the one who
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A.4 Domain Facets 131

opened the account, identifying the sharing clients. Now, in order to make sure
that at most one client accesses the shared account at one one time (in any one
“smallest” transaction interval) one may model “client access to account” as a
pair of events such that during the interval between the first (begin transaction)
and the second (end transaction) event no other client can share events with the
bank account behaviour. Now the set of behaviours of the bank account and one
or more of the client behaviours is an example of a communicating behavior. •

Formal modelling of behaviours: Communicating behaviours, the only
really interesting behaviours, can be modelled in a great variety of ways:
from set-oriented models in B [1, 131], RSL [87–89, 97, 165, 166, 168], VDM
[111,112,157,158], or Z [186,187,283,284,297], to models using for example

CSP [189, 190, 266, 273] (as for example “embedded” in RSL [166]), or, to
diagram models using, for example, Petri nets [210, 250, 258–260], message
[199–201] or live sequence charts [145,184,212], or statecharts [180–183,185].

A.3.5 Discussion

The main aim of Sect. A.3 is to ensure that we have a clear understanding
of the modelling concepts of entities, functions, events and behaviours. To
“reduce” the modelling of phenomena and concepts to these four kinds of
phenomena and concepts is, of course, debatable. Our point is that it works,
that further classification, as is done in for example John F. Sowa’s [282], is
not necessary, or rather, is replaced by how we model attributes of for example
entities1 and how we model facets, such as we shall call them. The modelling
of facets is the main aim of this chapter.

A.4 Domain Facets

• By a domain facet we shall understand one amongst a finite set of generic
ways of analysing a domain: a view of the domain, such that the different
facets cover conceptually different views, and such that these views together
cover the domain.

The hedge here is “finite set of generic ways”. Thus there is an assumption,
a conjecture to be possibly refuted. Namely the postulate that there is a
finite number of facets. We shall offer the following facets: intrinsics, support
technology, management and organisation, rules and regulations (and scripts),
and human behaviour.

1For such issues as static and dynamic attributes, dimensionality, tangibility,
time and space, etc., we refer to Michael A. Jackson’s [206] or Chap. 10 of [89].
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132 A Domain Engineering

A.4.1 Intrinsics

• By domain intrinsics we shall understand those phenomena and concepts of
a domain which are basic to any of the other facets (listed earlier and treated,
in some detail, below), with such domain intrinsics initially covering at least
one specific, hence named, stakeholder view.

Example A.9. Railway Net Intrinsics: We narrate and formalise three rail-
way net intrinsics.

• From the view of potential train passengers a railway net consists of lines,
stations and trains. A line connects exactly two distinct stations.

• From the view of actual train passengers a railway net — in addition to the
above — allows for several lines between any pair of stations and, within
stations, provides for one or more platform tracks from which to embark or
alight a train.

• From the view of train operating staff a railway net — in addition to the
above — has lines and stations consisting of suitably connected rail units.
A rail unit is either a simple (i.e., linear, straight) unit, or is a switch unit,
or is a simple crossover unit, or is a switchable crossover unit, etc. Simple
units have two connectors. Switch units have three connectors. Simple and
switchable crossover units have four connectors. A path (through a unit) is a
pair of connectors of that unit. A state of a unit is the set of paths, in the
direction of which a train may travel. A (current) state may be empty: The
unit is closed for traffic. A unit can be in either one of a number of states of
its state space.

Railway Net Intrinsics:

A summary formalisation of the three narrated railway net intrinsics could be:

• Potential train passengers:

scheme N0 =
class

type
N, L, S, Sn, Ln

value
obs Ls: N → L-set, obs Ss: N → S-set
obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom
...

end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line
names. One can observe lines and stations from nets, line and station names
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A.4 Domain Facets 133

from lines and stations, pair sets of station names from lines, and lines names
(of lines) into and out from a station from stations. Axioms ensure proper
graph properties of these concepts.

• Actual train passengers:

scheme N1 = extend N0 with
class

type
Tr, Trn

value
obs Trs: S → Tr-set, obs Trn: Tr → Trn

axiom
...

end

The only additions are that of track and track name sorts, related observer
functions and axioms.

• Train operating staff:

scheme N2 = extend N1 with
class

type
U, C
P′ = U × (C×C)
P = {| p:P′

• let (u,(c,c′))=p in (c,c′)∈ ∪ obs Ω(u) end |}
Σ = P-set
Ω = Σ-set

value
obs Us: (N|L|S) → U-set
obs Cs: U → C-set
obs Σ: U → Σ
obs Ω: U → Ω

axiom
...

end

Unit and connector sorts have been added as have concrete types for paths, unit
states, unit state spaces and related observer functions, including unit state and
unit state space observers. The reader is invited to compare the three narrative
descriptions with the three formal descriptions, line by line. •

Different stakeholder perspectives, not only of intrinsics, as here, but of any
facet, lead to a number of different models. The name of a phenomenon of one
perspective, that is, of one model, may coincide with the name of a “similar”
phenomenon of another perspective, that is, of another model, and so on. If
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134 A Domain Engineering

the intention is that the “same” names cover comparable phenomena, then
the developer must state the comparison relation.

Example A.10. Comparable Intrinsics: We refer to Example A.9. We claim
that the concept of nets, lines and stations in the three models of Example A.9
must relate. The simplest possible relationships are to let the third model be the
common “unifier” and to mandate

• that the model of nets, lines and stations of the potential train passengers
formalisation is that of nets, lines and stations of the train operating staff
model; and

• that the model of nets, lines, stations and tracks of the actual train passengers
formalisation is that of nets, lines, stations of the train operating staff model.

Thus the third model is seen as the definitive model for the stakeholder views
initially expressed. •

Example A.11. Intrinsics of Switches: The intrinsic attribute of a rail switch
is that it can take on a number of states. A simple switch (

c|
Y

c/

c
) has three

connectors: {c, c|, c/}. c is the connector of the common rail from which one can
either “go straight” c|, or “fork” c/ (Fig. A.1). So we have that a possible state
space of such a switch could be ωgs :

{{},
{(c, c|)}, {(c|, c)}, {(c, c|), (c|, c)},
{(c, c/)}, {(c/, c)}, {(c, c/), (c/, c)}, {(c/, c), (c|, c)},
{(c, c|), (c|, c), (c/, c)}, {(c, c/), (c/, c), (c|, c)}, {(c/, c), (c, c|)}, {(c, c/), (c|, c)}}

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. A.1. Possible states of a rail switch

The above models a general switch ideally. Any particular switch ωps may have
ωps⊂ωgs . Nothing is said about how a state is determined: who sets and resets
it, whether determined solely by the physical position of the switch gear, or also
by visible or virtual (i.e., invisible, intangible) signals up or down the rail, away
from the switch. •
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Conceptual Versus Actual Intrinsics

In order to bring an otherwise seemingly complicated domain across to the
reader, one may decide to present it piecemeal:2 First, one presents the very
basics, the fewest number of inescapable entities, functions and behaviours.
Then, in a step of enrichment, one adds a few more (intrinsic) entities, func-
tions and behaviours. And so forth. In a final step one adds the last (intrinsic)
entities, functions and behaviours. In order to develop what initially may seem
to be a complicated domain, one may decide to develop it piecemeal: We ba-
sically do as for the presentation steps: Steps of enrichment — from a big lie,
via increasingly smaller lies, till one reaches a truth!

On Modelling Intrinsics

Domains can be characterised by intrinsically being entity, or function, or
event, or behaviour intensive. Software support for activities in such do-
mains then typically amount to database systems, computation-bound sys-
tems, real-time embedded systems, respectively distributed process monitor-
ing and control systems. Modelling the domain intrinsics in respective cases
can often be done property-oriented specification languages (like CafeOBJ

[147, 148, 161, 162] or CASL [24, 142, 241, 242]), model-oriented speci-
fication languages (like B [1, 131], VDM-SL [111, 112, 157, 158], RSL
[166], or Z [186, 187, 283, 284, 297]), event-based languages (like Petri nets
[210,250,258–260] or CSP [189,190,266,273]), respectively process-based spec-
ification languages (like MSCs [199–201], LSCs [145, 184, 212], statecharts
[180–183,185], or CSP [189,190,266,273]).

A.4.2 Support Technologies

• By a domain support technology we shall understand ways and means of
implementing certain observed phenomena or certain conceived concepts.

Example A.12. Railway Support Technology: We give a rough sketch de-
scription of possible rail unit switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by
railway staff assigned to and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers3 (and
steel wires), switches were made to change state by means of “throwing” levers
in a cabin tower located centrally at the station (with the lever then connected
through wires etc., to the actual switch).

2That seemingly complicated domain may seem very complicated, containing
hundreds of entities, functions and behaviours. Instead of presenting all the entities,
functions, events and behaviours in one “fell swoop”, one presents them in stages:
first, around seven such (entities, functions, events and behaviours), then seven more,
etc.
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136 A Domain Engineering

(iii) This partial mechanical technology then emerged into electro-mechanics,
and cabin tower staff was “reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a station
track, or from a station track to a station departure point, are set and reset by
means also of electronics, by what is known as interlocking (for example, so that
two different routes cannot be open in a station if they cross one another). •

It must be stressed that Example A.12 is just a rough sketch. In a proper
narrative description the software (cum domain) engineer must describe, in
detail, the subsystem of electronics, electro-mechanics and the human operator
interface (buttons, lights, sounds, etc.).

An aspect of supporting technology includes recording the state-behaviour
in response to external stimuli. We give an example.

Example A.13. Probabilistic Rail Switch Unit State Transitions: Fig-
ure A.2 indicates a way of formalising this aspect of a supporting technology.
Figure A.2 intends to model the probabilistic (erroneous and correct) behaviour
of a switch when subjected to settings (to switched (s) state) and resettings (to
direct (d) state). A switch may go to the switched state from the direct state
when subjected to a switch setting s with probability psd. •

sed

sw/esd sw/ess

di/edd di/eds

di/1-pdd-edd

sw/psd

di/pds

sw/1-psd-esd

di/pdd

sw/pss

di/1-pds-eds

sw/1-pss-ess

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

 0 <= p.. <= 1

States:
s: Switched state

d: Direct (reverted) state

e: Error state

Fig. A.2. Probabilistic state switching

Another example shows another aspect of support technology: Namely that
the technology must guarantee certain of its own behaviours, so that software
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A.4 Domain Facets 137

designed to interface with this technology, together with the technology, meets
dependability requirements.

Example A.14. Railway Optical Gates: Train traffic (itf:iTF), intrinsically,
is a total function over some time interval, from time (t:T) to continuously posi-
tioned (p:P) trains (tn:TN).

Conventional optical gates sample, at regular intervals, the intrinsic train traf-
fic. The result is a sampled traffic (stf:sTF). Hence the collection of all optical
gates, for any given railway, is a partial function from intrinsic to sampled train
traffics (stf).

We need to express quality criteria that any optical gate technology should
satisfy — relative to a necessary and sufficient description of a closeness predicate.
The following axiom does that:

For all intrinsic traffics, itf, and for all optical gate technologies, og, the
following must hold: Let stf be the traffic sampled by the optical gates.
For all time points, t, in the sampled traffic, those time points must also
be in the intrinsic traffic, and, for all trains, tn, in the intrinsic traffic
at that time, the train must be observed by the optical gates, and the
actual position of the train and the sampled position must somehow be
checkable to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any
model of traffic.

Railway Optical Gate Technology Requirements:

type
T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

[ close ] c: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom
∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

t ∈ D itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

D is not an RSL operator. It is a mathematical way of expressing the definition set
of a general function. Hence it is not a computable function. Checkability is an
issue of testing the optical gates when delivered for conformance to the closeness
predicate, i.e., to the axiom. •
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138 A Domain Engineering

On Modelling Support Technologies

Support technologies in their relation to the domain in which they reside
typically reflect real-time embeddedness. As such the techniques and lan-
guages for modelling support technologies resemble those for modelling event
and process intensity, while temporal notions are brought into focus. Hence
typical modelling notations include event-based languages (like Petri nets
[210, 250, 258–260] or CSP [189, 190, 266, 273]), respectively process-based
specification languages (like MSCs [199–201], LSCs [145, 184, 212], state-
charts [180–183, 185], or CSP [189, 190, 266, 273]), as well as temporal lan-
guages (like the Duration Calculus [301,302] and Temporal Logic of Actions,
TLA+, [217,218,232,233]).

A.4.3 Management and Organisation

Example A.15. Train Monitoring, I: In China, as an example, rescheduling
of trains occurs at stations and involves telephone negotiations with neighbouring
stations (“up and down the lines”). Such rescheduling negotiations, by phone,
imply reasonably strict management and organisation (M&O). This kind of M&O
reflects the geographical layout of the rail net. •

• By domain management we shall understand such people (such decisions)
(i) who (which) determine, formulate and thus set standards (cf. rules and
regulations, Sect. A.4.4) concerning strategic, tactical and operational deci-
sions; (ii) who ensure that these decisions are passed on to (lower) levels of
management, and to floor staff; (iii) who make sure that such orders, as they
were, are indeed carried out; (iv) who handle undesirable deviations in the car-
rying out of these orders cum decisions; and (v) who “backstop” complaints
from lower management levels and from floor staff.

• By domain organisation we shall understand the structuring of management
and non-management staff levels; the allocation of strategic, tactical and op-
erational concerns to within management and non-management staff levels;
and hence the “lines of command”: who does what, and who reports to whom,
administratively and functionally.

Example A.16. Railway Management and Organisation: Train Mon-
itoring, II: We single out a rather special case of railway management and
organisation. Certain (lowest-level operational and station-located) supervisors
are responsible for the day-to-day timely progress of trains within a station and
along its incoming and outgoing lines, and according to given timetables. These
supervisors and their immediate (middle-level) managers (see below for regional
managers) set guidelines (for local station and incoming and outgoing lines) for
the monitoring of train traffic, and for controlling trains that are either ahead of
or behind their schedules. By an incoming and an outgoing line we mean part
of a line between two stations, the remaining part being handled by neighbouring
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A.4 Domain Facets 139

station management. Once it has been decided, by such a manager, that a train is
not following its schedule, based on information monitored by non-management
staff, then that manager directs that staff: (i) to suggest a new schedule for the
train in question, as well as for possibly affected other trains, (ii) to negotiate the
new schedule with appropriate neighbouring stations, until a proper reschedule
can be decided upon, by the managers at respective stations, (iii) and to enact
that new schedule.4 A (middle-level operations) manager for regional traffic, i.e.,
train traffic involving several stations and lines, resolves possible disputes and
conflicts. •

The above, albeit rough-sketch description, illustrated the following manage-
ment and organisation issues: There is a set of lowest-level (as here: train
traffic scheduling and rescheduling) supervisors and their staff. They are or-
ganised into one such group (as here: per station). There is a middle-level
(as here: regional train traffic scheduling and rescheduling) manager (possibly
with some small staff), organised with one such per suitable (as here: railway)
region. The guidelines issued jointly by local and regional (...) supervisors and
managers imply an organisational structuring of lines of information provision
and command.

Conceptual Analysis, First Part

People staff enterprises, the components of infrastructures with which we are
concerned, i.e., for which we develop software. The larger these enterprises
— these infrastructure components — the more need there is for manage-
ment and organisation. The rôle of management is roughly, for our purposes,
twofold: first, to perform strategic, tactical and operational work, to set strate-
gic, tactical and operational policies — and to see to it that they are followed.
The rôle of management is, second, to react to adverse conditions, that is, to
unforeseen situations, and to decide how they should be handled, i.e., conflict
resolution.

Policy setting should help non-management staff operate normal situa-
tions — those for which no management interference is thus needed. And
management “backstops” problems: management takes these problems off the
shoulders of non-management staff.

To help management and staff know who’s in charge wrt. policy setting
and problem handling, a clear conception of the overall organisation is needed.
Organisation defines lines of communication within management and staff,
and between these. Whenever management and staff has to turn to others for
assistance they usually, in a reasonably well-functioning enterprise, follow the
command line: the paths of organigrams — the usually hierarchical box and
arrow/line diagrams.

4That enactment may possibly imply the movement of several trains incident
upon several stations: the one at which the manager is located, as well as possibly
at neighbouring stations.
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140 A Domain Engineering

Methodological Consequences

The management and organisation model of a domain is a partial specifica-
tion; hence all the usual abstraction and modelling principles, techniques and
tools apply. More specifically, management is a set of predicates, observer and
generator functions which either parameterise other, the operations functions,
that is, determine their behaviour, or yield results that become arguments to
these other functions

Organisation is thus a set of constraints on communication behaviours.
Hierarchical, rather than linear, and matrix structured organisations can also
be modelled as sets (of recursively invoked sets) of equations.

Conceptual Analysis, Second Part

To relate classical organigrams to formal descriptions we first show such an
organigram (Fig. A.3), and then we show schematic processes which — for a
rather simple scenario — model managers and the managed!

.

Director

Board

Staff bStaff a Manager

Staff 1 Staff 2 Staff 3

Unit

A Matrix OrganisationA Hierarchical Organisation

Board

Director

Unit

Unit Unit

UnitUnit

Unit

Unit

Manager Manager Manager

Functional

Functional

Functional

Admin. Admin. Admin.

Manager

Manager

Manager

.....

.....

.....
..... .....

Fig. A.3. Organisational structures

Based on such a diagram, and modelling only one neighbouring group of
a manager and the staff working for that manager we get a system in which
one manager, mgr, and many staff, stf, coexist or work concurrently, i.e., in
parallel. The mgr operates in a context and a state modelled by ψ. Each staff,
stf(i) operates in a context and a state modelled by sσ(i).

Conceptual Model of a Manager-Staff Relation, I:

type
Msg, Ψ , Σ, Sx

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
A.4 Domain Facets 141

SΣ = Sx →m Σ
channel

{ ms[ i ]:Msg | i:Sx }
value

sσ:SΣ, ψ:Ψ

sys: Unit → Unit
sys() ≡ ‖ { st(i)(sσ(i)) | i:Sx } ‖ mg(ψ)

In this system the manager, mgr, (1) either broadcasts messages, m, to all
staff via message channel ms[i]. The manager’s concoction, m out(ψ), of the
message, msg, has changed the manager state. Or (2) is willing to receive
messages, msg, from whichever staff i the manager sends a message. Receipt
of the message changes, m in(i,m)(ψ), the manager state. In both cases the
manager resumes work as from the new state. The manager chooses — in this
model — which of thetwo things (1 or 2) to do by a so-called nondeterministic
internal choice (⌈⌉).

Conceptual Model of a Manager-Staff Relation, II:

mg: Ψ → in,out {ms[ i ]|i:Sx} Unit
mg(ψ) ≡

(1) (let (ψ′,m)=m out(ψ) in ‖{ms[ i ]!m|i:Sx};mg(ψ′)end)
⌈⌉

(2) (let ψ′=⌈⌉⌊⌋{let m=ms[ i ]? in m in(i,m)(ψ) end|i:Sx} in mg(ψ′) end)

m out: Ψ → Ψ × MSG,
m in: Sx × MSG → Ψ → Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg,
from the manager, and then to change, st in(msg)(σ), state accordingly, or (2)
to concoct, st out(σ), a message, msg (thus changing state) for the manager,
and send it ms[i]!msg. In both cases the staff resumes work as from the new
state. The staff member chooses — in this model — which of thetwo “things”
(1 or 2) to do by a nondeterministic internal choice (⌈⌉).

Conceptual Model of a Manager-Staff Relation, III:

st: i:Sx → Σ → in,out ms[ i ] Unit
st(i)(σ) ≡

(1) (let m = ms[ i ]? in st(i)(stf in(m)(σ)) end)
⌈⌉

(2) (let (σ′,m) = st out(σ) in ms[ i ]!m; st(i)(σ′) end)

st in: MSG → Σ → Σ,
st out: Σ → Σ × MSG
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142 A Domain Engineering

Both manager and staff processes recurse (i.e., iterate) over possibly changing
states. The management process nondeterministically, external choice, “al-
ternates” between “broadcast”-issuing orders to staff and receiving individ-
ual messages from staff. Staff processes likewise nondeterministically, external
choice, alternate between receiving orders from management and issuing in-
dividual messages to management.

The conceptual example also illustrates modelling stakeholder behaviours
as interacting (here CSP-like [189,190,266,273]) processes.

On Modelling Management and Organisation

Management and organisation basically spans entity, function, event and be-
haviour intensities and thus typically require the full spectrum of modelling
techniques and notations — summarised in the two “On Modelling ...” para-
graphs at the end of the two previous sections.

A.4.4 Rules and Regulations

• By a domain rule we shall understand some text (in the domain) which pre-
scribes how people or equipment are expected to behave when dispatching
their duty, respectively when performing their function.

• By a domain regulation we shall understand some text (in the domain) which
prescribes what remedial actions are to be taken when it is decided that a rule
has not been followed according to its intention.

Example A.17. Trains at Stations:

• Rule: In China the arrival and departure of trains at, respectively from, railway
stations is subject to the following rule:

In any three-minute interval at most one train may either arrive to or
depart from a railway station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is
some regulation which prescribes administrative or legal management and/or
staff action, as well as some correction to the railway traffic.

•

Example A.18. Trains Along Lines:

• Rule: In many countries railway lines (between stations) are segmented into
blocks or sectors. The purpose is to stipulate that if two or more trains are
moving along the line, then:

There must be at least one free sector (i.e., without a train) between
any two trains along a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is
some regulation which prescribes administrative or legal management and/or
staff action, as well as some correction to the railway traffic.

•
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A.4 Domain Facets 143

A Meta-characterisation of Rules and Regulations

At a meta-level, i.e., explaining the general framework for describing the syn-
tax and semantics of the human-oriented domain languages for expressing
rules and regulations, we can say the following: There are, abstractly speak-
ing, usually three kinds of languages involved wrt. (i.e., when expressing) rules
and regulations (respectively when invoking actions that are subject to rules
and regulations). Two languages, Rules and Reg, exist for describing rules,
respectively regulations; and one, Stimulus, exists for describing the form of
the [always current] domain action stimuli.

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from
any configuration to a next configuration, where configurations are those of the
system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands
for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current
and next configurations, (Θ × Θ) → Bool, where these next configurations
have been brought about, i.e., caused, by the stimuli. These stimuli express: If
the predicate holds then the stimulus will result in a valid next configuration.

type
Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value
meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool
valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool
valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e.,
has as its semantics, its meaning, a semantic regulation, se reg:REG, which is a
pair. This pair consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ ×
Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ, that is, both involving current and next domain
configurations. The two kinds of functions express: If the predicate holds, then
the action can be applied.

The predicate is almost the inverse of the rules functions. The action func-
tion serves to undo the stimulus function.

type
Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
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Pre REG = Θ × Θ → Bool
Act REG = Θ → Θ

value
interpret: Reg → REG

The idea is now the following: Any action of the system, i.e., the application
of any stimulus, may be an action in accordance with the rules, or it may not.
Rules therefore express whether stimuli are valid or not in the current con-
figuration. And regulations therefore express whether they should be applied,
and, if so, with what effort.

More specifically, there is usually, in any current system configuration,
given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such
pair. Let sy sti be any possible stimulus. And let θ be the current config-
uration. Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ violate the
rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the mean-
ing of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning
of the regulation, sy reg, must be applied, act reg(θ), to remedy the situation.

axiom
∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end

It may be that the regulation predicate fails to detect applicability of regula-
tions actions. That is, the interpretation of a rule differs, in that respect, from
the interpretation of a regulation. Such is life in the domain, i.e., in actual
reality

On Modelling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities,
including those grouped into “the state”, functions, events, and behaviours.
Thus the full spectrum of modelling techniques and notations may be needed.
Since rules usually express properties one often uses some combination of
axioms and well-formedness predicates. Properties sometimes include tem-
porality and hence temporal notations (like Duration Calculus [301, 302] or
Temporal Logic of Actions [217,218,232,233]) are used. And since regulations
usually express state (restoration) changes one often uses state changing no-
tations (such as found in B [1,131], RSL [166], VDM-SL [111,112,157,158],
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and Z [186,187,283,284,297]). In some cases it may be relevant to model using
some constraint satisfaction notation [5] or some Fuzzy Logic notations [264].

A.4.5 Scripts and Licensing Languages

• By a domain script we shall understand the structured, almost, if not outright,
formally expressed, wording of a rule or a regulation that has legally binding
power, that is, which may be contested in a court of law.

Example A.19. A Casually Described Bank Script: We deviate, momen-
tarily, from our line of railway examples, to exemplify one from banking. Our
formulation amounts to just a (casual) rough sketch. It is followed by a series of
four large examples. Each of these elaborate on the theme of (bank) scripts.

The problem area is that of how repayments of mortgage loans are to be calcu-
lated. At any one time a mortgage loan has a balance, a most recent previous date
of repayment, an interest rate and a handling fee. When a repayment occurs, then
the following calculations shall take place: (i) the interest on the balance of the
loan since the most recent repayment, (ii) the handling fee, normally considered
fixed, (iii) the effective repayment — being the difference between the repayment
and the sum of the interest and the handling fee — and the new balance, being
the difference between the old balance and the effective repayment.

We assume repayments to occur from a designated account, say a de-
mand/deposit account. We assume that bank to have designated fee and interest
income accounts.

(i) The interest is subtracted from the mortgage holder’s demand/deposit
account and added to the bank’s interest (income) account. (ii) The handling
fee is subtracted from the mortgage holder’s demand/deposit account and added
to the bank’s fee (income) account. (iii) The effective repayment is subtracted
from the mortgage holder’s demand/deposit account and also from the mortgage
balance. Finally, one must also describe deviations such as overdue repayments,
too large, or too small repayments, and so on. •

Example A.20. A Formally Described Bank Script:
First we must informally and formally define the bank state:
There are clients (c:C), account numbers (a:A), mortgage numbers (m:M),

account yields (ay:AY) and mortgage interest rates (mi:MI). The bank registers,
by client, all accounts (ρ:A Register) and all mortgages (µ:M Register). To each
account number there is a balance (α:Accounts). To each mortgage number there
is a loan (ℓ:Loans). To each loan is attached the last date that interest was paid
on the loan.

type
C, A, M
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
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Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Then we must define well-formedness of the bank state:

value
ay:AY, mi:MI

wf Bank: Bank → Bool
wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ

axiom
ai<mi

Operations on banks are denoted by the commands of the bank script language.
First the syntax:

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

And then the semantics:

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,d′−d),

ℓ′ = ℓ † [ m 7→ℓ(m)−(p−i) ]
α′ = α † [ a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ m ∈ µ(c)
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A.4 Domain Facets 147

•

The idea about scripts is that they can somehow be objectively enforced:
that they can be precisely understood and consistently carried out by all
stakeholders, eventually leading to computerisation. But they are, at all times,
part of the domain.

Licensing Languages

A special form of scripts are increasingly appearing in some domains, notably
the domain of electronic, or digital media, where these licenses express that the
licensor permits the licensee to render (i.e., play) works of proprietary nature
CD ROM-lile music, DVD-like movies, ec. while obligating the licensee to pay
the licensor on behalf of the owners of these, usually artistic works. We refer
to [7, 123,136,172,254,271,299] for papers and reports on license languages.

On Modelling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions for
program executions). Hence the full variety of techniques and notations for
modelling programming (or specification) languages apply [146,173,263,272,
291, 295]. Chapters 6–9 of Vol. 2 of [87–89] cover pragmatics, semantics and
syntax techniques for defining languages.

A.4.6 Human Behaviour

• By domain human behaviour we shall understand any of a quality spectrum
of carrying out assigned work: from (i) careful, diligent and accurate, via (ii)
sloppy dispatch, and (iii) delinquent work, to (iv) outright criminal pursuit.

Example A.21. Banking — or Programming — Staff Behaviour: Let
us assume a bank clerk, “in ye olde” days, when calculating, say mortgage repay-
ments (cf. Example A.19).

We would characterise such a clerk as being diligent, etc., if that person
carefully follows the mortgage calculation rules, and checks and double-checks
that calculations “tally up”, or lets others do so. We would characterise a clerk
as being sloppy if that person occasionally forgets the checks alluded to above.
We would characterise a clerk as being delinquent if that person systematically
forgets these checks. And we would call such a person a criminal if that person
intentionally miscalculates in such a way that the bank (and/or the mortgage
client) is cheated out of funds which, instead, may be diverted to the cheater.

Let us, instead of a bank clerk, assume a software programmer charged with
implementing an automatic routine for effecting mortgage repayments (cf. Exam-
ple A.20).
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We would characterise the programmer as being diligent if that person care-
fully follows the mortgage calculation rules, and throughout the development
verifies and tests that the calculations are correct with respect to the rules. We
would characterise the programmer as being sloppy if that person forgets cer-
tain checks and tests when otherwise correcting the computing program under
development. We would characterise the programmer as being delinquent if that
person systematically forgets these checks and tests. And we would characterise
the programmer as being a criminal if that person intentionally provides a pro-
gram which miscalculates the mortgage interest, etc., in such a way that the bank
(and/or the mortgage client) is cheated out of funds. •

Example A.22. A Human Behaviour Mortgage Calculation:
Example A.20 gave a semantics to the mortgage calculation request (i.e., com-

mand) as would a diligent bank clerk be expected to perform it. To express, that
is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could
behave we must modify the int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in
if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/

then
let i = f1(interest(mi,b,d′−d)),

ℓ′ = ℓ † [ m 7→f2(ℓ(m)−(p−i)) ]
α′ = α † [ a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),

a“staff” 7→f“staff”(α(ai)+i) ] in
((ρ,α′,µ,ℓ′),ok) end

else
((ρ,α′,µ,ℓ),nok)

end end
pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P

•

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example A.22
are deliberately left undefined. They are being defined by the “staffer” when
performing (incl., programming) the mortgage calculation routine.

The point of Example A.22 is that one must first define the mortgage cal-
culation script precisely as one would like to see the diligent staff (program-
mer) to perform (incl., correctly program) it before one can “pinpoint” all the
places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4
and f“staff” designate those places.

The point of Example A.22 is also that we must first domain-define, “to the
best of our ability” all the places where human behaviour may play other than
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A.4 Domain Facets 149

a desirable rôle. If we cannot, then we cannot claim that some requirements
aim at countering undesirable human behaviour.

A Meta-characterisation of Human Behaviour

Commensurate with the above, humans interpret rules and regulations differ-
ently, and not always “consistently” — in the sense of repeatedly applying
the same interpretations.

Our final specification pattern is therefore:

type

Action = Θ
∼
→ Θ-infset

value
hum int: Rule → Θ → RUL-infset
action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post
θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rules. A human, in carrying out an action, interprets
applicable rules and chooses one which that person believes suits some (pro-
fessional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies
the intent, i.e., yields true on the pre/post-configuration pair, when the ac-
tion is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate
regulation is applied or not

The above-stated axioms express how it is in the domain, not how we
would like it to be. For that we have to establish requirements.

On Modelling Human Behaviour

To model human behaviour is, “initially”, much like modelling management
and organsiation. But only ‘initially’. The most significant human behaviour
modelling aspects is then that of modelling non-determinism and looseness,
even ambiguity. So a specification language which allows specifying non-
determinism and looseness (like CafeOBJ [147,148,161,162] and RSL [166])
is to be preferred.

A.4.7 Completion

Domain acquisition resulted in typically up to thousands of units of domain
descriptions. Domain analysis subsequently also serves to classify which facet
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150 A Domain Engineering

any one of these description units primarily characterise. But some such “com-
partmentalisations” may be difficult, and may be deferred till the step of
“completion”. It may then be, “at the end of the day”, that is, after all of
the above facets have been modelled that some description units are left as
not having been described, not deliberately, but “circumstantially”. It then
behooves the domain engineer to fit these “dangling” description units into
suitable parts of the domain description. This “slotting in” may be simple,
and all is fine. Or it may be difficult. Such difficulty may be a sign that the
chosen model, the chosen description, in its selection of entities, functions,
events and behaviours to model — in choosing these over other possible selec-
tions of phenomena and concepts is not appropriate. Another attempt must be
made. Another selection, another abstraction of entities, functions, etc., may
need be chosen. Usually however, after having chosen the abstractions of the
intrinsic phenomena and concepts, one can start checking whether “dangling”
description units can be fitted in “with ease”.

A.4.8 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs not
one, but several specification languages. No single specification language suf-
fices. It seems highly unlikely and it appears not to be desirable to obtain a sin-
gle, “universal” specification language capable of “equally” elegantly, suitably
abstractly modelling all aspects of a domain. Hence one must conclude that the
full modelling of domains shall deploy several formal notations. The issues are
then the following which combinations of notations to select, and how to make
sure that the combined specification denotes something meaningful. The on-
going series of “Integrating Formal Methods” conferences [6,126,129,171,265]
is a good source for technques, compositions and meaning.

A.5 From Domain Models to Requirements

One rôle for Domain descriptions is to serve as a basis for constructing ,
Requirements prescriptions. The purpose of constructing Requirements pre-
scriptions is to specify properties (not implementation) of a Machine. The
Machine is the hardware (equiment) and the software that together imple-
ments the requirements. The implementation relations is

D,M |= R

The Machine is proven to implement the Requirements in the context of
[assumptions about] the Domain. That is, proofs of correctness of the Machine
wrt. the Requirements often refer to properties of the Domain.
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A.5.1 Domain Requirements

First, in a concrete sense, you copy the domain description and call it a re-
quirements prescriptions. Then that requirements prescription is subjected to
a number of operations: (i) removal (projection away) of all those aspects
not needed in the requiriments; (ii) instantiation of remain aspects to the
specifics of the client’s domain; (iii) making determinate what is unnecessar-
ily or undesirably non-deterministic in the evolving requirements prescription;
(iv) extending it with concepts not feasible in the domain; and (v) fitting these
requirements to those of related domains (say monitoring & control of public
administration procedures). The result is called a domain requirements.

A.5.2 Interface Requirements

From the domain requirements one then constructs the interface require-
ments: First one identifies all phenomena and concepts, entities, functions,
event and behaviours shared with the environment of the machine (hardware
+ software) being requirements specified. Then one requirements prescribe
how each shared phenomenon and concept is being initialised and updated:
entity initialisation and refreshment, function initialisation and refreshment
(interactive monitoring and control of computations), and the physiological
man-machine and machine-machine implements.

A.5.3 Machine Requirements

Finally one deals with machine requirements performance, dependability,
maintainability, portability, etc., where dependability addresses such issues
as availability, accessibility, reliability, safety, security, etc.

A.6 Why Domain Engineering?

A.6.1 Two Reasons for Domain Engineering

We believe that one can identify two almost diametrically opposed reasons for
the pursuit of domain descriptions. One is utilitarian, concrete, commercial
and engineering goal-oriented. It claims that domain engineering will lead to
better software, and to development processes that can be better monitored
and controlled. and the other is science-oriented. It claims that establishing
domain theories is a necessity, that it must be done, whither we develop soft-
ware or not.

We basically take the latter, the science, view, while, of course, noting the
former, the engineering consequences. We will briefly look at these.
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A.6.2 An Engineering Reason for Domain Modelling

In a recent e-mail, in response, undoubtedly to my steadfast, perhaps con-
ceived as stubborn insistence, on domain engineering, Tony Hoare summed
up his reaction to domain engineering as follows, and I quote5:

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any
good software design in the area. They describe possible places to define the
system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be
made in any embedded software design, especially one that is going to be
formally proved.

3. They describe the whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
in any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in depth, in Vol. 3 of my
three volume book [89].

A.6.3 On a Science of Domains

Domain Theories

Although not brought out in this chapter the concept of domain theories must
now be mentioned.

• By a domain theory we shall understand a domain description together with
lemmas, propositions and theorems that can be proved about the description
— and hence can be claimed to hold in the domain.

To create a domain theory the specification language must possess a proof
system. It appears that the essence of possible theorems of — that is, laws
about — domains can be found in laws of physics. For a delightful view of the
law-based nature of physics — and hence possibly also of man-made universes
we refer to Richard Feynmann’s Lectures on Physics [155].

5E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006
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A Scientific Reason for Domain Modelling

So, inasmuch as the above-listed issues of Sect. A.6.2, so aptly expressed in
Tony’s mastery, also of concepts (through his delightful mastery of words), are
of course of utmost engineering importance, it is really, in our mind, the science
issues that are foremost: We must first and foremost understand. There is no
excuse for not trying to first understand. Whether that understanding can
be “translated” into engineering tools and techniques is then another matter.
But then, of course, it is nice that clear and elegant understanding also leads
to better tools and hence better engineering. It usually does.

A.7 Conclusion

A.7.1 Summary

We have introduced the scientific and engineering concept of domain theories
and domain engineering; and we have brought but a mere sample of the prin-
ciples, techniques and tools that can be used in creating domain descriptions.

A.7.2 Grand Challenges of Informatics

To establish a reasonably trustworthy and believable theory of a domain, say
the transportation, or just the railway domain, may take years, possibly 10–
15! Similarly for domains such as the financial service industry, the market
(of consumers and producers, retailers, wholesaler, distribution cum supply
chain), health-care, and so forth.

The current author urges younger scientists to get going! It is about time.
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A.8 Bibliographical Notes

To create domain descriptions, or requirements prescriptions, or software de-
signs, properly, at least such as this author sees it, is a joy to behold. The
beauty of carefully selected and balanced abstractions, their interplay with
other such, the relations between phases, stages and steps, and many more
conceptual constructions make software engineering possibly the most chal-
lenging intellectual pursuit today. For this and more consult [87–89].
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Compositionality:

Ontology and Mereology of Domains

This appendix chapter is the invited paper for the Willem-Paul de Roever
Festschrift [103], July 4, 2008, Kiel, Germany.

Abstract

In this discursive paper we discuss compositionality of (i) simple enti-
ties, (ii) operations, (iii) events and (iv) behaviours. These four con-
cepts, (i)–(iv), together define a concept of entities. We view entities as
“things” characterised by properties. We shall review some such prop-
erties. Mereology, the study of part-whole relations is then applied to
a study of composite entities. We then speculate on compositionality
of simple entities, operations, events and behaviours in the light of
their mereologies. entities. We end the paper with some speculations
on the rôle of Galois connections in the study of compositionality and
domain mereology.

B.1 A Prologue Example

We begin with an example: an informal and formal description of fragments
of a domain of transportation. The purpose of such an example is to attach
this example to our discussion of entities, and to enlarge the example with
further examples to support this discussion of entities, and hence of mereology
and ontology. The formalisation of the example narratives is expressed in the
RAISE Specification Language, RSL [87–89, 97, 165–168] — but could as well
have been expressed in Alloy, ASM, Event B, VDM or Z [1,111,112,131,157,
158,186,187,202,261,262,283,284,297].
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Narrative

(0.) There are links and there are hubs, (1.) Links and hubs have unique
identifiers. (2.) Transport net consists of links and hubs. We can either model
nets as sorts and then observe links and hubs from nets:

type
N, L, H,

value
obs Ls: N → L-set,
obs Hs: N → H-set

or

type
L, H,
N = L-set × H-set

(3.) Links connect exactly two distinct hubs. (4.) Hubs are connected to one or
more distinct links. (5.) From a link one can observe the two unique identifiers
of the hubs to which it is connected. (6.) From a hub one can observe the set
of one or more unique identifiers of the links to which it is connected. (7.)
Observed unique link (hub) identifiers are indeed identifiers of links (hubs) of
the net in which the observation takes place.

Formalisation

type
0.−1. L, LI, H, HI,
2. N = L-set × H-set
axiom
3.−4. ∀ (ls,hs):N • card ls ≥ 1 ∧ card hs ≥ 2
value
1. obs LI: L → LI, obs HI: H → HI,
5. obs HIs: L → HI-set axiom ∀ l:L • card obs HIs(l)=2,
6. obs LIs: H → LI-set axiom ∀ h:H • card obs LIs(l)≥1
axiom
7. ∀ (ls,hs):N •

∀ l:L • l ∈ ls ⇒
∀ hi:HI • hi ∈ obs HIs(l) ⇒ ∃ h:H • hi=obs HI(h)∧h ∈ hs

∧ ∀ h:H • h ∈ hs ⇒
∀ li:LI • li ∈ obs LIs(l) ⇒ ∃ l:L • li=obs LI(k)∧l ∈ ls

Narrative

(8.) There are vehicles (private cars, taxis, buses, trucks). (9.) Vehicles, when
“on the net”, i.e., “in the traffic” (see further on), have positions. Vehicle
positions are (10.) either at a hub, in which case we could speak of the hub
identifier as being a suitable designation of its location, (11.) or along a link,
in which case we could speak of of a quadruple of a (from) hub identifier, a(n
along) link identifier, a real (a fraction) properly between 0 and 1 as desig-
nating a relative displacement “down” the link, and a (to) hub identifier, as
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B.2 Introduction 157

being a suitable designation of its location, (12.) Time is a discrete, dense well-
ordered set of time points and time points are further undefined. (13.) Traffic
can be thought of as a continuous function from time to vehicle positions. We
augment our model of traffic with the net “on which it runs”!

Formalisation

type
8. V
9. VPos == HubPos | LnkPos
10. HubPos = HP(hi:HI)
11. LnkPos = LP(fhi:HI,li:LI,f:Real,thi:HI)
12. Time
13. TRF = (Time → (V →m VPos)) × N

Closing Remarks

We omit treatment here of traffic well-formedness: that time changes and
vehicle movement occurs monotonically; that there are no “ghost” vehicles
(vehicles “disappear” only to “reappear”), that two or more vehicles “one right
after the other” do not “suddenly” change relative positions while continuing
to move in the same direction, etc.

B.2 Introduction

The narrow context of this essay is that of domain engineering: the principles,
techniques and tools for describing domains, as they are, with no consideration
of software, hence also with no consideration of requirements. The example of
Sect. B.1 describes (narrates and formalises) some aspects of a domain.

The broader context of this essay is that of formal software engineering: the
phase, stage and stepwise development of software, starting with Domain de-
scriptions, evolving into Requirements prescriptions and ending with Software
design in such a way that D,S |= R, that is: software can be proven correct
with respect to requirements with the proofs and the correctness relying on
the domain as described.

B.2.1 Domain Engineering

The Domain Engineering Dogma

Before software be designed, we must understand its requirements. Before
requirements can be expressed, we must understand the application domain.
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158 B Compositionality: Ontology and Mereology of Domains

The Software Development Triptych

Thus, we must first describe the domain as it is. Then we can prescribe the
requirements as we would like to see them implemented in software. First then
can we specify the design of that software.

Domain Descriptions

A domain description specifies the domain as it is. (The example traffic thus
allows vehicles to crash.) A domain description does not hint at requirements
let alone software to be designed. A domain description specifies observable
domain phenomena and concepts derived from these.

Example: a vehicle is a phenomenon; a vehicle position is also a phenomenon,
but the way in which we suggest to model a position is a concept; similarly
for traffic

A domain description does not describe human sentiments (Example: the
bus ride is beautiful ), opinions and thoughts (Example: the bus ride is a bit
too expensive ), knowledge and belief (Example: I know of more beautiful
rides and I believe there are cheaper bus fares ), promise and commitment
(Example: I promise to take you on a more beautiful ride one day ) or other
such sentential, modal structures.

A domain description primarily specifies semantic entities of the domain
intrinsics (Example: the net, links and hubs are semantics quantities ), se-
mantic entities of support technologies already “in” the domain, semantic
entities of management and organisation domain entities, syntactic and se-
mantic of domain rules and regulations, syntactic and semantic of domain
scripts (Example: bus time tables respectively the bus traffic ) and semantic
aspects of human domain behaviour.

The domain description, to us, is (best) expressed when both informally
narrated and formally specified. A problem, therefore, is: can we formalise
all the observable phenomena and concepts derived from these? If they are
observable or derived, we should be able to formalise. But computing science
may not have developed all the necessary formal description tools. We shall
comment on that problem as we go along.

B.2.2 Compositionality

We shall view compositionality “in isolation”! That is, not as in the conven-
tional literature where the principle of compositionality is the principle
that the meaning of a complex expression is determined by the meanings of its
constituent expressions and the rules used to combine them. We shall look at
not only composite simple entities but also composite operations, events and
behaviours in isolation from their meaning but shall then apply the principle
of compositionality such that the meaning of a composite operation [event,
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B.2 Introduction 159

behaviour] is determined by the meanings of its constituent operations [event,
behaviours] and the rules used for combining these. We shall, in this paper
only go halfway towards this goal: we look only at possible rules used to
combine simple entities, functions, events and behaviours.

For simple entities we can say the following about compositionality. A key
idea seems to be that compositionality requires the existence of a homomor-
phism between the entities of a universe A and the entities in some other
universe B.

Let us think of the entities of one system, A, as a set, U , upon which a num-
ber of operations are defined. This gives us an algebra A = (U ,Fν)ν∈Γ where
U is the set of (simple and complex) entities and every Fν is an operation on A
with a fixed arity. The algebra A is interpreted through a meaning-assignment
M; a function from U to V , the set of available meanings for the entities of U .
Now consider Fν ; a k-ary syntactic operation on A. M is Fν-compositional
just in case there is a k-ary function G on V such that whenever Fν(u1, . . . , uk)
is defined

Fν(u1, . . . , uk)) = G(M(u1), . . . ,M(uk).

In denotational semantics we take this homomorphism for granted, while ap-
plying to, as we shall call them, syntactic terms of entities. We shall, in this
paper, speculate on compositionality of non-simple entities. That is, composi-
tionality of operations, events and behaviours; that is, of interpretations over
non-simple entities (as well as over simple entities).

B.2.3 Ontology

By an ontology we shall understand an explicit, formal specification of a shared
conceptualisation1.

We shall claim that domain engineering, as treated in [87,90,94], amounts
to principles, techniques and tools for formal specification of shared concep-
tualisations. The conceptualisation is of a domain, typically a business, an
industry or a service domain.

One thing is to describe a domain, that is, to present an ontology for
that domain. Another thing is for the description to be anchored around a
description ontology: a set of principles, techniques and tools for structuring
descriptions. In a sense we could refer to this latter as a meta-ontology, but
we shall avoid the prefix ‘meta-’ and instead understand it so. The conceptu-
alisation is of the domain of software engineering methodology, especially of
how to describe domains.

B.2.4 Mereology

Mereology is the theory of parthood relations: of the relations of part to whole
and the relations of part to part within a whole.

1http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
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160 B Compositionality: Ontology and Mereology of Domains

The issue is not simply whether an entity is a proper part, pp, of an-
other part, pω (for example, “the whole”), but also whether a part, pι,
which is a proper part of pp can also be a part of another part, pξ which
is not a part of pp, etcetera. To straighten out such issues, axiom systems
for mereology (part/whole relations) have been proposed [135, 140, 220]. See
Appendix B.12.1.

The term mereology seems to have been first used in the sense we are using
it by the Polish mathematical logician Stanis law Leśniewski [225,285].

The concept of Calculus of Individuals [140, 221, Leonard & Goodman
(1940) and Clarke (1981)] is related to that of Mereology. See Appendix B.12.2.

We shall return to the issue of mereology much more in this paper. In fact,
we shall outline “precisely” what our entity mereologies are.

B.2.5 Paper Outline

The paper is structured as follows: after Sect. B.2’s brief characteristics
of domain engineering, compositionality, ontology and mereology, Sect. B.3
overviews what we shall call an ontological aspect of description structures,
namely that of entities (having properties). Sections B.4–B.7 will then study
(i) simple, (ii) operation, (iii) event and (iv) behaviour entities in more detail,
both atomic and composite. For the composite entities we shall then specu-
late on their mereology. Section B.8 concludes our study of some mereological
aspects of composite entities by relating these to definitions and axioms of
proposed axiom systems for mereology, cf. Appendix B.12. Section B.9 takes
a brief look at rôles that the concept of Galois Connections may have in
connection with composite entities.

B.3 An Ontology Aspect of Description Structures

This section provides a brief summary of Sects. B.4–B.7.
The choice of analysing a concept of compositionality from the point of

view of simple entities, operations, events and behaviours reflects an ontologi-
cal choice, that is a choice of how we wish to structure our study of conceptions
of reality and the nature of being.

We shall take the view that an ontology for the domain of descriptions
evolves around the concepts of entities inseparably from their properties. More
concretely, “our” ontology consists of entities of the four kinds of specification
types: simple entities, operations, events and behaviours. One set of properties
is that of an entity being ‘simple’, being ‘an operation’ (or function), being
‘an event’ or being ‘a behaviour’. We shall later introduce further categories
of entity properties.
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B.3 An Ontology Aspect of Description Structures 161

B.3.1 Simple Entities2

In a rather concrete, “mechanistic” sense, we understand simple entities as
follows: simple entities have properties which we model as types and values.
When a simple entity is concretely represented, “inside” a computer, it is
usually implemented in the form of data.

By a state, σ:Σ, we shall understand a designated set of entities.
Entities are the target of operations: function being applied to entities and

resulting in entities.
In Sect. B.4 we shall develop this view further.

Examples: The nets, links, hubs, vehicles and vehicle positions of our guiding
example are simple entities

Simple domain entities are either atomic or composite. Composite entities are
here thought of (i.e., modelled as) finite or infinite sets of (simple) entities:
{e1,e2,. . . ,en}, finite Cartesians (i.e., groupings [records, structures] of (sim-
ple) entities): (e1,e2,. . . ,en), finite or infinite lists (i.e., ordered sequences of
(simple) entities): 〈e1,e2,. . . ,en〉, maps (i.e., finite associations of (simple) enti-
ties to (simple) entities: [ed1

7→er1
,ed2

7→er2
,. . . ,edn 7→ern ], and functions (from

(simple) entities to (simple) entities): λv : E(v).3

B.3.2 Operations

To us, an operation (synonym for function) is something which when applied
to an entity or an attribute4 yields an entity or an attribute.

If an operation op argument and the resulting entity qualify as states
(σ:Σ), then we have a state-changing action: op: [. . .×]Σ→Σ.

If an operation argument entity qualifies as a state and if the resulting
entity can be thought of as a pair of which (exactly) one element qualifies as
a state, then we have a value yielding action with a, perhaps, beneficial side
effect: op: [. . .×]Σ→(Σ×VAL).

If the operation argument does not qualify as a state then we have a value
yielding function with no side effect on the state.

Since entities have types we can talk of the signature of an operation as
consisting of the name of the operation, the structure of types of its argument
entities, and the type of the resulting entities. We gave two such signatures (for
operation op) above. (The [. . .×] indicate that there could be other arguments
than the explicitly named state entity Σ.)

2The term ‘simple entity’ is chosen in contrast to the (‘complex’) function, event
and behaviour entities. We shall otherwise not use the term ‘complex’ as it has no
relation to composition, but may be confused with it.

3Note: The decorated es in set, Cartesian, list and map enumerations stand for
actual entities whereas the v in λv : E(v) is a syntactic variable and E(v) stand for
a syntactic expression with a free variable v.

4See Sect. B.4.1 for distinction between entity and attribute
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162 B Compositionality: Ontology and Mereology of Domains

Example: The unique identifier observer functions of our guiding example
are operations

They apply to entities and yields entities or attributes: obs Ls:N→L-set and
obs Hs:N→H-set yield entities and obs LI:L→LI and obs HI:H→HI yield at-
tributes.

“First Class” Entities

Before closing this section, Sect. B.3.2, we shall “lift” operations, hence actions
and functions to be first class entities!

B.3.3 Events

In [216, Lamport] events are the same as executed atomic actions. We shall not
really argue with that assumption. In [216, Lamport] events are of interest only
in connection with the concept of processes (for which we shall use the term
‘behaviours’). We shall certainly follow that assumption. We wish to reserve
the term ‘event’ for such actions which (i) are either somehow shared between
two or more behaviours, (ii) or ‘occur” in just one behaviour. We assume
an “external”, further undefined behaviour. For both of these two cases we
need a way of “labelling” events. We do so by labelling, βℓi, behaviours, βi,
that is, ascribing names to behaviours. Let the eχternal behaviour have a
distinguished, “own” label (e.g., βχℓ). Now we can label an event by the set
of labels of the processes “in” which the event occur. That is, with either
two or more labels, or just one. When the external behaviour label βχℓ is
in the set then it shall mean that the event either “originates” outside the
behaviours of the other labels, or is “directed” at all those behaviours. We
do not, however, wish to impose any direction! Here we wish to remind the
reader that “our” behaviours take place “in the domain”, that is, they are
not necessarily those of computing processes, unless, of course, the domain
is, or (“strongly”) includes that of computing; and “in the domain” we can
always speak “globally”, that is: we may postulate properties that may not
be computable or even precisely observable, that is: two time stamps may be
different even though they are of two actions or events that actually did or do
take place simultaneously.

Thus: we are not bothered by clocks, that is, we do not enforce a global
clock; we do not have to sort out ordering problems of events, but can leave
that to a later analysis of the described domain, recommendably along the
lines of [216, Lamport].

Time and Time Stamps

Time is some dense set of time points.
A time stamp is just a time designator, t. Two time stamps are consecutive

if they differ by some infinitesimal time difference, tδ. We shall assume the
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B.3 An Ontology Aspect of Description Structures 163

simplifying notion of a “global” clock. For the kind of distributed systems
that are treated in [216, Lamport] this may not be acceptable, but for a any
actual domain that is not subject to Einsteinian relativity, and most are, it
will be OK. Once we get to implementation in terms of actual systems possibly
governed by erroneously set clocks one shall have to apply for example [216,
Lamport]’s treatment.

Definition: Event

To us, an event, E : {(βℓ1, σ1, P1, σ′
1, τ1), (βℓ2, σ2, P2, σ′

2, τ2), . . . , (βℓn, σn,
Pn, σ′

n, τn)} involves a set of behaviours, βi, and is expressed in terms of a
set of event designators, quintuplets containing:

⋆1 a label βℓi,
⋆2 a before state σi;
⋆3 a predicate Pi;
⋆4 an after state σ′

i;
◦ such that Pi(σi, σ

′
i)

◦ but where it may be the case that σi = σ′
i;

⋆5 and a time stamp τi
◦ which is either a time ti
◦ or a time interval [t′i, t

′′
i ]

∗ such that t′′i − t′i = τδi > 0
∗ but where τδi is otherwise considered “small”

An event, E, may change one or more behaviour states, selectively, or may
not — in which latter case σi = σ′

i for some i.
Thus we do not consider the time(s) when expressing conditions Pi.

Definition: Same Event

We assume two or more distinct behaviours β1, β2, . . . , βn. Two or more events
E1i , E2i and Eni are said to reflect, i.e., to be the same event iff their models,
as suggested above, are ‘identical’ modulo predicates5 and time stamps, iff
these time stamps differ at most “insignificantly”, a decision made by the
domain describer6, and iff this model involves the label sets βℓ1, βℓ2, . . . , βℓn
for behaviours β1, β2, . . . , βn

This means that any one event which is assumed to be the same and thus
to occur more-or-less simultaneously in several behaviours is “identically”
recorded (modulo predicates and time stamps) in those behaviours.

5The predicates can all “temporarily”, for purposes of “identicality”, be set to
true.

6The time stamps can all “temporarily”, for purposes of “identicality”, be set to
the smallest time interval within which all time stamps of the event are included.
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164 B Compositionality: Ontology and Mereology of Domains

We can accept this definition since it is the domain describer who de-
cides which events to model and since it is anyway only a postulate: we are
“observing the domain”!

Definition: Event Designator:

The event E : {(βℓ1, σ1, P1, σ′
1, τ1), (βℓ2, σ2, P2, σ′

2, τ2), . . . , (βℓn, σn, Pn,
σ′

n, τn)} consists of n event designators (βℓi, σi, Pi, σ
′
i, τi), that is: an event

designator is that kind of quintuplet.

Example: Withdrawal of funds from an account (i.e., a certain action) leads
to either of two events: either the remaining balance is above or equal to the
credit limit,or it is not

The withdrawal effects a state change (into state σ′), but “below credit limit”
event does not cause a further state change (that is: σ = σ′). In the latter
case that event may trigger a corrective action but the ensuing state change
(from some (possibly later state) σ′′ to, say, σ′′′, that is, σ′′′ is usually not a
“next state” after σ′).

Example: A national (or federal) bank changes its interest rate.This is an
action by the behaviour of a national (or federal) bank, but is seen as an event
by (the behaviour of) a(ny) local bank, and may cause such a bank to change
(i.e., an action) its own interest rate

Example: A local bank goes bankrupt at which time a lot of bank clients
loose a lot of their money

Some events are explicitly willed, and are “un-interesting”. Other events are
“surprising”, that is, are not willed, and are thus “interesting”. Being inter-
esting or not is a pragmatic decision by the domain describer.

“First Class” Entities

Before closing this section, Sect. B.3.3, we shall “lift” events to be first class
entities !

B.3.4 Behaviours

A simple, sequential behaviour, β, is a possibly infinite, possibly empty se-
quence of actions and events.

Example: The movement of a single vehicle between two time points forms
a simple, sequential behaviour

We shall later construct composite behaviours from simple behaviours. In
essence such composite behaviours is “just” a set of simple behaviours. In
such a composite behaviour one can then speak of “kinds” of consecutive

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
B.3 An Ontology Aspect of Description Structures 165

or concurrent behaviours. Some concurrent behaviours can be analysed into
communicating, joined, forked or “general” behaviours such that any one con-
current behaviour may exhibit two or more of these ‘kinds’.

Section B.7.3 presents definitions of composite behaviours.

“First Class” Entities

Before closing this section, Sect. B.3.4, we shall “lift” behaviours to be first
class entities!

B.3.5 First-class Entities

Operations are considered designators of actions. That is, they are action
descriptions. We do not, in this paper, consider forms of descriptions of events
(labels) and behaviours. In that sense, of not considering, this section is not
“completely” symmetrical in its treatment of operations, actions, events and
behaviours as first-class entities. Be that as it may.

Operations as Entities

Operations may be (parameterised by being) applicable to operation entities
— and we then say that the operations are higher-order operations: Sorting
a set of rail units according to either length or altitude implies one sorting
operation with either a select rail unit length or a select altitude parameter.
(The ‘select’ is an operation.)

Actions as Entities

Similarly operations may be (parameterised by being) applicable to actions:
Let an action be the invocation of the parameterised sorting function — cf.
above. Our operation may be that of observing storage performance. There
are two sorting functions: one according to rail unit length, another according
to rail unit altitude. We may now be able, given the action parameter, to
observe, for example the execution time!

Events as Entities

Operations may be (parameterised by being) applicable to a set of event
entities: Recall that events are dynamic, instantaneous ‘quantities’. A ‘set of
event entities’ as a parameter can be such a quantity. One could then inquire
as to which one or more events occurred first or last, or, if they had a time
duration, which took the longest to occur! This general purpose event handler
may then be further parameterised by respective rail or air traffic entities!
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166 B Compositionality: Ontology and Mereology of Domains

Behaviours as Entities

Finally operations may be (parameterised by being) applicable to behaviours.
We may wish to monitor and/or control train traffic. So the monitoring &
control operation is to be real-time parameterised by train traffics. Similar for
air traffic, automobile performance, etc.

• • •

We are not saying that a programming language must provide for the above
structures. We are saying that, in a domain, as it is, we can “speak of” these
parameterisations. Therefore we conclude that actions, events and behaviours
— that these dynamic entities which occur in “real-time” — are entities.
Whether we can formalise this “speaking of” is another matter.

B.3.6 The Ontology: Entities and Properties

On the background of the above we can now summarise our ontology: it con-
sists of (“first class”) entities inseparable from their properties. We hinted
at properties, in a concrete sense above: as something to which we can as-
cribe a name, a type and a value. In contrast to common practice in treatises
on ontology [160, 170, 222, 231, 287], we “fix” our property system at a con-
crete modelling level around the value types of atomic simple entities (num-
bers, Booleans, characters, etc.) and composite simple entities (sets, Carte-
sians, lists, maps and functions); and at an abstract, orthogonal descriptional
level, following Jackson [206], static and inert, active (autonomous, biddable,
programmable) and reactive dynamic types; continuous, discrete and chaotic
types; tangible and intangible types; one-, two-, etc., n-dimensional types; etc.

Ontologically we could claim that an entity exists qua its properties; and
the only entities that we are interested in are those that can be formalised
around such properties as have been mentioned above.

B.4 Simple Atomic and Composite Entities

Entities are either atomic or composite. The decision as to which entities are
considered what is a decision taken sôlely by the describer. The decision is
based on the choice of abstraction level being made.

B.4.1 Simple Attributes — Types and Values

With any entity whether atomic or composite, and then also with its sub-
entities, etcetera, one can associate one or more simple attributes.

• By a simple attribute we understand a pair of a designated type and a
named value.
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B.4 Simple Atomic and Composite Entities 167

Attributes are not entities: they merely reflect some of the properties of an
entity. Usually we associate a name with an entity. Such an association is
purely a pragmatic matter, that is, not a syntactic and not a semantic issue.

B.4.2 Atomic Entities

• By an atomic entity we intuitively understand a simple attributes entity which
‘cannot be taken apart’ (into other, the sub-entities).

Example: We illustrate attributes of an atomic entity.

Atomic Entity: Bus Ticket

Type Value

Bus Line Greyhound
From, Departure Time San Francisco, Calif.: 1:30 pm
To, Arrival Time Reno, Nevada: 6:40 pm
Price US $ 52.00

‘Removing’ attributes from an entity destroys its ‘entity-hood’, that is, at-
tributes are an essential part of an entity.

B.4.3 Composite Entities

• By a composite entity we intuitively understand an entity (i) which “can be
taken apart” into sub-entities, (ii) where the composition of these is described
by its mereology, and (iii) which further possess one or more attributes.

Example: We “diagram” the relations between sub-entities, mereology and
attributes of transport nets.

Composite Entity: Transport Net

Sub-entities: Links
Hubs

Mereology: “set” of one or more ℓ(inks) and
“set” of two or more h(hub’s)

such that each ℓ(ink) is delimited by two h(cub’s)
and such that each h(ub) connects one or more ℓ(inks)
Attributes

Types: Values:
Multimodal Rail, Roads, Sea Lane, Air Corridor
Transport Net of Denmark
Year Surveyed 2008
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168 B Compositionality: Ontology and Mereology of Domains

B.4.4 Discussion

Attributes

Domain entity attributes whether of atomic entities or of composite entities
are modelled as a set of pairs of distinctly named types and values. It may
be that such entity attributes, some or all, could be modelled differently,
for example as a map from type names to values, or as a list of pairs of
distinctly named types and values, or as a Cartesian of values, where the
position determines the type name — somehow known “elsewhere” in the
formalisation, etcetera

But it really makes no difference as remarked earlier: one cannot really
remove any one of these attributes from an entity.

Compositions

We formally model composite entities in terms of its immediate sub-entities,
and we model these as observable, usually as sets, immediately from the entity
(cf. obs Hs, obs Ls, N). In the example composite entity (nets) above the net
can be considered a graph, and graphs, g:G, are, in Graph Theory typically
modelled, for example, as

type
V
G = (V × V)-set

where vertexes (v:V ) are thought of a names or references.
We shall comment on such a standard graph-theoretic model in relation

to a domain model which somehow expresses a graph: First it has abstracted
away all there may otherwise be to say about what the graph actually is an
abstraction of. In such models we model edges in terms of pairs of vertexes.
That is: edges do not have separate “existence” — as have segments. In other
words, since we can phenomenologically point to any junction and a segment
we must model them separately, and then we must describe the mereology of
nets separate from the description of the parts.

B.5 Atomic and Composite Operations

Entities are either atomic or composite. The decision as to which operations
are considered what is a decision sôlely taken by the describer.
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B.5 Atomic and Composite Operations 169

B.5.1 Signatures — Names and Types

With any operation whether atomic or composite, and then also with its sub-
operations, etcetera, one can associate a signature which we represent as a
triple: the name of the operation, the arguments to which the operation is
applicable, and the result, whether atomic or composite.

• By an argument and a result we understand the same as an attribute or an
entity.

B.5.2 Atomic Operations

We understand operations as functions in the sense of recursive function the-
ory [230]7 but extended with postulated primitive observer (obs ...), con-
structor (mk...) and selector (s ...) functions, non-determinacy8 and non-
termination (i.e., the result of non-termination is a well-defined chaotic
value).

• By an atomic operation we intuitively understand an operation which ‘cannot
be expressed in terms of other (phenomenological or conceptual), primitive
recursive functions.

Example Atomic Operations

The operation of obtaining the length of a segment, obs Lgth, is an atomic
operation. The operation of calculating the sum, sum, of two segment lengths
is an atomic operation.

type
Lgth

value
obs Lgth: L → Lgth,
sum: Lgth × Lgth → Lgth

B.5.3 Composite Operations

• By a composite operation we intuitively understand an operation which can
best be expressed in terms of other (phenomenological or conceptual) primitive
recursive functions, whether atomic or themselves composite.

7See: http://www-formal.stanford.edu/jmc/basis1/basis1.html
8Hinted at in [230] as ambiguous functions, cf. Footnote 7.
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170 B Compositionality: Ontology and Mereology of Domains

Example Composite Operations

Finding the length of a route, R Lgth, where a route is a sequence of segments
joined together at junctions is a composite operation — its sub-operations
are the operation of observing a segment length from a segments, obs length,
and the recursive invocation of route length. Finding the total length of all
segments of a net is likewise a composite operation.

value
length: L∗ → Lgth,
zero lgth:Lgth,
length(〈〉) ≡ zero lgth,
length(ℓ̂ℓ′) ≡ sum(ℓ,ℓ′)

The Composition Homomorphism

Usually composite operations are applied to composite entities. In general, we
often find that the functions applied to composite entities satisfy the following
homomorphism:

G(e1, e2, . . . , em) = H(G(e1),G(e2), . . . ,G(en))

where G and H are suitable functions.

• • •

Example: Consider the Factorial and the List Reversal functions. This ex-
ample is inspired by [228]. Let φ be the sentence:

∃F • ((F (a) = b) ∧ ∀x • (p(x) ⊃ (F (x) = H(x, F (f(x))))))

which reads: there exists a mathematical function F such that, •, the following
holds, namely: F (a) = b (where a and b are not known), and, ∧, for every
(i.e., all) x, it is the case, •, that if p(x) is true, then F (x) = H(x, F (f(x)))
is true.

There are (at least) two possible (model-theoretic) interpretations of φ. In
the first interpretation, we first establish the type Ω of natural numbers and
operations on these, and then the specific context ρ:

[ F 7→ fact, a 7→ 1, b 7→ 1, f 7→ λ n.n−1,
H 7→ λ m.λ n.m+n,
p 7→ λ m.m>0 ]

We find that φ is true for the factorial function, fact. In other words, φ char-
acterises properties of that function.

In the second interpretation we first establish the type Ω of lists and
operations on these: and then the specific context ρ:
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B.6 Atomic and Composite Events 171

[ F 7→ rev, a 7→ 〈〉, b 7→ 〈〉, f 7→ tl,
H 7→ λℓ1.λℓ2.ℓ1̂〈hd ℓ1〉,
p 7→ λℓ.ℓ 6=〈〉 ]

And we find that φ is true for the list reversal function, rev, as well. In other
words, φ characterises properties of that function, and the two Hs express a
mereological nature of composition

B.6 Atomic and Composite Events

Usually events are considered atomic. But for the sake of argument — that
is, as a question of scientific inquiry, of the kind: why not investigate, seek-
ing “orthogonality” throughout, now that it makes sense to consider atomic
and composite entities and operations — we shall explore the possibility of
considering composite events.

Let us first recall that we model an event by: E : {(βℓ1, σ1, P1, σ
′
1, τ1),

(βℓ2, σ2, P2, σ
′
2, τ2), . . . , (βℓn, σn, Pn, σ

′
n, τn)}, where E is just a convenient

name for us to refer to the event, βℓi is the label of a behaviour βi, σi and σ′
i

are (‘before event’, respectively ‘after event’) states (of behaviour βi), Pi is a
predicate which characterises the event as seen by behaviour βi, and τi is a
time, ti, or a time interval, [tib

,tie ], time stamp.

B.6.1 Atomic Events

Examples: (i) E1: a vehicle “drives off” a net link at high velocity; (ii) E2:
a link “breaks down”: (ii.a) E21

: a bridge collapses, or (ii.b) E22
: a mud slide

covers the link

That is E2 is due to either E21
or E22

.

One can discuss whether these examples really can be considered atomic:
(ii.a) the bridge may have collapsed due to excess load and thus the moment
at which the load exceeded the strength limit could be considered an event
causing the bridge collapse; (ii.b) the mud slide may have been caused by
excessive rain due to rainstorm gutters exceeding their capacity and thus the
moment at which capacity was exceeded could be considered an event causing
the mud slide.

We take the view that it is the decision of the domain describer to “fix” the
abstraction level and thus decide whether the above are atomic of composite
events.

In general we could view an event, such as summarised above, which in-
volves two or more distinct behaviours as a composite event. We shall take
that view.
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172 B Compositionality: Ontology and Mereology of Domains

B.6.2 Definitions: Atomic and Composite Events

Definition: Atomic Event: An atomic event is either a single [atomic] inter-
nal event: {(βℓi, σi, Pi, σ

′
i, τi)}, that is, consists of just one event designator,

or is a single [atomic] external event, that is, is a pair event designators where
one of these involves the eχternal behaviour: {(βχℓ, σnil, true, σnil, τχ), (βℓi,
σi, Pi, σ

′
i, τi)}, that is, consists of two event designators, an external and an

internal

Definition: Composite Event: A composite event is an event which con-
sists of two or more internal “identical” event designators, that is, event des-
ignators from two or more simple, non-eχternal behaviours, and possibly also
an event designator from an eχternal behaviour “identical” to these internal
event designators

B.6.3 Composite Events

Examples: (i) two or more cars crash and (ii) a bridge collapse causes one
or more cars or bicyclists and people to plunge into the abyss

Synchronising Events

Events in two or more simple behaviours are said to be synchronising iff they
are identical.

Example: Two cars crashing means that the surfaces of the crash is a channel
on which they are synchronising and that the messages being exchanged are
“you have crashed with me”

Sub-Events

A composite event defines one or more sub-events.

Definition Sub-event: An event Es:eds′, is a sub-event of another event
E:eds, iff eds′ ⊂ eds, that is the set eds′ of event designators of Es is a proper
subset eds of the event designators of E

Sequential Events

One way in which a composite event is structured can be as a “sequence” of
“follow-on” sub-events. One sub-event: Es12

: {(βℓ1, σ1, P1, σ′
1, τ1), (βℓ2, σ2,

P2, σ′
2, τ2)}, for example, “leads on” to another sub-event: Es23

: {(βℓ2, σ′′
2 ,

P ′
2, σ′′′

2 , τ ′2), (βℓ3, σ3, P3, σ′
3, τ3)}, etcetera, “leads on” to a final event: Esmn :

{(βℓm, σ′′
m, Pm, σ′′′

m, τm), (βℓn, σn, Pn, σ′
n, τn)}. The “leads on” relation

should appear obvious from the above expressions.
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B.6 Atomic and Composite Events 173

Example: The multiple-car crash in which the cars crash, “immediately” one
after the other, as in a accordion movement

(This is, of course, an idealised assumption.)

Embedded Events

Another way in which a composite event is structured is as an “iteratively”
(or finite “recursively”) embedded “repetition” of (albeit distinct) sub-events.
Here we assume that the τs stand for time intervals and that τs′ ⊑ τs it
means that the time interval τs′ is embedded with τs, that is, let τs = [tb, te]
and τs′ = [t′b, t

′
e], then for τs′ ⊑ τs means that tb ≤ t′b and t′e ≤ te, Now

we postulate that one event (or sub-event) Ei embeds a sub-event Eij , . . . ,
embeds an “innermost” sub-event Eij...k

.

Example: The following represents an idealised description of how a com-
puting system interrupt is handled.

• (i) A laptop user hits the enter keyboard key at time tb.
• (ii) The computing system interrupt handler reacts at time t′b (tb ≤ t′b), to

the hitting of the enter keyboard key.
• (iii) The interrupt handler forwards, at time t′′b , the hitting of the enter

keyboard key to the appropriate input/output handler of the computing
system keyboard handler.

• (iv) The keyboard handler forwards, at time t′′′b , the hitting of the enter

keyboard key to the appropriate application program routine.
• (v) The application program routine calculates an appropriate reaction

between times t′′′b and t′′′e .
• (vi) The application program routine returns its reaction to the keyboard

handler at time t′′e .
• (vii) The keyboard handler returns, at time t′′e , that reaction to the inter-

rupt handler.
• (viii) The interrupt handler marks the interrupt as having been fully served

at time t′e,
• (ix) while whatever (if anything that has been routed to, for example, the

display associated with the keyboard) is displayed at time te

The pairs (i,ix), (ii,viii), (iii,vii) and (iv,vi) form pairwise embedded events:
(ii,vii) is directly embedded, ⊑, in (i,ix), (iii,vii) is directly embedded, ⊑, in
(ii,viii) and (iv,vi) is directly embedded, ⊑, in (iii,vii).

We have abstracted the time intervals to be negligible.

Event Clusters

A final way of having composite events, is for them, as a structure, to be
considered a set of sub-events, each eventually involving a time or a time
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174 B Compositionality: Ontology and Mereology of Domains

period that is “tightly” related to those of the other sub-events in the set and
where the relation is not that of “follow-on” or embeddedness.

Example: A (i) car crash results in a (ii) person being injured, while a (iii)
robber exploits the confusion to steal a purse, etcetera

B.7 Atomic and Composite Behaviours

Our treatment of behaviours in Sect. B.3.4 was very brief. In this section it
will be more detailed. First a preliminary.

B.7.1 Modelling Actions and Events

In modelling behaviours, we model actions by a triple, (βℓ, α, τs), consisting of
a behaviour label, βℓ:BehLbl, an operation denotation, α:[. . .×]Σ → Σ[×. . . ],
and a time stamp, τs. Events are modelled by as above.

B.7.2 Atomic Behaviours

Time-stamped actions and atomic events are the only atomic behaviours. We
shall model atomic behaviours as singleton sequences of a time-stamped action
or an event.

B.7.3 Composite Behaviours

Simple Traces

A simple (finite/infinite) trace, τ , is a (finite/infinite) sequence of one or more
time-stamped atomic actions and time-stamped (atomic or composite) events.
Trace time stamps occur in monotonically increasing dense order, i.e., sepa-
rated by consecutive (overall) time stamps. That is, two traces may operate
not only on different clocks, but have varying time intervals between consec-
utive actions or events. The “overall” time stamp of a composite event is the
smallest time interval which encompasses all time and time stamps of event
designators of the composite event.

Simple Behaviours

A simple behaviour, β, is a simple trace of length two or more.

Example: The movement of two or more vehicles between two time points
forms a simple, concurrent behaviour

One can usually decompose a simple behaviour into two or more consecutive
behaviours, and hence one can compose a consecutive behaviour from two or
more simple behaviours. Consecutive behaviours are simple behaviours.
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B.7 Atomic and Composite Behaviours 175

Consecutive Behaviours

A consecutive behaviour is a pair of simple behaviours, of which the first is
finite, such that the time stamp of the first action or event of the second
behaviour is consecutive to the time stamp of the last action or event of the
first behaviour, cf. Fig. B.1 on the next page.

Example: A train travel, seen from the point of view of one train passenger,
from one city to another, involving one or more train changes, and including
the train passenger’s behaviours at train stations of origin, intermediate sta-
tions and station of destination as well as during the train rides proper, forms
a consecutive behaviour

Concurrent Behaviours

A concurrent behaviour is a set of two or more simple behaviours {β1, β2, . . . ,
βn} such that for each behaviour βi ∈{β1, β2, . . . , βn} there is a set of one
or more different behaviours {βij , βik

, . . . ,βiℓ
} ⊆ {β1, β2, . . . , βn} such that

there is a set of one or more consecutive (dense) time stamps that are shared
between behaviours βi and {βij , βik

, . . . ,βiℓ
}.

Example: The movement of two vehicles between two time points (i.e., in
some interval) forms a concurrent behaviour

Concurrent behaviours come in several forms. These are defined next.

Communicating Behaviours

A communicating behaviour is a concurrent behaviour in which two or more
(simple) behaviours contain identical (modulo predicate and time stamp)
events.

Example: The movement of two vehicles between two time points (i.e., in
some interval), such that, for example, the two vehicles, after some time point
in the interval, at which both vehicles have observed their “near-crash”, keeps
moving along, may be said to be a simple, cooperating behaviour. Their “near-
crash” is an event. In fact the vehicles may be engaged in several such “near-
crashes” (drunken driving!)

Example: The action of a vehicle, at a hub, which effects both a turning
to the right down another link, and a sequence of one or more gear changes,
throttling down, then up, the velocity, while moving along in the traffic, forms
a general, structured behaviour

Example: A crash between two vehicles defines an event with the two vehicles
being said to be synchronised and exchanging messages at that event
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176 B Compositionality: Ontology and Mereology of Domains

..........

β1
β2

βη

A simple behaviour

A concurrent behaviour

.....

β β
β

β

i

j
k

Communicating behaviours

β

Consecutive behaviours

A joined behaviour A forked behaviour

time

identical
event

identical
event

Fig. B.1. Two simple and four composite behaviours
Each rectangle designates a simple behaviour. Figure indicates 17 such

Joined Behaviours

A joined behaviour is a pair of a finite set, {β1, β2, . . . , βn}, of finite (“first”)
simple behaviours and a (“second”) simple behaviour, such that the time
stamp of the first action or event of the second behaviour is consecutive to
the time stamp of the last action or event of each of the the first behaviours.
You can think of the joined behaviour as pictured in Fig. B.1.

Example: This example assumes a mode of travel by vehicles in which they
(sometimes) travel in platoons, or convoys, as do military vehicles and —
maybe future private cars. A behaviour which starts with n (n being two or
more) vehicles travelling by themselves, as n concurrent behaviours; where
independent vehicles, at one time or another, join into convoy behaviours
involving two or more vehicles, form a joined behaviour

Forked Behaviours

A forked behaviour is a pair of a finite (“first”) simple behaviour β and a
finite set, {β1, β2, . . . , βn}, of (“second”) simple behaviours, such that the
time stamp of the first action or event of each of the second behaviours is
consecutive to the time stamp of the last action or event of the first behaviour.
You can think of the joined behaviour as pictured in Fig. B.1.

Example: Continuing the example just above: A behaviour which starts as
the joined, convoy behaviour of two or more (i.e., n) vehicles which then
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B.8 Mereology and Compositionality Concluded 177

proceeds by individual vehicles, at one time or another, leaving the convoy,
i.e., “forking out” into concurrent behaviours, forms a forked behaviour

B.7.4 General Behaviours

We claim that any set of behaviours can be formed from atomic behaviours by
applying one or more of the compositions outlined above: simple, concurrent,
communicating, consecutive, joined and forked behaviours.

By “any set of behaviours” you may well think of any multi-set of time
stamped actions and time stamped events, i.e., of atomic behaviours. From
this set one can then “glue” together one or more behaviours first forming
a set of simple behaviours; then concurrent behaviours; then identifying pos-
sible communicating behaviours; then possibly joining and forking suitable
behaviours, etc.

There may very well be many “solutions” to such a “gluing” construction
from a basic set of atomic behaviours.

B.7.5 A Model of Behaviours

type
ActBeh, EvnBeh,
Beh = ABeh|CBeh,
ABeh = ActBeh|EvnBeh,
CBeh = fSimBeh|ifSimBeh|CurBeh|ComBeh|CnsBeh|FrkBeh|JoiBeh,
fSimBeh == mkSi(s sb:ABeh∗),
ifSimBeh == mkSi(s sb:ABehω),
CurBeh == mkConc(s cb:SimBeh-set),
ComBeh == mkComm(s cb:SimBeh-set),
CnsBeh == mkCons(s fst:fSimBeh,s lst:ifSimBeh),
FrkBeh == mkFork(s fst:fSimBeh,s lst:ifSimBeh-set),
JoiBeh == mkJoin(s fst:fSimBeh-set,s lst:ifSimBeh)

value
wf Beh: Beh → Bool
wf Beh(beh) ≡ ...

B.8 Mereology and Compositionality Concluded

B.8.1 The Mereology Axioms

We wish to explain the compositionality constructs of simple entities (Sect. B.8.2),
operations (Sect. B.8.3), events (Sect. B.8.4) and behaviours (Sect. B.8.5),
where the references are to sections where the compositionality constructs are
informally summarised. We wish that the explanation be in terms of the pred-
icates of known axiomatisations of mereology, that is, of proposed such mere-
ologies. We refer to Appendices B.12.1 on page 194 and B.12.2 on page 196
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178 B Compositionality: Ontology and Mereology of Domains

where such predicates are brought forward. Let x, y, and z denote “first class”
entities. Then:

1. Pxy expresses that x is a part of y;
2. PPxy expresses that x is a proper part of y;
3. Oxy expresses that x and y overlap;
4. Uxy expresses that x and y underlap;
5. Cxy expresses that x is connected to y;
6. DCxy expresses that x is disconnected from y;
7. DRxy expresses that x is discrete from y;
8. T Pxy expresses that x is a tangential part of y; and
9. NT Pxy expresses that x is a non-tangential part of y.

B.8.2 Composite Simple Entities

Mereology

The part-whole mereological relations of composite simple entities are typi-
cally expressed by such defining phrases as: (i) “An x consists of a set of ys”
(modelled by X=Y-set); (ii) “an x consists of a grouping of a y, a z, . . . and a
u” (modelled by X=Y×Z×...×U); (iii) “an x consists of a list of ys” (modelled
by X=Y∗); (iv) “an x consists of an association of ys to zs” (modelled by
X=Y →m Z); and some more involved phrases, including recursively expressed
ones.

Usually such defining phrases define too much. In such cases further sen-
tences are needed in order to properly delimit the class of xs being defined.

Example: 14. A bus time table lists the bus line name 15. and one or more
named journey descriptions, that is, journey names are associated with (maps
into) journey descriptions. 16. Bus line and journey names are further unde-
fined. 17. A journey description sequence of two or more bus stop visits. 18. A
bus stop visit is a triple: the name of the bus stop, the arrival time to the bus
stop, and the departure time from the bus stop. 19. Bus stop names are hub
identifiers. 20. A bus time table further contains a description of the transport
net. 21. The description of the transport net of the transport net. associates
(that is, maps) each bus stop name hub identifier to a set of one or more bus
stop name hub identifiers. 22. A bus time table is well-formed iff 23. adjacent
bus stop visits name hubs that are associated in the transport net description;
24. arrival times are before departure times; etc.

type
16. BLNm, JNm
14.,20. BTT′ = BLNm × NmdBusJs × NetDescr
22. BTT = {| btt:BTT′

• wf BTT(btt) |}
15. NmdBusJs = JNm →m BusJ
17. BusJ = BusStopVis∗

18. BusStopVis = Time × HI × Time
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B.8 Mereology and Compositionality Concluded 179

21. NetDesr = HI →m HI-set
value
22. wf BTT: BTT × NetDesr → Bool

wf BTT( ,jrns,nd) ≡
∀ bj:BusJ • bj ∈ rng jrns ⇒

∀ (at,hi,dt):BusStopVis • (at,hi,dt) ∈ elems bj ⇒
hi ∈ dom nd ∧ at<dt ∧ ...

The well-formedness predicate expresses part of the mereology of how bus
time tables are composed. Note that we have not said that net description is
commensurate with the actual transportation net

That is, we go from regular via context free to context sensitive and even
generally computable or, alas, not necessarily computable forms. Thus there
are rich opportunities to study suitable subsets of natural language mereology
descriptions.

For the specific example of transportation nets, and as formalised in
Sect. B.1, we can prove that the following axiom system predicates hold as
theorems:

• PPxy (Item 2 on the facing page) holds for x=links or hubs of net, n, and
y=n;

• Cxy (Item 5 on the preceding page) holds for such links x which connect
hubs y, respectively such hubs x from which links y emanate; and

• T Pxy (Item 8 on the facing page) holds for such links x which connect
hubs y, respectively such hubs x from which links y emanate.

• Let us introduce a notion of link/hub connectors. Any link x which is
incident upon a hub y is said to define a connector  : J such that for

type J
value obs J: (L|H) → J-set
axiom

∀ l:L,h:H • card obs J(l)=2 ∧
obs J(l)∩ obs J(h)6={} ⇒ obs HIs(l)∩ obs HI(h)6={}

Now let x be the connector of link y and hub z, then Oxy and Oxz (Item 3
on the preceding page) hold.

• Etcetera.

Compositionality

The conventional compositionality principle implied a syntax of composite
expressions and spoke of the semantics of composite expressions. We extend
this principle to cover other than utterings of natural or formal specification
and programming languages. We extend the principle to cover any structures
that we may wish to contemplate.
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180 B Compositionality: Ontology and Mereology of Domains

To get the reader “tuned” to that idea we fist give three, perhaps slightly
“surprising” examples, and then return to examples in line with the main, the
transport, example of this paper.

Example: The design of a bread-toaster denotes the infinite set of all bread-
toasters that satisfy the design, or the infinite set of all the production pro-
cesses that construct such bread toasters, etc.

Example: The request from the marketing department of the producer of
the bread toaster to the design department suggesting a bread toaster that
satisfies certain market requirements denote the set of all bread-toaster designs
that satisfy these market requirements, etc.

Example:The request from executive management to the marketing depart-
ment requesting that measures be taken too win market share denote, amongst
others, the kind of requests alluded to in the previous example

Now to the examples that fit into the main example of this paper.

Examples: (i) A meaning of a link could be the set of all paths that vehicles
can traverse the link, where a link path could be modelled as a triple of
link connected hub identifiers and the link identifier. (ii) A meaning of a hub
could be the set of all paths that vehicles can traverse the hub, where a hub
path could be modelled as a triple of link identifiers and the connecting hub
identifier; (iii) A meaning of a net could be the set of all routes through the
net, where a route is a suitable sequence of either link paths or of hub paths

Compositionality of Simple Composite Entities: The meaning of atomic
entities are expressed by simple (recursive) functions.

The meaning of composite entities, in order to follow the principle of com-
positionality, must be a function of the meanings of the immediate sub-entities.
Here the possibilities are “ad-infinitum” ! Classically, in computing, the princi-
ple of compositionality was first applied to programming, then to specification
languages. Typically the meaning of an atomic statement, as a syntactic sim-
ple entity, of an imperative programming language was that of a function from
environments to state to state transformers, so the meaning of the composition
of two or more statements was then the function composition of the meaning
of each statement. The meaning of a logic program could be modelled as a set
of resolutions: bindings of identifiers to terms. The meaning of a parallel, say
CSP [190, Hoare], program can be denotationally, that is, according to the
principle of compositionality, for example, given either one of three kinds of
semantics: in terms of traces, in terms of failures, and in terms of divergences
— as all explained in [266, Roscoe, Chapter 8].

• • •
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B.8 Mereology and Compositionality Concluded 181

Whether all reasonably expressed meanings of all conceivable composite sim-
ple entities can be expressed compositionally is not known, well, is not know-
able.

B.8.3 Composite Operations

Mereology

It appears that H (in G(e1, e2, . . . , em) = H(G(e1), G(e2), . . . , G(en))), and the
way in which G distributes over (e1, e2, . . . , em), in the abstract expresses the
mereology of function composition. In the concrete the mereological nature of
a given composite operation is reflected in the way in which it is structured
from primitive recursive functions and other composite operations.

In the sense of recursive function theory it does not seem to make any
sense to apply any of the 9 operators (Page 178) of Sect. B.8.1.

Compositionality

The compositionality of functions is here taken to be expressed by the function
composers of extended recursive function theory. Extended recursive func-
tion theory defines (i) constant entities, f() (i.e., values as zero-ary func-
tions); (ii) variables, v (as functions from an environment to an entity); (iii)
sets {e1, e2, . . . , en}, Cartesians (e1, e2, . . . , en), and lists 〈e1, e2, . . . , en〉 of en-
tities; (iv) a finite set of primitive functions, fn, of arity n and type fn:
Entity∗→Entity (v) a finite set of primitive predicates, pn, of arity n and type
pn: Entity∗→Bool (vi) function composition f(g(e1, e2, . . . , en)), (vii) condi-
tionals (c1 → e1, c2 → e2, . . . , cn → en), (viii) . . . , and (ix) . . . . Recursive
function theory then tells us how to interpret these forms in come context ρ
which binds variables to entities and function and predicate function symbols
to their functions and predicates. The extended recursive function theory is a
simple encoding from recursive function theory. So compositionality of oper-
ations is explained by recursive function theory.

B.8.4 Composite Events

Mereology

Mereologically events can be (i) sequenced, “connected” in time; (ii) “re-
cursively” embedded, with the time interval for an “outer”, embedding event
embracing the time interval for an immediately embedded event, and so forth;
or can be (iii) clustered.

For specific, formalised examples of the three kinds of events it may then
be possible to prove the following: (i) PPxy where x is an event of either
a sequenced event, or of a recursively embedding, or of a clustered event y
(x is embedded in the recursively embedding event y); (ii) Cxy where x and
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y are two consecutive events of a sequenced event z (that is, (ii:A) PPxz ∧
PPxz, (ii:B) T Pxy and (ii:C) Uxy (of z)), (ii:D) while DCuv where (PPuz∧
PPvz)∧ ∼ Cuv; (iii) Oxy may hold for x and y being part of a clustered event
z (that is, PPxz ∧ PPxz and Uxy (of z)). Etcetera.

Compositionality

Please note that we are not giving meaning to syntactic designators whose
meaning is that of events. We are confronted with the issue of giving meaning,
in some sense, to events. Simple such meanings are concerned with concrete
event analysis: did to events occur at the same time, or in a given time period,
or one before the other. For such analyses we refer to [216, Lamport]. We can
think of obtaining more elaborate meanings for sequenced and recursively
embedded events, but first we would need to build up a rather elaborate set
of definitions, find elaborate examples, etcetera, and that would blow the size
of this paper way out of proportion. So the best is to say, and this also applies
to clustered events, here is an interesting research topic: to come up with
compositionality interpretations for composite events !

B.8.5 Composite Behaviours

Mereology

Let {β1, β2, . . . , βn} be, for each case below, the suitable set of (simple)
behaviours. From the point of view of the mereology of the composition of
behaviours, such as we have modelled behaviours, there are the following
composition operators:

• (i) creating simple behaviours, βs:(fSimBeh|ifSimBeh), from suitable atomic
ones (a1, a2, . . . , am, e1, e2, . . . , en);

• (ii) creating concurrent behaviours, βcon:CurBeh, from suitable simple be-
haviours;

• (iii) creating communicating behaviours, βcom:ComBeh, from a set of suit-
able simple behaviours;

• (iv) creating consecutive behaviours, βseq:CnsBeh, from a set of suitable
simple behaviours;

• (v) creating joined behaviours β:JoiBeh from a set of suitable simple be-
haviours; and

• (vi) creating forked behaviours, β:FrkBeh, from a set of suitable simple
behaviours.

Given a specific composite behaviour is may then be possible to prove

• (i) For all distinct atomic behaviours β′
αǫ and β′′

αǫ and for all sim-
ple behaviours, βs, for which Pβ′

αǫβs ∧ Pβ′′
αǫβs holds to prove that

PPβ′
αǫβs ∧ PPβ′′

αǫβs; holds;
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• (ii) for a set, βs, of suitable simple behaviours to prove that PPβimkCon-
curBeh(βs) holds for any βi in βs;

• etcetera.

Compositionality

Behaviours are the meaning of domain descriptions, or or requirements pre-
scriptions or software programs that specify concurrency. So the meaning
functions that we might apply to behaviours would then typically be those
of analysing behaviours: comparing behaviours, say with respect to efficiency,
or to access to shared resources, or (say human) interface response times. We
leave it to the reader to continue this line of thought.

B.9 Galois Connections9

In the following sections, we look at some rôles Galois connections may have
in relation to composition of entities. Galois connections is a fundamental
mathematical concept from order– and lattice theory. The reason for bringing
it up here is that it involves set–based composition of elements as well as
the composition of dual, order-decreasing functions. However, this is just the
reason why we considered Galois connections in the first place. In fact we want
to argue that it is beneficial to incorporate non-traditional modelling aspects
in order to get more insight; both in the discipline of domain engineering, and
in a current domain of discourse.

In the following, we shall (i) define the notion of Galois connections, (ii)
outline some of the different uses of that concept, and (iii) consider the concept
in context of modelling composite entities (following the ontology presented
in this paper). The sections are driven by examples.

Example: Toasters and Their Designs. Let (d:D) be a design of a toaster
(t:T). From the design we may be able to produce a collection of different
toasters because the design does not specify everything, and due to the fact
that we could produce the “same” kind of toaster over and over again. Let
us look at a “time glimp” and let (ts:T-set) denote the set of such toasters
obeying the design10. If we impose that “sequentially” further designs are all
for the same toaster, then the number of toasters decreases11 because they all

9This section is main-authored by Asger Eir.
10We shall — as common in modelling — assume a possible worlds semantics

in the sense that the collection of toasters are the toasters existing in one possible
world. Are there more produced or some destroyed, it is another possible world. We
shall not be further concerned with this, nor the many philosophical issues that can
be claimed. We refer to [275] and [10] which among many other issues take up this
discussion.

11Actually, the number could stay the same but that would mean including iden-
tical designs. In general, we shall not be that concerned with the equal-situation for
that same reason.
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need to satisfy the new designs too. Between the set of designs and the set of
toasters they denote, is a Galois connection

Example: Designs and Market Analysis. The designs are also the deno-
tation of something. It could be the market analysis indicating the need for
certain toaster products — or more generally, for certain new kinds of kitchen
equipment. Between the market analysis and the designs also stands a Ga-
lois connection; hence there is also a Galois connection between the market
analysis and the toasters. The Galois connection (being an order–decreasing
pair of functions) ensures that we can only produce toasters which obeys the
designs, and that we can only design toasters which satisfy the needs outlined
in the market analysis

B.9.1 Definition

Definition B.1. A Galois connection is a dual pair of mappings (F , G) be-
tween two orderings (P,⊑) and (Q,⊑). Most often P and Q are ordered sets
based on set-inclusion (⊆) and this is also the version we shall use in this
paper. In order to avoid misinterpretation, we write ⊑ and not ≤ or ⊆ as
seen in other treatments of the subject. The mappings must be monotonically
decreasing12:

type
P, Q

value
F : P-set → Q-set
G: Q-set → P-set

axiom
∀ ps1, ps2:P-set, qs1, qs2:Q-set •

ps1 ⊑ ps2 ⇒ F ps2 ⊑ F ps1,
qs1 ⊑ qs2 ⇒ G qs2 ⊑ G qs1,
ps1 ⊑ G F ps1,
qs1 ⊑ F G qs1

The dual ordering of Galois connections is illustrated on Figure B.2.
In [164, Ganter & Wille: FCA], the following Theorem is given on Galois
connections:

12Note, that there are in fact two different definitions of Galois connections in the
literature: the monotone Galois connection and the antitone Galois connection. We
follow Ganter and Wille and assume the former [164].
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C

G: D-set →m C-set

F : C-set →m D-set

Ds
′′

Ds

Ds
′

Cs
′′

Cs
′

D

Cs

Fig. B.2. A Galois connection.

Theorem B.2 (Galois Connection13). For every binary relation R ⊆M ×
N , a Galois connection (ϕR, ψR) between M and N is defined by

ϕRX := XR (= y ∈ N |xRy for all x ∈ X)

ϕRY := Y R (= x ∈M |xRy for all y ∈ Y ).

From the above, we see that all y must stand in the relation R to each x
in order for the connection to hold. However, R could mean “does not stand
in a relation to”. That would still yield a Galois connection but the domain
knowledge it expresses is different. Let X be a collection of coffee cups and
let Y be a collection properties concerning form, colour, texture and material.
We may define R to be “coffee cup x has property y”. However, we could also
define it as “coffee cup x does not have property y. In both cases we would
have a Galois connection. However, the latter may be somewhat strange from
a classification point of view.

The notion of Galois connections has served as foundation for a variety of
applications like order theory, the theory of dual lattices, and — in computer
science — semantics of programming languages and program analysis.

However, it has also been utilized in a number of conceptualization prin-
ciples. These principles are not pure mathematical treatments, but utilize
Galois connections in specific domains. We shall look at three such areas in
the following.

B.9.2 Concept Formation in Formal Concept Analysis [FCA]

In the area of formal concept analysis [164, Ganter & Wille: FCA], the notion
of Galois connections is used as foundation for the lattice-oriented theory

13In [164] this is named Theorem 2.
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186 B Compositionality: Ontology and Mereology of Domains

used for concept formation. In FCA, concepts are defined from a collection of
objects by looking at which objects have common properties. The approach
includes algorithms for automatic concept formation, given a collection of
objects or a collection of properties. The fact that we can choose either to form
concepts from objects (the extension of the concepts) or the properties (the
intensions of the concepts) shows the duality between objects and properties.

B.9.3 Classification of Railway Networks

In [196–198] Ingleby et al. use Galois connections in order to classify railway
networks. The approach is similar to the approach of concept formation in
FCA, but Ingleby understands the notion of properties in a broader sense: a
property of a route may be the segments involved in the route. Here Ingleby
understands routes and segments in a safety–security sense as his quest is to
cluster routes and segments such that the complexity of safety proof over the
railway network, is reduced. That is, the Galois connection is used for defining
cluster segments (in FCA, corresponding to concepts) such that the number of
free variables are reduced when proving safety properties of software/hardware
for instance.

B.9.4 Relating Domain Concepts Intensionally

In [152, 153, Eir], we utilized the notion of Galois connections for relat-
ing domain concepts intensionally. The domain concepts related were con-
cepts that were not bound under subsumption; i.e. they are not specializa-
tion/generalization pairs.

Consider the domain concepts: Budgets and Project Plans. From a budget
we can observe the set of project plans that can be executed within the finan-
cial restrictions of the budget. From a project plan we can observe the set of
budgets that designate the necessary figures for executing the project plan.
Generalizing this gives two interpretation functions: one from a set of budgets
to the set of project plans that are all executable within the restriction of
each budget in the set; and another from a set of project plans to the set of
budgets that all designate the necessary expenses for executing each project
plan.

The pair of interpretation functions is a Galois connection. This approach
is utilized in order to suggest a modelling approach for relating domain con-
cepts and placing their models (i.e. their abstractions) in conceptual struc-
tures. For the two concepts mentioned above, the conceptual structure main-
tains the systematics of concretising information from budgeting to project
planning.

B.9.5 Further Examples

We may easily produce other examples of domain concept pairs of which the
objects relate in some way. Consider the following examples:
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B.9 Galois Connections 187

Example: Bus Time Tables and Traffic. Let btt be some bus time table
(btt:(bln,busjs,nd)). To btt there corresponds a set of bus traffics, sobustrfs, on
the net. Express such bus traffic as (bustrf,n) where (bustrf,n)∈sobustrfs and
where bustrf is the time-varying function from buses to their positions on the
net, and nd is related to n in some way (one is a net description, the other is
“the” (or that) net). We furthermore stipulate that each bus traffic (bustrf,n)
“obeys” the timetable (bln,busjs,nd). To a set of timetables, sobustts, over
the same net there corresponds the union set of all those sets of bus traffics,
usosobustrfs, that “obey” all timetables in sobustts

We seek to understand the relationship between sobustts and usosobustrfs in
terms of the concept of Galois connections.

Example: Traffic and Buses – The Dual Case. We reverse the relation.
We start with a bus traffic (bustrf,nd) and can, by arguments similar to above,
postulate a set of bus timetables, sobustts (on the same net), such that each
bus timetable properly records the arrival and departure times of buses at bus
stops on that net. We can then “lift” this relation (((bustrf,nd)),sobustts) to a
relation from sets of bus traffics to the union set of sets of bus timetables

We seek to understand the relationship between sobustrfs and usosobustts in
terms of the concept of Galois connections.

The two examples above each define what we in B.9.4 called interpretation
functions. They are interpretation functions in the sense that they — in the
domain — “interpret” the time table entities as traffic entities; and vice versa.

B.9.6 Generalisation

The element that these example have in common is that the values of one
concept characterize the values of the other concept — in some way.

This is similar to FCA where we have a Galois connection between values
and their common properties. However, in this case the properties are extrinsic
properties. The budget relates to a specific set of project plans because it
possesses the property of standing in a certain relation to these other values.
The property is extrinsic as the property is possessed assuming the existence
of other values; as opposed to intrinsic properties.

In a sense it means that we break the traditional distinction between values
and properties as assumed in FCA. Furthermore, we utilize the same principles
as utilized in denotational semantics — namely that we can assign meaning
to values (e.g., a budget) and the meaning to composition of values (e.g.,
a set of budgets). The meaning of the composition is here more than the
meanings of the individual parts because the composition of budgets (the
budget set inclusion) implies a more narrow restriction of the set of executable
project plans. It is so because combining two budgets has influence on the
meaning in the sense that the meaning is the composition of the corresponding
project plans as well (satisfying the Galois functions of being “decreasing”).
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Mereologically, what is added when composing a whole is actually the axioms
in the Galois connection.

However, we go a little further than denotational semantics of program-
ming languages because we may consider any domain concept a subject for
defining a Galois connection.

Another observation is that the notion of Galois connection is domain
neutral. The Galois connection is a general mathematical framework and hence
not what contributes to why two concepts relate intensionally.

B.9.7 Galois Connections and Ontology

In the ontology presented throughout this paper, we have exercised the im-
portance of compositionality. I.e. we have defined compositionality for each
of the four entity parametrisations made. In this sections, we shall look at
how these can be understood in the general, domain and ontology neutral
framework of Galois connections. When we say that Galois connections in
this sense are ontologically neutral it is not entirely true. Many ontologies
— especially in philosophy — concerns the existence of (say) mathematical
entities; hence also heavily touching (perhaps disturbing) the foundation on
which Galois connections are defined. However, this is not our quest here.
When we consider Galois connections ontologically neutral it is in fact similar
to saying that they are neutral to the ontology of entities that we have sug-
gested. Whether entities include mathematical entities or these is “outside”,
that is, is outside the scope of this paper. For further exploration, we refer
to [275].

If simple entities, events, behaviour and operations are all entities, it should
imply that we can make the same considerations involving such values in
Galois connections. We shall try to do so in the following, and we intend
in that context to outline the issues as we go along. The important thing
is, however, not whether Galois connections can be established, but whether
the Galois connection complies with the current intuition as the connection
between objects and their common properties does.

The traditional use of Galois connections — as ‘exercised order theory’
and as used by Ganter and Wille focuses on the properties that objects have
in common. However, we may turn this order upside-down such that we look
at the total set of properties. This will be a Galois connection as well but
in the case of domains, it expresses a different aspect. In some situations, it
is natural to consider the former — in other situations, we may prefer the
latter. This depends on how we perceive the domain and — perhaps also —
the purpose of our domain model; i.e. our perspective.

By the above we indicate that the study of Galois connections in the
context of domain engineering could be interesting because it has to do with
how we choose to perceive, abstract, model and formalize the domain. Hence,
what we present in the following may open up for such research areas for
further clarification. We are, however, not saying that these will be interesting
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or that it does make sense to make distinctions like the one above. We just
say that this area deserves further exploration.

Let us in the following assume that Galois connections concern relations
between two ordered sets of entities and the essence that the entities in these
sets characterize each other. The issue is now that in some cases, character-
ization usually obeys the axioms of Galois; but in some situations it may
not.

Composite Entities

We have already seen a couple of examples of Galois connections between two
ordered sets of elements, where the ordering has been set-inclusion.

We assume the understanding of composite entities as presented in Sects. B.4
and B.8.2.

Example: Hospital Staff and Rostering (I). Doctors and nurses forming
surgery teams. From a team (possibly empty or singleton), we can observe
the collection of time slots where they are all available. If we include more
doctors and nurses, we will have a smaller set of time slots. And vice versa.
This is an important domain aspect when we are going to talk about planning
and staffing (either in domain descriptions and specifications, or in software
requirements). This is a Galois connection

Example: Hospital Staff and Rostering (II). Again consider doctors and
nurses forming surgery teams. From a team, we can observe the collection of
possible surgeries they may perform. If we include more doctors and nurses,
we increase the collection of surgeries. And vice versa

This is not a Galois connection, though interesting from a domain perspective
anyway.

Composite Operations

We assume the understanding of composite entities as presented in Sects. B.5
and B.8.3.

Example: Building Constructions and Parts. Consider a set of building
constructions: molding of foundations, mounting of bricks into walls, and es-
tablishing the roof, etc. Then consider the set of building parts involved in a
construction. By building parts, we shall both understand the materials and
elements consumed by constructions, and the results of other constructions.
Thus, a building part can be a specific brick, a pre-cast concrete wall, the foun-
dation, etc. That is, the building parts are those either created, mounted on,
changed in some way, or demolished. For each construction, we can observe
the building parts involved: consumed or produced. Building constructions
can be composite in the sense that one construction constructs the founda-
tion and another construction mounts the walls on the foundation. The former
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construction is a function from certain amounts of sand, stone, cement and
water, to a foundation (here we shall exclude the tools needed). The latter
construction is a function from a foundation, a collection of bricks, water,
cement and insulation, to the product consisting of foundation and walls. For
a construction — atomic or composite — we can observe the building parts
involved in all constructions. If we include more constructions in a composite
construction, the building parts involved in all constructions will decrease

The connection between composite constructions and building parts involved
is a Galois connection.

The connection is interesting when modelling the planning and scheduling
of construction works as a crucial element is that construction workers cannot
always work on the same building parts at the same time.

Example: Building Operations and Consumed Materials. Now con-
sider the approach where for each building operation we observe the materials
needed. For a collection of operations, we can likewise observe the total quan-
tity of materials needed. That is, the total amount of sand, stones, bricks;
the total quantity of beams, doors, windows of each type and measure; etc.
Including more building operation will increase the amount and quantity of
materials needed; simply because we then build more. Then we have a sit-
uation where the more operations we include, the more products. That is,
set-inclusion of operations implies an increase of the observed materials and
parts. The reason is that we here that each building operation contributes
with a result. Instead of considering the common materials as characterizing
the composite operation, we shall consider that the complete set of materials
involved characterize the composite operation

In a sense this is more natural as we then include all the aspects of the com-
positionality. However, in the present case, we do not have Galois connection
because including more operations in the composite, implies including more
materials and results. Hence, dual ordering is increasing; not decreasing.

Composite Events

We assume the understanding of composite entities as presented in Sects. B.6
and B.8.4.

Example: Traffic Accidents and Responsible Persons. Consider a traf-
fic accident. This is an event and for the accident, we can observe the collection
of persons involved and of these the persons bearing some kind of responsi-
bility in the accident. Assume that we look at a collection of traffic accidents.
Here, we can observe the persons involved in all accidents and for these the
ones being responsible for the accidents. Including more traffic accidents will

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
B.9 Galois Connections 191

reduce the number of persons involved in all accidents; hence, also the number
of persons being responsible in all accidents

The connection between sets of traffic accident events and the set of persons
being responsible, is a Galois connection.

The connection may be interesting when modelling the analysis of traffic
accident patterns and statistics which may influence the definition of insurance
premium.

Example: Traffic Accidents and Persons Involved. Now, consider traffic
accidents as events again. From a traffic accident, we can observe the insurance
policies of the involved persons. Likewise, from a collection of traffic accidents
(i.e. a composite event being a cluster of individual events), we can observe
the collection of persons involved in at least one of the accidents; that is,
the total collection of persons involved in one or more of the accidents. If we
include more accidents, the collection of persons involved will increase

This is not a Galois connection. Though the connection may be interesting
when modelling correlation between accidents.

We should also be able to construct examples for composite events being
sequential or embedded.

Composite Behaviours

We assume the understanding of composite entities as presented in Sects. B.7
and B.8.5.

Example: Meetings and Applicable Rooms. Consider a collection of
persons engaged in a meeting. We shall consider having a meeting a behaviour.
The meeting can be composite in the sense that we may join two or more
meetings held in the same time interval and involving the same persons. In
the present case we shall consider behaviour composition as communicating.
E.g. we may join department meetings for several company departments if the
topic of the meetings is common and should be shared. From a meeting, we can
observe the rooms applicable. We shall assume that a room is only applicable
if it can host the number of meeting participants, has the equipment necessary
for the meeting, etc. If we include more meeting behaviours in a composite
behaviour, the collection of rooms applicable will decrease

This is a Galois connection. The connection is interesting when planning col-
laborative work among meeting participants.

Example: Engineering Work and Skills. Consider a collection of engi-
neers engaged in a project. We shall consider their work a behaviour which is
concurrent — perhaps also communicating to an extent. From each engineer-
ing behaviour we can observe the engineering skills utilized and practiced. If
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we include a collection of work behaviours as a composite behaviour, it implies
that we include more engineers and thus also more engineering skills

This is not a Galois connection; though interesting when modelling skills,
skills management, project communication and interaction, staffing, etc.

B.9.8 Galois Connections Concluded

So what went wrong in the cases where we did not have a Galois connection?
Or we could ask: what did we explore by looking at the domain through Galois
eyes? The examples examined above clearly shows that their are two different
kinds of connections between entity compositions; hence, orderings.

• The former yields a Galois connection. It does so because composite en-
tities of the one ordering are all characterizing composite entities of the
other. Thereby, we believe to have outlined how Galois connections and
ordering theory in general plays an important rôle in compositionality of
entities.

• The latter does not yield a Galois connection as it is an order-preserving
connection. In the examples examined we have seen a general pattern
composition of the one kind of entity, yields composition (actually just
set-inclusion) of the other kind of entity.

Both kinds of connections show that even though the connections (Galois
being order-reversing and the order-preserving) are ontologically and domain
neutral, they do express interesting domain intrinsics when it comes to compo-
sitionality. We suggest that the rôle, use and axioms/theorems of such order-
ing connections are explored further within the context of domain engineering.
Furthermore, we encourage exploring other such concepts and their ability of
promoting domain engineering as a discipline.

B.10 Conclusion

B.10.1 Ontology

Ontology plays an important rôle in studies of epistemology and phenomenol-
ogy. In the time-honoured tradition of philosophical discourse philosophers
present proposals for one or another ontology, and discusses these while usu-
ally not settling definitively on any specific ontology; and many issues are
deliberately left open.14 In this paper we cannot afford this “luxury”. Our
objective is to clarify notions of ontology in connection with the use of spe-
cific ways of informally and formally describing domains where the formal
description language is fixed.

14Such as whether properties of entities are themselves entities, etc.
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Many of the issues of domain modelling evolve close to issues of meta-
physics. We find [222, Michael J. Loux] Metaphysics, a contemporary intro-
duction, [170, Pierre Grenon and Barry Smith] SNAP and SPAN: Towards
Dynamic Spatial Ontology, [276, Peter Simons] Parts: A Study in Ontology,
and [231, D. H. Mellor and Alex Oliver] Properties, relevant for a deeper study
of the meta-physical issues of the current essay.

B.10.2 Mereology

Mereology has been given a more concrete interpretation in this paper com-
pared to the “standard” treatments in the (mostly philosophical) literature.
It seems that Douglass T. Ross [267] was among the first computing scientists
to see the relevance of Leśniewski’s ideas [225, 285]. Too late for a study we
found [252, Chia-Yi Tony Pi]’s 287 page PhD (linguistics) thesis: Mereology
in Event Semantics. Perhaps it is worth a study.

B.10.3 Research Issues

The paper has touched upon many novel issues. Some are reasonably well
established, at least from a programming methodological point of view. Several
issues could benefit from some deeper study. We mention three.

Compositionality

A precise study of how composite functions, events and behaviours can be
understood according to the principle of compositionality.

Mereology

A more precise presentation of a mereology axiom system for the kind of
simple entities, function entities, event entities and behaviour entities outlined
in Sects. B.4–B.7.

Ontology

A more precise comparison of the “computability”–motivated ontology of this
paper as compared with for example the ontological systems mentioned in
[222, Michael J. Loux], [170, Pierre Grenon and Barry Smith], [276, Peter
Simons] and [160, Chris Fox].
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Galois Connections

A further study, going beyond that of [152, 153, Asger Eir], of relations be-
tween compositionally and Galois connections. For that study one should
probably start with [188, Hoare and He].

• • •

That we have not really studied the compositionality issue as listed above
is a major drawback of this paper but we needed to clarify first the nature
of “compositeness” of events, functions and behaviours before taking up the
future study of their compositionality.

B.10.4 Acknowledgement

The first author is most grateful to his former PhD student, Dr. Asger Eir,
for his willingness to co-author this paper.

B.11 Bibliographical Notes

[94, to appear] gives a concise overview of domain engineering; [95, to appear]
gives a “complete” example of domain and requirements engineering; and [93,
to appear] relates domain engineering, requirements engineering and software
design to software management. [90] presents a number of domain engineering
research challenges.

B.12 Two Axiom Systems for Mereology

B.12.1 Parts and Places15

A mereological system requires at least one primitive binary relation (dyadic
predicate). The most conventional choice for such a relation is Parthood (also
called ”inclusion”), “x is a part of y,” written:

Pxy

Nearly all systems require that Parthood partially order the universe. The
following defined relations, required for the axioms below, follow immediately
from Parthood alone:
An immediate defined predicate is “x is a proper part of y,” written PPxy,
which holds (i.e., is satisfied, comes out true) if Pxy is true and Pyx is false.
If Parthood is a partial order, ProperPart is a strict partial order:

15This section is based on [135].
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B.12 Two Axiom Systems for Mereology 195

PPxy ↔ (Pxy∧ ∼ Pxy) (B.1)

An object lacking proper parts is an atom. The mereological universe consists
of all objects we wish to think about, and all of their proper parts:

Overlap: x and y overlap, written Oxy, if there exists an object z such
that Pzx and Pzy both hold.

Oxy ↔ ∃z[Pzx ∧ Pzy] (B.2)

The parts of z, the “overlap” or “product” of x and y, are precisely those
objects that are parts of both x and y.

Underlap: x and y underlap, written Uxy, if there exists an object z such
that x and y are both parts of z.

Uxy ↔ ∃z[Pxz ∧ Pyz] (B.3)

Overlap and Underlap are reflexive, symmetric, and intransitive.
Systems vary in what relations they take as primitive and as defined. For

example, in extensional mereologies (defined below), Parthood can be defined
from Overlap as follows:

Pxy ↔ (Ozx→ Ozy) (B.4)

The Axioms

Parthood partially orders the universe:

M1, Reflexive: An object is a part of itself.

Pxx (B.5)

M2, Antisymmetric: If Pxy and Pyx both hold, then x and y are the same
object.

(Pxy ∧ Pyx) → x = y (B.6)

M3, Transitive: If Pxy and Pyz, then Pxz.

(Pxy ∧ Pyz) → Pxz (B.7)

M4, Weak Supplementation: If PPxy holds, there exists a z such that Pzy
holds but Ozx does not.

PPxy → ∃z[Pzy∧ ∼ Ozx] (B.8)

M5, Strong Supplementation: Replace “PPxy holds” in M4 with “Pyx does
not hold.”

∼ Pyx→ ∃z[Pzy∧ ∼ Ozx] (B.9)
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M5′, Atomistic Supplementation: If Pxy does not hold, then there exists an
atom z such that Pzx holds but Ozy does not.

∼ Pxy→∃z[Pzx∧ ∼Ozy∧∼∃x[PPvz]] (B.10)

Top: There exists a “universal object”, designated Ω, such that PxΩ holds
for any x.

∃Ω∀x[PxΩ] (B.11)

Bottom: There exists an atomic “null object”, designated 0oid, such that
P0oidx holds for any x.

∃0oid∀x[P0oidx] (B.12)

M6, Sum: If Uxy holds, there exists a z, called the “sum” or “fusion” of x and
y, such that the parts of z are just those objects which are parts of either x
or y.

Uxy → ∃z∀v[Ovz ↔ (Ovx ∨Ovy)] (B.13)

M7, Product: If Oxy holds, there exists a z, called the ”product” of x and y,
such that the parts of z are just those objects which are parts of both x and
y.

Oxy → ∃z∀v[Pvz ↔ (Pvx ∧ Pvy)] (B.14)

If Oxy does not hold, x and y have no parts in common, and the product of
x and y is defined iff Bottom holds.

M8, Unrestricted Fusion: Let φ(x) be a first-order formula in which x is a free
variable. Then the fusion of all objects satisfying φ exists.

∃xz[φ(x) → ∀y[Oyz ↔ (φ(x) ∧ Oyx)]] (B.15)

M8′, Unique Fusion: The fusions whose existence M8 asserts are also unique.

M9, Atomicity: All objects are either atoms or fusions of atoms.

∃yz[Pyx∧ ∼ PPzy] (B.16)

B.12.2 From: A Calculus of Individuals Based on ‘Connection’16

Taking Cxy as a rendering of x is connected to y we can introduce a definition
of DCxy (x is disconnected from y) and the standard mereologial definitions
of Pxy (x is a part of y), PPxy (x is a proper part of y), Oxy (x overlaps y),
and DRxy (x is discrete from y) as follows:

16This section is taken from [140].
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DCxy ≡ ∼ Cxy (B.17)

Pxy ≡ (∀z)(Czx ⊃ Czy) (B.18)

PPxy ≡ Pxy∧ ∼ Pyx (B.19)

Oxy ≡ (∃z)(Pzx ∧ Pxy) (B.20)

DRxy ≡ ∼ Oxy (B.21)

This distinction between Cxy and x, constitutes the virtue of this new calculus.
It gives us the power to define ECxy (x is externally connected to y), T Pxy
(x is a tangential part of y), and NT Pxy (x is a non-tangential part of y) as
follows:

ECxy ≡ Cxy∧∼Cxy (B.22)

T Pxy ≡ (∀z)(ECzx ∧ ECxy) (B.23)

NT Pxy ≡ Pxy∧∼(∀z)(ECzx∧ECxy) (B.24)

Our axiomatization requires only two axioms: a mereological axiom,

(∀x)[Cxx ∧ (∀y)Cxy ⊃ Cyx) (B.25)

and an axiom involving identity, analogous to the axiom of extension in set
theory,

(∀x)(∀y)[(∀z)(Czx = Czy) ⊃ x = y]. (B.26)
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C

Domain Theory: Practice and Theories

A Discussion of Possible Research Topics

This appendix chapter constitutes the invited paper for ICTAC 2007,
The 4th International Colloquium on Theoretical Aspects of Comput-
ing [90], 26–28 September, Springer 2007, Macau SAR, China.
Permission to bring this paper here is being applied for.

Maybe the title of the paper need be explained: The second part of the title: ‘Practice

and Theories’ shall indicate that there is an engineering practice (i.e., methodology)

of developing domain descriptions and that any such domain description forms the

basis for a specific domain theory. The first part of the title: ‘Theories’ shall indicate

that we need support the practice, i.e., the methodology, by theoretical insight, and

that there probably are some theoretical insight that applies across some or all

domain theories.

C.1 Introduction

C.1.1 A Preamble

This paper is mostly a computing science paper. This paper is less of a com-
puter science paper. Computer science is the study and knowledge about the
“things” that can exist “inside” computers, and of what computing is. Com-
puting science is the study and knowledge about how to construct computers
and the “things” that can exist “inside” computers. Although the main em-
phasis of ‘Domain Theory and Practice’ is computing science, some of the
research topics identified in this paper have a computer science nature.

C.1.2 On Originality

This paper is an invited paper. It basically builds on and extends a certain
part (Part IV Domain Engineering) of Vol. 3, [89], of my book [87–89],
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200 C Domain Theory: Practice and Theories: A Discussion of Possible Research Topics

I shall therefore not bring a lot of motivation nor put my possible contri-
butions in a broader context other that saying this: as far as I can see from
the literature my concept of domain engineering is new. It may have appeared
in rudimentary forms here and there in the literature (as from JSL and then
notably in Michael Jackson’s work), but in the nine chapters (Chaps. 8–16)
of Part IV, [89], it receives a rather definitive and fully comprehensive treat-
ment. But even that treatment can be improved. The present paper is one
such attempt.

C.1.3 Structure of Paper

In a first semi-technical section we briefly express the triptych software en-
gineering dogma, its consequences and its possibilities. We relate software
verification to the triptych and present a first research topic. Then we list
some briefly explained domains, and we present three more research topics.
In the main technical section of this paper we present five sets of what we
shall call domain facets (intrinsics, support technology, management and or-
ganisation, rules and regulations, and human behaviour). Each of these will
be characterised but not really exemplified. We refer to [89] for details. But
we will again list corresponding research topics. The paper ends first with
some thoughts about what a ‘domain theory’ is, then on relations to require-
ments, and finally on two rather distinct benefits from domain engineering.
In that final part of the paper we discuss a programming methodology notion
of ‘requirements specific development models’ and its research topics.

C.2 Domain Engineering: A Dogma and its

Consequences

C.2.1 The Dogma

First the dogma: Before software can be designed its requirements must be
understood. Before requirements can be prescribed the application domain
must be understood.

C.2.2 The Consequences

Then the “idealised” consequences: In software development we first describe
the domain, then we prescribe the requirements, and finally we design the
software. As we shall see: major parts of requirements can be systematically
“derived”1 from domain descriptions. In engineering we can accommodate for
less idealised consequences, but in science we need investigate the “ideals”.

1By “derivation” we here mean one which is guided by humans (i.e., the domain
and requirements engineers in collaboration with the stake holders).
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C.2 Domain Engineering: A Dogma and its Consequences 201

C.2.3 The Triptych Verification

A further consequence of this triptych development is that

D,S |= R,

which we read as: in order to prove that Software implements the Requirements
the proof often has to make assumptions about the Domain.

C.2.4 Full Scale Development: A First Suggested ℜesearch Topic

Again, presupposing much to come we can formulate a first research topic.

ℜ 1. The D,S |= R Relation: Assume that there is a formal description
of the Domain, a formal prescription of the Requirements and a formal
specification of the Software design. Assume, possibly, that there is ex-
pressed and verified a number of relations between the Domain description
and the Requirements prescription. Now how do we express the assertion:
D,S |= R — namely that the software is correct? We may assume, without
loss of generality, that this assertion is in some form of a pre/post condi-
tion of S — and that this pre/post condition is supported by a number
of assertions “nicely spread” across the Software design (i.e., the code).
The research topic is now that of studying how, in the pre/post condition
of S (the full code) and in the (likewise pre/post condition) assertions
“within” S, the various components of R and D “appear”, and of how
they relate to the full formal pre- and descriptions, respectively.

C.2.5 Examples of Domains

The Examples

Lest we loose contact with reality it is appropriate here, however briefly, to
give some examples of (application) domains.

Air Traffic: A domain description includes descriptions of the entities, func-
tions, events and behaviours of aircraft, airports (runways, taxi-ways, apron,
etc.), air lanes, ground, terminal, regional, and continental control towers,
of (national [CAA, CAAC, FAA, SLV, etc.] and international [JAA, CAO])
aviation authorities, etc.

Airports: A domain description includes descriptions of the flow of people
(passengers, staff), material (catering, fuel, baggage), aircraft, information
(boarding cards, baggage tags) and control; of these entities, of the operations
performed by or on them, the events that may occur (cancellation or delay of
flights, lost luggage, missing passenger), and, hence, of the many concurrent
and intertwined (mutually “synchronising”) behaviours that entities undergo.

Container Shipping: A domain description includes descriptions of con-
tainers, container ships, the stowage of containers on ships and in container
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yards, container terminal (ports), the loading and unloading of containers
between ships and ports and between ports and the “hinterland” (including
cranes, port trucking and feeder trucks, trains and barges), the container bills
of lading (or way bills), the container transport logistics, the (planning and
execution, scheduling and allocation) of voyages, the berthing (arrival and
departure) of container ships, customer relations, etc.

Financial Service Industry: A domain description includes descriptions of
banks (and banking: [demand/deposit, savings, mortgage] accounts, [opening,
closing, deposit, withdrawal, transfer, statements] operations on accounts), in-
surance companies (claims processing, etc.), securities trading (stocks, bonds,
brokers, traders, exchanges, etc.), portfolio management, IPOs, etc.

Health care: A domain description includes descriptions of the entities, op-
erations, events and behaviours of healthy people, patients and medical staff,
of private physicians, medical clinics, hospitals, pharmacies, health insurance,
national boards of health, etc.

The Internet: The reader is encouraged to fill in some details here!
Manufacturing: Machining & Assembly: The reader is encouraged to also

fill in some details here!
“The” Market: A domain description includes descriptions of the enti-

ties, operations, events and behaviours of consumers, retailers, wholesalers,
producers, the delivery chain and the payment of (or for) merchandise and
services.

Transportation: A domain description includes descriptions of the entities,
functions, events and behaviours of transport vehicles (cars/trucks/busses,
trains, aircraft, ships), [multimodal] transport nets (roads, rail lines, air lanes,
shipping lanes) and hubs (road intersections [junctions], stations, airports,
harbours), transported items (people and freight), and of logistics (schedul-
ing and allocation of transport items to transport vehicles, and of transport
vehicles to transport nets and hubs). Monomodal descriptions can focus on
just air traffic or on container shipping, or on railways.

The Web: The reader is encouraged to “likewise” fill in some details here!
There are many “less grand” domains: railway level crossings, the inter-

connect cabling between the oftentimes dozens of “boxes” of some electro-
nic/mechanical/acoustical measuring set-up, a gas burner, etc. These are all,
rather one-sidedly, examples of what might be called embedded, or real-time,
or safety critical systems.

We can refer to several projects at UNU-IIST which have produced do-
main specifications for railway systems (China), ministry of finance (Viet-
nam), telephone systems (The Philippines), harbours (India), etc.; and to
dozens of MSc projects which have likewise produced domain specifications
for airports, air traffic, container shipping, health care, the market, manufac-
turing, etc. I give many, many references in [89]. I also refer the reader to
http://www.railwaydomain.org/ for documents, specifically http://www.rail-
waydomain.org/book.pdf for domain models of railway systems.

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
C.2 Domain Engineering: A Dogma and its Consequences 203

Some Remarks

A point made by listing and explaining the above domains is the following:
They all display a seeming complexity in terms of multitude of entities, func-
tions, events and interrelated behaviours; and they all focus on the reality of
“what is out there”: no mention is (to be) made of requirements to supporting
computing systems let alone of these (incl. software).

C.2.6 Domains: Suggested ℜesearch Topics

From the above list we observe that the ‘transportation item’ “lifts” those
of ‘air traffic’ and ‘container shipping’. Other examples could be shown. This
brings us, at this early stage where we have yet to really outline what domain
engineering is, to suggest the following research topics:

ℜ 2. Lifted Domains and Projections: We observe, above, that the ‘trans-
portation’ domain seems to be an abstraction of at least four more concrete
domains: road, rail, sea and air transportation. We could say that ‘trans-
portation’ is a commensurate “lifting” of each of the others, or that these
more concrete could arise as a result of a “projection” from the ‘trans-
portation’ domain. The research topic is now to investigate two aspects:
a computing science cum software engineering aspect and a computer sci-
ence aspect. The former should preferably result in principles, techniques
and tools for choosing levels of “lifted” abstraction and “projected” con-
cretisation. The latter should study the implied “lifting” and “projection”
operators.

ℜ 3. What Do We Mean by an Infrastructure ? We observe, above, that
some of the domains exemplify what is normally called infrastructure2

components. According to the World Bank: ‘Infrastructure’ is an umbrella
term for many activities referred to as ‘social overhead capital’ by some
development economists, and encompasses activities that share technical
and economic features (such as economies of scale and spillovers from users
to nonusers). The research is now to study whether we can reformulate
the sociologically vague World Bank definition in precise mathematical
terms.

2Winston Churchill is quoted to have said, during a debate in the House of
Commons, in 1946: . . . The young Labourite speaker that we have just listened to,
clearly wishes to impress upon his constituency the fact that he has gone to Eton
and Oxford since he now uses such fashionable terms as ‘infra-structures’. [I have
recently been in communication with the British House of Commons information
office enquiries manager, Mr. Martin Davies in order to verify and, possibly pinpoint,
this statement. I am told that “as the Hansard debates in question are not available
electronically, it could only be found via a manual search of hard copy Hansard”.
So there it stands.]
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ℜ 4. What Is an Infrastructure Component ? We observe, above, that not
all of the domains exemplified are what is normally called infrastructure
components.3 The research is now to study whether we can formulate and
formalise some “tests” which help us determine whether some domain
that we are about to model qualifies as part of one or more infrastructure
components.

We bring these early research topic suggestions so that the reader can better
judge whether domain engineering principles and techniques might help in
establishing a base for such research. Throughout the paper we shall “spice
it” with further suggestions of research topics.

• • •

We do not cover the important methodological aspects of stake holder identifi-
cation and liaison, domain acquisition and analysis, domain model verification
and validation. For that we refer to Vol. 3 Chaps. 9–10 and 12–14 [89].

C.3 Domain Facets

The rôle, the purpose, of domain engineering is to construct, to develop, and
research domain descriptions. It is both an engineering and a scientific task.
It is engineering because we do know, today, a necessary number of principles,
techniques and tools with which to create domain models. It is scientific, i.e.,
of research nature, because, it appears, that we do not necessarily know, today,
whether what we know is sufficient.

C.3.1 Stages of Domain Development

By domain development we mean a process, consisting of a number of rea-
sonably clearly separable stages which when properly conducted leads to a
domain description, i.e., a domain model. We claim that the following are
meaningful and necessary domain development stages of development, each
with their attendant principles, techniques and tools: (i) identification of
stake holders, (ii) rough domain identification, (iii) domain acquisition, (iv)
analysis of rough domain description units, (v) domain modelling, (vi) domain
verification, (vii) domain validation and (viii) domain theory formation. We
shall focus on domain modelling emphasising the modelling concept of domain
facets.

3‘Manufacturing’ and ‘The Market’ appear, in the above list to not be infras-
tructure components, but, of course, they rely on the others, the infrastructure
components.
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C.3.2 The Facets

By domain modelling we mean the construction of both an informal, narrative
and a formal domain description.

We claim that the following identified facets (i.e., “steps”) (later to be
briefly explained) are necessary parts of the domain modelling process: (i)
intrinsics, (ii) support technologies, (iii) management and organisation, (iv)
rules and regulations, (v) and human behaviour. Ideally speaking one may
proceed with these “steps” in the order listed. Engineering accommodates for
less ideal progressions. Each “step” produces a partial domain description.
Subsequent “steps” ‘extend’ partial descriptions into partial or even (relative)
complete descriptions.

In this section, Sect. C.3, we will not give concrete examples but will rely
on such already given in Chap. 11 of [89].

C.3.3 Intrinsics

By the intrinsics of a domain we shall understand those phenomena and con-
cepts, that is, those entities, functions, events and behaviours in terms of
which all other facets are described.

The choice as to what constitutes the intrinsics of a domain is often de-
termined by the views of the stake holders. Thus it is a pragmatic choice, and
the choice cannot be formalised in the form of an is intrinsics predicate that
one applies to phenomena and concepts of the domain.

ℜ 5. Intrinsics: What is, perhaps, needed, is a theoretically founded charac-
terisation of “being intrinsic”.

C.3.4 Support Technology

By a support technology of a domain we shall understand either of a set
of (one or more) alternative entities, functions, events and behaviours which
“implement” an intrinsic phenomenon or concept. Thus for some one or more
intrinsic phenomena or concepts there might be a technology which supports
those phenomena or concepts.

Sampling Behaviour of Support Technologies

Let us consider intrinsic Air Traffic as a continuous function (→) from Time
to Flight Locations:

type
T, F, L
iAT = T → (F →m L)
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But what is observed, by some support technology, is not a continuous func-
tion, but a discrete sampling (a map →m ):

sAT = T →m (F →m L)

There is a support technology, say in the form of radar which “observes” the
intrinsic traffic and delivers the sampled traffic:

value
radar: iAT → sAT

Probabilistic cum Statistical Behaviour of Support Technologies

But even the radar technology is not perfect. Its positioning of flights follows
some probabilistic or statistical pattern:

type
P = {|r:Real • 0≤r≤1|}
ssAT = P →m sAT-infset

value

radar′: iAT
∼
→ ssAT

The radar technology will, with some probability produce either of a set of
samplings, and with some other probability some other set of samplings, etc.4

Support Technology Quality Control, a Sketch

How can we express that a given technology delivers a reasonable support ?
One approach is to postulate intrinsic and technology states (or observed
behaviours), Θi, Θs, a support technology τ and a “closeness” predicate:

type
Θ i, Θ s

value
τ : Θ i → P →m Θ s-infset
close: Θ i × Θ s → Bool

and then require that an experiment can be performed which validates the
support technology.

The experiment is expressed by the following axiom:

4Throughout this paper we omit formulation of type well-formedness predicates.
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value
p threshhold:P

axiom
∀ θ i:Θ i •

let pθ ss = τ(θ i) in
∀ p:P • p>p threshhold ⇒
θ s:Θ s • θ s ∈ pθ ss(p) ⇒ close(θ i,θ s) end

The p threshhold probability has to be a-priori determined as one above which
the support technology renditions of the intrinsic states (or behaviours) are
acceptable.

Support Technologies: Suggested ℜesearch Topics

ℜ 6. Probabilistic and/or Statistical Support Technologies: Some cases
should be studied to illuminate the issue of probability versus statistics.
More generally we need more studies of how support technologies “enter
the picture”, i.e., how “they take over” from other facet. And we need to
come up with precise modelling concepts for probabilistic and statistical
phenomena and their integration into the formal specification approaches
at hand.

ℜ 7. A Support Technology Quality Control Method: The above
sketched a ‘support technology quality control’ procedure. It left out the
equally important ‘monitoring’ aspects. Develop experimentally two or
three distinct models of domains involving distinct sets of support tech-
nologies. Then propose and study concrete implementations of ‘support
technology quality monitoring and control’ procedures.

C.3.5 Management and Organisation

By the management of an enterprise (an institution) we shall understand a
(possibly stratified, see ‘organisation’ next) set of enterprise staff (behaviours,
processes) authorised to perform certain functions not allowed performed by
other enterprise staff (behaviours, processes) and where such functions involve
monitoring and controlling other enterprise staff (behaviours, processes). By
organisation of an enterprise (an institution) we shall understand the strat-
ification (partitioning) of enterprise staff (behaviours, processes) with each
partition endowed with a set of authorised functions and with communication
interfaces defined between partitions, i.e., between behaviours (processes).

An Abstraction of Management Functions

Let E designate some enterprise state concept, and let stra mgt, tact mgt,
oper mgt, wrkr and merge designate strategic management, tactical man-
agement, operational management and worker actions on states such that
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these actions are “somehow aware” of the state targets of respective manage-
ment groups and or workers. Let p be a predicate which determines whether a
given target state has been reached, and let merge harmonise different state
targets into an agreeable one. Then the following behaviour reflects some as-
pects of management.

type
E

value
stra mgt, tact mgt, oper mgt, wrkr, merge: E×E×E×E → E
p: E∗ → Bool
mgt: E → E
mgt(e) ≡

let e′ = stra mgt(e,e′′,e′′′,e′′′′),
e′′ = tact mgt(e,e′′,e′′′,e′′′′),
e′′′ = oper mgt(e,e′′,e′′′,e′′′′),
e′′′′ = wrkr(e,e′′,e′′′,e′′′′) in

if p(e,e′′,e′′′,e′′′′)
then skip
else mgt(merge(e,e′′,e′′′,e′′′′))

end end

The recursive set of e
′..′ = f(e, e′′, e′′′, e′′′′) equations are “solved” by itera-

tive communication between the management groups and the workers. The
arrangement of these equations reflect the organisation and the various func-
tions, stra mgt, tact mgt, oper mgt and wrkr reflect the management.
The frequency of communication between the management groups and the
workers help determine a quality of the result.

The above is just a very crude, and only an illustrative model of manage-
ment and organisation.

We could also have given a generic model, as the above, of management
and organisation but now in terms of, say, CSP processes. Individual managers
are processes and so are workers. The enterprise state, e : E, is maintained by
one or more processes, separate from manager and worker processes. Etcetera.

Management and Organisation: Suggested ℜesearch Topics

ℜ 8. Strategic, Tactical and Operation Management: We made no ex-
plicit references to such “business school of administration” “BA101”
topics as ‘strategic’ and ‘tactical’ management. Study Example 9.2 of
Sect. 9.3.1 of Vol. 3 [89]. Study other sources on ‘Strategic and Tacti-
cal Management’. Question Example 9.2’s attempt at delineating ‘strate-
gic’ and ‘tactical’ management. Come up with better or other proposals,
and/or attempt clear, but not necessarily computable predicates which
(help) determine whether an operation (above they are alluded to as ‘stra’
and ‘tact’) is one of strategic or of tactical concern.
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ℜ 9. Modelling Mgt. and Org.: Applicatively or Concurrently: The
abstraction of ‘management and organisation’ on Page C.3.5 was applica-
tive, i.e., a recursive function — whose auxiliary functions were hopefully
all continuous. Suggest a CSP rendition of “the same idea” ! Relate the
applicative to the concurrent models.

C.3.6 Rules and Regulations

By a rule of an enterprise (an institution) we understand a syntactic piece of
text whose meaning apply in any pair of actual present and potential next
states of the enterprise, and then evaluates to either true or false: the rule
has been obeyed, or the rule has been (or will be, or might be) broken. By
a regulation of an enterprise (an institution) we understand a syntactic piece
of text whose meaning, for example, apply in states of the enterprise where a
rule has been broken, and when applied in such states will change the state,
that is, “remedy” the “breaking of a rule”.

Abstraction of Rules and Regulations

Stimuli are introduced in order to capture the possibility of rule-breaking next
states.

type
Sti, Rul, Reg
RulReg = Rul × Reg
Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool
REG = Θ → Θ

value
meaning: Sti → STI, Rul → RUL, Reg → REG
valid: Sti × Rul → Θ → Bool
valid(sti,rul)θ ≡ (meaning(rul))(θ,meaning(sti)θ)

axiom
∀ sti:Sti,(rul,reg):RulReg,θ:Θ •

∼valid(sti,rul)θ ⇒ meaning(rul)(θ,meaning(reg)θ)

Quality Control of Rules and Regulations

The axiom above presents us with a guideline for checking the suitability of
(pairs of) rules and regulations in the context of stimuli: for every proposed
pair of rules and regulations and for every conceivable stimulus check whether
the stimulus might cause a breaking of the rule and, if so, whether the regu-
lation will restore the system to an acceptable state.
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Rules and Regulations Suggested ℜesearch Topic:

ℜ 10. A Concrete Case: The above sketched a quality control procedure for
‘stimuli, rules and regulations’. It left out the equally important ‘mon-
itoring’ aspects. Develop experimentally two or three distinct models of
domains involving distinct sets of rules and regulations. Then propose and
study concrete implementations of procedures for quality monitoring and
control of ‘stimuli, rules and regulations’.

C.3.7 Human Behaviour

By human behaviour we understand a “way” of representing entities, perform-
ing functions, causing or reacting to events or participating in behaviours. As
such a human behaviour may be characterisable on a per phenomenon or con-
cept basis as lying somewhere in the “continuous” spectrum from (i) diligent:
precise representations, performances, event (re)actions, and behaviour inter-
actions; via (ii) sloppy: occasionally imprecise representations, performances,
event (re)actions, and behaviour interactions; and (iii) delinquent: repeatedly
imprecise representations, performances, event (re)actions, and behaviour in-
teractions; to (iv) criminal: outright counter productive, damaging represen-
tations, performances, event (re)actions, and behaviour interactions.

Abstraction of Human Behaviour

We extend the formalisation of rules and regulations.
Human actions (ACT) lead from a state (Θ) to any one of possible succes-

sor states (Θ-infset) — depending on the human behaviour, whether diligent,
sloppy, delinquent or having criminal intent. The human interpretation of a
rule (Rul) usually depends on the current state (Θ) and can be any one of
a possibly great number of semantic rules (RUL). For a delinquent (...) user
the rule must yield truth in order to satisfy “being delinquent (...)”.

type
ACT = Θ → Θ-infset

value
hum int: Rul → Θ → RUL-infset
hum behav: Sti × Rul → ACT → Θ → Θ-infset
hum behav(sti,rul)(α)(θ) as θs

post θs = α(θ) ∧
∀ θ′:Θ • θ′ ∈ θs ⇒

∃ se rul:RUL • se rul ∈ hum int(rul)(θ) ⇒ se rul(θ,θ′)

Human behaviour is thus characterisable as follows: It occurs in a context of
a stimulus, a rule, a present state (θ) and (the choice of) an action (α:ACT)
which may have either one of a number of outcomes (θs). Thus let θs be the
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possible spread of diligent, sloppy, delinquent or outright criminal successor
states. For each such successor states there must exist a rule interpretation
which satisfies the pair of present an successor states. That is, it must satisfy
being either diligent, sloppy, delinquent or having criminal intent and possibly
achieving that!

Human Behaviour Suggested ℜesearch Topics:

Section 11.8 of Vol. 3 [89] elaborates on a number of ways of describing (i.e.,
modelling) human behaviour.

ℜ 11. Concrete Methodology: Based on the abstraction of human behaviour
given earlier, one is to study how one can partition the set, α(θ), of out-
comes of human actions into ‘diligent’, ‘sloppy’, ‘delinquent’ and ‘criminal’
behaviours — or some such, perhaps cruder, perhaps finer partitioning —
and for concrete cases attempt to formalise these for possible interactive
“mechanisation”.

ℜ 12. Monitoring and Control of Human Behaviour: Based on possible
solutions to the previous research topic one is to study general such inter-
active “mechanisation” of the monitoring and control of human behaviour.

C.3.8 Domain Modelling: Suggested ℜesearch Topic

ℜ 13. Sufficiency of Domain Facets: We have covered five facets: intrinsics,
support technology, management and organisation, rules and regulations
and human behaviour. The question is: are these the only facets, i.e., views
on the domain that are relevant and can be modelled? Another question is:
is there an altogether different set of facets, “cut up”, so-to-speak, “along
other lines of sights”, using which we could likewise cover our models of
domains?

One might further subdivide the above five facets (intrinsics, support tech-
nology, management and organisation, rules and regulations and human be-
haviour) into “sub”-facets. A useful one seems to be to separate out from the
facet of rules and regulations the sub-facet of scripts.

• • •

We have finished our overview of domain facets.

C.4 Domains: Miscellaneous Issues

C.4.1 Domain Theories

• By a domain theory we shall understand a domain description together with
lemmas, propositions and theorems that may be proved about the description
— and hence can be claimed to hold in the domain.
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To create a domain theory the specification language must possess a proof
system. It appears that the essence of possible theorems of — that is, laws
about — domains can be found in laws of physics. For a delightful view of the
law-based nature of physics — and hence possibly also of man-made universes
we refer to Richard Feynman’s Lectures on Physics [155].

Example Theorem of Railway Domain Theory

Let us hint at some domain theory theorems: Kirchhoff’s Law for Rail-
ways: Assume regular train traffic as per a modulo κ hour time table. Then
we have, observed over a κ hour period, that the number of trains arriving at
a station minus the number of trains ending their journey at that station plus
the number of trains starting their journey at that station equals the number
of trains departing from that station.

Why Domain Theories ?

Well, it ought be obvious ! We need to understand far better the laws even of
man-made systems.

Domain Theories: Suggested ℜesearch Topics:

ℜ 14. Domain Theories: We need to experimentally develop and analyse a
number of suggested theorems for a number of representative domains in
order to possibly ‘discover’ some meta-theorems: laws about laws !

C.4.2 Domain Descriptions and Requirements Prescriptions

From Domains to Requirements

Requirements prescribe what “the machine”, i.e., the hardware + software
is expected to deliver. We show, in Vol. 3, Part V, Requirements Engineer-
ing, and in particular in Chap. 19, Sects. 19.4–19.5 how to construct, from a
domain description, in collaboration with the requirements stakeholders, the
domain (i.e., functional) requirements, and the interface (i.e., user) require-
ments.

Domain requirements are those requirements which can be expressed only
using terms from the domain description. Interface requirements are those
requirements which can be expressed only using terms from both the domain
description and the machine — the latter means that terms of computers and
software are also being used.

Domain requirements are developed as follows: Every line of the domain
description is inspected by both the requirements engineer and the require-
ments stakeholders. For each line the first question is asked: Shall this line
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of description prescribe a property of the requirements ? If so it is “copied”
over to the requirements prescription. If not it is “projected away”. In sim-
ilar rounds the following questions are then raised and answered: Shall the
possible generality of the description be instantiated to something more con-
crete ? Shall possible non-determinism of the description be made less non-
deterministic, more deterministic ? Shall the domain be “extended” to allow
for hitherto infeasible entities, functions, events and behaviours ? Shall the
emerging requirements prescription be “fitted” to elsewhere emerging require-
ments prescriptions ? Similar “transformation” steps can be applied in order
to arrive at (data initialisation and refreshment, GUI, dialogue, incremen-
tal control flow, machine-to-machine communication, etc.) interface require-
ments.

Domain and Interface Requirements: Suggested ℜesearch Topics

ℜ 15. Domain and Interface Requirements: Vol. 3, Part V, Sects. 19.4–
19.5 give many examples of requirements “derivation” principles and tech-
niques. But one could wish for more research in this area: more detailed
principles and techniques, on examples across a wider spectrum of problem
frames.

Machine Requirements

The issues of machine requirements are listed below but are not treated in
this paper.

• Performance
⋆ space
⋆ time

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Integrity
⋆ Reliability
⋆ Safety
⋆ Security

• Maintainability

⋆ adaptive
⋆ corrective
⋆ perfective
⋆ preventive
⋆ extensional

• Platform
⋆ development
⋆ demonstration
⋆ execution
⋆ maintenance

• Documentation ...

See Sect. 19.6 of Vol. 3.

C.4.3 Requirements-Specific Domain Software Development
Models

A long term, that one: ‘requirements-specific domain software development
models’ ! The term is explained next.
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Software “Intensities”

One can speak of ‘software intensity’. Here are some examples. Compilers rep-
resent ‘translation’ intensity. ‘Word processors’, ‘spread sheet systems’, etc.,
represent “workpiece” intensity. Databases represent ‘information’ intensity.
Real-time embedded software represent ‘reactive’ intensity. Data communica-
tion software represent connection intensity. Etcetera.

“Abstract” Developments

Let R denote the “archetypal” requirements for some specific software ‘in-
tensity’. Many different domains {D1,D2, . . . ,Di, . . . ,Dj , . . .} may be subject
to requirements R-like prescriptions. For each such a set of possible software,
Si1 , Si2 , . . . , Siji

, . . ., may result. The “pseudo-formula” below attempts, al-
beit informally, to capture this situation:






D1

D2

. . .
Di

. . .
Dk

. . .






∼ R 7→





{S11
,S12

, . . . ,S1j1
, . . .}

{S11
,S12

, . . . ,S1j2
, . . .}

. . .
{Si1 ,Si2 , . . . ,Siji

, . . .}
. . .

{Sk1
,Sk2

, . . . ,Skjk
, . . .}

. . .





Several different domains, to wit: road nets and railway nets, can be given
the “same kind” of (road and rail) maintenance requirements leading to in-
formation systems. Several different domains, to wit: road nets, railway nets,
shipping lanes, or air lane nets, can be given the “same kind” of (bus, train,
ship, air flight) monitoring and control requirements (leading to real-time em-
bedded systems). But usually the specific requirements skills determine much
of the requirements prescription work and especially the software design work.

Requirements-Specific Devt. Models: Suggested ℜesearch Topics

ℜ 16j. Requirements-Specific Development Models, RSDMj : We see
these as grand challenges: to develop and research a number of requirements-
specific domain (software) development models RSDMj .

The “pseudo-formal” [Π(Σi Di)] R [Σi,j Sij ] expression attempts to capture
an essence of such research: The Π “operator” is intended to project those
domains, Di, in the sum, Σi Di, for which R may be relevant. The research ex-
plores the projections Π , the possible Rs and the varieties of software Σi,j Sij .

C.4.4 On Two Reasons for Domain Modelling

Thus there seems to be two entirely different, albeit, related reasons for do-
main modelling: one justifies domain modelling on engineering grounds, the
other on scientific grounds.
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An Engineering Reason for Domain Modelling

In an e-mail, in response, undoubtedly, to my steadfast, perhaps conceived as
stubborn insistence, on domain engineering, Sir Tony Hoare summed up his
reaction, in summer of 2006, to domain engineering as follows, and I quote5:

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any
good software design in the area. They describe possible places to define the
system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be
made in any embedded software design, especially one that is going to be
formally proved.

3. They describe6 the7 whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
in any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in some depth, in Vol. 3 [89]
of my three volume book.

A Science Reason for Domain Modelling

So, inasmuch as the above-listed issues of Sect. C.4.4, so aptly expressed in
Tony’s mastery, also of concepts (through his delightful mastery of words), are
of course of utmost engineering importance, it is really, in our mind, the science
issues that are foremost: We must first and foremost understand. There is no
excuse for not trying to first understand. Whether that understanding can
be “translated” into engineering tools and techniques is then another matter.
But then, of course, it is nice that clear and elegant understanding also leads
to better tools and hence better engineering. It usually does.

Domains Versus Requirements-Specific Development Models

Sir Tony’s five statements are more related, it seems, to the concept of
requirements-specific domain software development models than to merely
the concept of domain models. His statements help us formulate the research
programme ℜ 16 of requirements specific domain software development mod-
els. When, in his statements, you replace his use of the term ‘models’ with
our term ‘requirements-specific development models based on domain models’,
then “complete harmony” between the two views exists.

5E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006
6read: imply
7read: a
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C.5 Conclusion

C.5.1 What Has Been Achieved ?

I set out to focus on what I consider the crucial modelling stage of describing
domain facets and to identify a number of their research issues. I’ve done that.
Cursorily, the topic is “near-holistic”, so an overview is all that can be done.
The issue is that of that of a comprehensive methodology. Hence the “holism”
challenge.

C.5.2 What Needs to Be Achieved ?

Well, simply, to get on with that research. There are two sides to it: the 16
research topics mentioned above, and the ones mentioned below. The latter
serves as a carrier for the former research.

Domain Theories: Grand Challenge ℜesearch Topics

The overriding research topic is that of:

ℜ 17i. Domain Models: Di: We see this as a set of grand challenges: to develop
and research a family of domain models Di.
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From Domains to Requirements:

A Rigorous Approach

This appendix chapter constitutes the invited paper for The Ugo
Montanari Festschrift [95, to appear], May 2008, to be published by
Springer, editors: Pierpaolo Degano, Jose Meseguer and Rocco De
Nicola.
Permission to bring this paper here is being applied for.

Abstract This is a discursive paper. That is, it shows some formulas (but only
as examples so that the reader may be convinced that there is, perhaps, some
substance to our claims), no theorems, no proofs. Instead it postulates. The
postulates are, however, firmly rooted, we think, in Vol.3 (‘Domains, Require-
ments and Software Design’) of the three volume book ‘Software Engineering’
(Springer March 2006) [87–89].

First we present a summary of essentials of domain engineering, its mo-
tivation, and its modelling of abstractions of domains through the modelling
of the intrinsics, support technologies, management and organisation, rules
and regulations, scripts, and human behaviour of whichever domain is being
described.

Then we present the essence of two (of three) aspects of requirements:
the domain requirements and the interface requirements prescriptions as they
relate to domain descriptions and we survey the basic operations that ”turn”
a domain description into a domain requirements prescription: projection,
instantiation, determination, extension and fitting. An essence of interface
requirements is also presented: the “merging” of shared entities, operations,
events and behaviours of the domain with those of the machine (i.e., the
hardware and software to be designed).

An objective of the paper is to summarise my work in recent years. Another
objective is make a plea for what I consider a more proper approach to software
development.
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D.1 Introduction

This paper is not a computer science paper — where by computer science,
sometimes strangely referred to even as theoretical computer science, we mean
the study and knowledge of the things that may exist inside computers.

The paper is more of a computing science paper — where by computing
science we mean the study and knowledge of how to construct the things that
can exist inside computers.

The borderline between these two disciplines is sharp, but most interest-
ing papers which purports to be computing science papers also, oftentimes
strongly, contains text of computer science nature.

Some computer science papers present new models of computation and/or
analyses and theorems about such models.

This paper presents a model of early stages of software development that
is not conventional. The model is presented in two alternating ways: (i) we
present some of the principles and techniques of that unconventional software
development method, and (ii) we present — what in the end, that is, taken
across the paper, amounts to a relatively large example.

One aspect of the non-conventionality of the present paper is its total lack
of ‘references to related work’ by others. Instead we shall solely refer, now, to
our own work related to the topic of the current paper. In those referenced
works you should find ‘references to related work’.

The topic pair of domain and of requirements engineering — on which the
present paper relies — is treated in depth in [89, Chaps. 8–24, Pages 193–524
(!)]. Recent papers elaborate on related (possible) research topics [90], or on
software management [93, to appear], or gives more extensive summaries on
domain engineering, one without a leading, extensive example but with a more
proper discussion of domain modelling issues and ‘related work’ [94, to ap-
pear], and one with a considerably larger example [96, to appear (the example
appendix, pages 32–97, illustrates a Container Line Industry domain)].

In summary: the objective of the present paper is to relate domain en-
gineering to requirements engineering and to show that one can obtain an
altogether different basis for requirements engineering.

D.2 The Triptych Principle of Software Engineering

We start, unconventionally, by enunciating a principle. The principle ex-
presses how we see software development as centrally consisting of three
“programming-like” phases based on the following observation: before soft-
ware can be designed we must understand its requirements, and before re-
quirements can be prescribed we must understand the application domain.
We therefore see software development proceeding, ideally, in three phases: a
first phase of domain engineering, a second phase of requirements engineering,
and a third phase of software design.
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D.3 Domain Engineering 219

The first paragraphs of Sects. D.3 and D.4 explain what the objectives of
domain engineering and requirements engineering are. The sections otherwise
outline major development stages and steps of these two phases.

D.3 Domain Engineering

The objective of domain engineering is to create a domain description. A
domain description specifies entities, functions, events and behaviours of the
domain such as the domain stakeholders think they are. A domain descrip-
tion thus (indicatively [206]) expresses what there is. A domain description
expresses no requirements let alone anything about the possibly desired (re-
quired) software.

D.3.1 Stages of Domain Engineering

To develop a proper domain description necessitates a number of development
stages: (i) identification of stakeholders, (ii) domain knowledge acquisition,
(iii) business process rough-sketching, (iv) domain analysis, (v) domain mod-
elling: developing abstractions and verifying properties, (vi) domain validation
and (vii) domain theory building.

Business process (BP) rough-sketching amount to rough, narrative outlines
of the set of business processes as experienced by each of the stakeholder
groups. BP engineering is in contrast to BR re-engineering (BPR) which we
shall cover later, but briefly in Sect. D.4.2.

We shall only cover domain modelling.

D.3.2 First Example of a Domain Description

We exemplify a transportation domain. By transportation we shall mean the
movement of vehicles from hubs to hubs along the links of a net.

Rough Sketching — Business Processes

The basic entities of the transportation “business” are the (i) nets with their
(ii) hubs and (iii) links, the (iv) vehicles, and the (v) traffic (of vehicles on the
net). The basic functions are those of (vi) vehicles entering and leaving the
net (here simplified to entering and leaving at hubs), (vii) for vehicles to make
movement transitions along the net, and (viii) for inserting and removing links
(and associated hubs) into and from the net. The basic events are those of
(ix) the appearance and disappearance of vehicles, and (x) the breakdown
of links. And, finally, the basic behaviours of the transportation business are
those of (xi) vehicle journey through the net and (xii) net development &
maintenance including insertion into and removal from the net of links (and
hubs).
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220 D From Domains to Requirements: A Rigorous Approach

Narrative — Entities

By an entity we mean something we can point to, i.e., something manifest, or
a concept abstracted from, such a phenomenon or concept thereof.

Among the many entities of transportation we start with nets, hubs, and links.
A transportation net consists of hubs and links. Hubs and links are different

kinds of entities. Conceptually hubs (links) can be uniquely identified. From
a link one can observe the identities of the two distinct hubs it links. From a
hub one can observe the identities of the one or more distinct links it connects.

Other entities such as vehicles and traffic could as well be described. Please
think of these descriptions of entities as descriptions of the real phenomena
and (at least postulated) concepts of an actual domain.

Formalisation — Entities

type
H, HI, L, LI
N = H-set × L-set

value
obs HI: H→HI, obs LI: L→LI,
obs HIs: L→HI-set,obs LIs: H→LI-set

axiom
∀ (hs,ls):N •

card hs≥2 ∧ card ls≥1 ∧
∀ h:H • h ∈ hs ⇒

∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI() ∧ obs HI(h) ∈ obs HIs(l′) ∧

∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

value
xtr HIs: N → HI-set,xtr LIs: N → LI-set

Narrative — Operations

By an operation (of a domain) we mean a function that applies to entities of
the domain and yield entities of that domain — whether these entities are
actual phenomena or concepts of these or of other phenomena.

Actions (by domain stakeholders) amount to the execution of operations.

Among the many operations performed in connection with transportation
we illustrate some on nets. To a net one can join new link in either of three
ways: The new link connects two new hubs — so these must also be joined ,
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D.3 Domain Engineering 221

or The new link connects a new hub with an existing hub — so it must also
be joined, or The new link connects two existing hubs. In any case we must
either provide the new hubs or identify the existing hubs.

From a net one can remove a link. Three possibilities now exists: The
removed link would leave its two connected hubs isolated unless they are also
removed — so they are; The removed link would leave one of its connected
hubs isolated unless it is also removed — so it is; or The removed link connects
two hubs into both of which other links are connected — so all is OK. (Note
our concern for net invariance.) Please think of these descriptions of operations
as descriptions of the real phenomena and (at least postulated) concepts of an
actual domain. (Thus they are not prescriptions of requirements to software
let alone specifications of software operations.)

Formalisation — Operations

type
NetOp = InsLnk | RemLnk
InsLnk == 2Hs(h1:H,l:L,h2:H)|1H(hi:HI,l:L,h:H)|0H(hi1:HI,l:L,hi2:HI)
RemLnk == RmvL(li:LI)

value

int NetOp: NetOp → N
∼
→ N

pre int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) →
{h1,h2}∩ hs={} ∧ l6∈ ls ∧
obs HIs(l)={obs HI(h1),obs HI(h2)} ∧
{obs HI(h1),obs HI(h2)}∩ xtr HIs(hs)={} ∧
obs LIs(h1)={li} ∧ obs LIs(h2)={li},

1H(hi,l,h) →
h6∈ hs ∧ obs HI(h)6∈ xtr HIs(hs,ls) ∧
l6∈ ls ∧ obs LI(l)6∈ xtr LIs(hs,ls) ∧
∃ h′:H•h′ ∈ hs∧obs HI(h′)=hi,

0H(hi1,l,hi2) →
l6∈ ls ∧ hi1 6=hi2 ∧ {hi1,hi2}⊆∈ xtr HIs(hs,ls) ∧
∃ h1,h2:H•{h1,h2}∈ hs∧{hi1,hi2}={obs HI(h1),obs HI(h2)},

RmvL(li) → ∃ l:L • l ∈ ls ∧ obs LI(l)=li
end

int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) → (hs ∪ {h1,h2},ls ∪ {l}),
1H(hi,l,h) →

(hs\{xtr H(hi,hs)}∪{h,aLI(xtr H(hi,hs),obs LI(l))},ls ∪ {l}),
0H(hi1,l,hi2) →
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222 D From Domains to Requirements: A Rigorous Approach

let hsδ =
{aLI(xtr H(hi1,hs),obs LI(l)),aLI(xtr H(hi2,hs),obs LI(l))} in

(hs\{xtr H(hi1,hs),xtr H(hi2,hs)}∪ hsδ,ls ∪ {l}) end,
RmvL(li) → ...

end

xtr H: HI × H-set
∼
→ H

xtr H(hi,hs) ≡ let h:H • h ∈ hs ∧ obs HI(h)=hi in h end
pre ∃ h:H • h ∈ hs ∧ obs HI(h)=hi

aLI: H × LI → H, sLI: H × LI → H
aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ ...

sLI(h′,li) as h
pre li ∈ obs LIs(h′)
post obs LIs(h) = obs LIs(h′)\{li} ∧ ...

The ellipses, . . . , shall indicate that previous properties of h holds for h′.

Narrative — Events

By an event of a domain we shall here mean an instantaneous change of domain
state (here, for example, “the” net state) not directly brought about by some
willed action of the domain but either by “external” forces or implicitly, as
an unintended result of a willed action.

Among the “zillions” of events that may occur in transportation we single
out just one. A link of a net ceases to exist as a link.1

In order to model transportation events we — ad hoc — introduce a trans-
portation state notion of a net paired with some — ad hoc — “conglomerate”
of remaining state concepts referred to as ω : Ω.

Formalisation — Events

type
Link Disruption == LiDi(li:LI)

channel
x:(Link Disruption|...)

value
transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡
...
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D.3 Domain Engineering 223

⌈⌉ let xv = x? in
case xv of

LiDi(li) → (int NetOp(RmvL(li))(hs,ls),line dis(ω))
...

end end
⌈⌉ ...

line dis: Ω → Ω

Narrative — Behaviours

By a behaviour we mean a possibly infinite sequence of zero, one or more
actions and events.

We illustrate just one of very many possible transportation behaviours.
A net behaviour is a sequence of zero, one or more executed net operations:

the openings (insertions) of new links (and implied hubs) and the closing
(removals) of existing links (and implied hubs), and occurrences of external
events (limited here to link disruptions).

Formalisation — Behaviours

channel
x:...

value
transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡
...
⌈⌉ let xv = x? in case xv of ... end end
⌈⌉ let op:NetOp • pre IntNetOp(op)(n) in IntNetOp(op)(n) end
...

transportation: (N × Ω) → in x Unit
transportation(n,ω) ≡

let (n′,ω′) = transportation transition(n,ω) in
transportation (n′,ω′) end

D.3.3 Domain Modelling: Describing Facets

In this, a major, methodology section of the current paper we shall focus on
principles and techniques domain modelling, that is, developing abstractions
and verifying properties. We shall only cover ‘developing abstractions’.
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224 D From Domains to Requirements: A Rigorous Approach

Domain modelling, as we shall see, entails modelling a number of domain
facets.

By a domain facet we mean one amongst a finite set of generic ways of
analysing a domain: a view of the domain, such that the different facets cover
conceptually different views, and such that these views together cover the
domain.

These are the facets that we find “span” a domain in a pragmatically
sound way: intrinsics, support technology, management & organisation, rules
& regulations, scripts and human behaviour: We shall now survey these facets.

Domain Intrinsics

By domain intrinsics we mean those phenomena and concepts of a domain
which are basic to any of the other facets (listed earlier and treated, in some
detail, below), with such domain intrinsics initially covering at least one spe-
cific, hence named, stakeholder view.

In the large example of Sect. D.3.2, we claim that the net, hubs and links were
intrinsic phenomena of the transportation domain; and that the operations of
joining and removing links were not: one can explain transportation without
these operations. We will now augment the domain description of Sect. D.3.2
with an intrinsic concept, namely that of the states of hubs and links: where
these states indicate desirable directions of flow of movement.

A Transportation Intrinsics — Narrative

With a hub we can associate a concept of hub state. The pragmatics of a hub
state is that it indicates desirable directions of flow of vehicle movement from
(incoming) links to (outgoing) links. The syntax of indicating a hub state is
(therefore) that of a possibly empty set of triples of two link identifiers and
one hub identifier where the link identifiers are those observable from the
identified hub.

With a link we can associate a concept of link state. The pragmatics of a
link state is that it indicates desirable directions of flow of vehicle movement
from (incoming, identified) hubs to (outgoing, identified) hubs along an identi-
fied link. The syntax of indicating a link state is (therefore) that of a possibly
empty set of triples of pairs of identifiers of link connected hub and a link
identifier where the hub identifiers are those observable from the identified
link.

A Transportation Intrinsics — Formalisation

type
X = LI×HI×LI [ crossings of a hub ]
P = HI×LI×HI [ paths of a link ]
HΣ = X-set [ hub states ]
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D.3 Domain Engineering 225

LΣ = P-set [ link states ]
value

obs HΣ: H → HΣ
obs LΣ: L → LΣ
xtr Xs: H → X-set, xtr Ps: L → P-set
xtr Xs(h) ≡ {(li,hi,li′) | li,li′:LI,hi:HI•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
xtr Ps(l) ≡ {(hi,li,hi′) | hi,hi′:HI,li:LI•{hi,hi′}=obs HIs(l)∧li=obs LI(l)}

axiom
∀ n:N,h:H;l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒

obs HΣ(h)⊆xtr Xs(h) ∧ obs LΣ(l)⊆xtr Ps(l)

Domain Support Technologies

By domain support technologies we mean ways and means of implementing
certain observed phenomena or certain conceived concepts.

A Transportation Support Technology Facet — Narrative, 1

Earlier we claimed that the concept of hub and link states was an intrinsics
facet of transport nets. But we did not describe how hubs or links might change
state, yet hub and link state changes should also be considered intrinsic facets.
We there introduce the notions of hub and link state spaces and hub and link
state changing operations. A hub (link) state space is the set of all states
that the hub (link) may be in. A hub (link) state changing operation can be
designated by the hub and a possibly new hub state (the link and a possibly
new link state).

A Transportation Support Technology Facet — Formalisation, 1

type
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ
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226 D From Domains to Requirements: A Rigorous Approach

A Transportation Support Technology Facet — Narrative, 2

Well, so far we have indicated that there is an operation that can change
hub and link states. But one may debate whether those operations shown are
really examples of a support technology. (That is, one could equally well claim
that they remain examples of intrinsic facets.) We may accept that and then
ask the question: How to effect the described state changing functions ? In
a simple street crossing a semaphore does not instantaneously change from
red to green in one direction while changing from green to red in the cross
direction. Rather there is are intermediate sequences of green/yellow/red and
red/yellow/green states to help avoid vehicle crashes and to prepare vehicle
drivers. Our “solution” is to modify the hub state notion.

A Transportation Support Technology Facet — Formalisation, 2

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡ {(li,hi,li′,c) |

li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

A Transportation Support Technology Facet — Narrative, 3

We consider the colouring, or any such scheme, an aspect of a support tech-
nology facet. There remains, however, a description of how the technology
that supports the intermediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of
“stable” (that is non-yellow coloured) hub states (hσi,hσf ) to well-ordered se-
quences of intermediate “un-stable’ (that is yellow coloured) hub states paired
with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉
and so that each of these intermediate states can be set, according to the time
interval information,2 before the final hub state (hσf ) is set.

A Transportation Support Technology Facet — Formalisation, 3

type
TI [ time interval ]
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Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema,
chg HΣ: H × HΣ → H,
chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in
let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

Domain Management & Organisation

By domain management we mean people (such decisions) (i) who (which)
determine, formulate and thus set standards (cf. rules and regulations, a later
lecture topic) concerning strategic, tactical and operational decisions; (ii) who
ensure that these decisions are passed on to (lower) levels of management, and
to “floor” staff; (iii) who make sure that such orders, as they were, are indeed
carried out; (iv) who handle undesirable deviations in the carrying out of
these orders cum decisions; and (v) who “backstop” complaints from lower
management levels and from floor staff.

We use the connective ‘&’ (ampersand) in lieu of the connective ‘and’ in
order to emphasise that the joined concepts (A & B) hang so tightly together
that it does not make sense to discuss one without discussing the other.

By domain organisation we mean the structuring of management and non-
management staff levels; the allocation of strategic, tactical and operational
concerns to within management and non-management staff levels; and hence
the “lines of command”: who does what and who reports to whom — admin-
istratively and functionally.

A Transportation Management & Organisation Facet — Narrative

In the previous section on support technology we did not describe who or
which “ordered” the change of hub states. We could claim that this might
very well be a task for management.

(We here look aside from such possibilities that the domain being modelled
has some further support technology which advices individual hub controllers
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as when to change signals and then into which states. We are interested in
finding an example of a management & organisation facet — and the upcoming
one might do!)

So we think of a ‘net hub state management’ for a given net. That man-
agement is divided into a number of ‘sub-net hub state managements’ where
the sub-nets form a partitioning of the whole net. For each sub-net man-
agement there are two kinds management interfaces: one to the overall hub
state management, and one for each of interfacing sub-nets. What these man-
agements do, what traffic state information they monitor, etcetera, you can
yourself “dream” up. Our point is this: We have identified a management
organisation.

A Transportation Management & Organisation Facet — Formalisation

type
HIsLIs = HI-set × LI-set
MgtNet′ = HIsLIs × N
MgtNet = {| mgtnet:MgtNet′ • wf MgtNet(mgtnet)|}
Partitioning′ = HIsLIs-set × N
Partitioning = {|partitioning:Partitioning′•wf Partitioning(partitioning)|}

value
wf MgtNet: MgtNet′ → Bool
wf MgtNet((his,lis),n) ≡

[ The his component contains all the hub ids. of links identified in lis ]
wf Partitioning: Partitioning′ → Bool
wf Partitioning(hisliss,n) ≡

∀ (his,lis):HIsLIs • (his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[ no sub−net overlap and together they ′′span′′ n ]

Etcetera.

Domain Rules & Regulations

Domain Rules

By a domain rule we mean some text (in the domain) which prescribes how
people or equipment are expected to behave when dispatching their duty,
respectively when performing their function.

Domain Regulations

By a domain regulation we mean some text (in the domain) which prescribes
what remedial actions are to be taken when it is decided that a rule has not
been followed according to its intention.
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D.3 Domain Engineering 229

A Transportation Rules & Regulations Facet — Narrative

The purpose of maintaining an appropriate set of hub (and link) states may
very well be to guide traffic into “smooth sailing” — avoiding traffic accidents
etc. But this requires that vehicle drivers obey the hub states, that is, the
signals. So there is undoubtedly a rule that says: Obey traffic signals.And, in
consequence of human nature, overlooking or outright violating signals there
is undoubtedly a regulation that says: Violation of traffic signals is subject to
fines and . . . .

A Transportation Rules & Regulations Facet — Formalisation

We shall, regretfully, not show any formalisation of the above mentioned rule
and regulation. To do a proper job at such a formalisation would require that
we formalise traffics, say as (a type of) continuous functions from time to
pairs of net and vehicle positions, that we define a number of auxiliary (traffic
monitoring) functions, including such which test whether from one instance
of traffic, say at time t to a “next” instance of time, t′, some one or more
vehicles have violated the rule3, etc. The “etcetera” is ominous: It implies
modelling traffic wardens (police trying to apprehend the “sinner”), ‘etc.’ !
We rough-sketch an incomplete formalisation.

type
T [ time ]
V [ vehicle ]
Rel Distance = {| f:Rel • 0<f<1 |}
VPos == VatH(h:H) | VonL(hif:HI,l:L,hit:HI,rel distance:Rel Distance)
Traffic = T → (N × (V →m VPos))

value
violations: Traffic → (T×T) → V-set

Vehicle positions are either at hubs or some fraction f down a link (l) from
some hub (hit) towards the connected hub (hit). Traffic maps time into vehicle
positions. We omit a lengthy description of traffic well-formedness.

Domain Scripts

By a domain script we mean the structured, almost, if not outright, formally
expressed, wording of a rule or a regulation that has legally binding power,
that is, which may be contested in a court of law.
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A Transportation Script Facet — Narrative

Regular buses ply the network according to some time table. We consider a
train time table to be a script. Let us take the following to be a sufficiency
narrative description of a train time table. For every train line, identified by
a line number unique to within, say a year of operation, there is a list of train
hub visits. A train hub visit informs of the intended arrival and departure
times at identified hubs (i.e., train stations) such that “neighbouring” hub
visits, (tai , hi, tdi) and (taj , hj, tdj ), satisfy the obvious that a train cannot
depart before it has arrived, and cannot arrive at the next, the “neighbouring”
station before it has departed from the previous station, in fact, taj − tdi must
be commensurate with the distance between the two stations.

A Transportation Script Facet — Formalisation

type
TLin
HVis = T × HI × T
Journey′ = HVis∗, Journey = {|j:Journey′

•len j≥2|}
TimTbl′ = (TLin →m Journey) × N
TimTbl = {| timtbl:TimTbl′ • wf TimTbl(timtbl) |}

value
wf TimTbl: TimTbl′ → Bool
wf TimTbl(tt,n) ≡

[ all hubs designated in tt must be hubs of n ]
[ and all journeys must be along feasible links of n ]
[ and with commensurate timing net n constraints ]

Domain Human Behaviour

By human behaviour we mean any of a quality spectrum of carrying out as-
signed work: from (i) careful, diligent and accurate, via (ii) sloppy dis-
patch, and (iii) delinquent work, to (iv) outright criminal pursuit.

Transportation Human Behaviour Facets — Narrative

We have already exemplified aspects of human behaviour in the context of the
transportation domain, namely vehicle drivers not obeying hub states. Other
example can be given: drivers moving their vehicle along a link in a non-open
direction, drivers waving their vehicle off and on the link, etcetera. Whether
rules exists that may prohibit this is, perhaps, irrelevant. In any case we can
“speak” of such driver behaviours — and then we ought formalise them !
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D.4 Requirements Engineering 231

Transportation Human Behaviour Facets — Formalisation

But we decide not to. For the same reason that we skimped proper formali-
sation of the violation of the “obey traffic signals” rule. But, by now, you’ve
seen enough formulas and you ought trust that it can be done.

value

off on link: Traffic → (T×T)
∼
→ (V →m VPos×VPos)

wrong direction: Traffic → T
∼
→ (V →m VPos)

D.3.4 Discussion

We have given a mere glimpse of a domain description. A full description of
a reasonably “convincing” domain description will take years to develop and
will fill many pages (hundreds, . . . (!)).

D.4 Requirements Engineering

The objective of requirements engineering is to create a requirements prescrip-
tion: A requirements prescription specifies externally observable properties of
entities, functions, events and behaviours of the machine such as the require-
ments stakeholders wish them to be. The machine is what is required: that
is, the hardware and software that is to be designed and which are to satisfy
the requirements. A requirements prescription thus (putatively [206]) expresses
what there should be. A requirements prescription expresses nothing about
the design of the possibly desired (required) software. We shall show how a
major part of a requirements prescription can be “derived” from “its” prereq-
uisite domain description.

The Example Requirements

The domain was that of transportation. The requirements is now basically
related to the issuance of tickets upon vehicle entry to a toll road net4 and
payment of tickets upon the vehicle leaving the toll road net both issuance
and collection/payment of tickets occurring at toll booths5 which are hubs
somehow linked to the toll road net proper. Add to this that vehicle tickets
are sensed and updated whenever the vehicle crosses an intermediate toll road
intersection.
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232 D From Domains to Requirements: A Rigorous Approach

tp1 tp2 tp3 tpntpn−1tpj

l12

l21 l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

Fig. D.1. A simple, linear toll road net:
tpi: toll plaza i,
ti1, tin: terminal intersection k,
iik: intermediate intersection k, 1<k<n

lxy: toll-way link from ix to iy , y=x+1 or y=x-1 and 1≤x<n.

D.4.1 Stages of Requirements Engineering

The following are the stages of requirements engineering: stakeholder identi-
fication, business process re-engineering, domain requirements development, in-
terface development, machine requirements development, requirements verifi-
cation and validation, and requirements satisfiability and feasibility.

The domain requirements development stage consists of a number of steps:
projection, instantiation, determination, extension, and fitting

We shall basically only cover business process re-engineering, domain re-
quirements development, and interface development

D.4.2 Business Process Re-engineering

Business process re-engineering (BPR) re-evaluates the intrinsics, support
technologies, management & organisation, rules & regulations, scripts, and
human behaviour facets while possibly changing some or all of these, that is,
possibly rewriting the corresponding parts of the domain description.

Re-engineering Domain Entities

The net is arranged as a linear sequence of two or more (what we shall call)
intersection hubs. Each intersection hub has a single two-way link to (what
we shall call) an entry/exit hub (toll plaza); and each intersection hub has
either two or four one-way (what we shall call) toll-way links: the first and
the last intersection hub (in the sequence) has two toll-way links and all (what
we shall call) intermediate intersections has four toll-way links. We introduce
a pragmatic notion of net direction: “up” and “down” the net, “from one end
to the other”. This is enough to give a hint at the re-engineered domain.
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D.4 Requirements Engineering 233

Re-engineering Domain Operations

We first briefly sketch the tollgate Operations. Vehicles enter and leave the
toll-way net only at entry/exit hubs (toll plazas). Vehicles collect and re-
turn their tickets from and to tollgate ticket issuing, respectively payment
machines. Tollgate ticket issuing machines respond to sensor pressure from
“passing” vehicles or by vehicle drivers pressing ticket issuing machine button
by issuing ticket. Tollgate payment machines accept credit cards, bank notes
or coins in designated currencies as payment and returns any change.

We then briefly introduce and sketch an operation performed when vehicles
cross intersections: The vehicle is assume to possess the ticket issued upon
entry (in)to the net (at a tollgate). At the crossing of each intersection, by
a vehicle, its ticket is sensed and is updated with the fact that the vehicle
crossed the intersection.

The updated domain description section on support technology will detail
the exact workings of these tollgate and internal intersection machines and
the domain description section on human behaviour will likewise explore the
man/machine facet.

Re-engineering Domain Events

The intersections are highway-engineered in such a way as to deter vehicle
entry into opposite direction toll-way links, yet, one never knows, there might
still be (what we shall call ghost) vehicles, that is vehicles which have somehow
defied the best intentions, and are observed moving along a toll-way link in
the wrong direction.

Re-engineering Domain Behaviours

The intended behaviour of a vehicle of the toll-way is to enter at an entry hub
(collecting a ticket at the toll gate), to move to the associated intersection,
to move into, where relevant, either an upward or a downward toll-way link,
to proceed (i.e., move) along a sequence of one or more toll-way links via
connecting intersections, until turning into an exit link and leaving the net at
an exit hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed
to requirements prescription proper.

D.4.3 Domain Requirements Prescription

A domain requirements prescription is that part of the overall requirements
prescription which can be expressed solely using terms from the domain de-
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234 D From Domains to Requirements: A Rigorous Approach

scription. Thus to construct the domain requirements prescription all we need
is collaboration with the requirements stakeholders (who, with the require-
ments engineers, developed the BPR) and the possibly rewritten (resulting)
domain description.

Domain Projection

By domain projection we mean a subset of the domain description, one which
leaves out all those entities, functions, events, and (thus) behaviours that
the stakeholders do not wish represented by the machine.

The resulting document is a partial domain requirements prescription.

Domain Projection — Narrative

We copy the domain description and call the copy a 0th version domain re-
quirements prescription. From that document we remove all mention of link
insertion and removal functions, to obtain a 1st version domain requirements
prescription.6

Domain Projection — Formalisation

We do not show the resulting formalisation.

Domain Instantiation

By domain instantiation we mean a refinement of the partial domain require-
ments prescription, resulting from the projection step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours
of the partial domain requirements prescription more concrete, more specific.
Instantiations usually render these concepts less general.

Domain Instantiation — Narrative

The 1st version domain requirements prescription is now updated with respect
to the properties of the toll way net: We refer to Fig. D.1 and the preliminary
description given in Sect. D.4.2. There are three kinds of hubs: tollgate hubs
and intersection hubs: terminal intersection hubs and proper, intermediate
intersection hubs. Tollgate hubs have one connecting two way link. linking
the tollgate hub to its associated intersection hub. Terminal intersection hubs
have three connecting links: one, a two way link, to a tollgate hub, one one
way link emanating to a next up (or down) intersection hub, and one one
way link incident upon this hub from a next up (or down) intersection hub.
Proper intersection hubs have five connecting links: one, a two way link, to a
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D.4 Requirements Engineering 235

tollgate hub, two one way links emanating to next up and down intersection
hubs, and two one way links incident upon this hub from next up and down
intersection hub. (Much more need be narrated.) As a result we obtain a 2nd
version domain requirements prescription.

Domain Instantiation — Formalisation, Toll Way Net

type
TN = ((H × L) × (H × L × L))∗ × H × (L × H)

value
abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}
tn links: TN → L-set
tn links(hll, ,(ln, )) ≡

{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk
lnk

lkn

thn

ln

hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. D.2. A simple, linear toll road net:
thi: toll plaza i,
h1, hn: terminal intersections,
h2, hj , h

′

j , hk: intermediate intersections, 1<j≤k, k=n-1
lxy, lyx: toll-way link from hx to hy and from hy to hx, 1≤x<n.
lx−1x, lxx−1: toll-way link from hx−1 to hx and hx to hx−1, 1≤x<n,
dashed links are not in formulas.
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236 D From Domains to Requirements: A Rigorous Approach

Domain Instantiation — Formalisation, Well-formedness

type
LnkM == plaza | way

value
wf TN: TN → Bool
wf TN(tn:(hll,h,(ln,hn))) ≡

wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

value
wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool
wf Toll Ways(hll,h) ≡

∀ j:Nat • {j,j+1}⊆inds hll ⇒
let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),

( ,(hj′, , )) = hll(j+1) in
wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in
wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

value
wf Toll Lnk: (H×L×H) → LnkM → Bool
wf Toll Lnk(h,l,h′)(m) ≡

obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),
(obs HI(h′),obs LI(l),obs HI(h))} ∧

obs Σ(l) = case m of
plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

Domain Determination

By domain determination we mean a refinement of the partial domain require-
ments prescription, resulting from the instantiation step, in which the refine-
ments aim at rendering the entities, functions, events, and (thus) behaviours
of the partial domain requirements prescription less non-determinate, more
determinate. Instantiations usually render these concepts less general.
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D.4 Requirements Engineering 237

Domain Determination — Narrative

We single out only two ’determinations’: The link state spaces There is only
one link state: the set of all paths through the link, thus any link state space
is the singleton set its only link state. The hub state spaces are the singleton
sets of the “current” hub states which allow these crossings: from terminal
link back to terminal link, from terminal link to emanating toll-way link,
from incident toll-way link to terminal link, and from incident toll-way link
to emanating toll-way link Special provision must be made for expressing the
entering from the outside and leaving toll plazas to the outside.

Domain Determination — Formalisation

wf State Spaces: TN → Bool
wf State Spaces(hll,hn,(thn,tln)) ≡

let ((th1,tl1),(h1,l12,l21)) = hll(1),
((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),
((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in

wf Plaza(thj′,tlj′,hj′) ∧
wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = { [ crossings at toll plazas ]

(′′external′′,obs HI(th),obs LI(tl)),
(obs LI(tl),obs HI(th),′′external′′),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th) = {obs HΣ(th)} ∧
obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = {[ crossings at 3−link end hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),
(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),
(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧
obs LΩ(l′) = {obs LΣ(l′)}
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238 D From Domains to Requirements: A Rigorous Approach

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),
(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),
(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),
(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),
(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧
obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we
should — in principle — be satisfied.

Domain Extension

By domain extension we understand the introduction of domain entities, func-
tions, events and behaviours that were not feasible in the original domain, but
for which, with computing and communication, there is the possibility of fea-
sible implementations, and such that what is introduced become part of the
emerging domain requirements prescription.

Domain Extension — Narrative

The domain extension is that of the controlled access of vehicles to and depar-
ture from the toll road net: the entry to (and departure from) tollgates from
(respectively to) an "an external" net — which we do not describe; the new
entities of tollgates with all their machinery; the user/machine functions: upon
entry: driver pressing entry button, tollgate delivering ticket; upon exit: driver
presenting ticket, tollgate requesting payment, driver providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to
cruise the entire net payment is a function of the totality of links traversed,
possibly multiple times. This requires, in our case, that tickets be made such
as to be sensed somewhat remotely, and that intersections be equipped with
sensors which can record and transmit information about vehicle intersection
crossings. (When exiting the tollgate machine can then access the exiting
vehicles sequence of intersection crossings — based on which a payment fee
calculation can be done.)
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D.4 Requirements Engineering 239

All this to be described in detail — including all the thinks that can go
wrong (in the domain) and how drivers and tollgates are expected to react.

Domain Extension — Formalisation

We suggest only some signatures:

type
Mach, Ticket, Cash, Payment, Map TN

value
obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)

calculate Payment: (HI×HI) → Map TN → Payment

press Entry: M → M × Ticket [ gate up ]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [ gate up ]

Domain Extension — Formalisation of Support Technology

This example provides a classical requirements engineering setting for embed-
ded, safety critical, real-time systems, requiring, ultimately, the techniques
and tools of such things as Petri nets, statecharts, message sequence charts
or live sequence charts and temporal logics (DC, TLA+).

Requirements Fitting

The issue of requirements fitting arises when two or more software develop-
ment projects are based on what appears to be the same domain. The problem
then is to harmonise the two or more software development projects by har-
monising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
,

dr2
, . . . , drn , being considered, and that these pertain to the same domain —

and can hence be assumed covered by a same domain description.
By requirements fitting we mean a harmonisation of n > 1 domain re-

quirements that have overlapping (common) not always consistent parts and
which results in n ‘modified and partial domain requirements’, and m ‘com-
mon domain requirements’ that “fit into” to two or more of the ‘modified and
partial domain requirements’.

By a modified and partial domain requirements we mean a domain require-
ments which is short of (that is, is missing) some description parts: text and
formula. By a common domain requirements we mean a domain requirements.
By the m common domain requirements parts, cdrs, fitting into the n modi-
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240 D From Domains to Requirements: A Rigorous Approach

fied and partial domain requirements we mean that there is for each modified
and partial domain requirements, mapdri, an identified subset of cdrs (could
be all of cdrs), scdrs, such that textually conjoining scdrs to mapdr can be
claimed to yield the “original” dri .

Requirements Fitting Procedure — A Sketch

Requirements fitting consists primarily of a pragmatically determined se-
quence of analytic and synthetic (‘fitting’) steps. It is first decided which
n domain requirements documents to fit. Then a ‘manual’ analysis is made
of the selected, n domain requirements. During this analysis tentative com-
mon domain requirements are identified. It is then decided which m common
domain requirements to single out. This decision results in a tentative con-
struction of n modified and partial domain requirements. An analysis is made
of the tentative modified and partial and also common domain requirements.
A decision is then made whether to accept the resulting documents or to
iterate the steps above.

Requirements Fitting — Narrative

We postulate two domain requirements: We have outlined a domain require-
ments development for software support for a toll road system. We have earlier
hinted at domain operations related to insertion of new and removal of ex-
isting links and hubs. We can therefore postulate that there are two domain
requirements developments, both based on the transport domain: one, drtoll

,

for a toll road computing system monitoring and controlling vehicle flow in
and out of toll plazas, and another, drmaint.

, for a toll link and intersection

(i.e., hub) building and maintenance system monitoring and controlling link
and hub quality and for development.

The fitting procedure now identifies the shared of awareness of the net by
both drtoll

and drmaint.
of nets (N), hubs (H) and links (L). We conclude

from this that we can single out a common requirements for software that
manages net, hubs and links. Such software requirements basically amounts
to requirements for a database system. A suitable such system, say a rela-
tional database management system, DBrel, may already be available with
the customer.

In any case, where there before were two requirements (drtoll
, drmaint.

)

there are now four: (i) d′rtoll
, a modification of drtoll

which omits the de-

scription parts pertaining to the net; (ii) d′rmaint.
, a modification of drmaint.

which likewise omits the description parts pertaining to the net; (iii) drnet
,

which contains what was basically omitted in d′rtoll
and d′rmaint.

; and (iv)

dr
db:i/f

(for database interface) which prescribes a mapping between type

names of drnet
and relation and attribute names of DBrel.
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D.4 Requirements Engineering 241

Much more can and should be said, but this suffices as an example in a
software engineering methodology paper.

Requirements Fitting — Formalisation

We omit lengthy formalisation.

Domain Requirements Consolidation

After projection, instantiation, determination, extension and fitting, it is time
to review, consolidate and possibly restructure (including re-specify) the do-
main requirements prescription before the next stage of requirements devel-
opment.

D.4.4 Interface Requirements Prescription

By an interface requirements we mean a requirements prescription which re-
fines and extends the domain requirements by considering those requirements
of the domain requirements whose entities, operations, events and behaviours
are “shared” between the domain and the machine (being requirements pre-
scribed).

‘Sharing’ means (a) that an entity is represented both in the domain and
“inside” the machine, and that its machine representation must at suitable
times reflect its state in the domain; (b) that an operation requires a sequence
of several “on-line” interactions between the machine (being requirements
prescribed) and the domain, usually a person or another machine; (c) that
an event arises either in the domain, that is, in the environment of the machine,
or in the machine, and need be communicated to the machine, respectively to
the environment; and (d) that a behaviour is manifested both by actions and
events of the domain and by actions and events of the machine.

So a systematic reading of the domain requirements shall result in an
identification of all shared entities, operations, events and behaviours.

Each such shared phenomenon shall then be individually dealt with: entity
sharing shall lead to interface requirements for data initialisation and refresh-
ment; operation sharing shall lead to interface requirements for interactive
dialogues between the machine and its environment; event sharing shall lead
to interface requirements for how such event are communicated between the
environment of the machine and the machine. behaviour sharing shall lead to
interface requirements for action and event dialogues between the machine
and its environment.

• • •

We shall now illustrate these domain interface requirements development steps
with respect to our ongoing example.
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Shared Entities

The main shared entities are the net, hence the hubs and the links. As domain
entities they continuously undergo changes with respect to the values of a
great number of attributes and otherwise possess attributes — most of which
have not been mentioned so far: length, cadestral information, namings, wear
and tear (where-ever applicable), last/next scheduled maintenance (where-
ever applicable), state and state space, and many others.

We “split” our interface requirements development into two separate steps:
the development of drnet

(the common domain requirements for the shared

hubs and links), and the co-development of dr
db:i/f

(the common domain

requirements for the interface between drnet
and DBrel — under the as-

sumption of an available relational database system DBrel
When planning the common domain requirements for the net, i.e., the

hubs and links, we enlarge our scope of requirements concerns beyond the
two so far treated (drtoll

, drmaint.
) in order to make sure that the shared

relational database of nets, their hubs and links, may be useful beyond those
requirements. We then come up with something like hubs and links are to
be represented as tuples of relations; each net will be represented by a pair
of relations a hubs relation and a links relation; each hub and each link may
or will be represented by several tuples; etcetera. In this database modelling
effort it must be secured that “standard” operations on nets, hubs and links
can be supported by the chosen relational database system DBrel.

Data Initialisation

As part of drnet
one must prescribe data initialisation, that is provision for

an interactive user interface dialogue with a set of proper display screens,
one for establishing net, hub or link attributes (names) and their types and,
for example, two for the input of hub and link attribute values. Interaction
prompts may be prescribed: next input, on-line vetting and display of evolving
net, etc. These and many other aspects may therefore need prescriptions.

Essentially these prescriptions concretise the insert link operation.

Data Refreshment

As part of drnet
one must also prescribe data refreshment: an interactive

user interface dialogue with a set of proper display screens one for updating
net, hub or link attributes (names) and their types and, for example, two
for the update of hub and link attribute values. Interaction prompts may be
prescribed: next update, on-line vetting and display of revised net, etc. These
and many other aspects may therefore need prescriptions.

These prescriptions concretise remove and insert link operations.
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Shared Operations

The main shared operations are related to the entry of a vehicle into the toll
road system and the exit of a vehicle from the toll road system.

Interactive Operation Execution

As part of drtoll
we must therefore prescribe the varieties of successful and

less successful sequences of interactions between vehicles (or their drivers) and
the toll gate machines.

The prescription of the above necessitates determination of a number of
external events, see below.

(Again, this is an area of embedded, real-time safety-critical system pre-
scription.)

Shared Events

The main shared external events are related to the entry of a vehicle into the
toll road system, the crossing of a vehicle through a toll way hub and the exit
of a vehicle from the toll road system.

As part of drtoll
we must therefore prescribe the varieties of these events,

the failure of all appropriate sensors and the failure of related controllers: gate
opener and closer (with sensors and actuators), ticket “emitter” and “reader”
(with sensors and actuators), etcetera.

The prescription of the above necessitates extensive fault analysis.

Shared Behaviours

The main shared behaviours are therefore related to the journey of a vehicle
throw the toll road system and the functioning of a toll gate machine during
“its lifetime”. Others can be thought of, but are omitted here.

In consequence of considering, for example, the journey of a vehicle be-
haviour, we may “add” some further, extended requirements: (a) requirements
for a vehicle statistics “package”; (b) requirements for tracing supposedly
“lost” vehicles; (c) requirements limiting toll road system access in case of
traffic congestion; etcetera.

D.5 Discussion

D.5.1 An ‘Odyssey’

Our ‘Odyssey’ has ended. A long example has been given.
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We have shown that requirements engineering can have an abstraction
basis in domain engineering; and we have shown that we do not have to start
software development with requirements engineering, but that we can start
software development with domain engineering and then proceed to a more
orderly requirements engineering phase than witnessed today.

D.5.2 Claims of Contribution

What is essentially new here is the claim and its partial validation that one
can and probably should put far more emphasis on domain modelling, the
domain modelling concepts, principles and techniques of business process do-
main intrinsics, domain support technologies, domain management and or-
ganisation, domain rules and regulations, domain scripts and domain human
behaviour; the identification of, and the decomposition of the requirements
development process into, domain requirements, interface requirements and
machine requirements; the domain requirements “derivation” concepts, prin-
ciples and techniques of projection, instantiation, determination, extension
and fitting and the identification of structuring of the interface ground re-
quirements shared entities, shared operations, shared events and shared be-
haviours.

D.5.3 Comparison to Other Work

Jackson’s Problem Frame approach [207] cleverly alternates between domain
analysis, requirements development and software design. For more satisfactory
comparisons between our domain engineering approach and past practices and
writings on domain analysis we refer to [94].

D.5.4 A Critique

A major presentation of domain and of requirements engineering is given
in [89, Chaps. 8–16 and 17–24]. [94] provides a summary, more complete pre-
sentation of domain engineering than the present paper allows, while [90] dis-
cusses a set of research issues for domain engineering. Papers, like [90,94], but
for requirements engineering, with more a complete presentation, respectively
a discussion of research issues for this new kind of requirements engineering
might be desirable. The current paper’s Sect. D.4 provided a slightly revised
structuring of the interface requirements engineering.

Some of the development steps within the domain modelling and likewise
within the requirements modelling are refinements, and some are extensions.
If we ensure that the extensions are what is known as Conservative extensions
then all theorems of the source of the extension go through and are also valid in
the extension. Although such things are here rather clear much more should
be said here about ensuring Conservative extensions. We do not since the
current paper is is not aimed at the finer issues of the development but at the
domain to requirements “derivation” issues.
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Believable Software Management

This appendix chapter constitutes the invited paper for Encyclope-
dia of Software Engineering [93, to appear], editor: Philip A. Laplante
(Taylor & Francis).

Abstract

By ‘believable software management’ we shall understand a “state of software
development” (as an established practice) in which all developers, that is,
programmers and managers at all levels, in their conscience, are confident
that everybody is working according to state-of-the-art methods.

In this Encyclopedia of Software Engineering entry on ‘believable software
management’ we shall therefore survey what it means to be a programmer or
a manager working according to state-of-the-art methods.

To us, the concept of ‘software management’, covers both software de-
velopment project management and software product management. We shall
therefore have something to say about both. Much about the former and just
a tiny bit about the latter. Many aspects of software product management
refers to software development project management.

Keywords: software, development, management, project, product, domain
engineering, requirements engineering, software design, documents, formal
techniques.

E.1 Introduction

To develop other than “own” software on industrial scale, whether turn-key
of for COTS1 appears to be difficult. ‘Own’ software is here defined to be

1Commercial off-the-shelf (COTS) is a term for software or hardware, generally
technology or computer products, that are ready-made and available for sale, lease,
or license to the general public (Wikipedia: http://en.wikipedia.org/wiki/Commer-
cial off-the-shelf).
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248 E Believable Software Management

such software that is developed by a single, knowledgeable programmer and
for own, private, uncommitted use only.

“Non-own” software usually requires the resources of more than one pro-
grammer. The interaction between such two or more programmers need be
managed. Such software is usually committed to be used by other than the
programmers who developed and the managers who directed the development
of the software, and hence the quality of the software need be assured (i.e.,
managed).

In this Encyclopedia of Software Engineering paper we shall take a look
at state-of-the-art possibilities for professional, industry-strength software de-
velopment project management.

In order to make ensure that the writer and the reader has a chance of
understanding as near the same by “what software and what software develop-
ment entails”, we characterise these and related concepts in Sects. E.2.2–E.2.2.

And in order to make ensure that the writer and the reader has a chance of
understanding as near the same by “what management, in general, entails”,
we characterise these and related concepts in Sects. E.2.2–E.2.2.

Although ‘management’ is the main subject of concern in this Encyclope-
dia of Software Engineering entry we need elaborate on the topic of software
(first over-viewed in Sects. E.2.2–E.2.2). We do so in Sect. E.3. This section
can, of course, not be an introduction to software development in general —
that would require an entire book, for example [87–89]. But we cannot just
assume general knowledge of what software development entails. That would
set us back considerably. Classical textbooks, [251, 253, 280], should not be
assumed as they do not represent a state-of-the-art view of software develop-
ment, a view which is at the base of several dozens of software houses around
the world2.

Section E.3 shows several so-called process diagrams and a single software
development graph. Based on these a combined notion of project graphs is
introduced and a notion of project traces (“routes” of graphs) is introduced.
Subsequently a notion of an actual development conforming to the project
graph is introduced — all in preparation for Sects. E.4–E.5.

Section E.4 covers two important aspects of software project management,
namely that of software process assessment and improvement. Our view here
is primarily based on Humphrey’s Capability Maturity Modelling [194], but
is enhanced considerably by considerations of the use of formal techniques.

Section E.5 then constitutes the core of this Encyclopedia of Software
Engineering entry’s main message. In addition to further coverage of process
management, Sect. E.5.1, we cover the management issues related to each and
every phase, state and step of software development as outlined in Sect. E.3,
and from two points of view: not only the software project, but also the soft-

2Cf., for example, http://www.fortia.org/twiki/bin/view/Main/ForTIA, the
home page of some 40+ software houses sharing interests in state-of-the-art use
of formal techniques in software development.
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E.2 Background 249

ware product points of view, Sect. E.5.2. As mentioned above, the treatment
of Sect. E.5.2 is cursory. Much more should be covered — but the current
author is not “believable” on those other points !

Section E.6 summarises Sects. E.4–E.5 emphasising a notion of ‘believabil-
ity’.

The presentation is informal. No examples of informal or of formal do-
main descriptions, requirements prescriptions or software specifications will
be shown.

E.2 Background

This and the next section sets the scene for our subsequent treatment of issues
of software management.

E.2.1 General

To understand a concept of ‘management’ presupposes an understanding of
“that which is being managed” (software and resources). We shall therefore, in
the next subsection, characterise a number of concepts related to and including
software, resources, management and development methods.

E.2.2 Characterisations

Since we are dealing primarily with very general notions and with issues of
human behaviour (including management), we cannot define these concepts
succinctly — but we can delineate these notions, we think, sufficiently well by
characterisations rather than formal definitions.

Software

By software we mean a collection of documents, in paper and/or in electronic
form. This collection comprises the usual kind of material: (1) the executable
code for a suitable computing system, (2,3) the training and user manuals, and
(4,5) the installation and service manuals. But, to us, the software collection
of documents also comprise (6) all the development documents pertaining to
the executable code — and this chapter of the Encyclopedia of Software Engi-
neering will indeed show you that the development documents are many and
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varied, and (7) the verification3, validation4 and test5 documents — which, in
turn, comprise (8) chronological records of all the verifications, validations and
tests being performed and the results of these verifications, validations and
tests, whether successful or not. Finally this software collection of documents,
to us, also comprises (9) all the tools that management and developers used in
managing the development project and developing, verifying, validating and
testing, installing, using and maintaining the software.

Software Engineering

By software engineering we mean the study and knowledge about the con-
struction of software.

When putting forth our view on Believable Software Management we shall
base that view of a particular view of software engineering. What we have
to say about Believable Software Management will be true also for views on
software engineering that appear to differ from our view. What we put forward
is relevant, we claim, in those other views as well, since our view, the so-called
TripTych view, includes all the important software engineering concepts of
these other, more classical views.

Our view on software engineering is based on the following dogma:

The TripTych Dogma:
• Before software can be designed we must understand its require-

ments.
• Before we can prescribe the requirements we must understand the

application domain.

Hence we shall view software engineering as comprising three bodies of studies
and knowledge:

The TripTych of Software Engineering:
1. domain engineering,
2. requirements engineering and
3. software design.

3Verification aims at showing not only whether the executable code performs
correctly, i.e., does, whatever it is supposed to do, in a right manner, i.e., that the
software is right, but verification also aims at verifying properties of the domain
description, the requirements prescription and the higher level software designs.

4Validation aims at showing whether the executable code performs whatever
the users intended the the executable code to do, i.e., that they got the right soft-
ware, and it does so by validations of the domain description and the requirements
prescription.

5Testing aims at uncovering errors not only in the executable code but in the do-
main description and the requirements prescription, so tests are to be performed on
domain descriptions, requirements prescriptions, high-level designs and executable
code — as are verifications and validations.
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As we shall see later in this chapter we may look at these three parts of soft-
ware engineering as ideally implying three consecutive phases of engineering,
i.e., of development.

Further Characterisations

Domain.

By a domain we shall understand a universe of discourse, something in which
people and/or equipment made by humans act and hence something abut
which we, the humans, can speak.6

Examples of domains are: (ii) financial service institutions [banks, insur-
ance companies, securities trading (stock exchanges), credit cards, etc.], (ii)
health care [hospitals, pharmacies, private physicians, rehabilitation, reconva-
lescent and other clinics, etc.], (iii) air, railway, road and/or ship transporta-
tion [(iii.1) airports, airlines, air traffic; (iii.2) development, monitoring and
control of rail nets, train operations (including scheduling and allocation of
staff and train car resources, monitoring & control of train movement, etc.),
ticket handling, ], (iv) manufacturing, (v) “the market” [consumers, retailers,
wholesalers, producers, the supply chain, etc.], etcetera.

Domain Description.

By a domain description we shall understand a document which describes a
domain as it is without any reference to requirements to software to serve in
that domain, let alone to such future software.

The domain description, as we have shown in [89, Part IV, Chaps. 8–16],
can be expressed both informally, say in narrative form, and formally, in terms
of mathematical specifications. If formally presented we assume that that for-
mal presentation is strongly linked to an informal narrative and terminology,

We otherwise refer to [79, 82, 84, 90–92, 94, 96] for a set of examples of
domain descriptions.

Domain Engineering.

By domain engineering we understand the study and knowledge about the
practice and theory of the methods for developing domain descriptions.

We shall later, in Sect. E.3.2 on page 257, detail stages and steps of a
domain engineering method.

6We have deliberately constrained our definition, for the sake of this Encyclope-
dia of Software Engineering entry, to domains “in which people act”. Domains, in
general, also cover any area of nature — as otherwise describable in physics. But let
us be content with the narrower characterisation.
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Machine.

By a machine we understand a combination of computing system hardware
and software that is the target for, or the result of the required software
development.

Requirements.

By a requirements we understand “A condition or capability needed by a user
to solve a problem or achieve an objective” (IEEE Standard 610.12 [195]).

Requirements Prescription.

By a software requirements prescription we shall understand set of documents
which prescribe the properties that some desired machine is expected to sat-
isfy.

Requirements Engineering.

By requirements engineering we understand the study and knowledge about
the practice and theory of the methods for developing requirements prescrip-
tions.

We shall later, in Sect. E.3.2 on page 259, detail stages and steps of a
requirements engineering method.

Software.

For a characterisation of the term ‘software’ we refer to Sect. E.2.2 on page 249.

Software Design.

By a software design we shall understand a set of documents which specify
how some software requirements are implemented in the form of executable
code.

We shall later, in Sect. E.3.2 on page 261, hint at stages and steps of
software design.

Software Development.

By software development we understand the full development of a possibly
verified and possibly validated domain description, of a possibly verified and a
possibly validated requirements prescription, and of a software design possibly
verified correct with respect to the requirements prescription (in the context
of the domain description).

Software Engineering.

For a characterisation of the term ‘software engineering’ we refer to Sect. E.2.2
on page 250.
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Software House

By a software house we mean a commercial enterprise with owners, man-
agement, non-management employees, usually including programmers, who
develops and markets software and who provides software service (including
computing facilities management7) to customers.

Resources

By resources we mean such things as people, time, monies, goodwill8, facilities
(offices, equipment, software tools and other tangible or intangible entities)
and products (spare parts as well as end products, including, as here, soft-
ware).

Management

Management is a relation between owners of an enterprise and the actors
(people, i.e., employees and customers) and resource-consuming activities of
that enterprise.

By management we thus mean a structure, an organisation, of people,
i.e., the managers, who carry out strategic and tactical management9, that is,
formulate (decide upon) plans for allocation10 and scheduling11 of resources
and actions upon resources. Strategic and tactical management usually per-
form some of these actions themselves. Operations management monitors and
controls that remaining plans (actions) are indeed carried out.

By quality management we mean management which ensures some mea-
sure of resource optimality: that production and service deadlines, cost, and
product and service qualities are met, and that the employees (lower levels of
managers and non-management employees) enjoy their work and that their
professionalism is continually improved.

7Facilities management: the management, services and operations of comput-
ing systems.

8Goodwill: (1) the favor or advantage that a business has acquired especially
through its brands and its good reputation; (2) the value of projected earnings
increases of a business especially as part of its purchase price; (3) the excess of
the purchase price of a company over its book value which represents the value of
goodwill as an intangible asset for accounting purposes [288]

9Definitions of strategic, tactical and operational management are given on
Page 254.

10Allocation: assignment of some resources other than time to actors or actions.
(Actors are also resources, and can thus themselves be assigned.)

11Scheduling: assignment of time periods to actions, i.e., the timed performance
of development phases, stages or step. [Phase: domain development, requirements
development, or software design.]
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Strategic Management.

Strategic management is related to a software house’s long term commitments
and is thus, with respect to ‘software’, primarily related to issues of software
product management.

By strategic management we mean such management decisions and actions
that primarily are concerned about the meta-organisational, meta-financial
and meta-product issues of an enterprise: management and organisational
restructuring, mergers and acquisition, conversion of goodwill to new capital,
whether to maintain a current product-line or to abandon it, start a new
product line or merge the present product line with new product possibilities,
etcetera.

The main aim of strategic management is to meet owner expectations:
market share, profit, growth, etcetera.

Tactical Management.

Tactical management is related to a software house’s medium term commit-
ments and is thus primarily, with respect to ‘software’, related to issues of
software development and product management.

By tactical project management we mean such management issues and
actions that primarily are concerned about the relationships within and be-
tween current and immediate future software development projects, that is,
issues such as the decomposition of the development of a software product
into a staged line, “tree” or “bouquet”, of either separately marketable soft-
ware products, or of basic versions of such products versus the offering of “op-
tional features”. Tactical management also formulates guide lines and possibly
adopts standards for quality assurance12.

By tactical product management we mean such management issues and
actions that primarily are concerned with the marketing, sales and service of
products.

The main aim of tactical management is to compete in the market, to
respond to customer demands in a timely and qualitative fashion, and to
contribute to the aims of strategic management.

Operations Management.

Operations management is related to the enterprise’s short term, i.e., day-
to-day commitments and is thus exclusively related to issues of project and
product management. The former will be dealt with in detail in this paper.
The latter, which includes marketing, sales, the management of customer sat-
isfaction, training, service and product maintenance, will not be covered in
this Encyclopedia of Software Engineering entry.

12Quality assurance: a program for the systematic monitoring and evaluation
of the various aspects of a project, service, or facility to ensure that standards of
quality are being met [288].
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By operations management we mean such management issues that estab-
lish detailed, i.e., micro-allocations and -schedules for product development,
marketing, sales, training, service and product maintenance and monitors and
controls that these micro-allocations and -schedules are indeed carried out in
accordance with quality guide lines and standards.

Software Management

By software management we either mean the management of the develop-
ment, service and maintenance of specific software (i.e., software development
management), or we mean the management of which software products to
develop (software product management).

Method and Methodology

People, in enterprises, are expected to act professionally. That is, to carry
out their responsibilities and duties according to certain methods, that is,
methodologically.

Method.

By a method we mean (the study and knowledge about) a set of principles, to be
adhered to, fulfilled, by humans, for selecting and applying a number of analysis
and synthesis (construction, action) techniques, possibly using tools, in order to
achieve a well defined goal: a product design (an artifact) or a service delivery,
etcetera.

Methodology.

By methodology we mean the comparative study and knowledge about a set of
methods.

In connection with software development there are, as we shall see, many
methods being offered. The most prominent feature of most methods are their
tools, and the most prominent tools are those of spacification and programming
languages. So, a language, whether a human, spoken (and written) language, or
formal, is also a tool.

E.2.3 Discussion

In this Encyclopedia of Software Engineering entry we shall primarily cover soft-
ware project (i.e., development) management. Thus our concerns are primarily
aimed at software-related operations management; and thus we shall not be con-
cerned, at all, with strategic management and only with some aspects of tactical
management. Those aspects not covered are generic, that is, are not specific to
software.
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E.3 On Software Development Processes

E.3.1 Processes, Process Specifications and Process Models

By a process we mean a set of related sequences (i.e., traces) where each sequence
(trace) in the set is an ordered list of actions and events. Actions change a state.
Events are like process inputs or outputs. A sequence, pi, of actions, aik

, and
events, eiℓ

, may relate to another such sequence, pj , by sharing an event, e,
in the form of the shared event being identical to one of the events, eim (i.e.,
eim ≡ e), in pi and one of the events, ejn (i.e., ejn ≡ e), in pj such that
this event designates the communication between the two processes, that is, their
synchronisation and the simultaneous exchange of a resource (or a possibly empty
set of resources) between them. (Simple “assignment” actions may then bind
these resources to appropriate names of the input process.) A simple process is
just a single sequence whose events, if any, communicates with a further undefined
environment. A single process is either a simple process or is a single sequence
whose events communicates with other processes. Thus processes are, in general,
composed from several processes.

Operations management is thus about the detailed monitoring and control of
processes: development processes, marketing processes, sales processes, service
processes, training processes, etcetera.

In order to manage in a meaningful way, including in a manner where ‘manage-
ment’ can itself be monitored and controlled, that is, be evaluated and improved,
the managed processes must be well understood. We take that as meaning that
there must be a reasonably precise specification, that is, a model of the processes
to be managed.

By a process specification we mean a syntactic entity: some text and/or dia-
gram(s) that name and specify the actions to be performed and the events that
may relate two (or more) processes, including a naming and specification of the
resources being, or to be communicated.

By a process model we mean a semantic entity: the meaning of a process
specification — with that meaning being a possibly infinite set of sets of processes
(i.e., set of sets of traces).

By a process specification-based software development we mean either one of
the process sets denoted by the process specification.

E.3.2 Software Development Process Descriptions

We have argued earlier that software development consists of three phases. As
we shall soon see, carrying out these phases each result in quite distinct sets of
documents. Figure E.1 on the next page shows the three phases as connected by
directed DO and REDO labelled edges, i.e., arrows.
The boxes (i.e., the phases) denote processes. DO labelled edges infix two boxes,
the from and the to box as designated by the edge direction. The DO labelled
arrows shall ideally mean that no activities of the processes of the to box can
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Domain Engineering

Software Design

Requirements Engineering

REDO

REDO

REDO

DO

DO

External Event

External Event

External Event

Software Engineering

= Software Development

Fig. E.1. The TripTych phases of software development

commence before all activities of the processes of the from box have completed.
The DO labelled arrows thus designate “internal” events that synchronise the
infixed process and which communicate the documents resulting from the ‘from
box’ to the ‘to box’. The REDO labelled edges can be said to infix one ‘from box’
with one or two ‘to boxes’, now in the reverse order of the DO labelled edge infixed
boxes. The REDO labelled arrows (i.e., “internal events”) shall ideally mean that
all activities of the ‘from box’ must halt once one such activity requires that
earlier work be redone. We do not here detail which ‘to box’ is selected nor how
the development then proceeds.

The “dangling”, but bi-directed (“external event”) edges designate that box
processes require input from or delivers output to an external world (an external
process) — typically the human developers.

All directed or bi-directed edges also designate the communication of docu-
ments. We do not here detail how these documents are otherwise produced or
consumed.

Phases consists of stages and stages of steps. The phases are logically well
distinguished. “Boundaries” between stages or steps are pragmatically justified.
Next we shall cover the stage and step concepts.

Domain Engineering

The top-left box of Fig. E.1 is shown in detail in Fig. E.2 on the next page.
External edges designate the input of document information (including answers
to clarifying question) from stakeholders and output of documents and questions
to stakeholders including software development management.
Figure E.2 on the following page expresses that domain engineering consists of
many stages and that (some of) these stages consists of many steps. We now
explain these stages. We cover the left part of Fig. E.2 on the next page first.
(a) First the stakeholders of the domain are identified and arrangements made
for future liaison. (b–f) Knowledge about the domain is acquired in five steps;
(b) by studying existing literature, the Web, observations in the domain, etc.; (c)
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Preparation, Presentation

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

DOMAIN
DEVELOPMENT

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

ACQUISITION

(a)

(b)

(c)

(j)

(i)

(h)

(g)

(d)

(e)

[7]

[6]

[5]

[4]

[3]

[2]

[1]

Stakeholder Identification

Elicitation Studies

Stakeholder Enquiries

Elicitation Interviews

Description Unit Indexing(f)

Fig. E.2. Stages and steps of the domain engineering phase

contacts with the stakeholders; (d) talks with these; (e) helping them filling out
questionnaires, that is, collecting domain description units; (f) and sorting these
out. (g) Domain description units are then analysed and preliminary concepts may
be formed. (h) Based on this analysis the major work on domain description is
carried out. (i) The domain description is then analysed, verified and validated.
(j) Finally, where relevant, properties not explicitly formulated in the domain de-
scription are established. [1–7] The major stage, (h), of engineering a domain
description (that is, of domain modelling, right part of Fig. E.2) consists of six
steps [2–7], each covering a facet of the domain. [1] But first rough sketches are
made of all the most pertinent business processes (that is, the entities, the set of
functions and events over entities, and the behaviours) of the domain. [2] Based
on such sketches the very basics, the entities, functions, events and behaviours
that are common to all subsequent facets are described. [3] Then the support
technologies of the domain, those which support entities, functions, events and
behaviours of the domain are described. [4] The management functions and or-
ganisational structures are described. [5] And so are the rules and regulations
which (ought) “govern” human behaviour in the domain. [6] Some specific struc-
tures (somehow ordered sets) of rules and regulations qualify as scripts, that is,
as pseudo-programs, and these are described. [7] Finally the spectrum of possible
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or actual human behaviours are described: diligent, sloppy, negligent as well as
near- or outright criminal behaviours.

DO

DO

DO

DO

DOREDO

REDO

REDO

REDO

REDO

Support Technologies

Intrinsics

Business Processes

Management and Organisation

Rules and Regulations

Human Behaviour

Fig. E.3. The domain modelling stage

Describing these facets usually involves trial-and-error descriptions, that is, iter-
ations between steps. These iterations must be managed. Figure E.3 illustrates
the possibilities of “endless thrashing” within just the domain modelling stage.

Requirements Engineering

We consider requirements to be analysable into three categories: domain, interface
and machine requirements. Domain requirements are those requirements which
can be expressed solely using terms from (or allowed in) the domain description.
Machine requirements are those requirements which can be expressed without
using terms from the domain description; instead terms are used from the ma-
chine (the hardware and the software to be designed). Interface requirements are
those requirements which can be expressed using terms both from (or allowed
in) the domain description and from (or allowed in) the machine specification.
Where domain descriptions express what there is in the domain, the requirements
prescriptions express what there shall or must be in the machine.

Once a domain description is considered complete work on requirements can
commence. Figure E.4 on the next page records the six stages of requirements
development. The major stage, requirements modelling, is detailed in Fig. E.5 on
page 261. That figure shows domain requirements engineering actions in the top-
left quadrant, interface requirements engineering actions in the lower-left quad-
rant, and machine requirements engineering actions in the right half of the dia-
gram.
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Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison

Acquisition
Requirements

Validation
& Verification

Requirements Modelling

Stakeholder(1)

(2)

(3)

(4)

(5)

(6)

Fig. E.4. The requirements engineering phase. The modelling stage is detailed in
Fig. E.5

One aspect of domain requirements modelling stage (box 4 of Fig. E.4) can
be summarised as follows: the requirements engineer works with the requirements
stakeholders and as follows: First the domain requirements are constructed illus-
tratively by asking the stakeholders to identify (b) which parts of the domain
description should be “carried over” into, i.e., projected onto the requirements
prescription while (c) possibly instantiating these (now) prescriptions into spe-
cial cases, and/or (d) making the prescriptions more deterministic, and/or (e)
extending the domain description with descriptions of entities, functions, events
and behaviours that were not feasible in the domain but are feasible with (the
advent of) computing, and (f) finally fitting the emerging domain requirements
prescriptions to those of related, other software development projects, if any. Step
(a) deals with those requirements, business process re-engineering (BPR), which
are not “implemented” as computing, but are relied upon in the correct func-
tioning of the emerging software, that is, which reflect assumptions that must be
made about the environment (humans and equipment, including other comput-
ing systems). The BPR must also be implemented and adhered to, but by the
management and the staff of the user of the required software.
Figure E.5 on the facing page also shows details of the interface and machine
requirements steps — for which we refer the reader to [89, Sects. 19.5–.6].

Figure E.6 on the next page intends to indicate that a number of the machine
requirements modelling steps can take place independent of one another, i.e., in
parallel.
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Fig. E.5. The requirements modelling stages
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Fig. E.6. The machine requirements modelling stage: five concurrent steps

Software Design

Once a complete requirements prescription has been achieved one can start the
software design. Figure E.7 on the following page shows a generic, summary
process description for all three phases of software development while emphasising,
in its lower three-quarter, the stages and steps of software design: from a possibly
stepwise software architecture design via a stage of stepwise refinement of the
software components identified by the architecture design, to the final coding
step.
The i “stacks” of cij component boxes shall indicate that the software compo-
nents may be stepwise refined ending up with executable code ki. The component
part of Fig. E.7 on the next page is rather idealised. One usually experiences that
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Fig. E.7. The software design phase

components can be shared across the software design, thus the component part
of Fig. E.7 should be shown more realistically as a lattice of refinement steps.

E.3.3 Documents

Work within each step, stage and phase results in documents. Some are necessarily
informal, others can both be formulated informally and formally. To each phase we
can therefore attach a number of documents. Appendix E.913 give an overview of
these phase documents. Bearing in mind the span and wealth of software related
documents we can almost say: “All we do, in software development, is writing
documents — and a few can serve as the basis for computations by machines.”.

E.3.4 Formal Techniques

It is now commonly accepted that professional software engineering entails the use
of a set of one or more formal techniques. Examples of formal techniques, often
referred to as formal methods, are Alloy [202], ASM (Abstract State Machines)
[261], B and event-B [1,130], DC (Duration Calculus) [301], MSC and LSC (Mes-
sage and Live Sequence Charts) [184, 199–201], Petri Nets [210, 250, 258–260],
Statecharts [180–183,185], RAISE (Rigorous Approach to Industrial Software En-
gineering) [87–89, 166–168], TLA+ (Temporal Logic of Actions) [217, 218, 232],

13Appendix Sects. E.9.1–E.9.3
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VDM (Vienna Development Method) [111, 112, 158] and Z [187, 283, 284, 297].
The EATCS14 Monograph [109] arose from [130,148,167,187,232,242,261] and
covers ASM, B and event-B, CafeOBJ, CASL, DC, RAISE, TLA+, VDM and Z.

E.3.5 Software Development Graphs

The process description diagrams of Sect. E.3.2 were generic and need be instan-
tiated to specific classes of software. Instantiated process description diagrams
will be called software development graphs [41, 42, 45, 117]. In Fig. E.8 we show
one such instantiation, the graph for developing a compiler for a programming
language such as CHILL [175,176], Ada [120,141], Java, etc.

FE 1 FE 2 BE 1 BE 2

Structure

Runtime

Compiler &

Code

Semantics

Denotational

Mechanical

Semantics

Operational
Static

FE m BE n

Back endFront end Runtime

R1

R2

R4

R6 R7

R5

DE

Semantics

Abstract
Syntax

Static
Semantics

Dynamic
Semantics

Operational
Semantics

Virtual
Machine

Tasking
Model

Compiling
Algorithm

Semantic
Analysis

Multipass

Administrator Model
Runtime

Runtime
System

R3

Domain
Engineering

Requirements
Engineering

Software
Design

Fig. E.8. A compiler software development graph

The domain description amounts, for the case of compiler development, to a
description of the syntax and semantics of the programming language for which
a compiler is to be developed. The requirements, on one hand, in a series of
steps concretise the semantics while injecting additional, typically interface and
machine requirements — such as requiring, for example, the compiler to be a
debugging compiler, and/or to require that the compiler itself can execute in a
limited addressing space, and/or to require that the compiler generate code for
indefinitely large programs, and/or to require that the generated code fit in a
limited addressing space memory, and/or to require that the compiler generate

14EATCS: European Association for Theoretical Computer Science
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code for interactive debugging, or to require that the the compiler generate “near”
optimal code, etc. These interface and machine requirements determine choices of
concretisation. Finally a multi-pass administrator for the compiler can be designed
and the passes coded from the refined, concretised requirements.

E.3.6 The Process Model Graph

The process diagrams of Sect. E.3.1 represents one, the generic view of the phased,
staged and stepwise development of software. The software development graph
of Fig. E.8 on the preceding page represents the specific view of a software devel-
opment. The two views must be reconciled into what we may call process model
graphs.

Process Model Graph Construction

We do not illustrate such a process model graph here — but think of a way
to “take the cross-products” of the two kinds of diagrams and you may get “a
picture” of what is involved: the three simple boxes of the domain engineering part
of Fig. E.8 on the previous page correspond to the single domain modelling box in
the left part “column” of boxes of Fig. E.2 on page 258. “Add” now the remaining
boxes of Fig. E.2 on page 258, Fig. E.4 on page 260, Fig. E.5 on page 261, and
Fig. E.7 on page 262, etcetera, and one obtains the compiler domain engineering
process graph.

One thing is the process model, viz., the graph-like structures shown in, for ex-
ample, Fig. E.2 on page 258, Figs. E.4 on page 260, E.5 on page 261 and Fig. E.7
on page 262. (These are syntactic structures, but have semantic meanings.) An-
other thing is the actual usage of such models, that is, the actual processes that
the software developers (domain, requirements and software design engineers)
“steer through” when developing domain models, requirements models and soft-
ware designs.

Graphs and Graph Traversals (Traces)

Assume some graph-like, let us call it, process model, see Fig. E.9 on the next
page.
So Fig. E.9 on the facing page shows a process model and two traversal traces (to
be defined shortly). REDOs, that is, iterations of phases, stages and steps lead to
additional traces. Let us call the totality (set) of these traces for OK traces. And
“jumping” or just “skipping” phases, stages and steps lead to further additional
traces. Let us call these “jumped” or “skipped” traces for NOK traces. A process
model thus denotes a possibly infinite set of such OK and NOK traces.

The leftmost part of Fig. E.9 on the next page shows an acyclic graph. The
graph consists of distinctly labeled nodes and (therefrom distinctly) labeled edges.
The center and right side of the figure shows some possible traversal traces. By
a traversal trace we understand a sequence of wave-fronts.
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Fig. E.9. A graph (left) and two (incomplete) traversal traces (center and right)

By a wavefront we understand a set of node and edge labels such that no two
of these are on the same path from an input (i.e., in-degree zero) to an output
(i.e., out-degree zero) node, and such that there is a contribution to the set from
any path from an input to an output node.15

The third wave of the two traces shown in the two rightmost figures can thus
be represented by {B, b} and {a, C}.

Process Models and Processes

A process model graph thus has boxes which denote activities that result in
information and description, prescription or specification documents and edges
which denote precedence relations on activities.

A development process is any trace over sets of these activities.
The center graph of Fig. E.9 thus portrays the following initial trace:

〈{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,{L}>

Thus a process model denotes a set of such traces.

Incomplete and Extraneous Processes

The trace:

〈{A},{a,b},{c,d,b},{D,E,b},{D,E,C},...〉

appears to have skipped the activity (phase, stage or step) designated by B.
Loosely speaking we call such processes incomplete with respect to their under-
lying (i.e., assumed) process model (Fig. E.9, the leftmost graph).

The trace:

15In-degree zero nodes are nodes of a graph upon which no edges are incident.
Out-degree zero nodes are nodes of a graph from which no edges emanate. A path
is a sequence of node and edge labels such that any edge of a path infix the two
neighbouring nodes in the graph.
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〈{A},{a,z},{X},{D,Y,b},{D,E,C},...>

appears to have performed some activities (z, X, Y) not designated by the process
model of Fig. E.9 on the preceding page (the leftmost graph). Loosely speaking
we call such processes extraneous (or ad hoc) with respect to their underlying
process model.

Process Iterations

The trace

〈{A},{a,b},{B,b},{a,b},{B,b},{c,d,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...>

designates an iterated process. After action B in the first {B,b} of the trace the
process “goes back” to perform action b (in {a,b}); and after (either of) actions
c or d in {c,d,b} the process “goes back” to perform action B in {B,b}. Loosely
speaking we call such processes iterated with respect to their underlying process
model.

The above trace only shows simple “one step” (or stage or phase) “backward
and then onward” iterations. But the REDO idea, also indicated in Fig. E.1 on
page 257, can be extended to any number of steps (etc.).

• • •

Section E.5.1 will follow up on the above and with respect to the management
aspects.

E.3.7 Classical Process Models

Standard textbooks on software engineering [19,251,253,280] record a variety of
process models. Notably Winston’s Waterfall process model [296] and Boehm’s
Spiral model [11]. Many other process models and variations thereof are men-
tioned in the literature: Agile Software Development16, Design by Contract [235],
Extreme Programming [21, 22, 229], Model-driven Development [193], Design
Patterns [163], Prototyping [128], Software Evolution [143], Test Driven [20],
V-model process models [156], etcetera. Common to all of them are that they
allow for a TripTych interpretation, that is, an “embedding” within the TripTych
process model.

E.4 CMM: The Capability Maturity Model

We choose here to “anchor” our discourse of software management by referring
to Humphrey’s Capability Maturity Model (CMM) [194]. CMM postulates five

16See the Agile Software Development Manifesto: http://agilemanifesto.org/
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levels of maturity of development groups. Level 1 being a lowest, in a sense “least
desirable”, and level 5 being the highest, “most desirable” level of professionalism
that Humphrey finds it useful to define. Process improvement, by a development
group, is now the improvement of the development processes such that the group
(i.e., the software house) advances from level i to level i+j where i, j are positive
numbers and i+j is less than 6. So let us first, in this section, review Humphrey’s
notion of CMM, before we, in the next section (Sect. E.5) detail these and other
management aspects.

The following characterisations are “lifted” from http://en.wikipedia.org/wi-

ki/Capability Maturity Model.

E.4.1 Level 1, Initial

“At maturity level 1, processes are usually ad hoc and the organization (i.e.,
the software house) usually does not provide a stable environment. Success
in these organizations depends on the competence and heroics of the people
in the organization and not on the use of proven processes. In spite of this
ad hoc, chaotic environment, maturity level 1 organizations often produce
products and services that work; however, they frequently exceed the budget
and schedule of their projects.

Maturity level 1 organizations are characterized by a tendency to over
commit, abandon processes in the time of crisis, and not be able to repeat
their past successes again.”

As we shall later argue, following the very basics of the methodological
approaches, phases, stages and steps of the TripTych approach, as outlined
in the Sect. E.3, immediately brings us at a CMM maturity level “far from”
level 1.

E.4.2 Level 2, Repeatable

“At maturity level 2, software development successes are repeatable. The orga-
nization may use some basic project management to track cost and schedule.

Process discipline helps ensure that existing practices are retained during
times of stress. When these practices are in place, projects are performed and
managed according to their documented plans.

Project status and the delivery of services are visible to management at
defined points (for example, at major milestones and at the completion of
major tasks).

Basic project management processes are established to track cost, schedule,
and functionality. The minimum process discipline is in place to repeat earlier
successes on projects with similar applications and scope. There is still a
significant risk of exceeding cost and time estimate.”

As we shall later argue, following the very basics of the methodological
approaches, phases, stages and steps of the TripTych approach, as outlined
in the Sect. E.3, immediately brings us at a CMM maturity level higher than
level 2.
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E.4.3 Level 3, Defined

“The organization’s set of standard processes, which is the basis for level 3,
is established and improved over time. These standard processes are used to
establish consistency across the organization. Projects establish their defined
processes by the organization’s set of standard processes according to tailoring
guidelines.

The organization’s management establishes process objectives based on
the organization’s set of standard processes and ensures that these objectives
are appropriately addressed.

A critical distinction between level 2 and level 3 is the scope of standards,
process descriptions, and procedures. At level 2, the standards, process de-
scriptions, and procedures may be quite different in each specific instance of
the process (for example, on a particular project). At level 3, the standards,
process descriptions, and procedures for a project are tailored from the organi-
zation’s set of standard processes to suit a particular project or organizational
unit.”

The standard processes referred to above can be interpreted to be the
phases, tasks and steps covered in Sect. E.3.2 and shown by Figs. E.2 on
page 258, E.4 on page 260, E.5 on page 261 and E.7 on page 262.

As we shall later argue, following the very basics of the methodological
approaches, phases, stages and steps of the TripTych approach, as outlined
in the Sect. E.3, immediately brings us at a CMM maturity level higher than
level 3.

E.4.4 Level 4, Managed

“Using precise measurements, management can effectively control the software
development effort. In particular, management can identify ways to adjust and
adapt the process to particular projects without measurable losses of quality
or deviations from specifications.

Subprocesses are selected that significantly contribute to overall process
performance. These selected subprocesses are controlled using statistical and
other quantitative techniques.

A critical distinction between maturity level 3 and maturity level 4 is the
predictability of process performance. At maturity level 4, the performance of
processes is controlled using statistical and other quantitative techniques, and
is quantitatively predictable. At maturity level 3, processes are only qualita-
tively predictable.”

The ‘precise measurements’ alluded to above are, in the TripTych ap-
proach afforded by the extensive documentation mentioned earlier and by the
use for formal techniques (formal specification, formal verification and formal
testing). The precise measurements include such things as (i) how “closely”
an ideal project development graph is being adhered to, (ii) the number and
“size” of iterations caused by the need to ‘redo’ certain steps and even stages,
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(iii) the ratio of successfully discharged proof obligations to the number of
proof obligations raised by the formal specifications; etc.

We shall later argue that following the very basics of the methodological
approaches, phases, stages and steps of the TripTych approach, as outlined in
the Sect. E.3, immediately brings us at CMM maturity level 4.

E.4.5 Level 5, Optimising

“Maturity level 5 focuses on continually improving process performance
through both incremental and innovative technological improvements. Quan-
titative process-improvement objectives for the organization are established,
continually revised to reflect changing business objectives, and used as crite-
ria in managing process improvement. The effects of deployed process im-
provements are measured and evaluated against the quantitative process-
improvement objectives. Both the defined processes and the organization’s
set of standard processes are targets of measurable improvement activities.

Process improvements to address common causes of process variation and
measurably improve the organization’s processes are identified, evaluated, and
deployed.

Optimizing processes that are nimble, adaptable and innovative depends
on the participation of an empowered workforce aligned with the business
values and objectives of the organization. The organization’s ability to rapidly
respond to changes and opportunities is enhanced by finding ways to accelerate
and share learning.”

We shall later argue that following the very basics of the methodological
approaches, phases, stages and steps of the TripTych approach, as outlined in
the Sect. E.3, immediately brings us at CMM maturity level 4 — and, that
deploying these methodological approaches with deeper and deeper commit-
ment to formal techniques will eventually bring a software house to maturity
level 5.

E.5 Software Management

By software management we mean the management aspects of deciding (i)
which software to develop, (ii) how to develop it and (iii) how to market, sell
and service that software. We group Items (i) and (iii) as part of software
product management and Item (ii) as software project management. Item (ii)
potentially includes the monitoring and control of all aspects of the software
development process.

E.5.1 Software Project Management

By software project management we mean the management aspects of decid-
ing how to develop software.
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You may interpret Sect. E.3 as primarily focused on software development
(project) processes. (In Sect. E.5.2 we shall, in contrast, interpret Sect. E.3
as also significantly implying software product possibilities.) We shall now
summarise this first interpretation.

Summary of Software Development Project Processes

A proper software development project management implies three phases:
domain description development, requirements prescription development and
software design development. Ideally, these phases are sequentially ordered, as
listed above. Each phase then consists of several, also ideally sequenced stages,
and within stages there are then any number of one or more steps. Stages and
generic steps particular to the specific phases were mentioned extensively in
Sect. E.3. The phases, stages and steps were hinted at in Figs. E.1–E.7. The
resulting documents are listed in Appendix E.9.

On these phases, stages and steps, as diagrammed by Figs. E.1–E.7, we
can now superimpose a software development graph, as shown in Fig. E.8 on
page 263. The result, not shown in general, is a graph, such as the leftmost
graph of Fig. E.9 on page 265.

A specific software development process can now be “pictured” as a trace
(over the augmented graph), such as, for example, the center graph of Fig. E.9
on page 265.

• • •

Software development project management has a spectrum of tasks to per-
form. At one end, say the creative end, there are the planning, allocation and
scheduling tasks, that is, the tasks of deciding which software development
processes should be followed and their resourcing. At the other end there are
the monitoring and control of the software development processes.

The Creative Aspects of Software Project Management

The creative management tasks are enumerated next.

1. TripTych Model Adaptation. If a suitable description already exists
for the domain of the planned application area, then that domain model
may be adopted. Else a suitable domain description development must be
included in the project. If a suitable prescription already exists for the
requirements of the planned software, then that requirements model may
be adopted. Else a suitable requirements prescription development must
be included in the project. (We tacitly assume that a requirements pre-
scription will not be accepted unless a suitably related domain description
is already at hand.) If a suitable architecture design specification already
exists for the planned application area, then that architecture design spec-
ification may be adopted. (We tacitly assume that a architecture design
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specification will not be accepted unless a suitably related requirements
prescription is already at hand.)
Thus there are a number of intertwined management decisions to be made
with respect to the above suitabilities. These decisions cannot be made
before some initial, “rough-guess” resource allocation (costing) and task
scheduling (timing) has been made.

2. Creating the Software Development Graph. For a well-known area
of software development, as for example compiler development, one may
adopt an existing software development graph. But for a completely new,
i.e., un-experienced area of software development, one never tried before
(at least “by this software house”), there may (thus) not be an exist-
ing software development graph — and it only transpires as development
(according to the TripTych model) proceeds. In the former case (of a well-
known software development graph) we may speak of a proper develop-
ment project whereas in the latter case (of no known software development
graph) we may speak of a proper research project.

3. Process Model (I): Superposition of the Software Development
Graph. Thus superposition is either an a-priori, strict affair, or is an
ongoing “add on”.

4. Resource Estimation (I). The resulting process model is then the basis
for a rough resource estimation: cost and time for each box, i.e., step. stage
and phase.

5. Deciding TripTych (Process) Model Degrees of Adherence. Such
costing and timing considerations (as mentioned in the previous para-
graph) may also determine the degree to which a given project is to fol-
low all, or only some of the “idealised” tasks implied by the full TripTych
model. We give some examples (A,B,C).
(A) The degree to which, for example, domain or requirements acquisi-
tion involves a broadest or just a narrow spectrum of stakeholders, and the
degree (depth) to which solicitation is pursued are two aspects to be de-
cided upon. Similarly with respect to “exhaustiveness” or “superficiality”
of domain or requirements analysis.
(B) The degree to which, for example, domain or requirements validation
is done is yet another aspect to be decided upon.
(C) With respect to the use of formal techniques (formal specifications
and formal verifications, etc.) one may speak of

• (i) ‘systematic formal development’ (or ‘formal development “lite” ’),
• (ii) ‘rigorous formal development’ and
• (iii) ‘full, formal development’.

In (i) one usually omits stating, let alone discharging proof obligations.
With respect to (ii) one usually states some (interesting, “crucial”) proof
obligations while discharging only crucial proofs. With respect to (iii) one
usually states and discharges all proof obligations.

6. Process Model (II): Allocation of Resources to Steps, Stages
and Phases. Depending on the evolving status of the project, whether
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a proper development project or a proper research project, or somewhere
in-between, one may now either be able to rather precisely estimate and
allocate (abstract) resource consumptions: people, time, equipment, and
hence monies for part of or the entire software development, or only be
able to very roughly estimate these “parameters”, and then usually only
for the current phase, or stages, or steps.

7. Process Model (III): Scheduling Development of Step, Stage and
Phase Tasks. Similarly one may be able to precisely or only loosely
determine a time schedule.

8. Process Model (IV): Review and Re-planning of Process Model
(III). The above planning items may be performed either in sequence and
then re-iterated, or in some form of interleaving. In any case, a state will
be reached in which the planners, i.e., management, wishes to evaluate
the project being planned. Is it within acceptable resources (people, time,
monies) or not? Must project short-cuts be made? Et cetera. Decisions
here lead to modifications of the process model so far diagrammed.

9. Resource Estimation (II). Rough estimates can then be refined.
10. Process Model (V): Finalisation of Process Model. Once manage-

ment agreement has been reached the process model can be finalised: that
is, the process model can be annotated with concrete, committed people,
committed dates and committed monies.

The project proper can start.

The Monitoring and Control Aspects of Software Project
Management

The software development project alternates between operations management
monitoring the project as it proceeds. The monitoring is with respect to the
project’s process model. In this section we shall outline a number of the more
important aspects of this monitoring. We shall formulate monitoring aspects
in terms of process assessments. Once a sub-process has been assessed (i.e.,
evaluated) to be in want of improvement, then either the relevant operations
manager, usually called a sub-project leader, institutes the necessary process
improvement, or defers to (seeks guidance from or hands over project control
responsibility to) “upper” management.

We can define two notions of process model compliance, a syntactic and
a semantic. The syntactic notion of process model compliance has to do with
“the degree” to which an actual process matches a possibly iterated, i.e., an
OK trace of a process model. The semantic notion of process model compliance
is concerned with adherence to the semantics of boxes.

Suffice it to summarise that an ongoing process, i.e., an ongoing software
development project can be assessed wrt. its syntactic and its semantics com-
pliance wrt. its process model. One can precisely state which activities have
been omitted (incompleteness), and which activities were extraneous (or ad
hoc).
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Syntactic and Semantic Process Compliance.

We first deal with syntactic compliance, then with semantics compliance. This
monitoring and control aspect of project management is, by far, the most
resource-consuming aspect. It requires constant, i.e., daily vigilance.

Software Process Assessment 1 Syntactic Process Compli-
ance: Given the generic process models diagrammed in Figs. E.1–E.7
and given the project-specific software development graph as exemplified
by Fig. E.8, one can now, in a process claimed to adhere to these models
and graphs, quite simply assess whether that actual process follows those
diagrams.

We assume that assessment takes place “regularly”, that is, with a frequency
higher than process wave transitions, that is, more often than the process
evolves through steps and stages. Otherwise it may be too late (or too cum-
bersome) to “catch and do” an omitted step.

Software Process Improvement 1 Syntactic Process Com-
pliance: Adherence to the process model can, at least “formally”, be
improved by actually ensuring that the process steps and stages (or even
phases) that were assessed to not having been performed, that these be
performed.

But syntax is only that, namely superficial. The semantics of what is being
developed, i.e., of the resulting — typically description, prescription, spec-
ification and analysis — documents is what is most important. The next
assessment is more one of management than of the documents.

Software Process Assessment 2 Process Model Syntax and
Semantics: In order to handle process improvement (à la CMM, from
a lower to a higher level) — using the TripTych approach — managers
(as well as, of course, developers), must be intimately familiar with the
syntax and semantics of the documents produced and expected to be
produced by process model node activities.

This is a strong requirement and can not be expected by just any software
development organisation. And there are really no shortcuts.17 Process im-
provement — wrt. the precision of monitoring resource usage — is predicated
on this assumption: that management is strongly based on professional aware-
ness of process model18 principles, techniques and tools. The “degree”19 to

17In other branches of engineering project managers (i.e., project leaders) and
developers, the “engineers at floor level” basically all have the same, normalising
education. Hence they are intimately familiar with the syntax and semantics of
their tasks. The problem is in software engineering.

18We here use the broader term ‘process model’ than the term TripTych. In this
way the assessment and improvement guidance statements apply more generally —
provided, of course, such “another process model” has a clear semantics.

19The “degree” notion is not defined here.
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which a development document adheres to the syntax and semantics of the
relevant box thus provides an assessment.

Several industries, worldwide, the most well known is perhaps Praxis High
Integrity Systems, http://www.praxis-his.com, practices this on a regular basis.
So do other members of ForTIA: The Formal Techniques Industrial Association,
www.fortia.org.

Software Process Improvement 2 Process Model Syntax and
Semantics: To improve this general aspect of the possible processes
that developers and managers might be able to pursue under the banner
of the TripTych (or other) Process Model one simply has to resort to
education and training.Or hire better educated and trained staff, including
managers. There is no substitute.

We remind the reader of our earlier remarks on the “standard, conventional
development” versus the possible “research” nature of a software “develop-
ment” project (cf. Items 2 on page 271 and 6 on page 271).

A “Base 0” for TripTych Developments.

By a TripTych development we mean a development which applies the prin-
ciples, techniques and tools as prescribed by the TripTych dogma. Either in
a systematic, or in a rigorous, or in a formal way. A TripTych development
process therefore, “by definition” has its base point at level 4 in the CMM
scale. This does not mean that a software development process which claims to
follow the TripTych dogma (or the software house within which that process
occurs) at least measures at level 4. The dogma sets standards. The process
may follow, or may not follow such standards. Whether they are followed or
not is now an “easy” matter to resolve. The degree to which the dogma, in
all its very many instantiations, is followed is now “fairly easy” to resolve.
The “ease” (or “easiness”) depends on how well developers and management
understand the many TripTych (or, more generally, the specifically chosen
process model’s) principles, techniques and tools, how well they understand
the prescribed syntax and semantics of required documents, and on how well
they understand their pragmatics, that is, the reason for these principles,
techniques and tools.

Pragmatics.

The pragmatics is what makes management interesting. Well mastered prag-
matics allows the managers leeway (i.e., discretion) in the dispatch of their
duties, that is, allow them to skip (or “go light” on) certain activities, includ-
ing choosing whether a step or even a stage should be performed “lightly” or
more-or-less “severely”, that is, be informal, or formal (and then in a scale
from systematic via rigorous to formal).
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Software Process Assessment 3 Planned Syntactic and Se-
mantics Compliance: If a process is assessed (SPA) to be in full
compliance, syntactically and semantically with the process model then
we claim that the software development in this case is at CMM level 4
(or higher).

Software Process Improvement 3 Planned Syntactic and Se-
mantics Compliance: If it is assessed that a process has not reached
CMM level 4, and that at least CMM level 4 is desired, then one must first
secure syntactic compliance, see process improvement #2 (Page 273),
thereafter ensure that each of the steps (or stages, or phases) whose se-
mantic compliance was assessed too low be redone and according to their
semantic intents.

Resource Planning.

This aspect relates more to the ‘creative’ aspect of the project than the mon-
itoring and control aspect.

Software Process Assessment 4 Resource Planning: How can
one assess a software development project plan (i.e., graph), that is, some-
thing which designates something yet to happen? Well, one can compare
with previous software development graphs purporting to cover “similar”
(if not identical) development problems and their eventual outcome, that
is, the process that resulted from following those graphs. Based on actual
resource usage accounts one can now — “to the best of anyone’s ability”
— draw a software development graph and ascribe resource consump-
tion estimates (time, people, equipment) to each and every node. Thus
‘assessment’ here was “speculated assessment” of an upcoming project.

Thus, if that ‘speculated assessment’ of an upcoming project is felt, by the
assessors, i.e., the management, to be flawed, to be questionable, then one has
to proceed to improvement:

Software Process Improvement 4 Resource Planning: One
must first improve the precision with which one designs the domain-
specific project development graphs. Then the precision with which we
associate resource usage with each box of such a graph. Etcetera. Some
development projects are very much “repeats” of earlier such projects
and one can expect improvement in project development graphs for each
“repeat”. Other projects are very much tentative, explorative, that is, are
actually applied research projects — for which one only knows of a project
development graph at the end of the project, and then that graph is not
necessarily a “best such”!
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Monitoring & Controlling Resource Usage.

As the project (i.e., the process) evolves management can now check a number
of things: adherence to schedule and allocation, and adherence to the syntactic
and the semantic notions of process model compliance.

Most process models do not possess other than rather superficial and then
mostly syntactic notions of compliance. In the TripTych process model se-
mantic compliance is at the very core: Every box of the process models have
precise syntax and semantics of the documents that are the expected results
of these (box) activities.

Software Process Assessment 5 Resource Usage: No problems
here. As each step (of the development process) unfolds one can assess
its compliance to estimated plan.

Should a resource usage assessment reveal that there are problems (for exam-
ple: all resources used well before completion of step) then something must
be done:

Software Process Improvement 5 Resource Usage: Well, per-
haps not this time around, when all planned resources have already been
consumed — no improvement can undo that — but perhaps “next” time
around. An audit may reveal what the cause of the over-consumption
was. Either a näıve, too low resource estimate, or unqualified staff, or
some simple or not so simple mistakes? Improvement now means: make
precautions to avoid a repetition.

Resource usage is at a very detailed and accountable level and can thus be
better assessed. Slips (usually excess usage) can be better foreseen and dis-
covered and more clearly defined remedies, should milestones be missed or
usage exceeded, can then be prescribed — including skipping stages and steps
whose omission are deemed acceptable.

Skipping stages and steps result in complete, perhaps extraneous (ad hoc)
processes. Given that management has an “ideal” process model and hence
an understanding of desirable, possibly iterated processes, management can
now better assess which are acceptable slips.

From Informal to Formal Development.

By process improvement, to repeat and to enlarge on our previous character-
isation of what is meant by process improvement, we understand something
which improves the quality of resulting software. We “translate” the term ‘re-
sulting software’ into the term ‘resulting documents’. These documents can
— as listed in Appendix E.9 — be developed either informally (without any
use of any formalism other than the final programming language20), or sys-
tematically formal, or rigorously formal or formally formal!

20Thus we do not consider UML to be a formalism. For a “formalism” to qualify
as being properly formal it must have a precise syntax, the syntax must have a
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Informal Development,

It is an indispensable property of the TripTych approach to software devel-
opment that the formalisable steps domain engineering, requirements engi-
neering and software design be pursued in some systematic via rigorous to
formal manner. Hence the informal aspects of development is restricted to
the development of only the informative documents. Informative documents
are usually “developed” by project leaders and managers. Hence an “upper”
level of management is doing the process assessment and possibly prescribing
process improvements to a “lower” level of management!

Software Process Assessment 6 Informal Development of
Informative Documents: We refer to Appendix Sects. E.9.1–E.9.3.
Items 1. (Information) of those sections lists the kind of informative doc-
uments to be carefully developed — and hence assessed. Since no pre-
scribed syntax, let alone formal semantics can be given for these docu-
ments — whose purpose is mainly pragmatic — assessment is a matter
of style. It is easy to write non-sensible, “pat” informative documents
which do not convey any essence, any insight. Assessment hence has to
evaluate: does a particular, of the many informative documents listed in
Items 1. of Appendix Sects. E.9.1–E.9.3 (Information), really convey, in
succinct form, an essence of the project being initiated?

Software Process Improvement 6 Informal Development of
Informative Documents: If an informative document is assessed to
not convey its intended message succinctly, with necessary pedagogical
and didactic “bravour”, then it must be improved. “Seasoned”, i.e., ex-
perienced managers may be able to do this.

Systematic, Rigorous and Formal Development.

The development of domain description, requirements prescription and soft-
ware design documents as well as the development of analytic documents
(including tests, verification, model checking and validation) can be done in
a spectrum from systematically via rigorously to formally.

Software Process Assessment 7 Staff and Tool Qualifica-
tion: Given the syntax and semantics of the specific step — in the
process model — of the tasks to be assessed a syntax- and semantics-
knowledgeable person cum a project (task or step) leader or a manager,
can assess compliance. That assessment is greatly assisted by the soft-
ware tools21 that support activities of those tasks: If they can process the

precise semantics, and there must be a congruent proof system, that is, a set of
proof rules such that the semantics satisfy the proof rules.

21These software tools mainly support the use of the main tools, namely the
specification languages, their transformation (or refinement) and their proof systems.
[See paragraph Tools on the next page.]
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documents then something seems OK. If not, assessment will have to be
negative.

There are now two distinct, “extreme” reasons for a failure to meet assessment
criteria — with any actual reason possibly being a combination of these two
“extremes”. One is that the quality of the staff performing the affected tasks
is not up to expectations. The other is that the tools being deployed are not
capable of supporting the problem solution task.

Staff Qualification.

If the assessment of ‘Systematic, Rigorous and Formal Development of Specifi-
cations and Their Analysis’ is judged negative due to inadequate development
decisions then we suggest the following kind of improvement.

Software Process Improvement 7 Staff Qualification: It is
suggested that improvement, when deemed necessary, takes either of
three forms: Either “move” from a systematic to a rigorous level of de-
velopment, or from a rigorous to a formal level of development when that
is possible and redo the task(s) affected. Or educate and train staff to
re-perform the affected task(s) more accurately (while remaining system-
atic, rigorous, or formal as the case may be). Or replace affected staff
with better educated and trained staff and redo the task(s) affected.

These kinds of improvement decisions are serious ones.

Tools.

There are different categories of tools.
Tools can serve management: for the design of software development

graphs (a la Fig. E.8 on page 263) and their “fusion” into the appropriate
process model diagrams (a la Fig. E.2 on page 258, Figs. E.4 on page 260
and E.5 on page 261, and Fig. E.7 on page 262) and for the monitoring and
control (i.e., assessment and improvement) of the process with respect to these
diagrams.

And tools can serve developers: syntactic and semantic description, pre-
scription and software design tools as well as analytic tools: for testing, model
checking and verification (proof assistance or theorem provers). These tools
embody, that is, represent the formalisms of the textual or diagrammatic nota-
tions used — whether Alloy [202]22, B [1, 131], Duration Calculus [301, 302],
LSCs [145,184,212], MSCs [199–201], Petri Nets [210,250,258–260], RAISE RSL

22The present author is duly fascinated by the elegance and “power” of Alloy,
but, by including Alloy in this list does not mean that we know whether it scales up
to industrial use. Alloy is certainly strongly recommended, as are the others in the
list, for teaching purposes. We do think, however, that the remaining languages do
scale up — but that the tools could be improved for all of these to be truly industry
oriented.
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[87–89,97,165,166,168], Statecharts [180–183,185], TLA+ [217,218,232,233],
VDM-SL [111, 112, 157, 158], or Z [186, 187, 283, 284, 297]. Thus the formal
notations of the above listed eleven languages, whether textual or diagram-
matic, or combinations thereof, are tools, as are the software packages that
support uses of these linguistic and analytic means.

Tool Qualification.

If assessment of ‘Systematic, Rigorous and Formal Development of Specifica-
tions and Their Analysis’ is judged negative due to inadequate tools then we
suggest the following kind of improvement:

Software Process Improvement 8 Tool Qualification: Better
tools must be selected and applied to the task(s) affected (i.e., judged
negatively assessed). These tools are either intellectual, that is, the speci-
fication languages, whether textual or diagrammatic, and their refinement
and proof systems, or they are the manifest software tools that support
the intellectual tools.

These are likewise serious improvement decisions.

Review of Process Assessment and Process Improvement Issues

We have surveyed, somewhat cursorily, a number of software process assess-
ment and software process improvement issues. We characterise these from a
another viewpoint below.

1. Process Model Syntax and Semantics Assessment and Improve-
ment: We refer to Page 273, Assessment and Improvement Item 2. The
issue here is whether the management and development staff really un-
derstands and, to a satisfactory degree, can handle the TripTych process
model in all its myriad of phases, stages and steps, specificationally and
analytically, and with all its myriad of documentation demands. If not,
then they cannot be effectively assessed and subjected to “standard” im-
provement measures. This is an assessment (and improvement) issue which
precedes proper project start.

2. Syntactic Process Compliance Assessment and Improvement: We
refer to Page 273, Assessment and Improvement Item 1. This issue is a
“going concern”, that is, an ongoing, effort of regular assessment and pos-
sibly an occasional improvement. It merely concerns whether a mandated
step (or stage or even phase) of development and its expected production
of related documents has taken or is taking place.

3. Planned Syntactic and Semantics Compliance Assessment and
Improvement: We refer to Page 275, Assessment and Improvement
Item 3. This is an assessment (and improvement) issue which, in a sense,
sets a proper framework for the project: Does management wish to attain
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at least CMM level 4, or higher or lower? In that sense it precedes project
start while determining the rigour with which the next assessments and
improvements are to be pursued.

4. Resource Planning Assessment and Improvement: We refer to
Page 275, Assessment and Improvement Item 4. This item of assessment
and improvement takes place at project start and may have to be repeated
when resource consumption exceeds plans. Assessment and improvement
may involve “layers” of project leaders and management.

5. Resource Usage Assessment and Improvement: We refer to Page 276,
Assessment and Improvement Item 5. This item of assessment and im-
provement takes place at regular intervals during an entire project and
involves “layers” of project leaders and management. It may lead to re-
planning, see Item 4.

6. Informative Document Assessment and Improvement: We refer to
Page 277, Assessment and Improvement Item 6 and to Appendix Sects.
E.9.1–E.9.3, specifically to Items 1 (Information). Informative documents
are usually directed primarily at client and software house management
and not so much at software house software engineers. As such they are
often the result of the combined labour of client and software house man-
agement. Assessments take place while the planned project is being dis-
cussed between these partners. Improvements may then be suggested at
such mutual project planning meetings.

7. (a) Staff and Tool Qualification Assessment We refer to Page 277,
Assessment and Improvement Item 7. This form of assessment is probably
the most crucial aspect of SPA (and hence of SPI). It strikes at the core
of software development. The resources spent in what is being assessed
conventionally represent a very large, a dominating percentage of resource
expenditures. Thus this complex of “myriads” of process step, stage and
phase (document) assessment must be subject to utmost care.

7. (b) Staff Qualification Improvement: We refer to Page 278, Assess-
ment and Improvement Item 7. The implications of even minor staff im-
provement actions may be serious: staff well-being, in-availability of staff,
serious delays are just a few. Thus improvement planning must be sub-
ject to utmost care, both technically and socio-economically, but also as
concerns human relations.

8. Tool Qualification Improvement: We refer to Page 279, Assessment
and Improvement Item 8. The implications of even minor tool improve-
ment actions may be serious: serious retraining or restaffing, serious time
delays, and hence serious cost overruns.

E.5.2 Software Product Management

By software product management we mean the management aspects of decid-
ing which software products to develop and how to price, schedule, market,
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sell, service, maintain and, last, but certainly not least, to further develop
these products in an evolutionary manner.

You may additionally interpret Sect. E.3, see the second paragraph of
Sect. E.5.1, as also significantly implying software product possibilities. We
shall outline this latter interpretation below.

• • •

Our treatment of software product management (this section, Sect. E.5.2) will
not be as detailed as that of software project management (Sect. E.5.1). The
reason for this is twofold: (i) an essence of software product management is
that it can be less related to firm principles and techniques, let alone to tools;
(ii) the author, although having quite some insight into the area is less sure
of “brashly” promulgating such principles and techniques — as compared to
those so promulgated for software project management. The field of software
product management is too young — software development techniques having
yet to stabilise — to expect firm principles and techniques for software product
management. The literature in this area is only now beginning to appear
(viz. papers and books on, for example, “software product line management”
[151, 211, 227]) and this literature is based, so it appears to this author, on
rather “old fashioned” views of (only informal) software development.

Summary of Requirements Development Stages

We refer to Figs. E.4 on page 260 and E.5 on page 261. Recall that the do-
main description usually covers “much more” than is going to be covered
by the requirements. That is, the first “act” of domain requirements is to
‘project’ away much of the domain description. Some of the parts that are left
out may appear in other domain requirements. In general: Certain kinds of
software houses specialises in providing software for a single domain, but for
applications spanning an increasingly larger part of that domain. The domain
description-to-domain requirements prescription operations of projection, in-
stantiation, determination, and extension aim at one software product or a
possibly customizable set of end-user products.

Implied Domain-Specific Software Product Possibilities

Another set of projection, instantiation, determination, and extension domain
description-to-domain requirements prescription operations aim at another
such (possibly customizable) software product. The domain description-to-
domain requirements prescription operation of fitting may then fit two or
more products together. And so forth. Once this “spinning off” of a number
of domain-specific products has been tried a number of times the software
house “discovers”, through the ‘fitting’ operation that ‘features’ of one product
are very much like ‘features’ of another product. The paper ‘Development of

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
282 E Believable Software Management

Transportation Systems’ [91, to appear] shows how a generic, i.e., abstract
domain model of transportation can be refined into concrete domain models
for road, rail, air and ship transport. Thus [91, to appear] implies sets of
requirements for each of these areas. The resulting software designs can, like
the requirements prescriptions, be parameterised into software that is then
customisable to specific transport modes.

“Middle-layer” and Systems Software Products

But there is another kind of domain-specific software, namely where the do-
main can be said to reflect a certain intensiveness of the deployed software.
Let us roughly speak of information, or process, or translation, or connec-
tion, or workpiece software intensities. By information intensive software we
understand software which focuses on handling (co-ordinating) large amounts
of information. That is, we speak typically of database software. By process
intensive software we understand software which focuses on handling (co-
ordinating) large numbers of processes. That is, we speak typically of real-time
process-switching software. By translation intensive software we understand
software which focuses on handling syntactic entities. That is, we speak typi-
cally of compilers, interpreters, and theorem provers. By connection intensive
software we understand software which focuses on handling (co-ordinating)
large numbers of messages between processes. That is, we speak typically of
data communication software.

We have, before this subsection, focused on end-user domain-specific ap-
plications (such as residing in for example the financial services, the health
care, the transportation and other domains). Take, for example, the trans-
portation domain, whether it is for road (personal automobile, taxi or bus)
or rail traffic or for the transport of oil or natural gas in pipelines. Common
to these is that almost any software support or any of these domains must
build on a database of the transportation. Such databases would represent,
most likely, road segments, linear rail units and pipeline segments, that is,
links between neighbouring street intersections, rail switches (crossovers, etc.)
and pipeline joints, in very similar form. Likewise such databases would rep-
resent street intersections, rail switches(, crossovers, etc.) and pipeline joints
also in very similar form. The idea is therefore obvious, namely to prescribe
a database management system that can serve all three application domains.
We disregard, for the moment the obvious choice of “building” upon an exist-
ing relational database management system. [91, to appear], amongst other
software targets, also indicate this shared database property. The point we
wish to make is that some software products “cut across” domains. Some
(such) systems software may cover several seemingly, or otherwise distinct
domains. So a software house that may have started out as identifying itself
with a specific domain may soon end up identifying itself with a generic class
of “middle-ware” or systems software — or, to paraphrase it, from being a
turn-key software house to a commercial, off-the-shelf software (COTS) house.
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The Creative Aspects of Software Product Management

Creation, the “Eureka” act of discovery, in this case, of discovering which
products to focus on, does not result, we think, as a result of explicit man-
agement. But “pointers”, hints, can be given.

Now the software house learns to focus on features and on how to compose
these into products. More specifically the software house develops in-house
tools to help it develop and compose features. A very fascinating approach
to this form of development has been proposed and extensively studied by
Batory et al. [12–18].

(And then there is the software that is chance upon truly creatively, typ-
ically by young university students unhindered by the conventional wisdom
propagated at the Alma Mater.)

Software Evolution

By software evolution we mean that a given, usually field-installed and
context-customised COTS product evolves: (i) new features (originating with
the original software house), (ii) corrections to identified bugs, (iii) improve-
ments of various kind, etcetera, are introduced to all, or most, or at least
a number of such field installations: the software is ‘upgraded’, the software
evolves. That evolution sometimes clashes with customisation. To provide for
smooth software evolution a number of design precautions must be made dur-
ing the original software project development, i.e., be present in the original
customisable software (COTS) product.

The concept of ‘Evolvable Software Product’ is only now being subject to
serious scientific studies [149,150]. Other than mentioning a fascinating project
and referring to Sestoft’s lectures [274] we shall not cover this important
topic which significantly dictates a number of important software product
management issues.

• • •

There are many other software product concepts that help determine the
issues facing software product management. We leave it to other entries in
this Encyclopedia of Software Engineering to cover these properly.

• • •

Above, in Sects. E.5.2–E.5.2, we have viewed the emergence of new prod-
ucts from the, we could call it “top down” perspective of end-user application
domain specificity. When the domain is that of operating computer and com-
munications hardware by means of its system software: Apple OS-X, Linux,
Microsoft Vista or other, then a clear description of the domain, that is, of
the users and their operating needs: their needs for “hooking” up various
equipment and other software, must first be achieved — but rarely is. Many,
today typically net-oriented and IT security software packages, emerge from
considerations such as just hinted at.
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E.6 Believable Software Managers and Management

As a preamble to a closing enumeration of issues of believable managers and
management we first, very briefly enumerate issues of project and product
believability.

E.6.1 Project Believability ≡ Project Quality

A project is believable, i.e., has quality, if the following properties can all be
achieved.

1A. Planning: A development project can be planned, and is hence a devel-
opment project, if a method can a-priori be identified, a method which
in deterministic steps of development concisely prescribes how to develop
the product.

1B. Planning: A development cum applied research project can be planned,
and is hence an experimental, applied research project, if management
and programmers, that is, domain engineers, requirement engineers and
software designers, can agree that it is an experimental, applied research
project, and hence needs co-develop the project graph for that application.

2A. Estimation: A projects’ consumption of resources (time, manpower, ma-
chine and other development tools) can be estimated if for each sub-task
(of a phase, stage or step) that the method (any method) requires, the
effort to carry through this task can be established a-priori.

2B. Estimation: For an experimental, applied research project, it must be
agreed that estimates are very approximate, in fact: non-binding; other-
wise it is not a believable project.

3. Resourcing: A project is ‘resourcable’ if expected and available resources
can be “nicely” mapped onto required resources.

4. Economic: A project is economic, firstly, if the estimated required resources
are within expectations, and, secondly, if the actual resources consumed
stays within the budget!

5. Trustworthy: A project is trustworthy if (i) the development (or experimen-
tal, applied research project) staff and the customer at all times believes
that the management is in full control, (ii) if the developers believe that
their method will bring them through the project, and (iii) if the customer
believes he will get the quality software in the time that the customer ex-
pects.

6. Enjoyable: A project is enjoyable if the development staff has intellectual
fun, and is being further educated in pursuing it.
Mathematics is great fun: being able to move software development to the
intellectual level of treating programs and programming as formal objects
is no less fun. The beauty of concise theories, as expressed by elegant speci-
fications and designs, is rewarding. The ability to stand back, abandoning
dogmatic, almost religious beliefs (attachments) to one’s specifications
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and designs, and being able, at little expense, to revise one’s thinking
dramatically, is a treasure to behold.

Sum total: If a development project is to be believable then all of the above
criteria (1A., 2A., 3.–6.) must be fulfilled. If it is to be an experimental, applied
research project then criteria 1B., 2B. and 6. must be full-filled.

E.6.2 Product Believability ≡ Project Quality

A product has quality, i.e., is believable, if the following properties can all be
achieved.

The Right Product: The product delivers what the customers expect — and
may further deliver properties, facilities, that the customers, i.e., user are
pleased to use.

To achieve this quality we strongly advice developers to base development on
the full TripTych spectrum: domain engineering is what ultimately secures
that quality.

The Product is Right: And whatever the product delivers it does so correctly:
No bugs, no errors.

To achieve this quality we strongly advice developers to base development on
formal development: proofs, model checks and formal tests.

Smooth Transition: The product is “easy” to learn and use.

The product will be “easy to learn and use” if the concepts of the domain
clearly “shine” through the requirements, the software design and the code.

Price & Time: The price is right and the delivery time is right.
Smooth Growth: The product allows the customer to “naturally grow into”

follow-on products: Enhancements are easy to assimilate.

The product has been designed so as to allow customisation and evolution.

Intellectually Stimulating: Use of the product allow the users to better un-
derstand their own domain.

A proper, wide-spanning domain model from which the product can be “sim-
ply” domain and interface requirements-developed is a product whose intrinsic
concepts reflect a proper understanding of the domain and hence ‘educates’
its users.
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E.6.3 Believable Software Managers

A software development project manager is believable if the manager is re-
garded by the managed staff to be in full control of the part of the software
development project under the managers’ control, that is, understands clearly
and can “translate” into meaningful actions the development method being
deployed (its syntax, semantics and pragmatics) such as for example outline
in Sect. E.3, the issues as software process assessments and improvements
outlined in Sect. E.4, and can relate these SPA and SPI issues to the chosen
method — as outlined in Sect. E.5.

E.6.4 Believable Software Management

A software development project’s management is believable if all its the man-
agers are believable. And a software house’s management is believable if all
its software development projects are led by believable managements.

E.7 Conclusion

The conclusions above, that is, in Sects. E.6.3–E.6.4, can be formulated as
tersely as they are because we have carefully built up, in the referenced sec-
tions, Sects. E.3–E.5, a full set of software development concepts.

Many issues we not dealt with properly: (i) other process models than
the TripTych model outlined in Sect. E.3; (ii) risk management, (iii) qual-
ity assurance; (iv) software product lines, Sect. E.5.2; (v) software evolution,
Sect. E.5.2; (vi) software maintenance in general; etcetera.

It is trusted, in the present entry of the Encyclopedia of Software Engi-
neering that other entries will cover, more adequately, not only these “less
properly” dispensed issues, but most like also issues that are treated more
substantially in the current entry. Thereby the interested reader will obtain a
more realistic picture of the state-of-the-art of Software Engineering 2008.

E.8 Bibliographical Notes

[94, to appear] gives a concise overview of domain engineering; [95, to ap-
pear] relates domain and requirements engineering; [90] presents a number of
domain engineering research challenges; [96, to appear] additionally presents
a rather large example of the container line industry domain. [91, to appear]
shows a generic, i.e., abstract domain model of road, rail, air and ship trans-
port.

Finally [87–89], except for this, the management aspects of software engi-
neering, present all the other issues of this Software Engineering Encyclopedia
entry in “excruciating” details!
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E.9 Software Development Documents

There are three kinds of documents: informative (Items 1. in the documents
listings of Sects. E.9.1–E.9.3.), specificational (Items 2. in the documents list-
ings of Sects. E.9.1–E.9.3.) and analytic (Items 3. in the documents listings
of Sects. E.9.1–E.9.3.). Informative documents view software development
projects as values. Analytic documents view specificational (description, pre-
scription and specification) documents as values.

E.9.1 Domain Engineering Documents

We refer to Fig. E.2 on page 258.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessment
ii. Improvement

A. Plans
B. Actions

2. Descriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Terminology
(d) Business Processes
(e) Facets:

i. Intrinsics
ii. Support Technologies
iii. Management and Organisa-

tion
iv. Rules and Regulations
v. Scripts
vi. Human Behaviour

(f) Consolidated Description
3. Analyses

(a) Domain Analysis and Concept
Formation

i. Inconsistencies
ii. Conflicts
iii. Incompleteness
iv. Resolutions

(b) Domain Validation
i. Stakeholder Walk-throughs
ii. Resolutions

(c) Domain Verification
i. Theorems and Proofs
ii. Model Checking
iii. Test Cases and Tests

(d) (Towards a) Domain Theory

E.9.2 Requirements Engineering Documents

We refer to Figs. E.4 and E.5 on page 261.
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1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas (Eurekas, I)
(e) Concepts & Facilities (Eurekas,

II)
(f) Scope & Span
(g) Assumptions & Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis (Eurekas, III)
(j) Standards Compliance
(k) Contracts, with Design Brief
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessment
ii. Improvement

A. Plans
B. Actions

2. Prescriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)
(d) Terminology
(e) Facets:

i. Business Process Re-
engineering
• Sanctity of the Intrin-

sics
• Support Technology
• Management and Or-

ganisation
• Rules and Regulation
• Human Behaviour
• Scripting

ii. Domain Requirements

• Projection
• Determination
• Instantiation
• Extension
• Fitting

iii. Interface Requirements
• Shared Phenomena and

Concept Identification
• Shared Data Initialisa-

tion
• Shared Data Refresh-

ment
• Man-Machine Dialogue
• Physiological Interface
• Machine-Machine Dia-

logue
iv. Machine Requirements

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessibility
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive
⋆ Corrective
⋆ Perfective
⋆ Preventive

• Platform
⋆ Development Plat-

form
⋆ Demonstration Plat-

form
⋆ Execution Platform
⋆ Maintenance Plat-

form
• Documentation Re-

quirements
• Other Requirements

v. Full Reqs. Facets Doc.
3. Analyses

(a) Requirements Analysis and
Concept Formation

i. Inconsistencies
ii. Conflicts
iii. Incompleteness
iv. Resolutions
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(b) Requirements Validation
i. Stakeholder Walk-through

and Reports
ii. Resolutions

(c) Requirements Verification
i. Theorem Proofs
ii. Model Checking
iii. Test Cases and Tests

(d) Requirements Theory

(e) Satisfaction and Feasibility
Studies

i. Satisfaction: Correctness,
unambiguity, completeness,
consistency, stability, verifi-
ability, modifiability, trace-
ability

ii. Feasibility: Technical, eco-
nomic, BPR

E.9.3 Software Design Engineering Documents

We refer to Fig. E.7 on page 262.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities and Facil-

ities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management,
ii. Developers,
iii. Consultants

(m) Plans
i. Project Graph
ii. Budget, Funding, Accounts

(n) Management
i. Assessment Plans & Actions
ii. Improvement Plans & Ac-

tions
2. Software Specifications

(a) Architecture Design (Sa1 . . . San)
(b) Component Design (Sc1i

. . . Scnj
)

(c) Module Design (Sm1 . . . Smm )
(d) Program Coding (Sk1

, . . . , Skn)
3. Analyses

(a) Analysis Objectives and Strate-
gies

(b) Verification (Sip , Si ⊒Li Si+1)
i. Theorems and Lemmas Li

ii. Proof Scripts ℘i

iii. Proofs Πi

(c) Model Checking (Si ⊒ Pi−1)
i. Model Checkers
ii. Propositions Pi

iii. Model Checks Mi

(d) Testing (Si ⊒ Ti)
i. Manual Testing

• Manual Tests MS1 . . . MSµ

ii. Computerised Testing
A. Unit (or Module) Tests

Cu

B. Component Tests Cc

C. Integration Tests Ci

D. System Tests Cs . . . Csits

(e) Evaluation of Adequacy of Analy-
sis

Legend:
S Specification
L Theorem or Lemma
℘i Proof Scripts
Πi Proof Listings
P Proposition
M Model Check (run, report)
T Test Formulation
M Manual Check Report
C Computerised Check (run, report)
⊒ “is correct with respect to (wrt.)”
⊒ℓ “is correct, modulo ℓ, wrt.”

Items 3(b–3(d above have been detailed (i–iii, i–iii, i–ii, respectively) more
than the corresponding Items 3((c)i–3((c)iii (Page 287, Sect. E.9.1) and
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290 E Believable Software Management

Items 3((c)i–3((c)iii (Page 289, Sect. E.9.2). Naturally, also actions implied
by these items need be pursued and documented as diligently as for software
design.
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F

An Example Domain Model: Intrinsics1

This appendix consists of an excerpt from a new book: Dines Bjørner: Software
Engineering:

• Vol. I: The Triptych Method, Management and Organisation; and
• Vol. II: A Model Development, Appendix F: Intrinsics.

(The book Software Engineering (approximately 400 pages) is currently being
written.2)

The example of this appendix serves to illustrate:

• a reasonably “complete”3 domain description;
• a systematic use of ‘narrative’,‘formalisation’ and ‘annotation’ (of formu-

las)4;
• an improved understanding of the event and behaviour concepts, cf.

Sects. F.6 and F.8, and
• corresponding examples (see Pages 312–312, respectively Pages 310–311).

1From Appendix F of [97].
2The (new) Software Engineering book is expected to find a final form after fall

2008 and spring/summer 2009 lectures at Techn. Univ. of Graz, Politecnico di Mi-
lano, University of Saarland, and Christian-Albrechts University of Kiel.

3We put double, “tongue in cheek” quotes, around the term ‘complete’ since
the domain model, of course, does not represent a complete description. But it is
suitably indicative of how we envisage such a domain model to be presented.

4The current RSL annotations assume a reader (of the new book) who does not
known RSL, do know basic mathematical logic, and is not going to learn formal
modelling (say using RSL).
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292 F An Example Domain Model: Intrinsics

F.1 A Transport Example

F.2 An Essence of ‘Transport’

We exemplify a transportation domain. By transport we shall mean the
movement of vehicles from hubs to hubs along the links of a net.

F.3 Business Processes

We sketch an example of some business processes.

Rough Sketching of Some Transport Processes

The basic entities of the transportation “business” are the (i) nets with their
(ii) hubs and (iii) links, the (iv) vehicles, and the (v) traffic (of vehicles on
the net). The basic functions are those of (vi) vehicles entering and leaving
the net (here simplified to entering and leaving at hubs), (vii) for vehicles
to make movement transitions along the net, and (viii) for inserting and re-
moving links (and associated hubs) into and from the net. The basic events
are those of (ix) the appearance and disappearance of vehicles, and (x) the
breakdown of links. And, finally, the basic behaviours of the transportation
business are those of (xi) vehicle journey through the net and (xii) net de-
velopment and maintenance including insertion into and removal from the
net of links (and hubs).

F.4 Entities

F.4.1 Basic Entities

Nets, Hubs and Links

Narrative

1. There are hubs and links.
2. There are nets, and a net consists of a set of two or more hubs and one

or more links.

Formalisation

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1
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F.4 Entities 293

RSL Annotations
• 1: The type clause type H, L, defines two abstract types, also called

sorts, H and L, of what is meant to abstractly model “real” hubs
and nets. H and L are hereby introduced as type (i.e., sort) names.
(The fact that the type clause (1) is “spread” over two lines is
immaterial.)

• 2: the type clause type N = H-set × L-set defines a concrete type
N (of what is meant to abstractly model “real” nets).
⋆ The equal sign, , defines the meaning of the left-hand side type

name, N, to be that of the meaning of
⋆ H-set×L-set, namely Cartesian groupings of, in this case, pairs

of sets of hubs (H-set) and sets of links (L-set), that is,
⋆ × is a type operator which, when infix applied to two (or more)

type expressions yields the type of all groupings of values from
respective types, and

⋆ -set is a type operator which, when suffix applied, to, for ex-
ample H, i.e., H-set, constructs, the type power-set of H, that
is, the type of all finite subsets of type H.

⋆ Similarly for L-set.
(The fact that type clause (2), as it appears in the formalisation, is
not preceded immediately by the literal type, is (still) immaterial:
it is part of the type clause starting with type and ending with
the clause 2.)

• 2: The axiomSet Operations axiom ∀ (hs,ls):N • card hs≥2 ∧ card
ks≥1

• Thus we see that a type clause starts with the keyword (or literal)
type and ends just before another such specification keyword, here
axiom. That is, a type clause syntactically consists of the keyword
type followed by one or more sort and concrete type definitions
(there were three above).

• And we see that a fragment of a formal specification consists of
either type clauses, or axioms, or of both, or, as we shall see later,
“much more” !

Hub and Link Identifiers

Narrative

1. There are hub and link identifiers.
2. Each hub (and each link) has an own, unique hub (respectively link)

identifiers (which can be observed from the hub [respectively link]).

Formalisation

type
1 HI, LI

value
2a obs HI: H → HI, obs LI: L → LI
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294 F An Example Domain Model: Intrinsics

axiom
2b ∀ h,h′:H, l,l′:L •

h6=h′⇒obs HI(h)6=obs HI(h′) ∧ l6=l′⇒obs LI(l)6=obs LI(l′)

RSL Annotations
• 1: introduces two new sorts;
• 2a: introduces two new observer functions:

⋆ → is here an infix type operators.
⋆ Infixing L and LI it constructs the type of functions (i.e., func-

tion values) which apply to values of type L and yield values of
type LI.

and
• 2b: expresses the uniqueness of identifiers.

In order to model the physical (i.e., domain) fact that links are delimited by
two hubs and that one or more links emanate from and are, at the same time
incident upon a hub we express the following:

Mutual Hub and Link Referencing

Narrative

1. From any link of a net one can observe the two hubs to which the link
is connected.
(a) We take this ‘observing’ to mean the following: From any link of a

net one can observe the two distinct identifiers of these hubs.
2. From any hub of a net one can observe the one or more links to which

are connected to the hub.
(a) Again: by observing their distinct link identifiers.

3. Extending Item 1: the observed hub identifiers must be identifiers of
hubs of the net to which the link belongs.

4. Extending Item 2: the observed link identifiers must be identifiers of
links of the net to which the hub belongs.

We used, above, the concept of ‘identifiers of hubs’ and ‘identifiers of links’
of nets. We define, below, functions (iohs, iols) which calculate these sets.

Formalisation

value
1a obs HIs: L → HI-set,
2a obs LIs: H → LI-set,

axiom
1b ∀ l:L • card obs HIs(l)=2 ∧
2b ∀ h:H • card obs LIs(h)=1 ∧
∀ (hs,ls):N •

1(a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
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F.4 Entities 295

∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧
2(a) ∀ l:L • l ∈ ls ⇒

∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}
3 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
4 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

RSL Annotations
• 1a,2a: Two observer functions are introduced.
• 1b,2b: Universal quantification secure that all hubs and links have

prerequisite number of unique (reference) identifiers.
⋆ 1(a): We read ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒ ∃ l′:L

• l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′): For all hubs
(h) of the net (∀h:H•h∈hs) it is the case (⇒) that for all link
identifiers (li) of that hub (∀li:LI•li∈obs LIs(h)) it is the case
that there exists a link of the net (∃l′:L•l′∈ls) where that link’s
(l′’s) identifier is li and the identifier of h is observed in the link
l′.

⋆ 2(a): We read ∀ l:L • l ∈ ls ⇒ ∃ h′,h′′:H • {h′,h′′} ⊆hs ∧ obs HIs(l)
= {obs HI(h′), obs HI(h′′)}: for all ... further reading is left as
exercise to the reader.

• 3: Reading is left as exercise to the reader.
• 4: Reading is left as exercise to the reader.
• iohs,iols: These two lines define the signature: name and type of

two functions.
• iohs(hs) calculates the set ({...}) of all hub identifiers (obs HI(h))

for which h is a member of the set, hs, of net hubs.
• iols(ls) calculates in the same manner as does iohs(hs).

We can read the set comprehension expression to the left of the
definition symbol ≡: “the set of all obs LI(l) for which (|) l is of
type L and such that (•) l is in ls”.

F.4.2 Further Entity Properties

In the above extensive example we have focused on just five entities: nets,
hubs, links and their identifiers. The nets, hubs and links can be seen as
separable phenomena. The hub and link identifiers are conceptual models of
the fact that hubs and links are connected — so the identifiers are abstract
models of ‘connection’, or, as we shall later discuss it, the mereology of nets,
that is, of how nets are composed. These identifiers are attributes of entities.
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296 F An Example Domain Model: Intrinsics

F.4.3 Entity Projections

Links and hubs have been modelled to possess link and hub identifiers. A
link’s “own” link identifier enables us to refer to the link, A link’s two hub
identifiers enables us to refer to the connected hubs. Similarly for the hub and
link identifiers of hubs.

Projection of Unique Identifiers

Narrative

1. Assume conceptual types of links and hubs such that such “pseudo”
links and hubs can be compared for equality where the comparison does
not include their own or their reference identifiers.

2. By a ‘link (hub) identifier reset’
(a) we understand a function, reset I which applies to links or hubs, and

results in a pseudo-link, respectively a pseudo-hub.
(b) For any pseudo-link (pseudo-hub), reset I applied to the result of

applying restore I to that pseudo-link (pseudo-hub) results in that
pseudo-link (pseudo-hub).

3. By a ‘link (hub) identifier restore’
(a) we understand a function, restore I which applies to pseudo-links or

pseudo-hubs, and results in a link, respectively a hub.
(b) For any link (hub), restore I applied to the result of applying reset I

to that link (hub) results in that link (hub).
4. By an “other than identifier hub”, respectively “. . . link”, comparison’,

non I eq, we understand a predicate function which applies either to a
pair of hubs or pseudo-hubs or to a pair of links or pseudo-links and yields
truth value true, if the hubs or pseudo-hubs (links or pseudo-links) are
“equal” except for their identifiers.

5. That is, a hub (link) is non I equal to its reset version.

Formalisation

type
1 pseudo H, pseudo L

value
2(a) reset I: (H → pseudo H) | (L → pseudo L)
3(a) restore I: (pseudo H → H) | (pseudo L → L)

axiom
2(b),3(b) ∀ h:H,l:L,ph:Pseudo H,pl:Pseudo H •

restore I(reset I(h))=h∧restore I(reset I(l))=l ∧
reset I(restore I(ph))=ph∧reset I(restore I(pl))=pl

value
4 non I eq: ((H|pseudo H)×(H|pseudo H)→Bool)

| ((L|pseudo L)×(L|pseudo L)→Bool)
axiom

5 ∀ h:H,l:L • non I eq(h,reset I(h)) ∧ non I eq(l,reset I(l)) etc.
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F.5 Operations 297

RSL Annotations
• 1: pseudo H and pseudo L are further undefined types.
• 2(a): The type union (|) expression (H → pseudo H) | (L →

pseudo L) expresses that reset I either applies to hubs or to links.
• 3(a): Similar to reset I.
• 2(b),3(b),5: The axioms governing the pseudo H and pseudo L

types and the reset I and restore I functions
• 4: As for predicates reset I and restore I (line 2(a), respectively line

3(a)), the type of the postulated non I eq predicate function is of
union type.

F.5 Operations

To illustrate the concept of operations5 on transport nets we postulate those
which “build” and “maintain” the transport nets, that is those road net or
rail net (or other) development constructions which add or remove links. (We
do not here consider operations which “just” add or remove hubs.) By an
operation designator we shall understand the syntactic clause whose meaning
(i.e., semantics) is that of an action being performed on a state. The state is
here the net. We can also think of an operation designators as a “command”.

Initialising a net must then be that of inserting a link with two new hubs
into an “empty” net. Well, the notion of an empty net has not been defined.
The axioms, which so far determine nets and which has been given above,
appears to define a “minimal” net as just that: two linked hubs !

F.5.1 Syntax

First we treat the syntax of operation designators (“commands”).

Link Insertion and Removal

Narrative

1. To a net one can insert a new link in either of three ways:
(a) Either the link is connected to two existing hubs — and the insert

operation must therefore specify the new link and the identifiers of
two existing hubs;

(b) or the link is connected to one existing hub and to a new hub —
and the insert operation must therefore specify the new link, the
identifier of an existing hub, and a new hub;

(c) or the link is connected to two new hubs — and the insert operation
must therefore specify the new link and two new hubs.

5We use the terms functions and operations synonymously.
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298 F An Example Domain Model: Intrinsics

(d) From the inserted link one must be able to observe identifier of
respective hubs.

2. From a net one can remove a link. The removal command specifies a
link identifier.

Formalisation

type
1 Insert == Ins(s ins:Ins)
1 Ins = 2xHubs | 1x1nH | 2nHs
1(a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
1(b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
1(c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
1(d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧

∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

type
2 Remove == Rmv(s li:LI)

RSL Annotations
• 1: The type clause type Ins = 2xHubs | 1x1nH | 2nHs introduces

the type name Ins and defines it to be the union (|) type of values
of either of three types: 2xHubs, 1x1nH and 2nHs.
⋆ 1(a): The type clause type 2xHubs == 2oldH(s hi1:HI, s l:L,

s hi2:HI) defines the type 2xHubs to be the type of values
of record type 2oldH(s hi1:HI,s l:L,s hi2:HI), that is, Cartesian-
like, or “tree”-like values with record (root) name 2oldH and
with three sub-values, like branches of a tree, of types HI, L and
HI. Given a value, cmd, of type 2xHubs, applying the selectors
s hi1, s l and s hi2 to cmd yield the corresponding sub-values.

⋆ 1(b): Reading of this type clause is left as exercise to the reader.
⋆ 1(c): Reading of this type clause is left as exercise to the reader.
⋆ 1(d): The axiom axiom has three predicate clauses, one for

each category of Insert commands.
3 The first clause: ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs HIs(l)

= {hi′, hi′′} reads as follows:
◦ For all record structures, 2oldH(hi′,l,hi′′), that is, values

of type Insert (which in this case is the same as of type
2xHubs),

◦ that is values which can be expressed as a record with
root name 2oldH and with three sub-values (“freely”)
named hi′, l and hi′′
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F.5 Operations 299

◦ (where these are bound to be of type HI, L and HI by the
definition of 2xHubs),

◦ the two hub identifiers hi′ and hi′′ must be different,
◦ and the hub identifiers observed from the new link, l,

must be the two argument hub identifiers hi′ and hi′′.
3 Reading of the second predicate clause is left as exercise to

the reader.
3 Reading of the third predicate clause is left as exercise to

the reader.
The three types 2xHubs, 1x1nH and 2nHs are disjoint: no value in
one of them is the same value as in any of the other merely due
to the fact that the record names, 2oldH, 1oldH1newH and 2newH,
are distinct. This is no matter what the “bodies” of their record
structure is, and they are here also distinct: (s hi1:HI,s l:L,s hi2:HI),
(s hi:HI,s l:L,s h:H), respectively (s h1:H,s l:L,s h2:H).

• 2; The type clause type Remove == Rmv(s li:LI)
⋆ (as for Items 1(b) and 1(c))
⋆ defines a type of record values, say rmv,
⋆ with record name Rmv and with a single sub-value, say li of

type LI
⋆ where li can be selected from by rmv selector s li.

F.5.2 Semantics

Then we consider the meaning of the Insert operation designators.

Semantic Well-formed of Insert Operations

Narrative

1. The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command “is
at odds” with, that is, is not semantically well-formed with respect to
the net.

2. We characterise the “is not at odds”, i.e., is semantically well-formed,
that is: pre int Insert(op)(hs,ls), as follows: it is a propositional function
which applies to Insert actions, op, and nets, (hs.ls), and yields a truth
value if the below relation between the command arguments and the net
is satisfied.
Let (hs,ls) be a value of type N.

1. If the command is of the form 2oldH(hi′,l,hi′) then
⋆1 hi′ must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in

ls, and
⋆3 hi′′ must be the identifier of a(nother) hub in hs.

2. If the command is of the form 1oldH1newH(hi,l,h) then
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300 F An Example Domain Model: Intrinsics

⋆1 hi must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in

ls, and
⋆3 h must not be in hs and its identifier must (also) not be observable

in hs.
3. If the command is of the form 2newH(h′,l,h′′) then
⋆1 h′ — left to the reader as an exercise (see formalisation !),
⋆2 l — left to the reader as an exercise (see formalisation !), and
⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Formalisation Conditions concerning the new link (second ⋆s, ⋆2, in the
above three cases) can be expressed independent of the insert command
category.

value

1 int Insert: Insert → N
∼
→ N

2′ pre int Insert: Ins → N → Bool
2′′ pre int Insert(Ins(op))(hs,ls) ≡

⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧
case op of

1) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
2) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h6∈ hs ∧ obs HI(h)6∈ iohs(hs),
3) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

RSL Annotations
• 1: The value clause value int Insert: Insert → N

∼
→ N names a

value, int Insert, and defines its type to be Insert → N
∼
→ N, that

is, a partial function (
∼
→) from Insert commands and nets (N) to

nets.
(int Insert is thus a function. What that function calculates will be
defined later.)

• 2′: The predicate pre int Insert: Insert → N → Bool function
(which is used in connection with int Insert to assert semantic well-
formedness) applies to Insert commands and nets and yield truth
value true if the command can be meaningfully performed on the
net state.

• 2′′: The action pre int Insert(op)(hs,ls) (that is, the effect of per-
forming the function pre int Insert on an Insert command and a
net state is defined by a case distinction over the category of the
Insert command. But first we test the common property:
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F.5 Operations 301

• ⋆2: s l(op)6∈ls∧obs LI(s l(op))6∈iols(ls), namely that the new link is
not an existing net link and that its identifier is not already known.
⋆ 1): If the Insert command is of kind 2oldH(hi’,l,hi”) then {hi′,hi′′}∈

iohs(hs), that is, then the two distinct argument hub identifiers
must not be in the set of known hub identifiers, i.e., of the ex-
isting hubs hs.

⋆ 2): If the Insert command is of kind 1oldH1newH(hi,l,h) then ...
exercise left as an exercises to the reader.

⋆ 3): If the Insert command is of kind 2newH(h’,l,h”) ... exercise
left as an exercises to the reader.

Some Auxiliary Functions: Hub and Link “Extraction”

Narrative

1. Given a net, (hs,ls), and given a hub identifier, (hi), which can be ob-
served from some hub in the net, xtr H(hi)(hs,ls) extracts the hub with
that identifier.

2. Given a net, (hs,ls), and given a link identifier, (li), which can be observed
from some link in the net, xtr L(li)(hs,ls) extracts the hub with that
identifier.

Formalisation

value

1: xtr H: HI → N
∼
→ H

1: xtr H(hi)(hs, ) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end
pre hi ∈ iohs(hs)

2: xtr L: HI → N
∼
→ H

2: xtr L(li)( ,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end
pre li ∈ iols(ls)

RSL Annotations
• 1: Function application xtr H(hi)(hs, ) yields the hub h, i.e. the

value h of type H, such that (•) h is in hs and h has hub identifier
hi.

• 1: The wild-card, , expresses that the extraction (xtr H) function
does not need the L-set argument.

• 2: Left as an exercise for the reader.

Auxiliary Functions: Hub and Link Identifier “Updates”

Narrative

1. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.
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302 F An Example Domain Model: Intrinsics

2. When an existing link is removed from a remaining hub then the observ-
able link identifiers of that hub must be updated to reflect the removed
link (identifier).

Formalisation

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

1: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

2: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

RSL Annotations
• 1: The add link identifier function aLI:

⋆ The function definition clause aLI(h,li) as h′ defines the appli-
cation of aLI to a pair (h,li) to yield an update, h′ of h.

⋆ The pre-condition pre li 6∈ obs LIs(h) expresses that the link
identifier li must not be observable h.

⋆ The post-condition post obs LIs(h) = obs LIs(h′) \ {li} ∧
non I eq(h,h′) expresses that the link identifiers of the resulting
hub are those of the argument hub except (\) that the argu-
ment link identifier is not in the resulting hub.

• 2: The remove link identifier function rLI:
⋆ The function definition clause rLI(h′,li) as h defines the appli-

cation of rLI to a pair (h′,li) to yield an update, h of h′.
⋆ The pre-condition clause pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2

expresses that the link identifier li must not be observable h.
⋆ post-condition clause post obs LIs(h) = obs LIs(h′) \ {li} ∧

non I eq(h,h′) expresses that the link identifiers of the resulting
hub are those of the argument hub except that the argument
link identifier is not in the resulting hub.

Semantics of the Insert Operation

Narrative

1. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of
hubs and links, has
• the hubs hs joined, ∪, by the set {h′,h′′} and
• the links ls joined by the singleton set of {l}.

2. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated
net of hubs and links, has
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F.5 Operations 303

2.1 : the hub identified by hi updated, hi′, to reflect the link connected
to that hub.

2.2 : The set of hubs has the hub identified by hi replaced by the up-
dated hub hi′ and the new hub.

2.2 : The set of links augmented by the new link.
3. If the Insert command is of kind 2oldH(hi’,l,hi”) then

3.1–.2 : the two connecting hubs are updated to reflect the new link,
3.3 : and the resulting sets of hubs and links updated.

Formalisation

int Insert(op)(hs,ls) ≡
⋆i case op of
1 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
2 1oldH1newH(hi,l,h) →
2.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
2.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
3 2oldH(hi′,l,hi′′) →
3.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
3.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
3.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
⋆j end
⋆k pre pre int Insert(op)(hs,ls)

RSL Annotations
• ⋆i–⋆j: The clause case op of p1 → c1, p2 → c2, . . . pn → cn end

is a conditional clause.
• ⋆k: The pre-condition expresses that the insert command is seman-

tically well-formed — which means that those reference identifiers
that are used are known and that the new link and hubs are not
known in the net.

• ⋆i + 1: If op is of the form 2newH(h′,l,h′′ then — the narrative
explains the rest;
else

• ⋆i + 2: If op is of the form 1oldH1newH(hi,l,h) then
⋆ 2.1: h′ is the known hub (identified by hi) updated to reflect

the new link being connected to that hub,
⋆ 2.2: and the pair [(updated hs,updated ls)] reflects the new net:

the hubs have the hub originally known by hi replaced by h′,
and the links have been simple extended (∪) by the singleton
set of the new link;

else
• ⋆i + 3: 3: If op is of the form 2oldH(hi′,l,hi′′) then

⋆ 3.1: the first element of the set of two hubs (hsδ) reflect one of
the updated hubs,
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304 F An Example Domain Model: Intrinsics

⋆ 3.2: the second element of the set of two hubs (hsδ) reflect the
other of the updated hubs,

⋆ 3.3: the set of two original hubs known by the argument hub
identifiers are removed and replaced by the set hsδ;

else — well, there is no need for a further ‘else’ part as the operator
can only be of either of the three mutually exclusive forms !

Semantics of the Remove Operation

Narrative

1. The remove command is of the form Rmv(li) for some li.
2. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that
of a link, l, in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.
(c) For each of these two hubs, say h, the following holds wrt. removal

of their connecting link:
i. If l is the only link connected to h then hub h is removed. This

may mean that
• either one
• or two hubs
are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified
to reflect that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.

Formalisation

value

1 int Remove: Rmv → N
∼
→ N

2 int Remove(Rmv(li))(hs,ls) ≡
2(a) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in
2(b) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in
2(c) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in
2(d) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end
2(a) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set
cond rmv(li,h,hs) ≡
2((c)i) if obs HIs(h)={li} then {}
2((c)ii) else {sLI(li,h)} end
pre li ∈ obs HIs(h)

RSL Annotations
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F.6 Events 305

• 1: The int Remove operation applies to a remove command Rmv(li)
and a net (hs,ls) and yields a net — provided the remove command
is semantically well-formed.

• 2: To Remove a link identifier by li from the net (hs,ls) can be
formalised as follows:
⋆ 2(a): obtain the link l from its identifier li and the set of links

ls, and
⋆ 2(a): obtain the identifiers, {hi′,hi′′}, of the two distinct hubs

to which link l is connected;
⋆ 2(b): then obtain the hubs {h′,h′′} with these identifiers;
⋆ 2(c): now examine cond rmv each of these hubs (see Lines 2((c)i)–

2((c)ii)).
◦ The examination function cond rmv either yields an empty

set or the singleton set of one modified hub (a link identifier
has been removed).

◦ 2(c) The set, hs′, of zero, one or two modified hubs is
yielded.

◦ That set is joined to the result of removing the hubs {h′,h′′}
◦ and the set of links that result from removing l from ls.
The conditional hub remove function cond rmv

⋆ 2((c)i): either yields the empty set (of no hubs) if li is the only
link identifier inh,

⋆ 2((c)ii): or yields a modification of h in which the link identifier
li is no longer observable.

F.6 Events

F.6.1 Some General Comments

This section shall be very brief. The reason is this: The concept of events and
their description is very important. But examples of event descriptions are
closely intertwined with examples of behaviour descriptions. We shall therefore
postpone the illustration of serious event descriptions till Sect. F.8. After
some tiny examples of events and before example of behaviours we insert a
section, Sect. F.7, a section which introduces some concepts, like time and time
intervals, which are necessary to properly describe events and behaviours.

But first we informally illustrate a number of event scenarios.

F.6.2 Transport Event Examples

(i) A link, for some reason “ceases to exist”; for example: a bridge link falls
down, or a level road link is covered by a mud slide, or a road tunnel is afire,
or a link is blocked by some vehicle accident. (ii) A vehicle enters or leaves
the net. (iii) A hub is saturated with vehicles.
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306 F An Example Domain Model: Intrinsics

Relating the above three sets of examples of events to out “formal” defi-
nition of an event we have these remarks: (i) The state is the transport net
of hubs and links at the times observed. We can think of a “link ceasing to
exist” as an instantaneous event, i.e., ta = tb, or as an event that occurs over
some time, i.e., ta ≥ tb — in all cases σa 6= σb (see the int Remove function
definition Pages 304–305 and our ‘Net Behaviour’ example Pages 311–312).

(ii) The state is the traffic at the times, ta, tb, observed. We would say
that ta = tb but that σa 6= σb (state σa is state σb “plus” or less the vehicle
— provided we consider just one vehicle). (iii) The state is the traffic at the
times observed. Times are different by a fraction: ta ≥ tb. States are different.

F.6.3 Banking Event Examples

(i) Withdrawal of funds from an account (i.e., a certain action) leads to either
of two events: (i.A) either the remaining balance is above or equal to the credit
limit, (i.B) or it is not. In the latter case that event may trigger a corrective
action. (ii) A national (or federal) bank interest rate change is an action by
the the national (or federal) bank, but is seen as an event by any local bank,
and may cause such a bank to change (i.e., an action) its own interest rate.
(iii) A local bank goes bankrupt.

We leave it to the reader to comment on the time and state relations for
the above banking examples.

F.7 Some Fundamental Modelling Concepts

Before we illustrate formal examples of traffic events (Pages 312–312) we must
formalise concepts of vehicle (Pages 310–311) and net (Pages 311–312) be-
haviours. But first we need introduce (and describe: narrate and formalise)
some further entities: time (Pages 306–307), time intervals (Pages 307–308),
link and hub positions (Pages 308–308), traffic (Pages 309–309) and various
notions of traffic well-formedness (meaningful net positions: Pages 309–310,
monotonic vehicle movements: Pages 310–311 and no erratic vehicle move-
ments: Pages ??–??).

F.7.1 Time and Time Intervals

Time

Narrative

1. Time is here considered an ordered, infinite set of points
(a) such that for each time there is a unique next time.

2. A proper subset of Time
(a) is an ordered, possibly infinite set of Time points
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F.7 Some Fundamental Modelling Concepts 307

(b) such that there is a minimum, i.e., a smallest, or begin time point
and a maximum, i.e., a largest, or an end time point and

(c) such that for each time in the proper subset, other than the end
point time, there is a unique next time.

3. Traffics are here considered to be discrete functions from a proper subset
of Time to pairs of nets and positions of vehicles.

4. Positions of vehicles are discrete functions from vehicles to positions.

Formalisation

type
1 Time

value

1(a) next T: Time
∼
→ Time, pre pre next T(t)

1(a) pre next T: T → Bool
1(a) pre next T(t) ≡ ∼is end T(t)

type
2 PSoTime = {|tset:Time-set•wf PSoTime(tset)|}

value
2 wf PSoTime: Time-set → Bool
2 wf PSoTime(ts) ≡
2(a) is ordered(ts) ∧
2(b) ∃ t begin,t end:Time •

{t begin,t end}⊆ts ∧
∀ t:Time • t ∈ ts ⇒ t begin≤t≤t end ∧

2(c) ∀ t:Time • t ∈ ts\{t end} • next T(t)∈ ts
type

3 V, P [ to be defined later, see Items 1–1 ]
[ and Items 2(a)–2(b), Page 308 ]

3 TF = Time →m N × VP
4 VP = V →m P

Time Intervals

Narrative

1. A time interval is a finite passage of time.
2. One cannot add two times, but one can subtract an earlier time from a

later time and obtain a time interval.
3. One can add (and subtract) two time intervals and obtain a time interval.
4. One can multiply a real with a time intervals and obtain a time interval.
5. One can divide a time interval by another time interval and obtain a

real.
6. One can divide a time interval by a real and obtain a time interval.
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308 F An Example Domain Model: Intrinsics

7. One can compare pairs of times and pairs of time intervals for smaller
than or equal, smaller than, equality, inequality, larger than, or larger
than or equal.

We do not specify these operations.

Formalisation

type
1 TI

value
2 −: Time × Time → TI
3 ∗: Real × TI → TI
4 +,−: TI × TI → TI
5 /: TI × TI → Real
6 /: TI × Real → TI
7 ≤, <, =, 6=, >, ≥: (Time×Time)|(TI×TI) → Bool

We thus use the overloaded operators −, ∗, /, ≤, <, =, 6=, >, ≥ also for
time related functions.

F.7.2 Vehicles and Hub and Link Positions

Vehicles and Hub and Link Positions

Narrative

1. There are vehicles, and vehicles are further undefined.
2. There are positions, and a position is either on a link or in a hub.

(a) A hub position is indicated just by a triple: the identifier of the hub
in question, and a pair of (from and to) link identifiers, namely of
links connected to the identified hub.

(b) A link position is identified by a quadruplet: The identifier of the
link, a pair of hub identifiers (of the link connected hubs), designating
a direction, and a real number, properly between 0 and 1, denoting
the relative offset from the from hub to the to hub.

Formalisation

type
1 V
2 P = HP | LP
2(a) HP == hpos(s hi:HI,s fli:LI,s tli:LI)
2(b) LP == lpos(s li:HI,s fhi:LI,s tli:LI,s offset:Frac)
2(b) Frac = {|r:Real•0<r<1|}
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F.8 Behaviours 309

F.8 Behaviours

F.8.1 Traffic as a Behaviour

Traffic

Narrative

1. Traffic is a discrete function from a ‘Proper subset of Time’ to pairs of
nets and vehicle positions.

2. Vehicles positions is a discrete function from vehicles to vehicle positions.

We shall have much to say, later, on the well-formedness of traffics.
Formalisation

type
1 TF = PSoTime →m (N × VehPos′)
2 VehPos′ = V →m P

axiom

RSL Annotations
• 1 →m is an infix type operator. Applied to types PSoTime and

VehPos′ it constructs the traffic type of all discrete maps (i.e.,
function) from values of type PSoTime to values of type VehPos′.

• 2 As for 1.

Traffic: Well-formedness, I, Positions

Narrative

1. All positions recorded in traffics must be positions of the net of the
traffic.

Formalisation

value
1 wf TFc: TF → Bool

wf TFc(tf) ≡
∀ ((hs,ls),vp):(N × VehPos′) • ((hs,ls),vp) ∈ rng tf ⇒

∀ p:P • p ∈ rng vp ⇒
case p of

hpos(li′,hi,li′′) →
hi ∈ iohs(hs) ∧
let h=xtr H(hi,hs) in {li′,li′′}⊆obs HIs(h) end,

lpos(hi′,li,hi′′,f) →
li ∈ iols(ls) ∧
let l=xtr L(li,ls) in {hi′,hi′′}=obs LIs(l) end end
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310 F An Example Domain Model: Intrinsics

Traffic: Well-formedness, II, Monotonicity

Narrative

1. A traffic must satisfy the following well-formedness properties:
(a) If a vehicle is in the traffic at times t′ and t′′ then it is also in the

traffic at all times, t, between t′ and t′′.
(b) If a vehicle is in the traffic at time t and at position p and at time

next T (t), then its position at time next T (t) is next P (p) where
next P (p) is

i. either p (the vehicle has either not moved along a link, or is still
at a hub),

ii. or if p is a link position, lpos(li, fhj, thk, f), then next P (p)
A. is either a hub position (hpos(li, hj , lk)) provided f is infini-

tisimally [or just very, very] close to 1,
B. or is a link position lpos(li, fhj, thk, f

′) where f ′ is f+δf , f+
δf < 1 where δf is a positive, very small real between 0 and
1. (That is: the vehicle has moved, but just a little bit.)

iii. or if p is a hub position, hpos(li, hj, lk, f), then next P (p)
A. is either the same position p,
B. or is a link position lpos(hj , lk, hℓ, δf ) for the other hub iden-

tifier, hℓ, of the link identified by lk.
(c) A vehicle behaviour, during some time interval, can be seen

i. either as a “degenerated” traffic of only one vehicle,
ii. or a a sequence of that vehicle’s positions.

It follows from the above that vehicles cannot change direction of move-
ment. We can relax this constraint, but will not do so here.

Formalisation

value
v in tf at time: V × TF × Time → Bool
v in tf at time(v,( ,tvp),t) ≡ t ∈ dom tf ∧ v ∈ dom tf(t)

1 wf TFa: (PSoTime →m VehPos) → Bool
wf TFa(tvp) ≡

1(a) ∀ t,t′:Time • {t,t′}⊆dom tvp ⇒
∀ v:V • v in tf at time(v,tvp,t) ∧ v in tf at time(v,tvp,t) ⇒

∀ t′′:Time • t<t′′<t′ ⇒ v in tf at time(v,tvp,t′′)

value
1 tf:TF, v:V, ft,tt:Time

axiom
1 is in TF(v)(ft,tt)(tf)

value
⋆1 is in TF: V → (Time×Time) → TF → Bool
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F.8 Behaviours 311

⋆1 is in TF(v)(ft,tt)(tf) ≡
⋆2 {ft,tt}⊆dom tf ∧
⋆3 assert {ft,tt}⊆dom tf ⇒ ∀ t:Time•ft<t<tt⇒t ∈ dom tf
⋆4 ∀ t:Time•ft<t<tt ⇒ v ∈ dom tf(t)

1((c)i) VehBehtf : V → (Time×Time) → TF
VehBehtf (v)(ft,tt)(tf) ≡ [ t7→[ v 7→((tf)(t))(v) ]|t:Time•ft<t<tt ]

pre is in TF(v)(ft,tt)(tf)

1((c)ii) VehBehseq : V → (Time×Time) → P∗

VehBehseq(v)(ft,tt)(tf) ≡ 〈((tf)(t))(v)|t:Time•t in {ft..tt}〉
pre is in TF(v)(ft,tt)(tf)

F.8.2 A Net Behaviour

A Net Behaviour

Narrative

1. Nets constantly undergo changes:
(a) New links are properly inserted.
(b) Old links are properly removed.
(c) Links “suddenly” ceases to “function”, i.e., appears as having been

(improperly) removed.

Formalisation

value
n:N

variable
net:N := n

type
Road Event == L Ev(s li:LI)|...

channel
rch:(Insert|Remove)
ech:Road Event

value
system: Unit → Unit
dept of publ works: Unit → out ch Unit
road net: Unit → in rch Unit
net events: Unit → out ech Unit

system() ≡ dept of publ works() ‖ road net() ‖ net events()

dept of publ works() ≡
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312 F An Example Domain Model: Intrinsics

(.. ⌈⌉
let ins:Insert • pre int Insert(ins)(c net) in
ins!ch end
⌈⌉
let rem:Remove • pre int Remove(rem)(cnet) in
ins!ch end
⌈⌉ ...); dept of publ works()

net events() ≡
(skip ⌈⌉
let Link Event(li):Road Event • li ∈ iols(cnet) in
Link Event(li)!evc end); net events()

road net() ≡
(... ⌈⌉⌊⌋
let cmd = (rch?‖ech?) in
case cmd of

1(a) Ins(ins) → net := int Insert(cmd)(c net),
1(b) Rmv(li) → net := int Remove(Rmv(li))(cnet),
1(c) L Ev(li) → net := int Remove(Rmv(li))(cnet),

... → ...
end end); road net()

We model the net behaviour in terms of a system of concurrent behaviours:
that of a public works department which non-deterministically (⌈⌉) issues or-
ders to insert or remove links; that of a net events behaviour which non-
deterministically either does nothing or “signals” an appropriate breakdown
of a link; and that of the road net behaviour which (external) deterministically
reacts to the insert or remove orders or to the link breakdown.

Channels connect these subsidiary, recursive behaviours. A global variable
represents the net. It is initialised to some net.

F.9 Traffic Events

The reader shall have to wait for [97] to be published to see the text
and formalisation of this section.

F.10 Discussion

The reader shall likewise have to wait for [97] to be published to see
the text of this section.
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Part VI

MISCELLANEOUS APPENDICES

Appendices G–J (Pages 315–411) are not to be considered part of the thesis as
submitted. They merely represent rough sketch material that may eventually
emerge into publishable reports. Attempts to edit some of these appendices
into such potential papers will begin during the Fall of 2008.

Appendices K–O (Pages 413–453: excerpted texts, lists, biodata and liter-
ature references) are administratively necessary for the main thesis document
(Pages 1–120) and its supporting appendices, G–J (Pages 315–411), that is
the first 312 pages up till the end of the previous appendix.
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G

Documents

This appendix contains the full text and all figures of a report on one aspect
of documentation.

• Documents: A Domain Analysis
An Experiment in Domain Engineering

• Paper presented at IBM Tokyo Research Laboratory, Wedn. 9 August 2006

This appendix is but a torso.

We aim at exemplifying applications of Domain Engineering. That
is, to describe, informally and formally, a man-made universe of dis-
course. As it is. Without any reference to requirements to any comput-
ing system, let alone software to support activities in that domain. The
domain is that of documents. We wish to understand what documents
are: original and master documents, versions, copies, etc., document
creation, editing, reading, copying, etc. The idea of domain modelling
and the style used in this presentation is basically the same — more-
or-less independent of the domain. The current version of this report
is skimpy on the issue of system space of documents (and agents), of
the dynamic (time-wise) movement of documents, and hence on all
the very many constraints that govern documents and their locations.

G.1 Introduction

G.1.1 Aims and Objectives

The abstract said it all. But we can reiterate some points. In software devel-
opment we proceed from modelling the application or business domain, via
constructing requirements from the domain model, to designing the comput-
ing system, including software. We naturally wish to understand the business
area well before we embark on requirements.
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Aims

So the aims are to show you aspects of domain modelling. What it includes
doing. How one might go about doing it (including analysis).

Objectives

And the objectives are to convince you to do likewise. To do software devel-
opment professionally.

G.1.2 Domain Engineering

Domain engineering is the engineering, the managed construction of domain
descriptions. As such domain engineering includes [1.] identifying, contacting,
and throughout consulting all possibly relevant domain stakeholders; [2.] domain
knowledge acquisition; [3.] analysing acquired domain knowledge; [4.] creating the
domain model1; [5.–6.] verifying and then validating the model2; [7.] and possibly
turning the domain model into a domain theory3. In this paper we shall only
illustrate item [4.]. We refer to Part III (Chaps. 8–16) of volume 3 of the three
volume book on Software engineering [87–89] for “the ‘full’ story” on Domain
Engineering.

G.1.3 Related Work

For the kind of document domain analysis, as we delineate it, there is, to our
knowledge, no related work. Well, there is probably some AI-related knowl-
edge engineering (KIF4) work and there is definitely some Web-oriented (for
example, DAML5 Web-ontology) on ‘documents’. There was also some work,
in the 1980s, “open (or office) document architecture” (ODA)6. But it appears
that all of this work is about the textual format and content of documents
— well-nigh the only thing we are not interested in modelling in this paper.
That is, our model is not about the textual (statistical, linguistic, formatting

1A domain description is a syntactic construction. A domain model is a selected
meaning (semantics) of that description.

2Verification shall ensure that the model is correct (i.e., right). Validation shall
ensure that we have the right model.

3A domain theory is the domain model + a(ny) number of theorems about the
model: its properties, so to speak.

4http://logic.stanford.edu/kif/kif.html
5The DAML (The DARPA Agent Markup Language) homepage is

http://www.daml.org/
6ODA is a standard document file format created by the ITU-T to replace

all proprietary document file formats. It should not be confused with the OASIS
Open Document Format for Office Applications, also known as OpenDocument
http://en.wikipedia.org/wiki/Open Document Architecture.
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G.2 Documents: A Domain Analysis 317

or other) properties of documents, but of how documents are handled irre-
spective of their format, that is syntax, and content, that is, its semantics.
Well, some of the ODA work might apply!

G.1.4 A Caveat

This is, in principle, a first complete draft of a report, perhaps eventually
a publishable paper, on the issue of domain analysis of one view of the do-
main of documents. It is based on various fragments, some appearing in the
authors three volumes on software engineering [87–89], others appearing in
draft versions of a report worked on during the early spring of 2006 at JAIST.
The present draft report is a complete rewrite of those earlier fragments —
with no rereading of these having being done immediately before or during
the writing of the current report. It is released to colleagues and some IBM
TRL staff before or on 9 August 2006. It is much expected that the author
will have time to polish this report into a possibly publishable paper during
the early fall of 2006.

G.1.5 Structure of Paper

There are basically three sub-parts to the main part of this paper. In the first
we analyse basic aspects of documents: which kinds of documents there are,
the operations on documents, document history, etc. In the second part we
analyse notions of locations, time and agents. And in the third part we enlarge
the scope to that of spaces of documents and agents. A concluding sub-part
reviews what has been done, the possible shortcomings of the present work,
and hopes for future improvement and extensions.

G.2 Documents: A Domain Analysis

G.2.1 Basics

Analysis: Basic Entities

Think of documents as stapled or bound collections a sheets of paper. From
blank sheets you can create a basically blank document. You and others can
write something on the sheets (i.e., edit them). You and others can read these
sheets, i.e., the document.

You can copy a document. Lets call the document being copied the master.
Now two documents exists, one per copying action. To make n (say 100) copies
is to copy the either the master a n times, or to mix copying copies (which
thereby become “new masters”), or the “original” master. The point is: You
know what you are doing: which way you did the copying. Our domain model
of documents must capture that.

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
318 G Documents

You can edit a document. After editing the document upon which the
editing was done no longer “exists”. An edited version has been made of that
“prior” document. If, say, that basis document (the prior one) was typed, and
your editing was made by pencil, then from the edited version you can, in a
sense, “capture” (“just now edited”) un-edited (the base, prior) document. In
a sense you can “undo” the editing. Our domain model of documents must
capture that.

You can read a document, say at location ℓ and time τ . Before you read
it (at location ℓ and time τ) the document was known to have not been read
by you at location ℓ and time τ . Afterwards, that is, after time τ , it is known
to have been read by you at location ℓ and time τ .

You can move, say distribute, a document. Before it was moved it was
a some location ℓ. After the move it is at some other location ℓ′. No two
documents can at any time at a same location. A document cannot be at two
distinct locations at any (one) time. Our domain model of documents must
capture that.

Our domain model of documents must capture a lot more!

Narrative: Basic Entities

1. We postulate sorts, i.e., a types of documents, locations, time, agents and
tex.

2. With a document we can associate, i.e., we can observe
(a) the current location of the document,
(b) the time it was most recently operated upon,
(c) some identity of the agent (f.ex., person) who performed the most

recent operation on the document,
(d) which kind of agent operation was last applied to the document,
(e) and we can observe some text, “the document contents”.7

3. The ‘kinds of operations’ are tokens. (See items 2 below.)

Formalisation: Basic Entities

type
1. D, L, T, A
value
2(a. obs L: D → L
2(b. obs T: D → T
2(c. obs A: D → A
2(c. obs OpKind: D → OpKind
2(e. obs Txt: D → Txt
type
3. OpKind == cr|ed|rd|cp|sh|mv|...

7Other than being able to observe the text we shall not deal any further with
format, statistical or linguistic properties of texts.
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Narrative: Basic Functions

1. From a document one can observe the triple of location, time and per-
forming agent of ‘most recent operation’.

2. Documents can be
(a) created,
(b) edited,
(c) read,
(d) copied,
(e) shredded,
(f) moved,
(g) and a few other things (. . . ).8

1. Editing a document d results in a pair, (d′, (fe, be)):
(a) fe is a forward editing function.
(b) be is the inverse, “backward” editing function,
(c) and d′ = fe(d) and d = be(d′),
(d) that is, fe(be(d′)) = d′ and be(fe(d)) = d.
(e) The pair (fe, be) is a result of the editing. It can only be known a

posteriori.

Formalisation: Basic Functions

type
L, T, A, E
LTA = L × T × A

value
2(a. crea: LTA → D
2(b. edit: LTA → D → D × E
2(c. read: LTA → D → D
2(d. copy: LTA → D → D × D
2(e. shrd: LTA → D → Unit

1. obs LTA: D → LTA

Formalisation: The Editing Functions

type
E = FE × BE

1(a. FE = D → D
1(b. BE = D → D
value

8We shall postpone till later considerations of moving (distributing), sharing ,
calculating over (incl. searching for) and tracing documents.
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1. edit: LTA → D → D × E
axiom

∀ d:D,(fe,be):E • d = be(fe(d)), i.e.,: fe◦be=λd.d ∧ be◦fe=λd.d
i.e.:

∀ lta:LTA,d:D • let (d′,(fe,be)) = edit(lta)(d) in
1(c. d′ = fe(d) ∧ d = be(d′) end
i.e.:
1(d. d′ = fe(be(d′)) ∧ d = be(fe(d))

Analysis: Document Identifiers

Let’s do a bit more analysis. Documents which have just been created are
referred to as originals. With any original document we can associate a unique
document identifier. You may think of the unique document identifier being a
simple isomorphic function of three quantities: the identity of the agent who
(or which) created the document, a unique representation of the location at
which the document was created, and a unique representation of the time at
which the document was created. No agent can be at two locations at any one
time and perform more than one operation at a time. and operations requires
agents, hence all original document identifiers are unique. We shall soon see
that no two otherwise distinct documents which may exist at any time can
have the same unique identifier.

Thus there are original (“blank”) documents distinguishable, albeit, by
unique document identifiers. Editing a document need not change its identifi-
cation. Its is, for example, still “one and the same” sheet of papers, albeit with,
perhaps, a different textual contents9. Reading and moving a document need
not change its identification either. Copying a document results in one more
document: the master whose identification could (hence in our model will) be
the same, since it is “physically” the same, as the document being copied, and
the copy, the, or a, “new” document — whose identification must be made
unique, hence different from the identification of the master document. We
suggest that the identification of the copy document be an isomorphic func-
tion of the identification of the master document and the triplet identification
of the location, the location and the agent of copying. Since no agent can be
performing more than one operation at a time all documents will have unique
identifiers.

Formalisation: Document Identifiers

type

9And, if not a collection of sheets of paper, then it might be an electronic doc-
ument for which we would want the same property as for the humanly manifest
document. Yes? Yes!
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L, T, A, D, E, UDI
LTA = L × T × A

value
crea: LTA → Unit → D
edit: LTA → D → D × E
read: LTA → D → D
copy: LTA → D → D × D
...
obs UDI: D → UDI
udi: (LTA|(LTA×LTA)) → UDI

axiom
∀ ℓta:LTA,d:D,e:E •

obs UDI(crea(ℓta))=udi(ℓta) ∧
obs UDI(d) = let (d′,efs)=edit(ℓta)(d) in obs UDI(d′) end ∧
obs UDI(d) = obs UDI(read(ℓta)(d)) ∧
let (md,cd) = copy(ℓta)(d) in

obs UDI(d) = obs UDI(md) ∧
obs UDI(cd) = udi(obs UDI(md),ℓta) ∧ ... end

The last line of the above axiom does not guarantee uniqueness across all
documents. That issue will be addressed below.

Analysis: Document Kinds

So there are originals, that is, documents that have been created, but upon
which no actions have so far been performed. Then there are documents which
have been edited, read, are copies of masters, and hence there are master
documents; and there are documents which have been moved. For the time
being we shall be content with just these kinds of documents (and hence ‘kind
of operation’ tokens).

An edited document may be textually distinct from the document from
which it was edited. A document which has been read (at some location and
time and by some agent) is, textually, the same as when that document had
not been read (at that location and time and by that agent). A document
which has been copied becomes a master document, otherwise textually in-
distinguishable from the document from which the copy was made. The copy
of a master document is a copied document and is distinguishable, not textu-
ally, but “kind-wise”, from the master document.

Analysis: Document History

So “most recently” edited documents are distinct textually distinct from the
documents from which they were edited.

The reason, that is, the pragmatics behind why we introduce the notion of
‘document kind’ is so that we can reason about documents: “That document
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has been read, by such and such, several times.” “That document is an edited
version of a document which we was read by agent α, from a document which
was copied by ..., etc.” We wish to also be able to also reason about locations
and times of most recent actions, and about the document as it was before
such an action: “the document from which it resulted”.

Although in today’s practical life one may not record, on documents, who
first created them (where and when), who edited them (where and when),
who read them (where and when), who copied them (where and when), or
from which masters they were copied (where and when), etc., we may still, in
this everyday world, be able to reason about such things. Therefore we must
model it.10

Narrative: Document Kinds

1. Thus documents are “most recently” either
(a) created, i.e., they are [blank] “originals”,
(b) edited,
(c) read,
(d) the basis for copying, i.e., they are “masters”, or
(e) the result of copying, i.e., they are copies,
(f) etcetera.

Formalisation: Document Kinds

type
1 mD,D = oD | eD | rD | cD

axiom
∀ odoc:oD,edoc:eD,rdoc:rD,cdoc:cD •

1(a obs OpKind(odoc) = cr
1(b obs OpKind(edoc) = ed
1(c obs OpKind(rdoc) = rd
1(d obs OpKind(cdoc) = cp

∀ lta:LTA,d:D •

1(a obs OpKind(crea(lta)) = cr
1(b obs OpKind(edit(lta)(d)) = (ed,efs)
1(c obs OpKind(read(lta)(d)) = rd
1(d let (d′,d′′)=copy(lta)(d) in obs OpKind(d′)=cp∧obs OpKind(d′)∈{cr,ed,rd,cp,...} end

...

10The issue of the certainty (i.e., uncertainty) with which we may say reason will
be discussed later.
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Narrative: Document History

1. With a document we can associate its history of operations performed on
that document. More specifically we can think of a document history to
be a list of triples: the operation performed, the document, and a location,
time and agent triple.

2. An original document has no pre-history. It has the history that it was
created at such and such a location and time by such and such an agent.

3. An edited document has a history which consists of the its pre-history,
namely the history of the document from which it was edited, and then
the most recent historical fact, namely that it was edited at such and such
a location and time by such and such an agent, and that the editing can
be captured, i.e., the text of the document from which it was edited, as
well as the text resulting from the editing.

4. A document which has “just” been read has the pre-history of the docu-
ment before it was “just” read as well as the most recent historical fact
(location, time and agent of reading).

5. The two documents which have partaken in a copying action: the master
and the copy documents have different “most recent” histories, but the
same pre-history:
(a) The master copy has, as “most recent” history that it served as a

master for a copying action (by whom, when and where).
(b) The copy has, as “most recent” history that it was the result of a

copying action (by whom, when and where).
(c) Since the unique identifier of the copy “embeds” that of the master

one can identify the master.
(d) Perhaps one should “insert” as part of the “most recent” master his-

tory the unique identifier of the copy: that identifier can anyway be
constructed!

6. Etcetera.

Formalisation: Document History

type
1 H == D∗

value
1 obs H: D → H

wf H(dl) ≡ len dl≥1∧dl(1)=create(lta)∧create(lta)6∈ elems tl dl
axiom

∀ lta:LTA,d:D •

2 obs H(create(lta)) = 〈create(lta)〉 ∧
3 obs H(edit(lta)(d)) = obs H(d)̂〈edit(lta)(d)〉 ∧
4 obs H(read(lta)(d)) = obs H(d)̂〈read(lta)(d)〉 ∧
5 let (md,cd) = copy(lta)(d) in
5(a obs H(md)=obs H(d)̂〈md〉∧
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5(b obs H(cd)=obs H(d)̂〈cd〉 ∧
5(c ... end

The axiom above essentially defines an observer function

value
obs prev D: D → D | nil

axiom
obs prev D(create(lta)) = nil ∧
obs prev D(edit(lta)(d)) = d ∧
obs prev D(read(lta)(d)) = d ∧
let (md,cd)=copy(lta)(d) in obs prev D(md)=d ∧ obs prev D(cd)=d end ∧
...

In other words: It is, of course, always possible, in the domain, to reason about
past versions versions of a document. Whether one’s reasoning is accurate —
one might have forgotten essential aspects — is another matter11

G.2.2 Locations, Time and Agents

We have mentioned that we do not study textual issues. But we are concerned
about locations, time and agents.

There are two notions of location: the location at which an operation on a
document took, or takes place, and the location of the document “right now”.
The latter is, of course (?), the same as the location to where the most recent
move action brought that document!

There are two similar notions of time the time at which an operation on a
document took, or takes place, and the time “right now”, or at any point in
the past, or at any point in the future.

And there is a notion of agent: the person (or other) who (resp. which)
performs actions on documents. A document is “full” of location, time and
agent attributations. The location, time and agent notions deserve a special
study.

Locations

Analysis: Points

We assume a space as a dense set of points, with a point being atomic, but not
necessarily infinitesimally “small” in the physical sense of XYX dimension
units. Thus any two points that are distinct at most shares that they may be
more-or-less close, or more-or-less distant from one another. We may even
introduce a notion of some point being “next to” another point, in which case

11— which we should model by introducing non-determinism into our description,
but we will leave that to a full, formal paper!
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there will probably be an indefinite if not infinite number of points close to
a given point, and such that if two points πi and πj are next to one another
and πj and πk are also next to one another, then either πi is the same as πk,
or πj is the same as πk, or they are all three distinct.

Narration: Locations

1. By a location we shall understand a dense set of points,
(a) such that for every two distinct points πi and πk in the location (if

the location contains more than one point)
i. there is an ordered set of at least two distinct points in the loca-

tion, {πi, πi1 , . . . , πij , . . . , πik−1
, πik

},
ii. such that each pair of these points, πij−1

, πij , or πij , πij+1
, for

i ≤ j − 1 and j ≤ k,
iii. are ‘next to’ one another.

1. Two locations are ‘different’ if the two sets are different.
2. Two locations are ‘distinct’ if they are different and they have no points

in common (that is, share no points).
3. Two locations are ‘next to’ one another

(a) if they are different,
(b) if there is at least a non-empty set of points in each location, psi and

psj

(c) whose points are “not in the location of the other”,
(d) such that pairs of points in psi and psj are “next to” one another
(e) and such that all other points in the two locations are shared.

4. Two locations are ‘neigbouring’ if they are distinct and there is at least
one point in each location, pi and pj such that these are “next to” one
another.

Formalisation: Locations

type
1 P, L
value
1 obs Ps: L → P-set
axiom
1 ∀ ℓ:L • let ps = obs Ps(ℓ) in
1(a ∀ pi,pk:P • {pi,pk}⊆ps •

1((a)i let pl:P∗ • elems pl = ps ∧ len pl=card ps in
1((a)ii ∀ j:Nat • {j,j+1}⊆inds pl •

1((a)iii next to(pl(j),pl(j+1))
end end

Three location relations:
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value
1 diff(ℓi,ℓj) ≡ obs Ps(ℓi)6=obs Ps(ℓj)

2 dist(ℓi,ℓj) ≡ obs Ps(ℓi)isect obs Ps(ℓj)={}

3 next to(ℓi,ℓj) ≡
3(a diff(ℓi,ℓj)∧
3(b ∃ ps i,ps j:P-set•ps i⊆obs Ps(ℓi)∧ps j⊆obs Ps(ℓj)∧
3(c ∀ p i,p j:P:p i ∈ ps i∧p j ∈ ps j•p i6∈ obs Ps(ℓj)∧p j6∈ obs Ps(ℓi)∧
3(d next to(p i,p j)∧
3(e obs Ps(ℓi)\{ps i}=obs Ps(ℓj)\{ps j}

1 diff: L × L → Bool
2 dist: L × L → Bool
3 next to: (P×P) | (L×L) → Bool

A remaining location relation:

4 neighbour: L × L → Bool
4 neighbour(ℓi,ℓj) ≡
4 distinct(ℓi,ℓj) ∧
4 ∃ ps i,ps j:P-set •

4 ps i⊆obs Ps(ℓi)∧ps j⊆obs Ps(ℓj)∧ps i6={}∧ps j6={}∧
4 ∀ p i,p j:P:p i ∈ ps i∧p j ∈ ps j•p i6∈ obs Ps(ℓj)∧p j6∈ obs Ps(ℓi)∧
4 next to(p i,p j)

Time and Time Intervals

Analysis: Time

Time, besides philosophically being an elusive issue, can also, as here, be taken
concretely. We shall present a set of axioms due to Johan van Benthem [293].
We shall think of time to be a notion that is absolute wrt. some calendar, that
is, time includes year, month, day, hour, minute, second, etc., in some simple
encoded form.

Formalisation: Time

axiom
[ TRANS: Transitivity ] ∀ p,p′,p′′:P • p < p′ < p′′ ⇒ p < p′′

[ IRREF: Irreflexitivity ] ∀ p:P • p 6< p

[ LIN: Linearity ] ∀ p,p′:P • (p=p′ ∨ p<p′ ∨ p>p′)
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[ L−LIN: Left Linearity ]
∀ p,p′,p′′:P • (p′<p ∧ p′′<p) ⇒ (p′<p′′ ∨ p′=p′′ ∨ p′′<p′)

[ BEG: Beginning ] ∃ p:P • ∼∃ p′:P • p′<p

[ END: Ending ] ∃ p:P • ∼∃ p′:P • p<p′

[ SUCC: Successor ]
[ PAST: Predecessors ] ∀ p:P,∃ p′:P • p′<p
[ FUTURE: Successor ] ∀ p:P,∃ p′:P • p<p′

[ DENS: Dense ] ∀ p,p′:P (p<p′ ⇒ ∃ p′′:P • p<p′′<p′)

[ DENS: Converse Dense ] ≡ [ TRANS: Transitivity ]
∀ p,p′:P (∃ p′′:P • p<p′′<p′ ⇒ p<p′)

[ DISC: Discrete ]
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p<p′′ ∧ ∼∃ p′′′:P • (p<p′′′<p′′))) ∧
∀ p,p′:P • (p<p′ ⇒ ∃ p′′:P • (p′′<p′ ∧ ∼∃ p′′′:P • (p′′<p′′′<p′)))

Comments on the Axiomatisation: Time

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF.
TRANS, IRREF and SUCC imply infinite models. TRANS and SUCC may
have finite, “looping time” models.

We choose the SPO model of time.

Analysis: Time Intervals

Time is “absolute” wrt. some “zero”. A time interval may be measured in
years, months, etc., but these are year intervals, month intervals, etc., not
“absolute” wrt. some calendar. When we subtract one time (a date etc.) from
another such time we get a time interval. We cannot add time, but we can add
a time interval to a time and get a time. We can add, subtract and multiply
time intervals. If we divide a time interval by a non-zero such we get a fraction,
i.e., a real number. Etcetera. At the stage of this paper (/today) we shall not
need the notion of time interval, nor the operations on times.

Formalisation: Time and Time Intervals

type
T, TI

value
elapsed time: T × T → TI
−: (T|TI) × TI → TI
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−: T × T → TI
+: T × TI → T
+: TI × TI → TI
∗: TI × Real → TI

/: TI × TI
∼
→ Real

axiom
∀ t,t′:T • t′>t ⇒ ∃ tδ:TI • tδ = t′−t
∀ t:T,tδ:TI • ∃ t′:T • ⇒ t+tδ = t′ ∨ t−tδ = t′

∀ ti,ti′:TI • ∃ ti′′:TI • ti+ti′ = ti′′ ∨ ti−ti′ = ti′′

...

Time and Space

Analysis: Time and Space

We show an analysis of some time/space notions. The analysis is due to Wayne
D. Blizard [125]. In the axiomatisation below entities are the documents (or
agents, A and B) and points are (our) locations (p, q and r), with At

q expresses
that an entity A at time t is at location p (axiom (I)). See our comments below.

Formalisation: Time and Space:

(I) ∀A∀t∃p : At
p

(II) (At
p ∧At

q) ⊃ p = q
(III) (At

p ∧Bt
p) ⊃ A = B

(IV ) (At
p ∧At′

p ) ⊃ t = t′

(V i) ∀p, q : N(p, q) ⊃ p 6= q Irreflexivity
(V ii) ∀p, q : N(p, q) = N(q, p) Symmetry
(V iii) ∀p∃q, r : N(p, q) ∧N(p, r) ∧ q 6= r No isolated pts.

(V I i) ∀t : t 6= t′

(V I ii) ∀t : t′ 6= 0
(V I iii) ∀t : t 6= 0 ⊃ ∃τ : t = τ ′

(V I iv) ∀t, τ : τ ′ = t′ ⊃ τ = t

(V II) At
p ∧At′

q ⊃ N(p, q)

(V III) At
p ∧Bt

q ∧N(p, q) ⊃ ∼ (At′

q ∧Bt′

p )

Annotations: Time and Space

• (II–IV,VII, VIII): The axioms are universally ‘closed’, that is, we have
omitted the usual ∀A,B, p, q, ts.

• (I): For every entity, A, and every time, t, there is a location, p, at which
A is located at time t.

• (II): An entity cannot be in two locations at the same time.
• (III): Two distinct entities cannot be at the same location at the same

time.
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G.2 Documents: A Domain Analysis 329

• (IV): Entities always move: An entity cannot be at the same location at
different times. This is more like a conjecture, and could be questioned.

• (V): These three axioms define N .
• (V i): Same as ∀p :∼ N(p, p). “Being a neighbour of”, is the same as “being

distinct from”.
• (V ii): If p is a neighbour of q, then q is a neighbour of p.
• (V iii): Every location has at least two distinct neighbours.
• (VI): The next four axioms determine the time successor function ′.
• (VI i): A time is always distinct from its successor: Time cannot rest. There

are no time fix points.
• (VI ii): Any time successor is distinct from the begin time. Time 0 has no

predecessor.
• (VI iii): Every non-begin time has an immediate predecessor.
• (VI iv): The time successor function ′ is a one-to-one (i.e., a bijection)

function.
• (VII): The continuous path axiom: If entity A is at location p at time t,

and it is at location q in the immediate next time t′, then p and q are
neighbours.

• (VIII): No “switching”: If entities A and B occupy neighbouring locations
at time t the it is not possible for A and B to have switched locations at
the next time t′.

Discussion of the Blizard Model of Space/Time

Except for axiom (IV) the system applies to systems of entities that “some-
times” rest, i.e., do not move. These entities are spatial and occupy at least a
point in space. If some entities “occupy more” space volume than others, then
we may suitably “repair” the notion of the point space P (etc.), however, this
is not shown here.

Agents

Analysis: Agents

Agents create and perform operations on documents. Typically agents are
humans — but could be machines, i.e., computers.

Narrative: Agents

1. An agent, besides having an identity, a:A, is a further undefined notion.
2. No two agents have the same identity, so if two arbitrarily chosen agents

(one could “choose” the same agent twice) are different, then they are at
least different because of their distinct identity.

3. One could choose to associate various other attributes with agents:
(a) the set of documents in possession of the agent, say referenced by

unique document identifiers,
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(b) the current location of the agent,
i. with the possibility of also constraining agents to occupy distinct

locations,
(c) the granted authority to perform certain (or all) operations on certain

(or all), including creating, documents
but we choose to not deal with that issue in this paper.

Formalisation: Agents

type
1. AG, A
value
1. obs A: AG → A
axiom
3. ∀ a,a′:A • a=a′ ≡ obs A(a)=obs A(a′) ∧ obs A(a)6=obs A(a′)⇒a 6=a′

value
3(a. obs Ds: AG → D-set
3(b. obs L: AG → L
axiom
3((b)i. ∀ a,a′ • a 6=a′ ⇒ distinct(obs L(a),obs L(a′))
type

Auth
value
3(c. obs Auths: AG → Auth-set

G.2.3 Spaces of Documents and Agents

Narrative: Spaces of Documents and Agents

1. There is a concept of space.
2. Documents and agents coexist in space.
3. All documents and all agents in that space

(a) have distinct unique document identifiers and
(b) distinct agent identifiers.

4. Some properties of documents can now be re-expressed
No two document can have the same

i. “most recent time and location”,
ii. no two document can have the same “most recent location and

agent”, and
iii. no two document can have the same “most recent time and

agent”12.
(a) We also need to redefine the signature of all document operations —

and the related axioms.
12Since our axioms implicitly enjoy the universal time quantification this means

that no two past operations can have the take place at the same location, at the
same location and time and agent.
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Formalisation: Spaces of Documents and Agents

type
1. Ω

LT = L×T, LA=L×A, TA=T×A
value
1. obs Ds: Ω → D-set, obs As: Ω → AF-set

obs LT: D → LT, obs LA: D → LA, obs TA: D → TA,
axiom
3. ∀ ω:Ω,d,d′:D, ag,ag′:AG • {d,d′}⊆obs Ds(ω) ∧ {ag,ag′}⊆obs AGs(ω) ⇒
3(a. d=d′ ≡ obs UDI(d)=obs UDI(d′) ∧
3(b. ag=ag′ ≡ obs A(ag)=obs A(ag′) ∧
4. ∀ ω:Ω,d,d′:D • {d,d′}⊆obs Ds(ω) ⇒
4(()i. d6=d′ ⇒ obs LT(d)6=obs LT(d′) ∧
4(()ii. d6=d′ ⇒ obs LA(d)6=obs LA(d′) ∧
4(()iii. d6=d′ ⇒ obs TA(d)6=obs TA(d′) ∧

Formalisation: Types of Document Operations

value
2(a. crea: LTA → Ω × UDI
2(b. edit: LTA → UDI → Ω → Ω × E
2(c. read: LTA → UDI → Ω → Ω
2(d. copy: LTA → UDI → Ω → Ω × UDI
2(e. shrd: LTA → UDI → Ω → Ω
axiom
... /∗ left as an exercise ! ∗/

G.2.4 Dynamic System of Documents

The dynamics of a agents and documents views these are evolving over time.
That is, the system is a total function from time to space of agents and
documents.

type
DYN = T → Ω

axiom
...

Axioms over dyn:DYN expresses much the same as did the axioms over
space hinted at earlier.
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G.2.5 Document Traces

Usually creation and editing of documents are based on a possibly empty
set of other documents. Once created or every time edited one would like to
be able to trace, not only, as before, the document history of the created or
edited document, but also those of the reference documents. So a document
trace is a set of document histories. Together the set forms a tree of histories:
At the root is the document being traced. Branch nodes designate document
versions, with one branch for history of each document reference. See Fig. G.1.

  

    

  
udi

udi’ udi’

udi" udi"

udi"’udi"’
EDIT based on {udi’}

Create based on  {udi"}

Fig. G.1. Document udi′′′ trace

Figure G.1 shows a number of documents each with their operations. There
are four document families: at top there are two: left and right. In the middle
and at bottom of Fig. G.1 there is one each. Each document family (a concept
we only diagram) consists of a number of documents — shown as family leaves
(to the left in each family): three, two, one and one. The four creates are the
leftmost root in each document family. The copies are at the “forks”, and
where there are arrows inserted between (non-created) documents of same
or different families edits have taken place. References are shown as double-
arrowed links. Might as well insert forward references in those documents
which we referenced.

Note:

At the time of the referencing edits the referenced documents must be the
most recent document versions of the udi references.
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First: Extension of Create and Edit Operations

We extend our create and edit operations. When creating or editing documents
we now do so on the basis of zero, one or more references to “background”
documents.

We need define an observer function, obs UDIs LTAs, which which when
applied to any document, d yields the set of pairs of unique document iden-
tifiers (UDIs) and the location, time and agent identifier triples (LTAs) of
the documents referenced in d. One needs the LTA triples as the document
identified by the UDI may have undergone (several) operations since (first)
referenced. Think of the LTA triples being “inserted” in the created or edited
document together with the UDI — where these LTA elements are those of the
version of the UFI identified document at the time of the create, respectively
the edit operation.

value
crea: LTA × UDI-set → Ω → Ω × UDI
obs D: UDI → Ω → D
obs UDIs LTAs: D → (UDI×LTA)-set

axiom
∀ lta:LTA,udis:UDI-set •

let (ω′,udi) = crea(lta,udis)(ω) in
let od = obs D(udi)(ω′) in
obs UDI(od)=udi ∧ obs LTA(od)=lta ∧
let udis ltas = obs UDIs LTAs(od) in
udis={udi′|(udi′,lta′):UDI×LTA•(udi′,lta′)∈ udis ltas}
end end end

Similar for editing.

Then: Definition of Traces

We leave this as an exercise!

G.2.6 Summary

We could go on and define additional domain notions. The notion of document
family used, but not defined above. We could define concepts of document
classes, document access authority, agent authorisations: by class, operation
and/or document, etcetera. We choose to stop here. In another report: Public
Government: A Domain Analysis you will find all of the above plus more,
put in the pragmatic context of the many agencies of the three branches of
government: the law making (parliament, provincial and city councils), the
law enforcing (state and local administration) and the law interpreting (the
judiciary) branches.
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G.3 From Domain Models to Requirements

One rôle for Domain descriptions is to serve as a basis for constructing ,
Requirements prescriptions. The purpose of constructing Requirements pre-
scriptions is to specify properties (not implementation) of a Machine. The
Machine is the hardware (equipment) and the software that together imple-
ments the requirements. The implementation relations is

D,M |= R

The Machine is proven to implement the Requirements in the context of
[assumptions about] the Domain. That is, proofs of correctness of the Machine
wrt. the Requirements often refer to properties of the Domain.

G.3.1 Domain Requirements

First, in a concrete sense, you copy the domain description and call it a re-
quirements prescriptions. Then that requirements prescription is subjected
to a number of operations:(i) removal (projection away) of all those aspects
not needed in the requirements; (ii) instantiation of remain aspects to the
specifics of the client’s domain; (iii) making determinate what is unnecessar-
ily or undesirably non-deterministic in the evolving requirements prescription;
(iv) extending it with concepts not feasible in the domain; and (v) fitting these
requirements to those of related domains (say monitoring & control of public
administration procedures). The result is called a domain requirements.

G.3.2 Interface Requirements

From the domain requirements one then constructs the interface require-
ments: First one identifies all phenomena and concepts, entities, functions,
event and behaviours shared with the environment of the machine (hardware
+ software) being requirements specified. Then one requirements prescribe
how each shared phenomenon and concept is being initialised and updated:
entity initialisation and refreshment, function initialisation and refreshment
(interactive monitoring and control of computations), and the physiological
man-machine and machine-machine implements.

G.3.3 Machine Requirements

Finally one deals with machine requirements performance, dependability,
maintainability, portability, etc., where dependability addresses such issues
as availability, accessibility, reliability, safety, security, etc.
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G.4 Why Domain Engineering?

G.4.1 Two Reasons for Domain Theories

We believe that one can identify two almost diametrically opposed reasons for
the pursuit of domain theories. One is utilitarian, concrete, commercial and
engineering goal-oriented. It claims that domain engineering will lead to better
software, and to development processes that can be better monitored and
controlled. and the other is science oriented. It claims that establishing domain
theories is a necessity, that it must be done, whither we develop software or
not.

We basically take the latter, the science, view, while, of course, noting the
former, the engineering consequences. We will briefly look at these.

G.4.2 A Utilitarian, an Engineering Reason

In a recent e-mail, in response, undoubtedly to my steadfast, perhaps con-
ceived as stubborn insistence, on domain engineering (DE), Tony Hoare, pos-
sibly in order to come to grips with this “animal” (DE), summed up his
reaction to DE as follows, and I quote13:

“There are many unique contributions that can be made by domain modelling.

1. The models describe all aspects of the real world that are relevant for any
good software design in the area. They describe possible places to define the
system boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be
made in any embedded software design, especially one that is going to be
formally proved.

3. They describe the whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, in depth, in Vol. 3 my three volume book:

• Software Engineering, Vol. 3: Domains, Requirements and Software De-
sign. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006.

13E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006
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G.4.3 A Scientific Reason

But, inasmuch as the above-listed issues, so aptly expressed in Tony’s mastery,
also of words, are of course of utmost engineering importance, it is really, in
our mind, the science issues that are foremost: We must first and foremost
understand. There is no excuse for not trying to first understand whether
that understanding can be “translated” into engineering tools and techniques
is then less important. But then, of course, it is nice that understanding also
leads to better engineering. It usually does.

G.5 Conclusion

G.5.1 What Have We Shown?

We have established a framework for reasoning about a concept of documents:
originals, un-edited and edited documents, documents that have been read or
not read, copies of master documents, etc. We have endowed documents with
such attributes as unique document identifiers, the location, time and agent of
operations performed on documents, the ‘kind of operation’ (“most recently”)
performed on documents, document history, etc.

And we have “embedded” documents and agents in a space of such while
expressing some, but (we think) far from all relevant properties (axiomati-
cally). In other words, we have started establishing a domain theory for the
kind of documents that are of the kinds and have the operations and properties
expressed in this paper.

The formalisation of the domain description has been carried out using
the RAISE specification language, RSL [166, 168]. Emphasis has been on an
algebraic style specification using sorts, observer functions and axioms.

G.5.2 What Have We Not Shown?

Non-determinism

We have not shown the vagaries (!) of the domain of documents. In a sense we
have shown an idealisation. We can also show the — or an — “actual” domain
of documents. In an actual world, documents disappear, for no explainable
reason, cannot be accurately “undone”, that is, agents can not precisely recall
the document text that was edited, partially or fully “loose” their location,
time and agent identity, cannot be accurately or fully traced, and many other
things.

Actual worlds are non-determinate. So we must model non-determinism.
And can.14

14In an appendix we show a full formalisation of a non-deterministic domain of
documents. This appendix is not included in version
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Two Differences between Domains and Requirements

Domains are usually not computable. Requirements must designate com-
putable domain support.

Non-determinism may not be desirable in computable domain support. A
purpose of requirements is to secure only desirable non-determinism maybe
even remove all such non-determinism for the future domain!

G.5.3 Shortcomings

Immediate shortcomings are believed to be: uncertainty as to whether all
relevant properties (axioms) have been formulated, uncertainty as to whether
the axioms that have been expressed are consistent (they are not thought of
as being complete). Less immediate shortcomings, we think, have to do with
the following: Have we expressed the sorts, function signatures and the axioms
as succinctly as we would desire? A “gut feeling” about issues that we ought
to have also covered!

G.5.4 What Needs Be Done?

Obviously we need to now review the study of the document domains in order
to improve it along the lines outlined in the previous section. This will take
time. Hopefully colleagues will wish to study this paper. And hopefully the
author — and the paper — can then benefit from resulting discussions.
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Three License Languages

This document was written by Dines Bjørner during the summer and fall of
2006. The co-authors were, at the time, MsC, PhD and Post Doc. students at
JAIST, Japan Advanced Institute for Science and Technology, near Kanazawa,
Ishikawa Province, West Japan.

• Arimoto Yasuhito, JAIST,
• Dines Bjørner, JAIST and DTU Informatics
• Chen Xiaoyi, JAIST,
• Xiang Jianwen, JAIST,

Summary. Classical digital rights license languages [8, 137–139, 172, 178, 191, 213,
224,226,236,243,244, 254, 255,271] were (and are) applied to the electronic “down-
loading”, payment and rendering (playing) of artistic works (for example music,
literature readings and movies). In this document we generalise such applications
languages and we extend the concept of licensing to also cover work authorisation
(work commitment and promises) in health care and in public government. The dig-
ital works for these two new application domains are patient medical records and
public government documents.

Digital rights licensing for artistic works seeks to safeguard against piracy and to
ensure proper payments for the rights to render these works. Health care and public
government license languages seek to ensure transparent and professional (accu-
rate and timely) health care, respectively ‘good governance’. Proper mathematical
definition of licensing languages seeks to ensure smooth and correct computerised
management of licenses.

We shall motivate and exemplify three license languages, their pragmatics, syn-
tax and informal as well as formal semantics.
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340 H Three License Languages

H.1 Introduction

License:

a right or permission granted in accordance with law by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful

Merriam Webster On-line [288]

The concepts of licenses and licensing express relations between actors (li-
censors (the authority) and licensees), simple entities (artistic works, hospital
patients, public administration and citizen documents) and operations (on
simple entities), and as performed by actors. By issuing a license to a licensee,
a licensor wishes to express and enforce certain permissions and obligations:
which operations on which entities the licensee is allowed (is licensed, is per-
mitted) to perform. In this paper we shall consider three kinds of entities:
(i) digital recordings of artistic and intellectual nature: music, movies, read-
ings (“audio books”), and the like, (ii) patients in a hospital as represented
also by their patient medical records, and (iii) documents related to public
government.

The permissions and obligations issues are, (i) for the owner (agent) of
some intellectual property to be paid (i.e., an obligation) by users when they
perform permitted operations (rendering, copying, editing, sub-licensing) on
their works; (ii) for the patient to be professionally treated — by medical
staff who are basically obliged to try to cure the patient; and (iii) for public
administrators and citizens to enjoy good governance: transparency in law
making (national parliaments and local prefectures and city councils), in law
enforcement (i.e., the daily administration of laws), and law interpretation
(the judiciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps copy) other
documents.

H.1.1 What Kind of Science Is This?

It is experimental computing science: The study and knowledge of how to de-
sign and construct software that is right, i.e., correct, and the right software,
i.e., what the user wants. To study methods for getting the right software is
interesting. To study methods for getting the software right is interesting. Do-
main development helps us getting the right software. Deriving requirements
from domain descriptions likewise. Designing software from such requirements
helps us get the software right. Understanding a domain and then designing
license languages from such an understanding is new. We claim that computer-
supported management of properly designed license languages is a hallmark
of the e-Society.
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H.2 Pragmatics of The Three License Languages 341

H.1.2 What Kind of Contributions?

The experimental nature of the project being reported on is as follows: Pos-
tulate three domains. Describe these informally and formally. Postulate the
possibility of license languages (LLs) that somehow relate to activities of re-
spective domains. Design these – experimentally. Try discover similarities and
differences between the three LLs (LLDRM , LLHHLL, LLPALL). Formalise the
common aspects: CLL. Formalise the three LLs — while trying to “parame-
terise” the CLL to achieve LLDRM , LLHHLL, LLPALL. This investigation is
bound to tell us something, we hope.

H.2 Pragmatics of The Three License Languages

• By pragmatics we understand the study and practice of the factors that
govern our choice of language in social interaction and the effects of our
choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the three
domains of (i) production, distribution and consumption of artistic works
(Sect. H.2.1), (ii) the hospitalisation of patient, i.e., hospital health care
(Sect. H.2.2), and (iii) the handling of law-based document in public gov-
ernment (Sect. H.2.3). The emphasis is on the pragmatics of the terms, i.e.,
the language used in these three domains.

H.2.1 The Performing Arts: Producers and Consumers

The intrinsic simple entities of the performing arts are the artistic works:
drama or opera performances, music performances, readings of poems, short
stories, novels, or jokes, movies, documentaries, newsreels, etc. We shall limit
our span to the scope of electronic renditions of these artistic works: videos,
CDs or other. In this paper we shall not touch upon the technical issues of
“downloading”(whether ”streaming” or copying, or other). That and other
issues will be analysed in [299].

Operations on Digital Works

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while
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342 H Three License Languages

protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

Past versus Future

In the past all a consumer of digital works could do was to download and
possibly copy. We would like, in this document, to investigate what it might
entail, with respect to a digital rights license language, to license the consumer
to also (copy,) edit and sub-license such digital works.

License Agreement and Obligation

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

The Artistic Electronic Works: Two Assumptions

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from
the fulfilment of the first). The second assumption is that the consumer is
not allowed to, or cannot operate1 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results
in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

Protection of the Artistic Electronic Works

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

An Artistic Digital Rights License Language

In Sects. H.4.1, H.5.1, and H.5.2 we shall design a suitably flexible digital
artistic works license language and, through its precise informal and formal
description provide one set answers to the above issue.

1render, copy and edit
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H.2 Pragmatics of The Three License Languages 343

H.2.2 Hospital Health Care: Patients and Medical Staff

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients,
in a sense, issue a request to be medically treated with the aim of full or
partial restitution. This request is directed at medical staff, that is, the patient
authorises medical staff to perform a set of actions upon the patient. One could
claim, as we shall, that the patient issues a license.

Hospital Health Care: Patients and Patient Medical Records

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

Hospital Health Care: Medical Staff

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

A Hospital Health Care License Language

In Sects. H.4.2, H.5.1, and H.5.3 we shall design a suitably flexible hospi-
tal health care license language and, through its precise informal and formal
description provide one set answers to the above issue.

H.2.3 Public Government and the Citizens

The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)2, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of public

2De l’esprit des lois (The Spirit of the Laws), published 1748
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344 H Three License Languages

government. Typically national parliament and local (province and city) coun-
cils are part of law-making government; law-enforcing government is called
the executive (the administration, including the police and state and district
attorneys); and law-interpreting government is called the judiciary (that is,
judiciary system, which includes juries and judges etc.).

Documents

A crucial means of expressing public administration is through documents.3

We shall therefore provide a brief domain analysis of a concept of doc-
uments. (This document domain description also applies to patient medical
records and, by some “light” interpretation, also to artistic works — insofar
as they also are documents.)

Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

Document Attributes

With documents one can associate, as attributes of documents, the actors
who initiate the following operations on documents: create, edit, read, copy,
distribute (and to whom distributed), share, perform calculations and shred.

With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

Finally we shall associate with documents the following attributes: (i)
operations: the name of operations that may be performed on the document;
(ii) actors: the name of actors and which operations they may perform
on the document; (iii) time-stamped transactions and locations: a
chronological list of operations actually performed on the document and the
location at which the document was placed at that time; etcetera. Many other
attributes may be associatable. Please recall that we are “in the domain”. This
means that we can indeed talk about the above attributes being observable
from documents. The documents may just be “good, old-fashioned” paper
documents. But someone, some persons, knows, or recalls, or believes in the
validity of such attributes or have stamp-marked or “asctibed” the documents
in such a way that these attributes can be deduced. Appendix G (Pages 315–
337, which reflects [86]) presents “the beginnings” of “a theory of documents”
in which these attribute assignments and observations can be done and made.

3Documents are, for the case of public government to be the “equivalent” of
artistic works.

Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42 c© Dines Bjørner 2008



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
H.3 Semantic Intents of Licensor and Licensee Actions 345

Actor Attributes and Licenses

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as
licenses.

Document Tracing

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

A Public Administration Document License Language

Sects. H.4.3, H.5.1, and H.5.4 we shall design a suitably flexible public govern-
ment document license language and, through its precise informal and formal
description provide one set answers to the above issue.

H.3 Semantic Intents of Licensor and Licensee Actions

In this section we shall briefly analyse some of the common semantics of the
three kinds of license languages that we intend to design.

H.3.1 Overview

There are two parties to a license: the licensor and the licensee. And there is
a common agreement concerning a shared “item” between them, namely: the
license and the work item: the artistic work, the patient, the document.

The licensor gives the licensee permission, or mandates the licensee to be
obligated to perform certain actions on designated “items”.

The licensee performs, or does not perform permitted and/or obligated
actions

And the licensee may perform actions not permitted or not obligated.
The license shall serve to ensure that only permitted actions are carried

out, and to ensure that all obligated actions are carried out.
Breach of the above, that is, breach of the contracted license may or shall

result in revocation of the license.
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346 H Three License Languages

H.3.2 Licenses and Actions

Licenses

Conceptually a licensor o (for owner) may issue a license named ℓ to licensee
u (for user) to perform some actions. The license may syntactically appear as
follows:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

Actions

And, conceptually, the licensee (u) may perform actions which can be ex-
pressed as follows:

ℓ :a(w); ℓ :a′(w); ...; ℓ :a′′(w); ...; ℓ :a′′′(w)

These actions (a, a′, ..., a′′, ..., a′′′) may be in the set {a1,a2,...,an}, mentioned
in the license, or they may not be in that set. In the latter case we have a
breach of license ℓ.

Two Languages

Thus there is the language of licenses and the language of actions.
We advise the reader to take note of the distinction between the permitted

or obligated actions enumerated in a license and the license-name-labelled
actions actually requested by a licensee.

H.3.3 Sub-licensing, Scheme I

A licensee u may wish to delegate some of the work associated with performing
some licensed actions to a colleague (or customer). If, for example the license
originally stated:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

the licensee (u) may wish a colleague u′ to perform a subset of the actions,
for example

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Therefore u would like if the above license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
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H.3 Semantic Intents of Licensor and Licensee Actions 347

instead was formulated as:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

where

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Now licensee u can perform the action

ℓ : license actions {a′,a′′,a′′′} to u′

where {a′,a′′,a′′′}⊆{ai,aj,...,ak}.
The above is an action designator. Its practical meaning is that a license

is issued by u:

η(ℓ,u,t): licensor u licenses licensee u′

to perform actions {a′,a′′,a′′′} on work item w

The above license can be easily “assembled” from the action including the
action named license: the context determines who (namely u) is issuing the
license, and who or which is the work item. η is a function which applies to
license name, agent identifications and time and yields unique new license
names.

H.3.4 Sub-licensing, Scheme II

The subset relation

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

mentioned in the sub-licensing part of license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

may be omitted. In fact one could relax the relation completely and allow
any actions {ai,aj,...,ak} whether in {a1,a2,...,an} or not ! That is, the orig-
inal licensor may mandate that a licensee allow a sub-licensee to perform
operations that the licensee is not allowed to perform. Examples are: a li-
censee may break the shrink-wrap around some licensed software package —
an action which may not be performed by the licensor; a medical nurse (i.e.,
a licensee) may perform actions on patients not allowed performed by the
licensor (say, a medical doctor); and a civil servant (say, an archivist) may
copy, distribute or shred documents, actions that may not be allowed by the
licensor (i.e., the manager of that civil servant), while that civil servant (the
archivist) is not allowed to create or read documents.
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348 H Three License Languages

H.3.5 Multiple Licenses

Consider the following scenario: A licensee L is performing actions ap, aq, . . . ,
ar, on work item ω, and has licensed L′ to perform actions ai, aj , . . . , ak,
also on work item ω. The action whereby L licenses L′ occurs at some time.
At that time L has performed none or some of the actions ap, aq, . . . , ar (on
work item ω), but maybe not all. What is going to happen? Can L and L′ go
on, in parallel, performing actions on the same work item (ω) ? Our decision
is yes, and they can do so in an interleaved manner, not concurrently but
alternating, i.e., not accessing the same work item simultaneously.

H.4 Syntax and Informal Semantics

We distinguish between the pragmatics, the semantics and the syntax of lan-
guages. Leading textbooks on (formal) semantics of programming languages
are [146,173,263,272,291,295].

We have already covered the concept of pragmatics and we have, in cover-
ing some basic issues of semantics, illustrated their application to some issues
of license language design.

We shall now illustrate the use of syntax and semantics in license language
design.

• By syntax we mean (i) the ways in which words are arranged to show mean-
ing (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences.

• By semantics we mean the study and knowledge, including specification, of
meaning in language [144].

• By informal semantics we mean a semantics which is expressed in concise
natural language, for example, as here, English.

H.4.1 A General Artistic License Language

We refer to the abstract syntax formalised below (that is, formulas 0.–8.
[Page 349] and 9.–14. [Page 351]). The work on the specific form of the syntax
has been facilitated by the work reported by Xiang JenWen [299].4

The Syntax

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

4As this work, [299], has yet to be completed the syntax and annotations given
here may change.
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H.4 Syntax and Informal Semantics 349

Licenses

We first present an abstract syntax of the language of licenses, then we an-
notate this abstract syntax, and finally we present an informal semantics of
that language of licenses.

type
0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′readme′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

Syntax Annotations

0: Syntax Sorts: (0.) Licenses are given names, ln:Ln, so are actors (owners,
licensors, and users, licensees), nn:Nm. By w:W we mean a (net) reference to
(a name of) the downloaded possibly segmented artistic work being licensed,
and where segments are named (s:S), that is, s:S is a selector to either a
segment of a downloaded work or to a segment of a copied and or and edited
work.

License Name and License Body: (1.) Every license (lic:Lic) has a unique
name (ln:Ln). (2.) A license (lic:Lic) contains four parts: the name of the
licensor, the name of the licensee, a reference to (the name of) the work and a
set of command designators (that may be permitted to be performed on the
work).

Commands: (3.) A command is either a render, a copy or an edit or a readme,
or a sub-licensing (sub-license) command.

Render, Copy and Edit: (4.–6.) The render, copy and edit commands are each
“decorated” with an ordered list of selectors (i.e., selector names) and a (work)
variable name. The license command

copy 〈s1,s7,s2〉 v

means that the licensed work, ω, may have its sections s1, s7 and s2 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands.
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350 H Three License Languages

Read Me: (7.) The ”readme” license command, in a license, ln, referring, by
means of w, to work ω, somehow displays a graphical/textual “image” of in-
formation about ω. We do not here bother to detail what kind of information
may be so displayed. But you may think of the following display informa-
tion names of artistic work, artists, authors, etc., names and details about
licensed commands, a table of fees for performing respective licensed com-
mands, etcetera.

Sub-Licensing: (8.) The license command

license cmd1,cmd2,...,cmdn on work v
mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensees to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one, to reflect such
constraints. The license also does not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted.

Informal Semantics

A license licenses the licensee to render, copy, edit and license (possibly the
results of editing) any selection of downloaded works. In any order — but see
below — and any number of times. For every time any of these operations
take place payment takes place according to the payment function (which can
be inspected by means of the ‘‘readme’’ command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied
versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function.

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” functions (see next section) are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage.

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
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H.4 Syntax and Informal Semantics 351

by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary.

Actions

type
9. V
10. Act = Ln × (Rndr|Copy|Edit|License)
11. Rndr == mkR(sel:S∗,wrk:(W|V))
12. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
13. Edit == mkE(wrks:V∗,into:V)
14. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

Annotations and Informal Semantics:

Variables: (9.) By V we mean the name of a variable in the users own storage
into which downloaded works can be copied (now becoming a local work). The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested.

Actions: (10.) Every action of a licensee is tagged by the name of a relevant
license; if the action is not authorised by the named license then it is rejected;
render and copy actions mention a specific sequence of selectors; and if this
sequence is not an allowed (a licensed) one, then the action is rejected. (No-
tice that the license may authorise a specific action, a with different sets of
sequences of selectors — thus allowing for a variety of possibilities as well as
constraints.)

Render: (11.) The licensee, having now received a license, can render selec-
tions of the licensed work, or of copied and/or edited versions of the licensed
work. No reference is made to the payment function. When rendering, the
semantics is that this function is invoked and duly applied. That is, render
payments are automatically made: subtracted from the licensees account and
forwarded to the licensor.

Copy: (12.) The licensee can copy selections of the licensed work, or of previ-
ously copied and/or edited versions of the licensed work. The licensee identifies
a name for the local storage file where the copy will be kept. No reference is
made to the payment function. When copying, the semantics is that this func-
tion is invoked and duly applied. That is, copy payments are automatically
made: subtracted from the licensees account and forwarded to the licensor.

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
352 H Three License Languages

Edit: (13.) The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function.
When editing, the semantics is that this function is invoked and duly applied.
That is, edit payments are automatically made: subtracted from the licensees
account and forwarded to the licensor.

(a) Although no reference is made to any edit functions these are made
available to the licensee when invoking the edit command. (b) You may think
of these edit functions being downloaded at the time of downloading the li-
cense. (c) Other than this we need not further specify the editing functions.

Remarks (a,b,c) apply also to the above copying function.

Sub-Licensing: (14.) The licensee can further sub-license copied and/or edited
work. The licensee must give the license being assembled a unique name. And
the licensee must choose to whom to license this work. A sub-license, like does
a license, authorises which actions can be performed, and then with which one
of a set of alternative selection sequences. No payment function is explicitly
mentioned. It is to be semi-automatically derived (from the originally licensed
payment fee function and the licensee’s payment demands) by means of func-
tionalities provided as part of the licensed payment fee function.

The sub-license command information is thus compiled (assembled) into a
license of the form given in (1.–3.) and schematised in the “η(ℓ, u, t):” labelled
command designator on Page 347. The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
issuing the sub-license. From the license label of the command it is known
whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

H.4.2 A Hospital Health Care License Language

A reading of this section assumes that of having read the previous section.
We refer to the abstract syntax formalised below (that is, formulas 0.–7.

Page 354). The work on the specific form of the syntax has been facilitated
by the work reported in [7].5

A Notion of License Execution States

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations (not to be confused with
hospital surgery on patients) on local works could not be done before these

5As this work, [7], has yet to be completed the syntax and annotations given
here may change.
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H.4 Syntax and Informal Semantics 353

had been created — say by copying. Editing could only be done on local works
and hence required a prior action of, for example, copying a licensed work. In
the context of hospital health care most of the actions can only be performed
if the patient has reached a suitable state in the hospitalisation. We refer to
Fig. H.1 for an idealised hospitalisation plan.

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. H.1. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same!) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice! One cannot design a language and
prevent it being misused!

The Syntax

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.
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354 H Three License Languages

Licenses

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(s staff1:Mn,s mandate:ML,s pat:Pn)
3. ML == mkML(s staff2:Mn,s to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(s σs:Σ-set,s stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL [87–89,97,165,166,168]. But it is decorated!
The subtypes {|boldface keyword|} are inserted for readability.

Syntax: Annotations: (0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for a “total”
mnemonic identifier: CoL) the licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative (Alt).

(5.) A command (Cmd) is a set-of-states-labelled statement.
(3.) A sub-license (ML) just states the command set that the sub-license

licenses. As for the Artistic License Language the licensee chooses an appro-
priate subset of commands. The context “inherits” the name of the patient.
But the sub-licensee is explicitly mandated in the license!

(6.) An alternative (Alt) is also just a set of commands. The meaning is
that either the licensee choose to perform the designated actions or, as for
ML, but now freely choosing the sub-licensee, the licensee (now new licensor)
chooses to confer actions to other staff.

(7.) A statement (Stmt) is either an admit, an interview, a plan analysis,
an analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive. Information given in the patient medical report, for the designated
state, inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc.

Actions

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)
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H.4 Syntax and Informal Semantics 355

Syntax Annotations: (8.) Each action actually attempted by a medical staff
refers to the license, and hence the patient name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analy-
sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap-
pears in the named license and the patient (medical record) designated state
set σs.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3. on Page 354) is compiled from contextual infor-
mation.

Informal Semantics

An informal, rough-sketch semantics (here abbreviated) would state that a
prescribed action is only performed if the patient, cum patient medical record
is in an appropriate state; that the patient is being treated according to the
action performed; and that records of this treatment and its (partially) anal-
ysed outcome is introduced into the patient medical record. The next state
of the patient, cum patient medical record, depends on the outcome of the
treatment6; and hence the patient medical record carries with it, i.e., embod-
ies a, or the, hospitalisation plan in effect for the patient, and a reference to
the current state of the patient.

H.4.3 A Public Administration License Language

In this appendix we shall assume that the reader has studied, or at least can
refer to Appendix G (Pages 315–337, [86]).

We refer to the abstract syntax formalised below (that is, formulas (0.–19.),
Page 356 and formulas (20.–31.), starting Page 358). The work on the specific
form of the syntax has been facilitated by the work reported in [86, 99, 136].7

The Syntax: Licenses

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

6Cf. the diamond-shaped decision boxes in Fig. H.1 on page 353.
7As part this work, [136], has yet to be completed the syntax and annotations

given here may change.
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356 H Three License Languages

The Form of Licenses

type
0. Ln, An, Dn, DCn, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(s license:Ln,s licensor:An,s ops:OpDocs,s licensee:An)
3. Extend == mkE(s licensor:An,s licensee:An,s license:Ln,s with ops:OpDocs)
4. Restrict == mkR(s licensor:An,s licensee:An,s license:Ln,s to ops:OpDocs)
5. Withdraw == mkW(s licensor:An,s licensee:An,s license:Ln)
6a. OpDocs = Op →m (Dn →m DCn)
6b. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

Licensed Operations

type
7. UDI
8. Crea == mkCr(s dn:Dn,s doc class:DCn,s based on:UDI-set)
9. Edit == mkEd(s doc:UDI,s based on:UDI-set)
10. Read == mkRd(s doc:UDI)
11. Copy == mkCp(s doc:UDI)
12. Licn == mkLi(s kind:LiTy)
13. LiTy == grant | extend | restrict | withdraw
14. Shar == mkSh(s doc:UDI,s with:An-set)
15. Rvok == mkRv(s doc:UDI,s from:An-set)
16. Rlea == mkRl(s dn:Dn)
17. Rtur == mkRt(s dn:Dn)
18. Calc == mkCa(s fcts:CFn-set,s docs:UDI-set)
19. Shrd == mkSh(s doc:UDI)

Syntax & Informal Semantics Annotations: Licenses

(0.) The are names of licenses (Ln), actors (An), documents (Dn), document
classes (DCn), calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and
withdrawing.

(2.) Actors (licensors) grant licenses to other actors (licensees). An ac-
tor is constrained to always grant distinctly named licenses. No two actors
grant identically named licenses.8 A set of operations on named documents
(OpDocs) are granted.

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations).

8This constraint can be enforced by letting the unique actor name be part of the
license name.
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H.4 Syntax and Informal Semantics 357

(6a.) To each granted operation there is associated a set of document
names (each of which is associated with a document class name, i.e., a type).

(6b.) There are nine kinds of operation (Op) authorisations.
Some of the next explications also explain parts of some of the correspond-

ing actions (see (20.–32.) Page 358).
(7.) There are unique document identifiers. Several documents may be “of

the same” name, but each created document “of that name” is ascribed a
unique document identifier.

(8.) Creation results in an initially void document which is not necessar-
ily uniquely named (dn:Dn) (but that name is associated with the unique
document identifier created when the document is created):

value
obs Dn: UID → Dn, obs DCn: UID → DCn, obs An: UID → An

The created document is typed by a document class name (dcn:DCn) which,
like the name of the licensee, can also be observed from the unique document
identifier). The created document is possibly based on9 one or more identified
documents (over which the licensee (at least) has reading rights). We can
presently omit consideration of the document class concept. The “based on”
documents are moved10 from licensor to licensee.

(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved11 from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions.

(10.) Reading a document only changes its “having been read” status (etc.)
— as per Appendix G [86]. The read document, if not the result of a copy, is
moved from licensor to licensee — if not already so moved as the result of the
specification of other authorised actions.

(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied
document is marked to be a copy (etc.) — as per Appendix G [86]. The
master document, if not the result of a create or copy, is moved from licensor
to licensee — if not already so moved as the result of the specification of other
authorised actions.

(12.) A licensee can sub-license certain operations to be performed by other
actors.

9“Based on” means that the initially void document contains references to those
(zero, one or more) documents.They can therefore be traced (etc.) — as per [86].

10A discussion on this choice, of “move”, should weigh this against licensee be
able to remotely access the “based on” document, etc., etc.

11See Footnote 9.
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358 H Three License Languages

(13.) The granting, extending, restricting or withdrawing permissions (a)
cannot name a license (the user has to do that); (b) do not need to refer to
the licensor (the licensee issuing the sub-license); and (c) leaves it open to the
licensor to freely choose a licensee. One could, instead, for example, constrain
the licensor to choose from a certain class of actors. The licensor (the licensee
issuing the sub-license) must choose a unique license name.

(14.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead, the licensing actions with a shared attribute.)
The shared document, if not the result of a create and edit or copy, is moved
from licensor to licensee — if not already so moved as the result of the spec-
ification of other authorised actions. Sharing a document does not move nor
copy it.

(15.) Sharing documents can be revoked. That is, the reading rights are
removed.

(16.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy.

(17.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document.

(18.) One or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of creates
and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(19.) A document can be shredded.

The Syntax: Actions

type
20. Action = Ln × Clause
21. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
22. Cre == mkCre(dcn:DCn,based on docs:UID-set)
23. Edt == mkEdt(uid:UID,based on docs:UID-set)
24. Rea == mkRea(uid:UID)
25. Cop == mkCop(uid:UID)
26. Lic == mkLic(license:L)
27. Sha == mkSha(uid:UID,with:An-set)
28. Rvk == mkRvk(uid:UID,from:An-set)
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H.4 Syntax and Informal Semantics 359

29. Rel == mkRel(dn:Dn,uid:UID)
30. Ret == mkRet(dn:Dn,uid:UID)
31. Cal == mkCal(fct:Cfn,over docs:UID-set)
32. Shr == mkShr(uid:UID)

Preliminary Remarks

A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”.

Syntax & Informal Semantics Annotations: Actions

(20.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited.

(22.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(23.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(24.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(25.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy.

(26.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if
any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.

(27.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,
for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(28.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.

(29.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now being able to
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360 H Three License Languages

see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(30.) A document may be returned. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it.

(31.) A license may (conditionally) apply any of a licensed set of calculation
functions to “downloaded” (edited, copied, etc.) documents, or can (uncondi-
tionally) apply any of a licensed set of calculation functions to created (etc.)
documents. The result of a calculation is a document. The licensee obtains all
operation authorisations to this document (— as for created documents).

(32.) A license may (conditionally) shred a “downloaded” (etc.) document.

H.4.4 Discussion

Comparisons

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages.

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

Differences

Work Items: The work items of the artistic license language(s) are essentially
“kept” by the licensor. The work items of the hospital health care license
language(s) are fixed and, for a large set of licenses there is one work item,
the patient which is shared between many licensors and licenses. The work
items of the public administration license language(s) — namely document
— are distributed to or created and copied by licenses and may possibly be
shared.

Operations: The operations of the artistic license language(s) are are essen-
tially “kept” by the licensor. The operations of the hospital health care license
language(s) are are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct). The operations of the public administration
license language(s) are essentially “kept” by the licensees (as reflected in their
professional training and conduct).

Permissions and Obligations: Generally we can say that the modalities of
the artistic license language(s) are essentially permissions with payment (as
well as use of licensor functions) being an obligation; that the modalities of
the hospital health care license language(s) are are essentially obligations to
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H.5 Formal Semantics 361

maintain professional standards and the Hippocractic oath; and, as well, that
the modalities of the public administration license language(s) are essentially
obligations to maintain professional and legal standards. We may have more
to say about permissions and obligations later.

H.5 Formal Semantics

By formal semantics we understand a definition expressed in a formal lan-
guage, that is, a language with a mathematical syntax, a mathematical se-
mantics, and a consistent and relative complete proof system. We shall ini-
tially deploy the CSP [189,190,266,273] Specification Language embedded in a
Landin–like notation of let clauses12. This embedding is expressed, as were the
syntaxes, in the RAISE Specification Language, RSL [87–89,97,165,166,168].

H.5.1 A Model of Common Aspects

Actors: Behaviours and Processes

We see the system as a set of actors. An actor is either a licensor, or a licensee,
or, usually, such as we have envisaged our license languages, both. To each
actor we associate a behaviour — and we model actor behaviours as CSP
processes. So the system is then modelled as a set of concurrent behaviours,
that is, parallel (‖) CSP processes. Actors are uniquely identified (Aid).

System States

With each actor behaviour we associate a state (ω:Ω). “Globally” initial such
state components are modelled as maps from actor identifiers to states. We
shall later analyse these states into major components.

type
Aid, Ω
Ωs = Aid →m Ω

System Processes

Actor processes communicate with one another over channels. There is a set
of actor identifier indexed channels. The channels carry actor name decorated
messages (Aid×M). Potential licensees request licenses. Licensors issue li-
censes in response to requests. Work items are communicated over these chan-
nels. As are payments and reports on use of licensed operations on licensed
work items. So there is a large variety of messages. An actor is either pro-
active, requesting licenses, sending payment or reports, or re-active: respond-
ing to license requests, sending work items. An actor non-deterministically
(⌈⌉) alternates between these activities.

12— known since the very early 1960’s
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362 H Three License Languages

type
M = Lic | Pay | Rpt | ...

channel
{a[ i ]|i:Aid} (Aid×M)

value
actor: j:Aid × Ω → in,out {a[ i ]|i:Aid•i6=j} Unit
actor(j)(ω) ≡ let ω′ = pro act(j)(ω)⌈⌉re act(j)(ω) in actor(j)(ω′) end

system: Ωs → Unit
system(ωs) ≡ ‖ {actor(i)(ωs(i))|i:Aid}

Actor Processes

We have identified two kinds of actor processes: (a) pro-active, during which
the actor, by own initiative, (as a prospective licensee) may request a license
from a prospective licensor, or, as an actual licensee, and as the result of per-
forming licensed actions, sends payments or reports (or other) to the licensor;
and (b) re-active, during which the actor, in response to requests (as a li-
censor) sends a requesting actor a license (whereby the requester becomes a
licensee), or “downloads” (access to) requested works or functions. functions.

The Pro-active Actor Behaviour: In the pro-active behaviour an actor, (1.),
at will, i.e., (2.) non-deterministically internal choice (⌈⌉), decides to either
request a license (rl) or to perform some action (op). In the former case the
actor inquires (4., l iq) an own state to find out from which licensor (k), and
which kind of license requirements (l rq) is to be requested. This licensor and
these requirements are duly noted in the state (ω′). After (5.) sending the
request the actor continues being an actor in the duly noted state (ω′). In the
latter case (6., op) there may be many “next” actions to do. The actor inquires
(a iq) an own state (ω) to find out which action (op i) is “next”. The actor
then (7.) performs (act) the designated operation. It is here, for simplification
assumed that all operation completions imply a “completion” message (m: a
payment, a report, or other) to the operation licensing actor (k). So such a
message is sent (8.) and the operation-updated local state (ω′) is yielded —
whereby the pro-active actor “resumes” being an actor as from that state.

type
M = Lic | Pay | Rpt | ...

channel
{a[ i ]|i:Aid} (Aid×M)

value
pro act: j:Aid → Ω → in,out {a[ i ]|i:Aid•j6=i} Ω

1. pro act(j)(ω) ≡
2. let what to do = rl ⌈⌉ op in
3. case what to do of
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4. rl → let (k,l rq,ω′)=iq l Ω(ω) in
5. a(k)!(j,l rq);ω′ end
6. op → let op i=iq a Ω(ω) in
7. let (k,m,ω′)=act(op i)(ω) in
8. a(k)!(j,m) ; ω′ end end

end end

The Re-active Actor Behaviour: In the re-active behaviour an actor (9., j),
is willing to engage in communication with other actors. This is formalised
by a non-deterministic external choice (10., ⌈⌉⌊⌋) between either of a set ({...})
of (zero, or more) other actors (k:Aid\{j}) who are trying to contact the re-
active actor. The communicated message (k,m) reveals the identity (k) of the
requesting, i.e., the pro-active actor,13 The message, m, reveals what action
(act(m)(ω)) the re-active actor is requested to perform. The actor does so
(11.). This results in a reply message m′ and a state change (ω′). The reply
message (a(k)!(j,m′)) is sent (12.) to the requesting actor (k); and the re-
active actor (j) yields the requested action-updated state (ω′) — whereby the
re-active actor “resumes” being an actor as from that state.

type
M = Lic | Pay | Rpt | ...

channel
{a[ i ]|i:Aid} (Aid×M)

value
re act: j:Aid → Ω → in,out {a[ i ]|i:Aid•j6=i} Ω

9. re act(j)(ω)≡
10. let (k,m)=⌈⌉⌊⌋{a(k)?|k:Aid} in
11. let (m′,ω′)=act(m)(ω) in
12. a(k)!(j,m′);ω′ end end

Functions

We first list (and “read”) the signatures of the two auxiliary (iq l Ω, iq a Ω)
and one elaboration (act) function assumed in the definition of the pro- and re-
active actor processes. After that we discuss the former and suggest definitions
of the latter.

Auxiliary Function Signatures

The inquire license function (iq l Ω) inspects the actor’s state to (“eureka”)
determine which most desirable licensor (k:Aid) offers which one kind of de-
sired license requirements (License Requirements). The inquire action func-
tion (iq a Ω) inspects the actor’s state to (somewhat “eureka”) determine

13Do not get confused by the two k’s on either side of the let clause. The left k is
yielded by the (input) communication a(k)?. The defining scope of the right side k,
as in a(k), is just the right-hand side of the left clause.
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364 H Three License Languages

which action is “next” to be performed. That action is being designated (Ac-
tion Designator).

type
License Requirements,Action Designation

value
iq l Ω: Ω → Aid × License Requirements × Ω
iq a Ω: Ω → Action Designator

By ‘eureka’14 is meant that the inquiry is internal non-deterministic, that is,
is not influenced by an outside, could have any one of very many outcomes,
and can thus only be rather loosely defined.

Elaboration Function Signature

The action performing function (act) “finds” the designated operation in the
current state, applies it in the current state, and yields (“read” backwards) a
possibly new state (ω : Ω), a message (m:M) to be sent to the licensor (k:Aid)
who authorised the operation and may need or which to have a payment, a
report, or some such thing “back”!

type
Action Designation

value
act: Action Designation → Ω → Aid × M × Ω

Discussion of Auxiliary Functions

The auxiliary functions are usually not computable functions. The actors are
not robots. And it is not necessary to further define these functions beyond
stating their signatures as they are usually performed by human actors. The
signature of the inquire license function expresses a possible change to the
inquired state. One would think of the inquiring actor somehow noting down,
remembering, as it were, which inquiries were attempted or had been made.
The signature of the inquire actions function does not express such a state
change. But it could be expressed as well.

Schema Definitions of Elaboration Functions

The narrative and formalisation of the schema definitions of elabora-
tion functions is left as an Exercise.

14“Eureka” used to express triumph on a discovery, heuristics
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H.5 Formal Semantics 365

H.5.2 A Model of The General Artistic License Language

A Licensor/Licensee State

The narrative and formalisation of licensor and licensee states is left
as an Exercise.

Auxiliary Functions

The narrative and formalisation of the auxiliary functions is left as an
Exercise.

Elaboration Functions

The narrative and formalisation of the elaboration functions is left as
an Exercise.

H.5.3 A Model of The Hospital Health Care License Language

A Patient [Medical Record] State

The narrative and formalisation of patient states is left as an Exercise.

A Medical Staff State

The narrative and formalisation of staff states is left as an Exercise.

Auxiliary Functions

The narrative and formalisation of auxiliary functions is left as an
Exercise.

Elaboration Functions

The narrative and formalisation of elaboration functions is left as an
Exercise.

H.5.4 A Model of The Public Administration License Language

A Public Administrator State

The narrative and formalisation of public administrator states is left
as an Exercise.
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366 H Three License Languages

Auxiliary Functions

The narrative and formalisation of auxiliary functions is left as an
Exercise.

Elaboration Functions

The narrative and formalisation of elaboration functions is left as an
Exercise.

H.5.5 Discussion

Since we have left an interesting part of this appendix “as an exercise” there
is little we can do wrt. discussing the implication of the formalisations. An
important aspect that is thus being missed is “what these formalisations tell
us !” Such an anlysis has to wait till someone, we (?), get around to do the
chores !

H.6 Conclusion

It is too early — in the development of this report — to conclude!

H.6.1 Summary: What Have We Achieved?

Or rather, at this early, incomplete stage, what do we wish to achieve? In
a first round we wish to achieve the following: an understanding of different
kinds of license languages; an understanding of obligations and permissions
(yet to be “designed” more explicitly into the three languages; a formalisation
of both common aspects of the license systems (as a “vastly” distributed set
of very many actors acting on even more licenses “competing” for resources,
etc.), as well as of each individual language.

H.6.2 Open Issues

An Open Issue: Rôle of Modal Logics

Temporal logic Deontic logic (permission and obligation) Logic of knowledge
and belief etc.

Another Open Issue: Fair Use

Fair use: ... etc.
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H.7 The Gunter et al. Model — And its Reformulation

The unframed, mostly itemized text represents a transcription into
LATEX of [172]. The transcription was done by Mr. Arimoto Yasuhito at
JAIST. The framed text was first introduced by Dr. Xiang Jianwen at
JAIST and was based on group “discoveries” of “bugs” in the Gunter
et al. text. The RSL formalisation was done by Dines Bjørner.

H.7.1 Digital Rights Licensing

What is Digital Rights?

• Digital rights deal with the rights of owners of artistic expressions
⋆ music, movies, readings, photographs, paintings, ...

• in the context of the downloading of these
• via the Internet to users
• who are then supposed to pay for the right to render,
• i.e., to listen, see, hear, and see–see, ..., these.

Realities by Users and Licenses Issued by Owners

• Users perform payment and rendering events.
• Sequences of events as performed by users make up realities.
• Owners issue licenses which describe which realities are permissible.

Digital Rights Management (DRM)

• DRM is then about
⋆ the design of appropriate license languages
⋆ and the enforcement of user realities
⋆ in order for these to not breach, but to fulfil the licenses.

Structure of Presentation

• First a loyal, but problematic transcription of a published paper.
• Then a “similar”, but believed correct reformulation (in RSL).
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368 H Three License Languages

H.7.2 Transcript of the Gunter/Weeks/Wright Paper

Actions, Events, Realities and Licenses

• The model centers around
⋆ a domain of realities and
⋆ a domain of licenses,

• where
⋆ A reality is a sequence of events.
⋆ A license is a set of realities.

• The semantics of a rights management languages can be expressed as a
function

• that maps terms of the language to elements of their domain of licenses.
• Their abstract model

⋆ represents an event, e ∈ Event, as a pair of a time, t ∈ T ime,
⋆ and an action, a ∈ Action:

e ::= t : a

• Time is totally ordered by <.
• The function +:

⋆ T ime× Period→ T ime
⋆ adds a period, p ∈ Period, to a time.

• There are two kinds of actions:

a ::= render[w, d] | pay[x]

• w ∈ Work denotes a rights-managed work.
• d ∈ Device represents a DRM-enabled device.
• x is a decimal.
• Action render[w, d] represents rendering of work w by rights-enabled device

d.
• Action pay[x] represents a payment of amount x of some currency from a

licensee to a license issuer.
• The event t : render[w, d] means that at time t, work w was rendered on

device d.
• The event t : pay[x] means that at time t, a payment of amount x was

made.

• A reality, r ∈ Reality,
⋆ is a finite set of events,
⋆ such that all events occur at distinct times:

Reality = { E | E:Event-set • t:a ∈ E ∧ t:a′ ∈ E ⇒ a=a′}

where
⋆ P (x) represents the power set of E (the set of all subsets of E).
⋆ Notation:
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H.7 The Gunter et al. Model — And its Reformulation 369

· r≤t represents the prefix of r that occurs at or before time t;
· that is: r≤t = {t′ : a ∈ r | t′ ≤ t}.

⋆ Notation:
· r ⊑ r′ indicates that r is a prefix of r′;
· that is, there exists a t such that r = r′≤t.

• In the model, a license, l ∈ License, is a set of realities:

l ∈ License = P (Reality)

• Let us take an example:

lA =






{8 : 00 : pay[$1], 8 : 01 : render[w1, d1]},
{8 : 00 : pay[$1], 8 : 02 : render[w1, d1]},
{8 : 00 : pay[$1], 8 : 03 : render[w1, d1],

8 : 04 : render[w1, d1]},
{8 : 00 : pay[$1]}






• To give a more formal meaning to a license,
• suppose r is the (unique) complete reality
• that actually occurs over the entire lifetime of the DRM system.
• Let r[l] be events of r attributed to license l.
• Definitions

⋆ Reality r ∈ l of license l is viable for r[l] at t iff r[l]≤t ⊑ r.
⋆ License l is fulfilled by r[l] at t iff r[l]≤t ∈ l.
⋆ License l is breached by r[l] at t iff there does not exist r ∈ l that is

viable for r[l] at t.

• Example 1:
r[lA] = { 8:00:pay[$1], 8:01:render[w1, d1], 8:05:render[w1, d1] }.

For r[lA],
⋆ at t < 8:01, all four realities of license lA are viable
⋆ at t, 8:01 ≤ t < 8:05, only the first reality is viable
⋆ at t ≥ 8:05, no reality is viable

• Example 2:
r[lA] = { 8:00:pay[$1], 8:01:render[w1, d1], 8:05:render[w1, d1] }.

License lA is
⋆ unfulfilled by r[lA] for t < 8:00
⋆ fulfilled for 8:00 ≤ t < 8:05
⋆ breached for t ≥ 8:05

• Example 3:
r’[lA] = { 8:00:pay[$1], 8:03:render[w1, d1] }.

license lA is
⋆ unfulfilled for t < 8:00
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370 H Three License Languages

⋆ fulfilled for 8:03 ≤ t < 8:03
⋆ unfulfilled for 8:03 ≤ t < 8:04
⋆ breached for t ≥ 8:04

H.7.3 Standard Licenses

Up Front Licenses

• The “UP Front” license provides access
• to any work in set W ∈ P (Work)
• on any device in set D ∈ P (Device)
• beginning at time t0 for period p,
• for an up-front payment of x:

UpFront(t0, x, p,W,D) =
{t0 : pay[x],
t1 : render[w1, d1], ..., tn : render[wn, dn]

| n ≥ 0,
t0 < t1 < ... < tn < t0 + p,
w1, ..., wn ∈ W,d1, ..., dn ∈ D }

Problems

• The use of n is confusing.
• On one hand it is used to express up to n renderings.
• On the other hand subscript n is used for ranging both works and devices.
• The three uses of n should be separated into, say, i, j and k.
• The same comments apply to the Flat Rate and Per Use formulations.
• Why not allow tn ≤ t0 + p?

Flat Rate Licenses

• The “Flat Rate” license provides access
• to any work in set W
• on any device in set D
• beginning at time t0 for period p,
• for a payment of x at the end of the period:

FlatRate(t0, x, p,W,D) =
{t1 : render[w1, d1], ..., tn : render[wn, dn]
tn+1 : pay[x],

| n ≥ 0,
t0 < t1 < ... < tn < tn+1 < t0 + p,
w1, ..., wn ∈ W,d1, ..., dn ∈ D }
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H.7 The Gunter et al. Model — And its Reformulation 371

Problems

• Why not allow tn ≤ t0 + p?

Per Use Licenses

• The “Per Use” license is provides access
• to any work in set W
• on any device in set D
• beginning at time t0
• for a period of length p,
• for a payment of x per use at the end of the period:

PerUse(t0, x, p,W,D) =
{t1 : render[w1, d1], ..., tn : render[wn, dn]
tn+1 : pay[nx],

| n ≥ 0,
t0 < t1 < ... < tn < tn+1 < t0 + p,
w1, ..., wn ∈ W,d1, ..., dn ∈ D }

Problems

• Why not allow tn+1 ≤ t0 + p?

Up to Expiry Date Licenses

• A license that a consumer can accept any time before some future
⋆ can be constructed by quantifying over t0
⋆ for any of the three families defined on preceding slides.

• For example,
⋃

t0<texpires
UpFront(t0, x, p,W,D)

• This license allows the period of the use to begin anytime prior to texpires.

Problems

• Why not allow t0 ≤ texpires?
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372 H Three License Languages

Non-cancelable Multi-use Licenses

• To construct multi-period non-cancelable licenses
• by composing single-period licenses,
• an operator △ is defined.

l1△l2 = {r1 ∪ r2 | r1 ∈ l1, r2 ∈ l2}

• here all of the events of l1 occur at different times from the events of l2.

Problems

• The above is not the same as: l1△l2 = l1 ∪ l2
• How does △ associate?
• We guess: l△ l′△ l′′ = l△ (l′△ l′′)

• UpFront△(t0, x, p,W,D,m)
• provides access to any work in set W
• on any device in set D
• beginning at time t0
• for m periods of length p,
• for payments of x at the beginning of each period:

UpFront△(t0, x, p,W,D,m) =
UpFront(t0, x, p,W,D)△...△
UpFront(tm−1, x, p,W,D)

where ti = t0 + ip for i from 0 to m− 1

Cancelable Multi-use Licenses

• With the � operator cancelable multi-period licenses can be defined.

l1 � l2 = {r1 ∪ r2 | r1 ∈ l1, r1 6= Ø, r2 ∈ l2} ∪ {Ø}

• here all of the events of l1 occur at different times from the events of l2.

Problems

• Same question concerning associativity.
• What, exactly is the rôle of the empty set {}, or, rather, {{}} (in Gunter

et al. paper: {Ø}).
• We guess: To have only actions from l1 and then “get out”!
• Also: There is a problem with ti: it is defined but never used!

• UpFront�(t0, x, p,W,D,m)
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• provides access to any work in set W
• on any device in set D
• beginning at time t0
• for m periods of length p,
• for payments of x at the beginning of each period,
• cancelable after any period:

UpFront�(t0, x, p,W,D,m) =
UpFront(t0, x, p,W,D) � ...�
UpFront(tm−1, x, p,W,D)

where ti = t0 + ip for i from 0 to m− 1

Problems

• Same question concerning associativity.
• There is still a problem with ti: it is defined but never used!

H.7.4 A License Language

Syntax

The language DigitalRights is defined by the following grammar:

e ::= (at t | until t)
(for p | for [up to] m p)
pay x (upfront | flatrate | peruse)
for W on D

Examples

until 01/01/03
for up to 12 months
pay $ 10.00 upfront
for ”Jazz Classics”
on ”devices registered to license holder”

Semantics

M[at t z] = M1[z](t)
M[until t z] =

⋃
t′<t M1[z](t′)

M1[for p z](t0, p) = M2[z](t0, p)
M1[for up to m p z](t0) = M2[z](t0, p) � ...� M2[z](tm−1, p)

where ti = t0 + ip for i from 0 to m− 1
M1[for m p z](t0) = M2[z](t0, p)△...△M2[z](tm−1, p)

where ti = t0 + ip for i from 0 to m− 1
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374 H Three License Languages

M2[pay x upfront for W on D](t, p) = UpFront(t, x, p,W,D)
M2[pay x flatrate for W on D](t, p) = FlatRate(t, x, p,W,D)
M2[pay x peruse for W on D](t, p) = PerUse(t, x, p,W,D)

Problems

• Parameters (t0, p) in first left hand side of M1 is wrong,
• should be just (t0).

H.7.5 An RSL Model

Actions, Events, Realities and Licences

type
T, W, D, P
E = T × A
A == mkR(w:W,d:D) | mkP(x:P) or: rndr(w,d) | pay(x)
R = {| evs:E-set • wfEvs(evs) |}

Annotations

• T, W, D, and P stands for time, work, device and payment.
• Events, e:E, are Cartesian pairs of times (i.e., time stamps) and actions.
• Actions are discriminated, either renderings (which are records mkR(w,d))

of works and devices. or payments (mkP(x)) of currency amounts.
• The trailing “or” shows our schematic way of representing actions.
• Realities, r:R, are well-formed sets of events.

value
wfEvs: E-set → Bool
wfEvs(evs) ≡ ∀ (t,a),(t′,a′):E•{(t,a),(t′,a′)}⊆evs ∧ t=t′ ⇒ a=a′

r≤t: prefix: R → T → R

r≤t ≡ prefix(r)(t) ≡ {(t′,a)|(t′,a):E • (t′,a) ∈ r ∧ t′≤t}

r′ ⊑ r: is prefix: R × R → Bool
r′ ⊑ r ≡ is prefix(r′,r) ≡ ∃ t:T • r′ = prefix(r)(t)

Annotations

• A set of events form a reality if no two events have the same time stamp.
• The prefix of a reality up to and including time t is the set of all those

events of the reality whose time stamp is equal to or less than t.
• A reality is a prefix of another event if there is a time t such that the

former reality is a prefix of the latter reality.
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type
L = R-set

value
/∗ viable: capable of working ∗/
is viable: R → R → L → T → Bool
is viable(r′)(r)(l)(t) ≡ r ∈ l ∧ is prefix(prefix(r′)(t),r)

/∗ fulfilled: a consumer reality r′ satisfies a license reality ∗/
is fulfilled: R → L → T → Bool
is fulfilled(r′)(l)(t) ≡ prefix(r′)(t) ∈ l

is breached: R → L → T → Bool
is breached(r′)(l)(t) ≡ ∼∃ r:R • r ∈ l ∧ is viable(r′)(r)(l)(t)

Annotations

• A reality r′ is viable at a time t wrt. a reality r of a license l if r′ is a
prefix, at that time, of r.

• A reality r′ is, at time t fulfilled wrt. a license l if the prefix of r′ at time
t is a reality of the license.

• License l is breached by consumer reality r′ if there is no reality r in l that
is viable for r′ at t.

H.7.6 Standard Licences

Syntax

type
I
Std L = UpFront|FlatRate|PerUse|Until|NonCanMuUpFro|CanMuUpFro
Basics = T×P×I×W-set×D-set
UpFront == mkUF(sb:Basics)
FlatRate == mkFR(sb:Basics)
PerUse == mkPU(sb:Basics)
Until == mkU(sb:Basics,st:T)
NonCanMuUpFro == mkNCMF(sb:Basics,sm:Nat)
CanMuUpFro == mkCMF(sb:Basics,sm:Nat)

Annotations

• I stands for an interval, i,e,, a time period.
• Std L stands for standard licenses.
• There are six forms of standard licences: UpFront, FlatRate, PerUse, Until,

NonCanMuUpFro and CanMuUpFro.
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376 H Three License Languages

• They all share some basic information Basics, a Time limit, Payment
amount, Interval, identification of the set of Works covered by the license,
and identification of the set of Devises overed by the license.

• The NonCanMuUpFro and CanMuUpFro commands furth specify a natural,
usually non-zero number (of times of rendering).

• The Std definition defines the set of commands as a union using the | type
constructor.

• Each individual type is then defined by distinctly named record type con-
structors: mkUF, mkFR, mkPU, mkU, mkNCMF and mkCMF.

• We have for ease of recalling these mnemonics chosen to name the con-
structors with an initial mk (for ‘make’) and then an abbreviation of the
type name being defined.

• The s...: parts of the body of the record type expressions designate selector
functions.

• Meta-linguistically:

type
A, B, ..., C
R == mkR(sa:A,sb:B,...,sc:C)

axiom
∀ r:R, a:A, b:B, ..., c:C •

r = mkR(sa(r),sb(r),...,sc(r)) ∧
a = sa(mkR(a,b,...,c)) ∧
b = sb(mkR(a,b,...,c)) ∧
... ∧
c = sc(mkR(a,b,...,c))

Semantics

value
M: Std L → L
M(mkUF(t0,x,p,ws,ds)) ≡

{{(t0,pay(x))} ∪
let ls = [ ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′ ] in
{(ti,ls(ti))|ti:T•ti ∈ dom ls} end

|n:Nat,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0<min(ts)∧max(ts)≤t0+p}

Annotations

• The above formulation follows that of Gunter et al.,
• but where their model is plain wrong: it does not designate all combina-

tions of works and devices, ours is right:
⋆ At t0 payment is issued;
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H.7 The Gunter et al. Model — And its Reformulation 377

⋆ the above expression15 has two set comprehensions:
⋆ {{A} ∪ {B|C•D} | E•F }
⋆ The inner comprehension {B|C•D} expresses all possible sequences of

n renderings involving any combination of works w and devices d from
subsets ws and ds of works and devices.

⋆ The outer comprehension “selects” an arbitrary, finite n, a set ts of
n time points all of which lies between t0 and t0 + p, and arbitrary
subsets ws and ds or works and devices of those given,

⋆ The inner comprehension ensures that all we express all runs of ren-
derings of length n over all combinations of works and devices.

⋆ The outer comprehension ensures that we express all possible and in-
definite length runs.

• A better model would be one which, instead of constructively designating
all possible runs, expresses the property that a run is an up front run and
all such, for the given arguments, are present.

type
PayEvent = T × ({|pay|}×Nat)
RndEvent = T × ({|render|}×W×D)
UpFrontLicense = {| ℓs:L • wf UPL(ℓs) |}

value
wf UPL: L → Bool
wf UPL(ℓ) ≡ ∃ t:T,x:Nat,p:P,ws:W-set,ds:D-set • is ufl(t0,x,p)(ws,ds,ts)(ℓ)

is ufl: (T × Nat × P) → (W-set × D-set × T-set) → L → Bool
is ufl(t0,x,p)(ws,ds,ts)(ℓ) ≡

∃ t′:T,x′:X • (t′,(pay,x′)) ∈ ℓ⇒ t′=t0 ∧ x′=x ∧
∀ ti:T,w:W,d:D • ti ∈ ts ∧ w ∈ ws ∧ d ∈ ds ⇒

(ti,(render,w,d)) ∈ ℓ∧
∼∃ (t,(render,w′,d′)):RndEvent •

(t,(render,w′,d′)) ∈ ℓ∧ t6∈ ts ∧ w′6∈ ws ∧ d′6∈ ds

• A set ℓs of licenses
• is the set of all up front licenses
• designated by M(mkUF(t0,x,p,ws,ds))
• if it satisfies are all ufl(t0,x,p)(ws,ds,ts)(ℓs).

value
are all ufl: T × Nat × P × W-set × D-set → L-set → Bool
are all ufl(t0,x,p)(ws,ds,ts)(ℓs) ≡

∀ ℓ:L • ℓ∈ ℓs ⇒
∃ n:Nat,ws′:W-set,ds′:D-set,ts:T-set •

15{ {(t0,pay(x))} ∪ {(ti,rndr(w,d)) | ti:T,w:W,d:D • ti∈ts ∧ w∈ws′ ∧ d∈ds′ } |
n:Nat,ts:T-set,ws′:W-set,ds′:D-set • cardts=n ∧ ws′⊆ws ∧ ds′⊆ds ∧t 0<min(ts)
∧ max(ts)≤t0+p }
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378 H Three License Languages

ws′⊆ws ∧ ds′⊆ds ∧ card ts=n ⇒ is ufl(t0,x,p)(ws′,ds′,ts)(ℓ)

Annotations

• The “do not exists” clauses shall ensure both largest sets of up front li-
censes over appropriate time spans, works, and devices and that there is
no “junk”.

• Otherwise we leave it to the reader to decipher the formulas.

value
M(mkFR(t,x,p,ws,ds)) ≡

{let ls = [ ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′ ] in
{(ti,ls(ti))|ti:T•ti ∈ dom ls} end
∪{(tn′,pay(x))}
|n:Nat,tn′:T,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0≤min(ts)∧ max(ts)<tn′≤t0+p}

value
M(mkPU(t,x,p,ws,ds)) ≡

{let ls = [ ti7→rndr(w,d)|ti:T,w:W,d:D•ti ∈ ts∧w ∈ ws′∧d ∈ ds′ ] in
{(ti,ls(ti))|ti:T•ti ∈ dom ls} end
∪ {(tn′,pay(n∗x))}
|n:Nat,tn′:T,ts:T-set,ws′:W-set,ds′:D-set•

card ts=n∧ws′⊆ws∧ds′⊆ds∧t0≤min(ts)∧ max(ts)<tn′≤t0+p}

value
M(mkU(te,x,p,ws,ds)) ≡ ∪{M(mkUF(t0,x,p,ws,ds))|t0:T•t0≤te}

M(mkNCMF((t,x,p,ws,ds),m)) ≡ UpFront∆((t,x,p,ws,ds),m)

M(mkCMF((t,x,p,ws,ds),m)) ≡ UpFront�((t,x,p,ws,ds),m)

value
∆: L∗ → L
∆(ll) ≡

case ll of
〈l〉 → l,
〈l〉̂ll′ → {r ∪ r′|r,r′:R • r ∈ l ∧ r′ ∈ ∆(ll′)}

end

�: L∗ → L
�(ll) ≡

case ll of
〈l〉 → l,
〈l〉̂ll′ → {r,r ∪ r′|r,r′:R • r ∈ l ∧ r 6={} ∧ r′ ∈ �(ll′)}

end
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value
UpFront∆: Basics × Nat → L
UpFront∆((t,x,p,ws,ds),m) ≡

∆(〈M(mkUF(ti,x,p,ws,ds))|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

UpFront�: Basics × Nat → L
UpFront�((t,x,p,ws,ds),m) ≡

�(〈M(mkUF(ti,x,p,ws,ds))|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

H.7.7 A License Language

type
DRExpr = Time × Repetition × Payment × WorksDevices
Time == mkAt(t:T) | mkUntil(t:T)
Repetition == mkFor(p:I) | mkRepeat(m:Nat,p:I) | mkUpTo(m:Nat,p:I)
Payment = P × Kind
Kind == upfront | flatrate | peruse
WorksDevices = W-set × D-set

value
M0(mkAt(t),r,(x,k),wds) ≡ M1(r,(x,k),wds)(t)
M0(mkUntil(t),r,(x,k),wds) ≡ ∪{M1(r,(x,k),wds)(t′)|t′:T•t′<t}

M1(mkFor(p),(x,k),wds)(t) ≡ M2(x,k)(t,p)
M1(mkRepeat(m,p),(x,k),wds)(t) ≡

�(〈M2((x,k),wds)(ti,p)|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)
M1(mkUpTo(m,p),(x,k),wds)(t) ≡

∆(〈M2((x,k),wds)(ti,p)|i:Nat,ti:T•i:{0..m−1}∧ti=t0+i×p〉)

M2((x,upfront),(ws,ds))(t,p) ≡ M(mkUF(t,x,p,ws,ds))
M2((x,upfront),(ws,ds))(t,p) ≡ M(mkFR(t,x,p,ws,ds))
M2((x,upfront),(ws,ds))(t,p) ≡ M(mkPU(t,x,p,ws,ds))

H.7.8 End of “Gunter” Paper

• On one hand:
⋆ An introduction to the standard view of digital rights licenses.

• On the other hand:

⋆ An illustration of
· a pseudo-formal erroneous model

versus
· a correct formal presentation.
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380 H Three License Languages

• Now we are ready
⋆ to study digital rights license languages in general.
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I

Management and Organisation1

This appendix consists of two edited excerpts from a new book: Dines Bjørner:
Software Engineering:

• Vol. I: The Triptych Method, Chap. 2, Sect. 2.8.5: Management and Organ-
isation; and

• Vol. II: A Model Development, Appendix H: Management and Organisation.

(The book Software Engineering (approximately 400 pages) is currently being
written.2)

The two edited excerpts are in Appendix

• Sect. I.1,
• respectively Sects. I.2–I.5.

These two parts should basically replace Vol. 3’s Sect. 11.5, Pages 276–282.

• Section I.1 presents a methodology of modelling domain management and
organisation facets whereas Sects. I.2–I.5 (Pages 392–406) provides “con-
crete” examples.

We illustrate three aspects of the management and organisation facet. Two
rough-sketch models suggest how “layers” of management collaborate and in
two different styles and at two different levels of detail: as a simple functional
model, Sect. I.2, and as a not quite so simple model based on communicating
sequential processes Sect. I.3. The two formal models share the same basic
narrative. That narrative is given in Sect. I.2.1. One rough-sketch model il-
lustrates organisational aspects (Sect. I.5).

1The text of this appendix is very tentative. A final draft version is expected
early fall 2008. See next footnote — below!

2The (new) Software Engineering book is expected to find a final form after fall
2008 and spring/summer 2009 lectures at Techn. Univ. of Graz, Politecnico di Mi-
lano, University of Saarland, and Christian-Albrechts University of Kiel.
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382 I Management and Organisation

I.1 Management and Organisation

I.1.1 Management

Management is an elusive term. Business schools and private consultancy firms
excel in offering degrees and 2–3 day courses in ‘management’. In the mind of
your author most of what is being taught — and even researched — is a lot of
“hot air”. Well, the problem here, is, of course, that your author was educated
at a science & technology university3. In the following we shall repeat some of
this ‘hot air ’. And after that we shall speculate on how to properly describe
the outlined (“cold air”) management concepts.

Characterisation. Domain Management: By domain management we mean
people (i) who determine, formulate and thus set standards (cf. rules and
regulations, a later lecture topic) concerning strategic, tactical and operational
decisions; (ii) who ensure that these decisions are passed on to (lower) levels
of management, and to “floor” staff; (iii) who make sure that such orders,
as they were, are indeed carried out; (iv) who handle undesirable deviations
in the carrying out of these orders cum decisions; and (v) who “backstop”
complaints from lower management levels and from floor staff.

Management Issues4

Management in simple terms means the act of getting people together to
accomplish desired goals. Management comprises (vi) planning, (vii) orga-
nizing, (viii) resourcing, (ix) leading or directing, and (x) controlling an orga-
nization (a group of one or more people or entities) or effort for the purpose
of accomplishing a goal. Resourcing encompasses the (xi) deployment and
manipulation of human resources, (xii) financial resources, (xiii) technological
resources, and (xiv) natural resources

Basic Functions of Management5

These are normally seen as management issues:
Planning: (xv) deciding what needs to happen in the future (today, next

week, next month, next year, over the next 5 years, etc.) (xvi) and generating
plans for action. Organizing: (xvii) making optimum use of the resources (xix)
required to enable the successful carrying out of plans. Leading/Motivating:
(xx) exhibiting skills in these areas (xxi) for getting others to play an effec-
tive part in achieving plans. Controlling: (xxii) monitoring – (xxiii) checking
progress against plans, (xxiv) which may need modification based on feedback.

3— which, alas, now also offers such ‘management’ degree courses !
4Ref.: http://en.wikipedia.org/wiki/Management
5See Footnote 4
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I.1 Management and Organisation 383

Formation of Business Policy6

(xxvi) The mission of a business seems to be its most obvious purpose – which
may be, for example, to make soap. (xxvii) The vision of a business is seen
as reflecting its aspirations and specifies its intended direction or future des-
tination. (xxviii) The objectives of a business refers to the ends or activity at
which a certain task is aimed7. The business policy is a guide that stipulates
(xix) rules, regulations and objectives, (xxx) and may be used in the man-
agers’ decision-making. (xxxi) It must be flexible and easily interpreted and
understood by all employees. The business strategy refers to (xxxii) the coor-
dinated plan of action that it is going to take, (xxxiii) as well as the resources
that it will use, to realize its vision and long-term objectives. (xxxiv) It is a
guideline to managers, stipulating how they ought to allocate and utilize the
factors of production to the business’s advantage. (xxxv) Initially, it could
help the managers decide on what type of business they want to form.

Implementation of Policies and Strategies8

(xxxvi) All policies and strategies are normally discussed with managerial per-
sonnel and staff. (xxxvii) Managers usually understand where and how they
can implement their policies and strategies. (xxxviii) A plan of action is nor-
mally devised for the entire company as well as for each department. (xxxix)
Policies and strategies are normally reviewed regularly. (xxxvii) Contingency
plans are normally devised in case the environment changes. (xl) Assessments
of progress are normally and regularly carried out by top-level managers. (xli)
A good environment is seen as required within the business.

Development of Policies and Strategies9

(xlii) The missions, objectives, strengths and weaknesses of each department
or normally analysed to determine their rôles in achieving the business mis-
sion. (xliii) Forecasting develops a picture of the business’s future environ-
ment. (xliv) Planning unit are often created to ensure that all plans are con-
sistent and that policies and strategies are aimed at achieving the same mission
and objectives. (xlv) Contingency plans are developed — just in case ! (xlvi)
Policies are normally discussed with all managerial personnel and staff that
is required in the execution of any departmental policy.

6See Footnote 4 on the preceding page
7Pls. note that, in this book, we otherwise make a distinction between aims and

objectives: Aims is what we plan to do; objectives are what we expect to happen if
we fulfill the aims.

8See Footnote 4 on the facing page
9See Footnote 4 on the preceding page
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384 I Management and Organisation

Management Levels

A careful analysis has to be made by the domain engineer of how management
is structured in the domain being described. One view, but not necessarily the
most adequate view for a given domain is that management can be seen as
composed from the board of directors (representing owners, private or public,
or both), the senior level or strategic (or top, upper or executive) management,
the mid level or tactical management, the low level or operational manage-
ment, and supervisors and team leaders. Other views, other “management
theories” may apply. We shall briefly pursue the above view.

Resources

Management is about resources. A resource is any physical or virtual entity of
limited availability such as, for example, time and (office, factory, etc.) space,
people (staff, consultants, etc.), equipment (tools, machines, computers, etc.),
capital (cash, goodwill, stocks, etc.), etcetera.

Resources have to be managed allocated (to [factory, sales, etc.] processes,
projects, etc.), and scheduled (to time slots).

Resource Conversion

Resources can be traded for other resources: capital funds can be spent on
acquiring space, staff and equipment, services and products can be traded for
other such or for monies, etc.

The decisions as to who schedules, allocates and converts resources are
made by strategic and tactical management. Operational management trans-
forms abstract, general schedules and allocations into concrete, specific such.

Strategic Management

A strategy is a long term plan of action designed to achieve a particular goal.
Strategy is differentiated from tactics or immediate actions with resources at
hand by its nature of being extensively premeditated, and often practically
rehearsed. Strategies are used to make business problems easier to understand
and solve. Strategic management deals with conversion of long term resources
involving financial issues and with long term scheduling issues.

Among examples of strategic management issues (in supply chain manage-
ment) we find:10 (xlvii) strategic network optimization, including the number,
location, and size of warehouses, distribution centers and facilities; (xlviii)
strategic partnership with suppliers, distributors, and customers, creating
communication channels for critical information and operational improve-
ments such as cross docking, direct shipping, and third-party logistics; (xlix)

10Cf. http://en.wikipedia.org/wiki/Supply chain management#Strategic
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I.1 Management and Organisation 385

product design coordination, so that new and existing products can be op-
timally integrated into the supply chain, load management; (l) information
technology infrastructure, to support supply chain operations; (li) where-to-
make and what-to-make-or-buy decisions; and (lii) aligning overall organiza-
tional strategy with supply strategy. The problem, in domain modelling, is to
find suitable abstractions of these mundane activities.

Strategic management11 (liii) requires knowledge of management rôles and
skills; (liv) have to be aware of external factors such as markets; (lv) decisions
are generally of a long-term nature; (lvi) decision are made using analytic,
directive, conceptual and/or behavioral/participative processes; (lvii) are re-
sponsible for strategic decisions; (lviii) have to chalk out the plan and see that
plan may be effective in the future; and (lix) is executive in nature.

Tactical Management

Tactical management deals with shorter term issues than strategic manage-
ment, but longer term issues than operational management. Tactical manage-
ment deals with allocation and short term scheduling.

Among examples of tactical management issues (in supply chain manage-
ment) we find:12 (lx) sourcing contracts and other purchasing decisions; (lxi)
production decisions, including contracting, locations, scheduling, and plan-
ning process definition; (lxii) inventory decisions, including quantity, location,
and quality of inventory; (lxiii) transportation strategy, including frequency,
routes, and contracting; (lxiv) benchmarking of all operations against com-
petitors and implementation of best practices throughout the enterprise; (lxv)
milestone payments; and (lxvi) focus on customer demand. The problem, in
domain modelling, is to find suitable abstractions of these mundane activities.

Operational Management

Operational management deals with day-to-day and week-to-week issues
where tactical management deals with month-to-month and quarter-to-quarter
issues and strategic management deals with year-to-year and longer term is-
sues. (Operational management is not to be confused with the concept of
operational research and operational analysis which deals with optimising re-
source usage (allocation and scheduling).

Among examples of operational management issues (in supply chain man-
agement) we find:13 (lxviii) daily production and distribution planning, in-
cluding all nodes in the supply chain; (lxix) production scheduling for each
manufacturing facility in the supply chain (minute by minute); (lxx) demand
planning and forecasting, coordinating the demand forecast of all customers

11See Footnote 4 on page 382
12See Footnote 10 on the preceding page.
13See Footnote 10 on the facing page.
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386 I Management and Organisation

and sharing the forecast with all suppliers; (lxxi) sourcing planning, including
current inventory and forecast demand, in collaboration with all suppliers;
(lxxii) inbound operations, including transportation from suppliers and re-
ceiving inventory; (lxxiii) production operations, including the consumption
of materials and flow of finished goods; (lxxiv) outbound operations, including
all fulfillment activities and transportation to customers; (lxxv) order promis-
ing, accounting for all constraints in the supply chain, including all suppliers,
manufacturing facilities, distribution centers, and other customers. The prob-
lem, in domain modelling, is to find suitable abstractions of these mundane
activities.

Supervisors and Team Leaders

We make here a distinction between managers, “on one side”, and supervisors
and team leaders, “on the other side”. The distinction is based on managers
being able to make own decisions without necessarily having to confer or
discuss these beforehand or to report these afterwards, while supervisors and
team leaders normally are not expected to make own decisions: if they have
to make decisions then such are considered to be of “urgency”, must normally
be approved of beforehand, or, at the very least, reported on afterwards.

Supervisors basically monitor that work processes are carried out as
planned and report other than minor discrepancies. Team leaders coordinate
work in a group (“the team”) while participating in that work themselves;
additionally they are also supervisors.

Description of ‘Management’

On the last several pages (382–386) we have outlined conventional issues of
management.

The problems confronting us now are: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

The reason why these two “leading questions” questions are posed is that
the management issues mentioned on pages 382–386 are generally “too lofty”,
“too woolly”, that is, are more about “feelings” than about “hard, observable
facts”.

We, for example, consider the following issues for “too lofty”, “too woolly”:
Item (xix) Page 382: “to enable the successful . . . ” is problematic; Item (xx)
Page 382: how to check that managers “exhibit these skills” ?; Item (xxi)
Page 382: “play an effective part” is problematic; Item (xxvii) Page 383: how
to check that vision is being or is achieved ?; Item (xxviii) Page 383: the objec-
tives must, in order to be objectively checked, be spelled out in measurable de-
tails; Item (xxxi) Page 383: how to check “flexible” and “easily”; Item (xxxiii)
Page 383: how to check that the deployed resources are those that contribute
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I.1 Management and Organisation 387

to “achieving vision and long term objectives; Item (xxxiv) Page 383: “guide-
line”, “factors of production” and “advantage” cannot really be measured;
Item (xxxv) Page 383: “what type of business they want to form” is too inde-
terminate; Item (xxxvi) Page 383: how to describe (and eventually check) “are
normally or must be discussed” other than “just check” without making sure
that managerial personnel and staff have really understood the issues and will
indeed follow policies and strategies; Item (xxxvii) Page 383: how does one de-
scribe “managers must, or usually understand where and how” ?; Item (xxxix)
Page 383: in what does a review actually consists ?; Item (xli) Page 383: how
does one objectively describe “a good environment” ?; Item (xlii) Page 383:
how does one objectively describe that which is being “analysed”, the “anal-
ysis” and the “determination” processes ?; Item (xliii) Page 383: how is the
“development” and a “picture” objectively described ?; etcetera.

As we see from the above “quick” analysis the problems hinge on our
[in]ability to formally, let alone informally describe many management issues.
In a sense that is acceptable in as much as ‘management’ is clearly accepted
as a non-mechanisable process, one that requires subjective evaluations: “feel-
ings”, “hunches”, and one that requires informal contacts with other manage-
rial personnel and staff.

But still we are left with the problems: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

Our simplifying and hence simple answer is: the domain engineer shall
describe what is objectively observable or concepts that are precisely defined
in terms of objectively observable phenomena and concepts defined from these
and such defined concepts.

This makes the domain description task a reasonable one, one that can
be objectively validated and one where domain description evaluators can ob-
jectively judge whether (projected) requirements involving these descriptions
may be feasible and satisfactory.

Review of Support Examples

There are three examples (i) a grossly simplifying abstraction: the enterprise
function, which focuses on the abstract interplay between management groups,
workers, etc.; and the formal model is expressed in a recursive function style;
(ii) a grossly simplifying abstraction the enterprise processes, which focuses on
the sequential, non-deterministic processes with input/output messages that
communicate between management groups, workers, etc.; the formal model is
expressed in the CSP style.

The Enterprise Function

The enterprise function is narrated in Sect. I.2.1, and formalised in Sect. I.2.2
on page 390; the formalisation is explained and commented upon on Pages 390–
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388 I Management and Organisation

392 (Sect. I.2.3). Here we shall just briefly discuss meta-issues of domain de-
scription, modelling and abstraction.

The description is grossly ‘abstracted’: it leaves out any modelling of what
distinguishes top-level, executive, strategic management from mid-level, tac-
tic management, and these from “low-level” operations management, and all
of these from supervisors, team leaders and workers. Emphasis has been put
sôlely on abstractions of their intercommunication in order to achieve a “next
step” state.

The formalisation of enterprise is, formally speaking, doubtful. The seman-
tics of the formal specification language, RSL, does not allow such recursions,
or rather, put far too severe restrictions on the state space Σ, for the defini-
tion to be of even pragmatic interest. Thus the definition is really a fake: at
most it hints at what goes on, such as outlined on Pages 390–392 (Sect. I.2.3).
Why is the definition a fake? Or rather: Why do we show this “definition”?

In order for a recursive function definition, enterprise, (as here over states
Σ) to make sense the type Σ must satisfy some ordering properties and so
must the component types whose values are involved in any of the auxiliary
functions invoked by enterprise. Since we have not specified any of these types
we take the position that function definition, enterprise, is just a pseudo func-
tion. It is indicative of “what is going on”, and that is why we bring it!

The Enterprise Processes

The enterprise processes are narrated and formalised, alternatively, in Sect. I.3
on Pages 392–400, Here we shall just briefly discuss meta-issues of domain
description, modelling and abstraction.

I.1.2 Organisation

Characterisation. Domain Organisation: By domain organisation we mean
the structuring of management and non-management staff levels; the allo-
cation of strategic, tactical and operational concerns to within management
and non-management staff levels; and hence the “lines of command”: who
does what and who reports to whom — administratively and functionally.

I.2 A Simple, Functional Description of Management

By a functional description we mean a description which focuses on functions,
that is, which explains things in terms of functions. By a simple description
we mean a description which is is short.
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Fig. I.1. Two organisational structures

I.2.1 A Base Narrative

We think of (i) strategic, (ii) tactic, and (iii) operational managers as well as
(iv) supervisors, (v) team leaders and the rest of the (vi) staff (i.e., workers)
of a domain enterprise as functions. To make the description simple we think
of each of the six categories (i–vi) of personnel and staff as functions, that is,
there are six major domain functions related to management.

Each category of staff, i.e., each function, works in state and updates that
state according to schedules and resource allocations — which are considered
part of the state.

To make the description simple we do not detail the state other than saying
that each category works on an “instantaneous copy” of “the” state.

Now think of six staff category activities, strategic managers, tactical
managers, operational managers, supervisors, team leaders and workers as
six simultaneous sets of actions. Each function defines a step of collective
(i.e., group) (strategic, tactical, operational) management, supervisor, team
leader and worker work. Each step is considered “atomic”.

Now think of an enterprise as the “repeated” step-wise simultaneous per-
formance of these category activities. Six “next” states arise. These are, in the
reality of the domain, ameliorated, that is reconciled into one state. however
with the next iteration, i.e., step, of work having each category apply its work
to a reconciled version of the state resulting from that category’s previously
yielded state and the mediated “global” state. We refer to Sect. I.1.1, Page 388
for a caveat: The doubly14 recursive definition of the enterprise function is a
pseudo-definition. It is not a mathematically proper definition.

14By doubly recursive we mean (i) that the enterprise function recurses and (ii)
that the definition of its next state transpires from a recursive set of local (let)
definitions.

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
390 I Management and Organisation

I.2.2 A Formalisation

type
0. Σ
value
1. str, tac, opr, sup, tea, wrk: Σ → Σ
2. ame s, ame t, ame o, ame u, ame e, ame w: Σ → Σ5 → Σ
3. objective: Σ6 → Bool
4. enterprise, ameliorate: Σ6 → Σ
5. enterprise(〈σs,σt,σo,σu,σe,σw〉) ≡
6. let σ′

s = ame s(str(σs))(〈σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉),
7. σ′

t = ame t(tac(σt))(〈σ
′
s,σ′

o,σ′
u,σ′

e,σ′
w〉),

8. σ′
o = ame o(opr(σo))(〈σ′

s,σ′
t,σ

′
u,σ′

e,σ′
w〉),

9. σ′
u = ame u(sup(σu))(〈σ′

s,σ′
t,σ

′
o,σ′

e,σ′
w〉),

10. σ′
e = ame e(tea(σe))(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
w〉),

11. σ′
w = ame w(wrk(σw))(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e〉) in

12. if objective(〈σ′
s,σ′

t,σ
′
o,σ′

u,σ′
e,σ′

w〉)
13. then ameliorate(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉)
14. else enterprise(〈σ′

s,σ′
t,σ

′
o,σ′

u,σ′
e,σ′

w〉)
end end

I.2.3 A Discussion of The Formal Model

A Re-Narration

0. Σ is a further undefined and unexplained enterprise state space. The var-
ious enterprise players view this state in their own way.

1. Six staff group operations, str, tac, opr, sup, tea and wrk, each act in the
enterprise state such as conceived by respective groups to effect a resulting
enterprise state such as achieved by respective groups.

2. Six staff group state amelioration functions, ame s,ame t, ame o, ame u,
ame e and ame w, each apply to the resulting enterprise states such as
achieved by respective groups to yield a result state such as achieved by
that group.

3. An overall objective function tests whether a state summary reflects that
the objectives of the enterprise has been achieved or not.

4. The enterprise function applies to the tuple of six group-biased (i.e., ame-
liorated) states. Initially these may all be the same state. The result is an
ameliorated state.

5. An iteration, that is, a step of enterprise activities, lines 5.–13. proceeds
as follows:

6. strategic management operates
• in its state space, σs : Σ;
• effects a next (un-ameliorated strategic management) state σ′

s;
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I.2 A Simple, Functional Description of Management 391

• and ameliorates this latter state in the context of all the other player’s
ameliorated result states.

7.–11. The same actions take place, simultaneously for the other players: tac,
opr, sup, tea and wrk.

12. A test, has objectives been met, is made on the six ameliorated states.
13. If test is successful, then the enterprise terminates in an ameliorated state.
14. Otherwise the enterprise recurses, that is, “repeats” itself in new states.

On The Environment &c.

The model does not explicitly cover interaction with the enterprise customers,
suppliers, etc., the enterprise board and other such external domain “players”.

Either we can include those “players” as an additional number of actions
like those of str, tac, . . . , wrk, each with their states, or we can think of their
states and hence their state changes and interaction (communication — see
below) with the enterprise being integrated into the enterprise state.

Thus the omission of the environment is not serious: its modelling is just
a simple extension to the given model.

On Intra-communication

The model does not explicitly cover communication between different enter-
prise staff group members or between these and the environment. We claim
now that these forms of communication are modelled by the enterprise state: in
each atomic action step such intended communications are reflected in “mes-
sages” of the resulting state where these messages are, or are not handled by
appropriate other enterprise staff groups in some next atomic step.

On Recursive Next-state Definitions

Above, in Items 1.–14., we gave an intuition of the enterprise operating modes.
But we have left un-explained the non-traditional recursive definition and use
of mediated states of formula lines 6.–11. We now explain this unconventional
recursion.

Let us consider just two such group activities:

...
σ′

α =ameα(alpha(σα))(< σ′
β , σ

′
γ , σ

′
δ, σ

′
ǫ, σ

′
ζ >)

σ′
β =ameβ(beta(σβ))(< σ′

α, σ
′
γ , σ

′
δ, σ

′
ǫ, σ

′
ζ >)

...

We observe that the values σ′
α and σ′

β depend on each other. Thus formula
lines 6.–11. recursively defines six values. Mathematically such recursive defi-
nitions may have solutions. If so, then such solutions are said to be fix points
of the equations. In conventional computer science one normally seeks what
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392 I Management and Organisation

is called least fixed point solutions. Such demands are not necessary in the
domain. Mathematically one can explain a process that converges towards a
solution to the set of recursive equations as an iterative process. If some solu-
tion exists then the process converges and terminates in one atomic step. If it
does not exist then the process does not terminate — the enterprise is badly
managed and goes bankrupt !

Summary

We have sketched a formal model. It captures some aspects of enterprise
management and work. It abstracts most of this management and work: there
is no hint at the nature of and differences between strategic, tactic, etc., work.
That is, we have neither narrate-described such work to a sufficiently concrete
level nor, obviously formalised it.

I.3 A Simple, Process Description of Management

I.3.1 An Enterprise System

In this model we view the six “kinds” of manager and worker behaviours as
six “kinds” of processes centered around a shared state process.

There are any number,

• CARD StrIdx, of strategic,
• CARDTacIdx, of tactic and
• CARDOpeIdx, of operations man-

agers,

• CARD SupIdx, of supervisors,

• CARDTeaIdx, of team leaders and

• CARDWrkIdx, of workers

CARDNameIdx expresses the cardinality of the set of further undefined in-
dexes in NameIdx. The staff index sets, StrIdx, TacIdx, OpeIdx, SupIdx, TeaIdx
and WrkIdx are pairwise disjoint. The single state process operates concur-
rently with all the concurrently operating manager, supervisor, team leader
and worker behaviours.

I.3.2 States and The System Composition

type
Ω, IdxΩ = Idx →m Ω, value idxω:IdxΩ,
Σ, value σ:Σ

value
enterprise: Unit → Unit
enterprise() ≡ shared state(σ) ‖

‖ {strateg process(i)(idxω(i))|i:StrIdx} ‖ {tactic process(i)(idxω(i))|i:TacIdx}
‖ {operat process(i)(idxω(i))|i:OpeIdx} ‖ {superv process(i)(idxω(i))|i:SupIdx}
‖ {teamld process(i)(idxω(i))|i:TeaIdx} ‖ {worker process(i)(idxω(i))|i:WrkIdx}
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I.3 A Simple, Process Description of Management 393

The signature of these seven functions will be given shortly.

I.3.3 Channels and Messages

Staff interaction with one another is modelled by messages sent over channels.
Staff obtains current state from and “delivers” updated states to the state
process, also via channels, one for each staff process.

We postulate a linear ordering, <, on indexes. Channels are bidirectional
— so there is only a need for n× (n− 1) channels to serve n staff behaviours.

type
Idx = StrIdx | TacIdx | OpeIdx | SupIdx | TeaIdx | WrkIdx

[ axiom : pairwise disjoint ]
[ StrIdx ∩ (TacIdx ∪ OpeIdx ∪ SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ TacIdx ∩ (OpeIdx ∪ SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ OpeIdx ∩ (SupIdx ∪ TeaIdx ∪ WrkIdx) = {} ]
[ SupIdx ∩ (TeaIdx ∪ WrkIdx) = {} ]
[ TeaIdx ∩ WrkIdx = {} ]

channel
σ ch[ i|i:ChIdx ]: (get Σ|Σ),
staff ch[ i,j|i,j:ChIdx•j<i ]: Msg

type
Msg, get Σ

I.3.4 Process Signatures

value
shared state: Σ → in, out σ ch[ j:Idx ] Unit
strateg process:

j:StrIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
tactic process:

j:TacIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
operat process:

j:OpeIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
superv process:

j:SupIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
teamld process:

j:TeaIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
worker process:

j:WrkIdx → Ω → in,out σ ch[ j ], staff ch[ j,i|i:Idx•i<j ] Unit
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394 I Management and Organisation

I.3.5 The Shared State Process

The shared state process recurses around the following triplet of actions: wait-
ing for a get state (get Σ) message from any staff process, j; forwarding the
state, σ, to that staff process; waiting for an updated state to be returned
from staff process j.

value
shared state: Σ → in, out σ ch[ j:Idx ] Unit
shared state(σ) ≡

⌈⌉ {let msg = σ ch[ j ]? in
case msg of

req Σ → (σ ch[ j ]!σ ; shared state(σ ch[ j ]?)),
→ shared state(σ ch[ j ]?) end end | j:Idx}

From the definition of the enterprise and the staff processes one can prove that
the message, msg, is either the req Σ token or a state.

I.3.6 Staff Processes

There are six different kinds of staff processes:

• strateg process,
• tactic process,

• operat process,
• superv process,

• teamld process and
• worker process.

We define a process, staff process, to generically model any of these six pro-
cesses.

I.3.7 A Generic Staff Behaviour

We narrate the staff behaviour: (0.) We can model staff members as having
three “alternative” behaviours; (2.–4.) doing their own work; (5.–9.) taking an
initiative to act with other staff (i); and (10.–13.) being prompted by other
staff (i) to react.

(0.) Each staff behaviour selects whether to “do own work”, to act, or to
react; select is assumed to internally non-deterministically (⌈⌉) choose “what
to do”.

(2.) Doing own work means to work on an “own state” (ω′). (3.) The
result, ω′′, is “merged” into the global state which is request-obtained from
the shared state.

(5.) Acting means to act on the global state (σ); (6.) by performing some
“local” operations (staff actj(ω, σ)) (7.) which result in local and global state
changes (ω′, σ′) and the identification of another staff member from whom to
request some action (req) which then result in some new global state (σ′′) and
a “local” result (res). (8.) The new global state is updated “locally” (9.) as is
the local state.
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I.3 A Simple, Process Description of Management 395

(10.) Reacting means to accept a request (req) from some other staff mem-
ber (i); (11.) to then perform some “local” operation (staff reactj(req, ω, σ))
which result in local and global state changes (ω′, σ′′) and some result (res)
(12.) The new global state is updated “locally” (13.) as is the local state.

(4., 9., 13.) The staff process iterates (by “tail-recursion”).

value
0. staff process(j)(ω) ≡ let (ω′,wtd) = select wtd(ω) in
1. case wtd of
2. own → let ω′′ = own work(ω′) in
3. (σ ch[ j ]!σ updatej(ω′′,(σ ch[ j ]!get Σ ; σ ch[ j ]?)) ‖
4. staff process(j)(ω′′)) end
5. act → let σ = (σ ch[ j ]!get Σ ; σ ch[ j ]?) in
6. let (i,req,ω′′,σ′) = staff actj(ω′,σ) in
7. let (res,σ′′) = (staff ch[ j,i ]!(req,σ′) ; staff ch[ j,i ]?) in
8. (σ ch[ j ]!σ updatej(req,res,ω′′,σ′′) ‖
9. staff process(j)(ω updatej(req,res,ω′′))) end end end
10. react → let (i,req,σ′) = ⌈⌉{staff ch[ j,i ]?|i:Idx} in
11. let (res,ω′′,σ′′) = staff reactj(req,ω′,σ′) in
12. (̀ staff ch[ j,i ]!(res,σ updatej(req,res,ω′′,σ′′)) ‖
13. staff process(j)(ω updatej(req,res,ω′′))) end end end end

A Diagrammatic Rendition

Let us consider Fig. I.2 on the following page: The digits of Fig. I.2 on the next
page refer to the line numbers of the staff process definition (Page 395). The
figure intends to show the trace of three processes: the shared state process,
staff process j serving in the own work work mode as well as in the active
work mode, and staff process i (serving in the reactive work mode).

Auxiliary Functions

A number of auxiliary functions have been used.

The select wtd (“select what to do”) clause

type
WhatToDo = own | act | react

value
select wtd: Ω → Ω × WhatToDo

internally, non-deterministically chooses one of the three WhatToDo alterna-
tives as also shown in Lines 2., 6. and 11 Page 395. The choice is based on the
local state (ω). The outcome of the choice, whether own, act or react, reflects,
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396 I Management and Organisation

... ... ...
3.

4.

6.

7.

8.

9.

10.

0. 0. 0.

Staff  j Staff  j’ Staff  i

5.

staff_act

Staff  1 Staff  n

σ

Shared State

Σ

re
q

_

re
q

_

Σ Σ

µσ
σ

2. own work
{...|...}

13.

11. staff_react

12.
µσ

µµσ

µµµσ

case: own case: act case: react

≅

σ µσ σ µµµσ

Fig. I.2. Own and ‘action’-‘reaction’ process traces: µσ=σ′, µµσ=σ′′, µµµσ=σ′′′

we could claim, a priority need for either of these alternatives, or just reflects
human vagary! The choice is recorded in an update local state (ω′).

The own work function

value own work: Ω → Ω

is “own” as it applies only to the local state (ω). The modelling idea is the
following: The ‘own work’, by any staff member, is modelled as taking place,
not on the global state, but the result is eventually (see Line 3. Page 395 and,
next, the σ updatej) into the global state. This models, we claim, that staff
works locally on “copies” of the global state.

The σ updatej function

value σ updatej : Ω × Σ → Σ

models the “merging” of a local state (ω) into the global state (σ). We do
not describe this ‘merging’. But such a description should be made, if need
be, separately, for each case of the own work (Line 3.), staff act (Line 8.) and
staff react (Line 12., Page 395) alternatives.

The staff act function

type
Request = Req1 | Req2 | ... | Reqm

value
staff act: Ω × Σ → Idx × Request × Ω × Σ

applies to both the local and the global state. The purpose of the staff act
query is (line 6., Page 395) to determine with which other staff (i:Idx) the
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I.3 A Simple, Process Description of Management 397

current staff (j) need interact and for what purposes (req), The staff act query
updates both the local and the global states (ω′′, σ′). The staff act query is
assumed to take very little time.

The ω update function (Lines 9. and 13., Page 395)

value ω update: Request × Result × Ω → Ω

updates the local state with the action request and result (req,res) being made
to and yielded by staff i. We do not describe this ‘merging’. But such a de-
scription should be made, if need be, separately, for each case of the staff act
(Line 9.) and staff react (Line 13., Page 395) alternatives.

The staff reactj function is, for each j , a (usually large) set of functions:

type
Result = Res1 | Res2 | ... | Resm

value
staff reactj: Request × Ω × Σ → Result × Ω × Σ
staff reactj(req,ω,σ) ≡

(case req of r1→opj1(r1),r2→opj2(r2),...,rm→opjm(rm) end)(ω,σ)

opji : Reqi → Ω × Σ → Resi × Ω × Σ

Each of these operations are assumed to be of the kind: prepare for this
operation to be carried out when doing ‘own work’. We shall comment on
these operations below (Sect. I.3.8 [Pages 398–400]).

Assumptions

A number of assumptions have been made in expressing the staff process: The
time-duration of the inter-process communications and the ω and σ updates
are zero; and the time-durations of staff actj(ω, σ) and staff reactj(req, ω, σ))
operations are “near”-zero. These two functions do not cause any interaction
with neither the shared state nor other staff processes.

The time-duration of the own work(ω) operation may be any length of
time.

(The real work is done during the local state change own work(ω) operation
and the result of this work is eventually “fed back into the global state”!)

When offering to act or react the designated partner staff behaviour will
accept the offer and within a reasonably realistic time interval.

With these assumptions fulfilled it is acceptable to model global state
changes as non-interleaved.
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398 I Management and Organisation

I.3.8 Management Operations

So, which are the functions opji(ω, σ)? As is obvious from Sect. I.1.1 there are
zillions of management operations. They are loosely suggested in Sect. I.1.1,
Pages 382–387. Thus we shall not further define these here. But some com-
ments are in order.

Focus on Management

We focus on management rather than on “workers”. Operations by workers,
say in a railway transport system, deal with: selling and cancelling tickets,
starting, driving and stopping trains, setting signals, laying down new and
maintaining rails, etcetera. Management operations are of two kinds: Own,
preparatory ‘work’ — that may take hours and days; and dispensing or re-
ceiving order — that may take “down to” fractions of minutes. This view of
‘management operations’ partly justifies our staff model.

Own and Global States

Workers spend most, and managers some of their time on ‘own work’ —
and then apply the operations of that ‘own work’ to local states. Worker local
states are usually very clearly delineated “copies” of the global states somehow
made inaccessible to other staff while subject to ‘own work’. Manager local
states are usually not so clearly delineated. ‘Own work’ is “reflected back
into”, that is, updates, the global state (cf. Line 3. Page 395).

State Classification

We have presented a notion of local (ω : Ω) global states (σ : Σ) without
really saying much about these. We may also have given the impression that
these states were inert, that is, changed only when operated upon by the staff.
We now redress this impression, that is, we now make it clear that states may
have several components, and that some individual state components may be
(i) inert dynamic15, (ii) active dynamic16 comprising: (ii.1) autonomous active
dynamic17, (ii.2) biddable active dynamic18 and (ii.3) programmable active
dynamic19 and (iii) reactive dynamic20.

15An entity is inert dynamic if it never changes value of it own volition.
16An entity is active dynamic if it changes value of it own volition.
17An entity is autonomous active dynamic if it changes value only of it own

volition.
18An entity is biddable active dynamic if it can be advised to change state — but

it does not have to follow that advice, i.e., that control.
19An entity is programmable active dynamic if its state changes, over some future

time interval, can be fully controlled.
20An entity is reactive dynamic if it performs not necessarily fully predictable

state changes in response to external stimuli (i.e., control).
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I.3 A Simple, Process Description of Management 399

Transport System States

In a transport system these are some of the state components.

Transport Net State Changes: (i) the transport net which changes state due
to (i.1) wear and tear of the net, (i.2) setting and resetting of signals, (i.3)
insertion and removal of links, etcetera.

Net Traffic State Changes: (ii) the net traffic which changes state due to (ii.1)
vehicles entering, moving around, and leaving the net, (ii.2) vehicles accidents,
road/bridge/tunnel breakdowns, (ii.3) the state changes of the underlying net,
etcetera.

Managed State Changes: (iii) management state changes due to (iii.1) changed
transport vehicle timetables being inserted, (iii.2) changed toll road fee sched-
ules being enacted, (iii.3) changed speed limits, (iii.4) changed signalling rules,
(iii.5) changed resource (incl. public vehicle) allocation, etcetera.

I.3.9 The Overall Managed System

One can speak of an overall managed system which we consider as consisting
of all staff, all explicitly shared state components, and the more implicitly ob-
servable state components of the environment. Figure I.3 tries to conceptually
“picture” such an overall managed system

... ... ...
Staff  1 Staff  n

...
Staff  i Staff  j Staff  k

Explicitly Monitored and Possibly Controlled State

Shared State

Environment which influences the State

Fig. I.3. Staff and explicit (shared) and implicit states

In a domain model we try, to our best, to describe the n staff behaviours:
executive, strategic, tactic and operations managers, supervisors, team leader
and workers, and the various explicitly known state components of the domain,
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400 I Management and Organisation

whether only observable (that is: monitorable) or also controllable (that is:
generable). In a domain model we may have, through the modelling of the
state components, to thus implicitly model environment state concepts.

I.3.10 Discussion

Management Operations

We leave it to the reader to draw the necessary conclusions: (i) only some state
components are of concern to management, (ii) not all such state components
can be controlled by management, (iii) to model the all the system state
changes is thus not a concern of modelling management (and organisation),
and (iv) to model all management operations is not feasible.

Managed States

I.4 Discussion of First Two Management Models

I.4.1 Generic Management Models

The first two management models, Sects. I.2–I.3, Pages 388–400, the func-
tional, Sect. I.2, Pages 388–392, and the process descriptions, Sect. I.3,
Pages 392–400, really did not show any management aspects of transportation
systems.

The two models can be claimed to be generic. As such they apply to a
wide variety of domain management.

The two models can also be claimed to be one anothers’ “inverse”. The
process description, Sect. I.3, can be claimed to “implement” the functional
description, Sect. I.2; each “step” of the staff processes can be claimed to
correspond to an “iteration” of the “solving” of the recursive equations of
Lines 6.–11., Page 390. We leave it as a research challenge for the reader “clean-
up” the two formal definitions, that is, express them in a formalism, such that
a theorem expressing that the process model “implements” the functional,
doubly recursive model. Such a ‘clean-up’ might possibly involve rewriting the
functional, doubly recursive model into an imperative tail-recursive model.

I.4.2 Management as Scripts

It was said, above, that management is manifested in “zillions” of actions,
some occurring concurrently, some occurring in strict sequence, etcetera. But
nothing was then said, above, of the order, if any, of these actions. Some
actions cannot be meaningfully applied before others have been applied. (i)
The management decision to remove a specific link, ℓ, must occur some time
after a (thus previous) management decision to insert that specific link, ℓ. (ii)
The management decision to construct a (new) train timetable must not occur
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I.5 Transport Enterprise Organisation 401

before reasonable completion dates for the construction of the underlying rail
net, the purchase of required rolling stock, and the hiring of required net and
train operation staff have all been established. (iii) the management go-ahead
for the start of train traffic according to a new timetable must not occur
before the completion of the construction of a train (staff) rostering plan,
the construction of a train maintenance plan, and the rail net construction,
etcetera.

One — not so extreme — interpretation of the above is that we cannot
meaningfully describe specific concurrent and sequential sets of management
actions but must basically, in most cases of systems, accept any such patterns
of actions.

Another — slightly less extreme — interpretation of the above is that we
can in some cases describe what we shall later define as a family of manage-
ment scripts Let that suffice for the time being.

I.5 Transport Enterprise Organisation

Transportation is “home” to many different kinds of enterprises. Each of
these enterprises is concerned with relatively distinct and reasonably non-
overlapping issues: road (bridge, etc.) building, Erdb

, road (etc.) maintenance,
Erdm , road & car traffic signaling, Erds , bus services (i), Ebsi , fire brigade, Efi,
police, Epo, rail building, Erlb , rail maintenance, Erlm , rail & train signaling,
Erls , train services (j), Etpj , map making (k) Emmk

, etcetera. But they “share”
the transportation net.

I.5.1 Transport Organisations

Each kind of transportation enterprise, say Ei, covers a subset, say NET Ei ,
of the net, that is, not necessarily the entire net. For two or more i, j, i 6=j,
it may be that NET Ei ∩ NET Ej 6= {}. Each transportation enterprise has
its own distinct staff, that is, sets of strategics managers, ST REi , tactics
managers, T ACEi , operations managers, OPSEi , supervisors, SUPEi , team
leaders, T LDEi , and workers, WRKEi , For some managers, supervisors, team
leaders and workers the areas of the net for which they are responsible are
proper, disjoint subsets of the net.

I.5.2 Analysis

To describe the transportation domain one has to model for each transporta-
tion enterprise, Ei, separate subsets of the net NET Erdb

, NET Erdm
, NET Erds

,
NET Ebpi

, NET Erlb
, NET Erlm

, NET Erls
, NET Etpt

, NET Efi
, NET Epo , and

NET Emmk
; and, for each such transportation enterprise, one has to model

a number of separate enterprise structures: Erdb
, Erdm , Erds , Ebpi , Erlb , Erlm ,

Erls , Etpt , Efi, Epo, and Emmk
.

c© Dines Bjørner 2008 Fredsvej 11, DK–2840 Holte, Denmark. August 1, 2008, 09:42



invisible
Fr

id
ay

 A
ug

us
t 1

, 2
00

8:
 D

in
es

 B
jo

rn
er

 D
r.

te
ch

n.
 T

he
si

s
402 I Management and Organisation

I.5.3 Modelling Concepts

Net Kinds

In order to model the various nets, NET Ei , given that we have a base model
N, we introduce a notion of ‘net kind’: one for each of the nets NET Erdb

,
NET Erdm

, NET Erds
, NET Ebpi

, NET Erlb
, NET Erlm

, NET Erls
, NET Etpt

,
NET Efi

, NET Epo , NET Emmk
, etcetera. A ‘net kind’, k:K, is like a type des-

ignator

type
K = SimP|BusK|TrainK|MapMK
SimK == road b|road m|road s|rail b|rail m|rail s|fireb|police
BusK == bus p1|bus p2|...|bus pm
TrainK == train p1|train p2|...|trai pn
MapMK == map m1|map m2|...|map mo

To each hub and link in a net we then associate zero, one or more net kinds.
We then postulate an observer function:

value
obs K: (H|L) → K-set

Given a net kind we can then “extract” the net of hubs and links “carrying”
that net kind:

value
xtr N: N × K → N

To guarantee that the extracted net is indeed a (well-formed) net we must
make sure that any assignment of net kinds to hubs and links results in well-
formed net kind nets:

value
wf NK: N → Bool

To express wf NK we define a function

value
xtr Ks: N → K-set

which collects all net kinds from all hubs and links of the net.

value
xtr Ks(hs,ls) ≡

∪{obs Ks(h)|h:H•h ∈ hs} ∪ ∪{obs Ks(l)|l:L•l ∈ ls}

wf N′(hs,ls) ≡
∀ k:K • k ∈ xtr Ks(hs,ls) ⇒

wf N({h|h:H•h ∈ hs∧k ∈ obs Ks(h)},{l|l:L•l ∈ ls∧k ∈ obs Ks(l)})
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I.5 Transport Enterprise Organisation 403

The predicate wf N′ extends the predicate wf N which corresponds to the
satisfaction of all the axioms given in Sect. F.4, Pages 292–297.

xtr N((hs,ls),k) ≡
({h|h:H•h ∈ hs∧k ∈ obs Ks(h)},{l|l:L•l ∈ ls∧k ∈ obs Ks(l)})
pre k ∈ xtr Ks(hs,ls)

Enterprise Kinds

In order to model the various enterprises, Ei, given that we have a base model
for business staff, SIdx, we introduce a notion of ‘enterprise kind’: one for each
of the enterprise kind: Erdb

, Erdm , Erds , Ebpi , Erlb , Erlm , Erls , Etpt , Efi, Epo,
Emmk

, etcetera. A ‘enterprise kind’, b:B, is like a type designator

type
E = SimE|BusE|TrainE|MapMakE
SimE == road b|road m|road s|rail b|rail m|rail s|fireb|police
BusE == bus p1|bus p2|...|bus pm
TrainE == train p1|train p2|...|train pn
MapMakE == map m1|map m2|...|map mo

Staff Kinds

To each staff we then associate an enterprise kind.

value
obs B: SIdx → B

We may further have to impose that interaction between staff, viz.:

staff ch[ i,j ]

be subject to an “internal business constraint”:

obs B(i) = obs B(j)

Staff Kind Constraints

Narrative

The staff, Staff Ei , of each transportation enterprise, Ei, can be roughly cate-
gorised into: strategic managers, ST REi , tactics managers, T ACEi , operations
managers, OPSEi , supervisors, SUPEi , team leaders, T LDEi , and workers
WRKEi , as already mentioned (Page 401). And each of these can be further
sub-categorised.
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404 I Management and Organisation

Formalisation

We suggest the “beginnings” of a formalisation.

type
StaffK == stra|tac|ope|sup|tld|wrk

value
obs StaffK: SIdx → StaffK

A more realistic model, for a given enterprise, would provide a far more de-
tailed categorisation. Typically there might be several “layers” of strategic
and of tactic and of operations management. Similarly a model might detail
different kinds of supervisor, team leader and worker (“blue collar”) staff.

Hierarchical Staff Structures

We refer to Fig. I.1, Page 389.

Matrix Staff Structures

Net and Enterprise Kind Constraints

Narrative

A link (or a hub) is either a road or a rail link (hub). If a link is a road link
then the two hubs that it connects are road hubs. If a hub is a road hub then
all the links emanating from the hub are road links. If a link is a rail link then
the two hubs that it connects are rail hubs. If a hub is a rail hub then all the
links emanating from the hub are rail links. In consequence we may speak of
disjoint road nets and rail nets. The enterprises associated with a road [rail]
net must be road [rail] related (building, maintenance, signaling, bus [train]
services, police, etc.).

Formalisation

type
NetK: road|rail|...

value
obs NetK: (H|L) → NetK

xtr L: LI → L-set → L,xtr H: HI → H-set → H
xtr L(li)(ls) ≡ ∃!l:L • l ∈ ls∧obs LI(l)=li
xtr H(hi)(hs) ≡ ∃!h:H • h ∈ hs∧obs HI(h)=hi

wf N′′: N → Bool
wf N′′(hs,ls) ≡

∀ h:H • h ∈ hs ⇒
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I.5 Transport Enterprise Organisation 405

∀ li:LI • li ∈ obs LIs(h) ⇒ obs NetK(xtr L(li)(ls))=obs NetK(h) ∧
∀ l:L • l ∈ ls ⇒

∀ hi:HI • hi ∈ obs HIs(l) ⇒ obs NetK(xtr H(hi)(hs))=obs NetK(l)

The predicate wf N′′ extends the predicate wf N′ given earlier (Page 402).

value
netk: N → NetK-set
netk(hs,ls) ≡ {obs NetK(h)|h:H•h ∈ hs}∪{obs NetK(l)|l:L•l ∈ ls}

road k:NetK-set={road b,road m,road s,bus p1,bus p2,...,bus pm,fireb,police},
rail k:NetK-set={rail b,rail m,rail s,train p1,train p2,...,train pn,fireb,police}

wf N′′′: N → Bool
wf N′′′(hs,ls) ≡

let nks = netk(hs,ls) in
case nks of

{road} → xtr Ks(hs,ls)⊆road k,{rail} → xtr Ks(hs,ls)⊆rail k, → false
end end

The predicate wf N′′′ extends wf N′′ given earlier (Page 404).

I.5.4 Net Signaling

In the previous section on support technology we did not describe who or
which “ordered” the change of hub states. We could claim that this might
very well be a task for management.

(We here look aside from such possibilities that the domain being modelled
has some further support technology which advises individual hub controllers
as when to change signals and then into which states. We are interested in
finding an example of a management & organisation facet — and the upcoming
one might do!)

Narrative

So we think of a ‘net hub state management’ for a given net. That manage-
ment is divided into a number of ‘sub-net hub state managements’ where the
sub-nets form a partitioning of the whole net. For each sub-net management
there are two kinds management interfaces: one to the overall hub state man-
agement, and one for each of interfacing sub-nets. What these managements
do, what traffic state information they monitor, etcetera, you can yourself
“dream” up. Our point is this: We have identified a management organisa-
tion.
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406 I Management and Organisation

Formalisation

type
HIsLIs = HI-set × LI-set
MgtNet′ = HIsLIs × N
MgtNet = {| mgtnet:MgtNet′ • wf MgtNet(mgtnet)|}
Partitioning′ = HIsLIs-set × N
Partitioning = {| partitioning:Partitioning′ • wf Partitioning(partitioning)|}

value
wf MgtNet: MgtNet′ → Bool
wf MgtNet((his,lis),n) ≡

[ The his component contains all the hub ids. of links identified in lis ]
wf Partitioning: Partitioning′ → Bool
wf Partitioning(hisliss,n) ≡

∀ (his,lis):HIsLIs • (his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[ no sub−net overlap and together they ′′span′′ n ]

I.6 Discussion

The reader shall have to wait for [97] to be published to see the text
of this section — well, in general, a more satisfactory presentation of
its (intended) material !.
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Bayesian Networks

This Appendix chapter constitutes a fragment of a ‘Technical Note’.
It is not part of the ‘Thesis’. Section 5.5.3 refers to this Appendix
chapter. I wish I had time to also complete this note.
The full note was prepared for a PhD student, Mr. Yin Hongli at
NUS.1 Mr. Yin was then to complete the narration and formalisation
of more comprehensive concept of Bayesian Networks (than hinted at
here) as part of his PhD thesis.

J.1 Introduction

The background for this report is:

• The fact that there is now an abundance of what is known as formal
methods for the provably correct development of software: B [1, 131],
CafeOBJ [147, 148, 161, 162], CASL [24, 142, 241, 242], VDM [111, 112,
157,158], RAISE [87–89,97, 165,166,168], Z [186,187,283,284,297], etc.

• The fact that the formal specification languages of software engineering
can be used far more widely than for just software development.

• The fact that many research and technical reports in other fields than
computer and computing science usually use an ad hoc mixture of infor-
mal (and hopefully precise) English, informal mathematical notation and
“snapshot pictures” (figures, diagrams).

• The fact that this latter is indeed the case for a number of papers in
biomedical computing, viz., papers on the representation of knowledge
using Bayesian networks.

1Department of Computer Science, School of Computing, National University of
Singapore, 3 Science Drive 2, Singapore S-117543, Republic of Singapore
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408 J Bayesian Networks

J.1.1 Aims & Objectives

Aims

The aims of the present working report (in progress) are:

• To show an example stepwise development of provably correct software for
the handling of Bayesian networks.

• To show this example in the form of a so-called formal methods “lite”
approach.

Objectives

The objectives of the present working report (in progress) are:

• To possibly convince the reader that it is about time that formal methods
“lite” approaches be applied more widely,

• by showing that it can be done, and oftentimes more elegantly, more trans-
parently than normally achieved in the literature.

J.1.2 Motivation

Our motivation extends the above:

• To achieve the above objectives.
• To experiment with formalisations of representations of knowledge.
• To, in the longer run, achieve a unifying approach to modelling represen-

tations of knowledge.

J.1.3 Structure of Document

The report is structured as follows:

Chapter 2. We illustrate four ways of presenting Bayesian networks:
1. Informally, in reasonably precise English, and
2. semi–formally to formally in terms of

(a) a picture of a particular (ie., the running example) Bayesian net-
work,

(b) a tabular representation of the running example Bayesian network
and

(c) a formalisation of the type of all Bayesian networks.
Our objective with the above stepwise unfolding (1., 2.1, 2.2 and 2.3)
of ways of presenting Bayesian networks is to show that pictures and
tabular representations can not present the full space, i.e., the type of
all Bayesian networks. Only a informal, but precise English and the
formal type definition can.
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J.2 Bayesian Networks 409

Chapter 3. On the background of the formal type definition of Bayesian net-
works we give, in this chapter, a systematic treatment of this formalisation
and a derivative:
1. First we cover the formalisation of full Bayesian networks and their

well-formedness conditions.
2. Then we cover functions over such full Bayesian networks, auxiliary

and what we shall call trimming functions. These are functions that
(i) discover context independence (also therefore context sensitivity)
and (ii) remove (trim) unnecessary links in the Bayesian network (i.e,
graph).

3. Finally we cover types and functions which represent simplified Bayesian
network trees and their conversion from full Bayesian networks.

Chapter 4. In this chapter we informally show how to transform the abstract
(applicative) functions given in Chap. 3 into imperative procedures over
assignable variables.

Chapter 5. The function definitions of Chap. 4 can then serve as a basis for
informally, but systematically developing Java methods.

Chapter 6. We conclude speculating on future work and by dispensing ac-
knowledgements.

J.2 Bayesian Networks

J.2.1 Informal Introduction to Bayesian Networks

Let there be given a finite set of variables, vi : V , for 1 ≤ i ≤ n. Each
variable, vi has values ranging over a usually small, but always finite set of
discrete values, νi : VAL. With each variable is associated a probability of it
taking on a specific value in its value range. That probability is a function of
the values of one or more of the other variables. We can model the collection
of Bayesian variables and their values as follows.

J.2.2 Representations of Bayesian Networks

Pictures: Network Graphs

Consider Fig. J.1 on the next page.

Bayesian Tables

[v1 7→ [ON 7→ 0.5,OFF 7→ 0.5, v2 7→ [RED 7→ 0.2,BLU 7→ 0.3,GRE 7→ 0.5]]
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ON RED

BLU

GRE

0.5

0.5

0.2

0.3

0.5

OFF

(ON,RED)

(ON,BLU)

(ON,GRE)

(OFF,RED)

(OFF,BLU)

(OFF,GRE)

(ON,RED)

(ON,GRE)

(OFF,RED)

(OFF,BLU)

(OFF,GRE)

(ON,RED)

(ON,GRE)

(OFF,RED)

(OFF,BLU)

(OFF,GRE)

(ON,RED)

(ON,BLU)

(ON,BLU)

(ON,BLU)

(ON,GRE)

(OFF,RED)

(OFF,BLU)

(OFF,GRE)

SPA

HEA

DIA

CLU

v1 (v2,v3) p

pv3pv2

Fig. J.1. A Bayesian Network

Formalisation

First Rough Formal Model of Bayesian Networks

type
Var, VAL, TypNm
P = {| p:Real • 0≤p≤1 |}
TypDef = Var →m TypNm
Types = TypNm → VAL-set
BN = Var →m (VAL →m ((Var →m VAL) →m P))

Annotation :
Var : Set of variables.
VAL : Set of values.
P : Probability
RV = V →m VAL-set Set of maps from variables to their finite set of dis-

crete values.
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v2 v3

v1 v4

v0

v5

Fig. J.2. A Schematic Bayesian Network

PB = V →m (VAL →m ((V →m VAL) →m P)) : Set of maps from variables to
maps of values to maps from pairs of variables and values to proba-
bilities.

An Example

An Example Formal Value

value
v1,v2,v3,v4,v5,v6:Var
on,off,red,blue,green,club,spade,heart,diamond:VAL
td:TypDef
tys:Types
t1,t2,t3:TypNm
bn:BN

axiom
tyd = [ v1 7→t1,v2 7→t2,v3 7→t3,v4 7→t1,v5 7→t2,v6 7→t13 ]
[ t1 7→{on,off},t2 7→{red,blue,green},33 7→{club,spade,heart,diamond} ]
bn = [ v1 7→ [ [ on 7→ [ [ v2 7→ red ] 7→ 0.1,

[ v2 7→ blue ] 7→ 0.2,
[ v2 7→ green ] 7→ 0.7 ],

off 7→ [ ... ] ] ]
v2 7→ ...
v3 7→ ... ]
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On Russel’s’ Theory of Descriptions

This appendix chapter simply brings an edited version of
http://en.wikipedia.org/wiki/Theory of Descriptions:

K.1 Denoting Sentences

Russell’s theory of descriptions was most clearly expressed in his 1905 essay
“On Denoting” [270]. Russell’s theory is about the logical form of expressions
involving denoting phrases, which he divides into three groups:

1. Denoting phrases which do not denote anything, for example “the present
King of France”.

2. Definite phrases which denote one definite object, for example “the present
King of England” (Edward VII at the time Russell was writing). We need
not know which object the phrase refers to for it to be unambiguous,
for example “the tallest spy” is a unique individual but his or her actual
identity is unknown).

3. Indefinite phrases which denote ambiguously, for example, “a man”.

K.2 Definite Descriptions

Definite descriptions involve Russell’s second group of denoting phrases, and
indefinite descriptions involve Russell’s third group. Descriptions typically
appear to be of the standard subject-predicate form. Russell proposed his
theory of descriptions in order to solve several problems in the philosophy of
language. The two major problems are of (1) co-referring expressions and (2)
non-referring expressions.
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414 K On Russel’s’ Theory of Descriptions

K.2.1 Co-referring Expressions

The problem of co-referring expressions originated primarily with Gottlob
Frege as the problem of informative identities. For example, if the morning
star and the evening star are the same planet in the sky (indeed they are),
how is it that someone can think that the morning star rises in the morning
but the evening star does not? That is, someone might find it surprising that
the two names refer to the same thing (i.e. the identity is informative). This is
apparently problematic because although the two expressions seem to denote
the same thing, one cannot substitute one for the other, which one ought to
be able to do with identical or synonymous expressions.

K.2.2 Non-referring Expressions

The problem of non-referring expressions is that certain expressions that are
meaningful do not seem to refer to anything. For example, by “any man is
sexist” it is not meant that there is a particular individual, namely any man,
that has the property of being sexist (similar considerations go for “some
man”, “every man”, “a man”, and so on). Likewise, by “the present King
of France is bald” it is not meant that there is some individual, namely the
present King of France, who has the property of being bald (France is presently
not a monarchy, so there is currently no King of France). Thus, what Russell
wants to avoid is admitting mysterious non-existent entities into his ontology.
Furthermore, the law of the excluded middle requires that one of the following
propositions, for example, must be true: either “the present King of France is
bald” or “it is not the case that the present King of France is bald”. Normally,
propositions of the subject-predicate form are said to be true if and only if the
subject is in the extension of the predicate. But, there is currently no King
of France. So, since the subject does not exist, it is not in the extension of
either predicate (it is not on the list of bald people or non-bald people). Thus,
it appears that this is a case in which the law of excluded middle is violated,
which is also an indication that something has gone wrong. Russell says in his
paper, in a typically sly dig at a school of philosophy with which he disagreed,
that “Hegelians, who love a synthesis, will probably conclude that he wears a
wig.”

K.3 Definite Descriptions

Russell analyzes definite descriptions similarly to indefinite descriptions, ex-
cept that the individual is now uniquely specified. Take as an example of a
definite description the sentence “the present King of France is bald”. Rus-
sell analyzes this phrase into the following component parts (with x and y
representing variables):

1. there is an x such that x is the King of France;
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K.3 Definite Descriptions 415

2. there is no y, other than x, such that y is the King of France (i.e., x is
the only King of France);

3. x is bald.

Thus, a definite description (of the general form ‘the F is G’) becomes the
following existentially quantified phrase in classic symbolic logic (where x and
y are variables and F and G are predicates — in the example above, F would
be “is the King of France”, and G would be “is bald”):

∃x(F (x) ∧ ∀y(F (y) ⊃ x = y ∧G(x).

Informally, this reads as follows: something exists with the property F , there
is only one such thing, and this unique thing also has the property G.

This analysis, according to Russell, solves the two problems noted above
as related to definite descriptions:

1. “The morning star rises in the morning” no longer needs to be thought
of as having the subject-predicate form. It is instead analyzed as “there
is one unique thing such that it is the morning star and it rises in the
morning”. Thus, strictly speaking, the two expressions “the morning star
. . . ” and “the evening star . . . ” are not synonymous, so it makes sense
that they cannot be substituted (the analysed description of the evening
star is “there is one unique thing such that it is the evening star and it
rises in the evening”).

2. Since the phrase “the present King of France is bald” is not a referring
expression, according to Russell’s theory it need not refer to a mysteri-
ous non-existent entity. Russell says that if there are no entities C with
property F , the proposition “C has property G” is false for all values of
G.

Russell writes:

Thus “the present King of France is bald” is certainly false; and “the
present King of France is not bald” is false if it means “There is an
entity which is now King of France and is not bald” but it is true if it
means “It is false that there is an entity which is now King of France
and is bald” [270].

Russell says that all propositions in which the King of France has a primary
occurrence are false. The denials of such propositions are true, but in these
cases the King of France has a secondary occurrence (the truth value of the
proposition is not a function of the truth of the existence of the King of
France).
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416 K On Russel’s’ Theory of Descriptions

K.4 Indefinite Descriptions

Take as an example of an indefinite description the sentence “some man is
being obnoxious”. Russell analyzes this phrase into the following component
parts (with x and y representing variables):

1. There is an x such that x is a man.
2. x is being obnoxious.

Thus, an indefinite description (of the general form “an F is G”) becomes the
following existentially quantified phrase in classic symbolic logic (where x and
y are variables and F and G are predicates):

∃x(F (x) ∧G(x))

Informally, this reads as follows: “there is something such that it is F and G”.
This analysis, according to Russell, solves the second problem noted above

as related to indefinite descriptions. Since the phrase “some man is being
obnoxious” is not a referring expression, according to Russell’s theory, it need
not refer to a mysterious non-existent entity. Furthermore, the law of excluded
middle need not be violated (i.e. it remains a law), because ”some man is
being obnoxious” comes out true: there is a person that is both a man and
obnoxious. Thus, Russell’s theory seems to be a better analysis insofar as it
solves several problems.
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This appendix serves as a repository for miscellaneous pieces of information.

L.1 Definitions 417
L.1.1 ’Method’ 418
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L.2 Methodological Indexes 421
L.2.1 Volume 1 421

Principles 421
Techniques 421
Tools 422

L.2.2 Volume 2 422
Principles 422
Techniques 423
Tools 424

L.2.3 Volume 3 424
Principles 424
Techniques 426
Tools 428

L.1 Definitions

Some characterisations used in [87–89] are based on sources such as the Com-
pact Oxford English Dictionary1, Cambridge International Dictionary of En-

1Compact Oxford English Dictionary of Current English, Oxford University
Press, Third Edition, eds. Catherine Soanes and Sara Hawker, ISBN-10: 0-19-
861022-X and ISBN-13: 978-0-19-861022-9, Publication date: 23 June 2005
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glish2, The American Heritage Dictionary of the English Language3, and Mer-
riam Webster Unabridged4. All were consulted in their on-line versions (with
proper citation).

L.1.1 ’Method’

The concept of method was thought of such importance as to warrant a rather
thorough search for and analysis of variant definitions.

1. Compact Oxford English Dictionary:

(a) a way of doing something;
(b) orderliness of thought or behaviour;
(c) Greek methodos ’pursuit of knowledge’.

2. Cambridge International Dictionary of English:

(a) a particular way of doing something

3. The American Heritage Dictionary of the English Language:

(a) A means or manner of procedure, especially a regular and systematic
way of accomplishing something.

(b) Orderly arrangement of parts or steps to accomplish an end.
(c) The procedures and techniques characteristic of a particular discipline

or field of knowledge.

4. Merriam Webster Unabridged, Definitions:

(a) a procedure or process for attaining an object;
(b) a systematic procedure; technique, or set of rules employed in philo-

sophical inquiry;
(c) particular approach to problems of truth or knowledge:

i. the pragmatic method tries to interpret each notion by tracing its
respective practical consequences – William James;

ii. the dialectical method assumes the primacy of matter;
iii. the method of the positivists applied to philosophy the procedures

of the natural sciences.
(d) a discipline or system sometimes considered a branch of logic that

deals with the principles applicable to inquiry into or exposition of
some subject;

(e) a systematic procedure, technique, or mode of inquiry employed by or
proper to a particular science, art, or discipline.

(f) a methodical exposition
(g) a table of contents

2Cambridge International Dictionary of English, ed. Paul Procter, Cambridge
University Press, ISBN-10: 0521482364, ISBN-13: 978-0521482363, Publication date:
April 28 1995

3The American Heritage Dictionary of the English Language, Houghton Mifflin
Company. eds. Pickett, Joseph P. et al., ISBN: 0-395-82517-2, Publication date: 2000

4http://unabridged.merriam-webster.com/
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L.1 Definitions 419

(h) an arrangement that follows a plan or design c : orderliness and regu-
larity or habitual practice of them in action (thrift was as much in her
nature as method – Sylvia T. Warner) (time enough to do everything
if only you used method – Angela Thirkell)

5. Merriam Webster Unabridged, Synonyms:
METHOD, MODE, MANNER, WAY, FASHION, and SYSTEM can all
indicate the means used or the procedure followed in doing a given kind
of work or achieving a given end.

(a) METHOD can apply to any plan or procedure but usually implies an
orderly, logical, effective plan or procedure, connoting also regularity
(the crude methods of trial and error – Henry Suzzallo) (the method
of this book is to present a series of successive scenes of English life –
G.M.Trevelyan) (Marx’s doctrine is not a system of scientific truths, it
merely represents a method – one possible approach to social and his-
torical reflection – Paolo Milano) (surely not to leave to fitful chance
the things that method and system and science should order and ad-
just – B.N.Cardozo)

(b) MODE, sometimes interchangeable with METHOD, seldom implies
order or logic, suggesting rather custom, tradition, or personal prefer-
ence (a rational mode of dealing with the insane – W.R.Inge) (this in-
tuition is essentially an aesthetic mode of apprehension – H.J.Muller)
(the mode of reproduction of plants and animals, however, is funda-
mentally identical – Encyc. Americana)

(c) MANNER usually suggests a personal or peculiar course or procedure,
often interchanging with MODE in this sense (the manner by which
the present pattern of land ownership in this country has evolved –
A.F.Gustafson) (it is not consistent with his manner of writing Latin
– G.C.Sellery) (bearing loaves of sweet bread and of cornbread made
with yeast in the Portuguese manner – Dana Burnet)

(d) WAY is general and interchangeable with METHOD, MODE, or
(e) MANNER (a special way to raise orchids) (the way the machine

works) (the town’s way of life) (one’s way of tying his tie) FASH-
ION, in this comparison, may be distinguished from WAY in often
suggesting a more superficial origin or source as in a mere fashion
or ephemeral style (was so popular that his subjects took to wearing
monocles, in his fashion – Time) (Harvard has stoutly and success-
fully resisted the fashion by which the grounds of an American college
have come to be known as a campus – Official Register of Harvard
University) (who were poor in a fashion unknown to North America
– Herbert Agar)

(f) SYSTEM suggests a fully developed, often carefully formulated method,
usually emphasizing the idea of rational orderliness (every new discov-
ery claims to form an addition to the system of science as transmitted
from the past – Michael Polanyi) (behavior which is not in accord
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with the individual’s system elicits responses of fear – Ralph Linton)
(an earnest plea for radical reformation of the system of assessment
and taxation – C.A.Duniway)

6. Wikipedia:
Method may refer to:

(a) Discourse on Method, a philosophical and mathematical treatise by
René Descartes

(b) ’Scientific method’, a series of steps taken to acquire knowledge
(c) ’Method’ (computer science), a piece of code associated with a class

or object to perform a task
(d) ’Method’ (software engineering), a series of steps taken to build soft-

ware
(e) ’Method acting’, a style of acting in which the actor attempts to repli-

cate the conditions under which the character operates
(f) “The Method of Mechanical Theorems”, part of the Archimedes

Palimpsest
(g) ’Method’ (music), a kind of textbook to help students learning to play

a musical instrument

L.1.2 ’Principle’, ’Technique’ and ’Tool’

From Merriam Webster Unabridged we cull:

1. Principle

(a) a comprehensive and fundamental law, doctrine, or assumption
(b) a rule or code of conduct
(c) habitual devotion to right principles
(d) the laws or facts of nature underlying the working of an artificial device
(e) a primary source
(f) an underlying faculty or endowment
(g) an ingredient (as a chemical) that exhibits or imparts a characteristic

quality

2. Technique

(a) the manner in which technical details are treated (as by a writer) or
basic physical movements are used (as by a dancer)

(b) ability to treat such details or use such movements
(c) a body of technical methods (as in a craft or in scientific research)
(d) a method of accomplishing a desired aim

3. Tool

(a) a handheld device that aids in accomplishing a task
(b) the cutting or shaping part in a machine or machine tool
(c) machine for shaping metal
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L.2 Method Indexes 421

(d) something (as an instrument or apparatus) used in performing an
operation or necessary in the practice of a vocation or profession (a
scholar’s books are his tools)

(e) an element of a computer program (as a graphics application) that
activates and controls a particular function (a drawing tool)

(f) a means to an end (a book’s cover can be a marketing tool)
(g) one that is used or manipulated by another

L.2 Method Indexes

L.2.1 Volume 1

Principles

7.9.4 λ-Abstraction, 122
8.7.2 Algebraic Semantics, 139
10.3.4 Enumerated Tokens, 210
10.5.3 Unique Universe of Discourse Identifiers, 215
10.6.2 Atomic Entities, 216
12.2.4 Property-Orientedness, 240
12.5.1 Model-Oriented Specification, 254
12.5.1 Property-Oriented Specification, 254
12.5.5 Property-Oriented vs Model-Oriented Specifications, 257
13.7 Set Abstraction and Modelling, 288
14.6.2 Cartesian Abstraction and Modelling, 315
15.6 List Abstraction and Modelling, 342
16.6 Pointer-Based Data Structures, 387
16.6 Type Invariance, 387
16.6 Types versus Values, 387
16.6 Map Abstraction and Modelling, 386
17.5 Functions as Denotations, 407
17.5 Function Abstraction and Modelling, 407
18.11.2 Type Abstraction and Modelling, 423
19.7.2 Binding Contexts, 454
19.7.2 Typed Values, 454
20.3.3 First Semantics then Syntax, 479
20.3.4 Type, Value and Location Homomorphisms, 480
20.5.4 Applicative to Imperative Function Translation, 495
21.2.5 Process Modelling, 521

Techniques

7.9.4 λ-Conversion, 123
8.7.2 Algebra Construction, 139
10.3.4 Enumerated Tokens, 210
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10.5.3 Unique Universe of Discourse Identifiers, 215
10.6.2 Atomic Entities, 217
12.2.4 Property-Orientedness, 240
12.5.2 Property-Oriented Specifications, 255
12.5.3 Model-Oriented Specifications, 256
13.7 Set Abstraction and Modelling, 288
14.6.2 Cartesian Abstraction and Modelling, 316
15.6 List Abstraction and Modelling, 343
16.6 Map Abstraction and Modelling, 387
17.5 Function Abstraction and Modelling, 407
18.11.2 Type Abstraction and Modelling, 424
20.6.1 Applicative Contexts vs. State Function Argument, 499
20.6.1 Applicative Contexts, 499
20.6.1 Applicative States, 499
20.6.2 Imperative States, 502
20.6.3 Imperative Block-Structured Contexts (I), 504
20.6.3 Imperative Block-Structured Contexts (II), 505
20.6.3 Imperative Block-Structured Contexts (III), 505

Tools

7.9.4 The λ-calculus, 123
8.7.2 Algebra, 139
10.3.4 Enumerated Tokens, 210
10.5.3 Unique Universe of Discourse Identifiers, 215
12.2.4 Property-Orientedness, 240
13.7 Set Abstraction and Modelling, 288
14.6.2 Cartesian Abstraction and Modelling, 316
15.6 List Abstraction and Modelling, 343
16.6 Map Abstraction and Modelling, 388
17.5 Function Abstraction and Modelling, 408
18.11.2 Type Abstraction and Modelling, 424

L.2.2 Volume 2

Principles

2.2.2 Compositional Development, 39
2.2.2 Development and Presentation, 38
2.2.2 Development, 38
2.2.2 Hierarchical Development, 38
2.2.2 Presentation, 38
2.3.3 From Phenomena to Concepts, 46
2.4 Choosing Compositional Development and/or Presentation, 49
3.2 Denotational Semantics, 57
3.2.5 Denotational Semantics, 73
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3.4 Denotations versus Computations, 86
4.4.2 Context and State, 103
4.9 Configurations — Contexts and States, 116
6.4.2 Pragmatics (I), 148
6.4.2 Pragmatics (II), 148
7.9.2 Semantics (I), 169
7.9.2 Semantics (II), 169
8.2.2 Types of Atomic Value Names, 177
8.9.2 Syntax (I), 204
8.9.2 Syntax (II), 204
8.9.2 Syntax (III), 204
9.5.6 Physical Systems, 233
9.6.2 Semiotics, 234
10.4.2 Modularisation, 281
11.3.11 Finite State Automata, 299
11.4.5 Finite State Machines, 307
11.5.3 pushdown stack device, 310
13.7.2 Choosing Sequence Charts, 468
14.8.2 Choosing Statechart, 509
15.6.2 Quantitative Models of Time, 567
16.11.2 Functional Programming Language Implementation, 654
17.5.2 Imperative Programming Language Implementation, 668
18.4.2 Modular Programming Language Implementation, 679
19.7.2 Parallel Programming Language Definition, 703

Techniques

2.2.2 Composition Development, 39
2.2.2 Hierarchy Development, 39
2.3.3 From Phenomena to Concepts, 47
3.2.5 Direct and Continuation Semantics, 73
4.4.2 Context Design, 103
4.4.2 State Design, 103
4.6.2 Process Context, 111
4.6.2 Process State, 111
4.9 Configurations — Contexts and States, 116
6.4.2 Pragmatics, 148
7.9.2 Semantics, 169
8.2.2 Types of Atomic Value Names, 178
8.9.2 Syntax, 204
9.5.6 Physical Systems, 233
10.4.2 Modularisation, 282
11.3.11 Finite State Automata, 300
11.4.5 Finite State Machine, 307
11.5.3 pushdown stack device, 311
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13.7.2 Creating Sequence Charts, 469
14.8.2 Statechart, 509
15.6.2 Quantitative Models of Time, 567
16.11.2 Functional Programming Language Implementation, 655
17.5.2 Imperative Programming Language Implementation, 669
18.4.2 Modular Programming Language Implementations, 679
19.7.2 Parallel Programming Language Definitions, 703

Tools

7.9.2 Semantics, 169
8.9.2 Syntax, 204
10.4.2 Modularisation, 282
13.7.2 Sequence Charts, 469
13.7.2 Play-Engine, LSC, 469
15.6.2 Quantitative Models of Time, 567
15.6.2 (Ana)Tempura, ITL, 567
15.6.2 DCVALID, Duration Calculus, 567
15.6.2 TLA+, 567
16.11.2 Functional Programming Language Implementation, 656
17.5.2 Imperative Programming Language Implementation, 669
18.4.2 Modular Programming Language Implementations, 679
19.7.2 Parallel Programming Language Definitions, 703

L.2.3 Volume 3

Principles

2.4.10 Information Document Construction, 70
2.4.10 Information Documents, 70
2.5.1 Rough Sketching, 74
2.5.2 Terminologisation, 75, 77
2.5.3 Narration, 80
2.5.4 Formalisation, 83
2.6.5 Analysis Document, 88
2.6.5 Analysis, 87
2.7.2 Documentation, 89
3.4.1 Development Choice, 99
3.4.1 Methodicity, 99
3.4.2 A Principle of Types, 100
3.4.2 Algebra, 102
3.4.2 Functions, 100
3.4.2 Logic, 103
3.4.2 Relations, 101
4.2.1 Analogic Models, 108
4.2.1 Analytic Models, 109
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4.2.1 Iconic Models, 109
4.2.2 Descriptive Models, 112
4.2.2 Prescriptive Model, 112
4.2.3 Extensional Models, 114
4.2.3 Intensional Models, 115
4.3 Model Role, 116
4.4 Modelling, 116
5.3.13 Entities, 137
5.6.3 Phenomena and Concepts, 152
6.4.2 Definition/Unique Recognition, 166
6.6.2 Characterisation and Definition, 169
7.2.4 Choice of Description Style, 183
7.2.4 Conceptual Framework, 181
7.2.5 Type Versus Value (Instantiation) Modelling, 183
7.3.1 Definitions, 185
7.3.1 The Narrow Bridge, 185
7.3.3 Exploring Theory Bases, 186
9.4.2 Domain Stakeholder Perspective, 208
9.4.2 Domain Stakeholder, 208
10.2.2 Continuities, 214
10.2.3 Discreteness, 215
10.2.3 Hybridicities, 220
10.2.4 Chaos, 221
10.3.1 Static Entity, 225
10.3.2 Autonomicity, 229
10.3.2 Biddable Active Dynamics, 236
10.3.2 Inert Dynamic Phenomena, 226
10.3.2 Programmable Active Dynamics, 239
10.3.2 Reactive Dynamics, 240
10.5.2 One-Dimensional Phenomena, 247
10.5.3 Multidimensional, 248
11.1.1 Separation of Facets, 253
11.10.1 From Big Lies via Smaller Lies to the Truth, 317
11.2 Describing Domain Business Process Facets, 254
11.2.2 Business Processes, 257
11.2.6 Describing Domain Business Process Facets, 263
11.3 Describing the Domain Intrinsics Facets, 264
11.3 Domain Intrinsic, 264
11.3.3 Intrinsics, 270
11.3.6 Describing the Domain Intrinsics Facets, 271
11.4 Describing the Domain Support Technologies Facets, 271
11.4.2 Support Technology, 275
11.4.4 Describing the Domain Support Technologies Facets, 276
11.5 Describing the Domain Management and Organisation Facets, 276
11.5.5 Management and Organisation, 281
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11.5.7 Describing the Domain Management and Organisation Facets, 282
11.6 Describing the Domain Rules and Regulations Facets, 282
11.6.4 Rules and Regulations, 286
11.6.5 Describing the Domain Rules and Regulations Facets, 287
11.7 Describing the Domain Script Facets, 287
11.7.3 Describing the Domain Script Facets, 308
11.8 Describing the Domain Human Behaviour Facet, 308
11.8.5 Describing the Domain Human Behaviour Facet, 315
11.9 Domain Facets, 316
12.3.4 Domain Acquisition, 331
13.5.2 Concept Formation, 339
13.5.2 Domain Analysis, 339
14.4.2 Domain Validation, 348
14.4.2 Domain Verification, 348
15.7 Domain Theory, 356
17 Requirements Engineering, 367
17.1 Requirements Adequacy, 368
17.1 Requirements Implementability, 369
17.1 Requirements Verifiability and Validability, 369
17.1.2 Requirements, 369
18.4.2 Requirements Stakeholder Perspective, 386
18.4.2 Requirements Stakeholder, 386
19.8.2 Requirements Facets, 474
20.5.4 Requirements Acquisition, 492
21.5.2 Concept Formation, 500
21.5.2 Requirements Analysis, 499
22.4.2 Requirements Validation, 508
22.4.2 Requirements Verification, 508
23.6.2 Requirements Economic Feasibility, 517
23.6.2 Requirements Satisfiability, 517
23.6.2 Requirements Technical Feasibility, 517
25.7 Hardware/Software Codesign, 529
26.7.2 Component, 544
26.7.2 Software Architecture, 544
27.11.2 Component Development, Stepwise Discovery, I, 579
27.11.2 Component Development, Stepwise Extension, II, 579
27.11.2 Component Development, Stepwise Refinement, III, 580
28.8.2 Domain-Specific Architectures, 641

Techniques

2.4.10 Information Document Construction, 70
2.5.1 Rough Sketching, 74
2.5.2 Terminology Documentation, 77
2.5.3 Narrative Documents, 80
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2.5.4 Formalisation, 83
3.4.1 Development Choice, 99
3.4.1 Methodicity, 99
3.4.2 Algebra, 102
3.4.2 Functions, 100
3.4.2 Logic, 103
3.4.2 Relations, 101
3.4.2 Types, 100
4.2.1 Analogic Model, 110
4.2.1 Analytic Model, 110
4.2.1 Iconic Model, 110
4.2.2 Narrative Descriptive Models, 112
4.2.2 Narrative Prescriptive Models, 113
4.2.3 Formal Extensional Models, 115
4.2.3 Formal Intensional Models, 115
5.3.13 Entities, 137
5.6.3 Phenomena and Concepts, 152
6.4.2 Definition/Unique Recognition, 166
6.6.2 Characterisation and Definition, 169
7.2.4 Framework Model, 181
7.3.1 Definitions, 185
7.4.1 Refutable Assertion, 187
7.4.3 Dangling Assertions, 189
9.4.2 Domain Stakeholder Liaison, 209
10.2.2 Continuity, 214
10.2.3 Discreteness, 215
10.2.3 Hybridicity, 220
10.2.4 Chaos, 222
10.3.1 Static Attribute, 225
10.3.2 Autonomicity, 230
10.3.2 Biddability, 236
10.3.2 Inert Dynamic Phenomena, 227
10.3.2 Programmable Active Dynamics, 239
10.3.2 Reactive Dynamics, 240
10.5.2 One-Dimensional Phenomena, 247
10.5.3 Multidimensional, 248
11.2.2 Business Processes, 257
11.3.3 Intrinsics, 270
11.4.2 Support Technology, 275
11.5.3 Management and Organisational, 279
11.5.5 Management and Organisation, 281
11.6.2 Rules and Regulations, 284
11.6.4 Rules and Regulation, 287
11.7.3 Domain Scripts, 308
11.8.2 Human Behaviour (III), 314
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11.8.2 Human Behaviour, 313
12.3.4 Domain Acquisition, 331
13.5.2 Concept Formation, 340
13.5.2 Domain Analysis, 339
14.4.2 Domain Validation, 348
14.4.2 Domain Verification, 348
15.7 Domain Theory, 356
18.4.2 Requirements Stakeholder Liaison, 386
19.8.2 Requirements Facets, 475
20.5.4 Requirements Acquisition, 492
21.5.2 Concept Formation, 500
21.5.2 Requirements Analysis, 500
22.4.2 Requirements Validation, 508
22.4.2 Requirements Verification, 508
23.6.2 Requirements Economic Feasibility, 518
23.6.2 Requirements Satisfiability, 517
23.6.2 Requirements Technical Feasibility, 517
25.7 Hardware/Software Codesign, 530
26.7.2 Architecture Design, 544
27.11.2 Component Development, 580
28.8.2 Domain-Specific Architecture, 641

Tools

2.4.10 Information Document Construction, 70
2.5.1 Rough Sketching, 75
2.5.2 Terminology Documentation, 77
2.5.3 Narrative Documentation, 81
2.5.4 Formalisation Documentation, 83
3.4.2 Algebra, 102
3.4.2 Functions, 100
3.4.2 Logic, 103
3.4.2 Relations, 101
3.4.2 Types, 100
5.3.13 Entities, 138
5.6.3 Modelling Phenomena and Concepts, 153
6.6.2 Characterisation and Definition, 168
9.4.2 Domain Stakeholder Liaison, 209
10.3.2 Reactive Dynamics Phenomena, 240
11.2.2 Business Processes, 257
11.7.3 Domain Scripts, 308
12.3.4 Domain Acquisition, 332
13.5.2 Concept Formation, 340
13.5.2 Domain Analysis, 340
14.4.2 Domain Validation, 348
14.4.2 Domain Verification, 348
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15.7 Domain Theory, 356
18.4.2 Requirements Stakeholder Liaison, 386
19.8.2 Requirements Facets, 475
20.5.4 Requirements Acquisition, 492
21.5.2 Concept Formation, 500
21.5.2 Requirements Analysis, 500
22.4.2 Requirements Validation, 508
22.4.2 Requirements Verification, 509
29.5.1 Theorem Provers: Isabelle/HOL, PVS, 657
29.5.1 Proof Assistant Raise, 657
29.5.2 Model Checkers: FDR2, SMV, Spin, 658
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List of Papers on Verification

For a good introduction to a number of leading approaches to software veri-
fication we refer to the following papers:

1. J. U. Skakkebæk, A. P. Ravn, H. Rischel, and Zhou Chaochen. Speci-
fication of embedded, real-time systems. Proceedings of 1992 Euromicro
Workshop on Real-Time Systems, pages 116–121. IEEE Computer Society
Press, 1992.

2. Zhou Chaochen, M. R. Hansen, A. P. Ravn, and H. Rischel. Duration
specifications for shared processors. Proceedings Symp. on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, Nijmegen 6-10 Jan.
1992, LNCS, 1992.

3. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Trans. Software Engineering,
19:41–55, 1992.

4. C. W. George. A theory of distributing train rescheduling. In FME’96:
Industrial Benefits and Advances in Formal Methods, proceedings, LNCS
1051,

5. C. W. George. Proving safety of authentication protocols: a minimal ap-
proach, in International Conference on Software: Theory and Practice
(ICS 2000), 2000.

6. A. Haxthausen and X. Yong. Linking DC together with TRSL. Proceed-
ings of 2nd International Conference on Integrated Formal Methods (IFM
2000), Schloss Dagstuhl, Germany, November 2000, number 1945 in Lec-
ture Notes in Computer Science, pages 25–44. Springer-Verlag, 2000.

7. A. Haxthausen and J. Peleska, Formal development and verification of a
distributed railway control system, IEEE Transaction on Software Engi-
neering, 26(8), 687–701, 2000.

8. M. P. Lindegaard, P. Viuf and A. Haxthausen, Modelling railway inter-
locking systems, Eds.: E. Schnieder and U. Becker, Proceedings of the
9th IFAC Symposium on Control in Transportation Systems 2000, June
13–15, 2000, Braunschweig, Germany, 211–217, 2000.
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9. A. E. Haxthausen and J. Peleska, A domain specific language for railway
control systems, Sixth Biennial World Conference on Integrated Design
and Process Technology, (IDPT 2002), Pasadena, California, Society for
Design and Process Science, P. O. Box 1299, Grand View, Texas 76050-
1299, USA, June 23-28, 2002.

10. A. Haxthausen and T. Gjaldbæk, Modelling and verification of interlock-
ing systems for railway lines, 10th IFAC Symposium on Control in Trans-
portation Systems, Tokyo, Japan, August 4–6, 2003.
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in Mathematics and Natural Sciences from the Århus Cathedral School (founded in
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with a Ph.D. in Computer Science in January 1969 from the Technical University of
Denmark (founded by Hans Christian Ørsted in 1828).

• IBM Career: DB joined IBM in March 1962 at their Nordic Laboratories (founded
by Cai Kinberg) in Stockholm, Sweden (where DB also first met Jean Paul Jacob
and Gunnar Wedell). DB was transferred to the IBM Systems Development Division
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valuable guidance from Carlo Santacroce and where DB’s friendship with Gerald
Weinberg started) (1967–1968). In 1969 DB worked at IBM’s Advanced Computing
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early 1973 at IBM Research, San Jose (again Jean Paul Jacob became a colleague).
Transferred to the IBM Vienna Laboratory (directed then by Heinz Zemanek), Aus-
tria, DB resigned from IBM in August 1975 to return to Denmark after basically 13
years abroad.

• Career Outside and After IBM: During his stay at IBM Research DB was a visiting
lecturer, for several quarters, at University of California at Berkeley (1971–1972),
instigated by Lotfi Zadeh whom DB considers his main mentor and for whom DB
has the fondest regards. DB was a visiting guest professor at Copenhagen University
in the academic year 1975–1976, before taking up his present chair in September
1976 at the Technical University of Denmark (DTU). During the summer semester
of 1980 DB was the Danish Chair Professor at the Christian-Albrechts University
of Kiel, Germany — hosted by Prof. Dr. Hans Langmaack. Together with a col-
league, Prof. Christian Gram, DB instigated the Dansk Datamatik Center (DDC)
in the summer of 1979. During the 1980s DB was chief scientist of DDC. In 1982–
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1984 DB was chairman of a Danish Government (Ministry of Education) Commis-
sion on Informatics. DB was the founding and first UN Director of UNU-IIST, the
United Nations University’s International Institute for Software Technology, located
in Macau. DB was a visiting professor at NUS: National University of Singapore in
the academic year 2004–2005, and a research guest professor at JAIST, Japan Ad-
vanced Institute of Science and Technology, Ishikawa Prefecture, Japan for basically
the calendar year 2006 — where the initial writing of this thesis was begun. DB
was a visiting professor at Université Henri Poincaré and at INRIA/LORIA, Nancy,
France, for two months: Oct.–Dec., 2007. During the fall, winter, spring and sum-
mer of 2008–2009 DB will be lecturing (i) at the Techn. Univ. of Graz, Austria
(5–6 weeks, Oct.–Dec.), (ii) at the Politecnico di Milano, Italy (Feb., 2009), (iii)
University of Saarland, Saarbrücken, Germany (March 2009) and (iv) is scheduled
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• Lectures and Graduates: DB has lectured and regularly lectures on six continents
in almost 50 countries and territories and has advised more than 130 MSc’s and
almost two dozen PhDs.

• Research &c. Work: At IBM DB first worked in the hardware (logic and systems)
design of such equipment as the IBM 1070 (Sweden), the IBM 1800 and IBM 1130
computers (San Jose), and, finally, with Gene Amdahl and Ed Sussenguth, on the
IBM ACS/1 supercomputer (Menlo Park). At Research DB worked with the late John
W. Backus and the late Ted Codd on Functional Languages, resp. Relational Data
Base Systems. At Vienna, DB, together with such colleagues as Peter Lucas, the
late Hans Bekič, Kurt Walk, and Cliff B. Jones, worked on a Denotational (–like)
Semantics Description of PL/I while, with his colleagues conceiving, researching,
developing and using VDM (the Vienna software Development Method). At DTU
and at DDC, supported by the European Community, DB initiated several advanced
research & development projects: (1) Formal Semantics Description of and (2) full
language compiler for CHILL (the Intl. Telecommunications Unions Communications
[C.C.I.T.T.] High Level Language) — both significantly developed by Peter Hall (and
Søren Prehn), (3) Formal Semantics Description of and (4) the first European US
DoD officially validated compiler for the US DoD Ada embedded systems program-
ming language — with significant and indispensable contributions by my colleague
Dr. Hans Bruun and, again, Søren Prehn, (5) RAISE (Rigorous Approach to Indus-
trial Software Engineering, headed by Søren Prehn and Chris George), (6) Formal
Semantics Definition of VDM–SL (the VDM Specification Language, Bo Stig Hansen
and Peter Gorm Larsen), (7) ProCoS (Provably Correct Systems) with, amongst oth-
ers Profs. Sir Tony Hoare (then Oxford, now Microsoft Research, Cambridge, UK),
Hans Langmaack (Kiel) and Ernst-Rüdiger Olderog (Oldenburg), Anders P. Ravn,
Hans Rischel, and others, etc.

• UNU-IIST: At UNU-IIST DB had a rather free hand, and was able, with a small team
of excellent colleagues (Prof. Zhou Chaochen (Academician, the Chinese Academy
of Science), Søren Prehn, Chris W. George, Richard Moore, Tomasz Janowski, Dang
Van Hung, Xu Qi Wen and Kees Middelburg), to further explore the research issues
still occupying DB’s interest, and to apply them (i.e., test them out) in a number of
joint R&D projects with institutions in developing and newly industrialised countries
[including newly independent states] (Argentina, Belarus, Brasil, Cameroun, China,
Gabon, India, Indonesia, Mongolia, North Korea, Pakistan, Philippines, Poland, Ro-
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mania, Russia, South Africa, South Korea, Thailand, Vietnam, Ukraine, Uruguay,
etc.).

• Societal Work: DB was a co-founder of VDM-Europe in 1987 and moved VDM-
Europe onto FME: Formal Methods Europe in 1991. DB co-chaired two of the VDM
Symposia (1987, 1990), and the International Conference on Software Engineering
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• Research Interests: DB’s research interests, since his Vienna days, have centered
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plying mathematics-based analysis and construction techniques and tools in order
efficiently to construct efficient artefacts — notably software. DB sees his main
contributions to be in the research, development and propagation of formal speci-
fication principles and techniques. Currently DB focuses on the triptych of domain
engineering, requirements engineering and software architecture and program organ-
isation methods — emphasising such that relate these in mathematical as well as
technical ways: (1) Intrinsic, support technology, management & organisation, rules
& regulation, and human behaviour facets of domains; (2) projection, instantiation,
extension and initialisation of domain requirements, etc.; (3) software architectures
as refinements of domain requirements, and program organisation as refinements of
machine requirements — with interface requirements (currently) being refinements
of either and both!
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chronological order, to (the late) Cai Kinberg, Gunnar Wedell, Jean Paul Jacob,
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