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Abstract Domain engineers describe universes of discourse such as bookkeeping, the

financial service industry, container shipping lines, logistics, oil pipelines, railways, etc.

In doing so domain engineers have to decide on such issues as identification of that

which is to be described; which of the describable phenomena and concepts are (to

be described as) entities, operations, events, and which as behaviours; which entities

are (to be described as) continuous which are (. . . ) discrete, which are (. . . ) atomic,

which are (. . . ) composite and what are the attributes of either and the mereology of

composite entities, i.e., the way in which they are put together from sub-entities. For

each of these issues and their composite presentation the domain engineer has to decide

on levels of abstraction, what to include and what to exclude.

In doing so the domain engineer thus has to have a firm grasp on the a robust un-

derstanding and practice of the very many issues of description: what can be described,

identifying what is to be described, how to describe, description principles, description

techniques, description tools and laws of description. This paper will outline the issues

in the slanted type font.

One issue, ‘mereology’, was studied, in a wider setting, by the Polish philosopher

and mathematician Stanis law Leśhniewski, in the 1920s [55,66]. We shall relate our

work to that of Leśhniewski and those of his followers who have suggested axiomatisa-

tions of various forms of mereology [53,23,52,24,22].

Similar issues, it appears, were studied, also in a wider setting, by Bertrand Russel

in his lectures in 1918 and published in the Monist Journal, vols. XXVIII-XXIX in

1918-1919 [63]. In this essay we shall sketch how we see the rôle of “applied logical

atomism” in domain engineering.
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1 Introduction

This paper may seem to “waver” between computing science and philosophy. In this

introduction we will assume that the reader has read the abstract and then mention

two strands of philosophical discourse cum mathematical logic around which this paper

revolves.

1.1 On Trying to Understand The World

We focus on two strands of discourse: mereology and Bertrand Russell’s Philosophy of

Logical Atomism.1

1.1.1 Mereology

From ancient time and, perhaps, culminating in the 20th Century, thinkers have specu-

lated on the logical structure of the world. Aristotle [3, Metaphysics, Book IV, Chapter

2] was perhaps the first person to consider the part-whole relationship. But it was not

until the 1920s that the Polish mathematician Stanis law Leśniewski gave a formal

treatment [54]. Woodger [77] and Tarski [68] made use of a specific adaptation of

Leśniewski’s work as a basis for a formal theory of physical things and their parts. The

term ’calculus of individuals’ was introduced by Leonard and Goodman [53] in their

presentation of a system very similar to Tarski’s adaptation of Leśniewski’s mereology.

Slightly earlier than Leśniewski’s development of his mereology, Whitehead [74] and

[73, The Concept of Nature] was developing a theory of extensive abstraction This

system, according to Russell [60], was to have been the fourth volume of their Prin-

cipia Mathematica, the never-published volume on geometry. Both Leśniewski [54] and

Tarski [69, Foundations of the geometry of solids] have recognized the similarities be-

tween Whitehead’s early work and Leśniewski’s Mereology. Nelson Goodman mediated

the Calculus of Individuals in [31, The Structure of Appearance]. Goodman had earlier

used the Calculus of Individuals in his Ph.D. dissertation thesis [32, A Study of Qual-

ities, 1940]. As in his joint paper with Leonard, he used the calculus as an addition to

set theory to solve a problem known as the ‘difficulty of imperfect community’ (Rudolf

Carnaps [21, Der Logische Aufbau der Welt]).

The field of mereology is still active, now part, mostly of computer science. Active

researchers are Barry Smith [65, Mereotopology: A Theory of Parts and Boundaries],

Achille C. Varzi [72, Spatial Reasoning in a Holey World2] and [71, On the Boundary

between Mereology and Topology], and others.

1.1.2 Logical Atomism

Along a different line Bertrand Russell [63, Philosophy of Logical Atomism] (and [64,

Vol. 8, Part III, Chap. 17, pp 157–244]) expressed a metaphysics which we summarise

as:

1 We spell mereology with lower case first letter as mereology is a concept that is not unique
to its researchers whereas Bertrand Russell’s Philosophy of Logical Atomism is.

2 holey: something full of holes
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the world consists of a plurality of independently existing things exhibiting qualities

and standing in relations; all truths are ultimately dependent upon a layer of facts

and these facts consist of either a simple particular exhibiting a quality, or multiple

simple particulars standing in a relation.

Russell also expressed a methodology for doing philosophy:3:

The methodology consists of a two phase process.

The first phase is dubbed the “analytic” phase (although it should be noted that

sometimes Russell used the phrase “analysis” for the whole procedure). One begins

with a certain theory, doctrine or collection of beliefs which is taken to be more

or less correct, but is taken to be in certain regards vague, imprecise, disunified,

overly complex or in some other way confused or puzzling. The aim in the first

phase is to work backwards from these beliefs, taken as a kind of ”data”, to a

certain minimal stock of undefined concepts and general principles which might be

thought to underlie the original body of knowledge.

The second phase, which Russell described as the “constructive” or “synthetic”

phase, consists in rebuilding or reconstructing the original body of knowledge in

terms of the results of the first phase. More specifically, in the synthetic phase, one

defines those elements of the original conceptual framework and vocabulary of the

discipline in terms of the “minimum vocabulary” identified in the first phrase, and

derives or deduces the main tenets of the original theory from the basic principles

or general truths one arrives at after analysis.

Together the two, the metaphysics and the methodology expresses an essence of Rus-

sell’s ‘Philosophy of Logical Atomism’. We shall, in this paper, relate this philosophy

to domain science.

• • •

We shall examine our model (Sect. 6.2) of mereology in the light of proposed axiom

systems for mereology Sects. 6.3–6.4, as well as with respect to Russell’s Philosophy of

Logical Atomism, Sect. 7. In addition to discussing Russell’s ideas in Sect. 7, we shall

repeatedly be referring to those ideas, especially in Sect. 5.

1.2 The Triptych Dogma

The present topic crystallized during the writing of [14]. During the writing of [5–7] I

treated the problem of “what we can describe”4 in a less than, to me, fully satisfactory

way. In now writing my possibly last book [14], if ever accepted by the publisher, I

had better do a more thorough job of understanding the issues now dealt with in this

paper.

The background for our inquiry is that of the triptych dogma for software engi-

neering: “software cannot be designed without a robust understanding of the require-

ments”; and “requirements cannot be prescribed without a robust understanding of the

3 http://plato.stanford.edu/entries/logical-atomism/
4 [what we can describe] of phenomena and concepts in at least those universes of discourse

whose description, via requirements, eventually lead to computing
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domain.”5 Software designs are specified, requirements are prescribed and domains are

described. Michael Jackson expresses this as follows: descriptions are indicative, pre-

scriptions are optative and designs are imperative [39].6

The emphasis in this paper is on descriptions. The issues are what can be described,

identifying what is to be described, how to describe, description principles, description

techniques, description tools and laws of description. Since, as we show elsewhere, [7,10,

14], requirements prescriptions can be readily “derived” from domain descriptions, and

designs developed through requirements refinement, our study of these issues “carry

over” to prescriptions and designs.

In ideal software engineering, one that is hardly attainable, one would therefore

proceed, linearly, from domain engineering via requirements engineering to software

development. In actual practice, professional software development proceeds through

iterations between these three phases, forward and backward. This has been well illus-

trated in Michael Jackson’s Problem Frame approach [40].

1.3 Structure of Paper

Section 2 illustrates a domain description. It is that of simple (road, rail, shipping

and/or air-lane) networks of hubs (road intersections, train stations, harbours, airport)

and links (road segments, tracks between train stations, shipping lanes, air lanes).

We illustrate only two facets, simple entities and operations, leaving out events and

behaviours without loss of generality.

Section 3 sketches an answer to the question “what are domains” — with the rest

of the paper more-or-less completing that answer.

In Sect. 4 we briefly survey the phases, stages and steps of domain engineering, some

administrative, some technical/clerical, some engineering and some clearly bordering

between engineering and research. That section thus provides a capsule overview of

‘domain engineering’.

Section 5 then focuses on “what can be described” and “how do we describe”. The

section expresses a number of dogmas. These are referred back to Bertrand Russell’s

thoughts on “description theory” [61,62,75].

Section 6 outline one aspect of ‘descriptions’: that of dealing with parts and wholes,

including relations between parts and parts to the whole. This subject is called ‘mere-

ology’. It first received its current forms of axiomatic treatment through the works of

Stanis law Leśniewski [55,66].

Section 7 reviews Sect. 5 in light of Bertrand Russell’s Philosophy of Logical Atom-

ism [63].

Finally Sect. 8 overviews a number of laws of description.

Section 9 concludes the paper.

2 An Example Domain Description

1. There are hubs and links.

5 I thank Dino Mandrioli for his rewording of my: “before software can be developed we must

understand the requirements; before requirements can be prescribed we must understand the

domain.”.
6 Michael Jackson, especially in his delight- and thoughtful [39], comes very close to several

of the issues of the present paper.
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2. There are nets, and a net consists of a set of two or more hubs and one or more

links.

type

1 H, L,

2 N = H-set × L-set

axiom

2 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

3. There are hub and link identifiers.

4. Each hub (and each link) has an own, unique hub (respectively link) identifiers

(which can be observed from the hub [respectively link]).

type

3 HI, LI

value

4a obs HI: H → HI, obs LI: L → LI

axiom

4b ∀ h,h′:H, l,l′:L • h 6=h′ ⇒

obs HI(h) 6=obs HI(h′) ∧ l6=l′⇒obs LI(l) 6=obs LI(l′)

In order to model the physical (i.e., domain) fact that links are delimited by two hubs

and that one or more links emanate from and are, at the same time incident upon a

hub, we express the following:

5. From any link of a net one can observe the two hubs to which the link is connected.

(a) We take this ‘observing’ to mean the following: From any link of a net one can

observe the two distinct identifiers of these hubs.

6. From any hub of a net one can observe the one or more links to which are connected

to the hub.

(a) Again: by observing their distinct link identifiers.

7. Extending Item 5: the observed hub identifiers must be identifiers of hubs of the

net to which the link belongs.

8. Extending Item 6: the observed link identifiers must be identifiers of links of the

net to which the hub belongs

We used, above, the concept of ‘identifiers of hubs’ and ‘identifiers of links’ of nets. We

define, below, functions (iohs, iols) which calculate these sets.

value

5a obs HIs: L → HI-set,

6a obs LIs: H → LI-set,

axiom

5b ∀ l:L • card obs HIs(l)=2 ∧
6b ∀ h:H • card obs LIs(h)≥1 ∧

∀ (hs,ls):N •

5a ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒

∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧
6a ∀ l:L • l ∈ ls ⇒

∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}
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7 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)

8 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value

iohs: H-set → HI-set, iols: L-set → LI-set

iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}

iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

In the above example we have focused on just five entities: nets, hubs, links and

their identifiers. The nets, hubs and links can be seen as separable phenomena. The

hub and link identifiers are conceptual models of the fact that hubs and links are

connected — so the identifiers are abstract models of ‘connection’, or, as we shall later

discuss it, the mereology of nets, that is, of how nets are composed. These identifiers

are attributes of entities.

We have not mentioned other attributes of hubs and links — such as their ‘location’,

‘name’, ‘length’ of links, ‘modality’ of hubs and links, i.e., whether of road, rail, ship

or aircraft modality, etc. And we have not mentioned attributes of nets — such as

‘in which country a net is located’, ‘which authority has responsibility for the net’,

‘whether a road link is a freeway, a toll road, or other’, etc.

3 What Are Domains ?

When, in this paper and elsewhere, we speak of domains, we speak primarily of man-

made universes of discourse, interacting with the universe such as studied by physicists

(including chemical scientists). We listed a few references to ‘domains’ in the first

sentence of the abstract. We list two more here, and, in parentheses we list some

representative simple entities, operations and events: the consumer market (consumers,

retailers, wholesalers, producers, distribution chain, goods, catalogues, etc.; inquire,

order, accept, payment, reject, return; erroneous shipment, failure of delivery; failure of

payment), and hospital health care (patients, medical staff, wards, beds, hospitalisation

plans, patient medical records; anamnese, analysis, diagnostics, treatment; declared

cured, declared dead).

3.1 An Attempt at A Characterisation: Domain Science versus Physics

Domain descriptions, such as we shall advocate them, emphasise the discrete logical

structure, properties and operations of the domain. Usually the number of observed

types of entities is large — of the order of up to several 100s. This is in contrast to

physics descriptions which appear to emphasise the the continuous behaviour of a few

— 5-10 types of — state variables.

Thus, what appears to characterise domains, say in contrast to physics, is the

immediate algebraic nature of the universe of phenomena and concepts of domains.

So a first mathematical cum computing science characterisation of domains focuses

on their being heterogeneous algebras: a finite set of indefinite sets of simple entities

(particulars) of different types and a finite set of operations whose signatures range

over entity types, including higher-order functions over these. Included in this first

characterisation is that the simple entities are usually discrete and either atomic or

composite and otherwise possess observable attributes.
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This is in contrast to the entities and operations of physics: usually infinite, usually

continuous, and seen (i.e., modelled) more as state variables satisfying differential and

integral equations and possessing statistical and probabilistic properties and otherwise

being representable in terms of real numbers of the types that can be derived from or

are directly expressed in terms of length, mass, time, electric current, thermodynamic

temperature, amount of substance and luminous intensity. Physics is the study of

matter and its motion through space-time and all that derives from these, such as

energy and force. More broadly, it is the general analysis of nature, conducted in order

to understand how the world and universe behave.

In physics (as characterised above) the physicists, in principle, do not include hu-

man actions and behaviours in their study.7

Domain scientists and domain engineers — the borderline between when one is

a domain scientists and one is a domain engineer is, at present, somewhat vague —

study the structures (entities) conceived and built by humans (the domain owners,

managers, designers, domain enterprise workers, etc.), and the operations that are

initially requested, or triggered, by humans (the domain users). More characterisations

follow below.

3.2 Tools of Domain Science & Engineering

The tools of domain scientists and engineers are those of careful, precise informal (i.e.,

narrative) natural language and likewise careful abstractions expressed in some formal

specification languages emphasising the algebraic and logical nature of entities and

their operations. That is, tools that originate with computer and computing scientists.

Why not use the same tools as physicists do? Well, they are simply not suited

for the problems at hand. Firstly the states of physics typically vary continuously,

whereas those of domains typically vary in discrete steps. Secondly the number of

state variables of physics do usually not vary, whereas those of domain do — whole

structures “collapse” or “expand” (sometimes “wholesale”, sometimes “en detail”).

Thirdly the models of physics, by comparison to those of domains, contain “only a few

types” of oftentimes thousands of state variables — almost all modelled as reals, or

vectors, matrices, tensors, etc., of reals, whereas those of domains contain very many,

quite different types — sometimes atomic, sometimes composite, but rarely modelled

(abstractly) in matrix form.

Models of physics, as already mentioned, express continuous phenomena. Models

of domains, as also already mentioned, express logic properties of algebraic structures.

For those and several other reasons the tools of physicists are quite different from

the tools of domain scientists and engineers.

In theoretical physics there is no real concern for computability. Mathematical

models themselves provide the answers. For domain engineering there is a real con-

cern for computability. The mathematical domain models often serve as a basis for

requirements for software, that is, for computing. Hence it was natural that the tools

of domain science and engineering originated with the formal specification languages

that were and are used for specifying software.

7 The claimed possibility that humans are the origin, through their use of fossil energy
sources, of the depletion of the ozone layer, does not mean that the physicists, in their model
include human actions and behaviours: if physicists do consider humans as the “culprits”, then
that still does not enter into their models !
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4 Domain Engineering

There are several stages to this initial phase of software development. These stages

are all carefully covered in [7,14]. Here we give but a condensed review. The purpose

of bringing this material is to point out all those stages, sub-stages and steps in the

development of a domain description in which descriptional issues occur. That is, all

those myriad of situations throughout the development process in which the software

(cum domain) engineer is expected to have a robust understanding and practice of

the very many issues of description: what can be described, identifying what is to be

described, how to describe, description principles, description techniques, description

tools and laws of description.

⋆ Information:8 Informative documents must be developed in which practical informa-

tion on the domain engineering project of developing a domain description is given:

project name; project partners (names, addresses, persons, etc.); the situation in

which the project takes place (problems of current understanding of the domain);

which need is there for a domain description; which ideas will a domain description

be based on; which are the main phenomena and concepts of the domain that will

be studied; what is the (wider) scope and the (narrower) span of the domain be-

ing investigated; a project plan (budget, financing, resource plan, etc.); standards

compliance; contracts and design briefs; logbook — etcetera. Although these docu-

ments are not explicitly describing, but at most “mentioning” domain phenomena

and concepts, several description issues do apply to their formulation.

Stakeholder Identification: Identification of and ongoing liaison with as wide a range of

domain stakeholders as possible: anyone with some engagement in the domain, from

“owners”, via managers, workers, users, suppliers, regulatory bodies, etc. must be

contacted and interacted with on a regular basis — as seen in the following.

⋆ Domain Acquisition: Knowledge about the domain, as see “through” the “eyes, hands

and brains” of each class of stakeholders must be gathered.

⋆ Business Process: Often domain acquisition can additionally be structured around

the rough sketching of some of the business processes of the domain.

⋆ Domain Analysis: What has been gathered of knowledge (and represented through

the domain acquisition units and business process sketches) must be analysed with

respect to (relative) completeness, inconsistencies and “factual” contradictions9.

Domain analysis is a first serious stage of domain model development in which

basic issues such as studied by Bertrand Russell are manifested. We shall treat

these throughout and summarise them in Sect. ??.

⋆ Terminology: Throughout a terminology must be established, clear definitions given,

adhered to, used and referred to in all relevant contexts and updated.

⋆ Domain Description: This stage could be seen as the crucial stage of domain engineer-

ing — the stage for which all the preceding stages prepare the domain engineer.

We shall comment on this stage below and in Sect. 5 in detail.

Domain Description Verification: During the development of the domain description,

and in its descriptional pre-stages: acquisition, analysis and terminology, the do-

main engineer, when formalising the domain description, will need to formally ver-

ify, model check and formally test tentative model descriptions.

7 The issues of this paper is of relevance to items marked ⋆.
9 Domain acquisition unit contradictions: Different stakeholder groups insist on the validity

of contradicting presentations of the domain such as they see it
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Domain Description Validation: All contacted and inquired stakeholder groups must

“sign off” on the informal domain description, that is, the narrative.

⋆ Domain Theory: The ultimate objective of having a domain description is that it

forms the core of a domain theory, a basis on which to study and develop a number

of propositions, lemmas, theorems and laws about the domain model — and hence,

in an informal sense, the domain.

There are several sub-stages of most of the above stages. Two of immediate interest to

our study are ‘Domain Acquisition’ and ‘Domain Description’:

Domain Acquisition: We briefly look at the most important sub-stages of domain ac-

quisition.

Sources: First one must identify, besides the stakeholders, “independent”, written

sources of knowledge about the domain being inquired: books, journal articles,

reports, the Internet (Wikipedia, etc.), etcetera. Equipped with what has been

ascertained though these sources, the domain engineer is better prepared to

meet the stakeholders.

Contacts: Personal contact must be made, on a regular basis, with each and every

stakeholder group. They must be privileged and authorised to follow any and

all emerging domain engineering documents.

Interviews: Interviews serve to ensure that domain engineers and stakeholder do

not “speak past one another”, i.e., have their “spinal chords harmonised” !

⋆ Questionnaires: From studying “independent” sources, from contacts and inter-

views the domain engineer may have to formulate and explain domain acquisi-

tion questionnaires for stakeholders to fill out.

⋆ Domain Description Unit Handling: These questionnaires lead to the itemisation,

annotation, multiple category classification and database registration of usually

a very large set of domain description units for purposes of study during the

domain analysis, terminology and description stages.

⋆ Domain Description: A domain description describes the inquired domain as it is, not

as the stakeholders and domain engineers would like it to be, not as requirements

to some computing & communication system, and certainly not in the form of

directives as concerns any software designs. There are several ways in which the

domain engineer can examine a domain. We list the most crucial such facets.

⋆ Domain Intrinsics: Initially one starts describing the very basic phenomena and

concepts of the domain — those on which the description of any of the following

facets must be based.

⋆ Domain Support Technologies: Often concepts — being defined in terms of de-

scribed phenomena (and other such concepts) — are abstract and hide crucial

“implementation” details. A support technology is then either a human or a

hard engineering gadget which represents these concepts. Example: A railway

switch, as a concept, is an entity that can take on either of a number of states

(typically 12), each modelling one or more of the paths of trains through the

switch: from the one end to the other, or vice versa, either along the straight

path of the switch, or the curved (“deviation”) path. Such an intrinsic model

may be ‘implemented’, as in “ye olde days”, by a railway worker throwing a

heavy counterweight and pulling or drawing the switch, or by mechanical wires

running over pullers etcetera to a cabin tower, or by electro-mechanical rendi-

tions of this, or by combining, as in modern day interlocks, the functioning of
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groups of switches by electronic and electro-mechanical means. �
10 Support

technologies must be described, not only when functioning correctly, but also

when failing to do so.

⋆ Domain Rules & Regulations: Domain rules describe how support technology and

humans are expected to behave in the domain. When it has been detected

that a domain rule has been “disobeyed”, a domain regulation stipulates how a

possibly erroneous situation might be “brought ajour”. Rules are like predicates:

they apply to pairs of states: pre- and post-states of actions. Regulations are

like actions to be applied in case a rule has been flaunted — with the action

bringing the domain into a state from which it is meaningful to proceed.

⋆ Domain Scripts: Scripts are like sets of rules & regulations, like “programs” to be

“carried out”, usually by humans, i.e., stakeholders of the domain.

⋆ Domain Management & Organisation: Managers set strategic, tactical and oper-

ational goals, see that there is a budget for achieving these, allocating and

scheduling resources, incl. people, to carry out these, and, as part of that,

formulating and enforcing rules & regulations and scripts. Organisations struc-

ture management and workers at all levels, functionally, administratively and

location-wise (possibly geographically widely dispersed).

⋆ Domain Human Behaviour: Some stakeholders behave “nicely”, as positively ex-

pected (by other stakeholders), others sometime behaves sloppily, yet others

more systematically behave in a delinquent manner, and finally there are those

who behave outright criminally. This “smooth” spectrum of behaviours must be

described. In addition one must describe the knowledge that humans may have

with respect to their tasks (and their expertise in carrying out these tasks) in

the domain: what they might know and believe (about other agents), promise

and commit (to other agents), what is necessary, probable and/or possible,

etcetera.

A domain description is then presented as a suitable “blend” of the above, not

necessarily with the above sub-stages each resulting in separate description parts.

[7, Part IV, Chaps. 8–16, pp 193–362] and the book [13] give many examples of domain

specifications. So does [14, draft textbook, submitted for evaluation].

5 On Domain Descriptions

In this section we shall cover the following description issues: what can be described,

how to describe, description principles, description techniques and description tools.

5.1 On Designation of Particulars

How do we get started on a description and how do we proceed ?

We refer to Sect. 1.1.2 on page 2 whose indented paragraphs on ‘metaphysics’ and

‘methodology’ strongly hints at our approach.

The ‘metaphysics’ paragraph suggests that one starts with atomic entities. We

mostly choose to start with atomic simple entities, but sometimes we start by first

10 � designates ‘end of example’.
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identifying atomic, or, as we shall call them, primitive operations. The ‘methodology’

paragraph tells us to first analyse these atomic entities and then their compositions.

The above approach shall determine our approach to domain description. An em-

phasis will then be to identify and describe the plurality of independently existing

things, their qualities and how they relate to other things.

In Sect. 2 we only recorded a result of a synthetic phase.

The domain engineering stages of ‘Domain Acquisition’, ‘Business Process Sketch-

ing’, and ‘Domain Analysis’ exemplify analytic stages and the domain engineering

stages of ‘Terminoligisation’ and ‘Domain Description’ exemplify synthetic stages.

5.2 Narrative and Formalisation, Domain and Model

In different contexts, that is, for different aspects of a domain to be described, we

may use one or another such formal notation, i.e., formal specification language, even

plain mathematics11 In this paper we shall be using the RAISE specification language

RSL [30,5–7,29]. For large fragments domains we could as well use Alloy [38], B [1,

20], Event B [2], VDM-SL [17,18,28,27]] or Z [76,34]. For other domain fragments we

may additionally need to deploy Duration Calculus (DC) [78,79], Message Sequence

Charts (MSC) [35–37], Petri Nets [57–59], Statecharts [33] and/or Temporal Logic

of Actions (TLA+) [41,56].

[16] covers several of these and some other formal specification languages.

Based on the ‘resolution’ of Sect. ?? we can now make precise what we mean

syntactically by a ‘description’.

• To us a ‘description’ is presented as a sequence of pairs of related narratives and

formalisations.

• Each formalisation either defines a class (i.e., type) of simple entities, or a function

(including a behaviour), or a communication medium between behaviours (as well as

the type of channel events).

• The simple entities, functions, events and behaviours portray phenomena observable in

the domain or concepts formed from such.

We illustrated such a sequence in Sect. 2. The narrative is a precise natural language

presentation of facts about a domain.

Semantically a formal, mathematical description

• denotes whatever is prescribed by the semantics of the formal specification being used,

usually this is some mathematical structure;

• in the case of RSL it is a set of algebras, i.e., mappings from type, function, etc. names

to mathematical structures as constrained by the axioms.

Pragmatically an informal, narrative description

• designates, for each of its named simple entities, functions, events and behaviours a

corresponding phenomena, “out there”, in the actual domain, while

• the relation between the informal narrative names and the real, designate phenomena,

is informal.

11 A formal specification language has a precise syntax, a precise semantics and a more-or-less
comprehensive set of proof rules. Mathematics does not.
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The intended relationship between informal text parts and the mathematical formula

parts must therefore be kept as “obvious” as possible so that we can have a high trust

in the mathematical model of the formalisation.

5.3 What Is It That We Describe ?

Instead of using the term ‘particulars’ we shall, in the following, use the term ‘entities’.

So we describe entities, that is: phenomena and concepts.

5.3.1 Time/Space Facts and Universals

We consider domains, that is, predominantly human-made universes of discourse, to

exemplify a wide variety of independent and time/space phenomena as well as what

Russell calls universals (we shall soon characterise what is meant by ‘universals’). For

us, a domain phenomenon exists spatially if it can, at any one time of its existence,

be located in space. For us, a domain phenomenon exists temporally if it can be “pin-

pointed” in time (and hence space). No two distinct, independent and time/space

phenomena can occupy the same spatial location at any one time. Let us call the

independent and time/space phenomena by the name ‘time/space facts’.

In addition to time/space facts there are the (non-time/space fact) domain univer-

sals.

5.3.2 Concepts

And there are concepts and these are defined in terms of time/space and universal

facts and other concepts. Concepts are abstractions and, we decide, concepts may

have time/space relations. Such concepts would typically be simple, rather immediate

abstractions of time/space and/or universal facts.

5.3.3 An Ontology of Phenomena and Concepts

These phenomena (facts) and concepts may, for practical, i.e., ease of mastering de-

scriptional complexity, be considered entities of either of four kinds: simple entities,

operations (over entities), events (involving change of some entity values), and be-

haviours — the latter as sets of sequences of possibly coordinated (synchronised, timed)

operations and events.

5.3.4 Simple Entities

We shall just consider ‘simple entities’. We use the name ‘simple entities’ in contrast

to ‘entities’ which we see as comprising all simple entities, functions, events and be-

haviours. “Interesting” functions and normal events involve all forms of entities.

Simple entities are, as mentioned: “separately existing things”. These “things” ex-

hibit qualities, i.e., possess values, or more precisely, have a number of one or more

attributes (of type and value) and zero, one or more sub-entities, the totality of which

can be said to exhibit a simple entity value. These “things” can also relate to other

things such as being part of another simple entity or being “together” with other similar

things, i.e., standing in some relation to other “things”.
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Continuous and Discrete Simple Entities: A simple entity is either continuous or is

discrete, and then it is either atomic or composite.

A simple entity is said to be continuous if it can be arbitrarily decomposed into

smaller parts each of which still remain simple continuous entities of the same simple

entity kind. In this paper we shall not further consider continuous entities.

A simple entity is said to be discrete if its immediate structure is not continuous.12

A simple discrete entity may, however, contain continuous sub-entities.13

By an attribute we mean a property of an entity. Typically we express attributes

by a pair of a type designator: the attribute is of type V , and a value: the attribute

has value v (of type V , i.e., v : V ). A simple entity may have many properties.

Simple Entities versus Attributes: We make a distinction between simple entities and

attributes. Simple entities are phenomena or concepts that have separate existence;

that may be separate parts of other simple entities; that may (thus) be composed into

other (composite) simple entities; and that otherwise possess one or more attributes.

Attributes are properties of simple entity phenomena and concepts that together form

atomic simple entities, or characterise composite entities apart, i.e., in isolation from

their sub-entities; that cannot be “removed” from a simple entity otherwise possessing

such attributes; and that may be modelled as values of simple or composite types.

When, above, we spoke of ‘universals’, we now speak of attributes, that is, Russell’s

notion of ‘universal’ is equated with our use of ‘attribute’.

A Spatial Phenomenon: Some phenomena (p:P) enjoy the meta-linguistic “L prop-

erty”, L for Location. Let any phenomenon and its derived concepts be subject to the

meta-linguistic predicate, has L, and function, obs L:

type

P, C, L, E = P|C
value

∅:L
has L: E → Bool

obs L: E
∼

→ L, pre obs L(e): has L(e)

=,6=: L × L → Bool

⊓,⊔: L × L → L

⊏,⊑: L × L → Bool

axiom

∀ e,e′:E•has L(e)∧has L(e′)∧e6=e′ ⇒ obs L(e)⊓obs L(e′)=∅

The location point space, L, the empty location, ∅, and the operations =, 6=,⊔,⊓, ⊏

and ⊑ are defined using standard mathematical topology.

The axiom expresses that two observable, i.e., phenomenological (simple) entities

that both enjoy the has L property, have distinct, non-overlapping locations.

We consider L to be an attribute of those phenomena (and concepts) which satisfy

the has L property.14

12 Yes, in view of the previous statement this is, of course, a “cop out”.
13 The “cop out” is being further compounded!.
14 For concepts one really should speak of conceptual locations, say ℓ:L, rather than “real”

locations.
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Universals, that is, attributes of entities (that may enjoy the has L property), do

not satisfy the has L property.

Examples of observable phenomena, that do not enjoy the has L property, are:

voltage, a person’s age, the colour red, etc. �

Atomic and Composite Entities: From now on we restrict our inquiry to discrete,

existing independent simple entities.

Atomic Entities: A simple entity is said to be atomic if it cannot be meaningfully

decomposed into particulars where these particulars have a useful “value” in the context

in which the simple entity is viewed and while still remaining an instantiation of that

entity.

The only thing characterising an atomic entity are, to us, its attributes.

Examples: Possible attributes of link simple entities, of the example of Sect.2,

could be (i) length; (ii) whether of modality ‘road’, ‘rail track’, ‘sea lane’, ‘air lane’,

or other; (iii) if of modality ‘road’, then whether a ‘dirt road’, ‘bituminous’, ‘asphalt’,

‘concrete’, or other; (iv) state-of-repair; (v) exact curve properties; (vi) freeway or toll

road; (vii) public or private; (viii) on solid ground, through a tunnel or over a bridge;

etcetera. �

Each of these and other kinds of simple entity attributes (i.e., universals) are of

conceptual nature, they have no separate existence, but they can be measured (sensed,

etc.), and one cannot “remove” a single one of them without the simple entity “loosing”

its status as it has been described. We do not rule out that there might be simple

entities, of type E, which may possess a proper subset of the attributes of simple

entities of another type, E′.

Composite Entities: A simple entity, c, is said to be composite if it can be mean-

ingfully decomposed into sub-entities that have separate meaning, separate existence,

in the context in which c is viewed.

We view a composite entity as fully characterised by (i) its attributes, (ii) its sub-

entities, and (iii) their mereology (See Sect. 6 on ‘Mereology’). That is: We view sub-

entities (say the links and hubs of the example in Sect. 2) independent of how they are

put together and independent of the attributes of the simple entity of which they are

a part (that is, of the net of the example in Sect. 2). And we view a composite simple

entity’s attributes independent of its sub-entities and independent of the mereology of

these sub-entities.

Examples of attributes of discrete, composite simple entities are: (a) Transport

Nets: (a1) owner of net (name etc. of ‘regional’, ‘state’, ‘provincial’, ‘city’, etc. ‘au-

thority’), (a2) net modality (‘freeway’, ‘toll road’, ‘canal’, ‘river’, . . . ), (a3) geographic

area of the net (within continent, region, country, province, . . . ), etcetera. (b) Con-

tainer Line: (b1) administrative information (owner name, addresses, etc.), (b2) line

modalities (one or more of ‘coastal’, ‘internal waterway’, ocean’, or other kinds of sea

lanes), (b3) possible container constraints or specialties (one or more of ‘20 feet’, ‘40

feet’, ‘non-explosive’, ‘explosive’, ‘flammable’, ‘inflammable’, ‘reefer’, etc.), etcetera. (c)

Pipeline System: (c1) owner (administrative information: name, addresses, etc.), (c2)

gas and/or oil pipeline(s), (c3) geographic area of the net (within continent, region,

country, province, . . . ), etcetera. �

Examples of sub-entities of discrete, composite simple entities are: (d) Railway

Systems: (d1) net railway (itself a composite transport net, including signals, etc.), (d2)

trains (themselves composite: locos, passenger cars, freight cars, etc.), (d3) timetables,
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(d4) rostering tables, etcetera. (e) Financial Service Industry: (e1) financial instru-

ments (coins, notes, stocks, bonds, deeds, etc.), (e2) banks, brokers, traders, com-

modities exchanges, portfolio managers, insurance companies, etc., (e3) accounts (de-

mand/deposit, mortgage, etc.), (e4) regulatory bodies (in the US: Commodities Fu-

tures Trading Commission (CFTC), Federal Deposit Insurance Corporation (FDIC),

Federal Reserve Board, Office of the Comptroller of the Currency (OCC), Security &

Exchange Commission (SEC)), etcetera. (f) Logistics: (f1) freight, (f2) senders and re-

ceivers, (f3) logistics firms, (f4) transport companies (trucking, freight train operators,

cargo airlines, line, tramp and bulk shipping companies), (f5) transport timetables, (f6)

bill-of-lading, way-bill, etc., etcetera. �

5.3.5 Operations, Events and Behaviours

Many of the issues discussed here in connection with simple entities carry over to

operations, events and behaviours. We shall however refrain from including such a

special study into this paper. Instead we refer to [15, Eir & Bjørner] where we also

examine composite operations, events and behaviours.

5.3.6 Discussion

Almost all the statements of Sect. 5.3.4 are not expressed in a discursive way of rea-

soning such as one would express it in a philosophical treatise. Perhaps they ought to

be so expressed. For each of these many statements we ought — had this been a philo-

sophical treatise supposedly complementing or in contrast to Russell’s thoughtful and

reasoned arguments [61–64] — to have discussed alternative ways of looking at simple

entities, of their modelling, of relations between narrative English and mathematical

formalisations. We, regretfully, dispense with this philosophising, in this paper. Instead

you may read Sect. 5.3.4 as the way in which a computing scientist, on the background

of 50 years of computer science, interprets Russell’s ideas — albeit in a “slightly” (?)

narrower context !

6 Mereology

6.1 General

“Mereology (from the Greek µρǫo), ‘part’) is the theory of part-hood relations: of the

relations of part to whole and the relations of part to part within a whole. It is not

until Leśniewski’s Foundations of a General Theory of Manifolds (1916, in Polish) that

a pure theory of part-relations was given an exact formulation. Because Leśniewski’s

work [55,66] was largely inaccessible to non-readers of Polish, it is only with the pub-

lication of Leonard and Goodman’s The Calculus of Individuals ([53, Goodman 1940])

that mereology has become a chapter of central interest for modern ontologists and

metaphysicians.”15

Our interest in mereology was first “awoken” by presentations, in the IFIP Working

Group 2.3 in the 1980s and 1990s, by the late Douglas Taylor Ross16.

15 Stanford Encyclopedia of Philosophy / Wikipedia
16 http://en.wikipedia.org/wiki/Douglas T. Ross
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We shall now present an example which is claimed to capture an essence of the

kind of mereologies that are covered in [22].

6.2 A Model of Mereology

The example is claimed to be generic. When shown as diagrams, the boxes–within–

boxes and the “fat”, black connectors that “criss-cross” boxes — of Fig. 1 — can be

shown to “mimic” the structure of such infrastructure components.

Examples: air traffic, a financial service industry, a pipeline system, a railway

system, etcetera. Similarly the formula parts (for boxes and connectors) thus relate to

phenomena of such systems. For air traffic some boxes are aircraft, others are ground

or terminal control towers, yet others are regional and continental control centers,

etc. Connectors of air traffic are the radio-telephone paths that allow communication

between air traffic equipment and staff. For a railway system some boxes are train

stations, others are railway tracks (lines) between stations — with stations and lines

consisting of embedded boxes in the form of rail units: linear, switches, crossovers, etc.

Connectors compose boxes into meaningful track layouts and signalling paths. �

We speak of systems, s:S, as assemblies (below referred to as a:A). From an as-

sembly we can immediately observe, obs Ps, a set of particulars. Particulars are either

assemblies or units. For the time being we do not further define what units are.

type

S = A, U, P = A | U

value

obs Ps: A → P-set

Particulars observed from a assembly are said to be immediately embedded (or within)

in that assembly; and two or more particulars observed from an assembly are said to

be immediately adjacent to one another.

Figure 1 illustrates a hypothetical composite entity17.

Embeddedness and adjacency generalises to transitive relations.

All particulars observable from a system are distinct.

Given obs Ps we can define a function, xtr Ps, which applies to an assembly, a, and

which extracts all particulars properly embedded in a. The functions obs Ps and xtr Ps

define the meaning of proper embeddedness.

value

xtr Ps: A → P-set

xtr Ps(a) ≡
let ps = obs Ps(a) in ps ∪ ∪{xtr Ps(a′)|a′:A•a′ ∈ ps} end

Particulars have unique identifiers, PI.

17 Figures 1 on the next page and 2 on page 18 only serve to illustrate the formulas. In a
domain description we do not give instances of figures of simple entities such as the generic
ones here. Instead we present sorts (as here, where L, H, LI, HI, PI, K and KI are sorts, and types
(as here, where P is defined in terms of L and H, and where axioms using observer functions
impose an appropriate syntax on how simple entities are composed.
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Fig. 1 Assemblies and units embedded in an environment

type

PI

value

obs PI: P → PI

axiom

∀ a:A •

let ps = obs Ps(a) in

∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′6=p′′ ⇒ obs PI(p′) 6=obs PI(p′′) ∧

∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

We shall now add to this a rather general notion of particulars being otherwise related.

That notion is one of connectors, k:K.

Connectors may, and usually do provide for connections — between particulars. A

connector is an ability be be connected. A connection is the actual fulfillment of that

ability. Connections are relations between two particulars. Connections “cut across”

the “classical” particulars being part of the (or a) whole and particulars being related

by embeddedness or adjacency.
Figure 2 “repeats” Fig. 1 but “adds” connectors. The idea is that connectors allow a

assembly to be connected to any embedded particular, and allow any two (transitively)

adjacent particulars to be connected.

In Fig. 2 assembly A is connected, by K2, (without, as we shall later see, interfering

with assembly B1), to part C11; the “outermost” assembly is connected, by K1 to B1,

etcetera.

From a system, i.e., an assembly, we can observe, obs Ks, all its connectors. From a

connector we can observe, obs KI, its unique connector identifier, KI, and the set of

two (like an unordered pair of) identifiers, obs PIp, of the particulars that the connec-

tor connects, All particular identifiers of system connectors identify particulars of the

system. All observable connector identifiers of particulars identify connectors of the

system.
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Fig. 2 Assembly and unit connectors

type

K

value

obs Ks: S → K-set

obs KI: K → KI

obs PIp: K → PI-set

obs KIs: P → KI-set

axiom

∀ s:S,k:K • k ∈ obs Ks(s) ⇒ ∃ p:P • p ∈ xtr Ps(s) ⇒ obs PI(p) ∈ obs PIp(k),

∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒ ∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

This model allows for a rather “free-wheeling” notion of connectors one that allows

internal connectors to “cut across” (even transitively) embedded and (transitively)

adjacent particulars.

We may need to define an auxiliary function. xtr∀KIs(p) applies to a system and

yields all its connector identifiers.

value

xtr∀KIs: S → KI-set

xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

There is an aspect of assemblies and units that we have not mentioned. You may,

“mereologically speaking”, think of that aspect as the “white space” within the borders

of a unit box, and within the borders of an assembly box exclusive of that assembly

box’s embedded assemblies and units. Let us associate a notion of state, i.e., a state,

that is, set of static and dynamic attributes of assemblies and units, with that “white

space” !

type

Σ
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value

obs Σ: P → Σ

In axiomatic mereology there is a notion of overlap. Overlap, to us, has to do with two

“white spaces” of distinct particulars. Connectors between such particulars can then

be interpreted as also providing for overlaps.

The above model is now claimed to be a model of axiom systems proposed in the

literature [22].

• • •

This ends our model of a concept of mereology. The particulars are those of assemblies

and units. The relations between particulars and the whole are, on one hand, those of

embeddedness and adjacency, and on the other hand, those expressed by connectors:

relations between arbitrary particulars.

6.3 Relation to The Casati Varzi Mereology [22]

6.3.1 “Classical” Mereology Operators

Typically part/whole relations for mereologies in [22] are:

• Pxy: x is a part of y,

• PPxy: x is a proper part of y,

• Oxy: x and y overlaps and

• Uxy: x and y underlap.

We refer to [22] for axioms over these operators. We now give but one of many possible

interpretations of the above part/whole relations. The interpretation is with respect

to the model given in Sect. 6.2. We apologize for the “double” use of the term ‘part’:

when we use the slanted sans serif font ‘part’ we refer to a p:P, and when we use the

teletype font ‘part’ we me the relationship designated by P or PP. The mereology

operator P is taken as a primitive. The other mereology operators, PP, O and U are

defined in terms of P .

• Pxy: x is a part of y.18

⋆ A part is a part of itself; attributes of a part are parts of that part.19

• PPxy: x is a proper part of y: PPxy ↔ (Pxy∧ ∼ Pxy).

⋆ Parts of an assembly are proper parts of that assembly. Any proper subset

of attributes of a part are proper parts of that part.

• Oxy: x and y overlaps: Oxy ↔ ∃z[Pzx ∧ Pzy].

⋆ Two parts that are connected overlap. If two or more attributes of a part

are not (mutually) independent, that is, these dependent attribute values

stand in some relation to one another, then these attributes overlap.

• Uxy: x and y underlap if there exists an object z such that x and y are both parts

of z: Uxy ↔ ∃z[Pxz ∧ Pyz]

⋆ If two or more parts are contained in some assembly, a, then these con-

tained parts underlap with a.

18 The • (bulleted) statement(s) expresses an informal definition of the mereology operator.
19 The ⋆ (starred) statement(s) interprets the • (bulleted) statement(s) in terms of the model

of mereology given in Sect. 6.2.
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6.3.2 Discussion of Our Interpretation

First we remind the reader that we have given but one of many possible interpretations

of the part/whole relations.

We could have given other interpretations; for example: (i) we could have omitted

any reference to part attributes; (ii) we could have restricted overlap to relate to only

specifically characterised connectors; (iii) or both (i–ii).

The scope of our discussion will now be enlarged to cover other kinds of mereologies.

6.4 Discussion

We have partially covered the mereological system of [22, Casati & Varzi, 1999]. There

are other mereological systems.

In [23, Bowman L. Clarke, 1981] (A Calculus of Individuals Based on ‘Connection’)

a mereology operator, C, for ‘connected’20, is the primitive in terms of which the

above operators (P ,PP,O, and U) can be defined. The intuition behind the Connected

operator, however, makes it of less interest to us: that intuition implies a notion of

points which we do not wish to bring into our models of man-made infrastructure

components. Bowman L. Clarke’s system allows definition of external and internal,

as well as tangential connectedness. [24, Bowman L. Clarke, 1985] (Individuals and

Points) further elaborates on this, for our purpose, “uninteresting” concept of points.

In [72, Achille C. Varzi, 1993] (Spatial Reasoning in a Holey21 World), in [71, Achille

C. Varzi, 1994], (On the Boundary between Mereology and Topology) and in [65,

Barry Smith, 1996] (Mereo-topology: A Theory of Parts and Boundaries), extensions

to the operators covered above (i.e., (P ,PP ,O, and U) are applied to cover topological

spaces. It would be interesting to study these papers further in order to determine

their relevance to the modelling of the man-made infrastructure components in which

we are interested.

In closing this section on ‘mereology’ we claim (i) that our model of mereology

is in line with main-stream axiom systems for the kind of mereologies that Stanis law

Leśniewski studied, (ii) that that model covers of a large class infrastructure compo-

nents which we have so far modelled22, and (iii) that, apparently, we do not need a

more sophisticated concept of mereology than covered by [22].

7 Bertrand Russell’s Philosophy of Logical Atomism

7.1 A Metaphysics and a Methodology

Russell described his philosophy, which he referred to as ‘Logical Atomism’, as based

on both a metaphysical view and a way (a methodology) of doing philosophy.

We refer to the indented ‘metaphysics’ and the ‘methodology’ paragraphs of Sect. 1.1.2

(Pages 3–3) for their characterisation.

20 The Connected operator is not to be confused with the connectors, k:K, of our model.
21 holey: something full of holes
22 [4, The Market], [19, Railways], [9, Financial Service Industry], [8, A Container Line In-

dustry], [12, Logistics], [11, Oil Pipelines], etcetera.
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The reason we are interested in Russell’s ‘Logical Atomism’ is that its metaphysical

view and its methodology — although meant for philosophical inquiry — very much

resembles our view of the metaphysics of domains and the method by which domain

analysts analyse.

We refer to [64, Vol. 8, Part III, Chap. 17, pp 157–244, same as [63]]. Russell’s

writings on ‘Logical Atomism’ contains several sub-topics. We shall next examine some

of these.

7.2 A Logically Ideal Language

The analysis part of the methodology, Russell claimed, would eventually result in a min-

imal language containing only words for simple particulars and concepts, their simple

properties, relations amongst these and logical constants — a language which could

adequately capture all truths; that is, other particulars and concepts can be defined

and the most general and basic principles can be derived. In the minimal language the

simplest of complete sentences, containing just a single predicate or verb representing

a quality (i.e., an attribute) or a relation over simple entities, would be what Russell

called atomic propositions. The truth of an atomic proposition then depends on a single

atomic fact. Molecular propositions are then formed by combining atomic propositions

using the logical connectives. Existential or general propositions are formed by replac-

ing proper constituents of simpler propositions by variables and prefixing a universal or

an existential quantifiers. Hence atomic facts are at the core of Russell’s metaphysics.

Instead of first using only informal language to narratively describe domain facts we

advocate, motivated by Russell’s Logical Atomism, both using precise formal language

and to couple statements in that formal language to informal narratives — each in

their way describing the domain. In our case we use a partly algebraic, that is a logical

language over sorts, partly a model-oriented language over mathematical structures

such as sets, Cartesians, lists, maps (i.e., finite definition set functions) and functions.

7.3 A Monadistic View of Domain Modelling

Russell opposed the “doctrine of internal relations” (every relation is grounded in the

natures of the related terms) and instead expressed [62, Page 221] “it is a common

opinion . . . that all propositions ultimately consist of subject and predicate”. An in-

terpretation of this is: “Given, say, the proposition aRb, where R is some relation, this

monadistic view will analyse this into two propositions, which we may call ar1
and

br2
, which give to a and b respectively, adjectives supposed to be together equivalent

to R.” This monadistic view is analysed in [26, J.G. Nilsson: On Reducing Relation-

ships to Property Ascriptions] where it is “argued that relationships may preferably

be represented formally as property ascriptions.”

In Sect. 5.3.4 the monadistic view was adopted: With atomic and composite simple

entities, a and b, we associated attributes, including the mereological ones of composite

attributes. Let two such simple entities, a and b, be connected by a “possessing” an

identifier, ib of b, and b “possessing” an identifier, ia of a, as in the example of Sect. 2.

The subjects are a and b, and the constants of ar1
and br2

are ib, respectively ia.

Thus the mereological view supports the monadistic view when expressing properties of

composite entities. (Russell uses the term ‘complex’ where we use the term ‘composite’.)
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7.4 Discussion

There are other facets to Russell’s work on Logical Atomism. It seems, however, to this

author, that the issues we have covered in this section and which have otherwise been

covered in previous and the next section suffice for now.

Our preliminary conclusions are twofold: (i) whereas mereology has very clear and

focused “uses” in domain science, (ii) the “uses” of Logical Atomism is of a more meta-

conceptual nature, that is, as brought out in Sect. 1.1.2’s two (indented) paragraphs

on metaphysics and methodology.

8 On Laws of Domain Descriptions

8.1 Preliminaries

8.1.1 Suppression of Unique Identification

When comparing, for example, two simple entities one is comparing not only their

attributes but also, when the entities are composite, their sub-entities. Concerning

unique identifiers of simple entities we have this to say: We can decide to either include

unique identifiers as an entity attribute, or we can decide that such identifiers form

a third kind of observable property of a simple entity the two others being (“other”)

attributes — as we see fit to define and the possible sub-entities of composite entities.

Either way, we need to introduce a meta-linguistic operator23, say

SI : Simple observable entity value → Anonymous simple entity value

The concept of an anonymous value is also meta-linguistic. The anonymous value is

basically “the same, i.e., “identical” value as is the simple entity value (from which,

through SI , it derives)24 with the single exception that the simple entity value “pos-

sesses” the unique identifier of the observable entity value and the anonymous entity

value does not.

8.1.2 Distinguishability of Simple Entities

When we wish to distinguish one simple entity phenomenon from another then we

say that the two (“the one and the other”) are distinct. To be distinct to us means

that the two phenomena have distinct, that is, unique identifiers. Being simple entity

phenomena, separately observable in the domain, means that their spatial (positional)

properties are distinct. That is their anonymous values are distinct. Meta-linguistically,

that is, going outside the RSL framework25, we can “formalise” this:

23 The operator SI is meta-linguistic with respect to RSL: it is not part of RSL, but applies
to RSL values.
24 The S stands for “suppress” and the I for the suppressed unique identifier.
25 but staying within a proper mathematical framework — once we have understood the

mathematical properties of SI and proper RSL values and ‘anonymous’ values (which, by the
way, are also RSL values)
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type

E [ A models a type of simple entity phenomena ]

I26 [ I models the type of unique E identifiers ]

value

obs I : E → I

axiom

∀ e,e′:E • obs I(e) 6=obs I(e′) ⇒ SI(e) 6=SI(e′)

The above applies to any kind of observable simple entity phenomenon A. It does

not necessarily apply to observable simple entity concepts. Example: Two uniquely

identified timetables may have their anonymous values be the exact same value.

Simple entity phenomena, in our ontology, are closely tied to space — and per-

haps even space/time “co-ordinates” — with no two simple entity phenomena sharing

overlapping space. Concepts are, in our ontology, not so constrained, that is, we allow

“copies” although uniquely named !

8.2 Some Laws

Sections 5–7 and the material of this section, Sect. 8.1 above, can be summarised by

proposing a number of domain description laws. We shall just bring a few of these laws

here. Enough, we hope, to spur further research into ‘laws of description’.

8.2.1 Unique Identifiers

Domain Description Law 1, Unique Identifiers: If two observable simple entities have the

same unique identifier then they are the same simple entity. �

Any domain description must satisfy this law. The domain describer must, typically

through axioms, secure that the domain description satisfy this law. Thus there is

a proof obligation to be dispensed, namely that the unique identifier law holds of a

domain description.

8.2.2 Unique Phenomena

Domain Description Law 2, Unique Phenomena: If two observable simple entities have

different unique identifiers then their values, “stripped” of their unique identifiers are

different. �

Any domain description must satisfy this law. The domain describer must, typically

through axioms, secure that the domain description satisfy this law. Thus there is a

proof obligation to be dispensed, namely that the unique phenomena law holds of a

domain description.

26 We have here emphasized I, the type name of the type of unique A identifiers. Elsewhere
in this book we treat types of unique identifiers of different types of observable simple entities
as “ordinary” RSL types. Perhaps we should have “singled” such unique identifier type names
out with a special font ? Well, we’ll leave it as is !
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8.2.3 Space Phenomena Consistency

Domain Description Law 3, Space Phenomena Consistency: Two otherwise unique, and

hence distinctly observable phenomena can, spatially, not overlap. �

We can express the Space/Time Phenomena Consistency Law meta-linguistically, yet

in a proper mathematical manner:

type

E [ E is the type name of a class of observable simple entity phenomena ]

I [ I is the type name of unique E identifiers ]

L [ L is the type name of E locations ]

value

obs I : E → I

obs L: E → L
axiom

∀ e,e′:E • obs I(e) 6=obs I(e′) ⇒ obs L(e) ⊓ obs L(e′) = ∅

We can assume that this law always holds for otherwise unique, and hence distinctly

observable phenomena.

8.2.4 Space/Time Phenomena Consistency

Domain Description Law 4, Space/Time Phenomena Consistency: Monotonicity: If an

entity (that has the location property), at time t is at location ℓ, and at time t′ (larger

than t) is at location ℓ′ (different from ℓ), then it moves monotonically from ℓ to ℓ′

during the interval (t, t′). �

Specialisations of this law are, for example, that if the movement is of two simple

entities, like two trains, along a single rail track and in the same direction, then where

train si is in front of train sj at time t, train sj cannot be in front of train si at time

t′ (where t′ − t is some small time interval).

8.3 Discussion

There are more laws. And there are most likely laws that have yet to be “discovered” !

Any set of laws must be proven consistent. And any domain description must be proven

to adhere to these (and “the” other) laws.

We decided to bring this selection of laws because they are a part of the emerging

‘domain science’.

Laws 3 and 4 are also mentioned, in some other form, in [63].

9 Conclusion

We have examined some facets of domain science and related them to mereology and

logical atomism. The surface has been just scraped. There is much more work to do.

Both this paper and that of [15, Bjørner & Eir] thus broaches topics that are still

very much also in the realm of philosophy — as the many references of this paper
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to philosophical treatises bears witness to. In fact it may very well be time to recog-

nise the need for much more research into a, or the philosophy of computer science.

Topics of study within such a philosophy of computer science could include: what are

the sources of computer science subject matter, is Church’s Thesis adequate for the

understanding of computing, cf. [25], what is the ontological status of domain entities,

what is the rôle of hermeneutics in computer science, what kinds of inquiry play a rôle

in computer science, what are the objectives of computer science inquiry, what gives

computer science its hold on experience, what are the human traits behind computer

science, what is computer science beauty, what is the relationship between the abstract

world of computer science and the material universe and how do we know whether a

computer science proof is correct? etcetera. Much, but not all, of this borders strongly

to philosophy of mathematics.
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20. Cansell, D. and D. Méry: 2008, Logics of Specification Languages, Chapt. The event-B
Modelling Method: Concepts and Case Studies, pp. 47–152 in [16]. Springer.

21. Carnap, R.: 1928, Der Logische Aufbau der Welt. Berlin: Weltkreis.
22. Casati, R. and A. Varzi: 1999, Parts and Places: the structures of spatial representation.

MIT Press.
23. Clarke, B. L.: 1981, ‘A Calculus of Individuals Based on ‘Connection’’. Notre Dame J.

Formal Logic 22(3), 204–218.
24. Clarke, B. L.: 1985, ‘Individuals and Points’. Notre Dame J. Formal Logic 26(1), 61–75.
25. Dershowitz, N. and Y. Gurevich: 2008, ‘A Natural Axiomatization of Computability and

Proof of Church’s Thesis’. The Bulletin of Symbolic Logic 14(3), 299–350.
26. Fischer Nilsson, J., On Reducing Relationships to Property Ascriptions, Vol. 190 of Fron-

tiers in Artificial Intelligence and Applications, Chapt. Information Modelling and Knowl-
edge Bases # XX. IOS Press, Amsterdam, The Netherlands, eds. Y. Kiyoki, T. Tokuda,
H. Jaakkola, X. Chen and N. Yoshida.

27. Fitzgerald, J. S.: 2008, Logics of Specification Languages, Chapt. The Typed Logic of
Partial Functions and the Vienna Development Method, pp. 453–487 in [16]. Springer.

28. Fitzgerald, J. S. and P. G. Larsen: 1997, Developing Software using VDM-SL. The Edinburgh
Building, Cambridge CB2 1RU, England: Cambridge University Press.

29. George, C. and A. E. Haxthausen: 2008, Logics of Specification Languages, Chapt. The
Logic of the RAISE Specification Language, pp. 349–399 in [16]. Springer.

30. George, C. W., A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen:
1995, The RAISE Method, The BCS Practitioner Series. Hemel Hampstead, England:
Prentice-Hall.

31. Goodman, N., The Structure of Appearance. 1st.: Cambridge, Mass., Harvard University
Press; 2nd.: Indianapolis, Bobbs-Merrill, 1966; 3rd.: Dordrecht, Reidel, 1977.

32. Goodman, N.: 1990, A Study of Qualities. New York: Garland. Ph.D. dissertation thesis,
Harvard, 1940.

33. Harel, D.: 1987, ‘Statecharts: A Visual Formalism for Complex Systems’. Science of Com-
puter Programming 8(3), 231–274.

34. Henson, M. C., M. Deutsch, and S. Reeves: 2008, Logics of Specification Languages, Chapt.
Z Logic and Its Applications, pp. 489–596 in [16]. Springer.

35. ITU-T: 1992, ‘CCITT Recommendation Z.120: Message Sequence Chart (MSC)’.
36. ITU-T: 1996, ‘ITU-T Recommendation Z.120: Message Sequence Chart (MSC)’.
37. ITU-T: 1999, ‘ITU-T Recommendation Z.120: Message Sequence Chart (MSC)’.
38. Jackson, D.: April 2006, Software Abstractions Logic, Language, and Analysis. Cambridge,

Mass., USA: The MIT Press. ISBN 0-262-10114-9.



27

39. Jackson, M. A.: 1995, Software Requirements & Specifications: a lexicon of practice,
principles and prejudices, ACM Press. Wokingham, nr. Reading, England; E-mail:
ipc@awpub.add-wes.co.uk: Addison-Wesley Publishing Company. ISBN 0-201-87712-0;
xiv + 228 pages.

40. Jackson, M. A.: 2001, Problem Frames — Analyzing and Structuring Software Develop-
ment Problems, ACM Press, Pearson Education. Edinburgh Gate, Harlow CM20 2JE,
England: Addison–Wesley.

41. Lamport, L.: 2002, Specifying Systems. Boston, Mass., USA: Addison–Wesley.
42. Landin, P. J.: 1964, ‘The Mechanical Evaluation of Expressions’. Computer Journal 6(4),

308–320.
43. Landin, P. J.: 1965a, ‘A Correspondence Between ALGOL 60 and Church’s Lambda-

Notation (in 2 parts)’. Communications of the ACM 8(2-3), 89–101 and 158–165.
44. Landin, P. J.: 1965b, ‘A Generalization of Jumps and Labels’. Technical report, Univac

Sys. Prgr. Res. Grp., N.Y.
45. Landin, P. J.: 1965c, ‘A Generalization of Jumps and Labels’. Research report, UNIVAC

Systems Programming Research. Reprinted in Higher-Order and Symbolic Computation
11(2):125–143, 1998, with a foreword [70].

46. Landin, P. J.: 1965d, ‘Getting Rid of Labels’. Technical report, Univac Sys. Prgr. Res.
Grp., N.Y.

47. Landin, P. J.: 1966a, ‘A Formal Description of ALGOL 60’. In: [67]. pp. 266–294.
48. Landin, P. J.: 1966b, ‘A Lambda Calculus Approach’. In: L. Fox (ed.): Advances in

Programming and Non-Numeric Computations. Pergamon Press, pp. 97–141.
49. Landin, P. J.: 1966c, ‘The Next 700 Programming Languages’. Communications of the

ACM 9(3), 157–166.
50. Landin, P. J.: 1998, ‘A Generalization of Jumps and Labels’. Higher-Order and Sym-

bolic Computation 11(2), 125–143. Reprinted from a technical report, UNIVAC Systems
Programming Research (1965), with a foreword [70].

51. Landin, P. J. and R. Burstall: 1972, ‘Programs and their Proofs: An Algebraic Approach’.
Machine Intelligence 4.

52. Lejewski, C.: June, 1983, ‘A note on Leśniewksi’s Axiom System for the Mereological
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