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Preface

A Different Textbook !

This textbook shall teach you a modern, mathematics-based approach to one
aspect of software development: domain engineering.

It does so in a novel way: Chaps. 1–21 of this book is a guide to the
study of Appendices A–N of this book. Appendices A–N contains a fairly
large ‘support’ example of a software development. It is carried out according
to the principles and techniques outlined in Chaps. 1–21.

For lecturers there are electronic (postscript and pdf) slides covering all
of Chaps. 1–21 and Appendices A–N. One way of lecturing based on this
book is to display lecture slides (i.e., Chaps. 1–21) on one screen and lecture
support slides (i.e., Appendices A–N) on an adjacent screen. For readers (i.e.,
strudents) a CD ROM contains all texts and slides thus enabling several modes
of study are made possible. On that CD ROM the text versions of Chaps. 1–21
and Appendices A–N have cross-references to corresponding slide versions !

Background

I wrote [25, 26, 27] as “The Mother of all Books on Software Engineering” !
Since the 2006 publication of [25, 26, 27] a few clarifications of some domain

engineering principles and techniques have come about — and been published
[31, 28, 32, 29, 34, 30].

The book [25, 26, 27], with its 2414 pages, may not exactly be a most
enticing way to be introduced to the wonders of how domain engineering pre-
cedes requirements engineering. This is despite the possibilities that subsets
of each volume can be studied by themselves (first Vol. 1, then Vol. 2), and
likewise subsets of Vol. 3 can be studied independent of the previous volumes.

Finally, an essence of [25, 26, 27] is the triptych of Vol. 3 [26].
The present book focuses on that domain engineering aspects of that trip-

tych — but in a totally different way.
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In fact, this book is “totally” different from previous textbooks and signals
a new way of teaching.

The Essentials

I have therefore written this “two volume” book as such a hopefully enticing
way into the related engineering of domains.

So, in two small volumes, one in paper format, the other probably as an
enclosed CD ROM, you get the very essence of domain engineering.

We cover both informal and formal specifications. The formal specifications
are in the RAISE specification language RSL. This language will be introduced
“along the way” — as it is being used. Every “first time” formula will be
explained, and an RSL Primer, Appendix O, summarises the syntactic aspects
of the language.

Methodology: A 141 Page Guide to Domain Engineering

The methodology “volume” consists of

• Chaps. 1–21 (Pages 3–141) and
• Appendices T–V (Pages 339–431).

The two “volumes” are to be studied in companion: You put both volumes
in front of you, perhaps Chaps. 1–21 in paper form, as a booklet, and Ap-
pendices A–N you may then display on your PC screen. Chaps. 1–21 makes
numerous references to “this or that” appendix chapter and section of Ap-
pendices A–N. So you read Chaps. 1–21, get references to, and thus checks
with “such and such” an appendix chapter and section of Appendices A–N. In
lecture form slides will be available for the entire book. The lecturer will have
both volumes displayable on two “parallel” lecture room overhead screens and
can alternate between lecture parts from Chaps. 1–21 and example (support)
parts from Appendices A–N.

There are three “administrative” appendices:

• Appendix T lists some 197 bibliography entries.
• Appendix U contains a rather complete (and hence large) Glossary (Pages 351–

404). You may wish to study it all by itself ! It explains some 523 terms.
• Appendix V contains extensive Indexes:

⋆ Sect. V.1 lists methodology concepts (Chaps. 1–21),
⋆ Sect. V.2 lists methodology definitions,
⋆ Sect. V.3 lists methodology principle enunciations,
⋆ Sect. V.4 lists methodology technique enunciations,
⋆ Sect. V.5 lists methodology tool enunciations,
⋆ Sect. V.6 lists defining appearance os RSL symbols,
⋆ Sect. V.7 lists examples and
⋆ Sect. V.8 lists domain concepts (Appendices A–N).
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Example: A Supporting Software Development

• Appendices B–M: A Domain Model Development (151–285);
• Appendices O–R: RSL, Petri Net, MSC and DC Primers (291–319);
• Appendix S: Solutions to Exercises of Chaps. 1–20 and Appendices A–M.

Volume I will exclusively consist of informal English text. That text explains
the Triptych approach to domain engineering. Volume II provides all support-
ing examples on pages 151 to 120. Hence Chaps. 1–21 will make numerous
references to sections and pages of Appendices A–N.

On Lecturing over this Book

This book is written for a basically 12 week 3rd year undergraduate or a
1st year graduate course. Students — and readers in general — need some
experience in programming.

Knowledge accrued from a combination of passing 3–4 courses in functional
programming [82], imperative programming (as in a suitable subset of C, Java
or C#), logic programming [124, 97, 5, 6] and parallel programming using, for
example CSP [58, 96] is always a winner. Short of that a subset of these “clean
programming” courses and either Java or C# is OK. (Familiarity with object-
oriented programming is not necessary.) In fact, just studying the delightful
[190] might just be enough !

Both Vols. I and II are offered as colourful slides — covering almost all
material. Slides are by chapter and appendix, and are organised around the
concept of two sets of 35+35 minute lectures per week, that is, a total of 24
lectures of 70 minutes. In addition a weekly three hour tutoring afternoon is
intended to go through the model development of Appendices A–N together
with presenting solutions to exercises posed at previous tutoring sessions.

Two kinds of exercises are offered. The first class of exercises are directly
related to the topic of the appendix at the end of which they are posed. The
second class, instead of focusing on the domain of Appendices A–N, namely
that of an oil & natural gas industry, suggests that students work out term
reports much in the style of the model development of Appendices A–N, but
for different domains. Any domain could be chosen, but we offer guidance, also
in Appendices B–M of Appendices A–N, to such domains as: the transport,
financial service industry and the container line industry.

A Possible Course Plan

A course based on this 2-volume book, i.e., the ‘formal’ text and the extensive
example of a model development, has three parts:

• formal lecture sessions,
• tutorial sessions and
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• student (“at home”) course project work.

Yes, we suggest, strongly, that students pursue a lecturer-guided term project.
This course project is, likewise strongly, suggested to be that of a domain
engineering project. In such a project students are typically collected in M
groups of approximately n students each — where n typically is 3–5, with 4
being optimal. Each group focuses on a distinct domain. Exercise sections of
most chapters of Chaps. 1–21 outline such group projects.

The following lecture plan can be “squeezed” into a 12 week, 2 sessions
per week, course period:

A Possible Lecture Plan

1: Introduction: The Triptych Approach to Software Engineering

A Specification and Abstraction Ontology

2: Entities
3: Operations
4: Events and Behaviours

RSL: The Main Specification Language

5: Types and Values
6: Expressions, Statements and Processes

7: An Overview of Domain Engineering

Preparation

8: Information Documents
9: Stakeholders
10: Domain Acquisition
11: Business Processes

Domain Analysis and Concept Formation

12: Mereology
13: Static and Dynamic Attributes

14: Terminology

Domain Modelling

15: Intrinsics
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16: Support Technologies
17: Management and Organisation
18: Rules and Regulations
19: Scripts
20: Human Behaviour

Analysis

21: Verification: Testing, Model Checking and Theorem Proving
22: Domain Theories

23: From Domains to Requirements
24: Summary and Conclusion
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1

The Triptych Paradigms slide 3

In this chapter we shall overview the ‘triptych’ approach to software devel-
opment. The paradigm, first proper section just below, motivates the triplet
of ‘domain’, ‘requirements’ and software ‘design’ ‘phases’ covered briefly in
Sect. 1.2.1. These phases can be pursued in a series of (usually sequentially
ordered) ‘stages’ and the stages likewise in likewise ‘steps’. Work on many
steps and some stages can occur in parallel.

The stage and step concepts are introduced in Sects. 1.2.2–1.2.3, and are
covered in detail in Chaps. 3–18. The software engineering of these phases,
their stages and steps are focused on constructing ‘documents’ — and the na-
ture of these is covered in Sects. 1.3.1–1.3.3. The core part of phase documents
are either ‘descriptive’ (i.e., ‘indicative’, as it is), ‘prescriptive’ (i.e., ‘putative’
in the form of properties of what ones wants) or specifies a software design slide 4

(i.e., are ‘imperative’). Sect. 1.4 briefly elaborates on these terms. The term
‘software’ is given a proper definition — one that most readers should find
surprising — in Sect. 1.5. Section 1.6 covers the ideas behind pursuing soft-
ware development both using informal and formal techniques. And Sect. 1.7
— another major study section of chapter — finally introduces the notions of
entities, functions, events and behaviours.

1.1 The Domain Paradigm slide 5

1.1.1 What is a Domain? – An Attempt at a Definition

Characterisation 1 (Domain) By a domain we shall understand a uni-
verse of discourse, small or large, a structure of entities, that is, of “things”,
individuals, particulars some of which are designated as state components;
of functions, say over entities, which when applied become possibly state-
changing actions of the domain; of events, possibly involving entities, occur-
ring in time and expressible as predicates over single or pairs of (before/after)
states; and of behaviours, sets of possibly interrelated sequences of actions
and events.
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1.1.2 Examples of Domains slide 6

We give some examples of domains. (i) A country’s railways form a domain
of the rail net with its rails, switches, signals, etc.; of the trains travelling
on the net, forming the train traffic; of the potential and actual passengers,
inquiring about train travels, booking tickets, actually travelling, etc.; of the
railway staff: management, schedulers, train drivers, cabin tower staff, etc.;
and so forth.slide 7

(ii) Banks, insurance companies, stock brokers, traders and stock ex-
changes, the credit card companies, etc., form the financial services industry
domain.

(iii) consumers, retailers, wholesalers, producers and the supply chain form
“the market” domain.

There are many domains and the above have only exemplified “human
made” domains, not, for example, those of the natural sciences We shall have
more to say about this later. Essentially it is for domains like the ‘human
made’ domains that this book will show you how to professionally develop
the right software and where that software is right !

1.2 The Development Paradigm slide 8

Before software can be designed one must understand its requirements.

Before requirements can be expressed one must understand the applica-

tion domain.

We assume that the reader understands the term ‘software’. By requirements
we understand a document which prescribes the properties that are expected
from the software (to be designed). By application domain we understand
the business area of human activity and/or the technology area for which the
software is to be applied. We shall, in the rest of this book, omit the prefix
‘application’ and just use the term ‘domain’.

1.2.1 The Triptych Phases of Software Development slide 9

The Three Phases

As a consequence of the “dogma” we view software development as ideally
progressing in three phases: In the first phase, ‘Domain Engineering’, a model
is built of the application domain. In the second phase, ‘Requirements En-
gineering’, a model is built of what the software should do (but not how it
should that). In the third phase, ‘Software Design’, the code that is subject
to executions on computers is designed.
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Attempts at Definitions slide 10

Characterisation 2 (Domain Engineering) By domain engineering we
shall understand the processes of constructing a domain model, that is, a
model, a description, of the chosen domain, as it is, “out there”, in some
reality, with no reference to requirements, let alone software.

Characterisation 3 (Requirements Engineering) By requirements en-
gineering we shall understand the processes of constructing a requirements
model, that is, a model, a prescription, of the chosen requirements, as we
would like them to be.

slide 11

Characterisation 4 (Software Design) By software design we shall un-
derstand the processes of constructing software, from high level, abstract (ar-
chitectural) designs, via intermediate abstraction level component and module
designs, to concrete level, “executable” code.

Characterisation 5 (Model) By a model we shall understand a mathe-
matical structure whose properties are those described, prescribed or design
specified by a domain description, a requirements prescription, respectively a
software design specification.

Comments on The Three Phases slide 12

The three phases are linked: the requirements prescription is “derived” from
the domain description, and the software design is derived from the require-
ments prescription in such a way that we obtain a maximum trust in the
software: that it meets customer expectations: that is, it is the right software,
and that it is correct with respect to requirements: that is, the software is
right. slide 13

Characterisation 6 (Phase of Software Development) By a phase of
development we shall understand a set of development stages which together
accomplish one of the three major development objectives: a(n analysed, vali-
dated, verified) domain model, a(n analysed, validated, verified) requirements
model, or a (verified) software design. These three “tasks”: a domain model,
a requirements model, and a software design will be defined below.

slide 14

Characterisation 7 (Software Development) Collectively the three phases
are included when we say ‘software development’.

Domain engineering is covered as follows: Chapters 3–18 outlines all the stages
and steps of domain engineering. It does not bring examples. Instead Appen-
dices A–N provide for one large example, the ‘Model Development’. Hence
Appendices A–N provides in “excruciating” detail examples of all the relevant
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aspects of domain engineering. These are then being referred to in Chaps. 1–
21.

Requirements engineering is covered as follows: Chapter 20 outlines all the
stages and steps of requirements engineering. Like Chaps. 3–18 Chap. 20 does
not bring examples. Instead Appendix M provides a brief example of all the
relevant aspects of requirements engineering. These are then being referred to
in Chap. 20.

Software design is not covered in this book.
We make distinctions between phases of development (i.e., the domain

engineering, the requirements engineering and the software design phases),
stages of development — within a phase, and steps of development — within
a stage.

1.2.2 The Triptych Stages of Development slide 15

Characterisation 8 (Stage of Software Development) By a stage of de-
velopment we mean a major set of logically strongly related development steps
which together solves a clearly defined development task.

We shall later define the stages of the major phases, and we shall then be
rather loose as to what constitutes a development step. That is, Chaps. 3–20
shall define the specific stages relevant to those phases of development.

1.2.3 The Triptych Steps of Development slide 16

Characterisation 9 (Step of Software Development) By a step of de-
velopment we mean iterations of development within a stage such that the
purpose of the iteration is to improve the precision or make the document
resulting from the step reflect a more concrete description, prescription or
specification.

1.3 The Document Paradigm slide 17

All we do, really, as software developers, can be seen as a long sequence of doc-
umenting, i.e., producing, writing, documents alternating with thinking and
reasoning about and presenting and discussing these documents to and with
other people: customers, clients and colleagues. Among the last documents to
be developed in this series are those of the executable code.slide 18

In this section we shall take a look at the kind of documents that should
result from the various phases, stages and steps of development, and for whose
writing, i.e., as “input”, aside from other documents, we do all the thinking,
reasoning, and discussing.

For any of the three phases of development, one can distinguish three
classes of documents:
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• Informative Documents Sect. 1.3.1 (Page 7)
• Modelling Documents Sect. 1.3.2 (Page 7)
• Analysis Documents Sect. 1.3.3 (Page 8)

1.3.1 Informative Documents slide 19

An informative document ‘informs’. An informative document is expressed
in some national language.1 Informative documents serve as a link between
developers. clients and possible external funding agencies:

• “What is the project name ?” Item 12

• “When is the project carried out ?” Item 1
• “Who are the project partners ?” Item 2
• “Where is the project being done ?” Item 2
• “Why is the project being pursued ?” Items 3(a))–3(b))
• “What is the project all about ?” Items 3(b))–3(g))
• “How is the project being pursued ?” Items 4–6

slide 20

And many other such practicalities. Legal contracts can be seen as part of
the informative documents. We shall list the various kinds of informative
documents that are typical for domain and for requirements engineering.

1.3.2 Modelling Documents slide 21

Documents which describe, prescribe or specify something, such document are
intended to model those things. They, the document, are not those things, just
conceptualisations, i.e., models of them. In this book we shall only seriously
cover the modelling of domains and of requirements.

Domain Modelling Documents slide 22

Domain descriptions are documents. They are usually rather substantial. They
usually include the following kinds of documents:

1. stakeholder identification and liaison records, Chap. 3
2. domain acquisition sketches, Chap. 4
3. domain business process rough sketches, Chap. 5
4. domain terminologies, Chap. 6
5. and domain models proper. Chaps. 7–15

slide 23

Chapters 3–18 will cover the domain engineering phase with its

• (i) stakeholder identification, Chap. 3

1 The fact that informative documents are informal displays a mere coincidence of
two times ‘inform’.

2 The item numbers refer to the enumerated listing given on Page 47.
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• (ii) domain acquisition, Chap. 4
• (iii) domain analysis and concept formation, Chap. 5
• (iv) business process rough sketching, Chap. 6
• (v) terminology, Chap. 7
• (vi) domain modelling, Chaps. 8–15
• (vii) domain model verification, Chap. 16
• (viii) domain model validation, Chap. 17
• and (ix) domain theory formation Chap. 18

stages. Documents emerge from each of these stages.
Documents 1, 2, 3, 4 and 5 correspond to (i), (ii), (iv), (v) and (vi). The

other activities are analytic.

Requirements Modelling Documents slide 24

Chapter 20 covers requirements engineering in general and Sects. 20.3–20.6
cover requirements modelling in particular.

Requirements prescriptions are documents. They are usually rather sub-
stantial. They usually include the following kinds of documents:

1. stakeholder identification and liaison records,
2. acquisition sketches,
3. business process re-engineering rough sketches,
4. terminologies, and
5. requirements models proper.

slide 25

Chapter 20 will covers the requirements engineering phase with its

• (i) stakeholder identification, Sect. 20.2.2
• (ii) requirements acquisition, Sect. 20.2.3
• (iii) requirements analysis and concept formation, Sect. 20.2.5
• (iv) business process re-engineering rough sketching, Sect. 20.2.4
• (v) terminology, Sect. 20.2.6
• (vi) requirements modelling, Sects. 20.2.7, 20.3–20.6
• (vii) requirements model verification, Sect. 20.2.8
• (viii) requirements model validation, Sect. 20.2.9
• (ix) requirements feasibility and satisfiability analysis, Sect. 20.2.10
• and (x) requirements theory formation. Sect. 20.2.11

stages. Documents emerge from each of these stages.

1.3.3 Analysis Documents slide 26

Verification, Model Checks and Tests

Characterisation 10 (Analysis) By analysis we mean a process which re-
sults in a document and which analyses another document: a domain de-
scription, a requirements prescription, or a software design, and where the
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1.4 The Description, Prescription, Specification Paradigm 9

analysis is either a verification (in the sense of formally proving a property),
or a model check (in the sense of writing another, mechanically analysable,
document which “models” the former and checks whether it possesses a given
property), or a formal (or even informal) test (in the sense of subjecting the
former document to a form of “execution” to observe whether that execution
yields a given result).

Concept Formation slide 27

Yet there is also another form of analysis. One that results in the analysing
engineer forming a concept.

Characterisation 11 (Concept Formation) By concept formation we mean
an analysis process in which the analysing engineer from analysed phenomena
or analysed concrete concepts form a concept, respectively a “more” abstract,
i.e., less concrete concept.

Domain Analysis Documents slide 28

Stages (iii, vii, viii, ix) listed in Sect. 1.3.2 are analytic. They result in the
following kinds of documents:

1. domain analysis (and concept formation) Chap. 7
2. domain model verification, Chap. 16
3. domain model validation, Chap. 17
4. and domain theory formation. Chap. 18

Requirements Analysis Documents slide 29

Stages (iii, vii, viii, ix, x) listed in Sect. 1.3.2 are analytic. They result in the
following kinds of documents:

1. requirements analysis (and concept formation), Sect. 20.2.5
2. requirements model verification, Sect. 20.2.8
3. requirements model validation, Sect. 20.2.9
4. requirements feasibility and satisfiability, Sect. 20.2.10
5. and requirements theory formation. Sect. 20.2.11

1.4 The Description, Prescription, Specification
Paradigm slide 30

1.4.1 Characterisations

We have, so far, used the terms descriptions, prescriptions and specifications
— and we shall continue to use these terms — with the following meanings.
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(A) Descriptions are of “what there is”, that is, descriptions are, in this
book, of domains, “as they are”;

(B) Prescriptions are of “what we would like there to be”, that is, pre-
scriptions are, in this book, of requirements to software; and

(C) Specifications are of “how it is going to be”, that is, specifications are,
in this book, of software.

1.4.2 Reiteration of Differences slide 31

Descriptions are intended to state objective facts, i.e., are indicative. Prescrip-
tions are intended to state commonly supposed and assumed to exist facts,
i.e., are putative which we here take to be the same as optative: expressive
of wish or desire. Specifications are intended to be expressive of a command,
not to be avoided or evaded, i.e., are imperative.slide 32

Descriptions are intended to state objective facts, i.e., are indicative. Pre-
scriptions are intended to state commonly supposed and assumed to exist
facts, i.e., are putative which we here take to be the same as optative: ex-
pressive of wish or desire. Specifications are intended to be expressive of a
command, not to be avoided or evaded, i.e., are imperative.slide 33

(i) Software shall satisfy requirements.
(ii) Requirements defines properties of software.
(iii) Requirements must be commensurate with “their domain”; that is,

requirements must satisfy all the properties of the domain insofar as these
have not been re-engineered.

(iv) Requirements prescriptions denote requirements models.
(v) Requirements models are not the software, only abstractions of soft-

ware.
(vi) Requirements models are computable adaptations of subsets of domain

models.
(vii) Domains satisfy a number of laws.
(viii) Domain laws should be expressed by or derivable from domain de-

scriptions.
(ix) Domain descriptions denote domain models.
(x) Domain models are not the domain, only abstractions of domains.

1.4.3 Rôle of Domain Descriptions slide 34

Domain descriptions for common computing system (colloquially: IT) appli-
cations relate to requirements prescriptions and software specifications (incl.
code) as physics relate to classical engineering artifacts: (a) electricity, plasma
physics, etc., relate to electronics; (b) mechanics, aerodynamics, etc., relate
to aeronautical engineering; (c) nuclear physics, thermodynamics, etc., relate
to nuclear engineering; etcetera.slide 35
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Domain engineering relate to IT applications as follows: (d) transport do-
mains to software (engineering) for road, rail, shipping and air traffic appli-
cations; (e) financial service industry domains to software (engineering) for
banking, stock trading; portfolio management, insurance, credit card, etc.,
applications; (f) market trading (“the market”) domains to software (engi-
neering) for consumer, retailer, wholesaler, supply chain, etc., applications
(aka “e-business”); etcetera.

The Sciences of Human and Natural Domains slide 36

The ‘Human Domains’

The domains for which most software systems are at play are — what we shall call —

the human domains of financial service industries banks, insurance companies, stock

(etc.) trading brokers, traders, exchanges, etcetera; transportation industries roads,

rails, shipping and air traffic; “the market” of consumers, retailers, wholesalers,

product originators, and their distribution chains; etcetera, slide 37

The Natural Sciences

In contrast the natural sciences includes physics: classical mechanics: statics,
kinematics, dynamics, continuum mechanics: solid mechanics and fluid me-
chanics, mechanics of liquids and gases: hydrostatics, hydrodynamics, pneu-
matics, aerodynamics, and other fields; electromagnetism, relativity, thermo-
dynamics and statistical mechanics, quantum mechanics, etcetera slide 38

The above listing is of disciplines within the natural sciences. It is not
to be confused with a listing of research areas such as: condensed matter
physics, atomic, molecular, and optical physics, high energy/particle physics,
astrophysics and physical cosmology, etc. slide 39

Research Areas of the Human Domains

To establish a domain description for an area within the human domain —
for which there was no prior domain description — is a research undertaking
— just as it is for establishing a domain description for an area within the
domain of natural sciences. There are thus as many3 human domain research
areas as there are reasonably clearly separable such areas within the human
domain. slide 40

Rôle of Domain Descriptions — Summarised

That then is the rôle of domain descriptions to gain understanding, through
research, and, independently, to obtain the right software: software that meet
client expectations.

3 and we think: exciting research areas
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1.4.4 Rôle of Requirements Prescriptions slide 41

A main rôle of a requirements prescription is to prescribe “the machine” !

The Machine

Characterisation 12 (Machine) By ‘the machine’ we shall mean a combi-
nation of hardware and software.

Machine Properties

The purpose of developing a requirements prescription is to prescribe proper-
ties of a machine.

1.4.5 Rough Sketches slide 42

Characterisation 13 (Rough Sketch) By a rough sketch we mean an in-
formal text which does not claim to be consistent or complete, and which
attempts, perhaps in an unstructured manner, to outline a phenomenon or a
concept.

Rough sketches are useful “starters” towards narratives, and are used in ac-
quired domain or requirements knowledge, and in outlining business processes
and re-engineered such.

1.4.6 Narratives slide 43

Characterisation 14 (Narrative) By a narrative we mean an informal
text which is structured, which is claimed consistent and relative complete,
and which informally defines a phenomenon or a concept.

slide 44

Narratives will be our main “work horse”, our chief means, at communicating
domain descriptions and requirements prescriptions to all stakeholders.

1.4.7 Annotations slide 45

Characterisation 15 (Annotation) By an annotation we mean an infor-
mal text which is structured so as to follow, usually line-by-line a formal
(mathematical) text which it aims at explaining to a lay reader not familiar
with the mathematical formulas.

slide 46

We usually mandate that all formulas be annotated. But we do not mandate
a specific “formal” way of structuring the annotations.
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1.5 The Software Paradigm slide 47

1.5.1 What is Software ?

Characterisation 16 (Software) By software we understand: a set of doc-
uments: the domain development (incl. verification and validation) documents,
the requirements development (incl. verification and validation) documents,
and the software design development (incl. verification) documents.

1.5.2 Software is Documents ! slide 48

Domain Documents

The domain development documents include the informative documents and
the documents which record stakeholder identification and relations, domain
acquisition, domain analysis and concept formation, rough sketches of the
business (i.e., domain) processes, terminologies, domain description, domain
verification (incl. model check and test), domain validation and domain theory
formation.

Requirements Documents slide 49

The requirements development documents include the informative documents
and the documents which record stakeholder identification and relations, re-
quirements acquisition, requirements analysis and concept formation, rough
sketches of the re-engineered business (i.e., new, revised domain) processes,
terminologies, requirements description, requirements verification (incl. model
check and test), requirements validation and requirements theory formation.

Software Design Documents slide 50

And the software design development documents include the informative doc-
uments, the documents which record architectural designs (“how derived from
requirements”) and verifications (incl. model checks and tests), component de-
signs and verifications (incl. model checks and tests), module designs and ver-
ifications (incl. model checks and tests), code designs and verifications (incl.
model checks and tests), and the actual executable code documents.

Software System Documents slide 51

Characterisation 17 (Software System) By a software[-based] system we
shall understand a set of software system documents (see below) as well as
the hardware, the IT equipment for which the software is oriented: computers,
their peripherals, data communication equipments, etcetera.
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slide 52

The software system documents include: the actual executable code docu-
ments, as well as ancillary documents: demonstration (i.e., demo) manuals,
training manuals, installation manuals, user manuals, maintenance manuals,
and development and maintenance logbooks.

1.6 Informal and Formal Software Development slide 53

In this book we shall advocate a combination of informal and formal develop-
ment. And in this section we shall use the term specification (specify) to also
cover description (describe) and prescription (prescribe), etc.

1.6.1 Characterisations

Informal Development

Characterisation 18 (Informal Development) By informal development
we understand, in this book, a software development which does not use formal
techniques, see below; instead it may use UML and an executable program-
ming language.

Formal Development slide 54

Characterisation 19 (Formal Development) By formal development we
mean, in this book, a software development which uses one or more formal
techniques, see below, and it may then use these in a spectrum from system-
atically via rigorously to formally.

A Spectrum of Developments slide 55

For characterisations of systematically, rigorously and formally we refer to
charaterisations below.

Formal Software Development

Characterisation 20 (Formal Software Development Technique) By a
formal development technique we mean, in this book, a software development
in which specifications are expressed in a formal language, that is, a language
with a formal syntax so that all specifications can be judged well-formed or
not; a formal semantics so that all well-formed specifications have a precise
meaning; and a (relatively complete) proof system such that one may be able
to reason over properties of specifications or steps of formally specified de-
velopments from a more abstract to a more concrete step. Additionally a
formal technique may be a calculus which allows developers to calculate, to
refine “next”, formally specified development steps from a preceding, formally
specified step.
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Formal techniques are usually supported by software tools that check for syn-
tactic and helps check for semantic correctness.

Examples of formal techniques, sometimes referred to as formal methods,
are Alloy [106], ASM (Abstract State Machines) [161], B and event-B [2, 44],
DC (Duration Calculus) [196], MSC and LSC (Message and Live Sequence
Charts) [87, 102, 103, 104], Petri Nets [152, 108, 158, 157, 159], Statecharts [83,
84, 86, 88, 85], RAISE (Rigorous Approach to Industrial Software Engineer-
ing) [25, 26, 27, 72, 74, 73], TLA+ (Temporal Logic of Actions) [115, 116, 134],
VDM (Vienna Development Method) [36, 37, 69] and Z [173, 174, 194, 93].
The EATCS4 Monograph [35] arose from [161, 44, 61, 142, 73, 134, 93] and
covers ASM, B and event-B, CafeOBJ, CASL, DC, RAISE, TLA+, VDM and
Z.

This book will, in Vol. II, primarily feature the RAISE approach and thus
use its Specification Language RSL. For a more comprehensive introduction to
formal techniques we refer to [25, 26, 27]. slide 56

Systematic (Formal) Development !

Characterisation 21 (Systematic (Formal) Development) By a system-
atic use of a formal technique we mean, in this book, a software development
which which formally specifies whenever something is specified, but which
does not (at least only at most in a minor of cases) reason formally over steps
of development.

slide 57

Rigorous (Formal) Development !

Characterisation 22 (Rigorous (Formal) Development) By a rigorous
use of formal techniques we mean, in this book, a software development which
which formally specifies whenever something is specified, and which formally
express (some, if not all) properties that ought be expressed, but which does
not (at least only at most in a minor number of cases) reason formally over
steps of development, that is, verify these to hold, either by theorem proving,
or by model checking, or by formally based tests.

slide 58

Formal (Formal) Development !

Characterisation 23 (Formal (Formal) Development) By formal use of
a formal techniques we mean, in this book, a software development which
which formally specifies whenever something is specified, which formally ex-
presses (most, if not all) properties that ought be expressed, and which for-
mally verifies these to hold, either by theorem proving, or by model checking,
or by formally based tests.

4 EATCS: European Association for Theoretical Computer Science
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1.6.2 Recommendations slide 59

This book advocates that software development be pursued according to the
triptych paradigm, and that the phases, stages and steps, be pursued in a
combination of both informal and formal descriptions, prescriptions and spec-
ifications, in a systematic to rigorous fashion.slide 60

slide 61–62

1.7 The Entity, Operation, Event and Behaviour
Paradigm slide 63

We (forward) refer to appendix example Sect. C on page 153. It follows up on
this methodology concept.

So what is it that we describe, prescribe and specify, informally or for-
mally ? The answer is: simple entities, operations, events and behaviours We
shall, in this section, survey these concepts of domains, requirements and soft-
ware designs. In the domain we observe phenomena. From usually repeatedslide 64

such observations we form (immediate, abstract) concepts. We may then “lift”
such immediate abstract concepts to more general abstract concepts. Phenom-
ena are manifest. They can be observed by human senses (seen, heard, felt,
smelled or tasted) or by physical measuring instruments (mass, length, time,
electric current, thermodynamic temperature, amount of substance, luminous
intensity). Concepts are defined.slide 65

We shall analyse phenomena and concepts according to the following
simple, but workable classification: simple entities, functions (over entities),
events (involving changes in entities, possibly as caused by function invoca-
tions, i.e., actions, and/or possibly causing such), and behaviours as (possibly
sets of) sequences of actions (i.e., function invocations) and events.

1.7.1 Discrete and Continuous Entities slide 66

The concepts of discrete and continuous are closely interwoven and are mainly,
or best, understood in a physical context. From Wikipedia5 we bring: Dis-
creteness constituting a separate thing; consisting of non-overlapping, but
possibly adjacent, but distinct parts. Discreteness are fundamentally discrete
in the sense of not supporting or requiring the notion of continuity. Conti-
nuity is seen as consistency, over time, of the characteristics of persons, plot,
objects, places and events as observed.

An Analysis slide 67

For our purposes we shall limit our consideration of entity discreteness and
continuity to the physically, more specifically tactile manifested forms: if a

5 Wikipedia was, around 2009 The Internet-based Free Encyclopedia.
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physical, simple entity is fixed, that is does not change physical, spatial form,
then we shall consider it a discrete, simple entity; if, instead, a physical, simple
entity is liquid or gaseous, that is can, say through the force of gravity, change
physical, spatial form, then we shall consider it a continuous, simple entity.

Structures slide 68

Let us try encircle these concepts. To do so we introduce a notion of entity
structure.

Characterisation 24 (Entity Structure) By the structure of an entity we
understand how that entity is “made up”, whether a simple entity, opera-
tion, event or behaviour; whether atomic, composite or continuous; whether
static:fixed number of possible subentities and/or possible attributes, or dy-
namic:variable number of possible subentities and/or possible attributes.

slide 69

Observations

Note that the values of attributes and the number of alike sub-entities of
composite entities may change while the structure remains the same. Thus the
structure concept implies that if two or more simple entities, or one simple
entity over time, has the same, fixed, invariant structure but with possibly
changing values of attributes or changing number of sub-entities, then they are
discrete, simple entities. We (forward) refer to appendix example Sect. E.1.2
on page 172. It follows up on this methodology concept. slide 70

Finite Structures

A simple entity structure is finite if it is either atomic or, if composite, then
consists of a finite number of finite subentities, or, if continuous, its measure
of “size”, i.e., its amount of substance, or, if time, is finite.

Characterisations slide 71

Characterisation 25 (Discrete) Being discrete is a property associated
with entities.

An entity is discrete if it is timewise fixed, i.e., does not change spatial ex-
tent with time but could change value of possible sub-entities or of attributes.

Characterisation 26 (Continuous) Being continuous is a property asso-
ciated with entities. An entity is continuous if it is timewise variable, i.e., can
change spatial extent with time, or if any subpart of it is also an entity of the
same structure.
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Examples slide 72

Our examples will be taken from the physical world as observed by physicists6.
They are7:

• length (meter, m),
• mass (Kilogram, kg),
• Time (or just T) (Second, sec),
• electric current (Ampere, A),
• thermodynamic temperature (Kelvin, K),
• luminous intensity (Candela, cd) and
• amount of (chemical) substance (Mol))8.

slide 73

Analysis of Time

There is a slight problem with the time example. There is absolute time and
there is relative time.By absolute time we understand time since some “point
in time”. By relative time we understand a time interval between two times,
i.e., two ‘points in time’. The difference between these concepts can, perhaps,slide 74

best be understood in terms of the operations that one can perform on them:
One can compare two absolute times in order to find out which absolute time
is the later (earlier); and one can compare two relative times in order to find
out which time interval is larger of the two. One cannot add two absolute
times, but one can add time intervals. One can subtract two absolute times,
one, a smaller, from the other, the larger, to obtain the elapsed time interval.
And so forth. In practice absolute times are abstracted as time and relativeslide 75

time are abstracted as time intervals; and both are abstracted in terms of
continuous quantities (reals, Real). In practice absolute time is concretisedslide 76

in terms of date (year (AD), month (Jan., Feb., . . . , Dec.), day of month (1,
2, . . . , 28, 29, 30 or 31)) and hour (0, 1, . . . , 23), minute (0, 1, 2, . . . , 59) and
second (0, 1, 2, . . . , 59)); and relative time is concretised in terms of number
of elapsed years, months, days, hours, minutes and seconds; and these are
expressed in terms of discretised quantities (say natural numbers).

We refer to Exercises 1.10.20 on page 36 and 1.10.21 on page 36.

6 http://en.wikipedia.org/wiki/SI
7 For each of the seven SI units we state its general (class) name and, in parentheses,

the sort (i.e., type) name and, in italic, commonly used (textbook) abbreviations.
8 The SI unit for amount of substance is the mole (type name: mol), which is

defined as the amount of substance that has an equal number of elementary
entities as there are atoms in 12g of carbon-12. That number is equivalent to (but
not defined as) the Avogadro constant, NA, which has a value of 6.022141791023

mol1.
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1.7.2 Entity Classification slide 77

We shall now present a classification of simple entities. This classification shall
serve and serves our purposes. The classification is not claimed to constitute a
scientific theory or fact. But it is claimed to reflect our engineering approach
to modelling.

The classification of simple entities partition their universe into three parts.

• continuous simple entities,
• atomic simple entities and
• composite simple entities.

slide 78

The classification allows composite simple entities to be composed from suben-
tities that are either continuous or atomic or themselves composite. So it is
not a matter of a simple entity which is not continuous instead being discrete.
A discrete simple entity is an entity which is not continuous, and, if composite,
then all of its subentities are discrete simple entities. Since all simple entities
are of finite structure the above recursive characteristation stops.

1.7.3 Simple Entities slide 79

We (forward) refer to appendix example Sect. C.5 on page 164. It follows up
on this methodology concept.

Characterisation 27 (Simple Entity) By a simple entity we mean some-
thing we can point to, i.e., something manifest, or a concept abstracted from,
such a phenomenon or concept thereof.

Simple entities are either continuous, atomic or composite. The decision as
to which simple entities are considered continuous, atomic or composite is a
decision sôlely taken by the describer.

Atomic Simple Entities slide 80

Characterisation 28 (Atomic Simple Entity) By an atomic simple en-
tity we intuitively understand a simple entity which “cannot be taken apart”
(into other, the sub-entities) and which possess one or more attributes.

Attributes — Types and Values slide 81

With any entity we can associate one or more attributes.

Characterisation 29 (Attribute) By an attribute we understanda pair of
a type and a value.

slide 82
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Example 1 (Atomic Entities)
Entity: Person Entity: Bank Account

Type Value Type Value
Name Dines Bjørner number 212 023 361 918
Weight 118 pounds balance 1,678,123 Yen
Height 179 cm interest rate 1.5 %
Gender male credit limit 400,000 Yen

.

“Removing” an attribute from an entity destroys its “entity-hood”.

Composite Entities slide 83

Characterisation 30 (Composite Entity) By a composite entity we intu-
itively understand an entity (i) which “can be taken apart” into sub-entities,
(ii) where the composition of these is described by its mereology, and (iii)
which, apart from the attributes of the sub-entities, further possess one or
more attributes.

Sub-entities are entities.

Mereology slide 84

Characterisation 31 (Mereology) By mereology we understanda theory
of part-hood relations. That is, of the relations of part to whole and the
relations of part to part within a whole.

The term mereology seems to have been first used in the sense we are using
it by the Polish mathematical logician Stanis law Leshniewski [127, 138, 176,
177, 183].

Composite Entities — Continued slide 85

Example 2 (Transport Net, A Narrative)
Entity: Transport Net

Subentities: Segments
Junctions

Mereology: “set” of one or more s(egment)s and
“set” of two or more j(unction)s

such that each s(egment) is delimited by two j(unctions)
and such that each j(unction) connects one or more s(egments)
Attributes

Types: Values:
Multimodal Rail, Roads
Transport Net of Denmark
Year Surveyed 2006

.
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slide 86

To put the above example of a composite entity in context we give an example
of both an informal narrative and a corresponding formal specification: slide 87

Example 3 (Transport Net, A Formalisation) A transport net consists
of one or more segments and two or more junctions. With segments [junctions]
we can associate the following attributes: segment [junction] identifiers, the
identifiers of the two junctions to which segments are connected [the identifiers
of the one or more segments connected to the junction], the mode of a segment
[the modes of the segments connected to the junction] slide 88

type
N, S, J, Si, Ji, M

value
obs Ss: N → S-set, obs Js: N → J-set
obs Si: S → Si, obs Ji: J → Ji
obs Jis: S → Ji-set, obs Sis: J → Si-set
obs M: S → M, obs Ms: J → M-set

axiom
∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)} ...

type
Nm, Co, Ye

value
obs Nm: N → Nm, obs Co: N → Co, obs Ye: N → Ye

Si, Ji, M, Nm, Co, Ye are not entities. They are names of attribute types and,
as such, designate attribute values. N is composite, S and J are considered
atomic .

States slide 89

Characterisation 32 (State) By a domain statewe shall understand a col-
lection of domain entities chosen by the domain engineer.

The pragmatics of the notion of state is that states are recurrent arguments
to functions and are changed by function invocations.

Formal Modelling of Simple Entities slide 90

The Basics

How do we model entities ? The answer is: by selecting a name for the desired
“set”, that is, type of entities; by defining that type to be either an abstract
type, i.e., a sort,
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type
A

or a concrete type, i.e., with defined, concrete values.

type
A = Type Expression

slide 91

Values of the type are then expressed as:

value
a:A

As our main support example unfolds in Appendices A–N we shall illus-
trate sorts with their observer, generator and classifier functions and concrete
types over either basic types (Booleans, Integers, Natural numbers, Reals,
etc., or over composite types (sets, Cartesians, records, lists, maps, functions).
Appendix Sect. O.2 (Pages 292–296) gives a terse introduction to the type sys-
tem of our main formal specification language RSL.slide 92

Some Caveats

This section has dealt with discrete and continuous, and atomic and compos-
ite simple entities. where composite simple entities possessed subentities, a
mereology of these, and attributes. We can (and must) express these distinc-
tions (i.e., properties) of domains clearly in narratives, but cannot do so in
our chosen, or for that matter in any formal specification language !slide 93

Thus we shall, without discrimination, use the RSL type system to express
both the possible subentity types of composite types and the attributes of
these composite types. Whether a type is continuous, discrete or composite
will only transpire rather indirectly from the formulas: in the form, for exam-
ple, of observer functions, but these will not discriminate between observing
attributes or subentities.slide 94

One could, of course, extend the (or any) formal specification language
with the following literals (allowing plural forms): attribute, subentity,
discrete, continuous, atomic and composite. These could be used, for
example, in the following type expressions:

type
atomic: A, B, ...
composite: C, D, ...
subentities: A, D, ...
attributes: B, E, ...
continuous: D, F, ...

or:

type
atomic A, ... and

composite D, ... as
subentities of C, ...

Etcetera. We shall consider all such use of the literals as pragmas, that is,
as pragmatic comments. Their presence (or absence) has no semantic impor-
tance.
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Discussion slide 95

Simple Entities, Operations, Events and Behaviours as Entities

We have focused in this section on a concept of simple entities. We have used
the prefix ‘simple’ since we consider the totality of simple entities, operations,
events and behaviours to all be entities. As entities they are potentially
arguments of operations, events and behaviours. We shall not here pursue
this possibility further. slide 96

A Possible Critique of Our ‘Simple Entity’ Ontology

We advice the reader that the concepts of discrete and continuous, and
attribute and subentities, and atomic and composite are “non-standard”,
i.e., not commonly accepted or in widespread usage. The reader might have
guessed that from the “Some Caveats” paragraphs. Nevertheless we bring
them here in textbook form since we think that they are indeed useful. slide 97

We also remind the reader that the concepts of, for example, physical types:
meter, kilogram, second, Ampere, Kelvin, candela and mol and their
derivatives as part of a specification language is not new, it was the subject of
a number of (different) chapter exercises in Vol.2 of my book: and of a MSc.
Thesis project in the late 1990s. Add to this “applied science” typology one slide 98

of “business” typology Danish Kroner, Euro, revenue, expense, bud-
get, debit, credit, spent, committed, asset, liability, account, balance
sheet, general ledger, balance, sales, accounts receivable, inventory,
etc., etc., and you have exciting new projects in the design and implementation
of domain specific programming languages that allow the separate definition
of application specific type systems, of corresponding scale and conversion
systems (millimeter, centimeter, meter, kilometer, inch, foot, yard, mile), etc.,
and of axioms that govern laws of physics, or laws of accounting, etc. slide 99

slide 100–101

1.7.4 Operations slide 102

We can, from a pragmatic viewpoint, distinguish between several classes of
domain operations: (i) There are the operations that a stakeholder in the
domain apply to one or more simple entities of the domain state in order
to change that state (we shall refer to these operations as state-changing
operations); (ii) there are the operations that a stakeholder in the domain
apply to a simple entity of the domain state and in order to observe a property
of that entity or “extract” a value of an attribute of that entity (we shall
refer to these operations as state-observing or extracting operations); and (iii)
there are the operations that a stakeholder in the domain apply to results of
having applied state-observing or extracting operations in order to ascertain
(“calculate”) values of domain concepts.

We (forward) refer to appendix example Sect. C.6 on page 164. It follows
up on this methodology concept.
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Characterisations slide 103

Characterisation 33 (Operation) By an operation we shall understand
something (i.e., a function) which when applied to what we shall call ar-
guments (i.e., entities) yield some entities called the result of the function
(application).

slide 104

The observer functions of the formal example above are not the kind of func-
tions we are (later) seeking to identify in domains. These observer functions
are mere technicalities: needed, due to the way in which we formalise — and
are deployed in order to express sub-entities, mereologies and attributes.

Describing Operations slide 105

One can describe functions in a variety of ways. We shall briefly mention four:
“direct” definitions, pre/post condition definitions, “mixtures” of the former
two, and axiomatically. Each of these can be formulated either informally
or formally. But first we introduce the concepts of operation (or function)
signatures and of actions and their signatures.

Operation Signatures slide 106

Characterisation 34 (Operation Signature) By a operation signature
we mean the name and type of a operation.

type
A, B, ..., C, X, Y, .., Z

value
f: A × B × ... × C → X × Y × ... × Z

The last line above expresses a schematic operation signature. Narratively, it
expresses that the function f takes ordered arguments of the types A, B, ..., C
and yields results of the (Cartesian) type X×Y ×...×Z.

Actions slide 107

Characterisation 35 (Action) By an action we shall understand the same
thing as applying a state-changing operation (function) to its arguments (in-
cluding the state).

Action Signatures

One can speak of three kinds of actions, and hence of action signatures. Let
Σ denote the type of states.slide 108
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type
A, B, Σ

value
Val: A → Σ → B
Int: A → Σ → Σ
Elab: A → Σ → Σ × B

Valuation functions inspect the state, do not change it, and yield a value.
Interpretation functions inspect the state, change it, but do not yield a (fur-
ther) value. Elaboration functions inspect the state, change it, and yield a
value. slide 109

Operation Definitions

Characterisation 36 (Operation Definiton) By an operation definition
we mean an operation signature and something which describes the relation-
ship between operation arguments (the a:A’s, b:B’s, . . . , c:C’s and the x:X’s,
y:Y’s, . . . , z:Z’s).

slide 110

Example 4 (Well Formed Routes) Presupposing material presented in
Example 3 on page 21:

type
P = Ji × Si × Ji /∗ path: triple of identifiers ∗/
R′ = P∗ /∗ route: sequence of connected paths ∗/
R = {| r:R′

• wf R(r) |} /∗ subtype of R′: those r′s satisfying wf R(r) ∗/
value

wf R: R′ → Bool
wf R(r) ≡

∀ i:Nat•{i,i+1}⊆inds r⇒let (,,ji′)=r(i),(ji′′,,)=r(i+1) in ji′=ji′′ end

The last line above describes the route wellformedness predicate. The meaning
of the “(,,” and “,,)” is that the omitted path components “play no rôle”

slide 111

Direct Operation Definitions

In a narrative direct operation definition the signature is described followed by
an abstracted description of the operation, for example: “Operation f applies
to arguments, a, of type A, and yields results, b or type B.” “Operation f , when
applied to argument a, i.e., f(a), yields a result, b, which arises as follows ...” slide 112

Example 5 (The Factorial Function Definition: Direct) Informally and
direct formally:

1. The factorial function applies to natural numbers and yields natural numbers.
The factorial function is otherwise defined as follows:
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2. Applied to the natural number 0 it yields the natural number 1.
Applied to the natural number n (larger than 0) it yields

3. Applied to the natural number n (larger than 0) it yields
(a) the result of multiplying the number n
(b) with the result of applying the factorial function to n − 1.

value
1 fact: Nat → Nat
2–3 fact(n) ≡ if n=0 then 1 else n∗fact(n−1) end

.
slide 113

A formal, direct function definition, including the function signature thus
looks like this ‘schematic’:

value
f: A → B
f(a) ≡ C(a)

Here A and B are some type clauses; C is some clause: some (process) ex-
pression, some (process) statement usually with a free identifier, say x, and
C(a) designates the evaluation of that clause with the argument a bound to
all occurrences of the free identifier x.slide 114

Pre/Post Operation Definitions

In a narrative pre/post operation definition the signature is described fol-
lowed by an abstracted description of pre/post conditions of the operation,
for example: “Operation f applies to arguments, a, of type A, and yields re-
sults, b or type B.” “Operation f , when applied to argument a, i.e., f(a), yields
a result, let us call it b; “A pre condition of a is that it satisfies the following
predicate: ... , etc.” “The relation between proper input arguments a and results,
b is expressed by the post condition: ..., etc.”slide 115

Example 6 (Factorial Function Definition: pre/post) Informally and for-
mally: Narrative: The factorial function applies to natural numbers and yields
natural numbers. The factorial function is otherwise characterised as follows: Let
the factorial of n be called n′; n must be larger than or equal to 0; n = 0 implies
that the factorial of n is 1; n>0 implies that the factorial of n is the result of
multiplying the number n with the result of applying the factorial function to
n − 1. Formalisation:

value
fact: N → N
fact(n) as n′

pre: n≥0
post: n=0 ⇒ n′=1 ∧ n>0 ⇒ n′=n∗fact(n−1)
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.
slide 116

A pre/post operation definition, including the function signature looks
like this ‘schematic’:

value
f: A → B
f(a) as b

pre: P(a)
post: Q(a, b)

Here A and B are some type clauses; P is some predicate expression with free
identifier, say x; Q is some predicate expression with free identifiers, say y, z;
P(a) designates the evaluation of the predicate with the argument a bound to
all occurrences of the free identifier x; and Q(a, b) designates the evaluation of
the predicate with the arguments a, b bound to all occurrences of respecxtive
free identifiers y and z. slide 117

“Mixed” Operation Definitions

In a narrative, mixed operation definition the signature is described — usually
involving arguments (and possibly also results) types that denote “larger”
sets of values than actually accepted (respectively yielded). followed by an
abstracted description of the operation, for example: “Operation f applies to
arguments, a, of type A, and yields results, b or type B.” “Operation f , when
applied to argument a, i.e., f(a), yields a result, b, which arises as follows ...”;
followed, finally, by a pre condition (on the operation input arguments). slide 118

Example 7 (Factorial Function Definition: “Mixed”) Informally and for-
mally: Narrative: The factorial function applies to integers and yields natural
numbers. The factorial function is otherwise characterised as follows: 5 on page 25

Formalisation:

value
fact: Int → Nat
fact(n) ≡ if n=0 then 1 else n∗fact(n−1) end

pre: n≥0

.
slide 119

A formal, “mixed” operation definition, including the function signature
thus looks like this ‘schematic’:

value
f: A → B
f(a) ≡ C(a)

pre: P(a)
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Here A and B are some type clauses; C is some clause: some (process) ex-
pression, some (process) statement usually with a free identifier, say x; C(a)
designates the evaluation of that clause with the argument a bound to all
occurrences of the free identifier x; P is some predicate expression with free
identifier, say x; and P(a) designates the evaluation of the predicate with the
argument a bound to all occurrences of the free identifier x.slide 120

Axiomatic Operation Definitions

Example 8 (Factorial Function Definition: axiomatic) Informally and
formally: Narrative: The factorial function, together with natural numbers sat-
isfy the following two axioms: factorial of 0 is 1, and factorial of n, for n larger
than 0, is n multiplied by the factorial of n − 1. Formalisation:

value
fact: N → N

axiom
∀ n:Nat •

n=0 ⇒ fact(0) = 1 ∧
n>0 ⇒ fact(n) = n∗fact(n−1)

.
slide 121

Formal axiomatic operation definitions thus looks like this ‘schematic’:

type
A, B

value
f: A → B

axiom
Pi(a, b),
Pj(a, b),
...,
Pk(a, b),

Pi,Pj , . . . ,Pk are some predicate expression with free identifiers, say x, y;
and P(a, b) designates the evaluation of the predicate with the argument a, b
bound to all occurrences of the free identifiers x, y.

Discussion slide 122

slide 123

slide 124

slide 125

slide 126–127

1.7.5 Events slide 128

We (forward) refer to appendix example Sect. C.7 on page 164. It follows up
on this methodology concept.

Characterisation 37 (Event)
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• An event can be characterised by
⋆ a predicate, p and
⋆ a pair of (“before”) and (“after”) of pairs of

⋄ states and
⋄ times:
⋄ p((tb, σb), (ta, σa)).

⋆ Usually the time interval ta − tb
⋆ is of the order ta ≃ next(tb)

.
slide 129

Sometimes the event times coincide, tb = ta, in which case we say that the
event is instantaneous. The states may then be equal σb = σa or distinct !

We call such predicates as p for event predicates.
By an event we shall thus, to paraphrase, understand an instantaneous

change of state not directly brought about by some explicitly willed action in
the domain, but either by “external” forces. or implicitly as a non-intended
result of an explicitly willed action.

Events may or may not lead to the initiation of explicitly issued operations. slide 130

Example 9 (Events) A ‘withdraw’ from a positive balance bank account
action may leave a negative balance bank account. A bank branch office may
have to temporarily stop actions, i.e., close, due to a bank robbery.

Internal events: The first example above illustrates an internal event. It was
caused by an action in the domain, but was not explicitly the main intention
of the “withdraw” function.

External events: The second example above illustrates an external event.
We assume that we have not explicitly modelled bank robberies!

1.7.6 Behaviours slide 131

We (forward) refer to appendix example Sect. C.8 on page 164. It follows up
on this methodology concept.

Simple Behaviours

Characterisation 38 (Simple Behaviour) By a simple behaviour

• we understand a sequence, q, of zero, one or more
⋆ actions
⋆ and/or events
⋆ q1, q2, . . . , qi, qi+1, . . . , qn

• such that the state
⋆ resulting from one such action, qi,
⋆ or in which some event, qi, occurs,

• becomes the state in which the next action or event, qi+1,
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⋆ if it is an action, is effected,
⋆ or, if it is an event, is the event state

.
slide 132

Example 10 (Simple Behaviours) The opening of a bank account, fol-
lowed by zero, one or more deposits into that bank account, and/or with-
drawals from the bank account in question, ending with a closing of the bank
account.
Any prefix of such a sequence is also a simple behaviour. Any sequence in
which one or more events are interspersed is also a simple behaviour.

General Behaviours slide 133

A behaviour is either a simple behaviour, or is a concurrent behaviour, and,
if the latter, can be either a communicating behaviour or not (i.e., just a
concurrent behaviour).slide 134

Concurrent Behaviours

Characterisation 39 (Concurrent Behaviour) By a concurrent behaviour
we shall understand a set of behaviours (simple or otherwise).

slide 135

Example 11 (Concurrent Behaviours) A set of simple behaviours, that
may result from two or more distinct bank clients, each operating of their
own, distinct, that is, non-shared accounts, forms a concurrent behaviour.

slide 136

Communicating Behaviours

Characterisation 40 (Communicating Behaviour) By a communicat-
ing behaviour we shall understand a set of two or more behaviours where
otherwise distinct elements (i.e., behaviours) share events.

slide 137

Sometimes we do not model the behaviour from which external events are
incident (i.e., “arrive”) or to which events emanate (i.e., “depart”). But such
an environment is nevertheless a behaviour.slide 138

Example 12 (Communicating Behaviours) Consider a bank.To model
that two or more clients can share the same bank account one could model
the bank account as one behaviour and each client as a distinct behaviour. Let
us assume that only one client can open an account and that only one client
can close an account. Let us further assume that sharing is brought about by
one client, say the one who opened the account, identifying the sharing clients.
Now, in order to make sure that at most one client accesses the shared account
at one one time (in any one “smallest” transaction interval) one may model
“client access to account” as a pair of events such that during the interval
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between the first (begin transaction) and the second (end transaction) event
no other client can share events with the bank account behaviour. Now the
set of behaviours of the bank account and one or more of the client behaviours
is an example of a communicating behavior.

Formal Modelling of Behaviours slide 139

Communicating behaviours, the only really interesting behaviours, can be
modelled in a great variety of ways: from set-oriented models in B [2, 45],
RSL [72, 74, 25, 26, 27, 71, 33], VDM [36, 37, 69, 68], or Z [173, 174, 194,
93, 92], to models using for example CSP [95, 167, 169, 96],(as for example
“embedded” in RSL [72],), or, to diagram models using, for example, Petri
nets [108, 152, 158, 157, 159], message [102, 103, 104] or live sequence charts
[55, 87, 110], or state-charts [83, 84, 86, 88, 85].

1.7.7 Discussion slide 140

The main aim of Sect. 1.7 is to ensure that we have a clear understanding
of the modelling concepts of entities, functions, events and behaviours. To
“reduce” the modelling of phenomena and concepts to these four kinds of
phenomena and concepts is, of course, debatable. Our point is that it works,
that further classification, as is done in for example John F. Sowa’s [172],
is not necessary, or rather, is replaced by how we model attributes of, for
example, entities, and how we model facets (Chaps. 10–15).

1.7.8 Operations, Events and Behaviours as Entities slide 141

Review of Entities

In the example of Appendices A–N we identify the following as being entities:
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) slide 142

It may surprise some that we designate the insert and remove commands
as entities. They are certainly of conceptual nature, but can be given manifest
representations in the form of documents (that, for example order the building
of a link and its eventual inclusion in the net). slide 143

It may surprise some that we designate time and time intervals as entities.
They are certainly of conceptual and very abstract nature, but so is our choice. slide 144

It may surprise some that we designate positions as entities. They are
certainly manifest: one can point to a position. slide 145

And it may finally surprise some that we designate traffics as entities. It
is certainly manifest, and can be recorded, say by video-recording the traffic.
So that is also our choice.

Operations as Entities slide 146

to be written
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Events as Entities slide 147

to be written

Behaviours as Entities slide 148

to be written

1.8 Domain vs. Operational Research Models slide 149

1.8.1 Operational Research (OR)

Since World War II, as a result of research and application of what became
known as OR models (OR for Operational Research), these have won a signif-
icant position also within the transportation infrastructure. But domain mod-
els are not OR models. OR models usually use classical applied mathematics:
calculus ([partial] differential equations), statistics, probability theory, graph
theory, combinatorics, signal analysis, theory of flows in networks, etcetera
where domain engineering use formal specification languages emphasising ap-
plied mathematical logic and modern algebra.

1.8.2 Reasons for Operational Research Analysis slide 150

Operational research (OR) models are established, that is, OR analysis is
performed, for the following reasons: to solve a particular problem, usually a
resource allocation and/or scheduling problem, but also, less often, the prob-
lem is one of taking advice: should an investment be made, should one form
of resource be “converted” into another form, etc. Once solved the solver
and the client knows how to best allocate and/or schedule the investigated
resource or whether to perform a certain kind of investment, etc. OR mod-
els typically do not themselves lead to software derived from the OR model,
but sometimes results of OR analysis become constants in or parameters for
otherwise independently developed software.

1.8.3 Domain Models slide 151

Domain models are usually established (i) to understand an area of a domain
much wider than that analysable by current OR techniques, and sometimes
(ii) for purposes of “deriving” appropriate requirements, and (iii) for imple-
menting the right software. It has then turned out that in order to achieve
items (i–iii) above one has to use the kind of mathematics shown in this book.
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1.8.4 Domain and OR Models slide 152

But domain and OR modelling are not really that separated — as it may
appear from the above. Oftentimes software (as well as hardware) design de-
cisions must (or ought to) be based on OR analysis. The two kinds of modelling
must still be pursued. But it is desirable that their scientists and engineers,
i.e., that their practitioners, collaborate. Today they do not collaborate. Today
only the domain engineers are aware of the existence of OR engineers.

1.8.5 Domain versus Mathematical Modelling slide 153

We could widen our examination of domain modelling versus OR modelling to
domain modelling versus mathematical modelling, where the latter extends
well beyond OR modelling to the modelling of physical and human made
domains in its widest sense — such as also practiced by physicists, biologists,
etc.

For OR modelling as well as mathematical modelling we can say that
domain modelling currently lacks the formal techniques offered by the former.

But we are digressing !

1.9 Summary slide 154

The exercises of this chapter, see next, reveal the essence of this chapter: (i)
the ‘triptych paradigm’ (Sect. 1.2); (ii) the ‘triptych phases of software en-
gineering’ (Sect. 1.2.1); (iii) the ‘stages’ and ‘steps’ of software development
(Sect. ??); (iv) the three classes of development documents (Sect. 1.3); (v) the
detailed nature of 16 kinds of ‘informative documents’ (Sect. 1.3.1); (vi) the
concepts of ‘modelling documents’ (Sect. 1.3.2); (vii) the concepts of ‘analysis slide 155

documents’ (Sect. 1.3.3); (viii) the concepts of ‘descriptions, prescriptions’ and
‘specifications’ (Sect. 1.4); (ix) the concept of ‘software’ (Sect. 1.5); (x) the
concepts (Sect. 1.6) of ‘informal development’, ‘formal development’, ‘informal
and formal development’, ‘formal software development technique’, ‘system-
atic development’, ‘rigorous development’ and ‘formal development’; (xi) the
concepts of ‘entities’, ‘functions’, ‘events’ and ‘behaviours’ (Sect. 1.7); and
(xii) the concepts of ‘operational research’ versus those of ‘domain models’
(Sect. 1.8). slide 156

1.10 Exercises

1.10.1 What is a Domain?

Solution S.1.1 on page 323, suggests an answer to this exercise.
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1.10.2 Are These Domains?

Explain why you think the below are, or are not examples of domains:

0.1. Programming
0.2. Compilers
0.3. Compiler Writing
0.4. Patient Hospitalisation

Solution S.1.2 on page 323, suggests an answer to this exercise.

1.10.3 The Triptych Paradigm

Solution S.1.3 on page 324, suggests an answer to this exercise.

1.10.4 The Three Phases of Software Development

Solution S.1.4 on page 324, suggests an answer to this exercise.

1.10.5 Domain Engineering

Solution S.1.5 on page 324, suggests an answer to this exercise.

1.10.6 Requirements Engineering

Solution S.1.6 on page 324, suggests an answer to this exercise.

1.10.7 Software Design

Solution S.1.7 on page 324, suggests an answer to this exercise.

1.10.8 What is a Model

Solution S.1.8 on page 324, suggests an answer to this exercise.

1.10.9 Phase of Development

Solution S.1.9 on page 324, suggests an answer to this exercise.

1.10.10 Stage of Development

Solution S.1.10 on page 324, suggests an answer to this exercise.

1.10.11 Step of Development

Solution S.1.11 on page 324, suggests an answer to this exercise.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

1.10 Exercises 35

1.10.12 Development Documents

Solution S.1.12 on page 324, suggests an answer to this exercise.

1.10.13 Descriptions, Prescriptions and Specifications

Solution S.1.13 on page 324, suggests an answer to this exercise.

1.10.14 Software

Solution S.1.14 on page 325, suggests an answer to this exercise.

1.10.15 Informal and Formal Software Development

Solution S.1.15 on page 325, suggests an answer to this exercise.

1.10.16 Specification Ontology

Which are the four kinds of phenomena and concepts around which our infor-
mal (i.e., narrative) and formal descriptions, prescriptions and specifications
evolve ?

Solution S.1.16 on page 325, suggests an answer to this exercise.

1.10.17 Discreteness

How does this chapter characterise ‘being discrete’ ?
Solution S.1.17 on page 325, suggests an answer to this exercise.

1.10.18 Continuous

How does this chapter characterise ‘being continuous’ ?
Solution S.1.18 on page 325, suggests an answer to this exercise.

1.10.19 Discrete and Continuous Entities

Which of these examples refer to discrete entities and which refer to continuous
entities:

0.1.
0.2.
0.3.
0.4.

Solution S.1.19 on page 325, suggests an answer to this exercise.
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1.10.20 Operations on Time and Time Intervals

We refer to Sect. 1.7.1 (Pages 18–18). State the formal signature of all the
operations that you can think of in connection with times and time intervals.

Solution S.1.20 on page 326, suggests an answer to this exercise.

1.10.21 Operations on Oil and Gas

We assume that oil (which is here seen as a liquid) and gas (which is here
seen as gaseous), that is, are continuous entities.

Now define the oil and gas sorts (i.e., abstract types) and postulate oper-
ations that obs erve amount of oil respectively amount of gas.9 Now state the
formal signatures of the operations that you can think of in connection with
oil and gas.

Solution S.1.21 on page 326, suggests an answer to this exercise.

1.10.22 Simple Entities

Solution S.1.22 on page 327, suggests an answer to this exercise.

1.10.23 Operations

Solution S.1.23 on page 327, suggests an answer to this exercise.

1.10.24 Events

Solution S.1.24 on page 327, suggests an answer to this exercise.

1.10.25 Behaviours

Solution S.1.25 on page 327, suggests an answer to this exercise.

1.10.26 Atomic and Composite Entities

Solution S.1.26 on page 327, suggests an answer to this exercise.

1.10.27 Mereology

What is meant by mereology ?
Solution S.1.27 on page 327, suggests an answer to this exercise.

9 For the concept of ‘amount of substance (oil or gas)’ please see Page 18.
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1.10.28 Operations Research (OR)

How does this chapter define Operations Research (OR)?
Solution S.1.28 on page 327, suggests an answer to this exercise.

1.10.29 OR versus Domain Modelling

How does this chapter characterise differences between ‘OR Modelling’ and
‘Domain Modelling’?

Solution S.1.29 on page 327, suggests an answer to this exercise.
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Domain Engineering: An Overview slide 159

Domain engineering is a new element of software engineering. Domain engi-
neering is to be performed prior to requirements engineering for the case where
there is no relevant domain description on which to base the requirements en-
gineering. For the case that such a description exists that description has to
first be checked: its scope must cover at least that of the desired requirements. slide 160

This chapter shall outline the stages and steps of development actions to
be taken in order to arrive, in a proper way, at a proper domain description.

2.1 Discussions of The Domain Concept slide 161

2.1.1 The Novelty

The idea of domain engineering preceding requirements engineering is new.
Well, in some presentations of requirements engineering there are elements of
domain analysis. But basically those requirements engineering-based forms of
analysis do not expect the requirements engineer to write down, that is, to se-
riously describe the domain, and certainly not in a form which is independent
of, that is, separated from the requirements prescriptions. slide 162

As also outlined in Sects. 1.2 and 1.8, domain models are as necessary for
requirements development and — thus also — for software design, as physics
is for the classical branches of electrical and electronics, mechanics, civil, and
chemical engineering.

2.1.2 Implications slide 163

This new aspect of software engineering implies that software engineers, as
a group, engaged in a software development project, from (and including)
domain engineering via requirements engineering to (and including) software
design, must possess the necessary formal and practical bases: the science
skills of domain engineering, the R&D skills of requirements engineering, and
the (by now) engineering skills of software design.
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2.1.3 The Domain Dogma slide 164

From Sect. 1.2 we repeat:

Before software can be designed one must understand its requirements.

Before requirements can be expressed one must understand the applica-

tion domain.

2.2 Stages of Domain Engineering slide 165

2.2.0 An Overview of “What to Do ?”

How do we then construct a domain description ? That is, which are the
stages of domain engineering ? The answer is: there are a number of stages,
which, when followed in some order, some possibly concurrently, will lead
you reasonably disciplined way from scratch to goal ! Before enumerating the
stages let us argue their presence and basic purpose.

2.2.1 [1] Domain Information slide 166

We are here referring to the construction of informative documents.
We have earlier, as mentioned above, (Page 7) introduced the general issues

of informative documents.
Chapter 3 (Pages 47–64) covers the present topic in some detail.
Suffice it here to emphasize that each and every of the items listed on

Page 47 must be kept up-to-date during the full development cycle. This
means that this activity is of “continuing concern” all during development.slide 167

The purpose of this stage of development, to repeat, is to record all relevant
administrative, socio-economic, budgetary, project management (planning)
and all such non-formalisable information which has a bearing on the domain
description project.

2.2.2 [2] Domain Stakeholder Identification slide 168

The domain is populated with staff (management, workers, etc.), customers
(clients, users), providers of support, equipment, etc., the public at large —
always “interfering, having opinions”, regulatory agencies, politicians seeking
“14 minutes of TV coverage”, etcetera.

There are many kinds of staff, many kinds of customers, many kinds of
providers, etc. All these need be identified so that as complete a coverage
of sources of domain knowledge can be established and used when actively
acquiring, that is, soliciting and eliciting knowledge about the domain.

Chapter 4 (Pages 67–68) covers the present topic in some detail.
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2.2.3 [3] Domain Acquisition slide 169

The software engineers need a domain description. Software engineers, today,
are basically the only ones who have the tools1, techniques and experience in
creating large scale specifications. But the software engineers do not possess
the domain knowledge. They must solicit and elicit, that is, they must acquire
this knowledge from the domain stakeholders. slide 170

Characterisation 41 (Domain Acquisition (I)) By domain acquisition
we understand a process in which documents, interviews, etc., informing —
“in any shape or form” — about the domain entities, functions, events and
behaviours are collected from the domain stakeholders.

Compare the above characterisation to that of Characterisation 53 on page 71.
Chapter 5 (Pages 71–73) covers the present topic in some detail.

2.2.4 [4] Domain Analysis and Concept Formation slide 171

The acquired domain knowledge is then analysed, that is, studied with a
view towards discovering inconsistencies and incompleteness of what has been
acquired as well as concepts that capture properties of knowledge about the
phenomena and concepts being analysed.

Chapter 6 (Pages 75–76) covers the present topic in some detail.

2.2.5 [5] Domain Business Processes slide 172

On the basis of acquired knowledge, sometimes as part of its acquisition one is
either presented with or constructs rough sketches of the business processes of
the domain. An aim of describing these business processes is to check the ac-
quired knowledge for inconsistencies and completeness and whether proposed
concepts help improve the informal understanding.

Chapter 7 (Pages 79–81) covers the present topic in some detail.

2.2.6 [6] Domain Terminology slide 173

Out of the domain acquisition, analysis and business process rough-sketching
processes emerges a domain terminology. That is, a set of terms that cover
entities, functions, events and behaviours of the domain. It is an important slide 174

aspect of software development to establish, use and maintain a variety of
terminologies. And first comes the domain terminology.

Chapter 8 (Pages 83–85) covers the present topic in some detail.

1 The two main tools of domain description are concise English and a number of
formal specification languages.
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2.2.7 [7] Domain Modelling slide 175

Based on properly analysed domain acquisitions these are “domain descrip-
tion units” we can now model the domain. The major stage of the domain
engineering phase is that of domain modelling, that is, of precisely describe in
narrative and possibly also in formal terms the domain as it is. Several prin-
ciples, many techniques and many tools can be given for describing domains.

Chapters 10–15 (Pages 93–120) covers the present topic in some detail.

2.2.8 [8] Domain Verification slide 176

While describing a domain one may wish to verify properties of what is being
described. The use here of the term ‘verification’ covers (i) formal testing, that
is, testing (symbolic executions of descriptions) based on formally derived test
cases and test answers, (ii) model checking, that is, executions of simplified,
but crucial models of what is being described, and (iii) formal verification that
is, formal, possibly mechanisable proof of theorems (propositions etc.) about
what is being described.

Chapter 16 (Pages 123–123) covers the present topic in some detail.

2.2.9 [9] Domain Validation slide 177

Characterisation 42 (Validation) By validation we shall mean a system-
atic process — involving representatives of all stakeholders and the domain
engineers — going carefully through all the narrative descriptions and con-
firming or rejecting these descriptions.

Chapter 17 (Pages 125–125) covers the present topic in some detail.

2.2.10 [10] Domain Verification versus Domain Validation slide 178

Verification serves to ensure that the domain model is right. Validation serves
to ensure that one obtains the right model.

2.2.11 [11] Domain Theory Formation slide 179

Describing a domain, precisely, and even formally, verifying propositions and
theorems, is tantamount to establishing a basis for a domain theory. Just as
in physics, we need theories also of the man-made universes.

Chapter 18 (Pages 127–127) covers the present topic in some detail.
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2.3 A Summary Enumeration slide 180

We can now summarise the relevant stages of domain engineering:

1. Domain Information Chap. 3 (Pages 47–64)
2. Domain Stakeholder Identification, Chap. 4 (Pages 67–68)
3. Domain Acquisition, Chap. 5 (Pages 71–73)
4. Domain Analysis and Concept Formation, Chap. 6 (Pages 75–76)
5. Domain [i.e., Business] Processes, Chap. 7 (Pages 79–81)
6. Domain Terminology, Chap. 8 (Pages 83–85)
7. Domain Modelling, Chaps. 10–15 (Pages 93–120)

(a) Intrinsics Chap. 10 (Pages 93–94)
(b) Support Technologies Chap. 11 (Pages 97–98)
(c) Management & Organistation Chap. 12 (Pages 101–107)
(d) Rules & Regulations Chap. 13 (Pages 109–112)
(e) Scripts and Contracts Chap. 14 (Pages 115–117)
(f) Human Behaviour Chap. 15 (Pages 119–120)

8. Domain Verification, Chap. 16 (Pages 123–123)
9. Domain Validation and Chap. 17 (Pages 125–125)

10. Domain Theory Formation, Chap. 18 (Pages 127–127)
slide 181
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Informative Documents slide 184

Appendix A (Pages 145–148) complements the present chapter.
An informative document ‘informs’. An informative document is expressed

in some national language.1 Informative documents serve as a link between
developers. clients and possible external funding agencies:

• “What is the project name ?” Item 12

• “When is the project carried out ?” Item 1
• “Who are the project partners ?” Item 2
• “Where is the project being done ?” Item 2
• “Why is the project being pursued ?” Items 3(a))–3(b))
• “What is the project all about ?” Items 3(b))–3(g))
• “How is the project being pursued ?” Items 4–6

slide 185

And many other such practicalities. Legal contracts can be seen as part of
the informative documents. We shall list the various kinds of informative
documents that are typical for domain and for requirements engineering.

3.1 An Enumeration of Informative Documents slide 186

Instead of broadly informing about the aims and objectives of a development
project we suggest a far more refined repertoire of information “tid-bits”. A
listing of the sixteen names of these “tid-bits” hints at these: slide 187

1. Project Name and Date Sect. 3.2 from Page 48
2. Project Partners (‘whom’) and Place(s) (‘where’) Sect. 3.3 from Page 48
3. [Project: Background and Outlook]

(a) Current Situation Sect. 3.4 from Page 49
(b) Needs and Ideas Sect. 3.5 from Page 49

1 The fact that informative documents are informal displays a mere coincidence of
two times ‘inform’.

2 The item numbers refer to the enumerated listing given on Page 47.
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(c) Concepts and Facilities Sect. 3.6 from Page 50
(d) Scope and Span Sect. 3.7 from Page 51
(e) Assumptions and Dependencies Sect. 3.8 from Page 51
(f) Implicit/Derivative Goals Sect. 3.9 from Page 52
(g) Synopsis Sect. 3.10 from Page 52

4. [Project Plan]
(a) Software Development Graph Sect. 3.11 from Page 53
(b) Resource Allocation Sect. 3.12 from Page 55
(c) Budget Estimate Sect. 3.13.2 from Page 56
(d) Standards Compliance Sect. 3.14 from Page 56

5. Contracts and Design Briefs Sect. 3.15.1 from Page 59
6. Logbook Sect. 3.16 from Page 63

3.2 Project Names and Dates slide 188

We (forward) refer to appendix example Sect. A.1 on page 145. It follows up
on this methodology concept.

The first information are those of

• Project Name: the name of the endeavour;
• Project Dates: the dates of the project.

3.3 Project Partners and Places slide 189

We (forward) refer to appendix example Sect. A.2 on page 145. It follows up
on this methodology concept.

The second information is that of

• Project Partners: who carries out the project.
Full partner (collaborator) details are (eventually) to be given:
⋆ Client(s): full names, addresses, and possibly names of contact persons,

etc., of the people and/or companies and/or institutions who and which
have ‘ordered’ the project and who and which shall receive its resulting
documents.

⋆ Developer(s): full names, addresses, and possibly names of contact per-
sons, etc., of the people and/or companies and/or institutions who and
which are primarily developing the deliverables of the project and who
and which shall receive its main funding.slide 190

⋆ Project Consultant(s): full names, addresses, and possibly names of pos-
sible consultants, i.e., companies and/or individuals outside “the circle”
of clients and developers.

⋆ Project Funding Agencies: full names, addresses, possibly names of con-
tact persons, etc., of the people and/or agencies who and which are
possibly [co-]funding the project.
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⋆ Project Audience: full names, addresses, and possibly names of contact
persons, etc., of the people and/or agencies who and which are possibly
(also) interested in the project.slide 191

• Project Places: where is the project carried out ? Full addresses: visiting
and postal mailing addresses and electronic addresses.

slide 192

3.4 Current Situation slide 193

We (forward) refer to appendix example Sect. A.3 on page 145. It follows up
on this methodology concept.

Usually a domain engineering project is started for some reason. Either
the developer or the client, or both, have only scant knowledge of the domain,
or, when they have it is not written down but is “inside” the heads of some
or most of their (i.e., developer or client) staff. Similarly a requirements slide 194

engineering project is started for some reason. A common reason is that of
the current situation on the client side. Either no IT is used but there is
a need for some IT, or current IT is outdated, or new demands are made
by owners, management or employees in general at the client, demands that
“translate” into altered or new IT; or customers of the client may have similar
expectations — of better e-service etc., from the client, i.e., their provider. slide 195

For a software design project .... .... ....
The ‘Current Situation’ document must outline this in succinct terms: say

half to a full page.

3.5 Needs and Ideas slide 196

3.5.1 Needs

We (forward) refer to appendix example Sect. A.4.1 on page 145. It follows
up on this methodology concept.

Usually the current situation is paraphrased, i.e., accentuated, by expres-
sions of specific ‘needs’ for a domain description, or for a requirements pre-
scription, or for a completed software design, i.e., for software.

The need for a domain description could either be that it should form
the basis for an orderly process of requirements development, or the basis
for teaching and learning courses, say for new staff of the enterprise (of the
domain), or both. slide 197

The need for a requirements prescription could either be that it should
form the basis for an orderly process of requirements development, or the
basis for a tender, i.e., an offer to develop some software, or both. slide 198

Usually can express needs while at the same time indicate how one might
foresee an expressed need being possibly fulfilled, i.e., achieved.
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A need for a software design may be that it must be based on an existing
requirements prescription.

A need for a requirements prescription may be that it must be based on
an existing domain description.

A need for a domain description may be that it must be just informal,
another need may be that it be both informal and formal.

3.5.2 Ideas slide 199

We (forward) refer to appendix example Sect. A.4.2 on page 145. It follows
up on this methodology concept.

One thing are the ‘needs’. Another thing are the ‘ideas’. If there are needs
but no ideas, or if there is no need but ideas, then “forget it”: no reason to
embark on a development !

By ideas we mean that there are some substantial concepts that, when
properly deployed, can lead to a believable development, whether of a domain
description, of a requirements prescription, or of a software design.slide 200

By domain ideas we mean such concepts “upon” or “around” which one
can build, one can model, a domain description.

By requirements ideas we mean such concepts “upon” or “around” which
one can build, one can model, a requirements prescription.

By software design ideas we mean such concepts “upon” or “around” which
one can build, one can model, a software design.

3.6 Facilities and Concepts slide 201

We (forward) refer to appendix example Sect. A.5 on page 146. It follows up
on this methodology concept.

The pragmatics of the ‘concepts and facilities’ section is to — ever so briefly
— inform all parties to the contract of which are the most important ideas of
the subject domain of the contract. A facility is a physical phenomenon (here
embodied, for example, in the form of software tools) while a concept is a
mental construction (covering, usually some physical phenomena or concepts
of these).slide 202

In the context of informing only about a domain description development
project the concepts and facilities are intended, in the document section of
that name, to be the most pertinent concepts and facilities on which the
domain description should focus.slide 203

In the context of informing only about a requirements prescription de-
velopment project the concepts and facilities are intended, in the document
section of that name, to be the most pertinent concepts and facilities of the
requirements prescription: which are the novel ideas which the requirements
should be based.
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3.7 Scope and Span slide 204

Characterisation 43 (Scope) By scope — in the context of informative
software development documentation — we shall understand an outline of
the broader setting of the problem, i.e., the universe of discourse at hand. .

We (forward) refer to appendix example Sect. A.6.1 on page 146. It follows
up on this methodology concept.

Characterisation 44 (Span) By a span — in the context of informative
software development documentation — we shall understand an outline of
the more specific area and the nature of the problem that need be tackled. .

We (forward) refer to appendix example Sect. A.6.2 on page 146. It follows
up on this methodology concept. slide 205

Let us examine a few generic cases of scope/span determination.
(i) “Pure” domain engineering scope and span: By ‘ “pure” domain engi-

neering’ we mean a project aimed at just producing a domain model. In such
a case the scope should typically be chosen as wide as possible, while the span
is a proper, but not too “small” subset of the scope. slide 206

(ii) Domain and requirements engineering scope and span: By ‘domain and
requirements engineering’ we mean a project first aimed at producing a do-
main model and then, from it, “derive” a requirements model. In such a case
the scope should typically be chosen to be comfortably wider than the scope
of the requirements part of the project. slide 207

(iii) Requirements engineering and software design scope and span: By ‘re-
quirements engineering and software design’ we mean a project first aimed at
producing a requirements model and then, from it, “derive” a software design.
In such a case the scope and span part of the requirements part of the project
should be equal. Software design projects have their scope and span being set
by the requirements part of the project.

3.8 Assumptions and Dependencies slide 208

We (forward) refer to appendix example Sect. A.7 on page 146. It follows up
on this methodology concept.

There are two kinds of assumptions and dependencies. One kind has to
do with sources of knowledge. For domain development there needs to be
the sources from which the domain engineer can learn about and develop the
domain description. We assume and depend on that. For requirements devel-
opment there needs to be a domain description as well as people from whom
the requirements engineer can elicit the requirements and thus develop the
requirements prescription. We assume and depend on that. And for software
design there needs to be a requirements prescription. We assume and depend
on that. The other kind has to do with delineation of the domain. slide 209
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Usually a domain description (one upon which we base our (domain) re-
quirements) leaves out what we might call the “fringes” of the domain, i.e.,
the environment of that domain. To also describe those parts might simply
“be too much”! That environment is simply judged too large, too unwieldy,
to describe.slide 210

Yet, sooner or later, that environment will show up in the requirements
prescription, if it is not already in the domain description. The requirements
prescription eventually, thus, comes to depend — maybe not exactly crucially,
but anyway — on events originating in the environment, or the ability of the
computing system to dispose of some output to that environment.

In the ‘assumptions and dependencies’ project document the project re-
sponsible must clearly express these assumptions and dependencies.

3.9 Implicit & Derivative Goals slide 211

We (forward) refer to appendix example Sect. A.8 on page 146. It follows up
on this methodology concept.

Usually computing systems provide, or offer, a large number of entities,
functionalities, events and behaviours, and it is those requirements we pre-
scribe. But those entities, functionalities, events and behaviours really do not
themselves reveal why they are or were prescribed. Usually their prescription
serves “ulterior” goals which cannot be quantified in a way that indicates
what the prescribed computing system should offer.slide 212

Typical meta-goals are such as: (i) “Deployment of the computing system
should result in greater profits for the company.” (ii) “Deployment of the
computing system should result in the company attaining a larger market
share for its products.” (iii) “Deployment of the computing system should
result in fewer worker accidents.” (iv) “Deployment of the computing system
should result in more satisfied customers (and staff).”slide 213

Other kinds of meta-goals are: (v) “The existence of a domain description
will have led or should lead to better understanding of the domain, hence to
improved performance of domain staff trained in the domain based on such
domain descriptions.” (vi) “The existence of a requirements prescription will
have led or should lead to more appropriately targeted software.”slide 214

In the ‘implicit/derivative goals’ project document the project responsible
must clearly express these implicit/derivative goals.

3.10 Synopsis slide 215

We (forward) refer to appendix example Sect. A.9 on page 146. It follows up
on this methodology concept.
The four sub-groups of informative document parts: current situation, needs
and ideas, scope and span, and concepts and facilities, form an introductory
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“whole” that now need be “solidified”. They need to be brought together in
a more coherent fashion — in what we shall call the synopsis document slide 216

Characterisation 45 (Synopsis) By a synopsis3 — in the context of infor-
mative software development documentation — we shall understand the same
as a resumé, a summary, that is, a comprehensive view, that is, an extract of
a combination of current situation, needs and ideas, concepts, and scope and
span documentation informing about a universe of discourse for which some
development work is desired, for example: (i) the construction of a domain slide 217

description, (ii) or the construction of a requirements prescription based on
an existing domain description, or both; (iii) or the construction of a software
design based on existing requirements prescription; (iv) or both (requirements
and software design), (v) or all (domain, requirements and software design);
(vi) or the first two (domain and requirements).

3.11 Software Development Graphs slide 218

We (forward) refer to appendix example Sect. A.10 on page 146. It follows up
on this methodology concept.

Development projects need be managed. This is true also for single person
projects. Management of domain engineering projects must take into account
that these are normally research projects: little is objectively known about
the domain before it is properly described; hence one must be prepared for
“unforeseen” resource usage. Software development graphs are a means of slide 219

capturing, either beforehand, during, or after the project how that project is
to be done, is being done, or was done, respectively !

3.11.1 Graphs slide 220

Characterisation 46 (Software Development Graph) By a software de-
velopment graph we shall syntactically understand a labelled graph whose
distinctly labelled nodes (vertexes) designate development activities (phases,
stages or steps), and whose distinctly labelled, directed edges (arcs) designate
precedence relations between (node designated) activities. slide 221

Semantically a software development graph designate a set of project be-
haviour designators. A project behaviour designator is a sequence of phase,
stage or step state designators and state transition designators.

A phase, stage or step state designator is a node label such that the node is
that of a phase part, or a stage part, or a step part of a software development
graph.

A state transition designator is an edge label such that the edge is that of
an edge of a development graph.

3 Synopsis: Greek, comprehensive view, from synopsis: to be going to see together.
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3.11.2 A Conceptual Software Development Graph slide 222
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Fig. 3.1. A software development graph (left)
and two (incomplete) project behaviour designators (center and right)

The center graph of Fig. 3.1 portrays the following incompletely listed project
behaviour designator:

<{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,{L}>

slide 223

The “abstracted” software development graph of Fig. 3.1 denotes a very large
number of project behaviours, that is, a very large number of project be-
haviour designators, and, for each of these, depending on the states of phase,
stage or step, as represented, for example, by the states of the documents
related to each of the nodes, a very large number of (dynamic) behaviours.

3.11.3 Who Sets Up the Graphs ? slide 224

Management is responsible for setting up an appropriate software development
graph (for each project). A software development graph shows how manage-
ment intends to pursue the project: which phases, stages and steps to conduct,
that is, to which depth of adherence to the triptych principles management
wishes to achieve its aims.

3.11.4 How Do Software Development Graphs Come About ? slide

225

For a given, specific project, its software development graph comes about in
any number of ways. (i) Either the project is a “repeat” project, that is, is
developing a kind of software which has been developed before. In that case
one simply uses the software development graph used in those earlier projects.
But since there probably are some small, or perhaps not even that small,
difference between the current project and the previous ones, the currently
chosen software development graph may be modified. Thus every software
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development graph will be recorded for possible re-use in future. It becomes
part of the “corporate assets” of the software house.slide 226

(ii) Or the project is a “research” project, that is, is developing a new kind
of software which has not been developed before. In that case one starts with
the process diagram most appropriate for the project.

If it is a domain engineering project then one starts with the domain
engineering process graph of Fig. 21.1 (Chap. 21, Sect. 21.1 on page 139) as
the software development graph; modifies this graph to suit the specific do-
main at hand, all the while recalling that development of domain descriptions
are really research rather than engineering tasks, hence accepting that the
software development graph need be modified along the way: clear resource
estimates of time and effort cannot be assured. slide 227

If it is a requirements engineering projectthen one starts with the domain
engineering process graph of Fig. 20.1 (Chap. 20, Sect. 20.8.1 on page 136) as
the software development graph; and modifies this graph to suit the specific
requirements at hand. One must always be prepared to modify the software
development graph along the way.

3.12 Resource Allocation slide 228

We (forward) refer to appendix example Sect. A.11 on page 147. It follows up
on this methodology concept.

Characterisation 47 (Software Development Graph Attribute) An at-
tributed software development graph is a software development graph whose
nodes and edges have been assigned development attributes.

slide 229

Usually node development attributes include whether the node is a do-
main, a requirements or a software design development node; whether the
node is a phase, stage, or step node; of what specific kind the node — when
not just a phase node — is: any one of the stages of the three triptych phases;
any one of the 16 kinds of information document development steps enu-
merated on Page 47; or any one of the many stages or steps of the domain
modelling and analysis otherwise “revealed” in Chaps. 1–21. slide 230

Given an attributed software development graph and given experience
from projects “similar” to the one described by the graph one can now esti-
mate resources to be allocated to each task, that is, to the carrying out the
actions implied by each of its nodes. These resource estimates are of the slide 231

following kinds: number and qualifications of project staff; when, i.e., during
which periods each individual, but not yet named staff, is to be available for
the action denoted by the box being attributed; tools (office space, equipment
(incl. IT equipment), software — by allocated staff members — to be available
for that action; ‘begin’ and ‘end time’; etcetera.

These estimates can be affixed to the nodes (boxes); thus augmenting its
set of attributes.
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3.13 Budget (and Other) Estimates slide 232

3.13.1 Budget

We (forward) refer to appendix example Sect. A.12.1 on page 147. It follows
up on this methodology concept.

3.13.2 Other Estimates slide 233

We (forward) refer to appendix example Sect. A.12.2 on page 147. It follows up
on this methodology concept. From the augmented (i.e., extended attributed)
software development graph one can now derive a number of estimates:

• (i) a budget estimate, per phase and stage, and thus for the entire (software
development graph [SDG] designated) project;

• (ii) a time estimate, per phase and stage, and thus for the entire (SDG
designated) project;

• (iii) a staff estimate, per phase and stage, and thus for the entire (SDG
designated) project (here it must be analysed which activities can occur
in parallel) and usually in the form of a histogram;

• (iv) an equipment estimate, per phase and stage, and thus for the entire
(SDG designated) project;

• etcetera.

3.14 Standards Compliance slide 234

A distinction is made between development standards and documentation
standards.

3.14.1 Development Standards

We (forward) refer to appendix example Sect. A.13.1 on page 147. It follows
up on this methodology concept.

Usually development occurs in the context of following some development
standards (one or more). The Institute of Electrical and Electronics Engineers
(IEEE [99]) has established a number of standards for the development of a
various kinds of software. Other national and international organisations, in-
cluding the International Organization for Standardization (ISO [101]) and the
International Telecommunication Union (ITU [105]), have established similar
standards.
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3.14.2 Documentation Standards slide 235

We (forward) refer to appendix example Sect. A.13.2 on page 147. It follows
up on this methodology concept.

Usually documentation occurs in the context of following some documen-
tation standards (one or more). The Institute of Electrical and Electronics
Engineers (IEEE [99]) has established a number of standards also for the doc-
umentation of a various kinds of software. Other national and international
organisations, including the International Organization for Standardization
(ISO [101]) and the International Telecommunications Union (ITU [105]),
have also established similar standards.

3.14.3 Standards Versus Recommendations slide 236

Some standards are binding, some are recommendations. Reference to specific
standards and recommendations can be written into project contracts with
the meaning that the project must comply with these standards and recom-
mendations. Some standards mandate or recommend the use — and hence
the documentation style — of certain development practices. Other standards
mandate or recommend the use of specific spelling forms, mnemonics, abbre-
viations, etc.

3.14.4 Specific Standards slide 237

We (forward) refer to appendix example Sect. A.13.4 on page 147. It follows
up on this methodology concept.

There are very many standards for software development and for its doc-
umentation. Some standards come and go. Others are quite stable. A study
of more specialised standards reveals the following acronyms: MIL-STD-498,
DOD-STD-2167A, RTCA/DO-178B, JSP188 and DEF STAN 05-91. The
reader is invited to search for these on the Internet. It therefore makes little
sense for us to list other than a few clusters of seemingly more stable and
trustworthy standards. slide 238

• International Organization for Standardization (ISO): http://www.iso.ch/

⋆ ISO 9001: Quality Systems Model for quality assurance in design, devel-
opment, production, installation and servicing

⋆ ISO 9000-3: Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software

⋆ ISO 12207: Software Life Cycle Processes http://www.12207.com/ slide 239

• IEEE Standards: http://standards.ieee.org/

⋆ IEEE Std 610.12-1990, Standard Glossary of Software Engineering Termi-
nology
This standard contains definitions for more than 1000 terms, establish-
ing the basic vocabulary of software engineering.
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⋆ IEEE Std 1233-1996, Guide for Developing System Requirements Specifi-
cations
This standard provides guidance for the development of a set of re-
quirements that, when realized, will satisfy an expressed need.slide 240

⋆ IEEE Std 1058.101987, Standard for Software Project Management Plans
This standard specifies the format and contents of software project
management plans.

⋆ IEEE Std 1074.1-1995, Guide for Developing Software Life Cycle Processes
This guide provides approaches to the implementation of IEEE Std
1074. (This standard defines the set of activities that constitute the
mandatory processes for the development and maintenance of soft-
ware.)

⋆ IEEE Std 730.1-1995, Guide for Software Quality Assurance Plans
The purpose of this guide is to identify approaches to good Software
Quality Assurance practices in support of IEEE Std 730. (The standard
establishes a required format and a set of minimum contents for Soft-
ware Quality Assurance Plans. The description of each of the required
elements is sparse and thus provides a template for the development
of further standards, each expanding on a specific section of this doc-
ument.)slide 241

⋆ IEEE Std 1008-1987 (reaffirmed 1993), Standard for Software Unit Testing
The standard describes a testing process composed of a hierarchy of
phases, activities, and tasks. Further, it defines a minimum set of tasks
for each activity.

⋆ IEEE Std 1063-1987 (reaffirmed 1993), Standard for Software User Doc-
umentation
This standard provides minimum requirements for the structure and
information content of user documentation.

⋆ IEEE Std 1219-1992, Standard for Software Maintenance
This standard defines a software maintenance process.

slide 242

• Software Engineering Institute (SEI): http://www.sei.cmu.edu

⋆ Software Process Improvement Models and Standards, including SEI’s var-
ious Capability Maturity Models

• UK Ministry of Defence Standards http://www.dstan.mod.uk/

⋆ 00-55: Requirements for Safety Related Software in Defence Equipment
http://www.dstan.mod.uk/data/00/055/02000200.pdf

⋆ 00-56: Safety Management Requirements for Defence Systems
http://www.dstan.mod.uk/data/00/056/01000300.pdf

So, please, use the Internet for latest on standards relevant to your project.
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3.15 Contracts and Design Briefs slide 243

3.15.1 Contracts slide 244

We (forward) refer to appendix example Sect. A.14.1 on page 147. It follows
up on this methodology concept.

The current situation, needs and ideas, concepts and facilities, scope and
span and synopsis document parts set the stage for, and are a necessary
background for contractual documents. Usually one contract document is suf-
ficient for small projects. And usually several related contract documents are
needed for larger projects.

Characterisation 48 (Contract) By a contract — in the context of infor-
mative software development documentation — we shall understand a sepa-
rate, clearly identifiable document (i) which is legally binding in a court of slide 245

law, (ii) which identifies parties to the contract, (iii) which describes what
is being contracted for, possibly mutual deliveries, by dates, by contents, by
quality, etc., (iv) which details the specific development principles, techniques,
tools and standards to be used and followed, (v) which defines price and pay-
ment conditions for the deliverables, (vi) and which outlines what is going to
happen if delivery of any one deliverable is not made on time, or does not
have the desired contents, or does not have the desired quality, etc.

Items (iii–iv) constitute the main part of a design brief. (See below.) slide 246

For national and for international contracts predefined forms which make
more precise what the contracts must contain are usually available. We will
not bring in an example. Such an example would have to reflect the almost
‘formal’ status of ‘legal binding’, and would thus have to be extensive and
very carefully worded, hence rather long. Instead we refer to national and
international contract forms.

The software development field is undergoing dramatic improvements.
Clients are entitled to have legally guaranteed quality standards (incl. correct-
ness verification). Hence contracts will have to refer to(i)the broader domain slide 247

and give specific references to named domain stakeholders, if the development
of a domain description is (to be) contracted; or (ii)existing domain descrip-
tions and give specific references to named stakeholders, if the development
of a requirements prescription is (to be) contracted; or (iii)existing require-
ments prescriptions and give specific references to named stakeholders, if the
development of software is (to be) contracted.

Therefore contracts should name “the methods” by means of which the
deliveries will be developed — as we have indicated in item (iv) of the char-
acterisation.

3.15.2 Contract Details slide 248

1. Overview: Contracts between an organization and a software vendor
should clearly describe the rights and responsibilities of the parties to
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the contract. The contracts should be in writing with sufficient detail to
provide assurances for performance, source code accessibility, software and
data security, and other important issues. Before management signs the
contracts, it should submit them for legal counsel review.slide 249

Organizations may encounter situations where software vendors cannot or
will not agree to the terms an organization requests. Under these circum-
stances, organizations should determine if they are willing to accept or
able to mitigate the risks of acquiring the software without the requested
terms. If not, consideration of alternative vendors and software may be
appropriate.

2. General Issues of Licensing: slide 250

Software is usually licensed, not purchased; and under licensing agree-
ments, organizations obtain no ownership rights, even if the organization
paid to have the software developed. In general, for domain descriptions
and requirements prescriptions, a license should clearly define permitted
users and sites.

3. Copyright: slide 251

Proprietary as well as open-source software are protected by copyright
laws. If need be then clients and vendors must make sure that also their
domain descriptions and requirements prescriptions are protected by being
proprietary.

4. Domain, Requirements and Software Development Specifica-
tions: slide

252

Contracts for the development of custom domain descriptions, require-
ments prescriptions, and software design must be very specific about theslide 253

scope and span of domain descriptions and requirements prescriptions,
that requirements prescriptions build on accepted domain descriptions,
that requirements prescriptions are feasible and satisfiable, and that soft-
ware designs build on accepted requirements prescriptions.

5. Performance Standards: slide 254

This issue relates to requirements and software. When the requirements
prescriptions are claimed feasible and satisfiable, then there must be soft-
ware that satisfies the requirements. These requirements also include per-
formance requirements, part of the machine requirements to be (very
lightly) covered in Chap. 20.

6. Documentation, Modification, Updates and Conversion: slide 255

A licensing or development agreement should require vendors to deliver
appropriate documentation. This should include all kinds of documenta-
tion — such as defined later. A license or separate maintenance agreement
should address the availability and cost of document updates and modifi-
cations.

7. Bankruptcy: slide 256

In addition to escrow agreements, organizations should consider the need
for other clauses in licensing agreements to protect against the risk of
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a vendor bankruptcy. For mission-critical software, organizations should
consult with their legal counsel on how best to deal with the Bankruptcy
laws, which typically gives a bankrupt vendor discretion to determine
which of its executory contracts it will continue to perform and which it
will reject. Proper structuring of the contract can help an organization
protect its interests if a vendor becomes insolvent.

8. Regulatory Requirements: slide 257

Domain descriptions, requirements prescriptions and software designs
must individually often have to comply with national (state and federal),
regional (NAFTA, EU, etc.), and/or international (ICAO, IMO, etc.)
regulatory agency requirements. These compliance requirements must be
clearly stated in the contract.

9. Payments: slide 258

Software development contracts normally call for partial payments at spec-
ified milestones, with final payment due after completion of acceptance
tests. Organizations should structure payment schedules so developers
have incentives to complete the project quickly and properly. Properly
defined milestones can break development projects into deliverable seg-
ments so an organization can monitor the developer’s progress and identify
potential problems.
Contracts should detail all features and functions the delivered software
will provide. If a vendor fails to meet any of its express requirements,
organizations should retain the right to reject the tendered product and
to withhold payment until the vendor meets all requirements.

10. Representations and Warranties: slide 259

Organizations should seek an express representation and warranty — this
is a statement by which one party gives certain assurances to the other,
and on which the other party may rely — in the document deliverables,
that the licensed documentation whether a domain description a require-
ments prescriptions, or a software design (incl. code) does not infringe
upon the intellectual property rights of any third parties.

11. Dispute Resolution: slide 260

Organizations should consider including dispute resolution provisions in
contracts and licensing agreements. Such provisions enhance an organi-
zation’s ability to resolve problems expeditiously and may provide for
continued software development during a dispute resolution period.

12. Agreement Modifications: slide 261

Organizations should ensure software licenses clearly state that vendors
cannot modify agreements without written signatures from both parties.
This clause helps ensure there are no inadvertent modifications through
less formal mechanisms some states may permit.

13. Vendor Liability Limitations: slide 262

Some vendors may propose contracts that contain clauses limiting their
liability.They may add provisions that disclaim all express or implied war-
ranties or that limit monetary damages to the value of the product itself,
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specific liquidated damages, etc.. Generally, courts uphold these contrac-
tual limitations on liability in commercial settings unless they are un-
conscionable. Therefore, if organizations are considering contracts, they
should consider whether the proposed damage limitation bears an ade-
quate relationship to the amount of loss the financial organization might
reasonably experience as a result of the vendor’s failure to perform its
obligations. Broad exculpatory clauses that limit a vendor’s liability are
a dangerous practice that could adversely affect the soundness of an or-
ganization because organizations could be injured and have no recourse.

14. IT Security: slide 263

We interpret this contract aspect only in the light of software. There
is an ISO recommendation of IT Security:INTERNATIONAL ISO/IEC
STANDARD 17799 Reference number ISO/IEC 17799:2005(E), ISO/IEC
2005, ISO/IEC 17799:2005(E), Information technology, Security tech-
niques: Code of practice for information security management, ISO copy-
right office, Case postale 56, CH-1211 Geneva 20, Switzerland. E-mail
copyright@iso.org, Web www.iso.org. Published in Switzerland. Second
edition, 2005-06-15. We advice clients and developers to carefully adhere
to that ISO recommendation.

15. Subcontracting and Multiple Vendor Relationships: slide 264

Some software vendors may contract third parties to develop software for
their clients. To provide accountability, it may be beneficial for organi-
zations to designate a primary contracting vendor. Organizations should
include a provision specifying that the primary contracting vendor is re-
sponsible for the software regardless of which entity designed or developed
the software. Organizations should also consider imposing notification and
approval requirements regarding changes in vendor’s significant subcon-
tractors.

16. Restrictions and Adverse Comments:slide 265

Some software licenses include a provision prohibiting licensees from dis-
closing adverse information about the performance of the software to any
third party. Such provisions could inhibit an organization’s participation
in user groups, which provide useful shared experience regarding software
packages. Accordingly, organizations should resist these types of provi-
sions.

3.15.3 Design Briefs slide 266

We (forward) refer to appendix example Sect. A.14.2 on page 147. It follows
up on this methodology concept.

Characterisation 49 (Design Brief) By a design brief we understand a
clearly delineated subset text of the contract. To recall (from the characteri-
sation): This text (item (iii)) describes what is being contracted for possibly
mutual deliveries, by dates, by contents, by quality, etc., and ((iv)) it details
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the specific development principles, techniques and tools; that is, the design
brief directs the developers, the providers of what the contract primarily des-
ignates, as to what, how and when to develop what is being contracted.

3.16 Development Logbook slide 267

We (forward) refer to appendix example Sect. A.15 on page 148. It follows up
on this methodology concept.

Characterisation 50 (Logbook) By a logbook we understand a record, a
set of notes, which as correctly as is humanly feasible, lists the development,
release, installation, use, maintenance, etc., history of a project.

A logbook serves as a necessary reference in innumerable, usually unforesee-
able instances of development. slide 268

Example 13 (Logbook) An “abstracted” . . . (dot, dot, dot) example is:

2 Jan. 1991: Initial meeting between partners &c.
...
31 May 1993: Acceptance of domain model &c.
...
24 October 1994: Acceptance of requirements model &c.
...
3 June 1996: Acceptance of software delivery &c.
...

The &c. signify reports, and the . . . signify other logbook entries. .

3.17 Discussion of Informative Documentation slide 269

3.17.1 General

We have identified some useful components of informative document parts.
There may be other such informative parts. It all may depend on the universe
of discourse, i.e., the problem at hand. We thus encourage the software devel-
oper to carefully reflect on which are the necessary and sufficient informative
document parts.

There is usually a separate set of informative documents to be worked out
for each phase of development: (i) the domain phase, (ii) the requirements
phase, and (iii) the software design phase. slide 270

The current situation, needs, ideas, concepts, scope, span, synopsis and
contract document parts differ in content between these phases. Usually the
informative document parts, although crucially important, need not require
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excessive resources to develop, but their development must still be very care-
ful!

In general, the informative document parts are concerned with the socioe-
conomic, even geopolitical, and hence pragmatic context of the projects about
which they inform. As such they are “fluid”, i.e., less precise, in what they
aim at and what their objectives are. The next two documentation kinds are,
in that respect, much more precise, and much more focused.

3.17.2 Methodological Consequences: Principle, Techniques and
Tools slide 271

Principle 1 (Information Document Construction) When first contem-
plating a new software development project, make sure — as the very first
thing — to establish a proper complement of (all) informative documents.
Throughout the entire development and after — during the entire lifetime of
the result, whether a domain model, or a requirements model, or a software
system — maintain this set of informative documents.

slide 272

Principle 2 (Information Documents) The informative documents must
be authoritative, definitive and interesting to read.

slide 273

Technique 1 (Information Document Construction) First establish a
document embodying the fullest possible table of contents, whether for just
a domain development, or a requirements development, or a software design
project, or for a combination of these. Then fill in respective document parts,slide 274

“little by little”, just a few sentences, using terse, precise, i.e., concise lan-
guage, while avoiding descriptions (prescriptions and specifications) and anal-
yses. Throughout maintain clear monitoring and control of all versions of these
documents.

slide 275

Tool 1 (Information Document Construction) A text processing sys-
tem, preferably LATEX, but MS Word will do, with good cross-referencing
facilities, even between separately ‘compilable’ documents, provides a ‘mini-
mum’ tool of documentation. Add to this a reasonably capable version moni-
toring and control system (such as CVS [51]) and you have a workable system.

The subject of document version monitoring and control will not be dealt
with in this volume.

3.18 Exercises
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3.18.1 1.a

Solution S.2.1 on page 328, suggests an answer to this exercise.

3.18.2 1.b

Solution S.2.2 on page 328, suggests an answer to this exercise.

3.18.3 1.c

Solution S.2.3 on page 328, suggests an answer to this exercise.

3.18.4 1.d

Solution S.2.4 on page 328, suggests an answer to this exercise. slide 276
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Stakeholder Identification and Liaison slide 279

Appendix B (Pages 151–151) complements the present chapter.

4.1 Characterisations

Characterisation 51 (Stakeholder) By a domain stakeholder we shall un-
derstand a person, or a group of persons, “united” somehow in their common
interest in, or dependency on the domain; or an institution, an enterprise, or
a group of such, (again) characterised (and, again, loosely) by their common
interest in, or dependency on the domain.

slide 280

Characterisation 52 (General Application Domain Stakeholder) By
general application domain stakeholders we understand stakeholders whose
primary interest is neither the projects which develop software (from domains,
via requirements to software design), nor the products evolving from such
projects. Instead we mean stakeholders from typically non-IT business areas.

4.2 Why Be Concerned About Stakeholders ? slide 281

The domain stakeholders are the main sources of domain knowledge. So the
domain engineers must acquire as much and more than the knowledge relevant
to describe the domain. And the domain stakeholders must eventually validate
the domain engineers’ domain description.

4.3 How to Establish List of Stakeholders ? slide 282

Awareness, by the domain engineers, of who and which are the main and the
subordinate domain “players”, is obtained by the same initial processes that
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first acquire domain knowledge, namely by reading about the domain, from
books, journals, the Internet, by talking to stakeholders, and by interviewing
these systematically.

The process is an iterative one. One cannot know till “deep” into domain
modelling whether one has obtained a reasonably complete list.

4.4 Form of Contact With Stakeholders slide 283

Chapters 5 and 17 outlinethe regular interactions between domain stakehold-
ers and domain engineers from the early stages of domain acquisition to the
late stage of domain validation. This form of domain stakeholder and engi-
neers interaction alternates betweenone-on-one meetings, e-mails, the joint
filling out of larger questionnaires, and joint multi-stakeholder group and do-
main engineer presentations. The domain engineers shall carefully keep record
of all that is communicated.slide 284

4.5 Principles, Techniques and Tools slide 285

4.6 Discussion slide 286

4.7 Exercises

4.7.1 2.a

Solution S.3.1 on page 328, suggests an answer to this exercise.

4.7.2 2.b

Solution S.3.2 on page 328, suggests an answer to this exercise.

4.7.3 2.c

Solution S.3.3 on page 328, suggests an answer to this exercise.

4.7.4 2.d

Solution S.3.4 on page 328, suggests an answer to this exercise.slide 287
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Domain Acquisition slide 290

Appendix C (Pages 153–164) complements the present chapter.

5.1 Another Characterisation

Characterisation 53 (Domain Acquisition (II)) By domain acquisition
we shall here understand the systematic solicitation and elicitation of knowl-

edge about the chosen domain and the systematic vetting, recording and clas-
sification of this knowledge.

Compare the above characterisation to that of Characterisation 41 on page 43.

5.2 Sources of Domain Knowledge slide 291

To return to the issue of stakeholders, from where does the domain engi-
neer acquire the domain knowledge ? The answer is: from many (stakeholder)
sources. We suggest some sources: from the Internet1, from infrastructure
books, papers, etc.2, from owners and staff of the client3, from customers of

1 For each infrastructure domain: air traffic, airports, banking, health care in gen-
eral and hospitals in particular, for railways, roads, shipping, etc., there are many
Web pages that can be searched.

2 Similarly to footnote 1.
3 This includes all management levels [executive (strategic), tactical and opera-

tional management], planners, schedulers, and “blue collar” workers (!).
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the client4, possibly from domain regulators5, from consultancy, equipment
and service providers for and to the client6 and possibly others.

5.3 Forms of Solicitation and Elicitation slide 292

5.3.1 Solicitation

How can the domain engineer solicit7 the desired domain knowledge ? By
searching the Internet, looking up books, papers and reports (the latter typi-
cally from university and college institutes and from libraries); and by contact-
ing and by asking to be referred to domain knowledgeable client and customer
staff.

5.3.2 Elicitation slide 293

How does the domain engineer elicit8 the desired domain knowledge ? By
studying hopefully relevant Internet Web pages, books, papers and reports
and by forming “impressions of” (“first ideas about”) the domain from such
studies; and by interviewing (“questionnairing”) contacted domain stakehold-
ers, with interviews being based on the prior ‘impressions’ from Web pages,
books, papers, reports, or from other stakeholder interviews.

5.3.3 Solicitation and Elicitation slide 294

Solicitation and elicitation is an iterative process: Impressions obtained early
in the process may turn out to be wrong. Hence they must be scrapped and
lead to reevaluation of the acquisition process, and to it being repeated.

5.4 Aims and Objectives of Elicitation slide 295

The aims of elicitation is to cover the span of the domain as accurately and
fully as possible.

The objectives of elicitation is to obtain “bits and pieces” — and hopefully
much more – of relevant domain knowledge within the scope of the domain
being studied. We shall refer to the ‘bits and pieces’ of domain knowledge as
domain description units.

4 Notice the distinction between client and customer: By client we here refer to the
domain institution with whom the domain engineers have a contract for develop-
ing a domain description. By customer we here refer to that client’s customers.

5 Most, if not all, domains have their own regulators. The air line industry have
their global and national civil aviation organisations or authorities. The banking
industry have their federal or national finance “watchdogs”. Etcetera.

6 We exclude the developers from this list.
7 To solicit: to try to obtain by usually urgent requests or pleas.
8 To elicit: to call forth or draw out.
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5.5 Domain Description Units slide 296

5.5.1 Characterisation

Characterisation 54 (Domain Description Unit) By a domain descrip-
tion unit we shall mean an as far as possible well-formed sentence, something
which names and describes some entity, function, event or behaviour of the
domain, that is, something expressible which “makes sense”, that is, which can
contribute to the modelling of an entity, a function, an event or a behaviour
.

5.5.2 Handling slide 297

Thus domain acquisition amounts to the laborious, painstaking process of
collecting (storing) what may appear to the domain engineer as “zillions”
of domain description units. In preparation for the ongoing, say concurrent
domain analysis and concept formation process domain description units are
provided with attributes such as name(s) (of one or more kinds of phenomena
and/or concepts), kinds (entity, function, event and behaviour), source (name,
etc., of stakeholder and domain engineer), and date(s) (of first acquisition and
possible updates or revisions9). slide 298

5.6 Principles, Techniques and Tools slide 299

5.7 Discussion slide 300

5.8 Exercises

5.8.1 3.a

Solution S.4.1 on page 328, suggests an answer to this exercise.

5.8.2 3.b

Solution S.4.2 on page 329, suggests an answer to this exercise.

5.8.3 3.c

Solution S.4.3 on page 329, suggests an answer to this exercise.

5.8.4 3.d

Solution S.4.4 on page 329, suggests an answer to this exercise. slide 301

9 We omit treatment of the necessary handling of all versions of any domain de-
scription unit.
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Business Processes slide 304

Appendix D (Pages 167–167) complements the present chapter.

6.1 Characterisation

Characterisation 55 (Business Process) By a business process we un-
derstand the procedurally describable aspects, of one of the (possibly many)
ways in which a business, an enterprise, a factory, etc., conducts its yearly,
quarterly, monthly, weekly and daily processes, that is, regularly occurring
chores. The process may involve strategic, tactical or operational manage-
ment and work-flow planning and decision activities; or the administrative,
and, where applicable, the marketing, the research and development, the pro-
duction planning and execution, the sales and the service (work-flow) activities
— to name some.

6.2 Business Process Description slide 305

A business process description is usually in the form of a behaviour description
which covers core entities, functions and events. Usually one describes several
(more or less related) business processes

6.3 Aims & Objectives of Business Process Description
slide 306

6.3.1 Aims

The aims of describing a set of domain business processes is to cover all the
“standard”, i.e., all the most common as well as a reasonable number of the
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more special business processes of the chosen span and scope while covering
most of the entities, functions and events that were identified is the full set of
domain description units.

6.3.2 Objectives slide 307

The objectives of describing a set of domain business processes is to discover
domain entities, functions and events that were omitted from, i.e., are not
found in the the full set of domain description units; that is, to somehow
“test” and validate the domain acquisition stage.

6.4 Disposition slide 308

So what do we do if and when we find that the full set of domain description
units and the rough-sketched domain business processes are at odds ? We
obviously have to inquire with the relevant domain stakeholders. Based on
their “feedback” we have to modify the full set of domain description units
as well as the rough-sketched domain business processes. This is an iterative
process and may involve modifying the domain analysis and concept formation
findings.slide 309

6.5 Principles, Techniques and Tools slide 310

6.6 Discussion slide 311

6.7 Exercises

6.7.1 4.a

Solution S.5.1 on page 329, suggests an answer to this exercise.

6.7.2 4.b

Solution S.5.2 on page 329, suggests an answer to this exercise.

6.7.3 4.c

Solution S.5.3 on page 329, suggests an answer to this exercise.

6.7.4 4.d

Solution S.5.4 on page 329, suggests an answer to this exercise.slide 312
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Domain Analysis and Concept Formation slide 315

Appendix E (Pages 169–174) complements the present chapter.
Given a suitable set, not necessarily what may be believed to be a reason-

ably complete set, of reasonably related domain description units, where, by
‘related’, we mean domain description units that contain overlapping (names
of) entities, functions, events and behaviours, one can start analysing these
domain description units.

7.1 Characterisations slide 316

First some preliminaries.

7.1.1 Consistency

Characterisation 56 (Consistency) By consistency of a set of two or
more domain description units we mean that no combination of any subset of
these contradicts another combination of a subset of these.

7.1.2 Contradiction slide 317

Characterisation 57 (Contradiction) By two different sets of domain de-
scription units being in contradiction of one another we mean that one can
claim a propertyand its negation to hold in the model of the domain descrip-
tion units.

7.1.3 Completeness slide 318

Characterisation 58 (Relative Completeness) By relative completeness
of a set of domain description units we mean a consistent set of domain de-

scription units which allows a meaningful modelling of what is being described
such that the model does not leave something accidentally undefined.
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That is, we can perfectly well imagine that we leave some domain aspects
purposely undefined.

7.1.4 Conflict slide 319

Characterisation 59 (Conflict) By a conflict of a set of domain descrip-
tion units we mean an inconsistency that cannot be resolved by the domain
engineer only discussing the conflicting domain description units with the
stakeholders from whom the units are elicited.

slide 320

There are three cases of conflict resolution. (i) A single stakeholder is assumed
not to generate conflicts. (ii) Two or more stakeholders from the same stake-
holder group should be able, together with the domain engineers, to resolve
the conflict. (iii) Two or more stakeholders from different stakeholder groups
may, together with the domain engineers, have to refer to their management
for resolution.

7.2 Aims and Objectives of Domain Analysis slide 321

7.2.1 Aims of Domain Analysis

Characterisation 60 (Domain Analysis, Aims) By domain analysis we
mean a systematic study of all domain description units, that is a “close
reading and review” of these whose aim is to cover them all.

7.2.2 Objectives of Domain Analysis slide 322

Characterisation 61 (Domain Analysis, Objectives) By domain anal-
ysis objectives we mean a domain analysis whose objective it is to find [all]
inconsistencies and [all] incompletenesses, to remove these, and to ensure a
relatively scope-complete set of consistent domain description units.

7.3 Concept Formation slide 323

In addition to detecting inconsistencies, conflicts and incompleteness of a set
of domain description units, domain analysis also has as objective to possibly
form concepts.

Characterisation 62 (Domain Concept) By a domain concept we mean
a concept, an abstraction, a mental construction, which captures all essential
properties and “suppresses” expression of properties deemed not essential.
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7.3.1 Aims and Objectives of Domain Concept Formation slide 324

The aim of domain concept formation is to focus on similarities of domain
phenomena or already defined domain concepts and, from these possibly form
new, usually more generic concepts.

The objective of domain concept formation is to arrive at simpler domain
models, at generic domain models, that is, models which cover several more
concrete, i.e., instantiated domains. slide 325

7.4 Principles, Techniques and Tools slide 326

7.5 Discussion slide 327

7.6 Exercises

7.6.1 5.a

Solution S.6.1 on page 329, suggests an answer to this exercise.

7.6.2 5.b

Solution S.6.2 on page 329, suggests an answer to this exercise.

7.6.3 5.c

Solution S.6.3 on page 330, suggests an answer to this exercise.

7.6.4 5.d

Solution S.6.4 on page 330, suggests an answer to this exercise. slide 328
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Terminology slide 331

Appendix F (Pages 177–194) complements the present chapter.

8.1 The ‘Terminology’ Dogma

It is an important aspect of domain engineering to establish, use and maintain
a domain terminology.

8.2 Characterisations slide 332

Characterisation 63 (Term) By a term is here meant [123]: a word or
phrase used in a definite or precise sense in some particular subject, as a
science or art; a technical expression; by word or group of words expressing a
notion or conception, or denoting an object of thought.

slide 333

Characterisation 64 (Terminology) By terminology is meant [123]: the
doctrine or scientific study of terms; the system of terms belonging to a science
or subject; technical terms collectively; nomenclature.

8.3 Term Definitions slide 334

Thus a terminology is a set of definitions consisting of a “left-hand side”
definiendum, usually a name, “the term”, of that which is to be defined, and
a “right-hand side” definiens, the expression which defines.

The definiens expressionmay either contain ground terms, that is, terms
that are taken for understood, and the definiens expression is then called an
atomic expression; or it contains other terms being defined in the terminology
and the definiens expression is then called a composite expression. slide 335
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A set of term definitions form a well-formed terminology if all professional,
i.e., domain-specific terms are defined, and, although some terms may be
(mutually) recursively defined, these recursions do terminate by means of
alternative definition choices.

8.4 Aims and Objectives of a Terminology slide 336

The aims of a domain terminology (i.e., of domain terminologisation) is to
cover all the terms that are specific to the domain.

The objectives of a domain terminology (i.e., of domain terminologisation)
is to ensure that all stakeholders1, the developers and the domain description
readers obtain as near, if not, the same understanding of the recorded terms.

8.5 How to Establish a Terminology slide 337

First a set of terms to be defined is selected. Then each term is defined, either
atomically, or in composite manner, possibly recursively. The definition ends
when all selected terms have been defined and all uses of domain-specific terms
not already in the list of selected terms have been defined.slide 338

As can be seen from the above procedure it requires careful administration
and usually ends up in a prolonged, iterated process.

When defined informally, the domain engineer may wish to use pictures,
diagrams. When defined formally one may have to prove that the definitions
are sound.slide 339

8.6 Principles, Techniques and Tools slide 340

8.7 Discussion slide 341

8.8 Exercises

8.8.1 6.a

Solution S.7.1 on page 330, suggests an answer to this exercise.

8.8.2 6.b

Solution S.7.2 on page 330, suggests an answer to this exercise.

1 Different stakeholder groups often have quite different interpretations of some
terms — and these co-existing interpretations have to be reconciled.
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8.8.3 6.c

Solution S.7.3 on page 330, suggests an answer to this exercise.

8.8.4 6.d

Solution S.7.4 on page 330, suggests an answer to this exercise. slide 342
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Domain Modelling: An Overview slide 345

9.1 Aims & Objectives

The aims of the domain modelling stage of domain engineering are to research

the chosen domain, to find suitable delineations within and structures of that
domain. The objectives of the domain modelling stage of domain engineering
are to develop narrative and formal descriptions of the domain, to analyse

those descriptions, and hence to establish a and contribute to a theory of that
domain.

9.2 Domain Facets slide 346

In this, a major methodology chapter of the current book, we shall start
unravelling a number of principles, techniques of and a tool (RSL) for domain
modelling.

Domain modelling, as we shall see, entails modelling a number of domain
facets. slide 347

Characterisation 65 (Domain Facet) By a domain facet we mean one
amongst a finite set of generic ways of analysing a domain: a view of the
domain, such that the different facets cover conceptually different views, and
such that these views together cover the domain.

9.3 Describing Facets slide 348

These are the facets that we find “span” a domain in a pragmatically sound
way: (i) intrinsics, (ii) support technology, (iii) management & organisation,
(iv) rules & regulations, (v) scripts and (vi) human behaviour:
There may be other ways in which to view, that is, to understand the domain.
That is, there may be other compositions of other “facets”, which together



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

90 9 Domain Modelling: An Overview

also “span” the domain. The ones listed above, (i–vi), are the ones we shall
pursue.slide 349

9.4 Principles, Techniques and Tools slide 350

9.5 Discussion slide 351

slide 352
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Domain Modelling: Intrinsics slide 355

Appendix G (Pages 197–224) complements the present chapter.

Characterisation 66 (Domain Intrinsics) By domain intrinsics we mean
those phenomena and concepts of a domain which are basic to any of the other
facets (listed earlier and treated, in some detail, below), with such domain
intrinsics initially covering at least one specific, hence named, stakeholder
view.

By studying just the domain intrinsics we get to understand a, or rather, the
essence of the domain.

If we remove any one aspect of the domain intrinsics then we jeopardise
our understanding of the domain.

10.1 Construction of Model of Domain Intrinsics slide 356

So the domain engineer, on the basis of analysed and possibly abstracted
domain description units must construct a domain intrinsics model. The model
consists, we advocate, of two complimentary parts: a narrative description
and a formal description. The usual description principles and techniques
apply:these are shown applied in the support example that complements this
volume; we advice the reader to study that example carefully: learn by reading.
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10.2 Overview of Support Example slide 357

10.2.1 Entities slide 358

10.2.2 Operations slide 359

10.2.3 Events slide 360

10.2.4 Behaviours slide 361

10.3 Principles, Techniques and Tools slide 362

10.4 Discussion slide 363

10.5 Exercises

10.5.1 7.a

Solution S.8.1 on page 330, suggests an answer to this exercise.

10.5.2 7.b

Solution S.8.2 on page 330, suggests an answer to this exercise.

10.5.3 7.c

Solution S.8.3 on page 330, suggests an answer to this exercise.

10.5.4 7.d

Solution S.8.4 on page 331, suggests an answer to this exercise.slide 364
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Domain Modelling: Support Technologies slide 367

Appendix H (Pages 227–227) complements the present chapter.

Characterisation 67 (Support Technologies) By domain support tech-

nologies we mean ways and means of concretesing certain observed (abstract
or concrete) phenomena or certain conceived concepts in terms of (possi-
bly combinations of) human work, mechanical, hydro mechanical, thermo-
mechanical, pneumatic, aero-mechanical, electro-mechanical, electrical, elec-
tronic, telecommunication, photo/opto-electric, chemical, etc. (possibly com-
puterised) sensor, actuator tools.

11.1 Technology as an Embodiment of Laws of Physics
slide 368

By technology, we here mean “gadgets” (instruments, machines, artifacts)
which somehow or other embody, exploit, rely on, etc., laws of physics (in-
cluding chemistry).

11.1.1 From Abstract Domain States to Concrete Technology
States

Usually an intrinsic domain phenomenon or concept embody an abstract no-
tion of state. The essence of a support technology is then to render such an
abstract notion of state more concrete.

11.2 Intrinsics versus Other Facets slide 369

Take as “other facets” those of supporting technologies. The nature of intrin-
sics in the light of a supporting technology is to force the domain engineer to
think abstractly in order to capture an essence of a phenomenon or concept
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of the domain, not by its “implementing” support technologies, i.e., the how,
but by what that domain phenomenon or concept really means, semantically.

11.3 ]

The Support Example[s] slide 370

The points made in the last paragraph above are illustrated in the exam-
ples of an intrinsic concepts of states versus the examples of a corresponding
support technology concepts of states

• (intrinsics)
• (intrinsics)
• (intrinsics)

slide 371

11.4 Principles, Techniques and Tools slide 372

11.5 Discussion slide 373

11.6 Exercises

11.6.1 8.a

Solution S.9.1 on page 331, suggests an answer to this exercise.

11.6.2 8.b

Solution S.9.2 on page 331, suggests an answer to this exercise.

11.6.3 8.c

Solution S.9.3 on page 331, suggests an answer to this exercise.

11.6.4 8.d

Solution S.9.4 on page 331, suggests an answer to this exercise.slide 374
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Domain Modelling: Management and
Organisation slide 377

Appendix I (Pages 229–229) complements the present chapter.

12.1 Management

Management is an elusive term. Business schools and private consultancy firms
excel in offering degrees and 2–3 day courses in ‘management’. In the mind of
your author most of what is being taught — and even researched — is a lot of
“hot air”. Well, the problem here, is, of course, that your author was educated
at a science & technology university1. In the following we shall repeat some of
this ‘hot air ’. And after that we shall speculate on how to properly describe
the outlined (“cold air”) management concepts. slide 378

Characterisation 68 (Domain Management) By domain management

we mean people (i) who determine, formulate and thus set standards (cf.
rules and regulations, a later lecture topic) concerning strategic, tactical and
operational decisions; (ii) who ensure that these decisions are passed on to
(lower) levels of management, and to “floor” staff; (iii) who make sure that
such orders, as they were, are indeed carried out; (iv) who handle undesirable
deviations in the carrying out of these orders cum decisions; and (v) who
“backstop” complaints from lower management levels and from floor staff.

12.1.1 Management Issues slide 379

Management in simple terms means the act of getting people together to
accomplish desired goals. Management comprises (vi) planning, (vii) orga-
nizing, (viii) resourcing, (ix) leading or directing, and (x) controlling an orga-
nization (a group of one or more people or entities) or effort for the purpose
of accomplishing a goal. Resourcing encompasses the (xi) deployment and

1 — which, alas, now also offers such ‘management’ degree courses !
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manipulation of human resources, (xii) financial resources, (xiii) technological
resources, and (xiv) natural resources

12.1.2 Basic Functions of Management slide 380

These are normally seen as management issues:
Planning: (xv) deciding what needs to happen in the future (today, next

week, next month, next year, over the next 5 years, etc.) (xvi) and generating
plans for action. Organizing: (xvii) making optimum use of the resources (xix)
required to enable the successful carrying out of plans. Leading/Motivating:
(xx) exhibiting skills in these areas (xxi) for getting others to play an effec-
tive part in achieving plans. Controlling: (xxii) monitoring – (xxiii) checking
progress against plans, (xxiv) which may need modification based on feedback.

12.1.3 Formation of Business Policy slide 381

(xxvi) The mission of a business seems to be its most obvious purpose – which
may be, for example, to make soap. (xxvii) The vision of a business is seen
as reflecting its aspirations and specifies its intended direction or future des-
tination. (xxviii) The objectives of a business refers to the ends or activity
at which a certain task is aimed2. The business policy is a guide that stip-
ulates (xix) rules, regulations and objectives, (xxx) and may be used in the
managers’ decision-making. (xxxi) It must be flexible and easily interpreted
and understood by all employees. Formation of Business Policy The businessslide 382

strategy refers to (xxxii) the coordinated plan of action that it is going to
take, (xxxiii) as well as the resources that it will use, to realize its vision and
long-term objectives. (xxxiv) It is a guideline to managers, stipulating how
they ought to allocate and utilize the factors of production to the business’s
advantage. (xxxv) Initially, it could help the managers decide on what type
of business they want to form.

12.1.4 Implementation of Policies and Strategies slide 383

(xxxvi) All policies and strategies are normally discussed with managerial per-
sonnel and staff. (xxxvii) Managers usually understand where and how they
can implement their policies and strategies. (xxxviii) A plan of action is nor-
mally devised for the entire company as well as for each department. (xxxix)
Policies and strategies are normally reviewed regularly. (xxxvii) Contingency
plans are normally devised in case the environment changes. (xl) Assessments
of progress are normally and regularly carried out by top-level managers. (xli)
A good environment is seen as required within the business.

2 Pls. note that, in this book, we otherwise make a distinction between aims and
objectives: Aims is what we plan to do; objectives are what we expect to happen
if we fulfill the aims.
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12.1.5 Development of Policies and Strategies slide 384

(xlii) The missions, objectives, strengths and weaknesses of each department
or normally analysed to determine their rôles in achieving the business mis-
sion. (xliii) Forecasting develops a picture of the business’s future environ-
ment. (xliv) Planning unit are often created to ensure that all plans are con-
sistent and that policies and strategies are aimed at achieving the same mission
and objectives. (xlv) Contingency plans are developed — just in case ! (xlvi)
Policies are normally discussed with all managerial personnel and staff that
is required in the execution of any departmental policy.

12.1.6 Management Levels slide 385

A careful analysis has to be made by the domain engineer of how management
is structured in the domain being described. One view, but not necessarily the
most adequate view for a given domain is that management can be seen as
composed from the board of directors (representing owners, private or public,
or both), the senior level or strategic (or top, upper or executive) management,
the mid level or tactical management, the low level or operational manage-
ment, and supervisors and team leaders. Other views, other “management
theories” may apply. We shall briefly pursue the above view.

12.1.7 Resources slide 386

Management is about resources. A resource is any physical or virtual entity of
limited availability such as, for example, time and (office, factory, etc.) space,
people (staff, consultants, etc.), equipment (tools, machines, computers, etc.),
capital (cash, goodwill, stocks, etc.), etcetera.

Resources have to be managed allocated (to [factory, sales, etc.] processes,
projects, etc.), and scheduled (to time slots).

12.1.8 Resource Conversion slide 387

Resources can be traded for other resources: capital funds can be spent on
acquiring space, staff and equipment, services and products can be traded for
other such or for monies, etc.

The decisions as to who schedules, allocates and converts resources are
made by strategic and tactical management. Operational management trans-
forms abstract, general schedules and allocations into concrete, specific such.

12.1.9 Strategic Management slide 388

A strategy is a long term plan of action designed to achieve a particular goal.
Strategy is differentiated from tactics or immediate actions with resources at
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hand by its nature of being extensively premeditated, and often practically
rehearsed. Strategies are used to make business problems easier to understand
and solve. Strategic management deals with conversion of long term resources
involving financial issues and with long term scheduling issues.slide 389

Among examples of strategic management issues (in supply chain manage-
ment) we find: (xlvii) strategic network optimization, including the number,
location, and size of warehouses, distribution centers and facilities; (xlviii)
strategic partnership with suppliers, distributors, and customers, creating
communication channels for critical information and operational improve-
ments such as cross docking, direct shipping, and third-party logistics; (xlix)
product design coordination, so that new and existing products can be op-
timally integrated into the supply chain, load management; (l) information
technology infrastructure, to support supply chain operations; (li) where-to-
make and what-to-make-or-buy decisions; and (lii) aligning overall organiza-
tional strategy with supply strategy. The problem, in domain modelling, is to
find suitable abstractions of these mundane activities.slide 390

Strategic management (liii) requires knowledge of management rôles and
skills; (liv) have to be aware of external factors such as markets; (lv) decisions
are generally of a long-term nature; (lvi) decision are made using analytic,
directive, conceptual and/or behavioral/participative processes; (lvii) are re-
sponsible for strategic decisions; (lviii) have to chalk out the plan and see that
plan may be effective in the future; and (lix) is executive in nature.

12.1.10 Tactical Management slide 391

Tactical management deals with shorter term issues than strategic manage-
ment, but longer term issues than operational management. Tactical manage-
ment deals with allocation and short term scheduling.slide 392

Among examples of tactical management issues (in supply chain manage-
ment) we find: (lx) sourcing contracts and other purchasing decisions; (lxi)
production decisions, including contracting, locations, scheduling, and plan-
ning process definition; (lxii) inventory decisions, including quantity, location,
and quality of inventory; (lxiii) transportation strategy, including frequency,
routes, and contracting; (lxiv) benchmarking of all operations against com-
petitors and implementation of best practices throughout the enterprise; (lxv)
milestone payments; and (lxvi) focus on customer demand. The problem, in
domain modelling, is to find suitable abstractions of these mundane activities.

12.1.11 Operational Management slide 393

Operational management deals with day-to-day and week-to-week issues
where tactical management deals with month-to-month and quarter-to-quarter
issues and strategic management deals with year-to-year and longer term is-
sues. (Operational management is not to be confused with the concept of
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operational research and operational analysis which deals with optimising re-
source usage (allocation and scheduling).slide 394

Among examples of operational management issues (in supply chain man-
agement) we find: (lxviii) daily production and distribution planning, includ-
ing all nodes in the supply chain; (lxix) production scheduling for each manu-
facturing facility in the supply chain (minute by minute); (lxx) demand plan-
ning and forecasting, coordinating the demand forecast of all customers and
sharing the forecast with all suppliers; (lxxi) sourcing planning, including
current inventory and forecast demand, in collaboration with all suppliers;
(lxxii) inbound operations, including transportation from suppliers and re-
ceiving inventory; (lxxiii) production operations, including the consumption slide 395

of materials and flow of finished goods; (lxxiv) outbound operations, including
all fulfillment activities and transportation to customers; (lxxv) order promis-
ing, accounting for all constraints in the supply chain, including all suppliers,
manufacturing facilities, distribution centers, and other customers. The prob-
lem, in domain modelling, is to find suitable abstractions of these mundane
activities.

12.1.12 Supervisors and Team Leaders slide 396

We make here a distinction between managers, “on one side”, and supervisors
and team leaders, “on the other side”. The distinction is based on managers
being able to make own decisions without necessarily having to confer or
discuss these beforehand or to report these afterwards, while supervisors and
team leaders normally are not expected to make own decisions: if they have
to make decisions then such are considered to be of “urgency”, must normally
be approved of beforehand, or, at the very least, reported on afterwards. slide 397

Supervisors basically monitor that work processes are carried out as
planned and report other than minor discrepancies. Team leaders coordinate
work in a group (“the team”) while participating in that work themselves;
additionally they are also supervisors.

12.1.13 Description of ‘Management’ slide 398

On the last several pages (101–105) we have outlined conventional issues of
management.

The problems confronting us now are: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

The reason why these two “leading questions” questions are posed is that
the management issues mentioned on pages 101–105 are generally “too lofty”,
“too woolly”, that is, are more about “feelings” than about “hard, observable
facts”. slide 399

We, for example, consider the following issues for “too lofty”, “too woolly”:
Item (xix) Page 102: “to enable the successful . . . ” is problematic; Item (xx)
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Page 102: how to check that managers “exhibit these skills” ?; Item (xxi)
Page 102: “play an effective part” is problematic; Item (xxvii) Page 102: how
to check that vision is being or is achieved ?; Item (xxviii) Page 102: the objec-
tives must, in order to be objectively checked, be spelled out in measurable de-
tails; Item (xxxi) Page 102: how to check “flexible” and “easily”; Item (xxxiii)
Page 102: how to check that the deployed resources are those that contribute
to “achieving vision and long term objectives; Item (xxxiv) Page 102: “guide-
line”, “factors of production” and “advantage” cannot really be measured;
Item (xxxv) Page 102: “what type of business they want to form” is too inde-
terminate; Item (xxxvi) Page 102: how to describe (and eventually check) “are
normally or must be discussed” other than “just check” without making sure
that managerial personnel and staff have really understood the issues and will
indeed follow policies and strategies; Item (xxxvii) Page 102: how does one de-
scribe “managers must, or usually understand where and how” ?; Item (xxxix)
Page 102: in what does a review actually consists ?; Item (xli) Page 102: how
does one objectively describe “a good environment” ?; Item (xlii) Page 103:
how does one objectively describe that which is being “analysed”, the “anal-
ysis” and the “determination” processes ?; Item (xliii) Page 103: how is the
“development” and a “picture” objectively described ?; etcetera.slide 400

As we see from the above “quick” analysis the problems hinge on our
[in]ability to formally, let alone informally describe many management issues.
In a sense that is acceptable in as much as ‘management’ is clearly accepted
as a non-mechanisable process, one that requires subjective evaluations: “feel-
ings”, “hunches”, and one that requires informal contacts with other manage-
rial personnel and staff.slide 401

But still we are left with the problems: Which aspects of domain manage-
ment are we to describe ? How are we describe, especially formally, the chosen
issues ?

Our simplifying and hence simple answer is: the domain engineer shall
describe what is objectively observable or concepts that are precisely defined
in terms of objectively observable phenomena and concepts defined from these
and such defined concepts.

This makes the domain description task a reasonable one, one that can
be objectively validated and one where domain description evaluators can ob-
jectively judge whether (projected) requirements involving these descriptions
may be feasible and satisfactory.
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12.2 Organisation slide 402

12.2.1 .1. slide 403

12.2.2 .2. slide 404

12.2.3 .3. slide 405

12.3 ]

The Support Example[s] slide 406

12.4 Principles, Techniques and Tools slide 407

12.5 Exercises

12.5.1 9.a

Solution S.10.1 on page 331, suggests an answer to this exercise.

12.5.2 9.b

Solution S.10.2 on page 331, suggests an answer to this exercise.

12.5.3 9.c

Solution S.10.3 on page 331, suggests an answer to this exercise.

12.5.4 9.d

Solution S.10.4 on page 331, suggests an answer to this exercise. slide 408
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Domain Modelling: Rules and Regulations slide 411

Appendix J (Pages 231–231) complements the present chapter.
Human stakeholders act in the domain, whether clients, workers, man-

agers, suppliers, regulatory authorities, or other. Their actions are guided and
constrained by rules and regulations. These are sometimes implicit, that is,
not “written down”. But we can talk about rules and regulations as if they
were explicitly formulated. slide 412

The main difference between rules and regulations is that rules express
properties that must hold and regulations express state changes that must be
effected if rules are observed broken.

Rules and regulations are directed not only at human behaviour but also
at expected behaviours of support technologies.

Rules and regulations are formulated by enterprise staff, management or
workers, and/or by business and industry associations, for example in the form
of binding or guiding national, regional or international standards1, and/or
by public regulatory agencies.

13.1 Domain Rules slide 413

Characterisation 69 (Domain Rule) By a domain rule we mean some
text which prescribes how people or equipment are expected to behave when
dispatching their duty, respectively when performing their functions.

slide 414

Usually the rule text, when written down, appears in some, not necessarily
public documents. It is not our intention to formalise these rule texts, but to
formally define the crucial predicates and, if not already formalised, then also
the domain entities over which the predicate ranges.

1 Viz.: ISO (International Organisation for Standardisation, www.iso.org/iso/-
home.htm), CENELEC (European Committee for Electrotechnical Standardiza-
tion, www.cenelec.eu/Cenelec/Homepage.htm), etc.
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13.2 Domain Regulations slide 415

Characterisation 70 (Domain Regulation) By a domain regulation we
mean some text which prescribes what remedial actions are to be taken when
it is decided that a rule has not been followed according to its intention.

slide 416

Usually the regulation text, when written down, appears in some, not nec-
essarily public documents. It is not our intention to formalise these rule texts,
but to formally define the crucial functions and, if not already formalised,
then also the domain entities over which these functions range.

13.3 Formalisation of the Rules and Regulations
Concepts

At a meta-level, i.e., explaining the general framework for describing the syn-
tax and semantics of the human-oriented domain languages for expressing
rules and regulations, we can say the following:

Rules, as already mentioned, express predicates, and regulations express
state changes. In the following we shall review a semantics of rules and regu-
lations.slide 417

There are, abstractly speaking, usually three kinds of languages involved
wrt. (i.e., when expressing) rules and regulations (respectively when invoking
actions that are subject to rules and regulations). Two languages, Rules and
Reg, exist for describing rules, respectively regulations; and one, Stimulus,
exists for describing the form of the [always current] domain action stimuli.slide 418

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from
any configuration to a next configuration, where configurations are those of the
system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands
for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current
and next configurations, (Θ × Θ) → Bool, where these next configurations
have been brought about, i.e., caused, by the stimuli. These stimuli express: If
the predicate holds then the stimulus will result in a valid next configuration.slide 419

type
Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value
meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool
valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ,(meaning(sy sti))(θ))
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valid: Stimulus × RUL → Θ → Bool
valid(sy sti,se rul)(θ) ≡ se rul(θ,(meaning(sy sti))(θ))

slide 420

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e.,
has as its semantics, its meaning, a semantic regulation, se reg:REG, which is a
pair. This pair consists of a predicate, pre reg:Pre REG, where Pre REG = (Θ ×
Θ) → Bool, and a domain configuration-changing function, act reg:Act REG,
where Act REG = Θ → Θ, that is, both involving current and next domain
configurations. The two kinds of functions express: If the predicate holds, slide 421

then the action can be applied.
The predicate is almost the inverse of the rules functions. The action func-

tion serves to undo the stimulus function. slide 422

type
Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool
Act REG = Θ → Θ

value
interpret: Reg → REG

slide 423

The idea is now the following: Any action of the system, i.e., the application
of any stimulus, may be an action in accordance with the rules, or it may not.
Rules therefore express whether stimuli are valid or not in the current con-
figuration. And regulations therefore express whether they should be applied,
and, if so, with what effort. slide 424

More specifically, there is usually, in any current system configuration,
given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such
pair. Let sy sti be any possible stimulus. And let θ be the current config-
uration. Let the stimulus, sy sti, applied in that configuration result in a
next configuration, θ′, where θ′ = (meaning(sy sti))(θ). Let θ′ violate the
rule, ∼valid(sy sti,sy rul)(θ), then if predicate part, pre reg, of the mean-
ing of the regulation, sy reg, holds in that violating next configuration,
pre reg(θ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning
of the regulation, sy reg, must be applied, act reg(θ), to remedy the situation. slide 425

axiom
∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ:Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ,(meaning(sy sti))(θ))

⇒ ∃ nθ:Θ • act reg(θ)=nθ ∧ se rul(θ,nθ)
end
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slide 426

It may be that the regulation predicate fails to detect applicability of regula-
tions actions. That is, the interpretation of a rule differs, in that respect, from
the interpretation of a regulation. Such is life in the domain, i.e., in actual
reality

13.4 On Modelling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities,
including those grouped into “the state”, functions, events, and behaviours.
Thus the full spectrum of modelling techniques and notations may be needed.slide 427

Since rules usually express properties one often uses some combination of ax-
ioms and well-formedness predicates. Properties sometimes include temporal-
ity and hence temporal notations (like Duration Calculus or Temporal Logic
of Actions ) are used. And since regulations usually express state (restora-
tion) changes one often uses state changing notations (such as found in B,
RSL, VDM-SL, and Z). In some cases it may be relevant to model using some
constraint satisfaction notation [6] or some Fuzzy Logic notations [188].

13.5 ]

The Support Example[s] slide 428

13.6 Principles, Techniques and Tools slide 429

13.7 Exercises

13.7.1 10.a

Solution S.11.1 on page 332, suggests an answer to this exercise.

13.7.2 10.b

Solution S.11.2 on page 332, suggests an answer to this exercise.

13.7.3 10.c

Solution S.11.3 on page 332, suggests an answer to this exercise.

13.7.4 10.d

Solution S.11.4 on page 332, suggests an answer to this exercise.slide 430
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Domain Modelling: Scripts, Licenses and
Contracts slide 433

Appendix K (Pages 233–280) complements the present chapter.

Characterisation 71 (Domain Script) By a domain script we mean the
structured wording of a set of rules and regulation.

Characterisation 72 (Domain License) By a domain license we mean a
script that prescribes a desirable set of behaviours.

Characterisation 73 (Domain Contract) By a domain contract we mean
a license that additionally has legally binding power, that is, which may be
contested in a court of law.

14.1 Analysis of Examples slide 434

We refer to Appendix K.

14.1.1 Timetables slide 435

We refer to Appendix Sect. K.2.1 Page 233–243
The bus/train timetable is informally sketched. Sect. K.2.1 will elaborate,

and formalise, this timetable example. In addition that section will relate
timetables to the underlying net of to the resulting and possible traffics. A
timetable script thus can be given several pragmatics: (i-ii) a, perhaps not
exactly legally binding, contract between the bus/train operator and the pas-
sengers, as well as a contract between the bus/train operator and the public
authorities which may be financially supporting community commuting; (iii)
a particular timetable (considered as syntax) semantically denotes a possibly
infinite set of bus/train traffics, each of which satisfies the timetable, i.e., runs
to schedule; and (iv) a script, to be followed by the drivers/train engine men,
guiding these in the bus/train journey (to speed up or slow down, etc.).
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14.1.2 Aircraft Flight Simulator Script slide 436

We refer to Appendix Sect. K.2.3 Pages 243–244
The example script is from a specific aircraft simulator demo. It has been

abstracted a bit from the real case script. You may think of the example script
being partly “programmed” into the flight simulator which is a reactive system
awaiting pilot trainee actions and reactions. As you note, it is quite detailed.
It mentions many phenomena and concepts of aircraft flights: entities (simple
as well as behavioural), operations, events, and itself prescribes a behaviour.
You may additionally think of the example script as also (in addition to the
flight simulator hardware and software) “scripting” the pilot trainee. Thus a
specific script, for example, denotes an infinity of actual behaviours of pilot
trainees working in conjunction with flight simulators.

14.1.3 Bill of Lading slide 437

We refer to Appendix Sect. K.2.4 Page 244–246
The bill of lading is also a script, but it is quite different from the pre-

vious two examples. It only very, very loosely hints at transport behaviours.
Whereas it certainly puts some constraints on freight transport. The bill of
lading script is a legal instrument which entitles the consignee to receive the
freight at the destination harbour; stipulates, in the closing “conditions” item,
legal protection of the two parties to the contract; etcetera.

14.2 Licenses slide 438

License:

a right or permission granted in accordance with law by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful

Merriam Webster On-line [179]
slide 439

The concepts of licenses and licensing express relations between actors (li-
censors (the authority) and licensees), simple entities (artistic works, hospital
patients, public administration and citizen documents) and operations (on
simple entities), and as performed by actors. By issuing a license to a licensee,
a licensor wishes to express and enforce certain permissions and obligations:
which operations on which entities the licensee is allowed (is licensed, is per-
mitted) to perform. As such a license denotes a possibly infinite set of allowable
behaviours.slide 440

We shall consider three kinds of entities: (i) digital recordings of artistic
and intellectual nature: music, movies, readings (“audio books”), and the like,
(ii) patients in a hospital as represented also by their patient medical records,
and (iii) documents related to public government.slide 441
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The permissions and obligations issues are, (i) for the owner (agent) of
some intellectual property to be paid (i.e., an obligation) by users when they
perform permitted operations (rendering, copying, editing, sub-licensing) on
their works; (ii) for the patient to be professionally treated — by medical
staff who are basically obliged to try to cure the patient; and (iii) for public
administrators and citizens to enjoy good governance: transparency in law
making (national parliaments and local prefectures and city councils), in law
enforcement (i.e., the daily administration of laws), and law interpretation
(the judiciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps copy) other
documents.

14.3 The Support Example(s) slide 442

14.4 Principles, Techniques and Tools slide 443

14.5 Exercises

14.5.1 11.a

Solution S.12.1 on page 332, suggests an answer to this exercise.

14.5.2 11.b

Solution S.12.2 on page 332, suggests an answer to this exercise.

14.5.3 11.c

Solution S.12.3 on page 332, suggests an answer to this exercise.

14.5.4 11.d

Solution S.12.4 on page 332, suggests an answer to this exercise. slide 444
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Domain Modelling: Human Behaviour slide 447

Appendix L (Pages 283–283) complements the present chapter.

Characterisation 74 (Human Behaviour) By human behaviour we mean
any of a quality spectrum of carrying out assigned work: from (i) careful, dili-

gent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv)
outright criminal pursuit.

15.1 A Meta-characterisation of Human Behaviour slide 448

Commensurate with the above, humans interpret rules and regulations differ-
ently, and not always consistently — in the sense of repeatedly applying the
same interpretations.

Our final specification pattern is therefore:

type

Action = Θ
∼

→ Θ-infset
value

hum int: Rule → Θ → RUL-infset
action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼

→ Θ-infset
hum beha(sy sti,sy rul)(α)(θ) as θset

post
θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ′:Θ•θ′ ∈ θset ⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ,θ′)

slide 449

The above is, necessarily, sketchy: There is a possibly infinite variety of ways
of interpreting some rules. A human, in carrying out an action, interprets
applicable rules and chooses one which that person believes suits some (pro-
fessional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies
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the intent, i.e., yields true on the pre/post-configuration pair, when the ac-
tion is performed — whether as intended by the ones who issued the rules
and regulations or not. We do not cover the case of whether an appropriate
regulation is applied or not.slide 450

The above-stated axioms express how it is in the domain, not how we
would like it to be. For that we have to establish requirements.

15.2 Review of Support Examples slide 451

to be written
slide 452

to be written

15.3 On Modelling Human Behaviour slide 453

To model human behaviour is, “initially”, much like modelling management
and organisation. But only ‘initially’. The most significant human behaviour
modelling aspect is then that of modelling non-determinism and looseness,
even ambiguity. So a specification language which allows specifying non-
determinism and looseness (like CafeOBJ and RSL) is to be preferred.

15.4 ]

The Support Example[s] slide 454

15.5 Principles, Techniques and Tools slide 455

15.6 Exercises

15.6.1 12.a

Solution S.13.1 on page 333, suggests an answer to this exercise.

15.6.2 12.b

Solution S.13.2 on page 333, suggests an answer to this exercise.

15.6.3 12.c

Solution S.13.3 on page 333, suggests an answer to this exercise.

15.6.4 12.d

Solution S.13.4 on page 333, suggests an answer to this exercise.slide 456



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

Part IV

ANALYTIC STAGES



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

slide 457–458



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

16

Verification slide 459

16.1 Theorem Proving slide 460

16.2 Model Checking slide 461

16.3 Formal Testing slide 462

16.4 Combining Proofs, Checks and Tests slide 463

16.5 Principles, Techniques and Tools slide 464

16.6 Discussion slide 465

16.7 Exercises

16.7.1 13.a

Solution S.14.1 on page 333, suggests an answer to this exercise.

16.7.2 13.b

Solution S.14.2 on page 333, suggests an answer to this exercise.

16.7.3 13.c

Solution S.14.3 on page 333, suggests an answer to this exercise.

16.7.4 13.d

Solution S.14.4 on page 333, suggests an answer to this exercise. slide 466
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Validation slide 469

17.1 Principles, Techniques and Tools slide 470

17.2 Discussion slide 471

17.3 Exercises

17.3.1 14.a

Solution S.15.1 on page 333, suggests an answer to this exercise.

17.3.2 14.b

Solution S.15.2 on page 334, suggests an answer to this exercise.

17.3.3 14.c

Solution S.15.3 on page 334, suggests an answer to this exercise.

17.3.4 14.d

Solution S.15.4 on page 334, suggests an answer to this exercise. slide 472
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Theory Formation slide 475

18.1 Principles, Techniques and Tools slide 476

18.2 Discussion slide 477

18.3 Exercises

18.3.1 15.a

Solution S.16.1 on page 334, suggests an answer to this exercise.

18.3.2 15.b

Solution S.16.2 on page 334, suggests an answer to this exercise.

18.3.3 15.c

Solution S.16.3 on page 334, suggests an answer to this exercise.

18.3.4 15.d

Solution S.16.4 on page 334, suggests an answer to this exercise. slide 478
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Domain Engineering: A Postludium slide 481

19.1 Consolidation of Domain Modelling Facets slide 482

The many domain facet stages may have yielded descriptions which, typically
at the formal level, does not reveal how it all “hangs together”. In such cases,
and in general, consolidation of these domain facet documentaton stages could
take the following forms. slide 483

With each potential management unit we associate a process or an in-
dexed set of two or more processes, usually an indeterminate number. Such
management units will usually involve entities and behaviours — whether
staff of entity behaviours. Usually type definitions and axioms (about sorts)
and value definitions of auxiliary and well-formedness functions about values
can be kept separate from the process definitions. The entity processes usu-
ally take, as arguments, the entity whose time-wise behaviour and interaction
with oother entity processes is being domain modelled. slide 484

With each structural component of the organisation we associate one or
more channels, or vector or array or tensor (or . . . ) indexed sets of channels.

More to come
slide 485

19.2 Domain Engineering Documents slide 486

19.3 Generic Domain Engineering Development Graph
slide 487

19.4 Principles, Techniques and Tools slide 488

19.5 Discussion slide 489

19.6 Exercises
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19.6.1 15.a.x

Solution S.17.1 on page 334, suggests an answer to this exercise.

19.6.2 15.b.x

Solution S.17.2 on page 334, suggests an answer to this exercise.

19.6.3 15.c.x

Solution S.17.3 on page 335, suggests an answer to this exercise.

19.6.4 15.d.x

Solution S.17.4 on page 335, suggests an answer to this exercise.slide 490
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From Domains to Requirements slide 493

Appendix M (Pages 285–285) complements the present chapter.

20.1 Principles and Concepts of Requirements slide 494

20.2 Stages of Requirements Engineering slide 495

20.2.1 Informative Documents slide 496

20.2.2 Stakeholder Identification slide 497

20.2.3 Requirements Acquisition slide 498

20.2.4 Business Process Re-engineering slide 499

20.2.5 Requirements Analysis and Concept Formation slide 500

20.2.6 Requirements Terminology slide 501

20.2.7 Requirements Modelling slide 502

20.2.8 Requirements Model Verification slide 503

20.2.9 Requirements Model Validation slide 504

20.2.10 Requirements Feasibility and Satisfiability slide 505

20.2.11 Requirements Theory Formation slide 506

20.3 Shared Phenomena and Concepts slide 507

We (forward) refer to appendix example Sect. M.1 on page 285. It follows up
on this methodology concept.
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20.4 Domain Requirements slide 508

We (forward) refer to appendix example Sect. M.2 on page 285. It follows up
on this methodology concept.

20.5 Interface Requirements slide 509

We (forward) refer to appendix example Sect. M.3 on page 285. It follows up
on this methodology concept.

20.6 Machine Requirements slide 510

We (forward) refer to appendix example Sect. M.4 on page 285. It follows up
on this methodology concept.

20.7 Discussion slide 511

20.8 Requirements Engineering Management slide 512

20.8.1 Requirements Engineering Development Graph slide 513

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison
Stake Holder

Acquisition
Requirements

Requirements Modeling

Validation
& Verification

Domain Requirements Machine Requirements
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Man−machine Dialogue
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Machine−.Machine Dialogue
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Fitting

Extension

Instantiation

Determination
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Shared Phenomena
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Security
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Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Requirements Modeling

Fig. 20.1. Requirements engineering process graph
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20.8.2 Requirements Engineering Development Documents slide 514

20.9 Exercises

20.9.1 16.a

Solution S.18.1 on page 335, suggests an answer to this exercise.

20.9.2 16.b

Solution S.18.2 on page 335, suggests an answer to this exercise.

20.9.3 16.c

Solution S.18.3 on page 335, suggests an answer to this exercise.

20.9.4 16.d

Solution S.18.4 on page 335, suggests an answer to this exercise. slide 515
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Summary and Conclusion slide 518

21.1 A Domain Engineering Development Graph slide 519
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Fig. 21.1. Domain engineering process graph
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21.2 Domain Engineering Development Documents slide 520

There are basically three kinds of domain development documents:

• information documents,
• description documents and
• analytic documents.

We have already covered, in Chap. 3, the concept of informative documents.
In the next two sections we shall cover the motivation for and principles

and techniques of description and analysis documents.

21.2.1 Description Documents slide 521

1. Stakeholders
2. The Acquisition Process

(a) Studies
(b) Interviews
(c) Questionnaires
(d) Indexed Description Units

3. Terminology
4. Business Processes
5. Facets:

(a) Intrinsics

(b) Support Technologies

(c) Management and
Organisation

(d) Rules and Regulations

(e) Scripts

(f) Human Behaviour

6. Consolidated Description

21.2.2 Analytic Documents slide 522

1. Domain Analysis and
Concept Formation
(a) Inconsistencies
(b) Conflicts
(c) Incompletenesses
(d) Resolutions

2. Domain Validation

(a) Stakeholder Walkthroughs
(b) Resolutions

3. Domain Verification
(a) Model Checkings
(b) Theorems and Proofs
(c) Test Cases and Tests

4. (Towards a) Domain Theory

21.3 slide 523

21.4 slide 524

21.5 slide 525

21.6 Exercises
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21.6.1 17.a

Solution S.19.1 on page 335, suggests an answer to this exercise.

21.6.2 17.b

Solution S.19.2 on page 335, suggests an answer to this exercise.

21.6.3 17.c

Solution S.19.3 on page 335, suggests an answer to this exercise.

21.6.4 17.d

Solution S.19.4 on page 335, suggests an answer to this exercise. slide 526
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Informative Documentation slide 528

Chapter 3 (Pages 47–64) complements the present appendix.

A.1 Project Names and Dates slide 529

We (backward) refer to methodology Sect. 3.2 on page 48. It provides the
methodological background for the present section. slide 530

A.2 Project Partners and Places slide 531

We (backward) refer to methodology Sect. 3.3 on page 48. It provides the
methodological background for the present section. slide 532

A.3 Current Situation slide 533

We (backward) refer to methodology Sect. 3.4 on page 49. It provides the
methodological background for the present section. slide 534

A.4 Needs and Ideas slide 535

A.4.1 Needs slide 536

We (backward) refer to methodology Sect. 3.5.1 on page 49. It provides the
methodological background for the present section. slide 537

A.4.2 Ideas slide 538

We (backward) refer to methodology Sect. 3.5.2 on page 50. It provides the
methodological background for the present section. slide 539
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A.4.3 Discussion slide 540

A.5 Facilities and Concepts slide 541

We (backward) refer to methodology Sect. 3.6 on page 50. It provides the
methodological background for the present section.slide 542

slide 543

A.6 Scope and Span slide 544

A.6.1 Scope slide 545

We (backward) refer to methodology Sect. 3.7 on page 51. It provides the
methodological background for the present section.

A.6.2 Span slide 546

We (backward) refer to methodology Sect. 3.7 on page 51. It provides the
methodological background for the present section.

A.7 Assumptions and Dependencies slide 547

We (backward) refer to methodology Sect. 3.8 on page 51. It provides the
methodological background for the present section.

A.7.1 Assumptions slide 548

A.7.2 Dependencies slide 549

A.8 Implicit & Derivative Goals slide 550

We (backward) refer to methodology Sect. 3.9 on page 52. It provides the
methodological background for the present section.slide 551

A.9 Synopsis slide 552

We (backward) refer to methodology Sect. 3.10 on page 52. It provides the
methodological background for the present section.slide 553

A.10 Domain Development Graph slide 554

We (backward) refer to methodology Sect. 3.11 on page 53. It provides the
methodological background for the present section.slide 555



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

A.14 Contracts and Design Briefs 147

A.11 Resource Allocation slide 556

We (backward) refer to methodology Sect. 3.12 on page 55. It provides the
methodological background for the present section. slide 557

A.12 Budget (and Other) Estimates slide 558

A.12.1 Budget slide 559

We (backward) refer to methodology Sect. 3.13.1 on page 56. It provides the
methodological background for the present section.

A.12.2 Other Estimates slide 560

We (backward) refer to methodology Sect. 3.13.2 on page 56. It provides the
methodological background for the present section.

A.13 Standards Compliance slide 561

We (backward) refer to methodology Sect. 3.14 on page 56. It provides the
methodological background for the present section.

A.13.1 Development Standards slide 562

A.13.2 Documentation Standards slide 563

A.13.3 Standards versus Recommendation slide 564

A.13.4 Specific Standards slide 565

A.14 Contracts and Design Briefs slide 566

A.14.1 Contracts slide 567

We (backward) refer to methodology Sect. 3.15.1 on page 59. It provides the
methodological background for the present section.

A.14.2 Design Briefs slide 568

We (backward) refer to methodology Sect. 3.15.3 on page 62. It provides the
methodological background for the present section.
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A.15 Development Logbook slide 569

We (backward) refer to methodology Sect. 3.16 on page 63. It provides the
methodological background for the present section. slide 570

A.16 Discussion slide 571

slide 572

slide 573
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Stakeholders slide 575

Chapter 4 (Pages 67–68) complements the present appendix. slide 576
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Domain Acquisition slide 578

Chapter 5 (Pages 71–73) complements the present appendix.

C.1 Initial Acquisition Steps slide 579

In the initial domain acquisition we look for a “suitable” number of simple
entities, operations, events and behaviours of the domain.

C.1.1 Simple Entities slide 580

It appears that the most obvious simple entities of the oil and natural gas
industry are those of oil and gas, oil and gas fields, pipelines with pipe,
pumps, valves, forks, joins, etcetera, oil and gas storage (depots), refineries
and gas turntables, and oil (and gas) tankers. These are enough, for the
moment, for us to get “boot-strapped” into finding more simple entities, and
for finding suitable operations, events and behaviours.

C.1.2 Operations slide 581

Similarly, it appears that the most obvious operations of the oil and natural
gas industry are those of building pipelines, building refineries, building de-
pots, opening oil fields, and facilities for oil and gasoline distribution; and
of pumping oil or gas, controlling valves, storing petroleum, shipping oil by
tankers, oil refining, and bringing gasoline to end customers. Many related
operations now arise: measuring flow of oil and gas, routing of oil flow, and
boosting oil flow, compressing gas, etcetera.

C.1.3 Events slide 582

Events of the oil and natural gas industry are those of empty oil reservoirs,
(over)full storage depots, oil and gas leaks, malfunctioning of valves, pumps,
etcetera.
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C.1.4 Behaviours slide 583

Three examples of behaviours can be identified: (i) The behaviour of a drain
pump: its installation at an oil reservoir; its first deployment (start of pump-
ing), i.e., its commissioning, or putting into service; its cyclic alternations
between pumping, not pumping, being serviced and repaired; ending with
its decommissioning: being taken out of service. (ii) The processing of oil:
from being drained from oil fields, into a pipeline, onto a depot, from there,
via oil tankers, to other depots, being refined into gasoline etc., and final dis-
tribution to end customers; and (ii) the behaviour of the whole industry:slide 584

the interaction between several oil fields, pipeline systems depots, shipping
facilities, refineries (and gas processing plants), and end customers.

C.2 System Composition slide 585

We can rough sketch an oil & natural gas industry by diagramming it, as
shown in Fig. C.1. Here we show an oil refinery — so the diagram appears to
depict a petroleum system. One could show a similar diagram for a natural
gas system.

PS

Transport
TankerPipelinesOil/Gas

Fields End Customers
Refineries &

TT

...

LT

Local
Transport

Field Pipe Depot

Switches Refractory

...

End
Customers

Refinery

Tanker Sea Lanes

Harbours

RS1

RS2

Tanker

Fig. C.1. A Schematic of an Oil & Natural Gas Industry

slide 586

Narrative

2. The petroleum industry, Ω, is here thought of as consisting of three sub-
domains:
(a) oil and natural gas fields, refineries and end-consumers (sinks), ΩRS,
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(b) pipeline systems, ΩPS, and
(c) tanker transport systems, ΩTT.

There may be many other aspects of the petroleum industry than “strictly”
limitable to these three distinct sub-domains: the OPEC1, issues of the oil
market2, in particular the New York Mercantile Exchange3 or International
Petroleum Exchange4 in London, etcetera. We leave out modelling these and
other aspects of the petroleum industry. We claim that their modelling can
relatively easily be “added” in a later phase of domain description. slide 587

Formalisation

type
2. Ω, ΩRS, ΩPS, ΩTT

value
2(a). obs ΩRS: Ω → ΩRS
2(b). obs ΩPS: Ω → ΩPS
2(c). obs ΩTT: Ω → ΩTT

When we later decide to include considerations of OPEC, trading (e.g., ICE),
regulation, etc. then we simply add further observation functions over Ω while
ensuring that these further sub-domains “interface” properly with ΩRS, ΩPS
and ΩTT.

C.2.1 Pipeline Systems slide 588

slide 589

Narrative

3. A pipeline system consists of one or more pipes and two or more nodes.
4. Pipes and nodes have unique identifiers.
5. A pipeline node is either a drain pump, a fill pump, a valve, a flow pump,

a fork, a join, or an end customer, i.e., a sink (node).
6. From a pipe one can observe the (directed) pair of identifiers of the two

nodes connected to the pipe, or, put differently, the two nodes that the
pipe connects.

7. A drain pump is connected to a reservoir and a pipe and one can thus
observe the identifiers of the reservoir and the pipe. slide 590

8. A fill pump is connected to a pipe and a deport and one can thus observe
the identifiers of the pipe and depot.

1 OPEC: The Vienna, Austria-based Organisation for Petroleum Exporting Coun-
tries, see, for example, http://www.opec.org/home/

2 See for example http://www.eia.doe.gov/pub/oil gas/petroleum/analysis publi-
cations/oil market basics/default.htm

3 NYMEX: http://www.nymex.com/index.aspx
4 See IPE: http://en.wikipedia.org/wiki/International Petroleum Exchange ac-

quired in June 2001 by ICE: https://www.theice.com/homepage.jhtml
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9. A valve connects one or more pipes (called input pipes) to one or more
(output) pipes, and one can thus observe the set of one or more identifiers
of the input pipes and the set of one or more identifiers of the output
pipes.

10. A flow pump connects one input pipe to one output pipe, and one can
thus observe the pair of identifiers of the input and output pipes.

11. A join connects two or more pipes (called input pipes) to one (output)
pipe, and one can thus observe the set of two or more identifiers of the
input pipes and the set of the one identifier of the output pipe.slide 591

12. A fork connects one pipe (called the input pipe) to two or more (output)
pipes, and one can thus observe the set of one identifiers of the input pipe
and the set of two or more identifiers of the output pipes.

By a pipe we mean a circular tube. From one or more pipes (also referred
to as pipe segments) one can construct a pipeline by concatenating one or
more pipes.slide 592
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Fig. C.2. A Pipeline System: in: input node (drain pump, valve or flow pump),
on: output node (valve or flow pump), fp: flow pump, v: valve

slide 593

Formalisation

type
3. ΩPS, P, N
3. Node == mkN(n:N)
3. Pipe == mpP(p:P)
4. PI, NI
5. DraP, FilP, Valv, FloP, Join, Fork, Sink
5. N == DrP(fdp:DraP) | FiP(fp:FilP) | Val(v:Valv) |

FlP(fp:FloP) | Jn(j:Join) | Fk(f:Fork) | Snk(si:Sink)
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value
3. obs Ps: ΩPS → P-set
3. obs Ns: ΩPS → N-set
4. obs PI: P → PI
4. obs NI: N → NI

axiom
3. ∀ ωPS:ΩPS

• card obs Ps(ωPS) ≥ 1 ∧ card obs Ns(ωPS) ≥ 2
value

6. obs NIp: P → (NI × NI)
7.–12. obs pPIs: N → (PI-set × PI-set)

A Technical Comment:

• The A == mk(s:B) | ... type definition5 defines type A values to be con-
structed from type B values by means of the constructor mk.
Thus is a technicality. It is used in order to secure that no matter which
properties with which we are (later) going to endow the various kinds of
nodes — that — the node kind will always be uniquely distinguishable.
That is, it may be that the properties we ascribe, for example, to fill pumps,
fp:FilP, and sinks, snk:Sink, are the same (!), but the distinct constructor
names, FiP and Snk secure that one can distinguish fill pumps from sinks.

slide 594

p1,pi1

p2,pi2

node na identifier

node na 

p4, pi4, (nia,nib)

na, nia, ({pi1,pi2,pi3},{pi4}) nb,nib

p3,pi3

(possibly zig−zagged) designate "ownership"

node na input/output pipe identifiers

adjacent node identifiers

Fig. C.3. Nodes and pipes, node and pipe identifiers and adjacent node and pipe
identifiers

C.2.2 Tanker Transport Systems slide 595

Narrative

13. A tanker transport system consists of two or more harbours, one or more
tanker ships (tanker), and one or more sea lanes.

5 Where A could be N and mk, s and B could be FiP, fp and FilP.
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14. Harbours, tankers and sea lanes have unique identifiers.

Harbour i

Harbour j

Harbour k

Harbour p

Harbour q

Harbour r

Ship

Sea Lane...

...

...

pipes
valves
pumps

refineries
&c.

pipes
valves
pumps

refineries
sinks

&c.

Oil Transport System
"Rest" of

fields

Oil Transport System
"Rest" of

Fig. C.4. Tanker Transport System with Harbours, Sea Lanes and Ships

slide 596

Formalisation

type
13. H, T, L

value
13. obs Hs: ΩTT → H-set
13. obs Ts: ΩTT → T-set
13. obs Ls: ΩTT → L-set

axiom
13. ∀ ωTT:ΩTT

•

card obs Hs(ωTT)≥2 ∧
card obs Ts(ωTT)≥1 ∧
card obs Ls(ωTT)≥1

type
14. HI, TI, LI

axiom
14. ∀ hi:HI, ti:TI, li:LI • hi6=ti ∧ ti6=li ∧ hi6=li

value
14. obs HI: H → HI
14. obs TI: T → TI
14. obs LI: L → LI

slide 597

Narrative
slide 598

15. From a harbour one can observe
(a) a set of one or more depots,
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.....

.....

Depots

Berth

Ship

2 [un]Loading Arms, in Use

1 [un]Loading Arm, not in Use

Switch

.....

Fig. C.5. Harbour with Depots, Switch, Berths and Ship

(b) a switch6 (connecting depots to loading arms, see below, Item 15(f)),
(c) a set of one or more berths,
(d) the identification of the sea lanes emanating from that harbour,
(e) the identifications of the sea lanes incident upon that harbour,
(f) and, from a berth, one or more loading arms

slide 599

Formalisation

type
15(a). Depot, Switch, Berth, LdArm, Tank, Length

value
15(a). obs Depots: H → Depot-set
15(b). obs Switch: H → Switch
15(c). obs Berths: H → Berth-set
15(d). obs eLIs: H → LI-set
15(e). obs iLIs: H → LI-set
15(f). obs LdArms: Berth → LdArm-set

axiom
∀ h:H •

15(a). card obs Depots(h)≥1 ∧
15(c). card obs Berths{h}≥1 ∧
15(d). card obs eLIs(h)≥1 ∧
15(e). card obs eLIs(h)≥1 ∧
15(f). ∀ b:B • b ∈ obs Berths{h} ⇒ obs LdArms(b)≥1

slide 600

6 Whether we consider an oil loading/unloading, i.e., exporting/importaing har-
bour to contain one swithch or more switches turns out, as we shall see, to be
immaterial.
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Narrative, Continued

16. From a sea lane one can observe
(a) the pair of distinct identifiers of the harbours from, respectively to

which the lane is directed, and
(b) its length.

Formalisation, Continued

value
16(a). obs HIp: L → HI×HI
16(b). obs Len: L → Length

axiom
16(a). ∀ l:L • let (hi,hi′)=obs HIp(l) in hi6=hi′ end,

slide 601

Narrative, Continued

17. From a tanker one can observe
(a) a set of one or more tanks
(b) whether the tanker is at sea,
(c) and, if so, along which sea lane it sails,
(d) and, if not, at which berth and in which harbour it is moored.

slide 602

Formalisation, Continued

value
17(a). obs Tanks: Tanker → Tank-set
17(b). is at Sea: T → Bool

17(c). obs L: T
∼

→ L, pre: obs L(t): is at Sea(t)

17(d). obs HIBI: T
∼

→ (HI×BI), pre: obs HIBI(t): ∼is at Sea(t)
axiom

17(a). ∀ t:T • card obs Tanks(t)≥1 ∧
∀ ωTT:ΩTT

•

∀ t:T • t ∈ obs Ts(ωTT) •

17(d). ∼is at Sea(t) ⇒
let (hi,bi)=obs HIBI(t) in
∃ h:H • h ∈ obs Hs(ωTT) ∧ hi=obs HI(h) ⇒

∃ b:Berth • b ∈ obs Berths(h) • bi=obs BI(b) end
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C.2.3 Oil Field and Refinery Systems slide 603

slide 604

Narrative

18. The oil/gas resource management domain consists of
(a) one or more oil/gas fields,
(b) one or more depots,
(c) one or more oil refineries,
(d) one or more local (oil and/or natural gas) distribution nets, and
(e) one or more end-customers (referred to as sinks).

19. Oil/gas fields, depots, oil refineries, distribution nets and end-customers
all have unique identifiers.

slide 605

type
18. Field, Depot, Refinery, DistrNet, EndCust
19. FI, DI, RI, NI, EI

value
18(a). obs Fields: ΩRS → Field-set
18(b). obs Depots: ΩRS → Depot-set
18(c). obs Refineries: ΩRS → Refinery-set
18(d). obs EndCust: ΩRS → EndCust-set
18(e). obs DistrNets: ΩRS → DistrNet-set
19. obs FI: Field → FI
19. obs DI: Depot → DI
19. obs RI: Refinery → RI
19. obs NI: DistrNet → DNI
19. obs SI: EndCust → EI

axiom
18. ∀ ωRS:ΩRS

card obs Fields(ωRS)≥1 ∧
card obs Depots(ωRS)≥1 ∧
card obs Refineries(ωRS)≥1 ∧
card obs EndCusts(ωRS)≥1 ∧
card obs DistrNetss(ωRS)≥1

slide 606

Narrative

20. An oil/gas field contains
(a) a reservoir of oil and/or gas,
(b) one or more drain pumps and
(c) zero, one or more fill pumps.

21. And
(a) Reservoirs and
(b) oil/gas (drain or fill) pumps
have unique identifiers.
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Formalisation

type
20. Reservoir, DrP(dp:DraP), FiP(fp:FilP)

value
20(a). obs Reservoir: Field → Reservoir
20(b). obs DrainPumps: Field → DrP(dp:DraP)-set
20(c). obs FillPumps: Field → FiP(fp:FilP)-set

axiom
20(c). ∀ f:Field • card obs DrainPumps(f)≥1

type
21. RI, DPI, FPI

value
21(a). obs RI: Reservoir → RI
21(b). obs DPI: DrainPump → DPI
21(b). obs FPI: FillPump → FPI

slide 607

Narrative

22. An oil refinery consists of

(a) one or more input depots,
(b) one or more refractory towers,
(c) a switch system of pipes “running” from input depots to refractory

towers,
(d) one or more output depots,
(e) and a switch system of pipes “running” from refractory towers to

output depots.

23. Depots and Refractory towers have unique identifiers.
slide 608

Formalisation

type
22. Refractory, Switch
23. RTI

value
22(a). obs InDepots: Refinery → Depot-set
22(b). obs Refractories: Refinery → Refractory-set
22(c). obs InSwitch: Refinery → Switch
22(d). obs OutDepots: Refinery → Depot-set
22(e). obs OutSwitch: Refinery → Switch
23. obs RTI: Refractory → RTI
23. obs DI: Depot → DI

axiom
∀ r:Refinery •
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22(a). obs InDepots(r)≥1 ∧
22(b). obs Refractories(r)≥1 ∧
22(d). obs OutDepots(r)≥1 ∧
23. let ids=obs InDepots(r), ods=obs InDepots(r) in

∀ d,d′:Depot•d6=d′∧{d,d′}⊆ids ∪ ods ⇒ obs DI(d)6=obs DI(d′) end

C.3 Petroleum and Gas slide 609

So far, we have not distinguished between (crude) oil (i.e., petroleum) and gas
retrieval, transportation (pipe lines and tanker and truck transport), process-
ing and disposal. To complement the concept of refineries we introduce the
concept of gas separators. slide 610

For convenience we now introduce the notion of units: Pipes and nodes,
that is, reservoirs, pumps, valves, forks, joins, depots, switches, refractory towers,
gas separators, loading arms, tanks, sinks (i.e., end customers) are units.

Units will be properly formalised in a subsequent appendix, cf. Sect. E.1.1
Items 29–33 (Pages 169–172). slide 611

24. The various sub-domains treated so far either processes oil or natural gas.7

25. To each and every node and pipe, that is, unit we associate the “kind”
attribute: "oil" or "gas".

26. For an entire system, ω:Ω,
(a) the system is either of kind "oil" or of kind "gas"

(b) and all units are of that same kind.
27. Thus a "gas" system, ω:Ω,

(a) has no refineries;
(b) instead it has gas separators.

28. Vice versa, an "gas" system, ω:Ω,
(a) has no refineries;
(b) instead it has gas separators.

slide 612

type
24. Oil, Gas, U, GaFi, Refi
25. Kind == oil | gas

value
25. obs Kind: (Ω|U) → Kind
25. obs Us: Ω → U-set
25. is GaFi, is Refi: U → Bool

axiom

7 Without loss of generality we do not consider varieties of crude oil (Brent oil,
etc.) or naural gas, nor do we consider reservoirs and drain pumps that contain,
respectively handle both oil and gas.
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26. ∀ ω:Ω •

26. ∀ u:U • u ∈ obs Us(ω) • obs Kind(ω) ≡ obs Kind(u) ∧
27. gas=obs Kind(ω) ⇒
27(a). ∼exist u:U • u ∈ obs Us(ω) ∧ is Refi(u) ∧
27(b). exist u:U • u ∈ obs Us(ω) ∧ is GaFi(u)
28. oil=obs Kind(ω) ⇒
28(a). ∼exist u:U • u ∈ obs Us(ω) ∧ is GaFi(u) ∧
28(b). exist u:U • u ∈ obs Us(ω) ∧ is Refi(u)

C.4 Preliminary Analysis slide 613

C.5 Simple Entities slide 614

C.5.1 slide 615

We (backward) refer to methodology Sect. 1.7.3 on page 19. It provides the
methodological background for the present section.

C.6 Operations slide 616

We (backward) refer to methodology Sect. 1.7.4 on page 23. It provides the
methodological background for the present section.

C.7 Events slide 617

We (backward) refer to methodology Sect. 1.7.5 on page 28. It provides the
methodological background for the present section.

C.8 Behaviours slide 618

We (backward) refer to methodology Sect. 1.7.6 on page 29. It provides the
methodological background for the present section.slide 619

slide 620

slide 621

slide 622
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Business Processes slide 624

Chapter 6 (Pages 75–76) complements the present appendix. slide 625
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Domain Analysis and Concept Formation slide 627

Chapter 7 (Pages 79–81) complements the present appendix.

E.1 Simple Entities slide 628

E.1.1 Oil Industry Simple Entity Phenomena

29. Pipe, reservoir, drain pump, flow pump, join, fork, valve, depot, switch,
refinery refractory tower, gas separator, gas purifier, (harbour berth to
tanker) load arm, and tanker tank and sink (“casings”. “mechanisms”)
— i.e., when viewed void of oil — all have the following in common:
they are discrete, atomic and can be (correctly or erroneously) connected
in simple ways to one another. We shall therefore suggest that we “lift”
these phenomena into concepts of type (or sort) unit (U). slide 629

30. Oil (and natural gas) is liquid (gaseous) and can be contained in units.
31. Units, that is, Pipes, reservoirs, drain pumps, flow pumps, joins, forks,

valves, depots, switches, refinery refractory towers, gas separators, gas
purifiers, (harbour berth to tanker) load arms, tanker tanks and sinks
when (partially) filled with (even no) oil (or gas) are dynamic, composite
simple entities.

32. A unit, when not considering its possible oil (or natural gas) content, will
be referred to as the unit casing. slide 630

33. Some unit casings can, when disregarding for example ambient temper-
ature and humidity, be considered static and some are dynamic, that is
their attribute values may be constants, respectively variables. Examples
are:
(a) A pipe casing is a static simple entity with, for example, these

constant-valued attributes: length, diameter, geographical location,
etc. slide 631

(b) A reservoir is a dynamic simple entity with, for example, these
constant-valued attributes: geographical location, maximum, original
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capacity, number of attached drain pumps and their individual maxi-
mum pumping capacity. and with, for example, these variable-valued
attributes: (per attached drain pump) their possible pumping states
(being filled or being drained), their individual pumping state: full
“speed”, or less and remaining capacityslide 632

(c) A drain pump is a dynamic simple entity with, for example, these
constant-valued attributes: geographical location, maximum pumping
capacity, etc., and with, for example, these variable-valued attributes:
possible pumping states (being filled or being drained), pumping state:
full “speed”, or less.slide 633

(d) A flow pump is a dynamic simple entity with, for example, these
constant-valued attributes: geographical location, maximum pumping
capacity, etc., and with, or example, these variable-valued attributes:
possible pumping states, pumping state: full “speed”, or less.slide 634

(e) A joinslide 635

(f) A forkslide 636

(g) A valve casing is a dynamic simple entity with, for example, these
constant-valued attributes: set of possible valve states, geographical
location, etc., and with, for example, this variable-valued attribute:
current valve stateslide 637

(h) A depot, casing plus oil, is a dynamic simple entity with, for exam-
ple, these constant-valued attributes: number of inlets and outlets,
maximum containable volume, maximum filling volume per second
(max filling rate), maximum draining volume per second (max drain-
ing rate), geographical location, etc.; and with, for example, these
variable-valued attributes: which inlets, respectively which outlets are
open or closed, current contained volume, whether being filled, or
drained, or both, and then at which respective rates. The depot cas-
ing disregarding oil only has the first of the above variable-valued
attributes; thus it is still a dynamic simple entity.slide 638

(i) A switchslide 639

(j) An oil refractory towerslide 640

(k) A gas separatorslide 641

(l) A gas purifierslide 642

(m) A load armslide 643

(n) A tankslide 644

(o) An end customer sink
slide 645

type
3. P
3. Pipe == Pi(pi:P)
5. Resr|DraP|FloP|Join|Fork|Valv|Depot|

Switch|Refr|Sepa|Puri|LdArm|Tank|Sink
5. Node == Re(re:Resr)|Dr(dr:DraP)|Fl(fl:FloP)|

Jo(jo:Join)|Fo(fo:Fork)|Va(va:Valv)|De(de:Depot)|
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Sw(sw:Switch)|Re(re:Refr)|Se(se:Sepa)|Pu(pu:Puri)|
LA(la:LdArm)|Ta(ta:Tank)|Si(si:Sink)

29. U = Pipe | Node
30. Oil, Gas

value
31. obs Oil: U → Oil, obs Gas: U → Gas

slide 646

type
33(a). Attrs = (StaAtr →m VAL) ∪ (DynAtr →m VAL)

StaAtr == ′′lgth′′ | ′′diam′′ | ′′loca′′ | ′′max_dr′′ | ′′vlv_sts′′ | ′′max_vol′′

| ′′max_fi′′ | ′′no_in′′ | ′′no_out′′ | ...
DynAtr == ′′cur_vol′′ | ′′cur_vlv_sta′′ | ′′cur_pmp_sta′′ | ′′in_sta′′

| ′′out_sta′′ | ...
value

33(b). obs Attrs: U → Attrs

slide 647

axiom
∀ u:U •

let (sas,das) = obs Attrs(u) in
(dom sas,dom das)=

case u of
33(a). Pi(pi:P) →

({′′lgth′′,′′diam′′,′′loca′′},{′′cur_vol′′}),
33(b). Re(re:Reserv) →

({′′loca′′,′′max_vol′′,′′no_out′′,′′no_in′′},
{′′cur_vol′′,′′out_sta′′,′′in_sta′′}),

33(c). Dr(dr:DraP) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(d). Fl(fl:FloP) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(e). Jo(jo:Join) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(f). Fo(fo:Fork) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(g). Va(va:Valv) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(h). De(de:Depot) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),
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33(i). Sw(si:Switch) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(j). Re(re:Refr) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(k). Se(se:Sepa) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(l). Pu(pu:Puri) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(m). LA(la:LdArm) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(n). Ta(ta:Tank) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′}),

33(o). Si(si:Sink) →
({′′′′,′′′′,′′′′},
{′′′′,′′′′,′′′′})

end end

E.1.2 Discrete and Continuous Simple Entities slide 648

We (backward) refer to methodology Sect. 1.7.1 (Pages: 16–18). It provides
the methodological background for the present section.

34. Oil industry units: an oil pump (without oil) is a discrete simple entity;
so are pipes (pipe segments), valves, depots, switches — when considered
without oil; oil is a continuous simple entity: a barrel of oil can be divided
into two fragments of the barrel in an infinity of ways, “down to the
minutest level” of molecules.

35. Time, when viewed as a time axis, is a continuous simple entity, but when
viewed as a specific time, a time point, it is a discrete entity.

E.2 Analysis of Domain Sketches slide 649

The English narrative items of Appendix C (Domain Acquisition) can be said
to represent some of the domain acquisition (i.e., some of the description
units) gathered from domain stakeholders and the formalisations can be said
to represent initial parts of domain analysis. Of course many more such units
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should be gathered before completing the initial actions1 of the domain ac-
quisition stage. But it is useful, before settling on (choices of) formalisation,
to alternate the domain acquisition stage with steps of the domain analysis
and concept formation stage. So, although these stages, methodology-wise,
are usually presented as ordered stages (acquisition before analysis), but usu-
ally pursued in an in interleaved fashion, we shall, “table-of-contents”-wise,
present them “sequentially” !

E.2.1 Pipeline Systems slide 650

In order to prepare for a major subsection (Sect. ??) of this section we discuss
relations between units, whether pipes or nodes.

Narrative

36. From a petroleum industry we can observe all units.
37. From a unit we can observe its unique identification.
38. From a unit we can observe the identification of the distinct (neighbour)

units that are connected to the inputs and of the therefrom distinct (neigh-
bour) units that are connected to the outputs.

39. For units such as pipes, drain and flow pumps, gas separators, gas purifiers
and load arms there are exactly one connected predecessor unit and one
connected successor unit.

40. For units such as tanks and sinks there are exactly one connected prede-
cessor unit and no successor units.

41. And for units such as reservoirs, depots, switches and refineries there is
a set of one or more predecessor units and a set of one or more successor
units.

42. Whichever neighbour unit identifiers can be observed from a unit there is
a unit in the petroleum industry of that identification.

slide 651

Formalisation

value
36. obs Us: Ω → U-set
37. obs UI: U → UI
38. obs Neighbour UIs: U → (UI-set×UI-set)

axiom
∀ ω:Ω •

∀ u:U • u ∈ obs Us(ω)

1 Initial actions of the domain acquisition stage are then to be followed up by
supplementary actions of the domain acquisition stage as warranted, for example
by the domain analysis and concept formation stage — as well as by the later
business process sketching and domain modelling stages.
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38. let (iuis,ouis) = obs Neighbour UIs(u) in iuis ∩ ouis = {} ∧
39. is P(u)∨is DraP(u)∨is FloP(u)∨is Sepa(u)∨is Puri(u)∨is LdArm(u)

⇒ card iuis = 1 = card ouis ∧
40. is Tank(u)∨is Sink(u)

⇒ card iuis = 1 ∧ card ouis = 0 ∧
41. is Resr(u)∨is Depot(u)∨is Switch(u)∨isRefi(u)

⇒ card iuis ≥ 1 ∧ card ouis ≥ 1 ∧
42. ∀ ui:UI • ui ∈ iuis ∪ ouis

⇒ ∃ u′:U • u′ ∈ obs Us(ω) ∧ ui=obs UI(u′)
end

E.2.2 Discussion of Emerging Concepts slide 652

And we shall generalise the notions of nodes and pipes into units of oil and
natural gas systems. These units are (to be) composed, i.e., connected to one
another in orderly ways.

The “point” (or ‘spatial extent’) where two units are joined is now to be
referred to as a connection as well as a connector. This spatial extent, i.e., a
connector (a connection), is a concept. We argue that it is not a phenomenon
that has separate existence. If one end of a pipe can be connected to a valve
(at a certain place “on” that valve), that pipe end is said, by us, here in our
modelling, to have connector potential, so we treat it as a connector, but it
really only becomes a connector once it is actually joined to the corresponding
valve connector.

And so on for all joinable pairs of units.slide 653

We shall make a kind of ‘Gedanken Experiment’. Assume that two oil and
natural gas system units are lying, separate from one another on the ground,
say in the desert, near some oil fields, ready to be assembled, but not yet
assembled. (We thus assume that the two units of a kinds that can indeed
be assembled.) Can we refer to their connectors ? To answer this question let
us — temporarily — assume that they have been assembled. Their assembly
defines a connection and hence those two connectors of respective units that
have been joined. Those two connectors are now “the same”, that is identical !slide 654

And we refer to them as one. Thus we shall take the position that before they
were joined we could, and can, indeed, refer to the two connectors by the
same, identical reference. The consequence of this “theory” is that there can
at most be two units (“lying around in the desert”, or being manufactured,
shipped and made ready for assembly) sharing any give connector. There may
be zero such units, or there may be just one such unit ! In the former case
the connector is “purely” hypothetical. In the latter case the one-and-only-
unit of a given connector appears to be one that is (was) never meant to be
assembled !slide 655

slide 656
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Domain Terminology slide 658

Chapter 8 (Pages 83–85) complements the present appendix.
We illustrate two steps of terminology development: A first rough sketching

step and a more-or-less final step. The first rough sketching step reflects initial
information gained in earliest steps of domain acquisition, while the “more-
or-less” final step definitions reflect that considerable work has taken place
between the earliest steps of domain acquisition and the end of the domain
modelling, verification and validation stages.

F.1 Rough Sketch Characterisations slide 659

slide 660

1. Berth: rough

Berth is the term used in ports and harbours to define a specific loca-
tion where a vessel may be berthed, usually for the purposes of loading and
unloading.

See Item 35 on page 188. slide 661

Fig. F.1. Oil Tanker Berths

slide 662

slide 663

slide 6642. Connector: rough
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Fig. F.2. Gas Tanker Berth and Oil Tanker Berth to (Oil Storage) Depot

Fig. F.3. Oil Tanker Berth

A connector is a(n abstract) concept. Its physical manifestations are the
areas where two unit[45]s of the oil industry are joined together. slide 665

3. Connection Point: rough

A connection point is a(n abstract) concept. Its physical manifestations are
the areas where a unit of the oil industry may be joined together with another
unit. For units see the enumeration at the end of Item 2 on the previous page.slide 666

4. Crude Oil: rough

Crude oil is the term for ”unprocessed” oil, the stuff that comes out of the
ground. It is also known as petroleum. Crude oil is a fossil fuel, meaning that
it was made naturally from decaying plants and animals living in ancient seas
millions of years ago – most places you can find crude oil were once sea beds.
Crude oils vary in color, from clear to tar-black, and in viscosity, from water
to almost solid.

Crude oils are such a useful starting point for so many different substances
because they contain hydrocarbons. Hydrocarbons are molecules that contain
hydrogen and carbon and come in various lengths and structures, from straight
chains to branching chains to rings.slide 667
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5. Depot (Oil or Gas Storage):rough

An oil depot (sometimes called a tank farm, installation or oil terminal)
is an industrial facility for the storage of oil and/or petrochemical products
and from which these products are usually transported to end users or further
storage facilities. An oil depot typically has tankage, either above ground or
underground, and gantries for the discharge of products into road tankers or
other vehicles (such as barges) or pipelines.

Oil depots are usually situated close to oil refineries or in locations where
marine tankers containing products can discharge their cargo. Gas is usually
stored in underground depots. Some depots are attached to pipelines from
which they draw their supplies and depots can also be fed by rail, by barge
and by truck (sometimes known as ”bridging”) slide 668

Fig. F.4. Oil Depots

slide 669

Fig. F.5. Underground Gas Depot and Switch

slide 670

slide 671

6. Drain Pump: rough
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Fig. F.6. Oil Depots

See pump[36]. By a drain pump we understand a pump which drains a
reservoir of gas or oil, be it under land or under sea.

Hence oil rigs, pump jacks, gas lifts and submersible pumps are drain
pumps. See Figs. F.7 to F.8.slide 672

Fig. F.7. Pump Jack, Drain Pump and Submersible Pump

slide 673

Fig. F.8. Gas Lift and Oil Rig

slide 674

7. End Customer: rough

By an end customer is meant a sink where oil, gas or products refined from
these may be finally be delivered (i.e., “leaves” the oil industry).slide 675

8. Fork: rough
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By a fork we understand the splitting of one pipe[31] into two (or more)
pipe[31]s. slide 676

9. Field: rough

By an oil[26] and/or a gas[15] field we understand an oil[26] and/or a gas[15]

reservoir[39] with one or more drain pump[6]s. slide 677

10. Fill Pump: rough

See pump[36]. Same as a flow pump[12] only used specifically for pumping
oil or gas into a depot, a tank or a sink.

See Fig. F.9. slide 678

11. Flow: rough

In graph theory, a flow network is a directed graph where each edge has a
capacity and each edge receives a flow. The amount of flow on an edge cannot
exceed the capacity of the edge. Often in Operations Research, a directed
graph is called a network, the vertices are called nodes1 and the edges are
called arcs (here pipe[31]s). A flow must satisfy the restriction that the amount
of flow into a node equals the amount of flow out of it, except when it is a
source (i.e., reservoir[39], depot[5] or tank[42]), which has more outgoing flow, or
sink (i.e., depot[5], tank[42] or end customer[7]), which has more incoming flow.
A network can be used to model traffic in a road system, fluids in pipe[31]s,
currents in an electrical circuit, or anything similar in which something travels
through a network of nodes. slide 679

12. Flow Pump: rough

See pump[36]. By a flow pump we understand a See Fig. F.9. slide 680

Fig. F.9. Rotary Piston Oil Pump and Two Gas Compressors

slide 681

13. Flow Rate, Volumetric: rough

1 In our main example nodes are the non-pipe units such as reservoirs, drain pumps,
flow pumps, valves, switches, depots, refineries, tanks, etc.
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The volumetric flow rate in fluid dynamics and hydrometry, (also known
as volume flow rate or rate of fluid flow) is the volume of fluid which passes
through a given surface per unit time (for example cubic meters per second,
m3

s
, in SI units.slide 682

14. Flux: rough

In the study of transport phenomena (heat transfer, mass transfer and
fluid dynamics), flux is defined as the amount that flows through a unit area
per unit time. Volumetric flow rate should not be confused with volumetric

flux, as defined by Darcy’s law with units of m3

(m2·s) , that is, m
s

. The integration

of a flux over an area gives the volumetric flow rate.slide 683

15. Gas: rough

Natural gas is a gaseous fossil fuel consisting primarily of methane but
including significant quantities of ethane, propane, butane, and pentane as
well as carbon dioxide, nitrogen, helium and hydrogen sulfide.

Fossil natural gas is found in oil fields (associated) either dissolved or
isolated in natural gas fields (non-associated), and in coal beds (as coal bed
methane).slide 684

16. Gasoline:

Gasoline or petrol is a petroleum-derived liquid mixture, primarily used
as fuel in internal combustion engines.

It consists mostly of aliphatic hydrocarbons, enhanced with iso-octane or
the aromatic hydrocarbons toluene and benzene to increase its octane rating.
Small quantities of various additives are common, for purposes such as tuning
performance or reducing emissions. Some mixtures also contain significant
quantities of ethanol as a partial alternative fuel.

Gasoline is the American term where petrol is the British term.slide 685

17. Gas Processor: rough

A gas turntable is (like an oil refinery), a place where natural gas is pro-
cessed (cleansed, purified, etc.). Water vapor is separated from the gas in
drying columns by a glycol drying process. Incoming gas goes through a pu-
rification process to remove solid and liquid impurities. This is performed by
so-called filter separators. Afterwards the gas is subject to quality controls.
Gas pipelines are regularly inspected, maintained, and cleaned. Entry points
known as “pig traps” are installed at the beginning and end of each section
of pipeline. Here, cleaning and “smart” pigs are fed into the pipeline. These
are used to clean and inspect pipelines.slide 686

slide 687

slide 688 18. Gas Tanker: rough

A usually ocean-going vessel with one or more natural gas[24] (or liquified
petroleum) tank[42]s.slide 689

slide 690

slide 691
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Fig. F.10. Gas Cleansing: Glycon Drying Station and Gas Pig

Fig. F.11. Gas Separators

Fig. F.12. Gas Tanker

19. Graph: rough

Graphs are finite connected sets of unit[45]s, in particular such that pipe[31]s
link all node[25]s. slide 692
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Fig. F.13. Gas Tanker

20. Harbour: rough

A location at the interface between land and sea where (usually ocean-
going) vessels can sail sea lanes to and from other harbours. A harbour con-
tains one or more depot[5]s and one or more berth[1]s.slide 693

21. Join: rough

By a join we understand the merge of usually two pipe[31]s into one pipe[31].
See leftmost component of Fig. F.19 on page 187.slide 694

22. Land Switch: rough

A land switch is a switch[41] built on land.slide 695

Fig. F.14. Oil and Gas Switches

slide 696

slide 697

23. Loading Arm: rough

A loading arm is a means of moving, in our case, liquid (oil[26]) or gaseous
material (gas[15]) either from a land switch[22] to a tanker switch[44] or from a
tanker switch[44] to a land switch[22].slide 698

slide 699

24. Natural Gas: rough

See Item F.2 on page 193 gas[15].slide 700
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Fig. F.15. Depot Switches

Fig. F.16. FMS Loading Arms

25. Node: rough

Nodes are the unit[45]s that are pre-, in- or suffixing pipe[31]s to form
pipeline[32]s, yes, indeed, petroleum industry[30] (sub)systems. slide 701

26. Oil: rough

See Item 4 on page 178, crude oil. slide 702

27. Oil Tanker: rough

A usually ocean-going vessel with one or more oil tank[42]s.

Fig. F.17. Oil Tanker
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slide 703

28. Petrol: .

Same as gasoline[16].slide 704

29. Petroleum: .

Same as crude oil[4].slide 705

30. Petroleum Industry:

A petroleum industry consist of subsystems of one or more of each of gas[15]

and oil[26] field[9]s, pipeline[32] systems, refineries[37] and harbour[20], berth[1]s
and tanker[43]s.slide 706

31. Pipe: rough

A pipe is a usually circular tube of some length. Oil and gas pipes are
usually of some considerable diameter, say typically 48” with typical lengths
of from 20m to 50m.slide 707

32. Pipeline: rough

A pipeline is basically a serial (ordered) composition of pipe[31]s. In addition,
inserted in-between pipes, at suitable (distance) intervals, are valve[46]s and
pump[36]s. A more detailed sketch is given below.slide 708

Fig. F.18. Pipelines

slide 709

Pipeline Components See Fig. F.19 on the next page.
Pipeline networks are composed of several pieces of equipment that operate

together to move products from location to location. The main elements of a
pipeline system are:

• Initial Injection Station - Known also as Supply or Inlet station, is the
beginning of the system, where the product is injected into the line. Storage
facilities, pumps or compressors are usually located at these locations.
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Fig. F.19. Pipeline Composition

• Compressor/Pump Stations - Pumps for liquid pipelines and Compressors
for gas pipelines, are located along the line to move the product through
the pipeline. The location of these stations is defined by the topography
of the terrain, the type of product being transported, or operational con-
ditions of the network.slide 710

slide 711 • Partial Delivery Station - Known also as Intermediate Stations, these fa-
cilities allow the pipeline operator to deliver part of the product being
transported.

• Block Valve Station - These are the first line of protection for pipelines.
With these valves the operator can isolate any segment of the line for
maintenance work or isolate a rupture or leak. Block valve stations are
usually located every 20 to 30 miles (48 km), depending on the type of
pipeline. Even though it is not a design rule, it is a very usual practice
in liquid pipelines. The location of these stations depends exclusively on
the nature of the product being transported, the trajectory of the pipeline
and/or the operational conditions of the line. slide 712

• Regulator Station - This is a special type of valve station, where the oper-
ator can release some of the pressure from the line. Regulators are usually
located at the downhill side of a peak.

• Final Delivery Station - Known also as Outlet stations or Terminals, this
is where the product will be distributed to the consumer. It could be a
tank terminal for liquid pipelines or a connection to a distribution network
for gas pipelines.

slide 713

33. Pipeline System: rough

A pipeline system consists of one or more pipe[31]s that infix (i.e., con-
nect) zero, one or more pump[36]s (drain pump[6]s and flow pump[12]s), join[21]s,
fork[8]s and valve[46]s. slide 714

Figure F.20 on the following page indicates the route of the proposed Nabucco
56′′ natural gas pipeline system: http://en.wikipedia.org/wiki/Nabucco Pipeline:
from the gas fields of Adzerbajian, Georgia and Iran — and, eventually, Cen-
tral Asia — to Europe. slide 715

34. Pipeline Transport: rough
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Fig. F.20. The Nabucco 3.300 km Pipeline System (by 2020)

Pipeline transport is the transportation of goods through a pipe. Most
commonly, liquid and gases are sent, but pneumatic tubes that transport solid
capsules using compressed air have also been used. As for gases and liquids,
any chemically stable substance can be sent through a pipeline. Therefore
sewage, slurry, water, or even beer pipelines exist; but arguably the most im-
portant are those transporting oil and natural gas. The idea was first brought
up by Dmitri Mendeleev2 in 1863. He suggested to use a pipe for transporting
Petroleum.slide 716

35. Product Berth: rough

A product berth[1] is used to handle oil and gas related products, usually
in liquid form. Vessels are loaded via loading arm[23]s containing the pipe lines.
Storage (depot[5]s) facilities for the products are usually some distance away
from the berth and connected by several pipes, a land switch[22], to ensure fast
loading.slide 717

36. Pump: rough

A pump is a device used to move fluids, such as gases, liquids or slurries.
A pump displaces a volume by physical or mechanical action. One common
misconception about pumps is the thought that they create pressure. Pumps
alone do not create pressure they only displace fluid causing a flow. Adding
resistance to flow causes pressure.

Cf. drain pump[6] (Page 179), fill pump[10] (Page 181) and flow pump[12]

(Page 181).slide 718

2 Credited with having proposed the Period Table.
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37. Refinery: rough

An oil refinery is an industrial process plant where crude oil[4] is processed
and refined into more useful petroleum[29] products, such as gasoline[16], diesel
fuel, kerosene, and liquefied petroleum.

Refineries are typically large sprawling industrial complexes with extensive
piping running throughout, carrying streams of fluids between large chemical
processing units.

Crude oil distillation is separated into fractions by fractional distillation
(in a refractory[38] tower). The fractions at the top of the fractionating col-
umn (or refractory[38] tower) have lower boiling points than the fractions at
the bottom. The heavy bottom fractions are often cracked into lighter, more
hundreds of different hydrocarbon molecules in crude oil are separated in a
refinery into components that can be used as fuels, lubricants, and as feed
stock in petrochemical processes that manufacture such products as plastics,
detergents, solvents, elastomers and fibers such as nylon and polyesters. slide 719

These different hydrocarbons have different boiling points, which means they
can be separated by distillation. Since the lighter liquid products are in great
demand for use in internal combustion engines, a modern refinery will con-
vert heavy hydrocarbons and lighter gaseous elements into these higher value
products.

Typical refinery products are liquid petroleum gas (LPG), gasoline (also
known as petrol) naphtha, kerosene and related jet aircraft fuels diesel fuel, fuel
oils, lubricating oils, paraffin wax, asphalt and tar, petroleum coke, etc.

See Fig. F.21 to Fig. F.25 on the following page. slide 720

Fig. F.21. Oil Refineries

slide 721

slide 722

slide 723

slide 724

slide 725

38. Refractory: rough

By a refractory (tower) is meant a core part of a refinery[37]. A refinery[37]

may contain several refractories. A refractory usually has one pipe[31] lead-
ing into it (from a land switch[22]) and several pipe[31]s leading out from it
where each such pipe[31], via another land switch[22], leads the refined product
to appropriate (storage) depot[5]s. We refer to the sketch given of refineries,
Item 37. slide 726
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Fig. F.22. Oil Refinery Processes

Fig. F.23. Oil Refinery Processes

Fig. F.24. Oil Refinery Processes

Fig. F.25. Oil Refineries

39. Reservoir: rough

By a reservoir is meant a usually very large volume of oil[26] or gas[15],
either under the surface of land. From a reservoir one can drain oil[26] and/or
gas[15] by means of drain pump[6]s.slide 727
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40. Sea Lane: rough

By a sea lane is understand a course of sea voyage for a gas tanker[18] or
an oil tanker[27], from one harbour[20] to another, that is, from one berth[1] and
loading arm[23] of origin to another berth[1] and loading arm[23] of destination. slide 728

41. Switch: rough

A switch is an abstract concept. Its concrete manifestations are systems
of pipe[31]s, valve[46]s and flow pump[12]s all contained with a close “neigh-
bourhood” of either (α) depot[5]s, refractory[38] towers, and berth[1] loading
arm[23]s or (β) berth[1] loading arm[23]s, and tanker[43] tank[42]s

See land switch, Item 22 on page 184, and tanker switch, Item 44. slide 729

42. Tank: rough

By a tank is meant a compartment on a oil tanker[27] or a gas tanker[18]

capable of holding a large volume of oil[26], respectively gas[15]. slide 730

43. Tanker: rough

See gas tanker[18], Item 18 (Page 193), and oil tanker[27], Item 27 (Page 193).
slide 731

44. Tanker Switch: rough

A tanker switch is a switch[41] built on a tanker[43].
See text right after (β) in Item 41: switch[41]. slide 732

45. Unit: rough

Units are the components from which the petroleum industry is put to-
gether. These units are either reservoir[39]s, drain pump[6]s, pipe[31]s, join[21]s,
fork[8]s, flow pump[12]s, valve[46]s, depot[5]s, land and tanker switch[41]es, har-
bour[20] berth[1] loading arm[23]s, tanker[43] tank[42]s, refinery[37] refractories[38],
end customer[7]s, etc. slide 733

46. Valve: rough

By a valve is understood a (node) component which is usually inserted
between pipe[31]s with the purpose of controlling the flow of oil[26] (or gas[15])
from incoming pipe[31]s to outgoing pipe[31]s.

Thus a valve can be a 1→1 valve, one input, one output, or, in general, a
m→n valve, m ≥ 1, n ≥ 1.

Joins[21] and fork[8]s are special cases of valves: these “spacial case” valves
are always open. slide 734

slide 735
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Fig. F.26. Pipeline Ball Valves for Oil and Gas Transport

Fig. F.27. Multiway and Expanding Gate + Russia-Ukraine Gas Valves

F.2 “More-or-Less” Final Definitions slide 736

slide 737

1. Berth: final

See Item 35, product berth (Page 194). slide 738

2. Connector: final
slide 739

3. Connection Point: final
slide 740

4. Crude Oil: final
slide 741

5. Depot (Oil or Gas Storage):final
slide 742

6. Drain Pump: final
slide 743

7. End Customer: final
slide 744

8. Fork: final
slide 745

9. Field: final
slide 746
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10. Fill Pump: final
slide 747

11. Flow: final
slide 748

12. Flow Pump: final
slide 749

13. Flow Rate, Volumetric: final
slide 750

14. Flux: final
slide 751

15. Gas: final
slide 752

16. Gasoline:
slide 753

17. Gas Processor: final
slide 754

slide 755

18. Gas Tanker: final
slide 756

19. Graph: final
slide 757

20. Harbour: final
slide 758

21. Join: final
slide 759

22. Land Switch: final
slide 760

23. Loading Arm: final
slide 761

24. Natural Gas: final

See Item 15 gas (Page 193). slide 762

25. Node: final
slide 763

26. Oil: final

See Item 4 crude oil (Page 192). slide 764

27. Oil Tanker: final
slide 765

28. Petrol: See Item 16, Page 193.
slide 766
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29. Petroleum: See Item 4, Page 192.
slide 767

30. Petroleum Industry:
slide 768

31. Pipe: final
slide 769

32. Pipeline: final
slide 770

33. Pipeline System: final
slide 771

34. Pipeline Transport: final
slide 772

35. Product Berth: final
slide 773

36. Pump: final
slide 774

37. Refinery: final
slide 775

38. Refractory: final
slide 776

39. Reservoir: final
slide 777

40. Sea Lane: final
slide 778

41. Switch: final
slide 779

42. Tank: final
slide 780

43. Tanker: final
slide 781

44. Tanker Switch: final
slide 782

45. Unit: final
slide 783

46. Valve: final
slide 784
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G

Intrinsics slide 786

Chapter 10 (Pages 93–94) complements the present appendix.

G.1 Domain Entities slide 787

G.1.1 Composite Entities

Ω: The Overall System

Narrative

43. The overall petroleum and natural gas industry, Ω, consists of
(a) One or more crude oil and/or natural gas reservoirs,
(b) one or more crude oil, oil product (gasoline etc.) and/or natural gas

pipeline systems,
(c) one or more refineries or gas processors,
(d) two or more crude oil, oil product and/or natural gas shipment har-

bours,
(e) one or more oil product truck distribution nets,
(f) one or more crude oil, oil product and/or natural gas tankers, and
(g) one or more oil product and/or natural gas trucks.

44. We shall not consider truck distribution nets (cf. Item 43(e)) and trucks
(cf. Item 43(g)).

slide 788

Formalisation

type
43. Ω,
43(a). Reservoir
43(b). Pipeline
43(c). Refinery, GasProcessor
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43(d). Harbour
43(f). Tanker

value
43(a). obs Reservoirs: Ω → Reservoir-set
43(b). obs Pipelines: Ω → Pipeline-set
43(c). obs Refineries: Ω → Refinery-set
43(d). obs Harbours: Ω → Harbour -set
43(f). obs Tankers: Ω → Tanker-set

axiom
∀ ω:Ω •

43(a). card obs Reservoirs(ω) ≥ 1
43(b). card obs Pipelines(ω) ≥ 1
43(c). card obs Refineries(ω) ≥ 1
43(d). card obs Harbours(ω) ≥ 2
43(f). card obs Tankers(ω) ≥ 1

Reservoirs slide 789

Narrative

45. We shall consider reservoirs to be atomic units, see Item 54 on page 201.
46. Pipelines consists of atomic units such as

(a) one or more drain pumps,
(b) one or more pipes,
(c) zero, one or more flow pumps,
(d) zero, one or more joins,
(e) zero, one or more forks and
(f) zero, one or more valves.
All these will be further treated below.

slide 790

Formalisation

type
DraP, Pipe, FloP, Join, Fork, Valv,
DrP(b:DraP), mkP(b:Pipe), FlP(b:FloP), Jn(b:Join), Fk(b:Fork), Val(b:Valv)

value
46(a). obs DrainPumps: Pipeline → DrP(b:DraP)-set
46(b). obs Pipes: Pipeline → mkP(b:Pipe)-set
46(c). obs FlowPumps: Pipeline → FlP(b:FloP)-set
46(d). obs Joins: Pipeline → Jn(b:Join)-set
46(e). obs Forks: Pipeline → Fk(b:Fork)-set
46(f). obs Valves: Pipeline → Val(b:Valv)-set

axiom
∀ pl:Pipeline • card obs DrainPumps(pl)≥1 ∧ card obs pipes(pl)≥1
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Refineries slide 791

Narrative

47. Refineries consists of
(a) one or more land-based refinery input depots,
(b) one or more refinery input depot to refractory tower switches,
(c) one or more refractory towers,
(d) one or more refractory tower-to-refinery output depot land-based

switches, and
(e) one or more refinery output depots.

48. Refinery switches are said to be land-based.
slide 792

Formalisation

type
Depot, Switch, OilRef
Refinery = Depot-set×Switch-set×OilRef-set×Switch-set×Depot-set

value
47(a),47(e). is input Depot, is output Depot: Depot → Bool
48. is Land Switch, is Tanker Switch: Switch → Bool

axiom
48. ∀ sw:Switch • is Tanker Switch(sw) ≡ ∼ is Land Switch(sw) ∧

∀ d:Depot • is input Depot(d)≡∼is output Depot(d) ∧
∀ (ids,drss,rs,rdss,ods):Refinery •

47(a)-47(b). card ids ≥ 1 ∧ card drss ≥ 1 ∧
47(c)-47(e). card rs ≥ 1 ∧ card rdss ≥ 1 ∧ card ods ≥ 1 ∧
47(a). ∀ d:D•d ∈ ids ≡ is input Depot(d) ∧
47(e). ∀ d:D•d ∈ ods ≡ is output Depot(d)
48. ∀ s:Switch • s ∈ ss ≡ is Tanker Switch(sw)

Gas Processors slide 793

Narrative

49. Gas Processors are very much similarly cmposed as are oil refineries —
but will not be further treated in this example.

Harbours slide 794

Narrative

50. Harbours consists of
(a) one or more harbour input depots,
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(b) one or more land-based harbour input depot-to-loading arm switches,
(c) one or more loading arms,
(d) one or more land-based loading arm-to-harbour output depot switches,

and
(e) one or more harbour output depots.

51. Harbour switches are said to be land-based.
slide 795

Formalisation

type
Depot, Switch, LdArm
Harbour = Depot-set×Switch-set×LdArm-set×Switch-set×Depot-set

value
51. is Land Switch, is Tanker Switch: Switch → Book
axiom
51. ∀ sw:Switch • is Land Switch(sw) ≡ ∼ is Tanker Switch(sw) ∧

∀ (ids,oss,las,rss,ids):Harbour •

50(a)-50(b). card ids ≥ 1 ∧ card oss ≥ 1 ∧
50(c)-50(e). card las ≥ 1 ∧ card rss ≥ 1 ∧ card ids ≥ 1 ∧
50(a). ∀ d:D•d ∈ ids ≡ is input Depot(d) ∧
50(e). ∀ d:D•d ∈ ods ≡ is output Depot(d) ∧

51. ∀ s:Switch • s ∈ oss ∪ rss ≡ is Land Switch(sw)

Tankers slide 796

Narrative

52. Tankers consists of
(a) one or more tanks and
(b) one or more tanker-based switches.

53. Switches of tankers are said to be tanker-based.
slide 797

Formalisation

type
52(a). Tank, Switch
52(b). Tanker = Tank-set × Switch-set
value
53. is Tanker Switch, is Land Switch: Switch → Bool
axiom
53. ∀ sw:Switch • is Tanker Switch(sw) ≡ ∼ is Land Switch(sw) ∧

∀ (ts,ss):Tanker •

52(a). card ts ≥ 1 ∧
52(b). card ss ≥ 1 ∧
53. ∀ s:Switch • s ∈ ss ≡ is Tanker Switch(sw)
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G.1.2 Atomic Entities slide 798

Narrative

54. The atomic units of a petroleum industry include nodes: reservoirs, drain
pumps, flow pumps, joins, forks, valves, switches, depots, refractories, gas
processors, berth loading arms, tanker tanks and sinks (i.e., end customers).

55. The atomic units of a petroleum industry further include pipes.

Formalisation

type
54. Resr, DraP, FloP, Join, Fork, Valv, Switch,

Depot, OilRef, GasPro, LdArm, Tank, Sink
55. Pipe

slide 799

Narrative

56. Units are either nodes or pipes.

Formalisation

type
56. U = N | P

A Technicality slide 800

Narrative

57. To ensure that the units of the different kinds (Resr, DraP, FloP, Join,
Fork, Valv, Switch, Depot, Refr, Sepa, Puri, LdArm, Tank, Sink and Pipe)
are uniquely distinguishable we model them as abstract record structures.

Formalisation

type
57. P == mkP(b:Pipe)
57. N == Res(b:Resr) | DrP(b:DraP) | FlP(b:FloP) | Jn(b:Join)

| Fk(b:Fork) | Val(b:Valv) | Swi(b:Switch) | OiR(b:OilRef)
| GaP(b:GasPro) | LdA(b:LdArm) | Snk(b:Sink)

The A == mkB(s:B) — mkC(s′:C) — mkD(s′′:D) type definition introduces
three record structures mkB(b), mkC(c), and mkD(d) where B, C and D are
type names and where b:B, c:C and d:D, and where s, s′ and s′′ are selectors.
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G.1.3 The Unit Connector Concept slide 801

Unit Connectors

Narrative

58. Each Unit has Connectors1.
59. From each units we can observe the possibly empty or singleton set of

connectors leading into that unit and the the possibly empty or singleton
set of connectors leading out from that unit.

60. All input connectors (obs iCs(u)) are distinct, all output connectors (obs oCs(u))
are distinct, and the two sets of input and output connectors have no con-
nectors in common.

slide 802

Formalisation

type
58. C

value
60. obs pCs: U → (C-set×C-set)
60. xtr iCs: U → C-set, xtr oCs: U → C-set

axiom
60. ∀ u:U • (xtr iCs(u),xtr oCs(u)) ≡ obs pCs(u) ∧

let (cs,cs′)=obs Cs(u) in cs ∩ cs′={} end

Two Auxiliary Predicates slide 803

Narrative

Give a unit, u, in a context of units, us, we wish to determine whether that
unit, u, is correctly connected to (thus) adjacent units, u′, u′′, in us. Correct
connections is determined by a set of predecessor predicates, pps and successor
predicates, sps. wf io Cs applies to units with both predecessor and successor
units. wf i Cs applies to units with only predecessor units.slide 804

Formalisation

value
wf io Cs: U×U-set → ((U→Bool)-set×(U→Bool)-set) → Bool
wf io Cs(u,us)(pps,sps) ≡

let (ics,ocs) = obs pCs(u) in
∀ c:C • c ∈ ics ⇒

∃ u′:U • u′ ∈ us ∧ u6=u′ ∧

1 — and, pragmatically, connectors are what “binds” units together
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∃ pp:(U→Bool)•pp ∈ pps ∧ pp(u′) ⇒ c ∈ xtr oCs(u′) ∧
∀ c:C • c ∈ ocs ⇒

∃ u′′:U • u′′ ∈ us ∧ u6=u′′ ∧
∃ sp:(U→Bool)•sp ∈ sps ∧ sp(u′′) ⇒ c ∈ xtr iCs(u′′)

end
wf i Cs: U×U-set → (U→Bool) → Bool

let (ics,ocs) = obs pCs(u) in
wf i Cs(u,us)(pps)(ics) ≡

∀ c:C • c ∈ ics ⇒
∃ u′:U • u′ ∈ us ∧ u6=u′ ∧

∃ pp:(U→Bool)•pp ∈ pps ∧ pp(u′) ⇒ c ∈ xtr oCs(u′)
end

Wellformedness of Connections slide 805

61. Reservoirs have a pair of disjoint sets of zero, one or more connectors.
Constraints: Reservoir output connectors are (to be) bound to
drain pump inputs, one-by-one) and input connectors (for refilling
the reservoir), are (to be) bound flow pump outputs, one-by-one.

(61) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Reserv(u) ⇒
wf io Cs(u,obs Us(ω)({is FloPump},{is DraPump}))

slide 806

62. Drain Pumps have a pair of distinct connectors: one input and one output
connector.

Constraints: Drain Pump input connector (to be) bound to a
Reservoir output connector and Drain Pump output connector
(to be) bound either to a Flow Pump input connector or to a
Pipe input connector or to a Switch input connector.

(62) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is DraPump(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics = 1 = card ocs ∧
wf io Cs(u,(ics,ocs))({is Reserv},{is FloPump,is Pipe}) end

slide 807

63. Pipes have a pair of distinct connectors.
Pragmatics & Constraints: The pair of distinct connectors
thus designates a direction (that is, we assume pipes, like all other
units, except [perhaps] swithches, to be directional). Pipe con-
nectors (can) bind two Pipe units together or a Pipe unit (out-
put/input) with a Depot (input/output), or a Pipe unit input
Drain Pump output, or a Pipe unit (output/input) with a Valve
or Flow Pump (input/output).
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(63) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Pipe(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics = 1 = card ocs ∧
wf io Cs(u,obs Us(ω))({is DraPump,is Pipe},{is Pipe,is FloPump}) end

slide 808

64. Flow Pumps have a pair of distinct connectors: one input and one output
connector.

Constraints: Flow Pump input connectors are (to be) bound to
Pipe or Valve or Join or Fork output connectors and Flow Pump
output connectors are (to be) bound to Pipe or Valve or Join or
Fork or Sink input connectors.

(64) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is FloPump(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics = 1 = card ocs ∧
wf io Cs(u,(ics,ocs))({is Pipe,is Valve,is Join,is Fork},

{is Pipe,is Valve,is Join,is Fork,is Sink}) end

slide 809

65. Joins have a pair of disjoint sets of one or more connectors, respectively
the input and the output connectors.

Constraints: Join input connectors are (to be) bound to Pipe
output connectors, and the Join output connector is (to be) bound
to a Pipe input connector.

(65) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Join(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 2 = card ocs = 1 ∧
wf io Cs(u,(ics,ocs))({is Pipe},{is Pipe}) end

slide 810

66. Forks have a pair of disjoint sets of one input connector two or more
output connectors.

Constraints: The fork input connector is (to be) bound to a
Pipe output connector, and the Fork output connectors are (to
be) bound to Pipe input connectors.

(66) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Fork(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics = 1 = card ocs ≥ 2 ∧
wf io Cs(u,(ics,ocs))({is Pipe},{is Pipe}) end

slide 811

67. Valves have a pair of disjoint sets of one or more connectors, respectively
the input and the output connectors.

Constraints: Valve input connectors are (to be) bound to Pipe
or Flow Pump output connectors, and Valve output connectors
are (to be) bound to Pipe or Flow Pump input connectors.

(67) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Pipe(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧
wf io Cs(u,(ics,ocs))({is Pipe,is FloPump},{is Pipe,is FloPump}) end
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slide 812

68. Switches have a pair of non-empty disjoint sets of input, respectively
output connectors.

Constraints: There are two kinds of Switches: on land and on
tankers.
(a) Land switches:

i. Either input connectors are (to be) bound to Depot output
connectors and output connectors are (to be) bound to
Refractory input connectors,

ii. or input connectors are (to be) bound to Refractory output
connectors and output connectors are (to be) bound to
Depot input connectors,

iii. or input connectors are (to be) bound to Depot output
connectors and output connectors are (to be) bound to
Berth Loading Arm input connectors; slide 813

or
(b) Tanker switches

i. input connectors are (to be) bound to Berth Loading
Arm output connectors and output connectors are (to be)
bound to Tank input connectors.

(68) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Switch(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧

(68(a)) ((is Land Switch(u) ⇒
(68(a)i) (wf io Cs(u,obs Us(ω))({is Depot},{is Refrac}) ∨
(68(a)ii) wf io Cs(u,obs Us(ω))({is Refrac},{is Depot}) ∨
(68(a)iii) wf io Cs(u,obs Us(ω))({is Depot},{is LdArm}))) ∨
(68(b)) ∨ (is Tanker Switch(u) ⇒
(68(b)i) wf io Cs(u,obs Us(ω))({is LdArm},{is Tank}))) end

slide 814

69. Depots have a pair of disjoint non-empty sets of connectors: a set of input
connectors and a set of output connectors.

Constraints:
• (i) Either Depot input connectors are (to be) bound to outputs

of Fill Pumps and depot output connectors are (to be) bound
to inputs of Switches.

• (ii) or Depot input connectors are (to be) bound to outputs
of Switches and depot output connectors are (to be) bound to
inputs of Fill Pumps.

(69) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Depot(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧

(i) wf io Cs(u,(ics,ocs))({is FilPump},{is Switch}) ∨
(ii) wf io Cs(u,(ics,ocs))({is Switch},{is FilPump}) end

slide 815
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70. Refractories and Gas Processors have pairs of disjoint non-empty sets of
input, respectively output connectors.

Constraints: Refractory and Gas Processor input connectors are
(to be) bound to Switch output connectors and Refractory and
Gas Processor output connectors are (to be) bound to Switch
input connectors.

(70) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒
is Refract(u)∨is Separator(u)∨is Purifier(u) ⇒

let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧
wf io Cs(u,(ics,ocs))({is Switch},{is Switch}) end

slide 816

71. Berth Loading Arms have a pair of distinct connectors, one input and one
output connector.

Constraints:
• (i) When loading, i.e. filling, tanker Tanks, Berth Loading Arm

input connectors are (to be) bound to a land Switch output
connector, and Berth Loading Arm output connectors to a
tanker Switch input connector.

• (ii) Or vice versa: when unloading the tanks.

(71) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is LdArm(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧

(i) (wf io Cs(u,(ics,ocs))({is LandSwitch},{is TankSwitch})(ics,ocs) ∨
(ii) wf io Cs(u,(ics,ocs))({is TankSwitch},{is LandSwitch})(ics,ocs)) end

slide 817

72. Tanker Tanks have a pair of distinct connectors, one input (fill) and one
output (drain) connector.

Constraints: Both tanker Tank connectors are (to be) bound
to the tanker switch, respectively a tanker Switch output and a
tanker Switch input connector.

(72) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Tank(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics ≥ 1 = card ocs ≥ 1 ∧
wf io Cs(u,(ics,ocs))({is Tanker Switch},{is Tanker Switch}) end

slide 818

73. Sinks, i.e., End Customers, have just a single, the input connector.
Constraints: This Sink connector is (to be) bound to a Flow
Pump output connector.

(73) ∀ ω:Ω • ∀ u:U • u ∈ obs Us(ω) ⇒ is Sink(u) ⇒
let (ics,ocs)=obs pCs(u) in card ics = 1 ∧ card ocs = 0 ∧
wf i Cs(u,(ics,ocs))({is Flow Pump}) end



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

G.1 Domain Entities 207

G.1.4 Attributes slide 819

So far the only properties we have ascribed to units are their identifications
and their connectors. They are not really of the kind which we think of as
attributes. Unique identifications and unique connectors are abstractions of
unique spatial unit locations and unique, mereological relations between “ad-
jacent” units, and can be thought off as pragmatic means of “formalising”
such spatial locations and mereological relations. Attributes are not necessar-
ily abstractions. In the following we shall give examples of attributes.

Oil and Gas slide 820

Narrative

74. Units are either made for handling fluids: either liquids (i.e., oil) or
for handling gaseous substance (i.e., natural gas). Within mode liquid

there could be several “submodes”: raw oil, liquid petroleum gas,
naphtalin, kerosene, diesel fuel, lubricating oils, paraffin vaxes,
asphalt, petroleum coke, etc. Similar for mode gaseous (but we refrain
from elaborating !).

Formalisation

type
74. Mode == liquid | gaseous
74. SubMode == raw oil|liquid petroleum gas|naphtalin|kerosene|diesel fuel

|lubricating oil|paraffin vax|asphalt|petroleum coke| ...
value

74. obs Mode: U → Mode
74. obs SubMode: U → SubMode

Oil and Gas Flow slide 821

Narrative

75. With every unit we can associate the the volumetric flow of oil or gas —
as measured into the unit at some input connector or out from the unit
at some output connector.

76. We can thus observe from every unit the maximum laminar volumetric
flow, a static attribute,

77. as well as the current, dynamic attribute of actual volumetric flow.
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Formalisation

type
VolFlo

value

75. obs max VolFlo: U × C
∼

→ VolFlo
pre: obs max VolFlo(u,c): c ∈ obs iCs(u)∪ obs oCs(u)

75. obs cur VolFlo: U × C
∼

→ VolFlo
pre: obs cur VolFlo(u,c): c ∈ obs iCs(u)∪ obs oCs(u)

Oil and Gas Volumes slide 822

Narrative

78. With every unit we can associate two notion of oil or gas volumes.
79. For reservoirs there are the initial, definitely non-zero volume of oil (or

gas) (a static attribute), and the current, including empty (or zero) volume
of oil (or gas) (a dynamic attribute).

80. For depots there are the maximum containable volume of oil or gas (a
static attribute), and the current, including empty (or zero) or maximum
(i.e., full) volume of oil (or gas).

81. All other units (pipes, valves, pumps, refineries, gas separators, etc., have
notions of oil or gas volumes like those of depots, but they are not con-
sidered to be storage- or reservoir-like units.

82. Thus the three classes of units have comparable attribute notions of vol-
ume of oil (or gas), whether static or dynamic.

slide 823

Formalisation

type
78. Vol, Vol0

value
79–82. obs maxVol: U → Vol, obs curVol: U → Vol

+,−: Vol × Vol
∼

→ Vol

<,≤,=,6=,≥,>: Vol × Vol
∼

→ Bool

Vol0 designate “zero” volume of oil (or gas).

• • •
slide 824

In the following we shall examine the attributes of each of the abstract units
that make up the physical plant of the pretroleum and natural gas industry.
We remind the reader that these are those units: reservoirs, drain pumps, pipes,
flow pumps, joins, forks, valves, switches, depots, refractories, gas processors,
berth loading arms, tanker tanks and sinks (i.e., end customers).



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

G.1 Domain Entities 209

Reservoir slide 825

Narrative

83.
84.
85.
86.
87.

slide 826

Formalisation

type
83.
84.
85.
86.
87.

Drain Pumps slide 827

Narrative

88.
89.
90.
91.
92.

slide 828

Formalisation

type
88.
89.
90.
91.
92.

Pipes slide 829

Narrative

A pipe ...

93.
94.
95.

slide 830
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Formalisation

type
93.
94.
95.

Flow Pumps slide 831

Narrative

A flow pump is a device used to move fluids, such as gases, liquids or slurries. A
flow pump displaces a volume by physical or mechanical action. One common
misconception about flow pumps is the thought that they create pressure.
Flow pumps alone do not create pressure they only displace fluid causing a
flow. Adding resistance to flow causes pressure.

96. With a pump, whether a drain pump, a flow pump, or other (not treated
here), we can associate the static attribute of that pump’s maximum sus-
tainable volumetric flow rate.

97. And, with a pump, we can associate the dynamic attribute of the pump’s
forced current volumetric flow rate.

98. The observed current volumetric flow rate out of a pump must thus equal
the pump’s forced current volumetric flow rate.

The volumetric flow rate in fluid dynamics and hydrometry (also known
as volume flow rate or rate of fluid flow) is the volume of fluid which passes
through a given surface per unit time (for example cubic meters per second).

Formalisation

type
96. obs MaxPumVolFloRat: U → VolFlo
96. obs ForcedVolFloRat: U → VolFlo
<,≤,=,6=,≥,>: VolFlo × VolFlo → Bool

axiom
97. ∀ u:FlP(p)•obs ForcedVolFloRat(u)≤obs MaxPumVolFloRat(u)
98. let c:C•c ∈ obs oCs(u) in obs VolFlo(u,c)=obs ForcedVolFloRat(u) end

Joins slide 832

Narrative

99.
100.
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101.
102.
103.

slide 833

Formalisation

type
99.
100.
101.
102.
103.

Forks slide 834

Narrative

104.
105.
106.
107.
108.

slide 835

Formalisation

type
104.
105.
106.
107.
108.

Valves slide 836

Narrative

A valve is a device that regulates the flow of a fluid (gases, fluidized solids,
slurries, or liquids) by opening, closing, or partially obstructing various pas-
sageways. Valves are technically pipe fittings, but are usually discussed sepa-
rately.

109. We think of a valve as always having open input connections but where
each output connection can be regulated to be closed, partially open, or
fully open.
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Formalisation

type
109. Valve Setting = C →m Frac

Frac = {| f:Real • 0≤f≤1 |}
value

109. obs Valve Setting: Valve → Valve Setting
axiom

109. ∀ u:Valve • dom obs Valve Setting(u) = xtr oCs(u)

slide 837

Flow Properties

Narrative:

110. Let VolFlo0 designate zero flow.
Let leakage be a unit determined quantity, VolFloLeaku

.
111. If a valve output connector is closed then the observed flow at that con-

nector must be zero.
112. If all valve output connectors are closed then the observed sum flow into

that unit must be between VolFlo0 and VolFloLeaku
.

113. In general, for valves, as for other units, the flow into the unit equals the
flow out of the unit minus the leakage loss in the unit, for example due to
leaks.

slide 838

Formalisation:

value
110. VolFlo0, VolFloLeaku

axiom
111. ∀ u:Valv(v)•∃ c:C•c ∈ obs oCs(u)⇒

(obs Valve Setting(u))(c)=0 ⇒ obs VolFlo(u,c)=VolFlo0,
111. ∀ u:Valv(v)•∀ c:C•c ∈ obs oCs(u)⇒(obs Valve Setting(u))(c)=0⇒

VolFlo0 ≤ sum flo(u,obs oCs(u) ≤ VolFloLeaku
,

113. ∀ u:Valv(v)•

sum flo(u,obs iCs(u)) = sum flo(u,obs oCs(u)) + VolFloLeaku

value
+: Vol Flo × Vol Flo → Vol Flo
sum flo: U × C-set → VolFlo
sum flo(u,cs) ≡

case cs of
{} → VolFlo0,
(c)∪ cs′ → obs VolFlo(u,c) + sum flo(u,cs\{c})

end
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Switches slide 839

An Abstraction

We first refer to Figs. F.14 on page 184 and F.15 on page 185. Instead of
describing the class of complicated and composite structures of pipes, forks,
joins and valves (shown in those figures) we abstract them into atomic units
and call them switches. From earlier we have constrained switches to “bridge”
depots with refractory towers (and vice versa, depots with berth loading arms
(and vice versa), and berth loading arms with tanker tanks(and vice versa), yes
even to bridge pipelines with depots and depots with – say – truck distribution
nets. (The latter has not [yet] been mentioned.) We can thus assume the slide 840

connections on both the input and the output side of a switch to be (like)
valves.

...
...

...

a

b

c

d

x

y

z

u

v

w

e

f

u

v

...

y

{ c,d }

{ d }

{ a,c,f }

output
connectors

input
connectors

Fig. G.1. A snapshot state of an “abstract, programmable” switch

slide 841

Narrative

114. Recall that switch input connectors connect to depot (land switch) or
load arm (tanker switch) or tank (tanker switch) output connectors, cf.
Fig. G.1,

115. and that switch output connectors connect to load arm (land switch) or
depot (land switch) or tank (tanker switch) input connectors

116. A dynamic attribute of an abstracted switch is that switch output con-
nectors to sets of switch input connectors — such that
(a) if an actual switch output connector is not in the definition set of

the map, then the actual switch output connector represents a closed
valve;
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(b) if an actual switch input connector is in a range set of the map, then
the actual switch input connector represents an opened valve.

117. It is easy to prove that with this model of a switch any set of input
connectors can be connected to any set of output connectors.

slide 842

Formalisation

type
116. SW = C →m C-set

value
116. obs SW: Switch → SW

axiom
116. ∀ u:Swi(sw) •

dom obs SW(u)⊆obs oCs(u) ∧ ∪ rng obs SW(u)⊆obs iCs(u)
116(a).
116(b).
117.

Depots slide 843

Narrative

118.
119.
120.
121.
122.

slide 844

Formalisation

type
118.
119.
120.
121.
122.

Refractories slide 845

Narrative

123.
124.
125.
126.
127.

slide 846
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Formalisation

type
123.
124.
125.
126.
127.

Gas Processing Units slide 847

Narrative

128.
129.
130.
131.
132.

slide 848

Formalisation

type
128.
129.
130.
131.
132.

Load Arms slide 849

An Abstraction

We first refer to Fig. F.16 on page 185. slide 850

Narrative

133.
134.
135.
136.
137.

slide 851
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Formalisation

type
133.
134.
135.
136.
137.

Tanks slide 852

Narrative

138.
139.
140.
141.
142.

slide 853

Formalisation

type
138.
139.
140.
141.
142.

Sinks slide 854

Narrative

143.
144.
145.
146.
147.

slide 855

Formalisation

type
143.
144.
145.
146.
147.
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G.1.5 Paths and Routes slide 856

The structure of units form a graph. Pipes are the edges of the graph and
nodes are the vertices of the graph.

Narrative

148. A path is a concept. A path of the petroleum industry is a triple,
(ci, uj, ck), an input connector (or nil), a unit identifier, and an output
connector (or nil),
(a) such that the unit, u, identified by the unit identifier, uj , is a unit of

the oil/natural gas system, ω, and
(b) such that the connector pairs, (ci, ck), are pairs of distinct input/output

connectors of the unit, u, identified by the unit identifier, uj,
(c) or either c or c′ is nil to designate paths of reservoir, depot, loading

arm or sink units.
149. A route is a concept. A route of the oil/natural gas system is a sequence

of one or more paths such that adjacent paths share non–nil ‘connector’.

Formalisation

type
148. Path = mkUP(ci:(C|{nil}),ui:UI,co:(C|{nil}))
149. Route = Path∗ slide 857

value
148(c). is Initial: U → Bool, is Final: U → Bool
148(c). is Initial(u) ≡ is Res(u) ∨ is Dep(u) ∨ is LdArm(u)
148(c). is Final(u) ≡ is Dep(u) ∨ is LdArm(u) ∨ Sink(u)

axiom
∀ ω:Ω •

∀ mkUP(c,uj,c′):PP •

148(a) ∃ u:U • u ∈ xtr Us(ω)∧uj=obs UI(u) ⇒
148(b)-148(c). is Initial(u)→c={nil}, →c ∈ obs iCs(u) ∧
148(b)-148(c). is Final(u)→c′={nil}, →c′ ∈ obs oCs(u)
149. ∀ r:Route • ∀ i:Nat•{i,i+1}⊆inds r

⇒ let ( , ,c)=r(i),(c′, , )=r(i+1) in c=c′6=nil end
slide 858

Narrative

150. An oil/natural gas system, ω, determines a set of routes as follows:
(a) The empty list, 〈〉, is a route.
(b) A singleton list, 〈p〉, of a path, p, of ω, is a route (so all such singleton

lists of ω form routes).
(c) If r and r′ are routes of ω then r̂r′, their concatenation, is a route

of ω.
(d) No other route is a route of ω unless it follows from a finite number

of applications of prescriptions 150(a), 150(b) and 150(c).
slide 859
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Formalisation

We define a function which calculates all static routes of an oil/natural gas
system, ω, in terms of another function which calculates all static paths of an
oil/natural gas system, ω:

value
calc Sta Paths: Ω → Path-set
calc Sta Paths(ω) ≡

{〈〉}∪{mkUP(con,uj,con′)|u:U•u ∈ xtr Us(ω)⇒
con ∈ obs iCs(u)∪{nil} ∧ con′ ∈ obs oCs(u)∪{nil}∧uj=obs UI(u)}

150. calc Sta Routes: Ω → Route-set
150(a). calc Sta Routes(ω) ≡
150(b). let rs =

{〈path〉|path:Path • path ∈ calc Sta Paths(ω)} ∪
{r̂r′|r,r′:Route•{r,r′}⊆rs∧r 6=〈〉∧r′ 6=〈〉∧lst C(r)=frst C(r′)6=nil}

150(c). in rs end

frst C, lst C: Route
∼

→ C|{|nil|}
frst C(〈mkUP(con, , )〉̂r′) ≡ con, lst C(r′̂〈mUP( , ,con)〉) ≡ con

slide 860

Observations

• The “statics” of connections
⋆ “start” at reservoirs, depots or loading arms and
⋆ end at depots, loading arms, respextively sinks.

• Routes cannot “start earlier” than reservoir, depot or loading arm output
connectors.

• Routes cannot go further than depot, loading arm or sink input connectors.
• The “dynamics” of loading arms really means that route calculation de-

pends on the state of the system (i.e., ω).slide 861

• Static routes cover
⋆ pipelines from reservoirs to the input depots

⋄ of refineries,
⋄ gas processors or
⋄ harbours;slide 862

⋆ routes through
⋄ refineries

◦ from refinery input depots,
◦ via depot-to-refractory tower switches,
◦ refracfory towers and
◦ refracfory tower-to-output depot switches,
◦ to refinery output depots;

⋄ gas processors — similarly; or
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⋄ harbours
◦ from harbour input depots
◦ via depot-to-loading arm switches
◦ to loading arms;

and slide 863

⋆ routes from
⋄ refinery output depots

◦ to harbour input depots,
◦ or via pipelines or truck distribution nets2 to sinks.

⋄ gas processor output depots
◦ to harbour input depots
◦ or via pipelines or truck distribution nets3 to sinks.

and
⋄ harbour output depots

◦ to refinery or gas processor input depots,
◦ or via pipelines or truck distribution nets4 to sinks.

• Dynamic routes extend static routes through the varying
⋆ loading-arm to tank or
⋆ tank to loading arm
connections.

Acyclic Networks slide 864

Narrative

151. The routes of an oil/natural gas system are not cyclic,
152. that is, no node or pipe identifier must occur more than at most once.

Formalisation

value
151. acyclic: Route → Bool
152. acyclic(r) ≡

∀ i,j:Nat • {i,j}⊆ index r ∧ i6=j ⇒
let (mkUP( ,ui, ),mkUP( ,uj, )) = (r(i),r(j)) in ui6=uj end

2 We shall; not cover truck distribution nets in this example.
3 See Footnote 2.
4 See Footnote 2.
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Uniform Routes slide 865

Narrative

153. A uniform route is a route all of whose units transport or contain the
same kind of oil or gas product.

154. Routes between
(a) reservoirs and input depots,
(b) output depots and ...
(c)
(d)

slide 866

Formalisation

153.
154.
154(a).
154(b).
154(c).
154(d).

G.1.6 Kirchhoff’s Law slide 867

General

The petroleum and natural gas industry is about (i) production of crude
oil and natural gas; (ii) transportation, through pipelines, ships and truck
distribution of oil and natural gas; (iii) the processing, in refineries, of crude
oil, and gas separators, purifiers, etc., of natural gas; and (iv) the final disposal
of these end products to consumers (here modelled as sinks).slide 868

In all of this petroleum and natural gas flows through the system: from
reservoirs via pipelines and tankers, and via refineries and gas processing units
to end consumers. Major breaks in these flows are at refineries, gas processing
units, depots, and at tankers.slide 869

But otherwise there is a “more-or-less” uninterrupted, i.e., “constant” flow.
What flows into the system at reservoirs eventually, in uninterrupted move-

ments, flow into depots from “myriads” of: drain pumps, pipes, valves, joins
and forks, and flow and fill pumps into depots.slide 870

What flows out of refinery (respectively gas processing plant) input de-
pots, eventually, in uninterrupted movements, flow into refinery (respectively
gas processing plant) output depots: via switches feeding into refractory tow-
ers (respectively gas separators, purifiers, etc.), and, from there, via switches
feeding into output depots.slide 871
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What flows out of harbour depots in uninterrupted movements, flow into
tanker tanks; and what flows out of tanker tanks in uninterrupted movements,
flow into harbour depots.

Etcetera.slide 872

For each of these “uninterrupted movement” sub-systems a variant of
Kirchhoff’s Law applies: “What flows in flows out: some is lost through leak-
age, but hopefully most is preserved throughout.” We shall now make this
adherence to Kirchhoff’s Law precise.

An Approximation slide 873

Narrative

155.
156.
157.
158.
159.
160.

slide 874

Formalisation

155.
156.
157.
158.
159.
160.

G.2 Domain Operations slide 875

Most of the units can be operated upon: drain pumps, pipes, flow pumps, joins,
forks, valves, switches, depots, refractories, gas processors, berth loading arms,
tanker tanks and sinks (i.e., end customers). We have left out operating directly
upon reservoirs. Operations upon units either observe static or dynamic at-
tributes, i.e., states, or change these states.
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G.2.1 [1] Drain Pumps slide 876

G.2.2 [2] Pipes slide 877

G.2.3 [3] Flow Pumps slide 878

G.2.4 [4–5] Joins and Forks slide 879

G.2.5 [6] Valves slide 880

G.2.6 [7] Switches slide 881

G.2.7 [8] Depots slide 882

G.2.8 [9] Refractories slide 883

G.2.9 [10] Gas Processors slide 884

G.2.10 [11] Loading Arms slide 885

G.2.11 [12] Tanks slide 886

G.2.12 [13] Sinks slide 887

G.2.13 Discussion slide 888

G.3 Domain Events slide 889

The environment of the petroleum industry is a cause for external events.
Most of the units can likewise be the originators of events: reservoirs, drain
pumps, pipes, flow pumps, joins, forks, valves, switches, depots, refractories, gas
processors, berth loading arms, tanker tanks and sinks (i.e., end customers).
Events reflect state changes: either of static or dynamic unit attributes, or of
the environment.
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G.3.1 [0] Reservoirs slide 890

G.3.2 [1] Drain Pumps slide 891

G.3.3 [2] Pipes slide 892

G.3.4 [3] Flow Pumps slide 893

G.3.5 [4–5] Joins and Forks slide 894

G.3.6 [6] Valves slide 895

G.3.7 [7] Switches slide 896

G.3.8 [8] Depots slide 897

G.3.9 [9] Refractories slide 898

G.3.10 [10] Gas Processors slide 899

G.3.11 [11] Loading Arms slide 900

G.3.12 [12] Tanks slide 901

G.3.13 [13] Sinks slide 902

G.3.14 Discussion slide 903

G.4 Domain Behaviours slide 904

All units exhibit behaviours: reservoirs, drain pumps, pipes, flow pumps, joins,
forks, valves, switches, depots, refractories, gas processors, berth loading arms,
tanker tanks and sinks (i.e., end customers). In addition subsystems, i.e., com-
positions of units exhibit behaviours: pipelines, refineries, harbours, etc.
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G.4.1 “Total” System Behaviour slide 905

slide 906

slide 907

slide 908

G.4.2 Unit Behaviours slide 909

[1] Drain Pumps slide 910

[2] Pipes slide 911

[3] Flow Pumps slide 912

[4–5] Joins and Forks slide 913

[6] Valves slide 914

[7] Switches slide 915

[8] Depots slide 916

[9] Refractories slide 917

[10] Gas Processors slide 918

[11] Loading Arms slide 919

[12] Tanks slide 920

[13] Sinks slide 921

G.4.3 Subsystem Behaviours slide 922

Pipeline slide 923

Refinery slide 924

Harbour slide 925

G.4.4 Discussion slide 926

G.5 Review, Summary and Discussion slide 927

slide 928
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Support Technologies slide 930

Chapter 11 (Pages 97–98) complements the present appendix. slide 931
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Management and Organisation slide 933

Chapter 12 (Pages 101–107) complements the present appendix. slide 934
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Rules and Regulations slide 936

Chapter 13 (Pages 109–112) complements the present appendix. slide 937
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Scripts, Licenses and Contracts slide 939

Chapter 14 (Pages 115–117) complements the present appendix.

K.1 Overview slide 940

K.2 Scripts slide 941

K.2.1 Time Tables slide 942

We shall view timetables as scripts.
In this section (that is, Pages 233–243) we shall first narrate and formalise

the syntax, including the well-formedness of timetable scripts, then we con-
sider the pragmatics of timetable scripts, including the bus routes prescribed
by these journey descriptions and timetables marked with the status of its
currently active routes, and finally we consider the semantics of timetable,
that is, the traffic they denote.

In the next section, Sect. K.8, on licenses for bus traffic, we shall assume
the timetable scripts of this section. slide 943

We all have some image of how a timetable may manifest itself. Figure K.1
on the following page shows some such images.
What we shall capture is, of course, an abstraction of “such timetables”. We
claim that the enumerated narrative which now follows and its accompanying
formalisation represents an adequate description. Adequate in the sense that
the reader “gets the idea”, that is, is shown how to narrate and formalise
when faced with an actual task of describing a concept of timetables.

In the following we distinguish between bus lines and bus rides. A bus line
description is basically a sequence of two or more bus stop descriptions. A
bus ride is basically a sequence of two or more time designators.1 A bus line

1 We do not distinguish between a time and a time description. That is, when we
say January 24, 2009, 17: 21 we mean it either as a description of the time
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Fig. K.1. Some bus timetables: Italy, India and Norway

description may cover several bus rides. The former have unique identifica-
tions and so has the latter. The times of the latter are the approximate times
at which the bus of that bus line and bus identification is supposed to be at
respective stops. You may think of the bus line identification to express some-
thing like “The Flying Scotsman”, and the bus ride identification something
like “The 4.50 From Paddington”.

The Syntax of Timetable Scripts slide 944

161. Time is a concept covered earlier. Bus lines and bus rides have unique
names (across any set of time tables). Hub and link identifiers, HI, LI,
were treated from the very beginning.

162. A TimeTable associates to Bus Line Identifiers a set of Journies.
163. Journies are designated by a pair of a BusRoute and a set of BusRides.
164. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more

intermediate Bus Stops and a destination Bus Stop.
165. A set of BusRides associates, to each of a number of Bus Identifiers a Bus

Schedule.
166. A Bus Schedule a triple of the initial departure Time, a list of zero, one

or more intermediate bus stop Times and a destination arrival Time.
167. A Bus Stop (i.e., its position) is a Fraction of the distance along a link

(identified by a Link Identifier) from an identified hub to an identified
hub.

168. A Fraction is a Real properly between 0 and 1.
169. The Journies must be well formed in the context of some net.

slide 945

type
161. T, BLId, BId
162. TT = BLId →m Journies
163. Journies′ = BusRoute × BusRides

at which this text that you are now reading was LATEX compiled, and as “that
time !”.
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164. BusRoute = BusStop × BusStop∗ × BusStop
165. BusRides = BId →m BusSched
166. BusSched = T × T∗ × T
167. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
168. Frac = {|r:Real•0<r<1|}
169. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license. slide 946

slide 947

Well-formedness of Journies

170. A set of journies is well-formed
171. if the bus stops are all different2,
172. if a defined notion of a bus line is embedded in some line of the net, and
173. if all defined bus trips (see below) of a bus line are commensurable.

value
170. wf Journies: Journies → N → Bool
170. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
171. diff bus stops(bs1,bsl,bsn) ∧
172. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
173. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

slide 948

Well-formedness of Journies

174. The bus stops of a journey are all different
175. if the number of elements in the list of these equals the length of the list.

value
174. diff bus stops: BusStop × BusStop∗ × BusStop → Bool
174. diff bus stops(bs1,bsl,bsn) ≡
175. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉)
of all bus stops as the bus line. slide 949

176. To explain that a bus line is embedded in a line of the net
177. let us introduce the notion of all lines of the net, lns,
178. and the notion of projecting the bus line on link sector descriptors.
179. For a bus line to be embedded in a net then means that there exists a line,

ln, in the net, such that a compressed version of the projected bus line is
amongst the set of projections of that line on link sector descriptors.

2 This restriction is, strictly speaking, not a necessary domain property. But it
simplifies our subsequent formulations.
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value
176. is net embedded bus line: BusStop∗ → N → Bool
176. is net embedded bus line(bsl)(hs,ls)
177. let lns = lines(hs,ls),
178. cbln = compress(proj on links(bsl)(elems bsl)) in
179. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

slide 950

180. Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a list of
Sector Descriptors ((hi,li,hi′))

181. we recursively unravel the list from the front:
182. if there is no front, that is, if the whole list is empty, then we get the

empty list of sector descriptors,
183. else we obtain a first sector descriptor followed by those of the remaining

bus stop descriptors.

value
180. proj on links: BusStop∗ → SectDescr∗

180. proj on links(bsl) ≡
181. case bsl of
182. 〈〉 → 〈〉,
183. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
183. end

slide 951

184. By compression of an argument sector descriptor list we mean a result
sector descriptor list with no duplicates.

185. The compress function, as a technicality, is expressed over a diminishing
argument list and a diminishing argument set of sector descriptors.

186. We express the function recursively.
187. If the argument sector descriptor list an empty result sector descriptor list

is yielded;
188. else
189. if the front argument sector descriptor has not yet been inserted in the

result sector descriptor list it is inserted else an empty list is “inserted”
190. in front of the compression of the rest of the argument sector descriptor

list.
slide 952

184. compress: SectDescr∗ → SectDescr-set → SectDescr∗

185. compress(sdl)(sds) ≡
186. case sdl of
187. 〈〉 → 〈〉,
188. 〈sd〉̂sdl′ →
189. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
190. ̂compress(sdl′)(sds\{sd}) end
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In the last recursion iteration (line 190.) the continuation argument sds\{sd}
can be shown to be empty: {}.slide 953

191. We recapitulate the definition of lines as sequences of sector descriptions.
192. Projections of a line generate a set of lists of sector descriptors.
193. Each list in such a set is some arbitrary, but ordered selection of sector

descriptions. The arbitrariness is expressed by the “ranged” selection of
arbitrary subsets isx of indices, isx⊆inds ln, into the line ln. The “ordered-
ness” is expressed by making that arbitrary subset isx into an ordered list
isl, isl=sort(isx).

type
191. Line′ = (HI×LI×HI)∗,
191. Line = {| l:Line′ • wf Line(l′) |}
value
191. wf Line: Line′ → Bool
191. wf Line(l) ≡
191. ∀ i:Nat • {i,i+1}⊆inds l⇒
191. let (( , ,lij),(lik, , ))=(l(i),l(i+1)) in lij=lik end
192. projs on links: Line → Line′-set
192. projs on links(ln) ≡
193. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

slide 954

194. sorting a set of natural numbers into an ordered list, isl, of these is ex-
pressed by a post-condition relation between the argument, isx, and the
result, isl.

195. The result list of (arbitrary) indices must contain all the members of the
argument set;

196. and “earlier”elements of the list must precede, in value, those of “later”
elements of the list.

value
194. sort: Nat-set → Nat∗

194. sort(isx) as isl
195. post card isx = lsn isl ∧ isx = elems isl ∧
196. ∀ i:Nat • {i,i+1}⊆inds isl ⇒ isl(i)<isl(i+1)

slide 955

197. The bus trips of a bus schedule are commensurable with the list of bus
stop descriptions if the following holds:

198. All the intermediate bus stop times must equal in number that of the bus
stop list.

199. We then express, by case distinction, the reality (i.e., existence) and time-
liness of the bus stop descriptors and their corresponding time descriptors
– and as follows.
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200. If the list of intermediate bus stops is empty, then there is only the bus
stops of origin and destination, and they must be exist and must fit time-
wise.

201. If the list of intermediate bus stops is just a singleton list, then the bus
stop of origin and the singleton intermediate bus stop must exist and
must fit time-wise. And likewise for the bus stop of destination and the
the singleton intermediate bus stop.

202. If the list is more than a singleton list, then the first bus stop of this list
must exist and must fit time-wise with the bus stop of origin.

203. As for Item 202 but now with respect to last, resp. destination bus stop.
204. And, finally, for each pair of adjacent bus stops in the list of intermediate

bus stops
205. they must exist and fit time-wise.

slide 956

value
197. commensurable bus trips: Journies → N → Bool
197. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
198. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
199. case len til of
200. 0 → real and fit((t1,t2),(bs1,bs2))(hs,ls),
201. 1 → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧fit((til(1),t2),(bsl(1),bsn))(hs,ls),
202. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
203. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
204. ∀ i:Nat•{i,i+1}⊆inds til ⇒
205. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

slide 957

206. A pair of (adjacent) bus stops exists and a pair of times, that is the time
interval between them, fit with the bus stops if the following conditions
hold:

207. All the hub identifiers of bus stops must be those of net hubs (i.e., exists,
are real).

208. There exists links, l, l′, for the identified bus stop links, li, li′,
209. such that these links connect the identified bus stop hubs.
210. Finally the time interval between the adjacent bus stops must approximate

fit the distance between the bus stops
211. The distance between two bus stops is a loose concept as there may be

many routes, short or long, between them.
212. So we leave it as an exercise to the reader to change/augment the descrip-

tion, in order to be able to ascertain a plausible measure of distance.
213. The approximate fit between a time interval and a distance must build on

some notion of average bus velocity, etc., etc.
214. So we leave also this as an exercise to the reader to complete.

slide 958
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206. real and fit: (T×T)×(BusStop×BusStop) → N → Bool
206. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
207. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
208. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧
209. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
210. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

211. distance: BusStop × BusStop → N → Distance
212. distance(bs1,bs2)(n) ≡ ... [ left as an exercise ! ] ...

213. afit: TI → Distance → Bool
214. [ time interval fits distance between bus stops ]

The Pragmatics of Timetable Scripts slide 959

A main purpose of a timetable is to bring an order into the traffic, as seen
from the side of net operators (signalling etc.), train operators and passengers.
With a net which is owned by one enterprise, many different train operators on
that one net, and with cross-train passengers a consolidated timetable offers
a common, fixed interface. slide 960

Subset Timetables

The pragmatics of a timetable may include its decomposition into a number
of sub-timetables. When speaking of two timetables it is often convenient to
make sure that bus line identifiers occuring in both designate identical bus
routes.

215. A bus line identifier occurring in two timetables is said to define compati-
ble bus rides in those two timetables provided the corresponding two bus
routes are identical.

215 have compatible BLIds: TT × TT → Bool
215 have compatible BLIds(tti,ttj) ≡
215 ∀ blid:BLId • blid ∈ dom tti ∩ dom ttj
215 ⇒ let (bri, )=tti(blid),(brj, )=ttj(blid) in bri=brj end

slide 961

216. Two journies are similar if they have identical bus line identified bus
routes. Thus a bus line identified journey in one timetable can be sim-
ilar to a bus line identified journey in another or the same timetable if the
bus line identifiers are the same and the journies are the same.

217. A timetable, stt, is said to be a sub-timetable of a timetable, tt, if every
bus line identified bus ride of similar journies is also an identical bus line
identified bus ride of tt.
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value
216 are similar Js: Journies × Journies → Bool
216 are similar Js((bri, ),(brj, )) ≡ bri=brj

217 is sub TT: TT × TT → Bool
217 is sub TT(stt,tt) ≡
217 ∀ sblid,blid:BLId•sblid=blid∧sblid ∈ dom stt∧blid ∈ dom tt
217 ⇒ ∀ (sbr,sbrs),(br,brs):Journies•(sbr,sbrs)=stt(sblid)∧(br,brs)=tt(blid)
217 ⇒ sbr=br ∧ ∀ bid:BId•bid ∈ dom sbrs ∩ dom br
217 ⇒ sbrs(bid)=brs(bid)
217 pre have compatible BLIds(stt,tt)

slide 962

218. We can thus generate all sub-timetables of a timetable.

218 all sub TTs: TT → TT-set
218 all sub TTs(tt) ≡ {stt|stt:TT•is sub TT(stt,tt)}

219. Two timetables, stti and sttj , are said to be disjoint if they share no same
bus line identifier bus rides.

219 are disjoint TTs: TT × TT → Bool
219 are disjoint TTs(tti,ttj) ≡
219 ∀ blidi,blidj:BLId•blidj=blidj∧blidi ∈ dom tti∧blidj ∈ dom ttj
219 ⇒ dom tti(blidi) ∩ dom ttj(blidj) = {}
219 pre have compatible BLIds(tti,ttj)

So disjointness is purely a matter of whether two bus rides (of the same bus
route and bus line identifier) have different bus ride identifiers. The time
schedule is not considered.slide 963

220. Two timetables can be merged into one timetable provided they are dis-
joint.

221. Merging two disjoint timetables result in a timetable which has exactly
the bus line identified journies of either of the timetables.

220 can be merged TTs: TT × TT → Bool
220 can be merged TTs(tti,ttj) ≡ are disjoint TTs(tti,ttj)

221 merge TTs: TT × TT → TT
221 merge TTs(tti,ttj) as tt
221 pre are disjoint TTs(tti,ttj) [ i.e., have compatible BLIds(tti,ttj) ]
221 post is sub TT(tti,tt′)∧is sub TT(ttj,tt′)
221 ∧ dom tt = dom tti ∪ dom ttj
221 ∧ ∀ blid:BLId•blid ∈ dom tt ∧ blid ∈ dom tti ∪ dom ttj
221 ⇒ let ((br,brs),(bri,brsi),(brj,brsj)) = (tt(blid),tti(blid),ttj(blid)) in
221 dom brsi ∩ dom brsj = {} ∧ dom brsi ∪ dom brsj = dom brs
221 ∧ brs = brsi ∪ brsj end
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slide 964From a timetable one can construct any number of sub-timetables.

222. Given a timetable, tt, and given a mapping of bus line identifiers, ex.,
blid, of tt into the set, bids, of bus ride identifiers of the bus rides of
tt(blid), construct, cons STT(tt,blid to bids map), the sub-timetable, stt,
of tt where stt exactly lists the so identified bus rides of tt.

value
222 cons STT: TT × (BLId →m BId-set) → TT
222 cons STT(tt,id map) ≡
222 [ blid 7→ (tt(blid))(bid)
222 | blid:BLId,bid:BId • blid ∈ dom id map ∧ bid ∈ id map(blid) ]
222 pre dom id map 6= {} ∧ dom id map ⊆ dom tt ∧
222 ∧ ∀ blid:BLId•blid ∈ dom(tt)
222 ⇒ id map(blid)6={}∧id map(blid)⊆rng tt(blid)

slide 965

223. Given a timetable, tt, and given a mapping of bus line identifiers, ex., blid,
of tt into the set, bids, of bus ride identifiers of the bus rides of tt(blid),
construct, cons compl STT(tt,blid to bids map), the sub-timetable, stt, of
tt where stt exactly lists the other identified bus rides of tt.

223 cons compl STT: TT × (BLId →m BId-set) → TT
223 cons compl STT(tt,id map)
223 let idmap = [ blid 7→ bids | blid:BLId,bids:BId-set
223 • (blid ∈ dom tt \ dom id map ∧ bids=dom tt(blid))
223 ∨ blid ∈ dom tt ∩ dom id map ∧ bids=id map(blid) ]
223 construct STT(tt,idmap) end

The following should be proven:

theorem:
∀ tt:TT, id map • pre construct STT(tt,id map) ⇒

merge TTs(cons STT(tt,id map),cons compl STT(tt,id map))
= tt =
merge TTs(cons compl STT(tt,id map),cons STT(tt,id map))

slide 966

Some auxiliary functions might come in handy at a later stage.

224. Given a bus line identifier to inquire whether it is the bus line identifier
of a proper, non empty sets of bus rides in a given timetable.

225. Given a bus line identifier and a bus ride identifier to inquire whether they
together identify a proper bus ride of a given timetable.

226. Given a bus ride identifier and a time table to to inquire whether there is
a bus line identifier of that timetable for which the bus ride identifier is
defined.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

242 K Scripts, Licenses and Contracts

227. Given a bus line identifier and a bus ride identifier to find, if it exists, the
bus route and ride schedule of that identification.

slide 967

value
224. is def: BLId×TT→Bool,
224. is def(blid,tt) ≡ blid ∈ dom tt ∧ tt(blid)6=[ ]

225. is def: BLId×BId×TT→Bool,
225. is def(blid,bid,tt) ≡ dom tt ∧ bid ∈ dom tt(blid)

226. is def: BId×TT→Bool,
226. is def(bid,tt) ≡ ∃ blid:BLId • is def(blid,bid,tt)

227. inquire: BLId×BId×TT
∼

→(BusRoute×BusSched),
227. inquire(blid,bid,tt) ≡
227. let (br,brs)=tt(blid) in (br,brs(bid)) end
227. pre is def(blid,bid,tt)

The Semantics of Timetable Scripts slide 968

One form of timetable denotations is the bus traffic implied by a timetable.

Bus Traffic

228. We postulate a type of Buses.
229. From a bus one can observe the value of a number of attributes: cur-

rent number of passengers, identity of driver, number of passengers who
alighted and boarded at the most recent bus stop, etc. (We let X stand
for any one of these attributes.)

230. Bus traffic maps discrete times into the pair of a bus net and the positions
of buses.slide 969

231. A bus positions is either at a hub, on a link or at a bus stop.
232. When a bus is at a hub we can also observe from which link it came and

to which link it proceeds.
233. When a bus is on a link we can observe how far it has progressed down

the link from one of the two hubs it connects.
234. When a bus is at a bus stop — which is like “on a link” — we can observe

that bus stop accordingly.
235. Fractions have also be described earlier.

slide 970

type
228. Bus
value
229. obs X: Bus → X
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type
230. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
231. BPos = atHub | onLnk | atBS
232. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
233. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
234. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
235. Frac = {|r:Real•0<r<1|}

We omit detailing necessary well-formedness constraints – such as (i) all bus
positions being on the designated net, (ii) traffic moving monotonically, (iii)
no two buses of the same pair of bus line and bus identification at the same
time (or otherwise conflicting), (iv) no “ghost” busses, etcetera. . slide 971

From a bus timetable we can generate the set of all bus traffics that satisfy
the bus timetable. (We have covered this notion earlier.)

value
gen BusTraffic: TT → BusTraffic-infset
gen BusTraffic(tt) as btrfs

post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

We leave it to the reader to define the on time predicate. slide 972

K.2.2 Discussion

We have built the foundations for a theory of timetables. We have not yet
formulated theorems let alone proven any such.

K.2.3 Aircraft Flight Simulator Script slide 973

1. Takeoff:
(a) Record time
(b) Release brakes and taxi onto runway 26L
(c) Advance power to “FULL”
(d) Maintain centerline of runway
(e) At 50 knots airspeed lift nose wheel off runway
(f) At 70 knots ease back on the yoke to establish a 10 degree pitch up

attitude
(g) Maintain a climb AIRSPEED of 80 knots
(h) Maintain a climb AIRSPEED of 80 knots
(i) Raise Gear when there is no more runway to land on
(j) At “500” feet above the ground raise the FLAPS to “0”
(k) Reduce power to about “2300” RPM at “1000” feet above the ground

(AGL)
slide 974

2. Climb out:
(a) Maintain runway heading and climb to “2400” feet
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(b) At “2400” feet start a climbing LEFT turn
(c) Start to roll out when you see “140” in the DG window
(d) Maintain a heading of “130”
(e) Watch your NAV 1 CDI, when the needle is three dots LEFT of center,

start your RIGHT turn to a heading of “164”
(f) Track outbound on the POMONA VOR 164 radial

3. Level off:
(a) Begin to level off when the altimeter reads “3900” feet
(b) Maintain “4000” feet
(c) Reduce power to about “2200” [2400] RPM

slide 975

4. Course change *1:
(a) Watch your NAV 2 CDI, when the needle is one dot LEFT of center,

start your RIGHT turn to a heading of “276”
(b) When your heading indicator reads “265” start to roll out
(c) After you have rolled out, press “P” to pause the simulation
(d) Record your: NAV, I, DME, DIST, ALTITUDE, AIRSPEED VSI,

GEAR, FLAPS, MAGS, STROBE, LIGHTS
(e) Press “P” to continue the simulation
(f) Track outbound on the PARADISE VOR 276 radial that your NAV

2 OBI is displaying
(g) Track outbound on the PARADISE VOR 276 radial that your NAV

2 OBI is displaying
(h) Switch DME to “NAV 2”

slide 976

5. Altitude change:
(a) When the DME on NAV 2 reads “29.0”, press “P” to pause the sim-

ulation
(b) Record your: ALTITUDE, AIRSPEED, VSI, HEADING
(c) Press “P” to continue the simulation
(d) Tune NAV 1 to “113.1” and set radial “276” in the upper window
(e) Track inbound on the VAN NUYS VOR “096” radial (course 276)

that your NAV 1 OBI is displaying
(f) Switch DME to “NAV 1”

6. Etcetera.

K.2.4 Bill of Lading slide 977

slide 978

We show a template: the . . . are to be fillled in.

• B/L No.: . . .

• Shipper: . . .

• Reference No.: . . .

• Consignee: . . .

• Notify address: . . .

• Vessel: . . .

• Port of loading: . . .

• Port of discharge: . . .

• Shipper’s description of goods: . . .

⋆ Gross weight: . . .

⋄ of which ... is on deck at
Shipper’s risk; the Carrier
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not being responsible for
loss or damage howsoever
arising.

⋆ Measure: . . .

⋆ Quality: . . .
⋆ Quantity: . . .
⋆ Condition: . . .
⋆ Contents value unknown.

• SHIPPED at the Port of Loading in apparent good order and condition on
board the Vessel for carriage to the Port of Discharge or so near thereto
as she may safely get the goods specified above

• Freight payable as per: . . . • Dated (by charter part: . . . ): . . .

slide 979

⋆ Freight Advance: . . .
⋆ Time used for loading: . . .

⋄ Days: . . .
⋄ Hours: . . .

⋆ Freight payable at: . . .
⋆ Place and date of issue: . . .
⋆ Signature: . . .
⋆ Number of original Bs: . . .

• Conditions:
⋆ (1) All terms and conditions, liberties and exceptions of the Charter

Party, dated as overleaf, including the Law and Arbitration Clause, are
herewith incorporated.

⋆ (2) General Paramount Clause.
⋄ (a) The Hague Rules contained in the International Convention for

the Unification of certain rules relating to Bills of Lading, dated
Brussels the 25th August 1924 as enacted in the country of ship-
ment, shall apply to this Bill of Lading. When no such enactment is
in force in the country of shipment, the corresponding legislation of
the country of destination shall apply, but in respect of shipments
to which no such enactments are compulsorily applicable, the terms
of the said Convention shall apply.

⋄ (b) Trades where Hague-Visby Rules apply. In trades where the
International Brussels Convention 1924 as amended by the Protocol
signed at Brussels on February 23rd 1968 - the Hague- Visby Rules -
apply compulsorily, the provisions of the respective legislation shall
apply to this Bill of Lading.

slide 980

⋄ (c) The Carrier shall in no case be responsible for loss of or damage
to the cargo, howsoever arising prior to loading into and after dis-
charge from the Vessel or while the cargo is in the charge of another
Carrier, nor in respect of deck cargo or live animals.

⋆ (3) General Average.
General Average shall be adjusted, stated and settled according to
York-Antwerp Rules 1994, or any subsequent modification thereof, in
London unless another place is agreed in the Charter Party. Cargo’s
contribution to General Average shall be paid to the Carrier even when
such average is the result of a fault, neglect or error of the Master, Pilot
or Crew. The Charterers, Shippers and Consignees expressly renounce
the Belgian Commercial Code, Part II, Art. 148.
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⋆ (4) New Jason Clause.
In the event of accident, danger, damage or disaster before or after the
commencement of the voyage, resulting from any cause whatsoever,
whether due to negligence or not, for which, or for the consequence
of which, the Carrier is not responsible, by statute, contract or other-
wise, the cargo, shippers, consignees or the owners of the cargo shall
contribute with the Carrier in General Average to the payment of any
sacrifices, losses or expenses of a General Average nature that may be
made or incurred and shall pay salvage and special charges incurred
in respect of the cargo. If a salving vessel is owned or operated by the
Carrier, salvage shall be paid for as fully as if the said salving vessel
or vessels belonged to strangers. Such deposit as the Carrier, or his
agents, may deem sufficient to cover the estimated contribution of the
goods and any salvage and special charges thereon shall, if required,
be made by the cargo, shippers, consignees or owners of the goods to
the Carrier before delivery.slide 981

⋆ (5) Both-to-Blame Collision Clause.
If the Vessel comes into collision with another vessel as a result of the
negligence of the other vessel and any act, neglect or default of the
Master, Mariner, Pilot or the servants of the Carrier in the navigation
or in the management of the Vessel, the owners of the cargo carried
hereunder will indemnify the Carrier against all loss or liability to the
other or non-carrying vessel or her owners in so far as such loss or
liability represents loss of, or damage to, or any claim whatsoever of
the owners of said cargo, paid or payable by the other or non-carrying
vessel or her owners to the owners of said cargo and set-off, recouped
or recovered by the other or non-carrying vessel or her owners as part
of their claim against the carrying Vessel or the Carrier.
The foregoing provisions shall also apply where the owners, operators
or those in charge of any vessel or vessels or objects other than, or in
addition to, the colliding vessels or objects are at fault in respect of a
collision or contact.

K.3 License and Contract Languages slide 982

By a domain script language we mean the definition of a set of licenses and

actions where these licenses when issued and actions when performed have
morally obliging power.

By a domain contract language we mean a domain script language
whose licenses and actions have legally binding power, that is, the issue of
licenses and the invocation of actions may be contested in a court of law. We
now refer to licenses as contracts.
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K.4 The Performing Arts: Producers and Consumers slide

983

The intrinsic entities of the performing arts are the artistic works: drama
or opera performances, music performances, readings of poems, short sto-
ries, novels, or jokes, movies, documentaries, newsreels, etc. We shall limit
our span to the scope of electronic renditions of these artistic works: videos,
CDs or other. In this paper we shall not touch upon the technical issues of
“downloading”(whether ”streaming” or copying, or other).

K.4.1 Operations on Digital Works slide 984

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while slide 985

protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

K.4.2 License Agreement and Obligation slide 986

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

K.4.3 Two Assumptions slide 987

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from slide 988

the fulfilment of the first). The second assumption is that the consumer is
not allowed to, or cannot operate3 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results
in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

3 render, copy and edit
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K.4.4 Protection of the Artistic Electronic Works slide 989

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

K.4.5 A License Language slide 990

type
0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′readme′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

slide 991

(0.) Licenses are given names, ln:Ln, so are actors (owners, licensors, and
users, licensees), nn:Nm. By w:W we mean a (net) reference to (a name of) the
downloaded possibly segmented artistic work being licensed, where segments
are named (s:S), that is, s:S is a selector to either a segment of a downloaded
work or to a segment of a copied and or and edited work.slide 992

(1.) Every license (lic:Lic) has a unique name (ln:Ln).
(2.) A license (lic:Lic) contains four parts: the name of the licensor, the

name of the licensee, a reference to (the name of) the work, a set of commands
(that may be permitted to be performed on the work).slide 993

(3.) A command is either a render, a copy or an edit or a readme command,
or a sub-licensing (sub-license) command.slide 994

(4.–6.) The render, copy and edit commands are each “decorated” with
an ordered list of selectors (i.e., selector names) and a (work) variable name.
The license command

copy 〈s1,s2,s7〉 v

means that the licensed work, ω, may have its sections s1, s2 and s7 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands.slide 995

(7.) The ”readme” license command, in a license, ln, referring, by means of
w, to work ω, somehow displays a graphical/textual “image” of, that is, infor-
mation about ω. We do not here bother to detail what kind of information may
be so displayed. But you may think of the following display information names
of artistic work,artists, authors, etc., names and details about licensed com-
mands, a table of fees for performing respective licensed commands, etcetera.slide 996

(8.) The license command
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schema: license cmd1,cmd2,...,cmdn on work v
formal: mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensee to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one to reflect such
constraints. The license also do not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted. slide 997

A license licenses the licensee to render, copy, edit and license (possibly
the results of editing) any selection of downloaded works. In any order — but
see below — and any number of times. For every time any of these operations
take place payment according to the payment function occurs (that can be
inspected by means of the read license command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied
versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function. slide 998

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” (see next section) functions are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage. slide 999

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary. slide 1000

type
5. V
6. Act = Ln × (Rndr|Copy|Edit|License)
7. Rndr == mkR(sel:S∗,wrk:(W|V))
8. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
9. Edit == mkE(wrks:V∗,into:V)
10. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

slide 1001
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(5.) By V we mean the name of a variable in the users own storage into
which downloaded works can be copied (now becoming a local work. The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested.slide 1002

(6.) Every action of a licensee is tagged by the name of a relevant license.
If the action is not authorised by the named license then it is rejected. Render
and copy actions mention a specific sequence of selectors. If this sequence is
not an allowed (a licensed) one, then the action is rejected. (Notice that the
license may authorise a specific action, a with different sets of sequences of
selectors — thus allowing for a variety of possibilities as well as constraints.)slide 1003

(7.) The licensee, having now received a license, can render selections of
the licensed work, or of copied and/or edited versions of the licensed work. No
reference is made to the payment function. When rendering the semantics is
that this function is invoked and duly applied. That is, render payments are
automatically made: subtracted from the licensees account and forwarded to
the licensor.slide 1004

(8.) The licensee can copy selections of the licensed work, or of previously
copied and/or edited versions of the licensed work. The licensee identifies a
name for the local storage file where the copy will be kept. No reference is made
to the payment function. When copying the semantics is that this function
is invoked and duly applied. That is, copy payments are automatically made:
subtracted from the licensees account and forwarded to the licensor.slide 1005

(9.) The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function.slide 1006

When copying the semantics is that this function is invoked and duly applied.
That is, copy payments are automatically made: subtracted from the licensees
account and forwarded to the licensor. Although no reference is made to any
edit functions these are made available to the licensee when invoking the edit
command. You may think of these edit functions being downloaded at the
time of downloading the license. Other than this we need not further specify
the editing functions. Same remarks apply to the above copying functions.slide 1007

(10.) The licensee can further sub-license copied and/or edited work. The
licensee must give the license being assembled a unique name. And the licensee
must choose to whom to license this work. A sub-license, like does a license,
authorises which actions can be performed, and then with which one of a set of
alternative selection sequences. No payment function is explicitly mentioned.
It is to be semi-automatically derived (from the originally licensed payment
fee function and the licensee’s payment demands) by means of functionalities
provided as part of the licensed payment fee function.slide 1008

The sub-license command information is thus compiled (assembled) into
a license of the form given in (1.–3.). The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
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issuing the sub-license. From the license label of the command it is known
whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

K.5 A Hospital Health Care License Language slide 1009

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients, in
a sense, issue a request to be treated with the aim of full or partial restitution.
This request is directed at medical staff, that is, the patient authorises medical
staff to perform a set of actions upon the patient. One could claim, as we shall,
that the patient issues a license.

K.5.1 Patients and Patient Medical Records slide 1010

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

K.5.2 Medical Staff slide 1011

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

K.5.3 Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

We refer to the abstract syntax formalised below (that is, formulas 1.–5.).
The work on the specific form of the syntax has been facilitated by the work
reported in [8].4

4 As this work, [8], has yet to be completed the syntax and annotations given here
may change.
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K.5.4 A Notion of License Execution State slide 1012

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations on local works could
not be done before these had been created — say by copying. Editing could
only be done on local works and hence required a prior action of, for example,
copying a licensed work. In the context of hospital health care most of the
actions can only be performed if the patient has reached a suitable state in
the hospitalisation. We refer to Fig. K.2 for an idealised hospitalisation plan.slide 1013
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Treatment
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Fig. K.2. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

slide 1014

We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same !) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice ! One cannot design a language and
prevent it being misused!
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K.5.5 The License Language slide 1015

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform. slide 1016

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL. But it is decorated! The subtypes {|boldface
keyword|} are inserted for readability. slide 1017

(0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for CoL) the
licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative.

(5.) A command (Cmd) is a state-labelled statement. slide 1018

(3.) A sub-license just states the command set that the sub-license licenses.
As for the Artistic License Language the licensee chooses an appropriate sub-
set of commands. The context “inherits” the name of the patient. But the
sub-licensee is explicitly mandated in the license!

(6.) An alternative is also just a set of commands. The meaning is that
either the licensee choose to perform the designated actions or, as for ML, but
now freely choosing the sub-licensee, the licensee (now new licensor) chooses
to confer actions to other staff. slide 1019

(7.) A statement is either an admit, an interview, a plan analysis, an
analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive Information given in the patient medical report for the designated
state inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc. slide 1020

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

slide 1021
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(8.) Each action actually attempted by a medical staff refers to the license,
and hence the patient name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analy-
sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap-slide 1022

pears in the named license and the patient (medical record) designates state
σ.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3.) is compiled from contextual information.

K.6 Public Government and the Citizens slide 1023

K.6.1 The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)5, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of pub-
lic government. The Three Branches of Government Typically national par-slide 1024

liament and local (province and city) councils are part of law-making govern-
ment, law-enforcing government is called the executive (the administration),
and law-interpreting government is called the judiciary [system] (including
lawyers etc.).

K.6.2 Documents slide 1025

A crucial means of expressing public administration is through documents.6

We shall therefore provide a brief domain analysis of a concept of documents.
(This document domain description also applies to patient medical records
and, by some “light” interpretation, also to artistic works — insofar as they
also are documents.)slide 1026

Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

K.6.3 Document Attributes slide 1027

With documents one can associate, as attributes of documents, the actors who
created, edited, read, copied, distributed (and to whom distributed),shared,
performed calculations and shredded documents.slide 1028

5 De l’esprit des lois (The Spirit of the Laws), published 1748
6 Documents are, for the case of public government to be the “equivalent” of artistic

works.
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With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

K.6.4 Actor Attributes and Licenses slide 1029

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as
licenses.

K.6.5 Document Tracing slide 1030

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

K.6.6 A Document License Language slide 1031

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

type
0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

slide 1032

type
7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12a. Licn == mkLi(kind:LiTy)
12b. LiTy == grant | extend | restrict | withdraw
13. Shar == mkSh(doc:UDI,with:An-set)
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14. Rvok == mkRv(doc:UDI,from:An-set)
15. Rlea == mkRl(dn:Dn)
16. Rtur == mkRt(dn:Dn)
17. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
18. Shrd == mkSh(doc:UDI)

slide 1033

(0.) The are names of licenses (Ln), actors (An), documents (UDI), docu-
ment classes (DCn) and calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and
withdrawing.

(2.) Actors (licensors) grant licenses to other actors (licensees). An actor
is constrained to always grant distinctly named licenses. No two actors grant
identically named licenses.7 A set of operations on (named) documents are
granted.slide 1034

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations, or fully).

(6.) There are nine kinds of operation authorisations. Some of the next
explications also explain parts of some of the corresponding actions (see (16.–
24.).

(7.) There are names of documents (Dn), names of classes of documents
(DCn), and there are unique document identifiers (UDI).slide 1035

(8.) Creation results in an initially void document which is
not necessarily uniquely named (dn:Dn) (but that name is uniquely as-

sociated with the unique document identifier created when the document is
created8) typed by a document class name (dcn:DCn) and possibly based
on one or more identified documents (over which the licensee (at least) has
reading rights). We can presently omit consideration of the document class
concept. “based on” means that the initially void document contains refer-
ences to those (zero, one or more) documents.9 The “based on” documents
are moved from licensor to licensee.slide 1036

(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved from licensor to licensee — if not al-
ready so moved as the result of the specification of other authorised actions.slide 1037

(10.) Reading a document only changes its “having been read” status (etc.)
— as per [24]. The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions.slide 1038

7 This constraint can be enforced by letting the actor name be part of the license
name.

8 — hence there is an assumption here that the create operation is invoked by the
licensee exactly (or at most) once.

9 They can therefore be traced (etc.) — as per [24].
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(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied
document is marked to be a copy (etc.) — as per [24]. The master document,
if not the result of a create or copy, is moved from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions. slide 1039

(12a.) A licensee can sub-license (sL) certain operations to be performed
by other actors.

(12b.) The granting, extending, restricting or withdrawing permissions,
cannot name a license (the user has to do that), do not need to refer to
the licensor (the licensee issuing the sub-license), and leaves it open to the
licensor to freely choose a licensee. One could, instead, for example, constrain
the licensor to choose from a certain class of actors. The licensor (the licensee
issuing the sub-license) must choose a unique license name. slide 1040

(13.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead the licensing actions with a shared attribute.) The
shared document, if not the result of a create and edit or copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions. Sharing a document does not move nor copy it. slide 1041

(14.) Sharing documents can be revoked. That is, the reading rights are
removed.

(15.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy. slide 1042

(16.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document. slide 1043

(17.) Two or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of a creates
and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(18.) A document can be shredded. It seems pointless to shred a document
if that was the only right granted wrt. document. slide 1044

17. Action = Ln × Clause
18. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
19. Cre == mkCre(dcn:DCn,based on docs:UID-set)
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20. Edt == mkEdt(uid:UID,based on docs:UID-set)
21. Rea == mkRea(uid:UID)
22. Cop == mkCop(uid:UID)
23. Lic == mkLic(license:L)
24. Sha == mkSha(uid:UID,with:An-set)
25. Rvk == mkRvk(uid:UID,from:An-set)
25. Rev == mkRev(uid:UID,from:An-set)
26. Rel == mkRel(dn:Dn,uid:UID)
27. Ret == mkRet(dn:Dn,uid:UID)
28. Cal == mkCal(fct:Cfn,over docs:UID-set)
29. Shr == mkShr(uid:UID)

slide 1045

A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”.slide 1046

(17.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited.slide 1047

(19.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(20.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(21.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(22.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy.slide 1048

(23.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if
any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.slide 1049

(24.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,
for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(25.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.slide 1050
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(26.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created now is being able to
see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(27.) A document may be returned. It means that the licensor who orig-
inally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it. slide 1051

(28.) A license may (conditionally) apply any of a licensed set of calcu-

lation functions to “downloaded” (edited, copied, etc.) documents, or can
(unconditionally) apply any of a licensed set of calculation functions to cre-
ated (etc.) documents. The result of a calculation is a document. The licensee
obtains all operation authorisations to this document (— as for created doc-
uments).

(29.) A license may (conditionally) shred a “downloaded” (etc.) document.

K.7 Discussion: License Language Comparisons slide 1052

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages. slide 1053

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

K.7.1 Work Items slide 1054

The work items of the artistic license language(s) are essentially “kept” by the
licensor. The work items of the hospital health care license language(s) are
fixed and, for a large set of licenses there is one work item, the patient which
is shared between many licensors and licenses. The work items of the public

administration license language(s) — namely document — are distributed to
or created and copied by licenses and may possibly be shared.

K.7.2 Operations slide 1055

The operations of the artistic license language(s) are are essentially “kept” by
the licensor. The operations of the hospital health care license language(s)
are are essentially “kept” by the licensees (as reflected in their professional
training and conduct). The operations of the public administration license
language(s) are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct).
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K.7.3 Permissions and Obligations slide 1056

Generally we can say that the modalities of the artistic license language(s) are
essentially permissions with payment (as well as use of licensor functions)
being an obligation; that the modalities of the hospital health care license
language(s) are are essentially obligations; and, as well, that the modalities of
the public administration license language(s) are essentially obligations We
shall have more to say about permissions and obligations later (much later).

K.8 A Bus Transport Contract Language slide 1057

K.8.1 Narrative

Preparations

In a number of steps (‘A Synopsis’, ‘A Pragmatics and Semantics Analysis’,
and ‘Contracted Operations, An Overview’) we arrive at a sound basis from
which to formulate the narrative. We shall, however, forego such a detailed
narrative. Instead we leave that detailed narrative to the reader. (The detailed
narrative can be “derived” from the formalisation.)slide 1058

A Synopsis

Contracts obligate transport companies to deliver bus traffic according to
a timetable. The timetable is part of the contract. A contractor may sub-
contract (other) transport companies to deliver bus traffic according to timeta-
bles that are sub-parts of their own timetable. Contractors are either public
transport authorities or contracted transport companies. Contracted trans-
port companies may cancel a subset of bus rides provided the total amount
of cancellations per 24 hours for each bus line does not exceed a contracted
upper limit10. The cancellation rights are spelled out in the contract11. A sub-
contractor cannot increase a contracted upper limit for cancellations above
what the sub-contractor was told (in its contract) by its contractor12. Etcetera.slide 1059

A Pragmatics and Semantics Analysis

The “works” of the bus transport contracts are two: the timetables and, im-
plicitly, the designated (and obligated) bus traffic. A bus timetable appears
to define one or more bus lines, with each bus line giving rise to one or more
bus rides. We assume a timetable description along the lines of Sect. K.2.1.
Nothing is (otherwise) said about regularity of bus rides. It appears that bus
ride cancellations must be reported back to the contractor. And we assume

10 We do not treat this aspect further in this book.
11 See Footnote 10.
12 See Footnote 10.
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that cancellations by a sub-contractor is further reported back also to the sub-
contractor’s contractor. Hence eventually that the public transport authority
is notified. slide 1060

Nothing is said, in the contracts, such as we shall model them, about
passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be
paid back from a sub-contractor to the contractor. So we shall not bother,
in this example, about transport costs nor transport subsidies. But will leave
that necessary aspect as an exercise.

The opposite of cancellations appears to be ‘insertion’ of extra bus rides,
that is, bus rides not listed in the time table, but, perhaps, mandated by
special events13 We assume that such insertions must also be reported back
to the contractor. slide 1061

We assume concepts of acceptable and unacceptable bus ride delays. De-
tails of delay acceptability may be given in contracts, but we ignore further
descriptions of delay acceptability. but assume that unacceptable bus ride
delays are also to be (iteratively) reported back to contractors.

We finally assume that sub-contractors cannot (otherwise) change timeta-
bles. (A timetable change can only occur after, or at, the expiration of a
license.) Thus we find that contracts have definite period of validity. (Expired
contracts may be replaced by new contracts, possibly with new timetables.) slide 1062

Contracted Operations, An Overview

So these are the operations that are allowed by a contractor according to a
contract: (i) start: to perform, i.e., to start, a bus ride (obligated); (ii) cancel:
to cancel a bus ride (allowed, with restrictions); (iii) insert: to insert a bus
ride; and (iv) subcontract: to sub-contract part or all of a contract.

K.8.2 The Final Narrative slide 1063

We leave, as an exercise, the expression of a complete narrative.
Instead we proceed directly to a formalisation.

K.8.3 A Formal Syntax

We treat separately, the syntax of contracts (for a schematised example see
Page 261) and the syntax of the actions implied by contracts (for schematised
examples see Page 262).

Contracts slide 1064

An example contract can be ‘schematised’:

13 Special events: breakdown (that is, cancellations) of other bus rides, sports event
(soccer matches), etc.
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cid: contractor cor contracts sub-contractor cee
to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (including
contracting) takes place and in which the implicit net is defined.slide 1065

236. contracts, contractors and sub-contractors have unique identifiers CId,
CNm, CNm.

237. A contract has a unique identification, names the contractor and the sub-
contractor (and we assume the contractor and sub-contractor names to be
distinct). A contract also specifies a contract body.

238. A contract body stipulates a timetable and the set of operations that are
mandated or allowed by the contractor.

239. An Operation is either a "start" (i.e., start a bus ride), a bus ride
"cancel"lation, a bus ride "insert", or a "subcontrat"ing operation.

slide 1066

type
236. CId, CNm
237. Contract = CId × CNm × CNm × Body
238. Body = Op-set × TT
239. Op == ′′start′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

An abstract example contract:
(cid,cnmi,cnmj ,({′′start′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

Actions slide 1067

Example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 261) shown earlier is almost like an action; here
is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

slide 1068

All actions are performed by a sub-contractor in a context which defines that
sub-contractor cnm, the relevant net, say n, the base contract, referred here
to by cid (from which this is a sublicense), and a timetable tt of which tt′ is
a subset. contract name cnm′ is new and is to be unique. The subcontracting
action can (thus) be simply transformed into a contract as shown on Page 261.slide 1069
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type
Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,mkCon(cid′,({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 242

slide 1070

Actions
We observe that the essential information given in the start, cancel and insert
action prescriptions is the same; and that the RSL record-constructors (mkSta,
mkCan, mkIns) make them distinct.

K.8.4 Uniqueness and Traceability of Contract Identifications slide

1071

240. There is a “root” contract name, rcid.
241. There is a “root” contractor name, rcnm.

value
240 rcid:CId
241 rcnm:CNm

All other contract names are derived from the root name. Any contractor can
at most generate one contract name per time unit. Any, but the root, sub-
contractor obtains contracts from other sub-contractors, i.e., the contractor.
Eventually all sub-contractors, hence contract identifications can be referred
back to the root contractor. slide 1072

242. Such a contract name generator is a function which given a contract iden-
tifier, a sub-contractor name and the time at which the new contract
identifier is generated, yields the unique new contract identifier.

243. From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its cre-
ation.

value
242 gen CId: CId × CNm × Time → CId
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243 obs CId: CId
∼

→ CIdL [ pre obs CId(cid):cid6=rcid ]

243 obs CNm: CId
∼

→ CNm [ pre obs CNm(cid):cid6=rcid ]

243 obs Time: CId
∼

→ Time [ pre obs Time(cid):cid6=rcid ]

slide 1073

244. All contract names are unique.

axiom
244 ∀ cid,cid′:CId•cid6=cid′⇒
244 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
244 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
244 ⇒ obs Time(cid)6=obs Time(cid′)

slide 1074

245. Thus a contract name defines a trace of license name, sub-contractor name
and time triple, “all the way back” to “creation”.

type
CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value
245 contract trace: CId → LCIdCNmTTrace
245 contract trace(cid) ≡
245 case cid of
245 rcid → 〈〉,
245 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
245 end

245 obs TraceTriple: CId → TraceTriple
245 obs TraceTriple(cid) ≡
245 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

The trace is generated in the chronological order: most recent contract name
generation times last.slide 1075

Well, there is a theorem to be proven once we have outlined the full formal
model of this contract language: namely that time entries in contract name
traces increase with increasing indices.

theorem
∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))
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K.8.5 Execution State slide 1076

Local and Global States

Each sub-contractor has an own local state and has access to a global state.
All sub-contractors access the same global state. The global state is the bus
traffic on the net. There is, in addition, a notion of running-state. It is a
meta-state notion. The running state “is made up” from the fact that there
are n sub-contractors, each communicating, as contractors, over channels with
other sub-contractors. The global state is distinct from sub-contractor to sub-
contractor – no sharing of local states between sub-contractors. We now ex-
amine, in some detail, what the states consist of. slide 1077

Global State

The net is part of the global state (and of bus traffics). We consider just the
bus traffic.

type
167. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI) 234

230. BusTraffic = T →m (N × (BusNo →m (Bus × BPos))) 242
231. BPos = atHub | onLnk | atBS
232. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
233. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
234. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

We shall consider BusTraffic (with its Net) to reflect the global state.

Local Sub-contractor Contract States slide 1078

A sub-contractor state contains, as a state component, the zero, one or more
contracts that the sub-contractor has received and that the sub-contractor
has sublicensed.

type
Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm →m (LicNm →m (Body×TT))
SubLicΣ = LeeNm →m (LicNm →m Body)
LorBusΣ ... [ see ′′Local sub-contractor Bus States: Semantic Types′′ next ] ...

(Recall that LorNm and LeeNm are the same.)
In RecvLics we have that LorNm is the name of the contractor by whom

the contract has been granted, LicNm is the name of the contract assigned by
the contractor to that license, Body is the body of that license, and TT is that
part of the timetable of the Body which has not (yet) been sublicensed.
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In DespLics we have that LeeNm is the name of the sub-contractor to whom
the contract has been despatched, the first (left-to-right) LicNm is the name
of the contract on which that sublicense is based , the second (left-to-right)
LicNm is the name of the sublicense, and License is the contract named by the
second LicNm.

Local Sub-contractor Bus States slide 1079

The sub-contractor state further contains a bus status state component which
records which buses are free, FreeBusΣ, that is, available for dispatch, and
where “garaged”, which are in active use, ActvBusΣ, and on which bus ride,
and a bus history for that bus ride, and histories of all past bus rides,
BusHistΣ. A trace of a bus ride is a list of zero, one or more pairs of times
and bus stops. A bus history, BusHistory, associates a bus trace to a quadruple
of bus line identifiers, bus ride identifiers, contract names and sub-contractor
name.14slide 1080

type
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId) →m (BNo×BusTrace)))

A bus is identified by its unique number (i.e., registration) plate (BusNo).
We could model a bus by further attributes: its capacity, etc., for for the
sake of modelling contracts this is enough. The two components are modified
whenever a bus is commissioned into action or returned from duty, that is,
twice per bus ride.slide 1081

value
update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡

let (blid,bid,licn,leen,trace) = actσ(bno) in
actσ†[ bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉) ] end
pre bno ∈ dom actσ

slide 1082

14 In this way one can, from the bus history component ascertain for any bus which
for whom (sub-contractor), with respect to which license, it carried out a further
bus line and bus ride identified tour and its trace.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

K.8 A Bus Transport Contract Language 267

value
update FreeΣ ActΣ:

BNo×BusStop→BusΣ→BusΣ
update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡

let ( , , , ,trace) = actσ(b) in
let freeσ′ = freeσ†[ bs 7→ (freeσ(bs))∪{b} ] in
(freeσ′,actσ\{b}) end end
pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

slide 1083

value
update LorBusΣ:

LorNm×LicNm×lee:LeeNm×(BLId×BId)×(BNo×Trace)
→LorBusΣ→out {l to l[ leen,lorn ]|lorn:LorNm•lorn ∈ leenms\{leen}} LorΣ

update LorBusΣ(lorn,licn,leen,(blid,bid),(bno,tr))(lbσ) ≡
l to l[ leenm,lornm ]!Licensor BusHistΣMsg(bno,blid,bid,libn,leen,tr) ;
lbσ†[ leen7→(lbσ(leen))†[ licn7→((lbσ(leen))(licn))†[ (blid,bid)7→(bno,trace) ] ] ]
pre leen ∈ dom lbσ ∧ licn ∈ dom (lbσ(leen))

slide 1084

value
update ActΣ FreeΣ:

LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo
update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡

let bno:Bno • bno ∈ freeσ(bs) in
((freeσ\{bno},actvσ ∪ [ bno 7→(blid,bid,licnm,leenm,〈〉) ]),bno) end
pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ [ bs exists ... ]

Constant State Values slide 1085

There are a number of constant values, of various types, which characterise
the “business of contract holders”. We define some of these now.

246. For simplicity we assume a constant net — constant, that is, only with
respect to the set of identifiers links and hubs. These links and hubs ob-
viously change state over time.

247. We also assume a constant set, leens, of sub-contractors. In reality sub-
contractors, that is, transport companies, come and go, are established and
go out of business. But assuming constancy does not materially invalidate
our model. Its emphasis is on contracts and their implied actions — and
these are unchanged wrt. constancy or variability of contract holders.

248. There is an initial bus traffic, tr.
249. There is an initial time, t0, which is equal to or larger than the start of

the bus traffic tr.
250. To maintain the bus traffic “spelled out”, in total, by timetable tt one

needs a number of buses.
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251. The various bus companies (that is, sub-contractors) each have a number
of buses. Each bus, independent of ownership, has a unique (car number
plate) bus number (BusNo).
These buses have distinct bus (number [registration] plate) numbers.

252. We leave it to the reader to define a function which ascertain the minimum
number of buses needed to implement traffic tr.

slide 1086

value
246. net : N,
247. leens : LeeNm-set,
248. tr : BusTraffic, axiom wf Traffic(tr)(net)
249. t0 : T • t0 ≥ mindom tr,
250. min no of buses : Nat • necessary no of buses(itt),
251. busnos : BusNo-set • card busnos ≥ min no of buses

252. necessary no of buses: TT → Nat

slide 1087

253. To “bootstrap” the whole contract system we need a distinguished con-
tractor, named init leen, whose only license originates with a “ghost” con-
tractor, named root leen (o, for outside [the system]).

254. The initial, i.e., the distinguished, contract has a name, root licn.
255. The initial contract can only perform the "sublicense" operation.
256. The initial contract has a timetable, tt.
257. The initial contract can thus be made up from the above.

slide 1088

value
253. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
254. root licn : LicNm
255. iops : Op-set = {′′sublicense′′},
256. itt : TT,
257. init lic:License = (root licn,root leen,(iops,itt),init leen)

Initial Sub-contractor Contract States slide 1089

type
InitLicΣs = LeeNm →m LicΣ

value
ilσ:LicΣ=([ init leen 7→ [ root leen 7→ [ iln 7→ init lic ] ] ]

∪ [ leen 7→ [ ] | leen:LeeNm • leen ∈ leenms\{init leen} ],[ ],[ ])
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Initial Sub-contractor Bus States slide 1090

258. Initially each sub-contractor possesses a number of buses.
259. No two sub-contractors share buses.
260. We assume an initial assignment of buses to bus stops of the free buses

state component and for respective contracts.
261. We do not prescribe a “satisfiable and practical” such initial assignment

(ibσs).
262. But we can constrain ibσs.
263. The sub-contractor names of initial assignments must match those of ini-

tial bus assignments, allbuses.
264. Active bus states must be empty.
265. No two free bus states must share buses.
266. All bus histories are void.

slide 1091

type
258. AllBuses′ = LeeNm →m BusNo-set
259. AllBuses = {|ab:AllBuses′•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
260. InitBusΣs = LeeNm →m BusΣ
value
259. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

260. ibσs:InitBusΣs
261. wf InitBusΣs: InitBusΣs → Bool
262. wf InitBusΣs(iσs) ≡
263. dom iσs = leenms ∧
264. ∀ ( ,abσ, ):BusΣ•( ,abσ, ) ∈ rng iσs ⇒ abσ=[ ] ∧
265. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

265. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
265. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)
265. ⇒ rng fbiσ ∩ rng fbjσ = {}
266. ∧ actiσ=[ ]=actjσ

Communication Channels slide 1092

The running state is a meta notion. It reflects the channels over which con-
tracts are issued; messages about committed, cancelled and inserted bus rides
are communicated, and fund transfers take place. slide 1093

Sub-Contractor↔Sub-Contractor Channels Consider each sub-contractor
(same as contractor) to be modelled as a behaviour. Each sub-contractor (li-
censor) behaviour has a unique name, the LeeNm. Each sub-contractor can
potentially communicate with every other sub-contractor. We model each such
communication potential by a channel. For n sub-contractors there are thus
n × (n − 1) channels.
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channel { l to l[ fi,ti ] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi6=ti } LLMSG
type LLMSG = ...

We explain the declaration: channel { l to l[ fi,ti ] | fi:LeeNm, ti:LeeNm • fi 6=ti
} LLMSG. It prescribes n × (n − 1) channels (where n is the cardinality of
the sub-contractor name sets). Each channel is prescribed to be capable of
communicating messages of type MSG. The square brackets [...] defines l to l
(sub-contractor-to-sub-contractor) as an array.

We shall later detail the BusRideNote, CancelNote, InsertNote and FundXfer
message types.slide 1094

Sub-Contractor↔Bus Channels Each sub-contractor has a set of buses.
That set may vary. So we allow for any sub-contractor to potentially commu-
nicate with any bus. In reality only the buses allocated and scheduled by a
sub-contractor can be “reached” by that sub-contractor.

channel { l to b[ l,b ] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

slide 1095

Sub-Contractor↔Time Channels Whenever a sub-contractor wishes to
perform a contract operation that sub-contractor needs know the time. There
is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[ l ] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

slide 1096

Bus↔Traffic Channels Each bus is able, at any (known) time to ascertain
where in the traffic it is. We model bus behaviours as processes, one for each
bus. And we model global bus traffic as a single, separate behaviour.

channel { b to tr[ b ] | b:BusNo • b ∈ busnos } LTrMSG
type

BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

slide 1097

Buses↔Time Channel Each bus needs to know what time it is.

channel { b to t[ b ] | b:BNo • b ∈ busnos } BTMSG
type

BTMSG ...

Run-time Environment slide 1098

So we shall be modelling the transport contract domain as follows: As for
behaviours we have this to say. There will be n sub-contractors. One sub-
contractor will be initialised to one given license. You may think of this



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

K.8 A Bus Transport Contract Language 271

sub-contractor being the transport authority. Each sub-contractor is mod-
elled, in RSL, as a CSP-like process. With each sub-contractor, li, there will
be a number, bi, of buses. That number may vary from sub-contractor to
sub-contractor. There will be bi channels of communication between a sub-
contractor and that sub-contractor’s buses, for each sub-contractor. There is
one global process, the traffic. There is one channel of communication between
a sub-contractor and the traffic. Thus there are n such channels. slide 1099

As for operations, including behaviour interactions we assume the follow-
ing. All operations of all processes are to be thought of as instantaneous, that
is, taking nil time ! Most such operations are the result of channel communi-
cations either just one-way notifications, or inquiry requests. Both the former
(the one-way notifications) and the latter (inquiry requests) must not be in-
definitely barred from receipt, otherwise holding up the notifier. The latter
(inquiry requests) should lead to rather immediate responses, thus must not
lead to dead-locks.

The System Behaviour slide 1100

The system behaviour starts by establishing a number of licenseholder and
bus ride behaviours and the single time clock and bus traffic behaviours slide 1101

value
system: Unit → Unit
system() ≡

licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})
‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)

| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})
‖ time clock(t0) ‖ bus traffic(tr)

slide 1102

The initial licenseholder behaviour states are individually initialised with ba-
sically empty license states and by means of the global state entity bus states.
The initial bus behaviours need no initial state other than their bus regis-
tration number, a “nil” route prescription, and their allocation to contract
holders as noted in their bus states.

Only a designated licenseholder behaviour is initialised to a single, received
license.

K.8.6 Semantic Elaboration Functions slide 1103

The Licenseholder Behaviour

267. The licenseholder behaviour is a sequential, but internally non-deterministic
behaviour.
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268. It internally non-deterministically (⌈⌉) alternates between
(a) performing the licensed operations (on the net and with buses),
(b) receiving information about the whereabouts of these buses, and in-

forming contractors of its (and its subsub-contractors’) handling of
the contracts (i.e., the bus traffic), and

(c) negotiating new, or renewing old contracts.
slide 1104

267. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit
268. licenseholder(leen)(licσ,busσ) ≡
268. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

The Bus Behaviour slide 1105

269. Buses ply the network following a timed bus route description.
A timed bus route description is a list of timed bus stop visits.

270. A timed bus stop visit is a pair: a time and a bus stop.
271. Given a bus route and a bus schedule one can construct a timed bus route

description.
(a) The first result element is the first bus stop and origin departure time.
(b) Intermediate result elements are pairs of respective intermediate sched-

ule elements and intermediate bus route elements.
(c) The last result element is the last bus stop and final destination arrival

time.
272. Bus behaviours start with a “nil” bus route description.

slide 1106

type
269. TBR = TBSV∗

270. TBSV = Time × BusStop
value
271. conTBR: BusRoute × BusSched → TBR
271. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
271(a)) 〈(dt,bs1)〉
271(b)) ̂ 〈(til[ i ],bsl[ i ])|i:Nat•i:〈1..len til〉〉
271(c)) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type
272. BRD == ′′nil′′ | TBR

slide 1107

273. The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

274. The bus repeatedly observes the time, t, and its position, po, in the traffic.
275. There are now four case distinctions to be made.
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276. If the bus is idle (and a a bus stop) then it waits for a next route, brd′ on
which to engage.

277. If the bus is at the destination of its journey then it so informs its owner
(i.e., the sub-contractor) and resumes being idle.

278. If the bus is ‘en route’, at a bus stop, then it so informs its owner and
continues the journey.

279. In all other cases the bus continues its journey
slide 1108

value
273. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
273. in,out l to b[ leen,bno ], in,out b to tr[ bno ], in b to t[ bno ] Unit
273. bus ride(leen,bno)(licn,brd) ≡
274. let t = b to t[ bno ]? in
274. let (bus,pos) = (b to tr[ bno ]!reqBusAndPos(bno,t) ; b to tr[ bno ]?) in
275. case (brd,pos) of
276. (′′nil′′,mkAtBS( , , , )) →
276. let (licn,brd′) = (l to b[ leen,bno ]!reqBusRid(pos);l to b[ leen,bno ]?) in
276. bus ride(leen,bno)(licn,brd′) end
277. (〈(at,pos)〉,mkAtBS( , , , )) →
277s l to b[ l,b ]!BusΣMsg(t,pos);
277 l to b[ l,b ]!BusHistΣMsg(licn,bno);
277 l to b[ l,b ]!FreeΣ ActΣMsg(licn,bno) ;
277 bus ride(leen,bno)(ilicn,′′nil′′),
278. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS( , , , )) →
278s l to b[ l,b ]!BusΣMsg(t,pos) ;
278 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),
279. → bus ride(leen,bno)(licn,brd) end end end

slide 1109

In formula line 274 of bus ride we obtained the bus. But we did not use “that”
bus ! We we may wish to record, somehow, number of passengers alighting
and boarding at bus stops, bus fees paid, one way or another, etc. The bus,
which is a time-dependent entity, gives us that information. Thus we can revise
formula lines 277s and 278s:

Simple: 277s l to b[ l,b ]!BusΣMsg(pos);
Revised: 277r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

Simple: 278s l to b[ l,b ]!BusΣMsg(pos);
Revised: 278r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

type
Bus Info = Passengers × Passengers × Cash × ...

value
bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)
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It is time to discuss our description (here we choose the bus ride behaviour)
in the light of our claim of modeling “the domain”. These are our comments:

• First one should recognise, i.e., be reminded, that the narrative and formal
descriptions are always abstractions. That is, they leave out few or many
things. We, you and I, shall never be able to describe everything there is
to describe about even the simplest entity, operation, event or behaviour.

•
•
•

The Global Time Behaviour slide 1110

280. The time clock is a never ending behaviour — started at some time t0.
281. The time can be inquired at any moment by any of the licenseholder

behaviours and by any of the bus behaviours.
282. At any moment the time clock behaviour may not be inquired.
283. After a skip of the clock or an inquiry the time clock behaviour continues,

non-deterministically either maintaining the time or advancing the clock!

value
280. time clock: T →
280. in,out {l to t[ leen ] | leen:LeeNm • leen ∈ leenms}
280. in,out {b to t[ bno ] | bno:BusNo • bno ∈ busnos} Unit
280. time clock:(t) ≡
282. (skip ⌈⌉
281. (⌈⌉⌊⌋{l to t[ leen ]? ; l to t[ leen ]!t | leen:LeeNm•leen ∈ leens})
281. ⌈⌉ (⌈⌉⌊⌋{b to t[ bno ]? ; b to t[ bno ]!t | bno:BusNo•bno ∈ busnos})) ;
283. (time clock:(t) ⌈⌉ time clock(t+δt))

The Bus Traffic Behaviour slide 1111

284. There is a single bus traffic behaviour. It is, “mysteriously”, given a con-
stant argument, “the” traffic, tr.

285. At any moment it is ready to inform of the position, bps(b), of a bus, b,
assumed to be in the traffic at time t.

286. The request for a bus position comes from some bus.
287. The bus positions are part of the traffic at time t.
288. The bus traffic behaviour, after informing of a bus position reverts to “it-

self”.

value
284. bus traffic: TR → in,out {b to tr[ bno ]|bno:BusNo•bno ∈ busnos} Unit
284. bus traffic(tr) ≡
286. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[ b ]? in assert b=bno
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285. if time 6∈ dom tr then chaos else
287. let ( ,bps) = tr(t) in
285. if bno 6∈ dom tr(t) then chaos else
285. b to tr[ bno ]!bps(bno) end end end end | b:BusNo•b ∈ busnos} ;
288. bus traffic(tr)

License Operations slide 1112

289. The lic ops function models the contract holder choosing between and
performing licensed operations.
We remind the reader of the four actions that licensed operations may
give rise to; cf. the abstract syntax of actions, Sect. K.8.3 (Page 262).

290. To perform any licensed operation the sub-contractor needs to know the
time and

291. must choose amongst the four kinds of operations that are licensed.
The choice function, which we do not define, makes a basically non-
deterministic choice among licensed alternatives. The choice yields the
contract number of a received contract and, based on its set of licensed
operations, it yields either a simple action or a sub-contracting action.

292. Thus there is a case distinction amongst four alternatives.
293. This case distinction is expressed in the four lines identified by: 293.
294. All the auxiliary functions, besides the action arguments, require the same

state arguments.
slide 1113

value
289. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
289. lic ops(leen)(licσ,busσ) ≡
290. let t = (time channel(leen)!req Time;time channel(leen)?) in
291. let (licn,act) = choice(licσ)(busσ)(t) in
292. (case act of
293. mkCon(blid,bid) → cndct(licn,leenm,t,act),
293. mkCan(blid,bid) → cancl(licn,leenm,t,act),
293. mkIns(blid,bid) → insrt(licn,leenm,t,act),
293. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

Bus Monitoring slide 1114

Like for the bus ride behaviour we decompose the bus monitoring behaviour
into two behaviours. The local bus monitoring behaviour monitors the buses
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that are commissioned by the sub-contractor. The licensor bus monitoring
behaviour monitors the buses that are commissioned by sub-contractors sub-
contractd by the contractor.

value
bus mon: l:LeeNm → (LicΣ×BusΣ)

→ in {l to b[ l,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
bus mon(l)(licσ,busσ) ≡

local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

slide 1115

295. The local bus monitoring function models all the interaction between a
contract holder and its despatched buses.

296. We show only the communications from buses to contract holders.
297.
298.
299.
300.
301.
302.
303.
304.
305.

slide 1116

295. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
296. → in {l to b[ leen,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
295. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
297. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[ l,b ]?)|b:BNo•b ∈ allbuses(leen)} in
301. let (blid,bid,licn,lorn,trace) = abσ(bno) in
298. case msg of
299. BusΣMsg(t,bs) →
303. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in
303. (licσ,(fbσ,abσ′,histσ)) end,
305. BusHistΣMsg(licn,bno) →
305. let lbσ′ =
305. update LorBusΣ(obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in
305. l to l[ leen,obs LorNm(licn) ]!Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
305. ((rlσ,slσ,lbσ′),busσ) end
304. FreeΣ ActΣMsg(licn,bno) →
305. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in
305. (licσ,(fbσ′,abσ′)) end
305. end end end

slide 1117

306.
307.
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308.
309.
310.

slide 1118

306. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
306. → in {l to l[ lorn,leen ]|leen:LeeNm•leen ∈ leenms\{lorn}} (LicΣ×BusΣ)
306. licensor bus mon(lorn)(licσ,busσ) ≡
306. let (rlσ,slσ,lbhσ) = licσ in
306. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))

= ⌈⌉⌊⌋{(leen′,l to l[ lorn,leen′ ]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in
306. let lbhσ′ =
306. update BusHistΣ(obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in
306. l to l[ leenm,obs LorNm(licnm) ]!Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
306. ((rlσ,slσ,lbhσ′),busσ)
306. end end end

License Negotiation slide 1119

311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.

slide 1120

311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

278 K Scripts, Licenses and Contracts

The Conduct Bus Ride Action slide 1121

323. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that the timetable in the contract named ln does

indeed provide a journey, j, indexed by bli and (then) bi, and that that
journey starts (approximately) at time t′ which is the same as or later
than t.

(c) Being so the action results in the contractor, whose name is “embed-
ded” in ln, receiving notification of the bus ride commitment.

(d) Then a bus, selected from a pool of available buses at the bust stop of
origin of journey j, is given j as its journey script, whereupon that bus,
as a behaviour separate from that of sub-contractor li, commences its
ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this is
reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ notifi-
cation, records the bus as no longer in actions but available at the
destination bus stop.

slide 1122

323.
323(a))
323(b))
323(c))
323(d))
323(e))
323(f))
323(g))

The Cancel Bus Ride Action slide 1123

324. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First a check like that prescribed in Item 323(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the bus ride can-
cellation.
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That’s all !
slide 1124

324.
324(a))
324(b))
324(c))

The Insert Bus Ride Action slide 1125

325. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes place in
a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First a check like that prescribed in Item 323(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the new bus ride
commitment.

(d) The rest of the effect is like that prescribed in Items 323(d))–323(g)).
slide 1126

325.
325(a))
325(b))
325(c))
325(d))

The Contracting Action slide 1127

326. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes
place in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that timetable tt is a subset of the timetable con-

tained in, and that the operations ops are a subset of those granted
by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,tt′),li′).
ln′ is a unique new contract name computed on the basis of ln, li, and
t. li′ is a sub-contractor name chosen by contractor li. tt′ is a timetable
chosen by contractor li. ops′ is a set of operations likewise chosen by
contractor li.

(d) This contract is communicated by contractor li to sub-contractor li′.
(e) The receipt of that contract is recorded in the license state.
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(f) The fact that the contractor has sublicensed part (or all) of its obli-
gation to conduct bus rides is recorded in the modified component of
its received contracts.

slide 1128

326.
326(a))
326(b))
326(c))
326(d))
326(e))
326(f))

K.8.7 Discussion slide 1129

slide 1130
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Human Behaviour slide 1132

Chapter 15 (Pages 119–120) complements the present appendix. slide 1133
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From Domains to Requirements slide 1135

Chapter 20 (Pages 135–137) complements the present appendix.

M.1 Shared Phenomena and Concepts slide 1136

We (backward) refer to methodology Sect. 20.3 on page 135. It provides the
methodological background for the present section.

M.2 Domain Requirements slide 1137

We (backward) refer to methodology Sect. 20.4 on page 136. It provides the
methodological background for the present section.

M.3 Interface Requirements slide 1138

We (backward) refer to methodology Sect. 20.5 on page 136. It provides the
methodological background for the present section.

M.4 Machine Requirements slide 1139

We (backward) refer to methodology Sect. 20.6 on page 136. It provides the
methodological background for the present section.

M.5 Discussion slide 1140

slide 1141
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Wrapping it All Up ! slide 1143

slide 1144
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An RSL Primer slide 1146

This is an ultra-short introduction to the RAISE Specification Language, RSL.

O.1 Types and Values slide 1147

Simplifying we consider a type to be a class (a possibly infinite set) of values,
i.e., a set characterised by some unifying properties. Values are then instances
of “things” that satisfy such properties. Examples of values are the numbers
denoted by the numerals: 0, 1, 2, . . . , etc.; the numbers denoted by the nu-
merals: . . . , -2, -1, 0, 1, 2, . . . , etc.; and the numbers denoted by the numerals:
. . . , -5.43, -1.0, 0.0, 1.23· · ·, 2,71828183· · ·, 3,14159265· · ·, 4.56 . . . , etc. We
shall refer to the types of these three example sets by the type names Nat,
Int, Real. As we shall soon see, there are an infinity of types.

O.1.1 Some Distinctions slide 1148

We distinguish between discrete and continuous types and hence between
discrete and continuous values. By a discrete value we mean a value which
is either atomic discrete or composite discrete: an atomic discrete value is a
value which we are not interested in decomposing into components as it makes
no sense for us to do so; a composite discrete value is a value which can be
decomposed into (one or more) components which are all discrete values. slide 1149

By a continuous value we mean a value which is either atomic continuous or
composite continuous: an atomic continuous value is a value which we are not
interested in decomposing into components as it makes no sense for us to do
so and where the values of the type lie in some dense point space; a composite
continuous value is a value which can be decomposed into meaningful (one or
more) components some of which (one or more) are continuous values. slide 1150
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Oil Industry Example 1: Atomic and Composite Types and Values
A pipe is a composite continuous value which consists ofa pipe structure

and some oil; the former being of discrete atomic value while the latter is a
continuous atomic value:“from no oil, via a tiny drop of oil, and more, say
a gallon and a third of oil, to several million barrels of oil”. Similarly for
pumps, valves, depots, etc.: all are composite continuous values consisting
of corresponding discrete atomic structures and continuous atomic valued
(amounts of) oil.

O.1.2 An Aside slide 1151

You might mistakenly think that continuous atomic values are composed from
“subsegments” or “subspaces” or “subvolumes”, etc., of continuous atomic val-
ues. Consider the following examples: (i) Crude oil: one can decompose crude
oil into a very large number of molecules (of different hydrocarbons); the most
commonly found molecules are alkanes (linear or branched), cycloalkanes, aro-
matic hydrocarbons, or more complicated chemicals like asphaltenes; but it is
not a decomposition of a liter of crude oil to divide it up into ten deciliters.
But if our choice of abstraction ignores the molecular structure of oil, then
oil has an atomic, continuous value. (ii) Time: one can decompose time intoslide 1152

years, months, weeks, days, hours, minutes and seconds; but if our choice of
abstraction ignores these units, and just considers the time axis to be a lin-
early ordered dense set of points, then time has an atomic, continuous value.
Thus we must consider the operations to be (i.e., that we wish) performed
on what may appear as continuous values in order to determine our abstrac-
tion: either as atomic continuous values or as composite continuous values.slide 1153

Operations on oil divide a volume of oil into a set of two or more volumes of
oil, displaces a volume of oil from one location into a (usually neighbouring)
locations, etc. Operations on time calculates the time interval between two
time points, adds an interval of time to time to obtain another time, etc. But
in all these examples oil, respectively time remain atomic, continuous values.

O.2 Types slide 1154

The reader is kindly asked to first study the decomposition of this section into
its sub-parts and sub-sub-parts.

O.2.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite
sets of values (of “that” type).
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Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have
no proper constituent (sub-)values, i.e., cannot, to us, be meaningfully “taken
apart”.

RSL has a number of built-in atomic types. There are the Booleans, inte-
gers, natural numbers, reals, characters, and texts. slide 1155

type
[ 1 ] Bool true, false
[ 2 ] Int ... , −2, −2, 0, 1, 2, ...
[ 3 ] Nat 0, 1, 2, ...
[ 4 ] Real ..., −5.43, −1.0, 0.0, 1.23· · ·, 2,7182· · ·, 3,1415· · ·, 4.56, ...
[ 5 ] Char ”a”, ”b”, ..., ”0”, ...
[ 6 ] Text ”abracadabra”

slide 1156

Oil Industry Example 2: Atomic Discrete Types

type
DrainPumpStruct, PipeStruct, ValveStruct, FlowPumpStruct,
FillPumpStruct, DepotStruct, SwitchStruct, ...

Oil Industry Example 3: Atomic Continuous Types

type
Time
Oil, Gasoline, Gas, Ethanol, ...

Composite Types slide 1157

Composite types have composite values. That is, values which we consider to
have proper constituent (sub-)values, i.e., can be meaningfully “taken apart”.
There are two ways of expressing composite types: either explicitly, using
concrete type expressions, or implicitly, using sorts (i.e., abstract types) and
observer functions.
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Concrete Composite Types slide 1158

From these one can form type expressions: finite sets, infinite sets, Cartesian
products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

[ 7 ] A-set
[ 8 ] A-infset
[ 9 ] A × B × ... × C
[ 10 ] A∗

[ 11 ] Aω

[ 12 ] A →m B
[ 13 ] A → B

[ 14 ] A
∼

→ B
[ 15 ] (A)
[ 16 ] A | B | ... | C
[ 17 ] mk id(sel a:A,...,sel b:B)
[ 18 ] sel a:A ... sel b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., –2, –1, 0, 1, 2, ... .
3. The natural number type of positive integer values 0, 1, 2, ...
4. The real number type of real values, i.e., values whose numerals can be

written as an integer, followed by a period (“.”), followed by a natural
number (the fraction).

5. The character type of character values ′′a′′, ′′b′′, ...
6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7. The set type of finite cardinality set values.
8. The set type of infinite and finite cardinality set values.
9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.
11. The list type of infinite and finite length list values.
12. The map type of finite definition set map values.
13. The function type of total function values.
14. The function type of partial function values.
15. In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type
expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A →m B),
or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E →m F)), etc.

16. The postulated disjoint union of types A, B, . . . , and C.
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17. The record type of mk id-named record values mk id(av,...,bv), where av,
. . . , bv, are values of respective types. The distinct identifiers sel a, etc.,
designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, . . . , bv,
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

slide 1159

Sorts and Observer Functions

type
A, B, C, ..., D

value
obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three
values — and these are of type B, C, . . . , and D. A concrete type definition
corresponding to the above presupposing material of the next section

type
B, C, ..., D
A = B × C × ... × D

O.2.2 Type Definitions slide 1160

Concrete Types

Types can be concrete in which case the structure of the type is specified by
type expressions:

type
A = Type expr

Some schematic type definitions are:

[ 1 ] Type name = Type expr /∗ without | s or subtypes ∗/
[ 2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[ 3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[ 4 ] Type name :: sel a:Type name a ... sel z:Type name z
[ 5 ] Type name = {| v:Type name′ • P(v) |}

slide 1161

where a form of [2–3] is provided by combining the types:
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Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are
distinct and due to the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Subtypes slide 1162

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P , constitute the subtype A:

type
A = {| b:B • P(b) |}

Sorts — Abstract Types slide 1163

Types can be (abstract) sorts in which case their structure is not specified:

type
A, B, ..., C

O.3 The RSL Predicate Calculus slide 1164

O.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values (true or false [or chaos]). Then:

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6=
are Boolean connectives (i.e., operators). They can be read as: not, and, or,
if then (or implies), equal and not equal.
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O.3.2 Simple Predicate Expressions slide 1165

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values and
let i, j, . . ., k designate number values, then:

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

O.3.3 Quantified Expressions slide 1166

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and
R(z) designate predicate expressions in which x, y and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds;

there exists (at least) one y (value in type Y ) such that the predicate Q(y)
holds; and there exists a unique z (value in type Z) such that the predicate
R(z) holds.

O.4 Concrete RSL Types: Values and Operations slide 1167

O.4.1 Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼

→Nat | Int×Int
∼

→Int | Real×Real
∼

→Real
<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)
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O.4.2 Set Expressions slide 1168

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple
set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension slide 1169

The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate.
It is abstract in the sense that it does not do so by following a concrete
algorithm.

type
A, B
P = A → Bool

Q = A
∼

→ B
value

comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

O.4.3 Cartesian Expressions slide 1170

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the
below expressions are simple Cartesian enumerations:

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)
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O.4.4 List Expressions slide 1171

List Enumerations

Let a range over values of type A, then the below expressions are simple list
enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then
expresses the set of integers from the value of ei to and including the value of
ej . If the latter is smaller than the former, then the list is empty.

List Comprehension slide 1172

The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼

→ B
value

comprehend: Aω × P × Q
∼

→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

O.4.5 Map Expressions slide 1173

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T 2, respec-
tively, then the below expressions are simple map enumerations:

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [ u7→v ], ..., [ u1 7→v1,u2 7→v2,...,un7→vn ] ∀ ∈ M
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Map Comprehension slide 1174

The last line below expresses map comprehension:

type
U, V, X, Y
M = U →m V

F = U
∼

→ X

G = V
∼

→ Y
P = U → Bool

value
comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]

O.4.6 Set Operations slide 1175

Set Operator Signatures

value
19 ∈: A × A-infset → Bool
20 6∈: A × A-infset → Bool
21 ∪: A-infset × A-infset → A-infset
22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool
27 ⊆: A-infset × A-infset → Bool
28 =: A-infset × A-infset → Bool
29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼

→ Nat

Set Examples slide 1176

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
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{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

Informal Explication slide 1177

19. ∈: The membership operator expresses that an element is a member of a
set.

20. 6∈: The nonmembership operator expresses that an element is not a mem-
ber of a set.

21. ∪: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets.

22. ∪: The distributed prefix union operator. When applied to a set of sets,
the operator gives the set whose members are in some of the operand sets.

23. ∩: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.

24. ∩: The prefix distributed intersection operator. When applied to a set of
sets, the operator gives the set whose members are in some of the operand
sets. slide 1178

25. \: The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.

26. ⊆: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

27. ⊂: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

28. =: The equal operator expresses that the two operand sets are identical.
29. 6=: The nonequal operator expresses that the two operand sets are not

identical.
30. card: The cardinality operator gives the number of elements in a finite

set.

Set Operator Definitions slide 1179

The operations can be defined as follows (≡ is the definition symbol):

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
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s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

O.4.7 Cartesian Operations slide 1180

type
A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

O.4.8 List Operations slide 1181

List Operator Signatures

value

hd: Aω ∼

→ A

tl: Aω ∼

→ Aω

len: Aω ∼

→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼

→ A
̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool
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List Operation Examples slide 1182

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication slide 1183

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in

a list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a

number of elements larger than or equal to i, gives the ith element of the
list. slide 1184

• ̂: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.
• 6=: The nonequal operator expresses that the two operand lists are not

identical.

The operations can also be defined as follows:

List Operator Definitions slide 1185

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end
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inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

slide 1186

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

O.4.9 Map Operations slide 1187

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼

→ B, m(a) = b

dom: M → A-infset [ domain of map ]
dom [ a1 7→b1,a2 7→b2,...,an7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [ a1 7→b1,a2 7→b2,...,an7→bn ] = {b1,b2,...,bn}

†: M × M → M [ override extension ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ] † [ a′7→b′′,a′′7→b′ ] = [ a 7→b,a′7→b′′,a′′7→b′ ]

slide 1188

∪: M × M → M [ merge ∪ ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ] ∪ [ a′′′7→b′′′ ] = [ a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

O.4 Concrete RSL Types: Values and Operations 305

\: M × A-infset → M [ restriction by ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ]\{a} = [ a′7→b′,a′′ 7→b′′ ]

/: M × A-infset → M [ restriction to ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ]/{a′,a′′} = [ a′7→b′,a′′ 7→b′′ ]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [ composition ]
[ a 7→b,a′7→b′ ] ◦ [ b7→c,b′7→c′,b′′7→c′′ ] = [ a 7→c,a′7→c′ ]

Map Operation Explication slide 1189

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a

map.
• rng: Range/Image Set gives the set of values which are mapped to in a

map.
• †: Override/Extend. When applied to two operand maps, it gives the map

which is like an override of the left operand map by all or some “pairings”
of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these
maps. slide 1190

• \: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

• =: The equal operator expresses that the two operand maps are identical.
• 6=: The nonequal operator expresses that the two operand maps are not

identical.
• ◦: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, m1, to the range elements
of the right operand map, m2, such that if a is in the definition set of m1

and maps into b, and if b is in the definition set of m2 and maps into c,
then a, in the composition, maps into c.

Map Operation Redefinitions slide 1191

The map operations can also be defined as follows:
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value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

O.5 λ-Calculus + Functions slide 1192

O.5.1 The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

O.5.2 Free and Bound Variables slide 1193

Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).
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O.5.3 Substitution slide 1194

In RSL, the following rules for substitution apply:

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P )) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

O.5.4 α-Renaming and β-Reduction slide 1195

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M). We can rename the formal parameter of a λ-function
expression provided that no free variables of its body M thereby become
bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (λx•M)(N)
≡ subst([N/x]M)

O.5.5 Function Signatures slide 1196

For sorts we may want to postulate some functions:

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: B×C → A

O.5.6 Function Definitions slide 1197

Functions can be defined explicitly:
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value
f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼

→ Result
g(args) ≡ ValueAndStateChangeClause
pre P(args)

slide 1198

Or functions can be defined implicitly:

value
f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼

→ Result
g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼

→ indicates that the function is partial and thus not defined for
all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

O.6 Other Applicative Expressions slide 1199

O.6.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

O.6.2 Recursive let Expressions slide 1200

Recursive let expressions are written as:
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let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

O.6.3 Predicative let Expressions slide 1201

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

O.6.4 Pattern and “Wild Card” let Expressions slide 1202

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [ a 7→b ] ∪ m = map in ... end
let [ a 7→b, ] ∪ m = map in ... end

O.6.5 Conditionals slide 1203

Various kinds of conditional expressions are offered by RSL:
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if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

O.6.6 Operator/Operand Expressions slide 1204

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

O.7 Imperative Constructs slide 1205

O.7.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly
abstract-applicative constructs which, through stages of refinements, are
turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.
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Unit
value

stmt: Unit → Unit
stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit → Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an argu-

ment of type Unit.

O.7.2 Variables and Assignment slide 1206

0. variable v:Type := expression
1. v := expr

O.7.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement
having no value or side-effect.

2. skip
3. stm 1;stm 2;...;stm n

O.7.4 Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

O.7.5 Iterative Conditionals slide 1207

6. while expr do stm end
7. do stmt until expr end

O.7.6 Iterative Sequencing

8. for e in list expr • P(b) do S(b) end
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O.8 Process Constructs slide 1208

O.8.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel
array indexes, then:

channel c:A
channel { k[ i ]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of commu-
nicating values of the designated types (A and B).

O.8.2 Process Composition slide 1209

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, thereby commu-
nicating over declared channels. Let P() and Q stand for process expressions,
then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice be-
tween two processes: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖)
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.

O.8.3 Input/Output Events slide 1210

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an
input, respectively “writes” an output.
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O.8.4 Process Definitions slide 1211

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

value
P: Unit → in c out k[ i ]
Unit
Q: i:KIdx → out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

O.9 Simple RSL Specifications slide 1212

Often, we do not want to encapsulate small specifications in schemes, classes,
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, values (including functions), variables, channels and
axioms:

type
...

variable
...

channel
...

value
...

axiom
...

slide 1213
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Petri Nets slide 1214



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

Q

MSC: Message Sequence Charts slide 1215
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DC: Duration Caluculus slide 1216
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S

Solution to Exercises slide 1217

S.1 Some Development Paradigms

S.1.1 What is a Domain?

The below suggests an answer to Exercise 1.10.1 on page 33.

S.1.2 Are These Domains?

The below suggests an answer to Exercise 1.10.2 on page 34.

0.1. Programming: Yes. Has simple entities (programmers, programs, compil-
ers, etc.), has operations (writing a program, program syntax and type
checking, compiling, debugging a program, etc.), events (program compi-
lation ended successefully, or did not end successfully, etc.), has behaviours
(program writing followed by syntax and type checking, compiling, debug-
ging, etc.).

0.2. Compilers: No. A compiler is a simple entity, but it is a inert piece of
software; it itself has not operations, no events, no behaviour; but, as a
simple entity, it enters into operations (“outside” itself), is implicitly the
cause of events and, as a simple entity, enters into behaviours.

0.3. Compiler Writing: Yes. For same reason as ‘Programming’.
0.4. Patient Hospitalisation: Yes. Has simple entities (hospitals, wards, beds,

medicine, patient medical records, etc.), has operations (annamnese, anal-
ysis, diagnoses, treatment planning, treatment, etc.), events (blood pres-
sure goes above acceptable level, blood sugar content goes below accept-
able level, enters or leaves coma, death, patient is declared “fresh” (can
leave hospital), etc.), behaviours (patients, medical staff, patient hospital-
isations, etc.).



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

324 S Solution to Exercises

S.1.3 The Triptych Paradigm

The below suggests an answer to Exercise 1.10.3 on page 34.

S.1.4 The Three Phases of Software Development

The below suggests an answer to Exercise 1.10.4 on page 34.

S.1.5 Domain Engineering

The below suggests an answer to Exercise 1.10.5 on page 34.

S.1.6 Requirements Engineering

The below suggests an answer to Exercise 1.10.6 on page 34.

S.1.7 Software Design

The below suggests an answer to Exercise 1.10.7 on page 34.

S.1.8 What is a Model

The below suggests an answer to Exercise 1.10.8 on page 34.

S.1.9 Phase of Development

The below suggests an answer to Exercise 1.10.9 on page 34.

S.1.10 Stage of Development

The below suggests an answer to Exercise 1.10.10 on page 34.

S.1.11 Step of Development

The below suggests an answer to Exercise 1.10.11 on page 34.

S.1.12 Development Documents

The below suggests an answer to Exercise 1.10.12 on page 35.

S.1.13 Descriptions, Prescriptions and Specifications

The below suggests an answer to Exercise 1.10.13 on page 35.
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S.1.14 Software

The below suggests an answer to Exercise 1.10.14 on page 35.

S.1.15 Informal and Formal Software Development

The below suggests an answer to Exercise 1.10.15 on page 35.

S.1.16 Specification Ontology

The below suggests an answer to Exercise 1.10.16 on page 35.
The four kinds of phenomena and concepts around which our informal (i.e.,

narrative) and formal descriptions, prescriptions and specifications evolve are:

• simple entities,
• operation (i.e., functions),
• events and
• behaviours.

S.1.17 Discreteness

The below suggests an answer to Exercise 1.10.17 on page 35.
An entity is discrete if it is timewise fixed, i.e., does not change structure

with time but could change value of possible sub-entities or of atttributes.

S.1.18 Continuous

The below suggests an answer to Exercise 1.10.18 on page 35.
An entity is continuous if it is timewise variable, i.e., changes structure

with time, or if any subpart of it is also an entity of the same structure.

S.1.19 Discrete and Continuous Entities

The below suggests an answer to Exercise 1.10.19 on page 35.

0.1.
0.2.
0.3.
0.4.
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S.1.20 Operations on Time and Time Intervals

The below suggests an answer to Exercise 1.10.20 on page 36.

type
T, TI [ We excluide the possibility of negative times and time intervals ]

value
t0:T

axiom
∀ t:T • t≥t0

value
convert t to ti: T → TI
convert t to ti(t) ≡ t − t0
+: ((T×TI) → T) | ((TI×TI) → TI)

−: (((T×T)(TI×TI))
∼

→ TI) | ((T×TI)
∼

→ T)
pre −(t,t′): t≥t′, −(ti,ti′): ti≥ti′, −(t,ti′): convert t to ti(t)≥ti

/: (TI×TI) → Real
∗: (TI×Real) → TI
<,≤,=,≥,>: ((T×T)|(TI×TI)) → Bool

t0 models an origin of time.

S.1.21 Operations on Oil and Gas

The below suggests an answer to Exercise 1.10.21 on page 36.

type
Oil, Gas

value
obs Amount: (Oil|Gas) → mol
+: ((Oil×Oil)→Oil) | ((Gas×Gas)→Gas)

−: ((Oil×Oil)
∼

→Oil) | ((Gas×Gas)
∼

→Gas)
pre −(og,og′): obs Amount(og)≥obs Amount(og′)

∗: ((Oil×Real)→Oil) | ((Gas×Real)→Gas)
/: ((Oil×Oil)→Real) | ((Gas×Gas)→Real)
/: ((Oil×Real)→Oil) | ((Gas×Real)→Gas)

axiom
∀ g,g′:Gas, o,o′:Oil •

obs Amount(g+g′)=obs Amount(g)+obs Amount(g′) ∧
obs Amount(o+o′)=obs Amount(o)+obs Amount(o′) ∧
obs Amount(g−g′)=obs Amount(g)−obs Amount(g′) ∧
obs Amount(o−o′)=obs Amount(o)−obs Amount(o′)

∀ g,g′:Gas, g,g′:Gas, r:Real • g′∗(g/g′)=g ∧ o′∗(o/o′)=o
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S.1.22 Simple Entities

The below suggests an answer to Exercise 1.10.22 on page 36.

S.1.23 Operations

The below suggests an answer to Exercise 1.10.23 on page 36.

S.1.24 Events

The below suggests an answer to Exercise 1.10.24 on page 36.

S.1.25 Behaviours

The below suggests an answer to Exercise 1.10.25 on page 36.

S.1.26 Atomic and Composite Entities

The below suggests an answer to Exercise 1.10.26 on page 36.

S.1.27 Mereology

The below suggests an answer to Exercise 1.10.27 on page 36.
See characterisation 31 on page 20: by mereology we understand a theory

of part-hood relations. That is, of the relations of part to whole and the
relations of part to part within a whole.

S.1.28 Operations Research (OR)

The below suggests an answer to Exercise 1.10.28 on page 37.
See Sect. 1.8.1 on page 32.

S.1.29 OR versus Domain Modelling

The below suggests an answer to Exercise 1.10.29 on page 37.
‘OR Modelling’ usually use classical applied mathematics: calculus ([par-

tial] differential equations), statistics, probability theory, graph theory, com-
binatorics, signal analysis, theory of flows in networks, etcetera.

‘Domain Modelling’ use formal specifications and emphasises applied
mathematical logic and modern algebra.

See Characterisation. 5 on page 5 and Sect. 1.8.3 on page 32.

S.2 Informative Documents
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S.2.1 1.a

The below suggests an answer to Exercise 3.18.1 on page 65.

S.2.2 1.b

The below suggests an answer to Exercise 3.18.2 on page 65.

S.2.3 1.c

The below suggests an answer to Exercise 3.18.3 on page 65.

S.2.4 1.d

The below suggests an answer to Exercise 3.18.4 on page 65.

S.3 Stakeholder Identification and Liaison

S.3.1 2.a

The below suggests an answer to Exercise 4.7.1 on page 68.

S.3.2 2.b

The below suggests an answer to Exercise 4.7.2 on page 68.

S.3.3 2.c

The below suggests an answer to Exercise 4.7.3 on page 68.

S.3.4 2.d

The below suggests an answer to Exercise 4.7.4 on page 68.

S.4 Domain Acquisition

S.4.1 3.a

The below suggests an answer to Exercise 5.8.1 on page 73.
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S.4.2 3.b

The below suggests an answer to Exercise 5.8.2 on page 73.

S.4.3 3.c

The below suggests an answer to Exercise 5.8.3 on page 73.

S.4.4 3.d

The below suggests an answer to Exercise 5.8.4 on page 73.

S.5 Business Processes

S.5.1 4.a

The below suggests an answer to Exercise 6.7.1 on page 76.

S.5.2 4.b

The below suggests an answer to Exercise 6.7.2 on page 76.

S.5.3 4.c

The below suggests an answer to Exercise 6.7.3 on page 76.

S.5.4 4.d

The below suggests an answer to Exercise 6.7.4 on page 76.

S.6 Domain Analysis and Concept Formation

S.6.1 5.a

The below suggests an answer to Exercise 7.6.1 on page 81.

S.6.2 5.b

The below suggests an answer to Exercise 7.6.2 on page 81.
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S.6.3 5.c

The below suggests an answer to Exercise 7.6.3 on page 81.

S.6.4 5.d

The below suggests an answer to Exercise 7.6.4 on page 81.

S.7 Terminology

S.7.1 6.a

The below suggests an answer to Exercise 8.8.1 on page 84.

S.7.2 6.b

The below suggests an answer to Exercise 8.8.2 on page 84.

S.7.3 6.c

The below suggests an answer to Exercise 8.8.3 on page 85.

S.7.4 6.d

The below suggests an answer to Exercise 8.8.4 on page 85.

S.8 Domain Intrinsics

S.8.1 7.a

The below suggests an answer to Exercise 10.5.1 on page 94.

S.8.2 7.b

The below suggests an answer to Exercise 10.5.2 on page 94.

S.8.3 7.c

The below suggests an answer to Exercise 10.5.3 on page 94.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

S.10 Domain Management and Organisation 331

S.8.4 7.d

The below suggests an answer to Exercise 10.5.4 on page 94.

S.9 Domain Support Technologies

S.9.1 8.a

The below suggests an answer to Exercise 11.6.1 on page 98.

S.9.2 8.b

The below suggests an answer to Exercise 11.6.2 on page 98.

S.9.3 8.c

The below suggests an answer to Exercise 11.6.3 on page 98.

S.9.4 8.d

The below suggests an answer to Exercise 11.6.4 on page 98.

S.10 Domain Management and Organisation

S.10.1 9.a

The below suggests an answer to Exercise 12.5.1 on page 107.

S.10.2 9.b

The below suggests an answer to Exercise 12.5.2 on page 107.

S.10.3 9.c

The below suggests an answer to Exercise 12.5.3 on page 107.

S.10.4 9.d

The below suggests an answer to Exercise 12.5.4 on page 107.
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S.11 Domain Rules and Regulations

S.11.1 10.a

The below suggests an answer to Exercise 13.7.1 on page 112.

S.11.2 10.b

The below suggests an answer to Exercise 13.7.2 on page 112.

S.11.3 10.c

The below suggests an answer to Exercise 13.7.3 on page 112.

S.11.4 10.d

The below suggests an answer to Exercise 13.7.4 on page 112.

S.12 Domain Scripts and Contracts

S.12.1 11.a

The below suggests an answer to Exercise 14.5.1 on page 117.

S.12.2 11.b

The below suggests an answer to Exercise 14.5.2 on page 117.

S.12.3 11.c

The below suggests an answer to Exercise 14.5.3 on page 117.

S.12.4 11.d

The below suggests an answer to Exercise 14.5.4 on page 117.

S.13 Domain Human Behaviour



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

S.15 Domain Validation 333

S.13.1 12.a

The below suggests an answer to Exercise 15.6.1 on page 120.

S.13.2 12.b

The below suggests an answer to Exercise 15.6.2 on page 120.

S.13.3 12.c

The below suggests an answer to Exercise 15.6.3 on page 120.

S.13.4 12.d

The below suggests an answer to Exercise 15.6.4 on page 120.

S.14 Domain Verification

S.14.1 13.a

The below suggests an answer to Exercise 16.7.1 on page 123.

S.14.2 13.b

The below suggests an answer to Exercise 16.7.2 on page 123.

S.14.3 13.c

The below suggests an answer to Exercise 16.7.3 on page 123.

S.14.4 13.d

The below suggests an answer to Exercise 16.7.4 on page 123.

S.15 Domain Validation

S.15.1 14.a

The below suggests an answer to Exercise 17.3.1 on page 125.
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S.15.2 14.b

The below suggests an answer to Exercise 17.3.2 on page 125.

S.15.3 14.c

The below suggests an answer to Exercise 17.3.3 on page 125.

S.15.4 14.d

The below suggests an answer to Exercise 17.3.4 on page 125.

S.16 Domain Theory Formation

S.16.1 15.a

The below suggests an answer to Exercise 18.3.1 on page 127.

S.16.2 15.b

The below suggests an answer to Exercise 18.3.2 on page 127.

S.16.3 15.c

The below suggests an answer to Exercise 18.3.3 on page 127.

S.16.4 15.d

The below suggests an answer to Exercise 18.3.4 on page 127.

S.17 Domain Engineering: A Postludium

S.17.1 15.a.x

The below suggests an answer to Exercise 19.6.1 on page 132.

S.17.2 15.b.x

The below suggests an answer to Exercise 19.6.2 on page 132.
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S.17.3 15.c.x

The below suggests an answer to Exercise 19.6.3 on page 132.

S.17.4 15.d.x

The below suggests an answer to Exercise 19.6.4 on page 132.

S.18 From Domains to Requirements

S.18.1 16.a

The below suggests an answer to Exercise 20.9.1 on page 137.

S.18.2 16.b

The below suggests an answer to Exercise 20.9.2 on page 137.

S.18.3 16.c

The below suggests an answer to Exercise 20.9.3 on page 137.

S.18.4 16.d

The below suggests an answer to Exercise 20.9.4 on page 137.

S.19 Summary and Conclusion

S.19.1 17.a

The below suggests an answer to Exercise 21.6.1 on page 141.

S.19.2 17.b

The below suggests an answer to Exercise 21.6.2 on page 141.

S.19.3 17.c

The below suggests an answer to Exercise 21.6.3 on page 141.

S.19.4 17.d

The below suggests an answer to Exercise 21.6.4 on page 141.
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Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of do-
main and requirements specification, refinement and verification, are dealt
with in Alloy: [106], ASM: [161, 162], B/event B: [2, 45], CSP [95, 167, 169, 96],
DC [196, 197] (Duration Calculus), Live Sequence Charts [55, 87, 110], Mes-
sage Sequence Charts [102, 103, 104], RAISE [72, 74, 25, 26, 27, 71, 33] (RSL),
Petri nets [108, 152, 158, 157, 159], Statecharts [83, 84, 86, 88, 85], Temporal
Logic of Reactive Systems [128, 129, 144, 155], TLA+ [115, 116, 134, 135]
(Temporal Logic of Actions), VDM [36, 37, 69, 68], and Z [173, 174, 194, 93,
92]. Techniques for integrating “different” formal techniques are covered in
[7, 77, 43, 41, 166]. The recent book on Logics of Specification Languages [35]
covers ASM, B/event B, CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.
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U

Glossary

U.1 Categories of Reference Lists

On Glossaries, Dictionaries, Encyclopædia, Ontologies,
Taxonomies, Terminologies and Thesauri

An important function of glossaries, dictionaries, etc., is to make sure that
terms that may seem esoteric do not remain so.

Esoteric: designed for or understood by the specially initiated alone,
of or relating to knowledge that is restricted to a small group,

limited to a small circle

Merriam–Webster’s Collegiate Dictionary [179]

U.1.1 Glossary

According to [123] a gloss is “a word inserted between the lines or in the
margin as an explanatory rendering of a word in the text; hence a similar
rendering in a glossary or dictionary. Also, a comment, explanation, interpre-
tation.” Furthermore according to [123] a glossary is therefore “a collection of
glosses, a list with explanations of abstruse, antiquated, dialictical, or technical
terms; a partial dictionary.” [42] provides a Glossary of Z Notation.

U.1.2 Dictionary

According to [123] a dictionary is “a book dealing with the words of a lan-
guage, so as to set forth their orthography, pronunciation, signification, and
use, their synonyms, derivation, history, or at least some of these; the words
are arranged in some stated order, now, usually, alphabetical; a word book,
vocabulary, lexicon. And, by extension: A book on information or reference,
on any subject or branch of knowledge, the items of which are arranged al-
phabetically.” Standard dictionaries are [179, 180, 123].
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U.1.3 Encyclopædia

According to [123], an encyclopædia is “a circle of learning, a general course
of instruction. A work containing information on all branches of knowledge,
usually arranged alphabetically (1644). A work containing exhaustive infor-
mation on some one art or branch of knowledge, arranged systematically.”
[178] is, perhaps, the most “famous” encyclopædia.

U.1.4 Ontology

By ontology is meant [123]: “the science or study of being; that department of
metaphysics which relates to the being or essence of things, or to being in the
abstract.” By an ontology we shall mean a document which, in a systematic
arrangement explains, in a logical manner, a number of abstract concepts.

U.1.5 Taxonomy

By taxonomy is meant [123]: “classification, especially in relation to its general
laws or principles; that department of science, or of a particular science or
subject, which consists in or relates to classification.”

U.1.6 Terminology

By a term is here meant [123]: “a word or phrase used in a definite or precise
sense in some particular subject, as a science or art; a technical expression.”
More widely: “Any word or group of words expressing a notion or concep-
tion, or denoting an object of thought.” By terminology is meant [123]: “the
doctrine or scientific study of terms; the system of terms belonging to a sci-
ence or subject; technical terms collectively; nomenclature.” [117] provides a
terminology of Dependable Computing and Fault Tolerance: Concepts and
Terminology.

U.1.7 Thesaurus

By thesaurus is, in general, meant [123]: “a ‘treasury’ or ‘storehouse’ of knowl-
edge, as a dictionary, encyclopædia or the like. (1736)” The thesaurus [165]
has set a unique standard for and “the” meaning, now, of the term ‘thesaurus’.

U.2 Typography and Spelling

Some comments are in order:

• A term definition consists of two or three parts.
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⋆ The first part consists of a natural (the index) number, the term being
defined and a colon (:). The term subpart is the definiendum.

⋆ The second part is the term definition body, the definiens.
⋆ Optional third parts — in parentheses — expand on the definiens,

contrast it to other terms, or other.
• The definiendum is a one, two or three word boldfaced term.
• The definiens consists of free text which may contain uses of (other, or the

same) defined terms.
• Terms written in sans ser italicized font stand for defined terms.
• Definiens (second part) text ending with [179] (or [123]) represents quotes.
• For reasons of cross-referencing we have spelled the terms α, β and λ as

Alpha (alpha), Beta (beta) and Lambda (lambda).
• And we have rewritten the technical terms α-renaming, β-reduction and

λ-calculus, conversion and expression (etc.) into Alpha-renaming, Beta-
reduction and Lambda-expression, etc., while keeping the hyphens.

U.3 The SI Units and Wikipedia

The definition of a number of terms related to physics: acceleration, Ampere,
candela, Celcius, direction, distance, Hertz, Joule, Kelvin, kilogram, mass,
meter, mole, motion, Newton, Ohm, position, second, speed, steridian, veloc-
ity, Volt, Watt, etc., have been “lifted” from the web pages of The Interna-
tional System of Units (abbreviated SI from the French Le Système International
d’Unités) and The Wikipedia.

U.4 The Glosses

A

1. Abstract: Something which focuses on essential properties. Abstract is
a relation: something is abstract with respect to something else (which
possesses — what is considered — inessential properties).

2. Abstract data type: An abstract data type is a set of values for which
no external world or computer (i.e., data) representation is being defined,
together with a set of abstractly defined functions over these data values.

3. Abstraction: ‘The art of abstracting. The act of separating in thought;
a mere idea; something visionary.’

4. Abstraction function: An abstraction function is a function which ap-
plies to values of a concrete type and yields values of — what is said to be
a corresponding — abstract type. (Same as retrieve function.)
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5. Abstract syntax: An abstract syntax is a set of rules, often in the form
of an axiom system, or in the form of a set of sort definitions, which de-
fines a set of structures without prescribing a precise external world, or a
computer (i.e., data) representation of those structures.

6. Abstract type: An abstract type is the same as an abstract data type,
except that no functions over the data values have been specified.

7. Acceleration: 1. In Physics, acceleration is the change in velocity over
time. In other words acceleration is the rate at which something speeds
up or slows down. 2. In kinematics, acceleration is defined as the first
derivative of velocity with respect to time (that is, the rate of change
of velocity), or equivalently as the second derivative of position. It is a
vector quantity with dimension Length· · ·Time−2. In SI units, acceleration
is measured in metres per second squared (m/s2).

8. Acquirer: The legal entity, a person, an institution or a firm which or-
ders some development to take place. (Synonymous terms are client and
customer .)

9. Acquisition: The common term means purchase. Here we mean the col-
lection of knowledge (about a domain, about some requirements, or about
some software). This collection takes place in an interaction between the
developers and representatives of the client (users, etc.). (A synonym term
is elicitation.)

10. Action: By an action we shall understand something who potentially
changes a state.

11. Active: By active is understood a phenomenon which, over time, changes
value, and does so either by itself, autonomously, or also because it is
“instructed” (i.e., is “bid” (see biddable), or “programmed” (see pro-

grammable) to do so). (Contrast to inert and reactive.)
12. Actuator: By an actuator we shall understand an electronic, a mechani-

cal, or an electromechanical device which carries out an action that influ-
ences some physical value. (Usually actuators, together with sensors, are
placed in reactive systems, and are linked to controllers. Cf. sensor .)

13. Adaptive: By adaptive we mean some thing that can adapt or arrange
itself to a changing context, a changing environment.

14. Adaptive maintenance: By adaptive maintenance we mean an update,
as here, of software, to fit (to adapt) to a changing environment. (Adaptive
maintenance is required when new input/output media are attached to the
existing software, or when a new, underlying database management system
is to be used (instead of an older such), etc. We also refer to corrective

maintenance, perfective maintenance, and preventive maintenance.)
15. Agent: By an agent we mean the same as an actor — a human or a

machine (i.e., robot). (The two terms actor and agent are here considered
to be synonymous.)

16. Algorithm: The notion of an algorithm is so important that we will
give a number of not necessarily complementary definitions, and will then
discuss these.
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• By an algorithm we shall understand a precise prescription for carrying
out an orderly, finite set of operations on a set of data in order to calcu-
late (compute) a result. (This is a version of the classical definition. It
is compatible with computability in the sense of Turing machines and
Lambda-calculus. Other terms for algorithm are: effective procedure,
and abstract program.)

• Let there be given a possibly infinite set of states, S, let there be
given a possibly infinite set of initial states, I, where I ⊆ S, and
let there be given a next state function f : S → S. (C, where C =
(Q, I, f) is an initialised, deterministic transition system.) A sequence
s0, s1, . . . , si−1, si, . . . , sm such that f(si−1) = si is a computation. An
algorithm, A, is a C with final states O, i.e.: A = (Q, I, f, O), where
O ⊆ S, such that each computation ends with a state sm in O. (This
is basically Don Knuth’s definition [111]. In that definition a state
is a collection of identified data, i.e., a formalised representation of
information, i.e., of computable data. Thus Knuth’s definition is still
Turing and Lambda-calculus “compatible”.)

• There is given the same definition as just above with the generalisation
that a state is any association of variables to phenomena, whether
the latter are representable “inside” the computer or not. (This is
basically Yuri Gurevitch’s definition of an algorithm [80, 160, 161]. As
such this definition goes beyond Turing machine and Lambda-calculus
“compatibility”. That is, captures more!)

17. Algorithmic: Adjective form of algorithm.
18. Ambiguous: A sentence is ambiguous if it is open to more than one

interpretation, i.e., has more than one model and these models are not
isomorphic .

19. Ampere: The Ampere is that constant current which, if maintained in
two straight parallel conductors of infinite length, of negligible circular
cross-section, and placed 1 metre apart in vacuum, would produce between
these conductors a force equal to 2 ∗ 10−7 Newton per meter of length.

20. Analysis: The resolution of anything complex into simple elements. A de-
termination of proper components. The tracing of things to their sources;
the discovery of general principles underlying concrete phenomena [123].
(In conventional mathematics analysis pertains to continuous phenomena,
e.g. differential and integral calculi. Our analysis is more related to hy-
brid systems of both discrete and continuous phenomena, or often to just
discrete ones.)

21. Application: By an application we shall understand either of two rather
different things: (i) the application of a function to an argument, and (ii)
the use of software for some specific purpose (i.e., the application). (See
next entry for variant (ii).)

22. Application domain: An area of activity which some software is to
support (or supports) or partially or fully automate (resp. automates).
(We normally omit the prefix ‘application’ and just use the term domain.)
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23. Applicative: The term applicative is used in connection with applicative
programming. It is hence understood as programming where applying
functions to arguments is a main form of expression, and hence desig-
nates function application as a main form of operation. (Thus the terms
applicative and functional are here used synonymously.)

24. Applicative programming: See the term applicative just above. (Thus
the terms applicative programming and functional programming are here
used synonymously.)

25. Applicative programming language: Same as functional programming

language.
26. Architecture: The structure and content of software as perceived by

their users and in the context of the application domain. (The term ar-
chitecture is here used in a rather narrow sense when compared with the
more common use in civil engineering.)

27. Artefact: An artificial product [123]. (Anything designed or constructed
by humans or machines, which is made by humans.)

28. Artifact: Same term as artefact.
29. Assertion: By an assertion we mean the act of stating positively usually

in anticipation of denial or objection. (In the context of specifications
and programs an assertion is usually in the form of a pair of predicates
“attached” to the specification text, to the program text, and expressing
properties that are believed to hold before any interpretation of the text;
that is, “a before” and “an after”, or, as we shall also call it: a pre- and
a post-condition.)

30. Atomic: In the context of software engineering atomic means: A phe-

nomenon (a concept, an entity , a value) which consists of no proper sub-
parts, i.e., no proper subphenomena, subconcepts, subentities or subvalues
other than itself. (When we consider a phenomenon, a concept, an entity,
a value, to be atomic, then it is often a matter of choice, with the choice
reflecting a level of abstraction.)

31. Attribute: We use the term attribute only in connection with values of
composite type. An attribute is now whether a composite value possesses
a certain property, or what value it has for a certain component part.
(An example is that of database (e.g., SQL) relations (i.e., tabular data
structures): Columns of a table (i.e., a relation) are usually labelled with a
name designating the attribute (type) for values of that column. Another
example is that, say, of a Cartesian: A = B×C×D. A can be said to have the
attributes B, C, and D. Yet other examples are M = A →m B, S = A-set and
L = A∗. M is said to have attributes A and B. S is said to have attribute A.
L is said to have attribute A. In general we make the distinction between
an entity consisting of subentities (being decomposable into proper parts,
cf. subentity), and the entities having attributes. A person, like me, has a
height attribute, but my height cannot be “composed away from me”!)

32. Axiom: An established rule or principle or a self-evident truth.
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33. Axiomatic specification: A specification presented, i.e., given, in terms
of a set of axioms. (Usually an axiomatic specification also includes defi-
nitions of sorts and function signatures.)

34. Axiom system: Same as axiomatic specification.

B

35. B: B stands for Bourbaki, pseudonym for a group of mostly French math-
ematicians which began meeting in the 1930s, aiming to write a thor-
ough unified set-theoretic account of all mathematics. They had tremen-
dous influence on the way mathematics has been done since. (The found-
ing of the Bourbaki group is described in André Weil’s autobiography,
titled something like “memoir of an apprenticeship” (orig. Souvenirs
D’apprentissage). There is a usable book on Bourbaki by J. Fang. Liliane
Beaulieu has a book forthcoming, which you can sample in “A Parisian
Cafe and Ten Proto-Bourbaki Meetings 1934–1935” in the Mathematical
Intelligencer 15 no. 1 (1993) 27–35. From http://www.faqs.org/faqs/-

sci-math-faq/bourbaki/ (2004). Founding members were: Henri Car-
tan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean Dieudonné,
Charles Ehresmann, René de Possel, Szolem Mandelbrojt, André Weil.
From: http://www.bourbaki.ens.fr/ (2004). B also stands for a model-
oriented specification language [2].)

36. Behaviour: By behaviour we shall understand the way in which some-
thing functions or operates. (In the context of domain engineering be-
haviour is a concept associated with phenomena 319, in particular manifest
entities 154. And then behaviour is that which can be observed about the
value of the entity and its interaction with an environment.)

37. Boolean: By Boolean we mean a data type of logical values (true and
false), and a set of connectives: ∼, ∧, ∨, and ⇒. (Boolean derives from
the name of the mathematician George Boole.)

38. Boolean connective: By a Boolean connective we mean either of the
Boolean operators: ∧, ∨, ⇒ (or ⊃), ∼ (or ¬).

39. BPR: See business process reengineering

40. Brief: By a brief is understood a document, or a part of a document which
informs about a phase , or a stage , or a step of development. (A brief thus
contains information.)

41. Business process: By a business process we shall understand a behaviour

of an enterprise, a business, an institution, a factory. (Thus a business
process reflects the ways in which a business conducts its affairs, and
is a facet of the domain. Other facets of an enterprise are those of its
intrinsics, management and organisation (a facet closely related, of course,
to business processes), support technology , rules and regulations, and human

behaviour .)
42. Business process engineering: By business process engineering we shall

understand the design, the determination, of business processes. (In doing
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business process engineering one is basically designing, i.e., prescribing
entirely new business processes.)

43. Business process reengineering: By business process reengineering we
shall understand the redesign, the change, of business processes. (In do-
ing business process reengineering one is basically carrying out change

management.)

C

44. Calculus: A method of computation or calculation in a special notation.
(From mathematics we know the differential and the integral calculi, and
also the Laplace calculus. From metamathematics we have learned of the
λ-calculus. From logic we know of the Boolean (propositional) calculus.)

45. Candela: The candela is the luminous intensity, in a given direction,
of a source that emits monochromatic radiation of frequency 540 ∗ 1012

Hertz and that has a radiant intensity in that direction of 1/683 Watt per
steradian.

46. Capture: The term capture is used in connection with domain knowledge

(i.e., domain capture) and with requirements acquisition. It shall indicate
the act of acquiring, of obtaining, of writing down, domain knowledge,
respectively requirements.

47. Cartesian: By a Cartesian is understood an ordered product, a fixed
grouping, a fixed composition, of entities 154. (Cartesian derives from the
name of the French mathematician René Descartes.)

48. Celcius: See Kelvin, Item 237.
49. Channel: By a channel is understood a means of interaction, i.e., of com-

munication and possibly of synchronisation between behaviours. (In the
context of computing we can think of channels as being either input, or
output, or both input and output channels.)

50. Chaos: By chaos we understand the totally undefined behaviour : Any-
thing may happen! (In the context of computing chaos may, for example,
be the designation for the never-ending, the never-terminating process.)

51. Class: By a class we mean either of two things: a class clause, as in RSL,
or a set of entities 154 defined by some specification, typically a predicate.

52. Clause: By a clause is meant an expression, designating a value, or a state-

ment, designating a state change, or a sentential form, which designates
both a value and a state change. (When we use the term clause we mean
it mostly in the latter sense of both designating a value and a side effect.)

53. Client: By a client we mean any of three things: (i) The legal body (a
person or a company) which orders the development of some software,
or (ii) a process or a behaviour which interacts with another process or
behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com-
puting system). (We shall normally use the term customer in the first or
in the second sense (i, ii).)
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54. Code: By code we mean a program which is expressed in the machine
language of a computer.

55. Coding: By coding we shall here, simply, mean the act of programming
in a machine, i.e., in a computer-close language. (Thus we do not, except
where explicitly so mentioned, mean the encoding of one string of char-
acters into another, say for communication over a possibly faulty commu-
nication channel (usually with the decoding of the encoded string “back”
into the original, or a similar string).)

56. Communication: A process by which information is exchanged between
individuals (behaviours, processes) through a common system of symbols,
signs, or protocols.

57. Component: By a component we shall here understand a set of type
definitions and component local variable declarations, i.e., a component
local state, this together with a (usually complete) set of modules, such
that these modules together implement a set of concepts and facilities,
i.e., functions, that are judged to relate to one another.

58. Component design: By a component design we shall understand the
design of (one or more) components. (We shall refer to 32829 for “our
story” on component design.)

59. Composite: We say that a phenomenon, a concept, is composite when it
is possible, and meaningful, to consider that phenomenon or concept as
analysable into two or more subphenomena or subconcepts.

60. Composition: By composition we mean the way in which a phenomenon,
a concept, is “put together” (i.e., composed) into a composite phenomenon,
resp. concept.

61. Compositional: We say that two or more phenomena 319 or concepts 69

are compositional if it is meaningful to compose 60 these phenomena
and/or concepts. (Typically a denotational semantics is expressed composi-
tionally: By composing the semantics of sentence parts into the semantics
of the composition of the sentence parts.)

62. Compositional documentation: By compositional documentation we
mean a development, or a presentation (of that development), of, as here,
some description (prescription or specification), in which some notion of
“smallest”, i.e., atomic phenomena and concepts are developed (resp. pre-
sented) first, then their compositions, etc., until some notion of full, com-
plete development (etc.) has been achieved. (See also composition, compo-

sitional and hierarchical documentation.)
63. Comprehension: By comprehension we shall here mean set, list or map

comprehension, that is, the expression, of a set, a list, respectively a map,
by a predicate over the elements of the set, list or pairings of the map,
that belong to the set, list, respectively the map.

64. Computation: See calculation.
65. Compute: Given an expression and an applicable rule of a calculus, to

change the former expression into a resulting expression. (Same as calcu-

late.)
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66. Computer Science: The study and knowledge of the phenomena that
can exist inside computers.

67. Computing Science: The study and knowledge of how to construct
those phenomena that can exist inside computers.

68. Computing system: A combination of hardware and software that to-
gether make meaningful computations possible.

69. Concept: An abstract or generic idea generalised from phenomena or
concepts. (A working definition of a concept has it comprising two com-
ponents: The extension and the intension. A word of warning: Whenever
we describe something claimed to be a “real instance”, i.e., a physical
phenomenon, then even the description becomes that of a concept, not of
“that real thing”!)

70. Concept formation: The forming, the enunciation, the analysis, and
definition of concepts (on the basis, as here, of analysis of the universe of

discourse (be it a domain or some requirements)). (Domain and require-
ments concept formation(s) is treated in Vol. 3, Chaps. 13 (Domain Anal-
ysis and Concept Formation) and 21 (Requirements Analysis and Concept
Formation).)

71. Concrete: By concrete we understand a phenomenon or, even, a concept,
whose explication, as far as is possible, considers all that can be observed
about the phenomenon, respectively the concept. (We shall, however, use
the term concrete more loosely: To characterise that something, being
specified, is “more concrete” (possessing more properties) than something
else, which has been specified, and which is thus considered “more ab-
stract” (possessing fewer properties [considered more relevant]).)

72. Concrete syntax: A concrete syntax is a syntax which prescribes actual,
computer representable data structures. (Typically a BNF Grammar is a
concrete syntax.)

73. Concrete type: A concrete type is a type which prescribes actual, com-
puter representable data structures. (Typically the type definitions of pro-
gramming languages designate concrete types.)

74. Concurrency: By concurrency we mean the simultaneous existence of
two or more behaviours, i.e., two or more processes. (That is, a phenomenon

is said to exhibit concurrency when one can analyse the phenomenon into
two or more concurrent phenomena.)

75. Concurrent: Two (or more) events can be said to occur concurrently,
i.e., be concurrent, when one cannot meaningfully describe any one of
these events to (“always”) “occur” before any other of these events. (Thus
concurrent systems are systems of two or more processes (behaviours)
where the simultaneous happening of “things” (i.e., events) is deemed
beneficial, or useful, or, at least, to take place!)

76. Correct: See next entry: correctness.
77. Correctness: Correctness is a relation between two specifications A and

B: B is correct with respect to A if every property of what is specified in
A is a property of B. (Compare to conformance and congruence.)
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78. Corrective maintenance: By corrective maintenance we understand a
change, predicated by a specification A, to a specification, B′, resulting in
a specification, B′′, such that B′′ satisfies more properties of A than does
B′. (That is: Specification B′ is in error in that it is not correct with respect
to A. But B′′ is an improvement over B′. Hopefully B′′ is then correct
wrt. A. We also refer to adaptive maintenance, perfective maintenance, and
preventive maintenance.)

79. CSP: Abbreviation for Communicating Sequential Processes. (See [95,
167] and Chap. 21. Also, but not in this book, a term that covers constraint
satisfaction problem (or programming).)

80. Customer: By a customer we mean either of three things: (i) the client,
a person, or a company, which orders the development of some software,
or (ii) a client process or a behaviour which interacts with another process
or behaviour (i.e., the server), in order to have that server perform some
actions on behalf of the client, or (iii) a user of some software (i.e., com-
puting system). (We shall normally use the term customer in the third
sense (iii).)

D

81. Data: Data is formalised representation of information. (In our context
information is what we may know, informally, and even express, in words,
or informal text or diagrams, etc. Data is correspondingly the internal
computer, including database representation of such information.)

82. Database: By a database we shall generally understand a large collection
of data. More specifically we shall, by a database, imply that the data
are organised according to certain data structuring and data query and
update principles. (Classically, three forms of (data structured) databases
can be identified: The hierarchical , the network , and the relational database
forms. We refer to [56, 57] for seminal coverage, and to [23, 22, 38, 39] for
formalisation, of these database forms.)

83. Database schema: By a database schema we understand a type definition

of the structure of the data kept in a database.
84. Data abstraction: Data abstraction takes place when we abstract from

the particular formal representation of data.
85. Data invariant: By a data invariant is understood some property that

is expected to hold for all instances of the data. (We use the term ‘data’
colloquially, and really should say type invariance, or variable content in-
variance. Then ‘instances’ can be equated with values. See also constraint.)

86. Data refinement: Data refinement is a relation. It holds between a pair
of data if one can be said to be a “more concrete” implementation of the
other. (The whole point of data abstraction, in earlier phases, stages and
steps of development, is that we can later concretise, i.e., data refine.)

87. Data reification: Same as data refinement. (To reify is to render some-
thing abstract as a material or concrete thing.)
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88. Data structure: By a data structure we shall normally understand a
composition of data values, for example, in the “believed” form of a linked
list, a tree, a graph or the like. (As in contrast to an information structure,
a data structure (by our using the term data) is bound to some computer
representation.)

89. Data transformation: Same as data refinement and, hence, data reifica-

tion.
90. Data type: By a data type is understood a set of values and a set of

functions over these values — whether abstract or concrete.
91. Decidable: A formal logic system is decidable if there is an algorithm

which prescribes computations that can determine whether any given sen-
tence in the system is a theorem.

92. Declaration: A declaration prescribes the allocation of a resource of the
kind declared: (i) A variable, i.e., a location in some storage; (ii) a channel
between active processes; (iii) an object, i.e., a process possessing a local
state; etc.

93. Decomposition: By a decomposition is meant the presentation of the
parts of a composite “thing”.

94. Definiendum: The left-hand side of a definition, that which is to be
defined.

95. Definiens: The right-hand side of a definition, that which is defining
“something”.

96. Definite: Something which has specified limits. (Watch out for the four
terms: finite, infinite, definite and indefinite.)

97. Definition: A definition defines something, makes it conceptually “mani-
fest”. A definition consists of two parts: a definiendum, normally considered
the left-hand part of a definition, and a definiens, normally considered the
right-hand part (the body) of a definition.

98. Definition set: By a definition set we mean, given a function, the set of
values for which the function is defined, i.e., for which, when it is applied

to a member of the definition set yields a proper value. (Cf., range set.)
99. Denotation: A direct specific meaning as distinct from an implied or

associated idea [179]. (By a denotation we shall, in our context, associate
the idea of mathematical functions: That is, of the denotational semantics

standing for functions.)
100. Denotational: Being a denotation.
101. Denotational semantics: By a denotational semantics we mean a se-

mantics which to atomic syntactical notions associate simple mathematical
structures (usually functions, or sets of traces, or algebras), and which to
composite syntactical notions prescribe a semantics which is the functional

composition of the denotational semantics of the composition parts.
102. Denote: Designates a mathematical meaning according to the principles

of denotational semantics. (Sometimes we use the looser term designate.)
103. Dependability: Dependability is defined as the property of a machine

such that reliance can justifiably be placed on the service it delivers [156].
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(See definition of the related terms: error , failure, fault and machine ser-

vice.)
104. Dependability requirements: By requirements concerning dependabil-

ity we mean any such requirements which deal with either accessibility

requirements, or availability requirements, or integrity requirements, or re-

liability requirements, or robustness requirements, or safety requirements,
or security requirements.

105. Describe: To describe something is to create, in the mind of the reader,
a model of that something. The thing, to be describable, must be either
a physically manifest phenomenon, or a concept derived from such phe-
nomena. Furthermore, to be describable it must be possible to create, to
formulate a mathematical, i.e., a formal description of that something.
(This delineation of description is narrow. It is too narrow for, for exam-
ple, philosophical or literary, or historical, or psychological discourse. But
it is probably too wide for a software engineering , or a computing science

discourse. See also description.)
106. Description: By a description is, in our context, meant some text which

designates something, i.e., for which, eventually, a mathematical model

can be established. (We readily accept that our characterisation of the
term ‘description’ is narrow. That is: We take as a guiding principle, as a
dogma, that an informal text, a rough sketch, a narrative, is not a descrip-
tion unless one can eventually demonstrate a mathematical model that
somehow relates to, i.e., “models” that informal text. To further para-
phrase our concern about “describability”, we now state that a description
is a description of the entities 154, functions, events and behaviours of a fur-
ther designated universe of discourse: That is, a description of a domain,
a prescription of requirements, or a specification of a software design.)

107. Design: By a design we mean the specification of a concrete artefact, some-
thing that can either be physically manifested, like a chair, or conceptually
demonstrated, like a software program.

108. Designate: To designate is to present a reference to, to point out, some-
thing. (See also denote and designation.)

109. Designation: The relation between a syntactic marker and the semantic
thing signified. (See also denote and designate.)

110. Deterministic: In a narrow sense we shall say that a behaviour, a process,
a set of actions, is deterministic if the outcome of the behaviour, etc., can
be predicted: Is always the same given the same “starting conditions”, i.e.,
the same initial configuration (from which the behaviour, etc., proceeds).
(See also nondeterministic .)

111. Developer: The person, or the company, which constructs an artefact,
as here, a domain description, or a requirements prescription, or a software

design.
112. Development: The set of actions that are carried out in order to con-

struct an artefact.
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113. Diagram: A usually two-dimensional drawing, a figure. (Sometimes a
diagram is annotated with informal and formal text.)

114. Dialogue: A “conversation” between two agents (men or machines). (We
thus speak of man-machine dialogues as carried out over CHI s (HCI s).)

115. Dictionary: See Sect. U.1.2
116. Didactics: Systematic instruction based on a clear conceptualisation of

the bases, of the foundations, upon which what is being instructed rests.
(One may speak of the didactics of a field of knowledge, such as, for exam-
ple, software engineering. We believe that the present three volume book
represents such a clearly conceptualised didactics, i.e., a foundationally
consistent and complete basis.)

117. Directed graph: A directed graph is a graph all of whose edges are
directed, i.e., are arrows.

118. Direction: Direction is the information contained in the relative position

of one point with respect to another point without the distance informa-
tion.

119. Directory: A collection of directions. (We shall here take the more limited
view of a directory as being a list of names of, i.e., references to resources.)

120. Discrete: As opposed to continuous: consisting of distinct or unconnected
elements [179].

121. Disjunction: Being separated, being disjoined, decomposed. (We shall
mostly think of disjunction as the (meaning of the) logical connective
“or”: ∨.)

122. Distance: Distance is a numerical description of how far apart objects
are. In physics or everyday discussion, distance may refer to a physical
length, a period of time, or an estimation based on other criteria (e.g.
“two counties over”). In mathematics, distance must meet more rigorous
criteria.

123. Document: By a document is meant any text, whether informal or for-

mal , whether informative 214, descriptive 106 (or prescriptive 332) or analytic .
(Descriptive documents may be rough sketches, terminologies 472, narra-

tives, or formal . Informative documents are not descriptive 106. Analytic
documents “describe” relations between documents, verification and vali-

dation, or describe properties of a document.)
124. Documentation requirements: By documentation requirements we

mean requirements which state which kinds of documents shall make up
the deliverable, what these documents shall contain and how they express
what they contain.

125. Domain: Same as application domain; hence see that term for a charac-
terisation. (The term domain is the preferred term.)

126. Domain acquisition: The act of acquiring, of gathering, domain knowl-

edge, and of analysing and recording this knowledge.
127. Domain analysis: The act of analysing recorded domain knowledge in

search of (common) properties of phenomena, or relating what may be
considered separate phenomena.
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128. Domain capture: The act of gathering domain knowledge, of collecting
it — usually from domain stakeholders.

129. Domain description: A textual, informal or formal document which
describes the domain. (Usually a domain description is a set of documents
with many parts recording many facets of the domain: The intrinsics,
business processes, support technology , management and organisation, rules

and regulations, and the human behaviours.)
130. Domain description unit: By a domain description unit we understand

a short, “one- or two-liner”, possibly rough-sketch description of some prop-
erty of a domain phenomenon, i.e., some property of an entity , some prop-
erty of a function, of an event, or some property of a behaviour . (Usually
domain description units are the smallest textual, sentential fragments
elicited from domain stakeholders.)

131. Domain determination: Domain determination is a domain require-

ments facet. It is an operation performed on a domain description cum
requirements prescription. Any nondeterminism expressed by either of these
specifications which is not desirable for some required software design
must be made deterministic (by this requirements engineer performed op-
eration). (Other domain requirements facets are: domain projection, domain

instantiation, domain extension and domain fitting . )
132. Domain development: By domain development we shall understand

the development of a domain description. (All aspects are included in de-
velopment: domain acquisition, domain analysis, domain model ling, domain
validation and domain verification.)

133. Domain engineer: A domain engineer is a software engineer who per-
forms domain engineering . (Other forms of software engineers are: require-

ments engineers and software designers (cum programmers).)
134. Domain engineering: The engineering of the development of a domain

description, from identification of domain stakeholders, via domain acqui-

sition, domain analysis and domain description to domain validation and
domain verification.

135. Domain extension: Domain extension is a domain requirements facet.
It is an operation performed on a domain description cum requirements

prescription. It effectively extends a domain description by entities, func-
tions, events and/or behaviours conceptually possible, but not necessarily
humanly feasible in the domain. (Other domain requirements facets are:
domain projection, domain determination, domain instantiation and domain

fitting .)
136. Domain facet: By a domain facet we understand one amongst a finite

set of generic ways of analysing a domain: A view of the domain, such
that the different facets cover conceptually different views, and such that
these views together cover the domain. (We consider here the following
domain facets: business process, intrinsics, support technology , management

and organisation, rules and regulations, and human behaviour .)
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137. Domain fitting: Domain fitting is a domain requirements facet. It is
an operation performed on a domain description cum requirements pre-

scription. It effectively combines one domain description (cum domain re-

quirements) with another [domain description, respectively domain require-

ments]. (Other domain requirements facets are: domain projection, domain

determination, domain instantiation and domain extension.)
138. Domain initialisation: Domain initialisation is an interface require-

ments facet. It is an operation performed on a requirements prescrip-

tion. For an explanation see shared data initialisation (its ‘equivalent’).
(Other interface requirements facets are: shared data refreshment, computa-

tional data+control , man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.)

139. Domain instantiation: Domain instantiation is a domain requirements

facet. It is an operation performed on a domain description (cum require-

ments prescription). Where, in a domain description certain entities and
functions are left undefined, domain instantiation means that these en-
tities or functions are now instantiated into constant values. (Other re-
quirements facets are: domain projection, domain determination, domain

extension and domain fitting .)
140. Domain knowledge: By domain knowledge we mean that which a par-

ticular group of people, all basically engaged in the “same kind of activ-
ities”, know about that domain of activity, and what they believe that
other people know and believe about the same domain. (We shall, in our
context, strictly limit ourselves to “knowledge”, staying short of “beliefs”,
and we shall similarly strictly limit ourselves to assume just one “actual”
world, not any number of “possible” worlds. More specifically, we shall
strictly limit our treatment of domain knowledge to stay clear of the (al-
beit very exciting) area of reasoning about knowledge and belief between
people (and agents) [94, 67].)

141. Domain projection: Domain projection is a domain requirements facet.
It is an operation performed on a domain description cum requirements

prescription. The operation basically “removes” from a description defini-
tions of those entities (including their type definitions), functions, events

and behaviours that are not to be considered in the requirements. (The
removed phenomena and concepts are thus projected “away”. Other do-
main requirements facets are: domain determination, domain instantiation,
domain extension and domain fitting .)

142. Domain validation: By domain validation we rather mean: ‘validation

of a domain description’, and by that we mean the informal assurance
that a description purported to cover the entities 154, functions, events and
behaviours of a further designated domain indeed does cover that domain
in a reasonably representative manner. (Domain validation is, necessarily,
an informal activity: It basically involves a guided reading of a domain
description (being validated) by stakeholders of the domain, and ends in
an evaluation report written by these domain stakeholder readers.)
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143. Domain verification: By domain verification we mean verification of
claimed properties of a domain description, and by that we mean the
formal assurance that a description indeed does possess those claimed
properties. (The usual principles, techniques and tools of verification apply
here.)

144. Domain requirements: By domain requirements we understand such
requirements — save those of business process reengineering — which can
be expressed solely by using professional terms of the domain. (Domain re-
quirements constitute one requirements facet. Others requirements facets
are: business process reengineering , interface requirements and machine re-

quirements.)
145. Domain requirements facet: By domain requirements facets we under-

stand such domain requirements that basically arise from either of the
following operations on domain descriptions (cum requirements prescrip-

tions): domain projection, domain determination, domain extension, domain

instantiation and domain fitting .

E

146. Elaborate: See next: elaboration.
147. Elaboration: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term elaboration in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to pairs of states and values.

148. Elicitation: To elicit, to extract. (See also: acquisition. We consider elici-
tation to be part of acquisition. Acquisition is more than elicitation. Elic-
itation, to us, is primarily the act of extracting information, i.e., knowl-
edge. Acquisition is that plus more: Namely the preparation of what and
how to elicit and the postprocessing of that which has been elicited — in
preparation of proper analysis. Elicitation applies both to domain and to
requirements elicitation.)

149. Embedded: Being an integral part of something else. (When something is
embedded in something else, then that something else is said to surround
the embedded thing.)

150. Embedded system: A system which is an integral part of a larger system.
(We shall use the term embedded system primarily in the context of the
larger, ‘surrounding’ system being reactive and/or hard real time.)

151. Engineer: An engineer is a person who “walks the bridge” between sci-
ence and technology: (i) Constructing, i.e., designing, technology based
on scientific insight, and (ii) analysing technology for its possible scien-
tific content.
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152. Engineering: Engineering is the design of technology based on scientific
insight, and the analysis of technology for its possible scientific content.
(In the context of this glossary we single out three forms of engineering:
domain engineering , requirements engineering and software design; together
we call them software engineering . The technology constructed by the do-

main engineer is a domain description. The technology constructed by the
requirements engineer is a requirements prescription. The technology con-
structed by the software designer is software.)

153. Enrichment: The addition of a property to something already existing.
(We shall use the term enrich in connection with a collection (i.e., a RSL

scheme or a RSL class) — of definitions, declaration and axioms — being
‘extended with’ further such definitions, declaration and axioms.)

154. Entity: By an entity we shall loosely understand something fixed, immo-
bile, static — although that thing may move, but after it has moved it is
essentially the same thing, an entity. (We shall take the narrow view of
an entity, being in contrast to a function, and an event, and a behaviour ;
that entities “roughly correspond” to what we shall think of as values, i.e.,
as information or data. We shall further allow entities to be either atomic

or composite, i.e., in the latter case having decomposable subentities (cf.
subentity). Finally entities may have nondecomposable attributes.)

155. Enumerable: By enumerable we mean that a set of elements satisfies a
proposition, i.e., can be logically characterised.

156. Enumeration: To list, one after another. (We shall use the term enu-
meration in connection with the syntactic expression of a “small”, i.e.,
definite, number of elements of a(n enumerated) set, list or map.)

157. Environment: A context, that is, in our case (i.e., usage), the (“more
static”) part of a configuration in which some syntactic entity is elabo-
rated 147, evaluated 161, or interpreted 232. (In our “metacontext”, i.e., that
of software engineering, environments, when deployed in the elaboration
(etc.) of, typically, specifications or programs, record, i.e., list, associate,
identifiers of the specification or program text with their meaning.)

158. Epistemology: The study of knowledge. (Contrast, please, to ontology .)
159. Error: An error is an action that produces an incorrect result. An error is

that part of a machine state which is “liable to lead to subsequent failure”.
An error affecting the machine service is an indication that a failure occurs
or has occurred [156]. (An error is caused by a fault.)

160. Evaluate: See next: evaluation.
161. Evaluation: The three terms elaboration, evaluation and interpretation

essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term evaluation in the more
narrow sense of designating, or yielding functions from syntactical items
to functions from configurations to values.



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

U.4 The Glosses 369

162. Event: Something that occurs instantaneously. (We shall, in our context,
take events as being manifested by certain state changes, and by certain
interactions between behaviours or processes. The occurrence of events may
“trigger” actions. How the triggering, i.e., the invocation of functions are
brought about is usually left implied, or unspecified.)

163. Expression: An expression, in our context (i.e., that of software engi-
neering), is a syntactical entity which, through evaluation, designates a
value.

164. Extension: We shall here take extension to be the same as enrichment.
(The extension of a concept is all the individuals falling under the concept
[145].)

165. Extensional: Concerned with objective reality [179]. (Please observe a
shift here: We do not understand the term extensional as ‘relating to, or
marked by extension in the above sense, but in contrast to intensional .)

F

166. Facet: By a facet we understand one amongst a finite set of generic ways
of analysing and presenting a domain, a requirements or a software design:
a view of the universe of discourse, such that the different facets cover
conceptually different views, and such that these views together cover
that universe of discourse. (Examples of domain facets are intrinsics, busi-

ness processes, support technology , management and organisation, rules and

regulations and human behaviour . Examples of requirements facets are
business process reengineering , domain requirements, interface requirements

and machine requirements. Examples of software design facets are software

architecture, component design, module design, etc.)
167. Failure: A fault may result in a failure. A machine failure occurs when

the delivered machine service deviates from fulfilling the machine function,
the latter being what the machine is aimed at [156]. (A failure is thus
something relative to a specification, and is due to a fault. Failures are
concerned with such things as accessibility , availability , reliability , safety

and security .)
168. Fault: The adjudged (i.e., the ‘so judged’) or hypothesised cause of an

error [156]. (An error is caused by a fault, i.e., faults cause errors. A
software fault is the consequence of a human error in the development of
that software.)

169. Fault tree: A fault tree is a tree with nodes of alternating kinds: event
and logic nodes. The fault tree root is an event node and so are all the leaf
nodes. Event nodes label (undesirable) events (or states of a computing
system). Logic nodes designate combinators like conjunction, disjunction,
etc. (See the definitions of branch, event, fault, node, root, state and tree
[items 88, 270, 276, 464, 614, 679, 750, Appendix B, Vol. 1].)

170. Fault tree analysis: A form of safety analysis that assesses computing
systems safety to provide failure statistics and sensitivity analyses that
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indicate the possible effect of critical failures. (In the technique known as
fault tree analysis, an undesired effect is taken as the root (“top event”) of
a tree of logic. Then, each situation that could cause that effect is added to
the tree as a series of logic expressions. When fault trees are labelled with
actual numbers about failure probabilities, which are often in practice
unavailable because of the expense of testing, computer programs can
calculate failure probabilities from fault trees. See the definition of hazard
analysis.)

171. Finite: Of a fixed number less than infinity, or of a fixed structure that
does not “flow” into perpetuity as would any information structure that
just goes on and on. (Watch out for the four terms: finite, infinite, definite

and indefinite.)
172. Flowchart: A diagram (a chart), for example of circles (input, output),

annotated (square) boxes, annotated diamonds and infixed arrows, that
shows step by step flow through an algorithm.

173. Formal: By formal we shall, in our context (i.e., that of software engi-
neering), mean a language, a system, an argument (a way of reasoning), a
program or a specification whose syntax and semantics is based on (rules
of) mathematics (including mathematical logic).

174. Formal definition: Same as formal description, formal prescription or for-

mal specification.
175. Formal development: Same as the standard meaning of the composi-

tion of formal and development. (We usually speak of a spectrum of devel-
opment modes: systematic development, rigorous development, and formal
development. Formal software development, to us, is at the “formalistic”
extreme of the three modes of development: Complete formal specifica-

tions are always constructed, for all (phases and) stages of development;
all proof obligations are expressed; and all are discharged (i.e., proved to
hold).)

176. Formal description: A formal description of something. (Usually we use
the term formal description only in connection with formalisation of do-

mains.)
177. Formalisation: The act of making a formal specification of something

elsewhere informally specified; or the document which results therefrom.
178. Formal method: By a formal method we mean a method whose tech-

niques and tools1 are formal ly based. (It is common to hear that some
notation is claimed to be that of a formal method — where it then turns
out that few, if any, of the building blocks of that notation have any for-
mal foundation. This is especially true of many diagrammatic notations.

1 Tools include specification and programming languages as such, as well as all
the software tools relating to these languages (editors, syntax checkers, theorem
provers, proof assistants, model checkers, specification and program (flow) anal-
ysers, interpreters, compilers, etc.).
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UML is a case in point — much is presently being done to formalise subsets
of UML [147].)

179. Formal prescription: Same as formal definition or formal specification.
(Usually we use the term formal prescription only in connection with
formalisation of requirements.)

180. Formal specification: A formalisation of something. (Same as formal def-

inition, formal description or formal prescription. Usually we use the term
formal specification only in connection with formalisation of software de-

signs.)
181. Function: By a function we understand something which when applied 21

to a value, called an argument, yields a value called a result. (Functions can
be modelled as sets of (argument, result) pair — in which case applying
a function to an argument amounts to “searching” for an appropriate
pair. If several such pairs have the same argument (value), the function
is said to be nondeterministic . If a function is applied to an argument for
which there is no appropriate pair, then the function is said to be partial;
otherwise it is a total function.)

182. Function activation: When, in an operational, i.e., computational (“me-
chanical”) sense, a function is being applied, then some resources have to
be set aside in order to carry out, to handle, the application. This is
what we shall call a function activation. (Typically a function activation,
for conventional block-structured languages (like C#, Java, Standard ML

[91, 170, 82]), is implemented by means (also) of a stack-like data struc-
ture: Function invocation then implies the stacking (pushing) of a stack
activation on that stack, i.e., the activation stack (a circular reference!).
Elaboration of the function definition body means that intermediate val-
ues are pushed and popped from the topmost activation element, etc.,
and that completion of the function application means that the top stack
activation is popped.)

183. Functional: A function whose arguments are allowed themselves to be
functions is called a functional. (The fix point (finding) function is a func-
tional.)

184. Functional programming: By functional programming we mean the
same as applicative programming : In its barest rendition functional pro-
gramming involves just three things: definition of functions, functions
as ordinary values, and function application (i.e., function invocation).
(Most current functional programming languages (Haskell, Miranda,

Standard ML) go well beyond just providing the three basic building
blocks of functional programming [185, 186, 139].)

185. Functional programming language: By a functional programming
language we mean a programming language whose principal values are
functions and whose principal operations on these values are their creation
(i.e., definition), their application (i.e., invocation) and their composition.
(Functional programming languages of interest today, 2005, are (alpha-
betically listed): CAML [49, 47, 48, 192, 121], Haskell [185], Miranda [186],
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Scheme [1, 78, 66] and SML (Standard ML) [139, 82]. LISP 1.5 was a first
functional programming language [133].)

186. Function application: The act of applying a function to an argument
is called a function application. (See ‘comment’ field of function activation

just above.)
187. Function definition: A function definition, as does any definition, con-

sists of a definiens and a definiendum. The definiens is a function signature,
and the definiendum is a clause, typically an expression. (Cf. Lambda-

functions.)
188. Function invocation: Same as function application. (See parenthesized

remark of entry 182 (function activation).)
189. Function signature: By a function signature we mean a text which

presents the name of the function, the types of its argument values and
the type(s) of its result value(s).

G

190. Generator function: To speak of a generator function we need first
introduce the concept of a sort “of interest”. A generator function is a
function which when applied to arguments of some kind, i.e., types, yields
a value of the type of the sort “of interest”. (Typically the sort “of interest”
can be thought of as the state (a stack, a queue, etc.).)

191. Glossary: See Sect. U.1.1.
192. Grand state: “Grand state” is a colloquial term. It is meant to have the

same meaning as configuration. (The colloquialism is used in the context
of, for example, praising a software engineer as “being one who really
knows how to design the grand state for some universe of discourse” being
specified.)

193. Grouping: By grouping we mean the ordered, finite collection, into a
Cartesian, of mathematical structures (i.e., values).

H

194. Hardware: By hardware is meant the physical embodiment of a com-
puter: its electronics, its boards, the racks, cables, button, lamps, etc.

195. HCI: Abbreviation for human computer interface. (Same as CHI , and
same as man-machine interface.)

196. Hertz: The Hertz (symbol: Hz) is a measure of frequency per unit of time,
or the number of cycles per second .

197. Human behaviour: By human behaviour we shall here understand the
way a human follows the enterprise rules and regulations as well as in-
teracts with a machine: dutifully honouring specified (machine dialogue)
protocols, or negligently so, or sloppily not quite so, or even criminally not
so! (Human behaviour is a facet of the domain (of the enterprise). We shall
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thus model human behaviour also in terms of it failing to react properly,
i.e., humans as nondeterministic agents! Other facets of an enterprise are
those of its intrinsics, business processes, support technology , management

and organisation, and rules and regulations.)

I

198. Identification: The pointing out of a relation, an association, between an
identifier and that “thing”, that phenomenon, it designates, i.e., it stands
for or identifies.

199. Identifier: A name. (Usually represented by a string of alphanumeric
characters, sometimes with properly infixed “-”s or “ ”s.)

200. Imperative: Expressive of a command [179]. (We take imperative to
more specifically be a reflection of do this, then do that. That is, of the
use of a state-based programming approach, i.e., of the use of an imperative

programming language. See also indicative, optative, and putative.)
201. Imperative programming: Programming, imperatively, “with” refer-

ences to storage locations and the updates of those, i.e., of states. (Im-
perative programming seems to be the classical, first way of programming
digital computers.)

202. Imperative programming language: A programming language which,
significantly, offers language constructs for the creation and manipulation
of variables, i.e., storages and their locations. (Typical imperative pro-
gramming languages were, in “ye olde days”, Fortran, Cobol, Algol

60, PL/I, Pascal, C, etc. [132, 130, 11, 131, 11, 109]. Today program-
ming languages like C++, Java, C#, etc. [182, 170, 91] additionally offer
module cum object “features”.)

203. Implementation: By an implementation we understand a computer pro-
gram that is made suitable for compilation or interpretation by a machine.
(See next entry: implementation relation.)

204. Implementation relation: By an implementation relation we understand
a logical relation of correctness between a software design specification and
an implementation (i.e., a computer program made suitable for compilation

or interpretation by a machine).
205. Incomplete: We say that a proof system is incomplete if not all true

sentences are provable.
206. Incompleteness: Noun form of the incomplete adjective.
207. Inconsistent: A set of axioms is said to be inconsistent if, by means

of these, and some deduction rules, one can prove 345 a property and its
negation.

208. Indefinite: Not definite, i.e., of a fixed number or a specific property,
but it is not known, at the point of uttering the term ‘indefinite’, what
that number or property is. (Watch out for the four terms: finite, infinite,
definite and indefinite.)
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209. Indicative: Stating an objective fact. (See also imperative, optative and
putative.)

210. Inert: A dynamic phenomenon is said to be inert if it cannot change
value of its own volition, i.e., by itself, but only through the interaction

between that phenomenon and a change-instigating environment. An inert
phenomenon only changes value as the result of external stimuli. These
stimuli prescribe exactly which new value they are to change to. (Contrast
to active and reactive.)

211. Infinite: As you would think of it: not finite! (Watch out for the four
terms: finite, infinite, definite and indefinite.)

212. Informal: Not formal! (We normally, by an informal specification mean
one which may be precise (i.e., unambiguous, and even concise), but which,
for example is expressed in natural, yet (domain specific) professional
language — i.e., a language which does not have a precise semantics let
alone a formal proof system. The UML notation is an example of an informal
language [147].)

213. Informatics: The confluence of (i) applications, (ii) computer science, (iii)
computing science [i.e., the art [111, 112, 113] (1968–1973), craft [163]
(1981), discipline [63] (1976), logic [89] (1984), practice [90] (1993–2004),
and science [76] (1981) of programming], (iv) software engineering and (v)
mathematics.

214. Information: The communication or reception of knowledge. (By infor-
mation we thus mean something which, in contrast to data, informs us. No
computer representation is, let alone any efficiency criteria are, assumed.
Data as such does, i.e., bit patterns do, not ‘inform’ us.)

215. Information structure: By an information structure we shall normally
understand a composition of more “formally” represented (i.e., structured)
information, for example, in the “believed” form of table, a tree, a graph,
etc. (In contrast to data structure, an information structure does not nec-
essarily have a computer representation, let alone an “efficient” such.)

216. Informative documentation: By informative documentation we un-
derstand texts which inform, but which do not (essentially) describe that
which a development is to develop. (Informative documentation is bal-
anced by descriptive and analytic documentation to make up the full doc-
umentation of a development.)

217. Infrastructure: According to the World Bank: ‘Infrastructure’ is an um-
brella term for many activities referred to as ‘social overhead capital’ by
some development economists, and encompasses activities that share tech-
nical and economic features (such as economies of scale and spillovers from
users to nonusers). We shall use the term as follows: Infrastructures are
concerned with supporting other systems or activities. Computing sys-
tems for infrastructures are thus likely to be distributed and concerned in
particular with supporting communication of information, control, people
and materials. Issues of (for example) openness, timeliness, security, lack
of corruption, and resilience are often important. (Winston Churchill is
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quoted to have said, during a debate in the House of Commons, in 1946:
. . . The young Labourite speaker that we have just listened to, clearly
wishes to impress upon his constituency the fact that he has gone to Eton
and Oxford since he now uses such fashionable terms as ‘infra-structures’.)

218. Input: By input we mean the communication of information (data) from
an outside, an environment, to a phenomenon “within” our universe of
discourse. (More colloquially, and more generally: Input can be thought
of as value(s) transferred over channel(s) to, or between processes. Cf.
output. In a narrow sense we talk of input to an automaton (i.e., a finite

state automaton or a pushdown automaton) and a machine (here in the
sense of, for example, a finite state machine (or a pushdown machine)).)

219. Instance: An individual, a thing, an entity . (We shall usually think of an
‘instance’ as a value.)

220. Instantiation: ‘To represent (an abstraction) by a concrete instance’
[179]. (We shall sometimes be using the term ‘instantiation’ in lieu of
a function invocation on an activation stack .)

221. Installation manual: A document which describes how a computing sys-

tem is to be installed. (A special case of ‘installation’ is the downloading
of software onto a computing system. See also training manual and user

manual .)
222. Intangible: Not tangible.
223. Integrity: By a machine having integrity we mean that that machine

remains unimpaired, i.e., has no faults, errors and failures, and remains so
even in the situations where the environment of the machine has faults,
errors and failures. (Integrity is a dependability requirement.)

224. Intension: Intension indicates the internal content of a term. (See also
in intension. The intension of a concept is the collection of the properties
possessed jointly by all conceivable individuals falling under the concept
[145]. The intension determines the extension [145].)

225. Intensional: Adjective form of intension.
226. Interact: The term interact here addresses the phenomenon of one be-

haviour acting in unison, simultaneously, concurrently, with another be-
haviour, including one behaviour influencing another behaviour. (See also
interaction.)

227. Interaction: Two-way reciprocal action.
228. Interface: Boundary between two disjoint sets of communicating phe-

nomena or concepts. (We shall think of the systems as behaviours or pro-

cesses, the boundary as being channels, and the communications as inputs
and outputs.)

229. Interface requirements: By interface requirements we understand the
expression of expectations as to which software-software, or software-
hardware interface places (i.e., channels), inputs and outputs (including
the semiotics of these input/outputs) there shall be in some contemplated
computing system. (Interface requirements can often, usefully, be classified
in terms of shared data initialisation requirements, shared data refreshment
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requirements, computational data+control requirements, man-machine dia-

logue requirements, man-machine physiological requirements and machine-

machine dialogue requirements. Interface requirements constitute one re-
quirements facet. Other requirements facets are: business process reengi-

neering , domain requirements and machine requirements.)
230. Interface requirements facet: See interface requirements for a list

of facets: shared data initialisation, shared data refreshment, computa-

tional data+control , man-machine dialogue, man-machine physiological and
machine-machine dialogue requirements.

231. Interpret: See next: interpretation.
232. Interpretation: The three terms elaboration, evaluation and interpreta-

tion essentially cover the same idea: that of obtaining the meaning of a syn-
tactical item in some configuration, or as a function from configurations to
values. Given that configuration typically consists of static environments
and dynamic states (or storages), we use the term interpretation in the
more narrow sense of designating, or yielding functions from syntactical
items to functions from configurations to states.

233. Interpreter: An interpreter is an agent, a machine, which performs in-

terpretations.
234. Intrinsics: By the intrinsics of a domain we shall understand those phe-

nomena and concepts of a domain which are basic to any of the other
facets, with such a domain intrinsics initially covering at least one specific,
hence named, stakeholder view. (Intrinsics is thus one of several domain

facets. Others include: business processes, support technology , management

and organisation, rules and regulations, and human behaviour .)
235. Invariant: By an invariant we mean a property that holds of a phe-

nomenon or a concept, both before and after any action involving that
phenomenon or a concept. (A case in point is usually an information or a
data structure: Assume an action, say a repeated one (e.g., a while loop).
We say that the action (i.e., the while loop) preserves an invariant, i.e.,
usually a proposition, if the proposition holds true of the state before and
the state after any interpretation of the while loop. Invariance is here seen
separate from the well-formedness of an information or a data structure. We
refer to the explication of well-formedness!)

J

236. Joule: The Joule, J , is the derived unit of energy in the International

System of Units. It is defined as: 1 J = 1 kg · m2

s2 (where kg is kilogram, m
is meter , s is second).

K

237. Kelvin: The Kelvin, unit of thermodynamic temperature, is the fraction
1/273.16 of the thermodynamic temperature of the triple point of water.
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The thermodynamic temperature, symbol T , in terms of its difference from
the reference temperature T0 = 273.15K, the ice point. This temperature
difference is called a Celsius temperature, symbol t, and is defined by the
quantity equation t = T − T0.

238. Keyword: A significant word from a title or document. (See KWIC .)
239. Kilogram: The kilogram is the unit of mass; it is equal to the mass of

the international prototype of the kilogram.
240. Knowledge: What is, or what can be known. The body of truth, infor-

mation, and principles acquired by mankind [179]. (See epistemology and
ontology . A priori knowledge: Knowledge that is independent of all partic-
ular experiences. A posteriori knowledge: Knowledge, which derives from
experience alone.)

L

241. Label: Same as named program point.
242. Language: By a language we shall understand a possibly infinite set

of sentences which follow some syntax , express some semantics and are
uttered, or written down, due to some pragmatics.

243. Law: A law is a rule of conduct prescribed as binding or enforced by a
controlling authority. (We shall take the term law in the specific sense
of law of Nature (cf., Ampére’s Law, Boyle’s Law, the conservation laws
(of mass-energy, electric charge, linear and angular momentum), Newton’s
Laws, Ohm’s Law, etc.), and laws of Mathematics (cf. “law of the excluded
middle” (as in logic: a proposition must either be true, or false, not both,
and not none)).)

244. Lemma: An auxiliary proposition used in the demonstration of another
proposition. (Instead of proposition we could use the term theorem.)

245. Link: A link is the same as a pointer , an address or a reference: something
which refers to, i.e., designates something (typically something else).

246. Linguistics: The study and knowledge of the syntax , semantics and prag-

matics of language(s).
247. List: A list is an ordered sequence of zero, one or more not necessarily

distinct entities.
248. Literal: A term whose use in software engineering, i.e., programming,

shall mean: an identifier which denotes a constant, or is a keyword. (Usu-
ally that identifier is emphasised. Examples of RSL literals are: Bool,
true, false, chaos, if, then, else, end, let, in, and the numerals
0, 1, 2., ..., 1234.5678, etc.)

249. Live Sequence Chart: The Live Sequence Chart language is a special
graphic notation for expressing communication between and coordination
and timing of processes. (See [55, 87, 110].)

250. Location: By a location is meant an area of storage.
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251. Logic: The principles and criteria of validity of inference and deduction,
that is, the mathematics of the formal principles of reasoning. (We refer
to Vol. 1, Chap. 9 for our survey treatment of mathematical logic.)

252. Logic programming: Logic programming is programming based on an
interpreter which either performs deductions or inductions, or both. (In
logic programming the chief values are those of the Booleans, and the chief
forms of expressions are those of propositions and predicates.)

253. Logic programming language: By a logic programming language is
meant a language which allows one to express, to prescribe, logic program-

ming . (The classical logic programming language is Prolog [124, 97].)
254. Loose specification: By a loose specification is understood a specifi-

cation which either underspecifies a problem, or specifies this problem
nondeterministically .

M

255. Machine: By the machine we understand the hardware plus software that
implements some requirements, i.e., a computing system. (This definition
follows that of M.A. Jackson [107].)

256. Machine requirements: By machine requirements we understand re-

quirements put specifically to, i.e., expected specifically from, the ma-

chine. (We normally analyse machine requirements into performance re-

quirements, dependability requirements, maintenance requirements, platform

requirements and documentation requirements.)
257. Machine service: The service delivered by a machine is its behaviour as

it is perceptible by its user(s), where a user is a human, another machine,
or a(nother) system which interacts with it [156].

258. Maintenance: By maintenance we shall here, for software, mean change
to software, i.e., its various documents, due to needs for (i) adapting that
software to new platforms, (ii) correcting that software due to observed
software errors, (iii) improving certain performance properties of the ma-

chine of which the software is part, or (iv) avoiding potential problems
with that machine. (We refer to subcategories of maintenance: adaptive

maintenance, corrective maintenance, perfective maintenance and preventive

maintenance.)
259. Maintenance requirements: By maintenance requirements we under-

stand requirements which express expectations on how the machine being
desired (i.e., required) is expected to be maintained. (We also refer to
adaptive maintenance, corrective maintenance, perfective maintenance and
preventive maintenance.)

260. Management and organisation: By management and organisation we
mean those facets of a domain which are representative of relations be-
tween the various management levels of an enterprise, and between these
and non-management staff, i.e., “blue-collar” workers. (As such, manage-
ment and organisation is about formulating strategical, tactical and oper-
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ational goals for the enterprise, of communicating and “translating” these
goals into action to be done by management and staff, in general, and
to “backstop” when “things do not ‘work out’ ”, i.e., handling complaints
from “above” and “below”. Other facets of an enterprise are those of its
intrinsics, business processes, support technology , rules and regulations and
human behaviour .)

261. Man-machine dialogue: By man-machinedialogues we understand ac-
tual instantiations of user interactions with machines, and machine in-
teractions with users: what input the users provide, what output the
machine initiates, the interdependencies of these inputs/outputs, their
temporal and spatial constraints, including response times, input/output
media (locations), etc. (

262. Man-machine dialogue requirements: By man-machine dialogue re-
quirements we understand those interface requirements which express ex-
pectations on, i.e., mandates the protocol according to which users are
to interact with the machine, and the machine with the users. (See
man-machine dialogue. For other interface requirements see computational

data+control requirements, shared data initialisation requirements, shared

data refreshment requirements, man-machine physiological requirements and
machine-machine dialogue requirements.))

263. Man-machine physiological requirements: By man-machine physi-
ological requirements we understand those interface requirements which
express expectations on, i.e., mandates, the form and appearance of ways
in which the man-machine dialogue utilises such physiological devices as vi-
sual display screens, keyboards, “mouses” (and other tactile instruments),
audio microphones and loudspeakers, television cameras, etc. (See also
computational data+control requirements, shared data initialisation require-

ments, shared data refreshment requirements, man-machine dialogue require-

ments and machine-machine dialogue requirements.)
264. Map: A map is like a function, but is here thought of as an enumerable

set of pairs of argument/result values. (Thus the definition set of a map is
usually decidable, i.e., whether an entity is a member of a definition set
of a map or not can usually be decided.)

265. Mass: In physical science, mass refers to the degree of acceleration a body
acquires when subject to a force: bodies with greater mass are accelerated
less by the same force. One says the body of greater mass has greater
inertia. (In everyday usage, mass is commonly confused with weight. But,
in physics and engineering, weight means the strength of the gravitational
pull on the object; that is, how heavy it is, measured in units of new-
tons. In everyday situations, the weight of an object is proportional to its
mass, which usually makes it unproblematic to use the same word for both
concepts. However, the distinction between mass and weight becomes im-
portant for measurements with a precision better than a few percent (due
to slight differences in the strength of the Earth’s gravitational field at
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different places), and for places far from the surface of the Earth, such as
in space or on other planets.)

266. Mereology: The theory of parthood relations: of the relations of part
to whole and the relations of part to part within a whole. (Mereology is
often considered a branch of ontology . Leading investigators of mereology
were Franz Brentano, Edmund Husserl, Stanislaw Lesniewski [171, 127,
138, 176, 177, 183] and Leonard and Goodman [120].)

267. Meta-IV: Meta-IV stands for the fourth metalanguage (for programing
language definition conceived at the IBM Vienna Laboratory in the 1960s
and 1970s). (Meta-IV is pronounced meta-four.)

268. Metalanguage: By a metalanguage is understood a language which is
used to explain another language, either its syntax , or its semantics, or its
pragmatics, or two or all of these! (One cannot explain any language using
itself. That would lead to any interpretation of what is explained being
a valid solution, in other words: Nonsense. RSL thus cannot be used to
explain RSL. Typically formal specification languages are metalanguages:
being used to explain, for example, the semantics of ordinary programming
languages.)

269. Metalinguistic: We say that a language is used in a metalinguistic man-
ner when it is being deployed to explain some other language. (And we
also say that when we examine a language, like we could, for example,
examine RSL, and when we use a subset of RSL to make that analysis,
then that subset of RSL is used metalinguistically (wrt. all of RSL).)

270. Metaphysics: We quote from: http://mally.stanford.edu/: “Whereas
physics is the attempt to discover the laws that govern fundamental con-
crete objects, metaphysics is the attempt to discover the laws that system-
atize the fundamental abstract objects presupposed by physical science,
such as natural numbers, real numbers, functions, sets and properties,
physically possible objects and events, to name just a few. The goal of
metaphysics, therefore, is to develop a formal ontology, i.e., a formally
precise systematization of these abstract objects. Such a theory will be
compatible with the world view of natural science if the abstract objects
postulated by the theory are conceived as patterns of the natural world.”
(Metaphysics may, to other scientists and philosophers, mean more or
other, but for software engineering the characterisation just given suf-
fices.)

271. Method: By a method we shall here understand a set of principles for
selecting and using a number of techniques and tools in order to construct
some artefact. (This is our leading definition — one that sets out our
methodological quest: to identify, enumerate and explain the principles,
the techniques and, in cases, the tools — notably where the latter are
specification and programming languages. (Yes, languages are tools.))

272. Methodology: By methodology we understand the study and knowledge
of methods, one, but usually two or more. (In some dialects of English,
methodology is confused with method.)
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273. Meter: The meter is the length of the path travelled by light in vacuum
during a time interval of 1/299 792 458 of a second .

274. Model: A model is the mathematical meaning of a description (of a do-
main), or a prescription (of requirements), or a specification (of software),
i.e., is the meaning of a specification of some universe of discourse. (The
meaning can be understood either as a mathematical function, as for a
denotational semantics meaning, or an algebra as for an algebraic semantics

or a denotational semantics meaning, etc. The essence is that the model is
some mathematical structure.)

275. Model-oriented: A specification (description, prescription) is said to be
model-oriented if the specification (etc.) denotes a model . (Contrast to
property-oriented .)

276. Model-oriented type: A type is said to be model-oriented if its specifi-
cation designates a model . (Contrast to property-oriented type.)

277. Modularisation: The act of structuring a text using modules.
278. Module: By a module we shall understand a clearly delineated text which

denotes either a single complex quantity, as does, usually, an object, or a
possibly empty, possibly infinite set of models of objects. (The RSL module
concept is manifested in the use of one or more of the RSL class (class ...
end), object (object identifier class ... end, etc.), and scheme (scheme
identifier class ... end), etc., constructs. We refer to [54, 53, 17] and to
[151, 150] for original, early papers on modules.)

279. Module design: By module design we shall understand the design of
(one or more) modules.

280. Mole: The mole is the amount of substance of a system which contains as
many elementary entities as there are atoms in 0.012 kilogram of carbon 12;
its symbol is mol. (When the mole is used, the elementary entities must
be specified and may be atoms, molecules, ions, electrons, other particles,
or specified groups of such particles.)

281. Monotonic: A function, f : A → B, is monotonic, if for all a, a′ in the
definition set A of f , and some ordering relations, ⊑, on a and B, we have
that if a ⊑ a′ then f(a) ⊑ f(a′).

282. Motion: The constant change in the location of a body.
283. Multi-dimensional: A composite (i.e., a nonatomic) entity is a multi-

dimensional entity if some relations between properly contained (i.e., con-
stituent) subentities (cf. subentity) can only be described by both forward
and backward references, and/or with recursive references. (This is in con-
trast to one-dimensional entities.)

284. Multimedia: The use of various forms of input/output media in the man-
machine interface: Text, two-dimensional graphics, voice (audio), video,
and tactile instruments (like “mouse”).

N
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285. Name: A name is syntactically (generally an expression, but usually it
is) a simple alphanumeric identifier. Semantically a name denotes (i.e.,
designates) “something”. Pragmatically a name is used to uniquely iden-
tify that “something”. (Shakespeare: Romeo: “What’s in a name?” Juliet
to Romeo: “That which we call a rose by any other name would smell as
sweet.”)

286. Naming: The action of allocating a unique name to a value.
287. Narrative: By a narrative we shall understand a document text which, in

precise, unambiguous language, introduces and describes (prescribes, spec-
ifies) all relevant properties of entities, functions, events and behaviours,
of a set of phenomena and concepts, in such a way that two or more
readers will basically obtain the same idea as to what is being described
(prescribed, specified). (More commonly: Something that is narrated, a
story.)

288. Natural language: By a natural language we shall understand a lan-
guage like Arabic, Chinese, English, French, Russian, Spanish, etc. — one
that is spoken today, 2005, by people, has a body of literature, etc. (In
contrast to natural languages we have (i) professional languages, like the
languages of medical doctors, or lawyers, or skilled craftsmen like car-
penters, etc.; and we have (ii) formal languages like software specification
languages, programming languages, and the languages of first-order pred-
icate logics, etc.)

289. Network: By a network we shall understand the same as a directed, but
not necessarily acyclic graph. (Our only use of it here is in connection with
network databases.)

290. Newton: The Wewton is the unit of force derived in the SI system; it is
equal to the amount of force required to give a mass of one kilogram an
acceleration of one meter per second squared. Algebraically: 1 N = 1 kg·m

s2 .
291. Node: A point in some graph or tree.
292. Nondeterminate: Same as nondeterministic .
293. Nondeterministic: A property of a specification: May, on purpose, i.e.,

deliberately have more than one meaning. (A specification which is am-
biguous also has more than one meaning, but its ambiguity is of overriding
concern: It is not ‘nondeterministic’ (and certainly not ‘deterministic’ !).)

294. Nondeterminism: A nondeterministic specification models nondetermin-
ism.

295. Notation: By a notation we shall usually understand a reasonably pre-
cisely delineated language. (Some notations are textual, as are program-
ming notations or specification languages; some are diagrammatic, as are,
for example, Petri nets, statecharts, live sequence charts, etc.)

296. Noun: Something, a name, that refers to an entity , a quality, a state, an
action, or a concept. Something that may serve as the subject of a verb.
(But beware: In English many nouns can be “verbed”, and many verbs
can be “nouned”!)
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O

297. Object: An instance of the data structure and behaviour defined by the
object’s class. Each object has its own values for the instance variables of
its class and can respond to the functions defined by its class. (Various
specification languages, object Z [46, 64, 65], RSL, etc., each have their
own, further refined, meaning for the term ‘object’, and so do object-

oriented programming language (viz., C++ [182], Java [9, 75, 122, 191, 4,
170], C# [153, 137, 136, 91] and so on).)

298. Object-oriented: We say that a program is object-oriented if its main
structure is determined by a modularisation into a class, that is, a cluster of
types, variables and procedures, each such set acting as a separate abstract

data type. Similarly we say that a programming language is object-oriented
if it specifically offers language constructs to express the appropriate mod-

ularisation. (Object-orientedness became a mantra of the 1990s: Every-
thing had to be object-oriented. And many programming problems are
indeed well served by being structured around some object-oriented no-
tion. The first object-oriented programming language was Simula 67 [17].)

299. Observer: By an observer we mean basically the same as an observer

function.
300. Observer function: An observer function is a function which when “ap-

plied” to an entity (a phenomenon or a concept) yields subentities or at-
tributes of that entity (without “destroying” that entity). (Thus we do
not make a distinction between functions that observe subentities (cf.
subentity) and functions that observe attributes. You may wish to make
distinctions between the two kinds of observer function. You can do so
by some simple naming convention: assign names the prefix obs when
you mean to observe subentities, and attr when you mean to observe
attributes. Vol. 3 Chap. 5 introduces these concepts.)

301. Ohm: By definition in Ohm’s Law, 1 Ohm equals 1 Volt divided by 1
Ampere. In other words, a device has a resistance of 1 Ohm if a voltage
of 1 Volt will cause a current of 1 Ampere to flow.

302. Ontology: In philosophy: A systematic account of Existence. To us: An
explicit formal specification of how to represent the phenomena, concepts
and other entities that are assumed to exist in some area of interest (some
universe of discourse) and the relationships that hold among them. (Fur-
ther clarification: An ontology is a catalogue of concepts and their rela-
tionships — including properties as relationships to other concepts. See
Sect. U.1.4.)

303. Operation: By an operation we shall mean a function, or an action (i.e.,
the effect of function invocation). (The context determines which of these
two strongly related meanings are being referred to.)

304. Operational: We say that a specification (a description, a prescription),
say of a function, is operational if what it explains is explained in terms of
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how that thing, how that phenomenon, or concept, operates (rather than
by what it achieves). (Usually operational definitions are model oriented

(in contrast to property oriented).)
305. Operational abstraction: Although a definition (a specification, a de-

scription, or a prescription) may be said, or claimed, to be operational , it
may still provide abstraction in that the model-oriented concepts of the
definition are not themselves directly representable or performable by hu-
mans or computers. (This is in contrast to denotational abstractions or
algebraic (or axiomatic) abstractions.)

306. Operational semantics: A definition of a language semantics that is
operational . (See also structural operational semantics.)

307. Operation transformation: To speak of operation reification one must
first be able to refer to an abstract, usually property-oriented , specification
of the operation. Then, by operation transformation we mean a specification

which is, somehow, calculated from the abstract specification. (Three nice
books on such calculi are: [140, 16, 10].)

308. Optative: Expressive of wish or desire. (See also imperative, indicative,
and putative.)

309. Organisation: By organisation we shall here, in a narrow sense, only
mean the administrative or functional structure of an enterprise, a pub-
lic or private administration, or of a set of services, as for example in a
consumer/retailer/wholesaler/producer/distributor market, or in a finan-
cial services industry, etc.

310. Organisation and management: The composite term organisation and
management applies in connection with organisations as outlined just
above. The term then emphasises the relations between the organisation
and its management. (For more, see management and organisation.)

311. Output: By output we mean the communication of information (data) to
an outside, an environment, from a phenomenon “within” our universe of
discourse. (More colloquially, and more generally: output can be thought
of as value(s) transferred over channel(s) from, or between, processes. Cf.
input. In a narrow sense we talk of output from a machine (e.g., a finite

state machine or a pushdown machine).)
312. Overloaded: The concept of ‘overloaded’ is a concept related to function

symbols, i.e., function names. A function name is said to be overloaded
if there exists two or more distinct signatures for that function name.
(Typically overloaded function symbols are ‘+’, which applies, possibly,
in some notation, to addition of integers, addition of reals, etc., and ‘=’,
which applies, possibly, in some notation, to comparison of any pair of
values of the same type.)

P

313. Paradigm: A philosophical and theoretical framework of a scientific
school or discipline within which theories, laws and generalizations and
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the experiments performed in support of them are formulated; a philo-
sophical or theoretical framework of any kind. (Software engineering is
full of paradigms: Object-orientedness is one.)

314. Parallel programming language: A programming language whose ma-
jor kinds of concepts are processes, process composition [putting processes
in parallel and nondeterministic {internal or external} choice of process
elaboration], and synchronisation and communication between processes.
(A main example of a practical parallel programming language is occam

[100], and of a specificational ‘programming’ language is CSP [95, 167, 169].
Most recent imperative programming languages (Java, C#, etc.) provide for
programming constructs (e.g., threads) that somehow mimic parallel pro-
gramming.)

315. Perfective maintenance: By perfective maintenance we mean an up-
date, as here, of software, to achieve a more desirable use of resources:
time, storage space, equipment. (We also refer to adaptive maintenance,
corrective maintenance and preventive maintenance.)

316. Performance: By performance we, here, in the context of computing,
mean quantitative figures for the use of computing resources: time, storage
space, equipment.

317. Performance requirements: By performance requirements we mean
requirements which express performance properties (desiderata).

318. Phase: By a phase we shall here, in the context of software development,
understand either the domain development phase, the requirements devel-

opment phase, or the software design phase.
319. Phenomenon: By a phenomenon we shall mean a physically manifest

“thing”. (Something that can be sensed by humans (seen, heard, touched,
smelled or tasted), or can be measured by physical apparatus: Electric-
ity (voltage, current, etc.), mechanics (length, time and hence velocity,
acceleration, etc.), chemistry, etc.)

320. Phenomenology: Phenomenology is the study of structures of conscious-
ness as experienced from the first-person point of view [195].

321. Platform: By a platform, we shall, in the context of computing, un-
derstand a machine: Some computer (i.e., hardware) equipment and some
software systems. (Typical examples of platforms are: Microsoft Windows
running on an IBM ThinkPad Series T model, or Trusted Solaris op-
erating system with an Oracle Database 10g running on a Sun Fire E25K

Server.)
322. Platform requirements: By platform requirements we mean require-

ments which express platform properties (desiderata). (There can be sev-
eral platform requirements: One set for the platform on which software
shall be developed. Another set for the platform(s) on which software
shall be utilised. A third set for the platform on which software shall be
demonstrated. And a fourth set for the platform on which software shall
be maintained. These platforms need not always be the same.)
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323. Portability: Portability is a concept associated with software, more
specifically with the programs (or data). Software is (or files, including
data base records, are) said to be portable if it (they), with ease, can be
“ported” to, i.e., made to “run” on, a new platform and/or compile with
a different compiler, respectively different database management system.

324. Position: The (x, y, z) point in a three-dimensional co-ordinate system,
or in a spherical co-ordinate system: the radial distance of a point from
a fixed origin, the zenith angle from the positive z-axis to the point, and
the azimuth angle from the positive x-axis to the orthogonal projection
of the point in the (x, y) plane.

325. Post-condition: The concept of post-condition is associated with func-
tion application. The post-condition of a function f is a predicate pof

which expresses the relation between argument a and result r values that
the function f defines. If a represent argument values, r corresponding
result values and f the function, then f(a) = r can be expressed by the
post-condition predicate pof

, namely, for all applicable a and r the pred-
icate pof

expresses the truth of pof
(a, r). (See also pre-condition.)

326. Postfix: The concept of postfix is basically a syntactic one, and is asso-
ciated with operator/operand expressions. It is one about the displayed
position of a unary (i.e., a monadic) operator with respect to its operand
(expression). An expression is said to be in postfix form if a monadic
operator is shown, is displayed, after the expression to which it applies.
(Typically the factorial operator, say !, is shown after its operand expres-
sion, viz. 7!.)

327. Pragmatics: Pragmatics is the (i) study and (ii) practice of the factors
that govern our choice of language in social interaction and the effects
of our choice on others. (We use the term pragmatics in connection with
the use of language, as complemented by the semantics and syntax of
language.)

328. Pre-condition: The concept of pre-condition is associated with function
application where the function being applied is a partial function. That
is: for some arguments of its definition set the function yields chaos,
that is, does not terminate. The pre-consition of the function is then a
predicate which expresses those values of the arguments for which the
function application terminates, that is, yields a result value. (See weakest

pre-condition.)
329. Predicate: A predicate is a truth-valued expression involving terms over

arbitrary values, well-formed formula relating terms and with Boolean

connectives and quantifiers.
330. Predicate logic: A predicate logic is a language of predicates (given by

some formal syntax) and a proof system.
331. Presentation: By presentation we mean the syntactic documentation of

the results of some development.
332. Prescription: A prescription is a specification which prescribes some-

thing designatable, i.e., which states what shall be achieved. (Usually the
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term ‘prescription’ is used only in connection with requirements prescrip-
tions.)

333. Preventive maintenance: By preventive maintenance — of a machine

— we mean that a set of special tests are performed on that machine

in order to ascertain whether the machine needs adaptive maintenance,
and/or corrective maintenance, and/or perfective maintenance. (If so, then
an update, as here, of software, has to be made in order to achieve suitable
integrity or robustness of the machine.)

334. Principle: An accepted or professed rule of action or conduct, . . . , a
fundamental doctrine, right rules of conduct, . . . [181]. (The concept of
principle, as we bring it forth, relates strongly to that of method . The
concept of principle is “fluid”. Usually, by a method, some people under-
stand an orderliness. Our definition puts the orderliness as part of overall
principles. Also, one usually expects analysis and construction to be effi-
cient and to result in efficient artifacts. Also this we relegate to be implied
by some principles, techniques and tools.)

335. Procedure: By a procedure we mean the same as a function. (Same as
routine or subroutine.)

336. Process: By a process we understand a sequence of actions and events.
The events designate interaction with some environment of the process.

337. Program: A program, in some programming language, is a formal text
which can be subject to interpretation by a computer. (Sometimes we use
the term code instead of program, namely when the program is expressed
in the machine language of a computer.)

338. Programmable: An active dynamic phenomenon has the programmable
(active dynamic) attribute if its actions (hence state changes) over a future
time interval can be accurately prescribed. (Cf. autonomous and biddable.)

339. Programmer: A person who does software design.
340. Program organisation: By program organisation we loosely mean how

a program (i.e., its text) is structured into, for example, modules (eg.,
classes), procedures, etc.

341. Programming: The act of constructing programs. From [70]:
1: The art of debugging a blank sheet of paper (or, in these days
of on-line editing, the art of debugging an empty file). 2: A pas-
time similar to banging one’s head against a wall, but with fewer
opportunities for reward. 3: The most fun you can have with your
clothes on (although clothes are not mandatory).

342. Programming language: A language for expressing programs, i.e., a
language with a precise syntax , a semantics and some textbooks which
provides remnants of the pragmatics that was originally intended for that
programming language. (See next entry: programming language type.)

343. Programming language type: With a programming language one can
associate a type. Typically the name of that type intends to reveal the
type of a main paradigm, or a main data type of the language. (Examples
are: functional programming language (major data type is functions, major
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operations are definition of functions, application of functions and com-
position of functions), logic programming language (major kinds of expres-
sions are ground terms in a Boolean algebra, propositions and predicates),
imperative programming language (major kinds of language constructs are
declaration of assignable variables, and assignment to variables, and a
more or less indispensable kind of data type is references [locations, ad-
dresses, pointers]), and parallel programming language.)

344. Projection: By projection we shall here, in a somewhat narrow sense,
mean a technique that applies to domain descriptions and yields require-

ments prescriptions. Basically projection “reduces” a domain description
by “removing” (or, but rarely, hiding) entities, functions, events and be-

haviours from the domain description. (If the domain description is an
informal one, say in English, it may have expressed that certain enti-
ties, functions, events and behaviours might be in (some instantiations
of) the domain. If not “projected away” the similar, i.e., informal require-
ments prescription will express that these entities, functions, events and
behaviours shall be in the domain and hence will be in the environment
of the machine being requirements prescribed.)

345. Proof: A proof of a theorem, φ, from a set, Γ , of sentences of some formal

propositional or predicate language, L, is a finite sequence of sentences, φ1,
φ2, . . . , φn, where φ = φ1, where φn = true, and in which each φi is either
an axiom of L, or a member of Γ , or follows from earlier φj ’s by an inference

rule of L.
346. Proof obligation: A clause of a program may only be (dynamically) well-

defined if the values of clause parts lie in certain ranges (viz. no division by
zero). We say that such clauses raise proof obligations, i.e., an obligation
to prove a property. (Classically it may not be statically (i.e., compile
time) checkable that certain expression values lie within certain subtypes.
Discharging a proof may help ensure such constraints.)

347. Proof rule: Same as inference rule or axiom.
348. Proof system: A consistent and (relative) complete set of proof rules.
349. Property: A quality belonging and especially peculiar to an individual

or thing; an attribute common to all members of a class. (Hence: “Not a
property owned by someone, but a property possessed by something”.)

350. Property-oriented: A specification (description, prescription) is said to
be property-oriented if the specification (etc.) expresses attributes. (Con-
trast to model oriented .)

351. Proposition: An expression in language which has a truth value.
352. Pure functional programming language: A functional programming

language is said to be pure if none of its constructs designates side-effects.
353. Putative: Commonly accepted or supposed, that is, assumed to exist or

to have existed. (See also imperative, indicative and optative.)

Q
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354. Quality: Specific and essential character. (Quality is an attribute, a prop-

erty , a characteristic (something has character).)
355. Quantification: The operation of quantifying. (See quantifier . The x (the

y) is quantifying expression ∀x:X·P (x) (respectively ∃y:Y ·Q(y)).)
356. Quantifier: A marker that quantifies. It is a prefixed operator that binds

the variables in a logical formula by specifying their possible range of
values. (Colloquially we speak of the universal and the existential quan-
tifiers, ∀, respectively ∃. Typically a quantified expression is then of either
of the forms ∀x:X·P (x) and ∃y:Y ·Q(y). They ‘read’: For all quantities x
of type X it is the case that the predicate P (x) holds; respectively: There
exists a quantity y of type Y such that the predicate Q(y) holds.)

357. Quantity: An indefinite value. (See the quantifier entry: The quantities
in P (x) (respectively Q(y)) are of type X (respectively Y ). y is indefinite
in that it is one of the quantities of Y , but which one is not said.)

R

358. RAISE: RAISE stands for Rigorous Approach to Industrial Software
Engineering. (RAISE refers to a method, The RAISE Method [74], a speci-
fication language, RSL [72], and “comes” with a set of tools.)

359. Range: The concept of range is here used in connection with functions.
Same as range set. See next entry.

360. Range set: Given a function, its range set is that set of values which is
yielded when the function is applied to each member of its definition set.

361. Reactive: A phenomenon is said to be reactive if the phenomenon per-
forms actions in response to external stimuli. Thus three properties must
be satisfied for a system to be of reactive dynamic attribute: (i) An inter-
face must be definable in terms of (ii) provision of input stimuli and (iii)
observation of (state) reaction. (Contrast to inert and active.)

362. Reactive system: A system whose main phenomena are chiefly reactive.
(See the reactive entry just above.)

363. Real time: We say that a phenomenon is real time if its behaviour some-
how must guarantee a response to an external event within a given time.
(Cf. hard real time and soft real time.)

364. Reasoning: Reasoning is the ability to infer , i.e., to make deductions or
inductions. (Automated reasoning is concerned with the building and use
of computing systems that automate this process. The overall goal is to
mechanise different forms of reasoning.)

365. Reengineering: By reengineering we shall, in a narrow sense, only con-
sider the reengineering of business processes. Thus, to us, reengineering
is the same as business process reengineering . (Reengineering is also used
in the wider sense of a major change to some already existing engineering
artefact.)
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366. Reference: A reference is the same as an address, a link , or a pointer :
something which refers to, i.e., designates something (typically something
else).

367. Refinement: Refinement is a relation between two specifications: One
specification, D, is said to be a refinement of another specification, S,
if all the properties that can be observed of S can be observed in D.
Usually this is expressed as D ⊑ S. (Set-theoretically it works the other
way around: in D ⊇ S, D allows behaviours not accounted for in S.)

368. Refutable assertion: A refutable assertion is an assertion that might
be refuted (i.e., convincingly shown to be false). (Einstein’s theory of
relativity, in a sense, refuted Newton’s laws of mechanics. Both theories
amount to assertions.)

369. Refutation: A refutation is a statement that (convincingly) refutes an
assertion. (Lakatos [114] drew a distinction between refutation (evidence
that counts against a theory) and rejection (deciding that the original
theory has to be replaced by another theory). We can still use Newton’s
theory provided we stay within certain boundaries, within which that
theory is much easier to handle than Einstein’s theory.)

370. Reification: The result of a reify action. (See also data reification, opera-

tion reification and refinement.)
371. Reify: To regard (something abstract) as a material or concrete thing.

(Our use of the term is more operational : To take an abstract thing and
turn it into a less abstract, more concrete thing.)

372. Reliability: A system being reliable — in the context of a machine being
dependable — means some measure of continuous correct service, that is:
Measure of time to failure. (Cf. dependability [being dependable].) (Reli-
ability is a dependability requirement. Usually reliability is considered a
machine property. As such, reliability is (to be) expressed in a machine

requirements document.)
373. Renaming: By renaming we mean Alpha-renaming . (Renaming, in this

sense, is a concept of the Lambda-calculus.)
374. Representation abstraction: By representation abstraction of [typed]

values we mean a specification which does not hint at a particular data
(structure) model, that is, which is not implementation biased. (Usually a
representation abstraction (of data) is either property oriented or is model

oriented . In the latter case it is then expressed, typically, in terms of
mathematical entities such as sets, Cartesians, lists, maps and functions.)

375. Requirements: A condition or capability needed by a user to solve a
problem or achieve an objective [98].

376. Requirements acquisition: The gathering and enunciation of require-

ments. (Requirements acquisition comprises the activities of preparation,
requirements elicitation (i.e. requirements capture) and preliminary require-
ments evaluation (i.e., requirements vetting).)

377. Requirements analysis: By requirements analysis we understand a
reading of requirements acquisition (rough) prescription units, (i) with
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the aim of forming concepts from these requirements prescription units,
(ii) as well as with the aim of discovering inconsistencies, conflicts and in-
completenesses within these requirements prescription units, and (iii) with
the aim of evaluating whether a requirements can be objectively shown to
hold, and if so what kinds of tests (etc.) ought be devised.

378. Requirements capture: By requirements capture we mean the act of
eliciting, of obtaining, of extracting, requirements from stakeholders. (For
practical purposes requirements capture is synonymous with requirements

elicitation.)
379. Requirements definition: Proper definitional part of a requirements pre-

scription.
380. Requirements development: By requirements development we shall

understand the development of a requirements prescription. (All aspects are
included in development: requirements acquisition, requirements analysis,
requirements model ling, requirements validation and requirements verifi-

cation.)
381. Requirements elicitation: By requirements elicitation we mean the ac-

tual extraction of requirements from stakeholders.
382. Requirements engineer: A requirements engineer is a software engineer

who performs requirements engineering . (Other forms of software engineers
are domain engineers and software designers (cum programmer).)

383. Requirements engineering: The engineering of the development of a
requirements prescription, from identification of requirements stakeholders,
via requirements acquisition, requirements analysis, and requirements pre-

scription to requirements validation and requirements verification.
384. Requirements facet: A requirements facet is a view of the requirements

— “seen from a domain description” — such as domain projection, domain

determination, domain instantiation, domain extension, domain fitting or do-

main initialisation.
385. Requirements prescription: By a requirements prescription we mean

just that: the prescription of some requirements. (Sometimes, by require-
ments prescription, we mean a relatively complete and consistent specifi-
cation of all requirements, and sometimes just a requirements prescription

unit.)
386. Requirements prescription unit: By a requirements prescription unit

we understand a short, “one or two liner”, possibly rough sketch, prescrip-

tion of some property of a domain requirements, an interface requirements,
or a machine requirements. (Usually requirements prescription units are
the smallest textual, sentential fragments elicited from requirements stake-

holders.)
387. Requirements specification: Same as requirements prescription — the

preferred term.
388. Requirements validation: By requirements validation we rather mean

the validation of a requirements prescription.
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389. Retrieval: Used here in two senses: The general (typically database-
oriented) sense of ‘the retrieval [the fetching] of data (of obtaining infor-
mation) from a repository of such’. And the special sense of ‘the retrieval
of an abstraction from a concretisation’, i.e., abstracting a concept from a
phenomenon (or another, more operational concept). (See the next entry
for the latter meaning.)

390. Retrieve function: By a retrieve function we shall understand a function
that applies to values of some type, the “more concrete, operational” type,
and yields values of some type claimed to be more abstract. (Same as
abstraction function.)

391. Rigorous: Favoring rigor, i.e., being precise.
392. Rigorous development: Same as the composed meaning of the two

terms rigorous and development. (We usually speak of a spectrum of de-
velopment modes: systematic development, rigorous development and for-

mal development. Rigorous software development, to us, “falls” somewhere
between the two other modes of development: (Always) complete formal

specifications are constructed, for all (phases and) stages of development;
some, but usually not all proof obligations are expressed; and usually only
a few are discharged (i.e., proved to hold).)

393. Risk: The Concise Oxford Dictionary [123] defines risk (noun) in terms
of a hazard, chance, bad consequences, loss, etc., exposure to mischance.
Other characterisations of the term risk are: someone or something that
creates or suggests a hazard, and possibility of loss or injury.

394. Robustness: A system is robust — in the context of a machine being
dependable — if it retains all its dependability attributes (i.e., properties)
after failure and after maintenance. (Robustness is (thus) a dependability

requirement.)
395. Root: A root is a node of a tree which is not a subtree of a larger,

embedding (embedded) tree.
396. Rough sketch: By a rough sketch — in the context of descriptive software

development documentation — we shall understand a document text which
describes something which is not yet consistent and complete, and/or
which may still be too concrete, and/or overlapping, and/or repetitive
in its descriptions, and/or with which the describer has yet to be fully
satisfied.

397. Route: Same as path.
398. Routine: Same as procedure.
399. RSL: RSL stands for the RAISE [74] Specification Language [72]. ()
400. Rule: A regulating principle. (We use the concept of rules in several

different contexts: rewrite rule, rule of grammar and rules and regulations.)

S

401. Safety: By safety — in the context of a machine being dependable —
we mean some measure of continuous delivery of service of either correct
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service, or incorrect service after benign failure, that is, measure of time to
catastrophic failure. (Safety is a dependability requirement. Usually safety
is considered a machine property. As such safety is (to be) expressed in a
machine requirements document.)

402. Safety critical: A system whose failure may cause injury or death to
human beings, or serious loss of property, or serious disruption of services
or production, is said to be safety critical.

403. Script: By a domain script we shall understand the structured, almost,
if not outright, formally expressed, wording of a rule or a regulation (cf.
rules and regulations) that has legally binding power, that is, which may
be contested in a court of law.

404. Second: The second is the duration of 9 192 631 770 periods of the radi-
ation corresponding to the transition between the two hyperfine levels of
the ground state of the cesium 133 atom.

405. Secure: To properly define the concept of secure, we first assume the
concept of an authorised user. Now, a system is said to be secure if an
un-authorised user, when supposedly making use of that system, (i) is
not able to find out what the system does, (ii) is not able to find out
how it does ‘whatever’ it does do, and (iii), after some such “use”, does
not know whether he/she knows! (The above characterisation represents
an unattainable proposition. As a characterisation it is acceptable. But it
does not hint at ways and means of implementing secure systems. Once
such a system is believed implemented the characterisation can, however
be used as a guide in devising tests that may reveal to which extent the
system indeed is secure. Secure systems usually deploy some forms of
authorisation and encryption mechanisms in guarding access to system
functions.)

406. Security: When we say that a system exhibits security we mean that
it is secure. (Security is a dependability requirement. Usually security is
considered a machine property. As such security is (to be) expressed in a
machine requirements document.)

407. Selector: By a selector (a selector function) we understand a function
which is applicable to values of a certain, defined, composed type, and
which yields a proper component of that value. The function itself is de-
fined by the type definition.

408. Semantics: Semantics is the study and knowledge [incl. specification] of
meaning in language [50]. (We make the distinction between the prag-

matics, the semantics and the syntax of languages. Leading textbooks on
semantics of programming languages are [59, 79, 164, 168, 184, 193].)

409. Semantic function: A semantics function is a function which when ap-
plied to syntactic values yields their semantic values.

410. Semantic type: By a semantic type we mean a type that defines semantic

values.
411. Semiotics: Semiotics, as used by us, is the study and knowledge of prag-

matics, semantics and syntax of language(s).
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412. Sensor: A sensor can be thought of as a piece of technology (an electronic,
a mechanical or an electromechanical device) that senses, i.e., measures,
a physical value. (A sensor is in contrast to an actuator .)

413. Sentence: (i) A word, clause, or phrase or a group of clauses or phrases
forming a syntactic unit which expresses an assertion, a question, a com-
mand, a wish, an exclamation, or the performance of an action, that in
writing usually begins with a capital letter and concludes with appropriate
end punctuation, and that in speaking is distinguished by characteristic
patterns of stress, pitch and pauses; (ii) a mathematical or logical state-
ment (as an equation or a proposition) in words or symbols [179].

414. Sequential: Arranged in a sequence, following a linear order, one after
another.

415. Sequential process: A process is sequential if all its observable actions
can be, or are, ordered in sequence.

416. Set: We understand a set as a mathematical entity, something that is
not mathematically defined, but is a concept that is taken for granted.
(Thus by a set we understand the same as a collection, an aggregation, of
distinct entities. Membership (of an entity) of a set is also a mathematical
concept which is likewise taken for granted, i.e., undefined.)

417. Set theoretic: We say that something is set theoretically understood or
explained if its understanding or explanation is based on sets.

418. Shared data: See shared phenomenon.
419. Shared data initialisation: By shared data initialisation we understand

an operation that (initially) creates a data structure that reflects, i.e., mod-
els, some shared phenomenon in the machine. (See also shared data refresh-

ment.)
420. Shared data initialisation requirements: Requirements for shared data

initialisation. (See also computational data+control requirements, shared

data refreshment requirements, man-machine dialogue requirements, man-

machine physiological requirements, and machine-machine dialogue require-

ments.)
421. Shared data refreshment: By shared data refreshment we understand

a machine operation which, at prescribed intervals, or in response to pre-
scribed events updates an (originally initialised) shared data structure.
(See also shared data initialisation.)

422. Shared data refreshment requirements: Requirements for shared data

refreshment. (See also computational data+control requirements, shared

data initialisation requirements, man-machine dialogue requirements, man-

machine physiological requirements, and machine-machine dialogue require-

ments.)
423. Shared information: See shared phenomenon.
424. Shared phenomenon: A shared phenomenon is a phenomenon which is

present in some domain (say in the form of facts, knowledge or information)
and which is also represented in the machine (say in the form of data).
(See also shared data and shared information.)
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425. Side effect: A language construct that designates the modification of the
state of a system is said to be a side-effect-producing construct. (Typical
side effect constructs are assignment, input and output. A programming

language “without side effects” is said to be a pure functional programming

language.)
426. Sign: Same as symbol .
427. Signature: See function signature.
428. Soft real time: By soft real time we mean a real time property where the

exact, i.e., absolute timing, or time interval, is only of loose, approximate
essence. (Cf., hard real time.)

429. Software: By software we understand not only the code that when “sub-
mitted” to a computer enables desired computations to take place, but
also all the documentation that went into its development (i.e., its do-

main description, requirements specification, its complete software design

(all stages and steps of refinement and transformation), the installation

manual , training manual , and the user manual).
430. Software component: Same as component.
431. Software architecture: By a software architecture we mean a first kind

of specification of software — after requirements — one which indicates
how the software is to handle the given requirements in terms of software

components and their interconnection — though without detailing (i.e.,
designing) these software components.

432. Software design: By software design we shall understand the determi-
nation of which components, which modules and which algorithms shall
implement the requirements — together with all the documents that usu-
ally make up properly documented software. (Software design entails pro-

gramming , but programming is a “narrower” field of activity than soft-
ware design in that programming usually excludes many documentation
aspects.)

433. Software design specification: The specification of a software design.
434. Software development: To us, software development includes all three

phases of software development: domain development, requirements devel-

opment and software design.
435. Software development project: A software development project is a

planning, research and development project whose aim is to construct
software.

436. Software engineer: A software engineer is an engineer who performs
one or more of the functions of software engineering . (These functions
include domain engineering , requirements engineering and software design

(incl. programming).)
437. Software engineering: The confluence of the science, logic, discipline,

craft and art of domain engineering , requirements engineering and software

design.
438. Sort: A sort is a collection, a structure, of, at present, further unspecified

entities. (That is, same as an algebraic type. When we say “at present,
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further unspecified”, we mean that the (values of the) sort may be subject
to constraining axioms. When we say “a structure”, we mean that “this
set” is not necessarily a set in the simple sense of mathematics, but may
be a collection whose members satisfy certain interrelations, for example,
some partially ordered set, some neighbourhood set or other.)

439. Sort definition: The definition of a sort. (Usually a sort definition consists
of the (introduction of) a type name, some (typically observer function and
generator function) signatures, and some axioms relating sort values and
functions.)

440. Source program: By a source program we mean a program (text) in some
programming language. (The term source is used in contrast to target: the
result of compiling a source text for some target machine.)

441. Span: Span is here used, in contrast to scope, more specifically in the
context of the degree to which a project scope and span extend: Scope
being the “larger, wider” delineation of what a project “is all about”, span

being the “narrower”, more precise extent.
442. Speed: Speed, v, is the rate of motion, or equivalently the rate of change

in position: the distance, x, traveled per unit of time, t, i.e., v = x/t.
443. Specification: We use the term ‘specification” to cover the concepts of

domain descriptions, requirements prescriptions and software designs. More
specifically a specification is a definition, usually consisting of many defi-
nitions.

444. Specification language: By a specification language we understand a
formal language capable of expressing formal specifications. (We refer to
such formal specification languages as: ASM [161], B & eventB [2, 3, 44],
CASL [15, 143, 142], CafeOBJ [60, 61], RSL [72, 73], VDM-SL [36, 69] and Z

[173, 175, 194, 93].)
445. Stage: (i) By a development stage we shall understand a set of develop-

ment activities which either starts from nothing and results in a complete
phase documentation, or which starts from a complete phase documen-
tation of stage kind, and results in a complete phase documentation of
another stage kind. (ii) By a development stage we shall understand a
set of development activities such that some (one or more) activities have
created new, externally conceivable (i.e., observable) properties of what
is being described, whereas some (zero, one or more) other activities have
refined previous properties. (Typical development stages are: domain in-

trinsics, domain support technologies, domain management and organisation,
domain rules and regulations, etc., and domain requirements, interface re-

quirements, and machine requirements, etc.)
446. Stakeholder: By a domain (requirements, software design)2 stakeholder

we shall understand a person, or a group of persons, “united” somehow in
their common interest in, or dependency on the domain (requirements,
software design); or an institution, an enterprise, or a group of such,

2 These three areas of concern form three universes of discourse.
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(again) characterised (and, again, loosely) by their common interest in,
or dependency on the domain (requirements, software design). (The three
stakeholder groups usually overlap.)

447. Stakeholder perspective: By a stakeholder perspective we shall under-
stand the, or an, understanding of the universe of discourse shared by the
specifically identified stakeholder group — a view that may differ from
one stakeholder group to another stakeholder group of the same universe
of discourse.

448. State: By a state we shall, in the context of computer programs, under-
stand a summary of past computations, and, in the context of domains, a
suitably selected set of dynamic entities.

449. Statechart: The Statechart language is a special graphic notation for
expressing communication between and coordination and timing of pro-
cesses. (See [83, 84, 86, 88, 85].)

450. Statement: We shall take the rather narrow view that a statement is a
programming language construct which denotes a state-to-state function.
(Pure expressions are then programming language constructs which de-
note state-to-value functions (i.e., with no side effect), whereas “impure”
expressions, also called clauses, denote state-to-state-and-value functions.)

451. Step: By a development step we shall understand a refinement of a do-
main description (or a requirements prescription, or a software design
specification) module, from a more abstract to a more concrete descrip-
tion (or a more concrete requirements prescription, or a more concrete
software design specification).

452. Stepwise development: By a stepwise development we shall understand
a development that undergoes phases, stages or steps of development, i.e.,
can be characterised by pairs of two adjoining phase steps, a last phase

step and a (first) next phase step, or two adjoining stage steps.
453. Stepwise refinement: By a stepwise refinement we understand a pair of

adjoining development steps where the transition from one step to the next
step is characterised by a refinement. (Refinement is thus always stepwise
refinement.)

454. Steradian: The steradian (symbol: sr) is the SI unit of solid angle. It
is used to describe two-dimensional angular spans in three-dimensional
space, analogous to the way in which the radian describes angles in a
plane. ( )

455. Structure: The term ‘structure’ is understood rather loosely. Normally
we shall understand a structure as a mathematical structure, such as an
algebra, or a predicate logic , or a Lambda-calculus, or some defined abstrac-
tion (a scheme or a class). (Set theory is a (mathematical) structure. So
are RSL’s Cartesian, list and map data types.)

456. Subentity: A subentity is a proper part of a (thus) non-atomic entity .
(Do not confuse a subentity of an entity with an attribute of that entity
(or of that subentity).)
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Fig. U.1. A graphical representation of 1 steradian

457. Subtype: To speak of a subtype we must first be able to speak of a type,
i.e., colloquially, a (suitably structured) set of values. A subtype of a type
is then a (suitably structured) and proper subset of the values of the
type. (Usually we shall, in RSL, think of a predicate, p, that applies to all
members of the type, T , and singles out a proper subset whose elements
satisfy the predicate: {a | a : T · p(a)}.)

458. Support technology: By a support technology we understand a facet

of a domain, one which reflects its (current) dependency on mechanical,
electro-mechanical, electronic and other technologies (i.e., tools) in order
to carry out its business processes. (Other facets of an enterprise are those
of its intrinsics, business processes, management and organisation, rules and

regulations and human behaviour .)
459. Synopsis: By a synopsis we shall understand a composition of informative

documentation and rough-sketch description of some project.
460. Syntax: By syntax we mean (i) the ways in which words are arranged

to show meaning (cf. semantics) within and between sentences, and (ii)
rules for forming syntactically correct sentences. (See also regular syntax ,
context-free syntax , context-sensitive syntax and BNF for specifics.)

461. System: A regularly interacting or interdependent group of phenomena
or concepts forming a whole, that is, a group of devices or artificial objects
or an organization forming a network especially for producing something
or serving a common purpose. (This book will have its own characterisa-
tion of the concept of a system (commensurate, however, with the above
encircling characterisation); cf. Vol. 2, Sect. 9.5’s treatment of system.)

462. Systematic development: Systematic development of software is for-
mal development “lite”! (We usually speak of a spectrum of development
modes: systematic development, rigorous development, and formal develop-

ment. Systems software development, to us, is at the “informal” extreme
of the three modes of development: formal specifications are constructed,
but maybe not for all stages of development; and usually no proof obliga-
tions are expressed, let alone proved. The three volumes of this series of
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textbooks in software engineering can thus be said to expound primarily
the systematic approach.)

463. Systems engineering: By systems engineering we shall here understand
computing systems engineering: The confluence of developing hardware

and software solutions to requirements.

T

464. Taxonomy: See Sect. U.1.5.
465. Technique: A procedure, an approach, to accomplish something.
466. Technology: We shall in these volumes be using the term technology to

stand for the results of applying scientific and engineering insight. This,
we think, is more in line with current usage of the term IT, information
technology.

467. Temporal: Of or relating to time, including sequence of time, or to time
intervals (i.e., durations).

468. Temporal logic: A(ny) logic over temporal phenomena. (We refer to
Vol. 2, Chap. 15 for our survey treatment of some temporal logics.)

469. Term: From [123]: A word or phrase used in a definite or precise sense in
some particular subject, as a science or art; a technical expression. More
widely: any word or group of words expressing a notion or conception,
or denoting an object of thought. (Thus, in RSL, a term is a clause, an
expression, a statement, which has a value (statements have the Unit
value).)

470. Terminal: By a terminal we shall mean a terminal symbol which (in
contrast to a nonterminal symbol) designates something specific.

471. Termination: The concept of termination is associated with that of an
algorithm. We say that an algorithm, when subject to interpretation (col-
loquially: ‘execution’), may, or may not terminate. That is, may halt, or
may “go on forever, forever looping”. (Whether an algorithm terminates
is undecidable.)

472. Terminology: By terminology is meant ([123]): The doctrine or scientific
study of terms; the system of terms belonging to a science or subject;
technical terms collectively; nomenclature.

473. Test: A test is a means to conduct testing . (Typically such a test is a
set of data values provided to a program (or a specification) as values
for its free variables. Testing then evaluates the program (resp., interprets
(symbolically) the specification) to obtain a result (value) which is then
compared with what is (believed to be) the, or a, correct result. See Vol. 3,
Sects. 14.3.2, 22.3.2 and 29.5.3 for treatments of the concept of test.)

474. Testing: Testing is a systematic effort to refute a claim of correctness of
one (e.g., a concrete) specification (for example a program) with respect
to another (the abstract) specification. (See Vol. 3, Sects. 14.3.2, 22.3.2,
and 29.5.3 for treatments of the concept of testing.)
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475. Theorem: A theorem is a sentence that is provable without assumptions,
that is “purely” from axioms and inference rules.

476. Theorem prover: A mechanical, i.e., a computerised means for theorem

proving . (Well-known theorem provers are: PVS [148, 149] and HOL/Isa-

belle [146].)
477. Theorem proving: The act of proving theorems.
478. Theory: A formal theory is a formal language, a set of axioms and infer-

ence rules for sentences in this language, and is a set of theorems proved
about sentences of this language using the axioms and inference rules. A
mathematical theory leaves out the strict formality (i.e., the proof system)
requirements and relies on mathematical proofs that have stood the social
test of having been scrutinised by mathematicians.

479. Thesaurus: See Sect. U.1.7.
480. Time: Time is often a notion that is taken for granted. But one may do

well, or better, in trying to understand time as some point set that satisfies
certain axioms. Time and space are also often related (via [other] physi-
cally manifest “things”). Again their interrelationship needs to be made
precise. (In comparative concurrency semantics one usually distinguishes
between linear time and branching time semantic equivalences [189]. We
refer to our treatment of time and space in Vol. 2 Chap. 5, to Johan
van Benthem’s book The Logic of Time [187], and to Wayne D. Blizard’s
paper A Formal Theory of Objects, Space and Time [40].)

481. Token: Something given or shown as an identity. (When, in RSL, we define
a sort with no “constraining” axioms, we basically mean to define a set of
tokens.)

482. Tool: An instrument or apparatus used in performing an operation. (The
tools most relevant to us, in software engineering, are the specification and
programming languages as well as the software packages that aid us in the
development of (other) software.)

483. Training manual: A document which can serve as a basis for a (possibly
self-study) course in how to use a computing system. (See also installation

manual and user manual .)
484. Transaction: General: A communicative action or activity involving two

agents that reciprocally influence each other. (Special: The term transac-
tion has come to be used, in computing, notably in connection with the
use of database management systems (DBMS, or similar multiuser sys-
tems): A transaction is then a unit of interaction with a DBMS (etc.). To
further qualify as being a transaction, it must be handled, by the DBMS
(etc.), in a coherent and reliable way independent of other transactions.)

485. Transformation: The operation of changing one configuration or ex-
pression into another in accordance with a precise rule. (We consider the
results of substitution, of translation and of rewriting to be transformations
of what the substitution, the translation and the rewriting was applied to.)
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486. Transition: Passage from one state, stage, subject or place to another;
a movement, development, or evolution from one form, stage or style to
another [179].

487. Transition rule: A rule, of such a form that it can specify how any of a
well-defined class of states of a machine may make transitions to another
state, possibly nondeterministically to any one of a well-defined number of
other states. (The seminal 1981 report A Structural Approach to Oper-
ational Semantics, by Gordon D. Plotkin [154], set a de facto standard
for formulating transition rules (exploring their theoretical properties and
uses).)

488. Translate: See translation.
489. Translation: An act, process or instance of translating, i.e., of rendering

from one language into another.
490. Translator: Same as a compiler .
491. Triptych: An ancient Roman writing tablet with three waxed leaves

hinged together; a picture (as an altarpiece) or carving in three panels side
by side [179]. (The trilogy of the phases of software development, domain

engineering , requirements engineering and software design as promulgated
by this trilogy of volumes!)

492. Tuple: A grouping of values. (Like 2-tuplets, quintuplets, etc. Used ex-
tensively, at least in the early days, in the field of relational databases —
where a tuple was like a row in a relation (i.e., table).)

493. Type: Generally a certain kind of set of values. (See algebraic type, model-

oriented type, programming language type and sort.)
494. Type check: The concept of type check arises from the concepts of func-

tion signatures and function arguments. If arguments are not of the ap-
propriate type then a type check yields an error result. (By appropriate
static typing of declarations of variables of a programming language or a
specification language one can perform static type checking (i.e., at compile

time).)
495. Type constructor: A type constructor is an operation that applies to

types and yields a type. (The type constructors of RSL include the power
set constructors: -set and -infset, the Cartesian constructor: ×, the list
constructors: ∗ and ω, the map constructor: →m , the total and partial
function space constructors: → and

∼

→, the union type constructor: |, and
others.)

496. Type definition: A type definition semantically associates a type name

with a type. Syntactically, as, for example, in RSL, a type definition is
either a sort definition or is a definition whose right-hand side is a type

expression.
497. Type expression: A type expression semantically denotes a type. Syntac-

tically, as, for example, in RSL, a type expression is an expression involving
type names and type constructors, and, rarely, terminals.

498. Type name: A type name is usually just a simple identifier .
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499. Typing: By typing we mean the association of types with variables. (Usu-
ally such an association is afforded by pairing a variable identifier with a
type name in the variable declaration. See also dynamic typing and static

typing .)

U

500. UML: Universal Modelling Language. A hodgepodge of notations for ex-
pressing requirements and designs of computing systems. (Vol. 2, Chaps. 10,
and 12–14 outlines our attempt to “UML”-ize formal techniques.)

501. Underspecify: By an underspecified expression, typically an identifier,
we mean one which for repeated occurrences in a specification text always
yields the same value, but what the specific value is, is not knowable. (Cf.
nondeterministic or loose specification.)

502. Undecidable: A formal logic system is undecidable if there is no algo-

rithm which prescribes computations that can determine whether any given
sentence in the system is a theorem.

503. Universe of discourse: That which is being talked about; that which
is being discussed; that which is the subject of our concern. (The four
most prevalent universes of discourse of this book, this series of volumes
on software engineering, are: software development methodology , domains,
requirements and software design.)

504. Update: By an update we shall understand a change of value of a variable,
including also the parts, or all, of a database.

505. Update problem: By the update problem we shall understand that data
stored in a database usually reflect some state of a domain, but that
changes in the external state of that domain are not always properly,
including timely, reflected in the database.

506. User: By a user we shall understand a person who uses a computing

system, or a machine (i.e., another computing system) which interfaces

with the former. (Not to be confused with client or stakeholder .)
507. User-friendly: A “lofty” term that is often used in the following context:

“A computing system, a machine, a software package, is required to be
user-friendly” — without the requestor further prescribing the meaning of
that term. Our definition of the term user-friendly is as follows: A machine

(software + hardware) is said to be user-friendly (i) if the shared phenom-

ena of the application domain (and machine) are each implemented in a
transparent, one-to-one manner, and such that no IT jargon, but com-
mon application domain terminology is used in their (i.1) accessing, (i.2)
invocation (by a human user), and (i.3) display (by the machine); i.e., (ii)
if the interface requirements have all been carefully expressed (commen-
surate, in further detailed ways: ..., with the user psyche) and correctly
implemented; and (iii) if the machine otherwise satisfies a number of per-

formance and dependability requirements that are commensurate, in further
detailed ways: ..., with the user psyche.
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508. User manual: A document which a regular user of a computing system

refers to when in doubt concerning the use of some features of that system.
(See also installation manual and training manual .)

V

509. Valid: A predicate is said to be valid if it is true for all interpretations. (In
this context think of an interpretation as a binding of all free variables of
the predicate expression to values; cf. satisfiable.)

510. Validation: (Let, in the following universe of discourse stand consistently
for either domain, requirements or software design.) By universe of dis-
course validation we understand the assurance, with universe of discourse
stakeholders, that the specifications produced as a result of universe of
discourse acquisition, universe of discourse analysis 127 377 and concept for-

mation, and universe of discourse domain modelling are commensurate
with how the stakeholder views the universe of discourse. (Domain and
requirements validation is treated in Vol. 3, Chaps. 14 and 22.)

511. Valuation: Same as evaluation.
512. Value: From (assumed) Vulgar Latin valuta, from feminine of valutus,

past participle of Latin valere to be of worth, be strong [179]. (Commensu-
rate with that definition, value, to us, in the context of programming (i.e.,
of software engineering), is whatever mathematically founded abstraction

can be captured by our type and axiom systems. (Hence numbers, truth
values, tokens, sets, Cartesians, lists, maps, functions, etc., of, or over,
these.))

513. Variable: (i) From Latin variabilis, from variare to vary; (ii) able or apt
to vary; (iii) subject to variation or changes [179]. (Commensurate with
that definition, a variable, to us, in the context of programming (i.e.,
of software engineering), is a placeholder, for example, a storage location

whose contents may change. A variable, further, to us, has a name, the
variable’s identifier, by which it can be referred.)

514. Velocity: In physics, velocity is defined as the rate of change of position.
It is a vector physical quantity; both speed and direction are required to
define it. In the SI (metric) system, it is measured in meters per second:
(m/s) or ms−1.

515. VDM: VDM stands for the Vienna Development Method [36, 37]. (VDM-SL
(SL for Specification Language) was the first formal specification language
to have an international standard: VDM-SL, ISO/IEC 13817-1: 1996.

The author of this book coined the name VDM in 1974 while working with
Hans Bekič, Cliff B. Jones, Wolfgang Henhapl and Peter Lucas, on what
became the VDM description of PL/I. The IBM Vienna Laboratory, in Aus-
tria, had, in the 1960s, researched and developed semantics descriptions
[12, 13, 14, 126] of PL/I, a programming language of that time. “JAN”
(John A.N.) Lee [118] is believed to have coined the name VDL [119, 125]
for the notation (the Vienna Definition Language) used in those semantics
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definitions. So the letter M follows, lexicographically, the letter L, hence
VDM.)

516. VDM–SL: VDM-SL stands for the VDM Specification Language. (See entry
VDM above. Between 1974 and the late 1980s VDM-SL was referred to by
the acronym Meta-IV: the fourth metalanguage (for language definition)
conceived at the IBM Vienna Laboratory during the 1960s and 1970s.)

517. Verification: By verification we mean the process of determining whether
or not a specification (a description, a prescription) fulfills a stated prop-
erty. (That stated property could (i) either be a property of the specifi-
cation itself, or (ii) that the specification relates, somehow, i.e., is correct
with respect to some other specification.)

518. Verify: Same, for all practical purposes, as verification.
519. Volt: The volt is defined as the potential difference across a conductor

when a current of one Ampere dissipates one Watt of power.

V =
W

A
=

J

C
=

N · m

A · s
=

kg · m2

A · s3

W

520. Watt: The Watt (symbol: W) is the SI derived unit of power, equal to
one Joule of energy per second . It measures a rate of energy conversion.

521. Well-formedness: By well-formedness we mean a concept related to
the way in which information or data structure definitions may be given.
Usually these are given in terms of type definitions. And sometimes it
is not possible, due to the context-free nature of type definitions. (Well-
formedness is here seen separate from the invariant over an information or
a data structure. We refer to the explication of invariant!)

522. Wildcard: A special symbol that stands for one or more characters.
(Many operating systems and applications support wildcards for iden-
tifying files and directories. This enables you to select multiple files with
a single specification. Typical wildcard designators are * (asterisk) and
(underscore).)

523. Word: A speech sound or series of speech sounds or a character or series
of juxtaposed characters that symbolizes and communicates a meaning
without being divisible into smaller units capable of independent use [179].

Z

524. Z: Z stands for Zermelo (Frankel), a set theoretician. (Z also stands for a
model-oriented specification language [173, 174, 194, 93, 92].)
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absolute
time, 18

abstract, 353
Abstract data type, 353
abstract syntax, 354
abstract type, 354
abstraction, 353
abstraction function, 353
acceleration, 354
acquirer, 354
acquisition, 354

domain, 43
of domain knowledge, 71

action, 16, 354
active, 354
actuator, 354
adaptive, 354
adaptive maintenance, 354
agent, 354
algorithm, 354
algorithmic, 355
ambiguous, 355
amount of (chemical) substance

Mol, 18
Ampere

electric current, 18
ampere, 355
analysis, 355

objectives of domain, 80
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of domain, 80
application, 355

domain, 4, 42
function, 24

application domain, 355
applicative, 356
applicative programming, 356
Applicative programming language, 356
arc, 53

label, 53
architecture, 356
argument, 24
artefact, 356
artifact, 356
assertion, 356
atomic, 356
attribute, 356

of a development, 55
attributed

software development graph, 55
axiom, 356
axiom system, 357
axiomatic specification, 357

b, 357
behaviour, 16, 29–31, 357

communicating, 30
concurrent, 30
project designator, 53

Boolean, 357
Boolean connective, 357
BPR, 357
brief, 357
business

process
engineering, 357

business process, 75, 357
Business process reengineering, 358

calculus, 358
candela, 358
Candela

luminous intensity, 18
capture, 358
Cartesian, 358
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Celcius, 358
channel, 358
chaos, 358
class, 358
clause, 358
client, 358
code, 359
coding, 359
communicating

behaviour, 30
communication, 359
component, 359
component design, 359
composite, 359
composition, 359
compositional, 359
compositional documentation, 359
comprehension, 359
computation, 359
compute, 359
computing system, 360
concept, 360
concept formation, 360
concrete, 360
concrete syntax, 360
concrete type, 360
concurrency, 360
concurrent, 360

behaviour, 30
conflict

of a set of domain description units, 80
consistency

of domain description units, 79
continuous

continuous
type, 291

continuous
value, 291

contract, 59
informative document, 59

contradiction, 79
correct, 360
corrective maintenance, 361
correctness, 360
CSP, 361
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customer, 361

data, 361
data abstraction, 361
data invariant, 361
data refinement, 361
data reification, 361
data structure, 362
data transformation, 362
data type, 362
database, 361
database schema, 361
decidable, 362
declaration, 362
decomposition, 362
definiendum, 362
definiens, 362
definite, 362
definition, 362
definition set, 362
denotation, 362
denotational, 362
denotational semantics, 362
denote, 362
dependability, 362
dependability requirements, 363
describe, 363
description, 10

domain, 5
design, 363

brief, 59, 62
informative document, 62

of software, 5
software, 5

designator
of project behaviour, 53

deterministic, 363
developer, 363
development, 363

attribute, 55
formal, 14, 15
formal, technique, 14
graph, software, 53
informal, 14
of software, 5
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phase, 4
rigorous, 15
stage, 6
step, 6
systematic, 15

development phase, 5
diagram, 364
dialogue, 364
dictionary, 364
didactics, 364
directed graph, 364
direction, 364
directory, 364
discrete, 364

discrete
type, 291

discrete
value, 291

disjunction, 364
distance, 364
document

analysis, 8
domain, 9
requirements, 9

domain, 13
informative

assumptions and dependencies, 51
budget, 56
contract, 59
contracts and design briefs, 59
current situation, 49
design brief, 62
facilities and concepts, 50
implicit/derivative goals, 52
logbook, 63
other estimates, 56
project name and dates, 48
project partners, 48
project places, 48
resource allocation, 55
scope and span, 51
software development graph, 53
standards compliance, 56
synopsis, 52

modelling
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domain, 7
requirements, 8

requirements, 13
software, 13

system, 13
software design, 13

documentation requirements, 364
domain, 3, 4, 42, 364

acquisition, 43
analysis, 80
analysis objectives, 80
description, 5
description unit

conflict, 80
consistency, 79
relative completeness, 79

document, 13
engineering, 5
idea, 50
knowledge acquisition, 71
of application, 4, 42
stakeholder, 67

domain acquisition, 364
domain analysis, 364
domain capture, 365
domain description, 365
Domain description unit, 365
domain determination, 365
domain development, 365
domain engineer, 365
domain engineering, 365
domain extension, 365
domain facet, 365
domain fitting, 366
domain initialisation, 366
domain instantiation, 366
domain knowledge, 366
domain projection, 366
domain requirements, 367
Domain requirements facet, 367
domain validation, 366
domain verification, 367

edge, 53
label, 53
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elaborate, 367
elaboration, 367
electric current

Ampere, 18
elicitation, 367
embedded, 367
embedded system, 367
engineer, 367
engineering, 368

domain, 5
requirements, 5

enrichment, 368
entity, 16, 368

simple, 19–23
enumerable, 368
enumeration, 368
environment, 368
epistemology, 368
error, 368
evaluate, 368
evaluation, 368
event, 16, 28–29, 369

external, 29
internal, 29

expression, 369
extension, 369
extensional, 369
external

event, 29

facet, 369
failure, 369
fault, 369
Fault tree analysis, 369
finite, 370
flowchart, 370
formal, 370

development, 14
technique, 14

development technique, 15
formal definition, 370
formal description, 370
formal development, 370
formal method, 370
formal prescription, 371
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formal specification, 371
formalisation, 370
function, 16, 371

aka operation, 23–28
application, 24
invocation, 16

function activation, 371
function application, 372
function definition, 372
function invocation, 372
function signature, 372
functional, 371
functional programming, 371
Functional programming language, 371

generator function, 372
glossary, 372
grand state, 372
graph

arc, 53
edge, 53
label, 53
software development, 53

grouping, 372

hardware, 372
HCI, 372
Hertz, 372
human behaviour, 372

idea, 50
domain, 50
requirements, 50
software design, 50

identification, 373
identifier, 373
imperative, 10
imperative programming, 373
Imperative programming language, 373
implementation, 373
implementation relation, 373
incomplete, 373
incompleteness, 373
inconsistent, 373
indefinite, 373
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indicative, 10
inert, 374
infinite, 374
informal, 374

development, 14
information, 374
information structure, 374
informative

document
contract, 59
design brief, 62

scope and span, 51
informative documentation, 374
infrastructure, 374
input, 375
installation manual, 375
instance, 375
instantiation, 375
intangible, 375
integrity, 375
intension, 375
intensional, 375
interact, 375
interaction, 375
interface, 375
interface requirements, 375
Interface requirements facet, 376
internal

event, 29
interpret, 376
interpretation, 376
interpreter, 376
intrinsics, 376
invariant, 376
invocation

of function, 16

joule, 376

Kelvin, 376
Kelvin

thermodynamic temperature, 18
keyword, 377
kilogram, 377
Kilogram
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mass, 18
knowledge, 377

label, 377
labelled

arc, 53
edge, 53
graph, 53
node, 53
vertex, 53

language, 377
law, 377
lemma, 377
length

meter, 18
linguistics, 377
link, 377
list, 377
literal, 377
Live Sequence Chart, 377
location, 377
logbook, 63
logic, 378
logic programming, 378
Logic programming language, 378
loose specification, 378

machine, 378
machine requirements, 378
machine service, 378
maintenance, 378
maintenance requirements, 378
man-machine dialogue, 379
Man-machine dialogue requirements, 379
Man-machine physiological requirements, 379
management and organisation, 378
map, 379
mass, 379

Kilogram, 18
mereology, 20, 327, 380
Meta-IV, 380
metalanguage, 380
metalinguistic, 380
metaphysics, 380
meter, 381
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meter
length, 18

method, 380
methodology, 380
model, 5, 381
model-oriented, 381
modularisation, 381
module, 381
module design, 381
mole, 381
Mol

amount of (chemical) substance, 18
monotonic, 381
motion, 381
multi-dimensional, 381
multimedia, 381

name, 382
naming, 382
narrative, 382
natural language, 382
network, 382
Newton, 382
node, 53, 382

label, 53
nondeterminate, 382
nondeterminism, 382
nondeterministic, 382
notation, 382
noun, 382

object, 383
object-oriented, 383
observer, 383
observer function, 383
Ohm, 383
ontology, 383
operation, 383

aka function, 23–28
operation transformation, 384
operational, 383
operational abstraction, 384
operational semantics, 384
optative, 10
organisation, 384
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organisation and management, 384
output, 384
overloaded, 384

paradigm, 384
Parallel programming language, 385
perfective maintenance, 385
performance, 385
performance requirements, 385
phase, 385

of development, 4
state designator, 53

phase of development, 5
phenomenology, 385
phenomenon, 385
platform, 385
platform requirements, 385
portability, 386
position, 386
post-condition, 386
postfix, 386
pre-condition, 386
precedence

relation, 53
predicate, 386
predicate logic, 386
prescription, 10, 386

of requirements, 5
presentation, 386
preventive maintenance, 387
principle, 387
procedure, 387
process, 387

business, 75
program, 387
program organisation, 387
programmable, 387
programmer, 387
programming, 387
programming language, 387
Programming language type, 387
project

behaviour designator, 53
partners, informative, 48
places, informative, 48
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projection, 388
proof, 388
proof obligation, 388
proof rule, 388
proof system, 388
property, 388
property-oriented, 388
proposition, 388
Pure functional programming language, 388
putative, 10, 388

quality, 389
quantification, 389
quantifier, 389
quantity, 389

RAISE, 389
range, 389
range set, 389
reactive, 389
reactive system, 389
real time, 389
reasoning, 389
reengineering, 389
reference, 390
refinement, 390
refutation, 390
reification, 390
reify, 390
relation

precedence, 53
relative

time, 18
relative completeness

of domain description units, 79
reliability, 390
renaming, 390
representation abstraction, 390
requirements, 4, 42, 390

document, 13
engineering, 5
idea, 50
prescription, 5

requirements acquisition, 390
requirements analysis, 390
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requirements capture, 391
requirements definition, 391
requirements development, 391
requirements elicitation, 391
requirements engineer, 391
requirements engineering, 391
requirements facet, 391
requirements prescription, 391
Requirements prescription unit, 391
requirements specification, 391
requirements validation, 391
result

of operation (i.e., function) application, 24
retrieval, 392
retrieve function, 392
rigorous, 392

development technique, 15
rigorous development, 392
risk, 392
robustness, 392
root, 392
rough sketch, 392
route, 392
routine, 392
RSL, 392
rule, 392

safety, 392
safety critical, 393
scope, 51
scope and span, 51
script, 393
second, 393
Second

time, 18
secure, 393
security, 393
selector, 393
semantic function, 393
semantic type, 393
semantics, 393

(semantically), 53
sensor, 394
sentence, 394
sequential, 394



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

INDEX OF METHODOLOGY CONCEPTS 419

sequential process, 394
set, 394
set theoretic, 394
shared

data
initialisation, 394
refreshment, 394

shared data, 394
Shared data initialisation requirements, 394
Shared data refreshment requirements, 394
shared information, 394
shared phenomenon, 394
side effect, 395
sign, 395
signature, 395
simple

entity, 19–23
soft real time, 395
software, 4, 13, 42, 395

design, 5
document, 13

design idea, 50
development, 5

graph, 53
document, 13
system

document, 13, 14
software architecture, 395
software component, 395
software design, 395
Software design specification, 395
software development graph

attribute, 55
Software development project, 395
software engineer, 395
sort definition, 396
source program, 396
span, 51, 396
specification, 10, 396
specification language, 396
speed, 396
stage, 396

of development, 6
state designator, 53

stakeholder, 67, 396
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general application domain, 67
stakeholder perspective, 397
state, 397

of phase designator, 53
of stage designator, 53
of step designator, 53
transition designator, 53

Statechart, 397
statement, 397
step, 397

of development, 6
state designator, 53

stepwise development, 397
stepwise refinement, 397
steradian, 397
structure, 397
subentity, 397
subtype, 398
support technology, 398
synopsis, 53, 398
syntax

(syntactically), 53
system, 398

software
document, 13, 14

systematic
development technique, 15

systematic development, 398
systems engineering, 399

taxonomy, 399
technique, 399
technology, 399
temporal, 399
temporal logic, 399
term, 399
terminal, 399
termination, 399
terminology, 83, 399
test, 399
testing, 399
theorem, 400
theorem prover, 400
theorem proving, 400
theory, 400
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thermodynamic temperature
Kelvin, 18

thesaurus, 400
time, 400

absolute, 18
relative, 18

Time
Second, 18

token, 400
tool, 400
training manual, 400
transaction, 400
transformation, 400
transition, 401

between states designator, 53
transition rule, 401
translate, 401
translation, 401
translator, 401
Tree tree, 369
Triptych, 401
tuple, 401
type, 401
type, 291
type check, 401
type constructor, 401
type definition, 401
type expression, 401
type name, 401
typing, 402

UML, 402
undecidable, 402
underspecify, 402
universe of discourse, 402
update, 402
update problem, 402
user, 402
user manual, 403
user-friendly, 402

valid, 403
validation, 44, 403
valuation, 403
value, 403
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value, 291
variable, 403
VDM, 403
VDM–SL, 404
velocty, 403
verification, 404
verify, 404
vertex, 53

label, 53
Volt, 404

Watt, 404
well-formedness, 404
wildcar, 404
word, 404

yield, 24

z, 404

V.2 Index of Definitions

Action (Defn. 35), 24
Analysis (Defn. 10), 8
Annotation (Defn. 15), 12
Atomic Simple Entity (Defn. 28), 19
Attribute (Defn. 29), 19

Business Process (Defn. 55), 75

Communicating Behaviour (Defn. 40), 30
Composite Entity (Defn. 30), 20
Concept Formation (Defn. 11), 9
Concurrent Behaviour (Defn. 39), 30
Conflict (Defn. 59), 80
Consistency (Defn. 56), 79
Continuous (Defn. 26), 17
Contract (Defn. 48), 59
Contradiction (Defn. 57), 79

Design Brief (Defn. 49), 62
Discrete (Defn. 25), 17
Domain (Defn. 1), 3
Domain Acquisition (I) (Defn. 41), 43
Domain Acquisition (II) (Defn. 53), 71



invisible

Dines Bjorner: 1st DRAFT: January 2, 2009

INDEX OF DEFINITIONS 423

Domain Analysis, Aims (Defn. 60), 80
Domain Analysis, Objectives (Defn. 61), 80
Domain Concept (Defn. 62), 80
Domain Contract (Defn. 73), 115
Domain Description Unit (Defn. 54), 73
Domain Engineering (Defn. 2), 5
Domain Facet (Defn. 65), 89
Domain Intrinsics (Defn. 66), 93
Domain License (Defn. 72), 115
Domain Management (Defn. 68), 101
Domain Regulation (Defn. 70), 110
Domain Rule (Defn. 69), 109
Domain Script (Defn. 71), 115

Entity Structure (Defn. 24), 17
Event (Defn. 37), 28

Formal (Formal) Development (Defn. 23), 15
Formal Development (Defn. 19), 14
Formal Software Development Technique (Defn. 20), 14

General Application Domain Stakeholder (Defn. 52), 67

Human Behaviour (Defn. 74), 119

Informal Development (Defn. 18), 14

Logbook (Defn. 50), 63

Machine (Defn. 12), 12
Mereology (Defn. 31), 20
Model (Defn. 5), 5

Narrative (Defn. 14), 12

Operation (Defn. 33), 24
Operation Definiton (Defn. 36), 25
Operation Signature (Defn. 34), 24

Phase of Software Development (Defn. 6), 5

Relative Completeness (Defn. 58), 79
Requirements Engineering (Defn. 3), 5
Rigorous (Formal) Development (Defn. 22), 15
Rough Sketch (Defn. 13), 12

Scope (Defn. 43), 51
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Simple Behaviour (Defn. 38), 29
Simple Entity (Defn. 27), 19
Software (Defn. 16), 13
Software Design (Defn. 4), 5
Software Development (Defn. 7), 5
Software Development Graph (Defn. 46), 53
Software Development Graph Attribute (Defn. 47), 55
Software System (Defn. 17), 13
Span (Defn. 44), 51
Stage of Software Development (Defn. 8), 6
Stakeholder (Defn. 51), 67
State (Defn. 32), 21
Step of Software Development (Defn. 9), 6
Support Technologies (Defn. 67), 97
Synopsis (Defn. 45), 53
Systematic (Formal) Development (Defn. 21), 15

Term (Defn. 63), 83
Terminology (Defn. 64), 83

Validation (Defn. 42), 44

V.3 Index of Principles

Information Document Construction (Prin. 1), 64
Information Documents (Prin. 2), 64

V.4 Index of Techniques

Information Document Construction (Tech. 1), 64

V.5 Index of Tools

Information Document Construction (Tool. 1), 64

V.6 Index of Symbols

Literals , 302–313
Unit, 313
chaos, 302–304
false, 294, 296, 297
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true, 294, 296, 297

Arithmetic Constructs , 297
ai*aj , 297
ai+aj , 297
ai/aj , 297
ai=aj , 297
ai≥aj , 297
ai>aj , 297
ai≤aj , 297
ai<aj , 297
ai 6=aj , 297
ai−aj , 297

Cartesian Constructs , 298, 302
(e1,e2,...,en) , 298

Combinators , 308–311
... elsif ... , 310
case be of pa1 → c1, ... pan → cn end , 310, 311
do stmt until be end , 311
for e in listexpr • P(b) do stm(e) end , 311
if be then cc else ca end , 310, 311
let a:A • P(a) in c end , 309
let pa = e in c end , 308
variable v:Type := expression , 311
while be do stm end , 311
v := expression , 311

Function Constructs , 307–308
f(args) as result, 308
post P(args,result), 308
pre P(args), 308
f(a), 306
f(args) ≡ expr, 308
f(), 311

List Constructs , 299, 302–304
<Q(l(i))|i in<1..lenl> •P(a)> , 299
<> , 299
ℓ(i) , 302
ℓ′ = ℓ′′ , 302
ℓ′ 6= ℓ′′ , 302
ℓ′̂ℓ′′ , 302
elems ℓ , 302
hd ℓ , 302
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inds ℓ , 302
len ℓ , 302
tl ℓ , 302
e1 <e2,e2,...,en > , 299

Logic Constructs , 296–297
bi ∨ bj , 296
∀ a:A • P(a) , 297
∃! a:A • P(a) , 297
∃ a:A • P(a) , 297
∼ b , 296
false, 294, 296, 297
true, 294, 296, 297
bi ⇒ bj , 296
bi ∧ bj , 296

Map Constructs , 299–300, 304–306

mi ◦ mj , 305

mi ΓE30F mj , 305

mi / mj , 305
dom m , 304
rng m , 304
mi = mj , 305
mi ∪ mj , 304
mi † mj , 304
mi 6= mj , 305
m(e) , 304
[ ] , 299
[u1 7→v1,u2 7→v2,...,un 7→vn] , 299
[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)] , 300

Process Constructs , 312–313
channel c:T , 312
channel {k[i]:T•i:KIdx} , 312
c ! e , 312
c ? , 312
k[i] ! e , 312
k[i] ? , 312
pi⌈⌉⌊⌋pj , 312
pi⌈⌉pj , 312
pi‖pj , 312
pi–‖pj , 312
P: Unit → in c out k[i] Unit , 313
Q: i:KIdx → out c in k[i] Unit, 313
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Set Constructs , 298, 300–302
∩{s1,s2,...,sn} , 300
∪{s1,s2,...,sn} , 300
card s , 300
e∈s , 300
e 6∈s , 300
si=sj , 300
si∩sj , 300
si∪sj , 300
si⊂sj , 300
si⊆sj , 300
si 6=sj , 300
si\sj , 300
{} , 298
{e1, e2, ..., en} , 298
{Q(a)|a:A•a∈s∧P(a)} , 298

Type Expressions , 293–295
(T1×T2×... ×Tn) , 294
Bool, 293
Char, 293
Int, 293
Nat, 293
Real, 293
Text, 293
Unit, 311
mk id(s1:T1,s2:T2,...,sn:Tn) , 294
s1:T1 s2:T2 ... sn:Tn , 294
T∗ , 294
Tω , 294
T1 × T2 × ... × Tn , 294
T1 | T2 | ... | T1 | Tn , 294
Ti →m Tj , 294

Ti
∼

→Tj , 294
Ti→Tj , 294
T-infset, 294
T-set, 294

Type Definitions , 295–296
T = Type Expr, 295
T={| v:T′• P(v)|} , 295, 296
T==TE1 | TE2 | ... | TEn , 295
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V.7 Index of Examples

Atomic Entities (Examp. 1), 20

Communicating Behaviours (Examp. 12), 30
Concurrent Behaviours (Examp. 11), 30

Events (Examp. 9), 29

Factorial Function Definition: “Mixed” (Examp. 7), 27
Factorial Function Definition: pre/post (Examp. 6), 26
Factorial Function Definition: axiomatic (Examp. 8), 28

Logbook (Examp. 13), 63

Simple Behaviours (Examp. 10), 30

The Factorial Function Definition: Direct (Examp. 5), 25
Transport Net, A Formalisation (Examp. 3), 21
Transport Net, A Narrative (Examp. 2), 20

Well Formed Routes (Examp. 4), 25

V.8 Index of Domain Phenomena and Concepts

absolute
time, 18

amount of (chemical) substance
mol, 18

Ampere
electric current, 18

berth, 177, 192
product, 188, 194

Candela
luminous intensity, 18

connection point, 178, 192
connector, 177, 192
customer

end, 180, 192

depot, 153, 179, 192
gas, 179, 192
oil, 179, 192

depot, 205
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drain pump, 203

electric current
Ampere, 18

field
gas, 153
oil, 153
oil and/or gas, 181, 192

flow, 181, 193
rate, volumetric, 181, 193

flow pump, 204
flux, 182, 193
fork, 153, 180, 192
fork, 204

gas, 153, 182, 193
depot, 179, 192
field, 153
natural, 182, 184, 193
processor, 182, 193
storage, 153, 179, 192
tanker, 153, 182, 193
turntable, 153

gas processor, 206
gasoline, 182, 193
graph, 183, 193

harbour, 183, 193

join, 153, 184, 193
join, 204

Kelvin
thermodynamic temperature, 18

Kilogram
mass, 18

length
meter, 18

loading arm, 184, 193
loading arm, 206
luminous intensity

candela, 18

mass
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Kilogram, 18
meter

length, 18
Mol

amount of (chemical) substance, 18

natural gas, 182, 193
node, 185, 193

oil, 153, 185, 193
crude, 178, 192
depot, 179, 192
field, 153
refinery, 189, 194
storage, 153, 179, 192
tanker, 153, 185, 193

petrol, 186, 193
petroleum, 186, 194

industry, 186, 194
pipe, 153, 186, 194
pipe, 203
pipeline, 153, 186, 194

system, 187, 194
transport, 187, 194

processor
gas, 182, 193

pump, 153, 188, 194
drain, 179, 192
fill, 181, 193
flow, 181, 193

refinery, 153, 189, 194
oil, 189, 194

refractory, 189, 194
refractory, 206
relative

time, 18
reservoir, 190, 194
reservoir, 203

sea
lane, 191, 194

Second
time, 18

sink, 206
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storage
gas, 153, 179, 192
oil, 153, 179, 192

switch, 191, 194
land, 184, 193
tanker, 191, 194

switch, 205

tank, 191, 194
tank, 206
tanker, 191, 194

gas, 153, 182, 193
oil, 153, 185, 193

thermodynamic temperature
Kelvin, 18

time
absolute, 18
relative, 18

Time
Second, 18

turntable
gas, 153

unit, 191, 194

valve, 153, 191, 194
valve, 204


