
The Rôle of Domain Engineering in Software Development
Why Current Requirements Engineering is Flawed

Scotland October 2009

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

September 1, 2009: 09:12

2 Why Current Requirements Engineering is Flawed Scotland October 2009

Summary
General

• We introduce the notion of domain descriptions (D) in order to ensure

⋆ that software (S) is right and

⋆ is the right software,

⋆ that is, that it is correct with respect to written requirements (R)

⋆ and that it meets customer expectations (D).

• That is, before software can be designed (S)

• we must make sure we understand the requirements (R),

• and before we can express the requirements

• we must make sure that we understand the application domain (D):

⋆ the area of activity of the users of the required software,

⋆ before and after installment of such software.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 3

• We shall outline what we mean by

⋆ informal, narrative

⋆ and formal domain descriptions,

• and how one can systematically —

⋆ albeit not (in fact: never) automatically —

⋆ go from domain descriptions to requirements prescriptions.

• As it seems that domain engineering is a relatively new discipline

⋆ within software engineering

⋆ we shall mostly focus on domain engineering and discuss its neces-
sity.

• The paper will show some formulas

⋆ but they are really not meant to be read,

⋆ let alone understood.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

4 Why Current Requirements Engineering is Flawed Scotland October 2009

• They are merely there to bring home the point:

⋆ Professional software engineering,

⋆ like other professional engineering branches

⋆ rely on and use mathematics.

• And it is all very simple to learn and practise anyway !

• We end this talk with, to some, perhaps, controversial remarks:

⋆ Requirements engineering, as pursued today,

⋄ researched, taught and practised,

⋆ is outdated, is thus fundamentally flawed.

• We shall justify this claim.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 5

The Software Development Dogma
The Dogma

• The dogma is this:

⋆ Before software can be designed

⋆ we must understand the requirements.

⋆ Before requirements can be finalised

⋆ we must have understood the domain.

• We assume that the audience knows what is meant by

⋆ software design and ⋆ requirements.

• But what do we mean by “the domain” ?

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

6 Why Current Requirements Engineering is Flawed Scotland October 2009

[The Software Development Dogma]

What Do We Mean by ‘Domain’ ?

• By a domain we shall loosely understand an ‘area’ of

⋆ natural or

⋆ human

activity, or both,

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 7

[The Software Development Dogma, What Do We Mean by ‘Domain’ ?]

• where the ‘area’ is “well-delineated” such as, for example,

⋆ for physics:

⋄ mechanics or

⋄ electricity or

⋄ chemistry or

⋄ hydrodynamics;

⋆ or for an infrastructure component:

⋄ banking,

⋄ railways,

⋄ hospital
health-care,

⋄ “the market”:
◦ consumers,

◦ retailers,
◦ wholesalers,

◦ producers and

◦ the distribution
chain.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

8 Why Current Requirements Engineering is Flawed Scotland October 2009

[The Software Development Dogma, What Do We Mean by ‘Domain’ ?]

By a domain we shall thus, less loosely, understand

• a universe of discourse, small or large, a structure

⋆ (i) of simple entities, that is, of “things”, individuals,
particulars

⋄ some of which are designated as state components;

⋆ (ii) of functions, say over entities,

⋄ which when applied become possibly state-changing actions of
the domain;

⋆ (iii) of events,

⋄ possibly involving entities, occurring in time and

⋄ expressible as predicates over single or pairs of (before/after)
states; and

⋆ (iv) of behaviours,

⋄ sets of possibly interrelated sequences of actions and events.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 9

[The Software Development Dogma]

Dialectics

• Now, let’s get this “perfectly” straight !

⋆ Can we develop software requirements
without understanding the domain ?

⋆ Well, how much of the domain should we understand ?

⋆ And how well should we understand it ?

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

10 Why Current Requirements Engineering is Flawed Scotland October 2009

[The Software Development Dogma, Dialectics]

• Can we develop software requirements
without understanding the domain ?

⋆ No, of course we cannot !

⋆ But we, you, do develop software for hospitals (railways, banks)
without understanding health-care (transportation, the financial
markets) anyway !

⋆ In other engineering disciplines professionalism is ingrained:

⋄ Aeronautics engineers understand the domain of aerodynamics;

⋄ naval architects (i.e., ship designers) understand the domain of
hydrodynamics;

⋄ telecommunications engineers understand the domain of
electromagnetic field theory;

⋄ and so forth.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 11

[The Software Development Dogma, Dialectics]

• Well, how much of the domain should we understand ?

⋆ A basic answer is this:

⋄ enough for us to understand
formal descriptions of such a domain.

⋆ This is so in classical engineering:

⋄ Although the telecommunications engineer has not herself
researched and made mathematical models of electromagnetic
wave propagation in the form of Maxwell’s equations:

◦ Gauss’s Law for Electricity,

◦ Gauss’s Law for Magnetism,

◦ Faraday’s Law of Induction,

◦ Ampéres Law:

⋄ the telecommunications engineer certainly understands these
laws.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

12 Why Current Requirements Engineering is Flawed Scotland October 2009

[The Software Development Dogma, Dialectics]

• And how well should we understand it ?

⋆ Well, enough, as an engineer, to manipulate the formulas,

⋆ to further develop these for engineering calculations.

Conclusion

• It is about time that software engineers

⋆ consult precise descriptions, including formalisations,

⋆ and establish, themselves or by consultants, such descriptions,

⋆ of the application domains for software.

• These domain models may have to be developed by computing
scientists.

• Software engineers then “transform” these into

⋆ requirements prescriptions

⋆ and software designs.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 13

The Triptych of Software Development

• We recall the dogma:

⋆ before software can be designed

⋆ we must understand the requirements.

⋆ Before requirements can be finalised

⋆ we must have understood the domain.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

14 Why Current Requirements Engineering is Flawed Scotland October 2009

• We conclude from that, that an “ideal” software development
proceeds, in three major development phases, as follows:

• Domain engineering: The results of domain engineering
include a domain model: a description,

⋆ both informal, as a precise narrative,

⋆ and formal, as a specification.

• The domain is described as it is.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 15

• Requirements engineering: The results of requirements
engineering include a requirements model: a prescription,

⋆ both informal, as a precise narrative,

⋆ and formal, as a specification.

• The requirements are described
as we would like the software to be,

• and the requirements must be
clearly related to the domain description.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

16 Why Current Requirements Engineering is Flawed Scotland October 2009

• Software design: The results of software design include

⋆ executable code

⋆ and all documentation that goes with it.

• The software design specification must be
correct with respect to the requirements.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 17

Technicalities: An Overview
Domain Engineering

• Below we outline techniques of domain engineering. But just as a
preview:

⋆ Based on extensive domain acquisition and analysis

⋆ an informal and a formal domain model is established, a model
which is centered around sub-models of:

⋄ intrinsics,
⋄ supporting technologies,
⋄ mgt. and org.,

⋄ rules and regulations,

⋄ script [or contract] languages
and

⋄ human behaviours,

which are then

⋆ validated and verified.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

18 Why Current Requirements Engineering is Flawed Scotland October 2009

[The Triptych of Software Development, Technicalities: An Overview]

Requirements Engineering

• Below we outline techniques of requirements engineering. But just
as a preview:

⋆ Based on presentations of the domain model to requirements stakeholders

⋆ requirements can now be “derived” from the domain model and as follows:

⋄ First a domain requirements
model:

◦ projection,

◦ instantiation,

◦ determination,

◦ extension and

◦ fitting of several, separate
domain requirements models;

⋄ then an interface requirements
model,

⋄ and finally a machine
requirements model.

⋆ These are simultaneously verified and validated

⋆ and the feasibility and satisfiability of the emerging model is
checked.

• We show only the briefly explained specifications of an example “derivation” of
(and in this case only of, and then only some aspects of) domain requirements.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 19

[The Triptych of Software Development, Technicalities: An Overview]

Software Design

• We do not cover techniques of software design in detail — so only this summary.

⋆ From the requirements prescription one develops,

⋄ in stages and steps of transformation (“refinement”),

⋄ first the system architecture,

⋄ then the program (code) organisation (structure),

⋄ and then, in further steps of development,

◦ the component design,

◦ the module design and

◦ the code.

⋆ These stages and step can be verified, model checked and tested with respect

⋄ to the previous phase of requirements prescription,

⋄ respectively the previous software design stages and steps.

• One can then assert that the Software design is correct with respect to the
Requirements in the context of the assumptions expressed about the Domain:

D, S |= R

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

20 Why Current Requirements Engineering is Flawed Scotland October 2009

Domain Engineering

• We shall focus only on the actual modelling, thus omitting any
treatment of

⋆ the preparatory administrative and informative work,

⋆ the identification of and liaison with domain stakeholders,

⋆ the domain acquisition and analysis, and

⋆ the establishment of a domain terminology (document).

• So we go straight to the descriptive work.

⋆ We first illustrate the ideas of modelling domain phenomena and
concepts in terms of simple entities, operations, events and
behaviours,

⋆ then we model the domain in terms of domain facets.

• Also, at then end, we do not have time and paper space for any
treatment of domain verification, domain validations and the
establishment of a domain theory.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 21

[Domain Engineering]

Simple Entities, Operations, Events and Behaviours

• Without discussing our specification ontology,

⋆ that is, the principles according to which we view the world
around us,

• we just present the decomposition of phenomena and concepts into

⋆ simple entities,

⋆ operations,

⋆ events and

⋆ behaviours.

• All of these are “first class citizens”, that is, are entities.

• We now illustrate examples of each of these ontological categories.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

22 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours]

Simple Entities

• A simple entity is something that has a distinct, separate existence,
though it need not be a material existence, to which we apply
functions.

• With simple entities we associate attributes, i.e., properties
modelled as types and values.

• Simple entities can be considered

⋆ either continuous

⋆ or discrete,

⋄ and, if discrete

◦ then either atomic

◦ or composite.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 23

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Simple Entities]

• It is the observer (that is, the specifier) who decides whether to
consider a simple entity to be atomic or composite.

• Atomic entities cannot meaningfully be decomposed into
sub-entities, but atomic entities may be analysed into (Cartesian)
“compounds” of properties, that is, attributes. Attributes have
name, type and value.

• Composite entities can be meaningfully decomposed into
sub-entities, which are entities.

• The composition of sub-entities into a composite entity “reveals”
the, or a mereology of the composite entity: that is, how it is “put
together”.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

24 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Simple Entities]

Example 1: Transport Entities: Nets, Links and Hubs — Narrative

1. There are hubs and links.

2. There are nets, and a net consists of a set of two or more hubs and
one or more links.

3. There are hub and link identifiers.

4. Each hub (and each link) has an own, unique hub (respectively link)
identifiers (which can be observed from the hub [respectively link]).

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 25

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Simple Entities]

Example 2: Transport Entities: Nets, Links and Hubs — Formalisation

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card hs≥1

type
3 HI, LI

value
4a obs HI: H → HI, obs LI: L → LI

axiom
4b ∀ h,h′:H, l,l′:L • h 6=h′⇒obs HI(h)6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

26 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours]

Operations

• By an operation we shall understand something which when
applied to some entities, called the arguments of the operation,
yields an entity, called the result of the operation application (also
referred to as the operation invocation).

⋆ Operations have signatures, that is, can be grossly described by
the Cartesian type of its arguments and the possibly likewise
compounded type of its results.

⋆ Operations may be total over their argument types, or may be
just partial. We shall consider some acceptable operations as
“never terminating” processes.

⋆ We shall, for the sake of consistency, consider all operation
invocations as processes (terminating or non-terminating), and
shall hence consider all operationdefinitions as also designating
process definitions.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 27

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Operations]

• We shall also use the term function to mean the same as the term
operation.

• By a state we shall loosely understand a collection of one or more
simple entities whose value may change.

• By an action we shall understand an operation application which
applies to and/or yields a state.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

28 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Operations]

Example 3: Link Insertion Operation

5. To a net one can insert a new link in either of three ways:

(a) Either the link is connected to two existing hubs — and the insert
operation must therefore specify the new link and the identifiers
of two existing hubs;

(b) or the link is connected to one existing hub and to a new hub —
and the insert operation must therefore specify the new link, the
identifier of an existing hub, and a new hub;

(c) or the link is connected to two new hubs — and the insert oper-
ation must therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of
respective hubs.

6. From a net one can remove a link. The removal command specifies

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 29

a link identifier.

type
5 Insert == Ins(s ins:Ins)
5 Ins = 2xHubs | 1x1nH | 2nHs
5(a 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
5(b 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
5(c 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
5(d ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

7. If the Insert command is of kind 2newH(h’,l,h”) then the updated
net of hubs and links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

30 Why Current Requirements Engineering is Flawed Scotland October 2009

• the links ls joined by the singleton set of {l}.

8. If the Insert command is of kind 1oldH1newH(hi,l,h) then the up-
dated net of hubs and links, has

8.1 : the hub identified by hi updated, hi′, to reflect the link connected
to that hub.

8.2 : The set of hubs has the hub identified by hi replaced by the
updated hub hi′ and the new hub.

8.2 : The set of links augmented by the new link.

9. If the Insert command is of kind 2oldH(hi’,l,hi”) then

9.1–.2 : the two connecting hubs are updated to reflect the new link,

9.3 : and the resulting sets of hubs and links updated.

int Insert(op)(hs,ls) ≡
⋆i case op of
7 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 31

8 1oldH1newH(hi,l,h) →
8.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
8.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
9 2oldH(hi′,l,hi′′) →
9.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
9.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
9.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
⋆j end ⋆k pre pre int Insert(op)(hs,ls)

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

32 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours]

Events

• Informally, by an event we shall loosely understand the occurrence
of “something” that may either trigger an action, or is triggered by
an action, or alter the course of a behaviour, or a combination of
these.

• An event can be characterised by

⋆ a predicate, p and

⋆ a pair of (“before”) and (“after”) of pairs of

⋄ states and

⋄ times:

⋄ p((tb, σb), (ta, σa)).

⋆ Usually the time interval ta − tb
⋆ is of the order ta ≃ (tb) + δtiny.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 33

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Events]

Example 4: Transport Events

• (i) A link, for some reason “ceases to exist”; for example:

⋆ a bridge link falls down,

⋆ or a level road link is covered by a mud slide,

⋆ or a road tunnel is afire,

⋆ or a link is blocked by some vehicle accident.

• (ii) A vehicle enters or leaves the net.

• (iii) A hub is saturated with vehicles.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

34 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Simple Entities, Operations, Events and Behaviours]

Behaviours

• By a behaviour we shall informally understand a strand of (sets of) actions and
events.

⋆ In the context of domain descriptions we shall speak of behaviours

⋆ whereas, in the context of requirements prescriptions and software designs we
shall use the term processes.

• By a behaviour we, more formally, understand a sequence, q

⋆ of actions ⋆ and/or events

q1, q2, . . . , qi, qi+1, . . . , qn

• such that the state

⋆ resulting from one such action, qi, ⋆ or in which some event, qi, occurs,

• becomes the state in which the next action or event, qi+1,

⋆ if it is an action, is effected, ⋆ or, if it is an event, is the event state.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 35

[Domain Engineering, Simple Entities, Operations, Events and Behaviours, Behaviours]

Example 5: Transport: Traffic Behaviour

10. There are further undefined vehicles.

11. Traffic is a discrete function from a ‘Proper subset of Time’ to pairs
of nets and vehicle positions.

12. Vehicles positions is a discrete function from vehicles to vehicle po-
sitions.

type
10 Veh
11 TF = Time →m (N × VehPos)
12 VehPos = Veh →m Pos

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

36 Why Current Requirements Engineering is Flawed Scotland October 2009

13. There are positions, and a position is either on a link or in a hub.

(a) A hub position is indicated just by a triple: the identifier of the
hub in question, and a pair of (from and to) link identifiers, namely
of links connected to the identified hub.

(b) A link position is identified by a quadruplet: The identifier of
the link, a pair of hub identifiers (of the link connected hubs),
designating a direction, and a real number, properly between 0
and 1, denoting the relative offset from the from hub to the to
hub.

type
13 Pos = HPos | LPos
13(a) HPos == hpos(s hi:HI,s fli:LI,s tli:LI)
13(b) LPos == lpos(s li:HI,s fhi:LI,s tli:LI,s offset:Frac)
13(b) Frac = {|r:Real•0<r<1|}

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 37

[Domain Engineering]

Domain Facets

• By a domain facet we mean

⋆ one amongst a finite set of generic ways

⋆ of analysing a domain:

⋆ a view of the domain,

⋆ such that the different facets cover conceptually different views,

⋆ and such that these views together cover the domain

• We shall postulate the following domain facets:

⋆ intrinsics,

⋆ support technologies,

⋆ management & organisation,

⋆ rules & regulations,

⋆ script languages [contract languages] and

⋆ human behaviour.

• Each facet covers simple entities, operations, events and behaviours.

• We shall now illustrate these.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

38 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Intrinsics

• By domain intrinsics we mean

⋆ those phenomena and concepts of a domain which are basic to
any of the other facets (listed earlier and treated, in some detail,
below),

⋆ with such domain intrinsics initially covering at least one specific,
hence named, stakeholder view.

Example 6: Intrinsics, I

• The links, hubs, hence the nets,

• and the identifiers of links and hubs

• are intrinsic phenomena, respectively concepts.

• So are:

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 39

[Domain Engineering, Domain Facets, Intrinsics]

Example 7: Intrinsics, II

14. From any link of a net one can observe the two hubs to which the link is connected.

(a) We take this ‘observing’ to mean the following: From any link of a net one can
observe the two distinct identifiers of these hubs.

15. From any hub of a net one can observe the one or more links to which are connected
to the hub.

(a) Again: by observing their distinct link identifiers.

16. Extending Item 14: the observed hub identifiers must be identifiers of hubs of the
net to which the link belongs.

17. Extending Item 15: the observed link identifiers must be identifiers of links of the
net to which the hub belongs.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

40 Why Current Requirements Engineering is Flawed Scotland October 2009

value
14a obs HIs: L → HI-set,
15a obs LIs: H → LI-set,

axiom
14b ∀ l:L • card obs HIs(l)=2 ∧
15b ∀ h:H • card obs LIs(h)≥1 ∧
∀ (hs,ls):N •

14(a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

15(a) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

16 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
17 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 41

[Domain Engineering, Domain Facets]

Support Technologies

• By domain support technologies we mean

⋆ ways and means of concretesing

⋆ certain observed (abstract or concrete) phenomena or

⋆ certain conceived concepts

⋆ in terms of (possibly combinations of)

⋄ human work,

⋄ mechanical,

⋄ hydro mechanical,

⋄ thermo-mechanical,

⋄ pneumatic,

⋄ aero-mechanical,

⋄ electro-mechanical,

⋄ electrical,

⋄ electronic,

⋄ telecommunication,

⋄ photo/opto-electric,

⋄ chemical, etc.

(possibly computerised) sensor, actuator tools.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

42 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Support Technologies]

• In this example of a support technology

⋆ we shall illustrate an abstraction

⋆ of the kind of semaphore signalling

⋆ one encounters at road intersections, that is, hubs.

• The example is indeed an abstraction:

⋆ we do not model the actual “machinery”

⋄ of road sensors,

⋄ hub-side monitoring & control boxes, and

⋄ the actuators of the green/yellow/red sempahore lamps.

⋆ But, eventually, one has to,

⋆ all of it,

⋆ as part of domain modelling.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 43

[Domain Engineering, Domain Facets, Support Technologies]

Example 8: Hub Sempahores

• To model signalling we need to model hub and link states.

• A hub (link) state is the set of all traversals that the hub (link) allows.

⋆ A hub traversal is a triple of identifiers:

⋄ of the link from where the hub traversal starts,

⋄ of the hub being traversed, and

⋄ of the link to where the hub traversal ends.

⋆ A link traversal is a triple of identifiers:

⋄ of the hub from where the link traversal starts,

⋄ of the link being traversed, and

⋄ of the hub to where the link traversal ends.

⋆ A hub (link) state space is the set of all states that the hub (link) may be in.

⋆ A hub (link) state changing operation can be designated by

⋄ the hub and a possibly new hub state (the link and a possibly new link state).

type

LΣ′ = L Trav-set

L Trav = (HI × LI × HI)

LΣ = {| lnkσ:LΣ′
• syn wf LΣ{lnkσ} |}

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

44 Why Current Requirements Engineering is Flawed Scotland October 2009

HΣ′ = H Trav-set

H Trav = (LI × HI × LI)

HΣ = {| hubσ:HΣ′
• wf HΣ{hubσ} |}

HΩ = HΣ-set, LΩ = LΣ-set

value

obs LΣ: L → LΣ, obs LΩ: L → LΩ

obs HΣ: H → HΣ, obs HΩ: H → HΩ

axiom

∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value

chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L

chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

• Well, so far we have indicated that there is an operation that can change hub and link states.

• But one may debate whether those operations shown are really examples of a support technology.

(That is, one could equally well claim that they remain examples of intrinsic facets.)

• We may accept that and then ask the question:

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 45

⋆ How to effect the described state changing functions ?

⋆ In a simple street crossing a semaphore does not instantaneously change from red to green in

one direction while changing from green to red in the cross direction.

⋆ Rather there is are intermediate sequences of, for example, not necessarily synchronised

green/yellow/red and red/yellow/green states to help avoid vehicle crashes and to prepare

vehicle drivers.

• Our “solution” is to modify the hub state notion.

type

Colour == red | yellow | green

X = LI×HI×LI×Colour [crossings of a hub]

HΣ = X-set [hub states]

value

obs HΣ: H → HΣ, xtr Xs: H → X-set

xtr Xs(h) ≡

{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧

∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

46 Why Current Requirements Engineering is Flawed Scotland October 2009

li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

• We consider the colouring, or any such scheme, an aspect of a support technology facet.

• There remains, however, a description of how the technology that supports the intermediate

sequences of colour changing hub states.

• We can think of each hub being provided with a mapping from pairs of “stable” (that is non-

yellow coloured) hub states (hσi,hσf) to well-ordered sequences of intermediate “un-stable’ (that

is yellow coloured) hub states

⋆ paired with some time interval information

⋆ 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉

⋆ and so that each of these intermediate states can be set,

⋆ according to the time interval information,1

⋆ before the final hub state (hσf) is set.

type

TI [time interval]

Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling

value

obs Sema: H → Sema, chg HΣ: H × HΣ → H, chg HΣ Seq: H × HΣ → H

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 47

chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H

sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else

let (hσ,tδ) = hd sigseq in

let h′ = chg HΣ(h,hσ); wait tδ;

sig seq(h′)(tl sigseq) end end end

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

48 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Management and Organisation

Management

• By domain management we mean people

⋆ (i) who determine, formulate and thus set standards (cf. rules
and regulations, a later lecture topic) concerning

⋄ strategic, tactical and operational decisions;

⋆ (ii) who ensure that these decisions are passed on to (lower)
levels of management, and to “floor” staff;

⋆ (iii) who make sure that such orders, as they were, are indeed
carried out;

⋆ (iv) who handle undesirable deviations in the carrying out of
these orders cum decisions;

⋆ and (v) who “backstop” complaints from lower management
levels and from floor staff.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 49

[Domain Engineering, Domain Facets, Management and Organisation]

Organisation

• By domain organisation we mean

⋆ the structuring of management and non-management staff levels;

⋆ the allocation of

⋄ strategic, tactical and operational concerns

⋄ to within management and non-management staff levels;

⋆ and hence the “lines of command”:

⋄ who does what and

⋄ who reports to whom —

◦ administratively and

◦ functionally.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

50 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Management and Organisation]

Examples

Example 9: Bus Transport Management & Organisation

• On Slides 69–75 we illustrate what is there called a contract lan-
guage.

⋆ “Programs” in that language are either contracts or are orders to
perform the actions permitted or obligated by contracts.

⋆ The language in question is one of managing bus traffic on a net.

⋆ The management & organisation of bus traffic involves

⋄ contractors issuing contracts,

⋄ contractees acting according to contracts,

⋄ busses (owned or leased) by contractees,

⋄ and the bus traffic on the (road) net.

⋆ Contractees, i.e., bus operators,

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 51

⋄ "start" buses according to a contract timetable,

⋄ "cancel" buses if and when deemed necessary,

⋄ "insert" rush-hour and other buses if and when deemed nec-
essary,

⋄ and, acting as contractors, "sub-contract" sub-contractees
to operate bus lines,

◦ for example, when the issuing contractor is not able to operate
these bus lines,

◦ i.e., not able to fulfill contractual obligations,

◦ due to unavailability of buses or staff.

• Clearly the programs of bus contract languages

⋆ are “executed” according to management decisions

⋆ and the sub-contracting “hierarchy” reflects organisational
facets.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

52 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Rules and Regulations

• Human stakeholders act in the domain, whether

⋆ clients,

⋆ workers,

⋆ managers,

⋆ suppliers,

⋆ regulatory authorities,

⋆ or other.

• Their actions are guided and constrained by rules and regulations.

• These are sometimes implicit, that is, not “written down”.

• But we can talk about rules and regulations as if they were
explicitly formulated.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 53

[Domain Engineering, Domain Facets, Rules and Regulations]

• The main difference between rules and regulations is that

⋆ rules express properties that must hold and

⋆ regulations express state changes that must be effected if rules are observed
broken.

• Rules and regulations are directed

⋆ not only at human behaviour

⋆ but also at expected behaviours of support technologies.

• Rules and regulations are formulated

⋆ by enterprise staff, management or workers,

⋆ and/or by business and industry associations,

⋄ for example in the form of binding or guiding

⋄ national, regional or international standards,

⋆ and/or by public regulatory agencies.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

54 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Rules and Regulations]

Domain Rules

• By a domain rule we mean

⋆ some text

⋆ which prescribes how people or equipment

⋆ are expected to behave when dispatching their duty,

⋆ respectively when performing their functions.

Domain Regulations

• By a domain regulation we mean

⋆ some text

⋆ which prescribes what remedial actions are to be taken

⋆ when it is decided that a rule has not been followed according to
its intention.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 55

[Domain Engineering, Domain Facets, Rules and Regulations]

Two Informal Examples

Example 10: Trains at Stations: Available Station Rule and Regulation

• Rule:

⋆ In China the arrival and departure of trains at, respectively from, railway
stations is subject to the following rule:

⋆ In any three-minute interval at most one train may either arrive to or
depart from a railway station.

• Regulation:

⋆ If it is discovered that the above rule is not obeyed, then there is some
regulation which prescribes administrative or legal management and/or staff
action, as well as some correction to the railway traffic.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

56 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Rules and Regulations, Two Informal Examples]

Example 11: Trains Along Lines: Free Sector Rule and Regulation

• Rule:

⋆ In many countries railway lines (between stations) are segmented
into blocks or sectors. The purpose is to stipulate that if two or
more trains are moving along the line, then:

⋆ There must be at least one free sector (i.e., without a train)
between any two trains along a line.

• Regulation:

⋆ If it is discovered that the above rule is not obeyed, then
there is some regulation which prescribes administrative or legal
management and/or staff action, as well as some correction to the
railway traffic.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 57

[Domain Engineering, Domain Facets, Rules and Regulations]

A Formal Example

• We shall develop the above example (11, Slide 56) into a partial, formal
specification.

• That is, not complete, but “complete enough” for the reader to see what goes on.

Example 12: Continuation of Example 11 Slide 56

• We start by analysing the text of the rule and regulation.

⋆ The rule text: There must be at least one free sector (i.e., without a train)
between any two trains along a line. contains the following terms:

⋄ free (a predicate),

⋄ sector (an entity),

⋄ train (an entity) and

⋄ line (an entity).

• We shall therefore augment our formal model to reflect these terms.

• We start by modelling

⋆ sectors and sector descriptors,

⋆ lines and train position descriptors,

⋆ trains, and

⋆ the predicate free.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

58 Why Current Requirements Engineering is Flawed Scotland October 2009

type
Sect′ = H × L × H,
SectDescr = HI × LI × HI
Sect = {|(h,l,h′):Sect′

• obs HIs(l)={obs HI(h),obs HI(h′)}|}
SectDescr = {|(hi,li,hi′):SectDescr′

•

∃ (h,l,j′):Sect•obs HIs(l)={obs HI(h),obs HI(h′)}|}
Line′ = Sect∗,
Line = {|line:Line′

•wf Line(line)|}
TrnPos′ = SectDescr∗

TrnPos = {|trnpos′:TrnPos′
•∃ line:Line•conv Line to TrnPos(line)=trnpos′|}

value
wf Line: Line′ → Bool
wf Line(line) ≡
∀ i:Nat • {i,i+1}⊆inds(line) ⇒
let (,l,h)=line(i),(h′,l′,)=line(i+1) in h=h′ end

conv Line to TrnPos: Line → TrnPos
conv Line to TrnPos(line) ≡
〈(obs HI(h),obs LI(l),obs HI(h′))|1≤i≤len line∧line(i)=(h,l,h′)〉

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 59

value
lines: N → Line-set
lines(hs,ls) ≡
let lns = {〈(h,l,h′)〉|h,h′:H,l:L•proper line((h,l,h′),(hs,ls))}

∪ {ln ̂ ln′|ln,l′:Line•{ln,ln′}⊆lns∧adjacent(ln,ln′)} in
lns end

adjacent: Line × Line → Bool
adjacent((,l,h),(h′,l′,)) ≡ h=h′

pre {obs LI(l),obs LI(l′)}⊆ obs LIs(h)

type
TF = T →m (N × (TN →m TrnPos))

value
wf TF: TF → Bool

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

60 Why Current Requirements Engineering is Flawed Scotland October 2009

wf TF(tf) ≡
∀ t:T•t ∈ dom tf ⇒
let ((hs,ls),trnposs) = tf(t) in
∀ trn:TN • trn ∈ dom trnposs ⇒
∃ line:Line • line ∈ lines(hs,ls) ∧

trnposs(trn) = conv Line to TrnPos(line) end

• Nothing prevents two or more trains from occupying overlapping train positions.

• They have “merely” – and regrettably – crashed. But such is the domain.

• So wf TF(tf) is not part of an axiom of traffic, merely a desirable property.

value
has free Sector: TN × T → TF → Bool
has free Sector(trn,(hs,ls),t)(tf) ≡
let ((hs,ls),trnposs) = tf(t) in
(trn 6∈ dom trnposs ∨ (tn ∈ dom trnposs(t) ∧
∃ ln:Line • ln ∈ lines(hs,ls) ∧

is prefix(trnposs(trn),ln))(hs,ls)) ∧
∼∃ trn′:TN • trn′ ∈ dom trnposs ∧ trn′6=trn ∧

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 61

trnposs(trn′)=conv Line to TrnPos(〈follow Sect(ln)(hs,ls)〉)
end
pre exists follow Sect(ln)(hs,ls)

is prefix: Line × Line → N → Bool
is prefix(ln,ln′)(hs,ls) ≡ ∃ ln′′:Line • ln′′ ∈ lines(hs,ls) ∧ ln ̂ ln′′=ln′

exists follow Sect: Line → Net → Bool
exists follow Sect(ln)(hs,ls) ≡
∃ ln′:Line•ln′ ∈ lines(hs,ls)∧ln ̂ ln′ ∈ lines(hs,ls)
pre ln ∈ lines(hs,ls)

follow Sect: Line → Net ∼→ Sect
follow Sect(ln)(hs,ls) ≡
let ln′:Line•ln′ ∈ lines(hs,ls)∧ln ̂ ln′ ∈ lines(hs,ls) in hd ln′ end
pre line ∈ lines(hs,ls)∧exists follow Sect(ln)(hs,ls)

• We doubly recursively define a function free sector rule(tf)(r).

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

62 Why Current Requirements Engineering is Flawed Scotland October 2009

• tf is that part of the traffic which has yet to be “searched” for non-free sectors.

⋆ Thus tf is “counted” up from a first time t till the traffic tf is empty.

⋆ That is, we assume a finite definition set tf .

• r is like a traffic but without the net.

⋆ Initially r is the empty traffic.

⋆ r is “counted” up from “earliest” cases of trains with no free sector ahead of
them.

• The recursion stops, for a given time when

⋆ there are no more train positions to be “searched” for that time;

⋆ and when the “to-be-searched” traffic is empty.

type
TNPoss = T →m (TN → TrnPos)

value
free sector rule: TF × TF → TNPoss
free sector rule(tf)(r) ≡
if tf=[] then r else

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 63

let t:T•t ∈ dom tf∧smallest(t)(tf) in
let ((hs,ls),trnposs)=tf(t) in
if trnposs=[] then free sector rule(tf\{t})(r) else
let tn:TN•tn ∈ dom trnposs in
if exists follow Sect(trnposs(tn))(hs,ls)∧∼has free Sector(tn,(hs,ls),t)(tf)
then
let r′ = if t ∈ dom r then r else r ∪ [t7→[]] end in
free sector rule(tf†[t7→((hs,ls),trnposs\{tn})])

(r†[t7→r(t)∪[tn7→trnposs(tn)]]) end
else

free sector rule(tf†[t7→((hs,ls),trnposs\{trn})])(r)
end end end end end end

smallest(t)(tf) ≡ ∼∃ t′:T• t′isin dom tf∧t′<t pre t ∈ dom tf

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

64 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Script Languages [Contract Languages]

• By a domain script language we mean

⋆ the definition of a set of licenses and actions

⋆ where these licenses when issued

⋆ and actions when performed have morally obliging power.

• By a domain contract language

⋆ a domain script language whose licenses and actions have legally
binding power,

⋆ that is, their issuance and their invocation may be contested in a
court of law.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 65

[Domain Engineering, Domain Facets, Script Languages [Contract Languages]]

A Script Language

• Some common, visual forms of bus timetables are shown in Fig. 4.1.

Figure 4.1: Some bus timetables: Spain, India and Norway

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

66 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Script Language]

Example 13: Narrative Syntax of a Bus Timetable Script Language

18. Time is a concept covered earlier. Bus lines and bus rides have unique names (across any set of

time tables). Hub and link identifiers, HI, LI, were treated from the very beginning.

19. A TimeTable associates to Bus Line Identifiers a set of Journies.

20. Journies are designated by a pair of a BusRoute and a set of BusRides.

21. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more intermediate Bus Stops

and a destination Bus Stop.

22. A set of BusRides associates, to each of a number of Bus Identifiers a Bus Schedule.

23. A Bus Schedule a triple of the initial departure Time, a list of zero, one or more intermediate bus

stop Times and a destination arrival Time.

24. A Bus Stop (i.e., its position) is a Fraction of the distance along a link (identified by a Link

Identifier) from an identified hub to an identified hub.

25. A Fraction is a Real properly between 0 and 1.

26. The Journies must be well formed in the context of some net.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 67

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Script Language]

Example 14: Formal Syntax of a Bus Timetable Script Language

type
18. T, BLId, BId
19. TT = BLId →m Journies
20. Journies′ = BusRoute × BusRides
21. BusRoute = BusStop × BusStop∗ × BusStop
22. BusRides = BId →m BusSched
23. BusSched = T × T∗ × T
24. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
25. Frac = {|r:Real•0<r<1|}
26. Journies = {|j:Journies′

•∃ n:N • wf Journies(j)(n)|}

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

68 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Script Language]

Example 15: Semantics of a Bus Timetable Script Language

type
Bus

value
obs X: Bus → X

type
BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
BPos = atHub | onLnk | atBS
atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
Frac = {|r:Real•0<r<1|}

value
gen BusTraffic: TT → BusTraffic-infset
gen BusTraffic(tt) as btrfs
post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 69

[Domain Engineering, Domain Facets, Script Languages [Contract Languages]]

A Contract Language

• We shall, as for the timetable script, just hint at a contract
language.

Example 16: Informal Syntax of Bus Transport Contracts

• An example contract can be ‘schematised’:

con id: contractor corn contracts contractee ceen

to perform operations "start","cancel","insert","subcontract"

with respect to bus timetable tt.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

70 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

Example 17: Formal Syntax of a Bus Transport Contracts

type
CId, CNm
Contract = CId × CNm × CNm × Body
Body = Op-set × TT
Op == ′′conduct′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

an example contract:

(cid,cor,cee,({′′start′′,′′cancel′′,′′insert′′,′′subcontract′′},tt))

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 71

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

Example 18: Informal Syntax of a Bus Transport Actions

• Example actions can be schematised:

(a) cid: start bus ride (blid,bid) at time t

(b) cid: cancel bus ride (blid,bid) at time t

(c) cid: insert bus ride like (blid,bid) at time t

• The schematised license (Slide 69) shown earlier is almost like an
action; here is the action form:

(d) cid: contractee cee is granted a license cid′

to perform operations {”start”,”cancel”,”insert”,subcontract”}

with respect to timetable tt′.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

72 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

Example 19: Formal Syntax of a Bus Transport Actions

type
Action = CNm × CId × (SubLic | SmpAct) × Time
SmpAct = Start | Cancel | Insert
DoRide == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:ConId,s cee:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cee,cid,mkRid(blid,id),t)
(b) (cee,cid,mkCan(blid,id),t)
(c) (cee,cid,mkIns(blid,id),t)
(d) (cee,cid,mkCon(cid′,({′′start′′,′′cancel′′,′′insert′′,′′subcontract′′},tt′),t))

where: cid′ = generate ConId(cid,cee,t)

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 73

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

Example 20: Semantics of a Bus Transport Contract Language: States

type
Body = Op-set × TT
ConΣ = RcvConΣ×SubConΣ×CorBusΣ
RcvConΣ = CNm →m (CId →m (Body×TT))
SubConΣ = CNm →m (CId →m Body)
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×CId×CNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

CorBusΣ = CNm →m (CId →m ((BLId×BId) →m (BNo×BusTrace)))
AllBs=CNm →m BusNo-set

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

74 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

Example 21: Semantics of a Bus Transport Contract Language: Constants and Functions

value
cns:CNm-set, busnos:BNo-set, ibσ:IBΣs=CNm →m BusΣ,
rcor,icee:CNm • rcor 6∈ cns∧icee ∈ cns, itr:BusTraffic,
rcid:ConId, iops:Op-set={′′subcontract′′}, itt:TT, t0:Time
allbs:AllBs • dom allbs=cns ∪ {rcor}∧∪ rng allbs=busnos,
icon:Contract=(rcid,rcor,icee,(iops,itt)),
icσ:ConΣ=([icee 7→ [rcid 7→ [icee 7→ icon]]]

∪ [cee 7→ [] | cee:CNm • cee ∈ cnms\{icee}],[],[]),
system: Unit → Unit
system() ≡
cntrcthldr(icee)(ilσ(icee),ibσ(icee))
‖(‖{cntrcthldr(cee)(ilσ(cee),ibσ(cee))|cee:CNm•cee ∈ cns\{icee}})
‖(‖{bus ride(b,cee)(rcor,′′nil′′)

| cee:CNm,b:BusNo•cee ∈ dom allbs ∧ b ∈ allbs(cee)})
‖time clock(t0) ‖ bus traffic(itr)

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 75

[Domain Engineering, Domain Facets, Script Languages [Contract Languages], A Contract Language]

bus−ride bus−ride bus−ride

bus−ridebus−ridebus−ride

bus−ride bus−ride bus−ride

bus−ride bus−ride bus−ride

...

...

...

...

...

... Bus
Traffic

Time

contract−holder

contract−holder

contract−holder

contract−holder

contract−holder

...
...

...
...

...

...

...

... ...

Figure 4.2: An organisation

• The thin lines of Fig. 4.2 denote communication “channels”.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

76 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Human Behaviour

• By human behaviour we mean any of
a quality spectrum of carrying out assigned work:

⋆ from careful, diligent and accurate,

via

⋆ sloppy dispatch, and

⋆ delinquent work,

to

⋆ outright criminal pursuit.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 77

[Domain Engineering, Domain Facets, Human Behaviour]

Example 22: A Diligent Operation

• The int Insert operation of Slide 30

⋆ was expressed without stating necessary pre-conditions:

27. The insert operation takes an Insert command and a net and yields either a new net or chaos for

the case where the insertion command “is at odds” with, that is, is not semantically well-formed

with respect to the net.

28. We characterise the “is not at odds”, i.e., is semantically well-formed, that is:

pre int Insert(op)(hs,ls), as follows: it is a propositional function which applies to Insert actions,

op, and nets, (hs.ls), and yields a truth value if the below relation between the command argu-

ments and the net is satisfied.

Let (hs,ls) be a value of type N.

29. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

30. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

78 Why Current Requirements Engineering is Flawed Scotland October 2009

⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable in hs.

31. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

value

28′ pre int Insert: Ins → N → Bool

28′′ pre int Insert(Ins(op))(hs,ls) ≡

⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

29 2oldH(hi′,l,hi′′) → {hi′,hi′′}⊆iohs(hs),

30 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∧h6∈ hs∧obs HI(h) 6∈ iohs(hs),

31 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

• These must be carefully expressed and adhered to

• in order for staff to be said to carry out the link insertion operation accurately.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 79

[Domain Engineering, Domain Facets, Human Behaviour]

Example 23: A Sloppy via Delinquent to Criminal Operation

• We replace systematic checks (∧) with partial checks (∨), etcetera,

• and obtain various degrees of sloppy to delinquent, or even criminal behaviour.

value
28′ pre int Insert: Ins → N → Bool
28′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
29 2oldH(hi′,l,hi′′) → hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),
30 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∨h 6∈ hs∨obs HI(h) 6∈ iohs(hs),
31 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

80 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Dialectics

• So now you should have a practical and technical “feel” for domain
engineering:

⋆ What it takes to express a domain model.

• But there is lots’ more: We have not shown you

⋆ (i) the rôle of domain stakeholders:

⋄ (i.1) how to identify them,

⋄ (i.2) how to involve them and

⋄ (i.3) how they help validate resulting domain descriptions.

⋆ (ii) the domain (ii.1) knowledge acquisition and (ii.2) analysis
processes,

⋆ (ii) the domain (ii.1) model verification and (ii.2) validation and
processes, and

⋆ (iii) the domain theory R&D process.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 81

[Domain Engineering, Domain Facets, Dialectics]

• Can we agree that we cannot,

⋆ as professional software engineers,

⋆ start on gathering requirements,

⋆ let alone prescribing these

⋆ before we have understood the domain ?

• Can we agree that, “ideally”, we must therefore

⋆ first R&D the domain model

⋆ before we can embark on any requirements prescription process ?

• By “ideally” we mean the following:

⋆ Ideally domain engineering should fully precede requirements engineering,

⋆ but for many practical reasons we must co-develop domain descriptions
“hand-in-hand” with requirements prescriptions.

⋆ And that is certainly feasible, when done with care.

⋆ So we shall, for years assume this to be the case.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

82 Why Current Requirements Engineering is Flawed Scotland October 2009

[Domain Engineering, Domain Facets]

Pragmatics

• While the software industry “humps along”:

⋆ co-developing domain descriptions and requirements

⋆ with their clients, or, for COTS, with their marketing
departments,

• private and public research centres should and will embark on

⋆ large scale (5–8 manyears/year),

⋆ long range projects (5–8 year)

⋆ foundational research and development (R&D) of

infrastructure component domain models of

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 83

[Domain Engineering, Domain Facets, Pragmatics]

⋆ the financial service
industry:

⋄ banking (all forms);

⋄ insurance (all forms);

⋄ portfolio management;

⋄ securities trading:

◦ brokers,

◦ traders,

◦ commodities and

◦ stock etc. exchanges;

⋆ transportation:

⋄ road,

⋄ rail,

⋄ air, and

⋄ sea;

⋆ healthcare:

⋄ physicians,

⋄ hospitals,

⋄ clinics,

⋄ pharmacies, etc.;

⋆ “the market”:

⋄ consumers,

⋄ retailers,

⋄ wholesalers, and

⋄ the supply chain;

⋆ etcetera.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

84 Why Current Requirements Engineering is Flawed Scotland October 2009

Requirements Engineering

• We cannot possibly,

⋆ within the confines of a seminar talk

⋆ and a reasonably sized paper

• cover, however superficially,

⋆ both informal

⋆ and formal

examples of requirements engineering.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 85

[Requirements Engineering]

• Instead we shall just briefly mention the major stages and sub-stages of
requirements modeling:

⋆ Domain Requirements: those which can be expressed sôlely using terms
from the domain description;

⋆ Interface Requirements: those which can be expressed using terms both
from the domain description and from IT; and

⋆ Machine Requirements: those which can be expressed sôlely using terms
from IT.

IEEE Definition of Requirements

⋆ By IT requirements we understand (cf. IEEE Standard 610.12):

⋄ “A condition or capability needed by a user to solve a problem or achieve an

objective on a computing machine”.

• By computing machine we shall understand a, or the, combination of computer
(etc.) hardware and software that is the target for, or result of the required
computing systems development.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

86 Why Current Requirements Engineering is Flawed Scotland October 2009

[Requirements Engineering]

Domain Requirements

Domain Requirements

• By domain requirements

⋆ we mean such which can be expressed

⋆ sôlely using terms from the domain description

• To construct the domain requirements

⋆ the domain engineer

⋆ together with the various groups of requirements stakeholder

“apply” the following “domain-to-requirements” operations
to a copy of the domain description:

⋆ projection,

⋆ instantiation,

⋆ determination,

⋆ extension and

⋆ fitting.

• First we briefly charaterise these.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 87

[Requirements Engineering, Domain Requirements]

The Domain-to-Requirements Operations

• The ‘domain-to-requirements’ operations cannot be automated.

• They increasingly “turn” the copy of the domain description into a
domain requirements prescription.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

88 Why Current Requirements Engineering is Flawed Scotland October 2009

Projection

removes all the domain phenomena and concepts for which the
customer does not need IT support.

Simple Linear Road: Projection
Our requirements is for a simple road: a linear sequence of links and hubs:

type

N, L, H, LI, HI
value

obs Hs: N → H-set, obs Ls: N → L-set
obs HI: H → HI, obs LI: L → LI
obs HIs: L → HI-set, obs LIs: H → LI-set

axiom
See Items 14–17 Pages 39–39

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 89

Instantiation
makes a number of entities: simple, operations, events and behaviours, less abstract,
more concrete.

Simple Linear Road: Instantiation
The linear sequence consists of eaxtly 34 links.

type

H, L,
N′

= H × (L × H)∗

N′′

= {|n:N′
•wf(n)|}

value
wf N′′: N′ → Bool

wf N′′(h,(l,h)̂ lhl) ≡
len lhl = 33 ∧

obs HI(l)=obs HI(h) ∧
∀ i,j:Nat • {i,i+1,j}⊆inds lhl ⇒

let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in

h6=hi∧i 6=j⇒li 6=lj∧hi 6=hj∧
obs HIs(li′)={obs HI(hi),obs HI(hi′)}∧

obs LIs(hi)∩ obs LI(li) 6={}∧obs LIs(hi′)∩ obs LI(li′) 6={} end
obs N: N′′ → N

obs N(h,lhl) ≡
({h}∪{hi|(hi,li):(L×H)•(hi,li)∈ elems lhl},

{li|(hi,li):(L×H)•(hi,li)∈ elems lhl})

wf N’ secures linearity; obs N allows abstraction from more concrete N′′ to more abstract N.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

90 Why Current Requirements Engineering is Flawed Scotland October 2009

Determination

makes the emerging requirements entities more determinate.
Simple Linear Road: Determination

All links and all non-end hubs are open in both directions; we leave end-hub states undefined — but see below, under
‘Extension’.

type
LΣ = (HI×HI)-set, LΩ

HΣ = (LI×LI)-set, HΩ

value
obs LΩ: L → LΩ

obs HΩ: H → HΩ

axiom

∀ (h,〈(l1,h2)〉̂ lhl):N′′
•

obs LΣ(l1)={obs HI(h),obs HI(h2)}∧

∀ i,i+1:Nat • {i,i+1}⊆inds lhl ⇒
let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in
obs LΩ(li′)={{(obs HI(hi),obs HI(hi′)),(obs HI(hi′),obs HI(hi))}}∧

obs HΩ(hi)={{(obs LI(li),obs LI(li′)),(obs LI(li′),obs LI(li))}} end

The last two lines of the axiom express that links are always open two ways and that hubs are always open for through
traffic.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 91

Extension
introduces new, computable entities that were not possible in the non-IT domain.

Simple Linear Road: Extension
We extend the model of linear roads by introducing the concept of a Hub-Plaza: this is an area “around” each hub from where and into where
there is always access onto, respectively from the hub:

type
HP, HPI
HΣ′ = (LI×LI)-set ∪ (LI×HPI)-set ∪ (HPI×LI)-set
HΩ′ = HΣ′-set

value
obs HΩ′: H → HΩ′

obs HP: H → HP
obs HPI: HP → HPI

axiom
∀ h,h′:H • h6=h′ ⇒ obs HP(h) 6=obs HP(h′)∧obs HPI(obs HP(h)) 6=obs HPI(obs HP(h′))
∀ (h,(l,h)̂ lhl):N′′

•

∀ i,j:Nat • {i,i+1,j}⊆inds lhl ⇒
let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in
obs HΩ′(h)={{(obs LI(l),obs HPI(obs HP(h))),(obs HPI(obs HP(h)),obs LI(l))}}
∀ i,i+1:Nat • {i,i+1}⊆inds lhl ⇒

let (,hi)=lhl(i),(,hi′)=lhl(i+1),(,hj)=lhl(j) in
obs HΩ′(hi)={{(obs LI(li),obs LI(li′)),(obs LI(li′),obs LI(li)),

(obs HPI(obs HP(hi)),obs LI(li)),(obs HPI(obs HP(hi)),obs LI(li′))
(obs LI(li),obs HPI(obs HP(hi))),(obs LI(li′),obs HPI(obs HP(hi)))}}

end end

The obs HΩ′ lines of the axiom with respect to that of ‘Determination’ express plaza access.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

92 Why Current Requirements Engineering is Flawed Scotland October 2009

Fitting

merges the domain requirements prescription with those of other IT
developments.

• • •

The domain requirements examples are necessarily “microscopic”.
The very briefly outlined domain requirements methodology has many
fascinating aspects.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 93

[Requirements Engineering]

Interface Requirements
Interface Requirements

• By interface requirements

⋆ we mean such which those which can be expressed using terms

⋆ from both the domain description and from IT,

⋆ that is, terminology of hardware and of software.

• When phenomena and concepts of the domain

⋆ are also to be represented by the machine,

⋆ these phenomena and concepts are said to be shared between the domain and
the machine;

⋆ the requirements therefore need be expressed both

⋄ in terms of phenomena and concepts of the domain and

⋄ in terms of phenomena and concepts of the machine.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

94 Why Current Requirements Engineering is Flawed Scotland October 2009

[Requirements Engineering, Interface Requirements]

Shared Phenomena and Concepts

• A shared phenomenon or concept is either

⋆ a simple entity,

⋆ an operation,

⋆ an event or

⋆ a behaviour.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 95

[Requirements Engineering, Interface Requirements, Shared Phenomena and Concepts]

• Shared simple entities need

⋆ to be initially input to the machine and

⋆ their machine representation need to be

⋆ regularly, perhaps real-time refreshed.

• Shared operations need

⋆ to be interactively performed by

⋆ human or other agents of the domain

⋆ and by the machine.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

96 Why Current Requirements Engineering is Flawed Scotland October 2009

[Requirements Engineering, Interface Requirements, Shared Phenomena and Concepts]

• Shared events are shared in the sense that

⋆ their occurrence in the domain (in the machine)

⋆ must be made known to the machine (to the domain).

• Shared behaviours need

⋆ to occur in the domain and in the machine

⋆ by alternating means,

⋆ that is, a protocol need be devised.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 97

[Requirements Engineering, Interface Requirements, Shared Phenomena and Concepts]

• For each of these four kinds of interface requirements

⋆ the reqs. engineers work with the reqs. stakeholders

⋆ to determine the properties of these forms of sharing.

• These interface requirements are then narrated and formalised.

• They are always “anchored” in specific items of the domain
description.

• • •

The very briefly outlined interface requirements methodology has
many fascinating aspects.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

98 Why Current Requirements Engineering is Flawed Scotland October 2009

[Requirements Engineering]

Machine Requirements
Machine Requirements

• By machine requirements

⋆ we mean those which can be expressed

⋆ sôlely using terms from the machine,

⋆ that is, terminology of hardware and of software.

• We shall not cover any principles or techniques for developing
machine requirements,

• but shall just list the very many issues that must be captured by a
machine requirements.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 99

[Requirements Engineering, Machine Requirements]

• Performance

⋆ Storage

⋆ Time

⋆ Software Size

• Dependability

⋆ Accessibility

⋆ Availability

⋆ Reliability

⋆ Robustness

⋆ Safety

⋆ Security

• Maintenance

⋆ Adaptive

⋆ Corrective

⋆ Perfective

⋆ Preventive

• Platform (P)

⋆ Development P

⋆ Demonstration P

⋆ Execution P

⋆ Maintenance P

• Documentation
Requirements

• Other Requirements

• The machine requirements are usually not so easily, formalised, if at all, with
today’s specification language tools.

• Extra great care must therefore be exerted in their narration.

• Some formal modelling calculations, like fault (tree) analysis, can be made in
order to justify quantitative requirements.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

100 Why Current Requirements Engineering is Flawed Scotland October 2009

Why “Current” Requirements Engineering (RE) is Flawed

• Current, conventional requirements engineering has no scientific basis.

⋆ The requirements engineering sketched in this paper starts with a domain
model.

⋆ The domain model provides the scientific basis.

⋆ “Derivation” of domain and interface requirement provides a further scientific
basis.

⋆ The fact that the requirements engineering models advocated in this paper
also are formalised provides a final scientific basis.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 101

[Why “Current” Requirements Engineering is Flawed]

• The separation of concerns:

⋆ (the formalised) domain model, in-and-by-itself, and

⋆ the (the formalised) requirements projection, instantiation,
determination, extension and fitting operations

provide a basis for scientific analysis.

• Current, conventional RE does not have these bases.

• If we are to pursue Software Engineering in a professionally
responsible manner then requirements engineering must be pursued
in a scientifically responsible manner.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

102 Why Current Requirements Engineering is Flawed Scotland October 2009

Conclusion
Summary — A Wrap Up

• We have illustrated the triptych concept:

⋆ from domains via requirements to software.

• We spent most time on domain engineering.

• We just sketched major requirements engineering concepts.

• And we assumed you know how to turn formal requirements into
correct software designs !

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 103

[Conclusion]

Dialectics

• So, are we clear on this:

⋆ (i) that we must understand the domain before we express the
requirements;

⋆ (ii) that we can “derive” major parts of the requirements
prescription from the domain description;

⋆ (iii) that domains are far more “stable” than requirements;

⋆ (iv) that prescribing requirements with no prior domain
description is thoroughly unsound;

⋆ (v) that describing [prescribing] domains [requirements] both
informally (narratives) and formally (formal specifications) helps
significantly towards consistent specifications; and

⋆ (vi) that we must therefore embrace the triptych:

⋆ from domains via requirements to software.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

104 Why Current Requirements Engineering is Flawed Scotland October 2009

[Conclusion, Dialectics]

Implication: Theory-work

• So, get on with it !

• Pick up one or another of the new

⋆ domain engineering ideas:

⋄ business processes,

⋄ facets,

⋄ domain theories,

⋄ etc.,

or the new

⋆ requirements engineering ideas:

⋄ projection,

⋄ instantiation,

⋄ determination,

⋄ extension and

⋄ fitting,

• research them, write papers about it.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 105

[Conclusion, Dialectics]

Implication: Engineering-work — Extrovert Applications

• But do it in connection with real life, actual domains:

⋆ banking,

⋆ insurance,

⋆ stock exchange and
brokerage,

⋆ hospitalisation,

⋆ bus & tax
transport,

⋆ rail transport,

⋆ container line
shipping,

⋆ etcetera.

• That is, “build” some impressive domain theories !

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

106 Why Current Requirements Engineering is Flawed Scotland October 2009

[Conclusion, Dialectics]

Implication: Engineering-work — Introspective Applications

• By introspective applications we mean such as providing software
for, or such as

⋆ the Internet,

⋆ the Web,

⋆ operating systems

⋆ database management,

⋆ data communication,

⋆ etcetera, etcetera,

• Also these are lack proper domain descriptions.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 107

[Conclusion]

For More on Domain and Requirements Engineering

• For details on domain and requirements engineering we refer to:

Software Engineering:

Vol. 3: Domains, Requirements and Software Design, XXX+766 pages.
Texts in Theoretical Computer Science, EATCS Series, 2006 Springer

and the upcoming book:

From Domain to Requirements,

The Triptych Approach to Software Engineering

• This book (draft) has been and is the basis for lectures at

⋆ (i) Univ. Henri Poincaré/INRIA, Nancy, France, Oct.-Dec. 2007;

⋆ (ii) Techn. Univ. of Graz, Austria, Nov.-Dec. 2008;

⋆ (iii) Univ. of Saarland, Germany, March 2009;

⋆ (iv) Univ. of Tokyo, Japan, Fall (Nov.-Dec.) 2009

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

108 Why Current Requirements Engineering is Flawed Scotland October 2009

[Conclusion]

For More on Extrovert Applications
We refer to some indicative Internet-based reports — from:
www.imm.dtu.dk/~db/

• air traffic: brisbane.pdf and airtraffic.pdf;

• container line industry: container-paper.pdf;

• the ‘Market’: themarket.pdf;

• IT security: 5lectures/it-system-security-ISO.pdf;

• oil industry and pipelines: de-p.pdf and pipeline.pdf;

• railways: www.railwaydomain.org/;

• transportation (in general): tseb.pdf;

• logistics: logistics.pdf

• et cetera.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 109

[Conclusion]

Software Engineering Archeology

• In general I would prefer to see precise domain models of

⋆ the Internet,

⋆ the Web,

⋆ ‘Cloud Computing’,

⋆ Windows Vista,

⋆ Linux and

⋆ idealised SQL

• as the basis for

⋆ requirements and ⋆ software

• that claim that they are “based” on

⋆ the Internet,

⋆ the Web,

⋆ ‘Cloud Computing’,

⋆ Windows Vista,

⋆ Linux and/or

⋆ SQL.

• Here is clearly a fascination engineering task.

• I see the Internet as an instantiation of ‘Cloud Computing’.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

110 Why Current Requirements Engineering is Flawed Scotland October 2009

[Conclusion]

For More on Research Topics

• A number of research topics of domain theory has been outlined in:

Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture
Notes in Computer Science (eds. J.C.P. Woodcock et al.),
pages 1–17, Heidelberg, September 2007. Springer.

• Excursions in ‘Philosophy of Informatics’ are covered in:

On Mereologies in Computing Science. Festschrift for Tony
Hoare, Springer UK, History of Computing (ed. Bill Roscoe),
2009

An Emerging Domain Science – A Rôle for Stanis law
Leśniewski’s Mereology and Bertrand Russell’s Philosophy of
Logical Atomism. Higher-order and Symbolic Computation,
Fall 2009

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark September 1, 2009, 09:12

Scotland October 2009: The Rôle of Domain Engineering in Software Development 111

Acknowledgements

• Thanks to Alan Bundy for inviting me to Edinburgh.

September 1, 2009, 09:12, c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

