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Abstract. We introduce the notion of domain descriptions (D) in order to ensure that software (S) is
right and is the right software, that is, that it is correct with respect to written requirements (R) and that
it meets customer expectations (D).
That is, before software can be designed (S) we must make sure we understand the requirements (R), and
before we can express the requirements we must make sure that we understand the application domain
(D): the area of activity of the users of the required software, before and after installment of such software.
We shall outline what we mean by informal, narrative and formal domain description, and how one can
systematically, albeit not (in fact: never) automatically go from domain descriptions to requirements pre-
scriptions.
As it seems that domain engineering is a relatively new discipline within software engineering we shall
mostly focus on domain engineering and discuss its necessity.
The talk will show some formulas but they are really not meant to be read by the speaker, let alone
understood, during the talk, by the listeners. They are merely there to bring home the point: Professional
software engineering, like other professional engineering branches rely on and use mathematics.
And it is all very simple to learn and practise anyway !
We end this paper with, to some, perhaps, controversial remarks: Requirements engineering, as pursued
today, researched, taught and practised, is outdated, is thus fundamentally flawed. We shall justify this
claim.

1 The Software Development Dogma

1.1 The Dogma

The dogma is this: Before software can be designed we must understand the requirements. Before requirements
can be finalised we must have understood the domain.

We assume that the reader knows what is meant by software design and requirements. But what do we
mean by “the domain” ?

1.2 What Do We Mean by ‘Domain’?

By a domain we shall loosely understand an ‘area’ of natural or human activity, or both, where the ‘area’ is
“well-delineated” such as, for example, for physics: mechanics or electricity or chemistry or hydrodynamics; or
for an infrastructure component: banking, railways, hospital health-care, “the market”: consumers, retailers,
wholesalers, producers and the distribution chain.

By a domain we shall thus, less loosely, understand a universe of discourse, small or large, a structure (i)
of entities, that is, of “things”, individuals, particulars some of which are designated as state components; (ii)
of functions, say over entities, which when applied become possibly state-changing actions of the domain; (iii)
of events, possibly involving entities, occurring in time and expressible as predicates over single or pairs of
(before/after) states; and (iv) of behaviours, sets of possibly interrelated sequences of actions and events.

1.3 Dialectics

Now, let’s get this “perfectly” straight ! Can we develop software requirements without understanding the
domain ? Well, how much of the domain should we understand ? And how well should we understand it ?

Can we develop software requirements without understanding the domain ? No, of course we cannot ! But
we, you, do develop software for hospitals (railways, banks) without understanding health-care (transportation,
the financial markets) anyway ! In other engineering disciplines professionalism is ingrained: Aeronautics engi-
neers understand the domain of aerodynamics; naval architects (i.e., ship designers) understand the domain of
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hydrodynamics; telecommunications engineers understand the domain of electromagnetic field theory; and so
forth.

Well, how much of the domain should we understand ? A basic answer is this: enough for us to understand
formal descriptions of such a domain.

This is so in classical engineering: Although the telecommunications engineer has not herself researched and
made mathematical models of electromagnetic wave propagation in the form of Maxwell’s equations: Gauss’s

Law for Electricity, Gauss’s Law for Magnetism, Faraday’s Law of Induction, Ampéres Law:

the telecommunications engineer certainly understands these laws.
And how well should we understand it ? Well, enough, as an engineer, to manipulate the formulas, to further

develop these for engineering calculations.

1.4 Conclusion

It is about time that software engineers consult precise descriptions, including formalisations of the application
domains for software.

These domain models may have to be developed by computing scientists. Software engineers then “transform”
these into requirements prescriptions and software designs.

2 The Triptych of Software Development

We recall the dogma: before software can be designed we must understand the requirements. Before requirements
can be finalised we must have understood the domain.

We conclude from that, that an “ideal” software development proceeds, in three major development phases,
as follows:

Stakeholder Identification

Domain Acquisition & Analysis

Rough Sketching & Terminology

First Rough Validation

Domain Theory Formation

Domain Validation

Domain Verification

Domain Engineering

Stakeholder Identification

Domain Acquisition & Analysis

Rough Sketching & Terminology

First Rough Validation

Requirements Feasibility

Requirements Satisfiability

Requirements Validation

Requirements Verification

Projection
Instantiation

Determination
Extension

Fitting
Consolidation

Shared Entities
Shared Operations

Shared Events
Shared Behaviours

Domain Requirements

Interface Requirements

Machine Requirements

Dependabilities
Platform

Maintenance
Documentation

Performance

Consolidation

Scripts, Lics., Contracts

Rules & Regulations

Mgt. & Org.

Human Behaviour

Support Technologies

Business Processes

Domain Modelling

Intrinsics

Software Design

IT System Design

Software Architecture Design

Component Design

Module Design

Code Design

Requirements Engineering

2.1 The Phase Results

– Domain engineering: The results of domain engineering include a domain model: a description, both
informal, as a precise narrative, and formal, as a specification.

– Requirements engineering: The results of requirements engineering include a requirements model: a
prescription, both informal, as a precise narrative, and formal, as a specification.

– Software design: The results of software design include executable code and all documentation that goes
with it.
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2.2 Relations to “Reality” and Phase Interrelations

– Domain engineering: The domain is described as it is.
– Requirements engineering The requirements are described as we would like the software to be, and the

requirements must be clearly related to the domain description.
– Software design The software design specification must be correct with respect to the requirements.

2.3 Technicalities: An Overview

Domain Engineering Section 3 outlines techniques of domain engineering. But just as a preview: Based on
extensive domain acquisition and analysis an informal and a formal domain model is established, a model which
is centered around sub-models of: intrinsics, supporting technologies, management and organisation, rules and
regulations, script [or contract] languages and human behaviours, which are then validated and verified.

Requirements Engineering Section 4 outlines techniques of requirements engineering. But just as a pre-
view:Based on presentations of the domain model to requirements stakeholders requirements can now be “de-
rived” from the domain model and as follows: First a domain requirements model is arrived at: projection of the
domain model, instantiation of the domain model, determination of the domain model, extension of the domain
model and fitting of several, separate domain requirements models; then an interface requirements model, and
finally a machine requirements model. These are simultaneously verified and validated and the feasibility and
satisfiability of the emerging model is checked.

Software Design We do not cover techniques of software design in detail — so only this summary. From the
requirements prescription one develops, in stages and steps of transformation (“refinement”), first the system
architecture, then the program (code) organisation (structure), and then, in further steps of development, the
component design, the module design and the code. These stages and step can be verified, model checked and
tested with respect to the previous phase of requirements prescription, respectively the previous software design
stages and steps. One can then assert that the Software design is correct with respect to the Requirements in
the context of the assumptions expressed about the Domain:

D, S |= R

3 Domain Engineering

We shall focus only on the actual modelling, thus omitting any treatment of the preparatory administrative
and informative work, the identification of and liaison with domain stakeholders, the domain acquisition and
analysis, and the establishment of a domain terminology (document). So we go straight to the descriptive work.
We first illustrate the ideas of modelling domain phenomena and concepts in terms of simple entities, operations,
events and behaviours, then we model the domain in terms of domain facets. Also, at then end, we do not have
time and paper space for any treatment of domain verification, domain validations and the establishment of a
domain theory.

3.1 Simple Entities, Operations, Events and Behaviours

Without discussing our specification ontology, that is, the principles according to which we view the world
around us, we just present the decomposition of phenomena and concepts into simple entities, operations,
events and behaviours. All of these are “first class citizens”, that is, are entities.

We now illustrate examples of each of these ontological categories.

Simple Entities A simple entity is something that has a distinct, separate existence, though it need not be
a material existence, to which we apply functions. With simple entities we associate attributes, i.e., properties
modelled as types and values. Simple entities can be considered either continuous or discrete, and, if discrete
then either atomic or composite. It is the observer (that is, the specifier) who decides whether to consider a
simple entity to be atomic or composite. Atomic entities cannot meaningfully be decomposed into sub-entities,
but atomic entities may be analysed into (Cartesian) “compounds” of properties, that is, attributes. Attributes
have name, type and value. Composite entities can be meaningfully decomposed into sub-entities, which are
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entities. The composition of sub-entities into a composite entity “reveals” the, or a mereology of the composite
entity: that is, how it is “put together”.

Example 1: Transport Entities: Nets, Links and Hubs — Narrative

1. There are hubs and links.
2. There are nets, and a net consists of a set of two or more hubs and one or more links.
3. There are hub and link identifiers.
4. Each hub (and each link) has an own, unique hub (respectively link) identifiers (which can be observed

from the hub [respectively link]).

Example 2: Transport Entities: Nets, Links and Hubs — Formalisation

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

type
3 HI, LI

value
4a obs HI: H → HI, obs LI: L → LI

axiom
4b ∀ h,h′:H, l,l′:L • h 6=h′⇒obs HI(h) 6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)

Operations By an operation we shall understand something which when applied to some entities, called the
arguments of the operation, yields an entity, called the result of the operation application (also referred to as
the operation invocation). Operations have signatures, that is, can be grossly described by the Cartesian type
of its arguments and the possibly likewise compounded type of its results. Operations may be total over their
argument types, or may be just partial. We shall consider some acceptable operations as “never terminating”
processes. We shall, for the sake of consistency, consider all operation invocations as processes (terminating or
non-terminating), and shall hence consider all operationdefinitions as also designating process definitions.

We shall also use the term function to mean the same as the term operation.
By a state we shall loosely understand a collection of one or more simple entities whose value may change.

By an action we shall understand an operation application which applies to and/or yields a state.

Example 3: Link Insertion Operation

5. To a net one can insert a new link in either of three ways:
(a) Either the link is connected to two existing hubs — and the insert operation must therefore specify

the new link and the identifiers of two existing hubs;
(b) or the link is connected to one existing hub and to a new hub — and the insert operation must therefore

specify the new link, the identifier of an existing hub, and a new hub;
(c) or the link is connected to two new hubs — and the insert operation must therefore specify the new

link and two new hubs.
(d) From the inserted link one must be able to observe identifier of respective hubs.

6. From a net one can remove a link. The removal command specifies a link identifier.

type
5 Insert == Ins(s ins:Ins)
5 Ins = 2xHubs | 1x1nH | 2nHs
5a 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
5b 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
5c 2nHs == 2newH(s h1:H,s l:L,s h2:H)
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axiom
5d ∀ 2oldH(hi′,l,hi′′):Ins • hi′ 6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

7. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and links, has
– the hubs hs joined, ∪, by the set {h′,h′′} and
– the links ls joined by the singleton set of {l}.

8. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and links, has
8.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.
8.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′ and the new hub.
8.2 : The set of links augmented by the new link.

9. If the Insert command is of kind 2oldH(hi’,l,hi”) then
9.1–.2 : the two connecting hubs are updated to reflect the new link,

9.3 : and the resulting sets of hubs and links updated.

int Insert(op)(hs,ls) ≡
?i case op of
7 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
8 1oldH1newH(hi,l,h) →
8.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
8.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
9 2oldH(hi′,l,hi′′) →
9.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
9.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
9.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
?j end ?k pre pre int Insert(op)(hs,ls)

Events Informally, by an event we shall loosely understand the occurrence of “something” that may either
trigger an action, or is triggered by an action, or alter the course of a behaviour, or a combination of these.

An event can be characterised by a predicate, p and a pair of (“before”) and (“after”) of pairs of states and
times: p((tb, σb), (ta, σa)). Usually the time interval ta − tb is of the order ta ' (tb) + δtiny.

Example 4: Transport Events

(i) A link, for some reason “ceases to exist”; for example: a bridge link falls down, or a level road link is
covered by a mud slide, or a road tunnel is afire, or a link is blocked by some vehicle accident. (ii) A vehicle
enters or leaves the net. (iii) A hub is saturated with vehicles.

Behaviours By a behaviour we shall informally understand a strand of (sets of) actions and events. In the
context of domain descriptions we shall speak of behaviours whereas, in the context of requirements prescriptions
and software designs we shall use the term processes.

By a behaviour we, more formally, understand a sequence, q of actions and/or events q1, q2, . . . , qi, qi+1,
. . . , qn such that the state resulting from one such action, qi, or in which some event, qi, occurs, becomes the
state in which the next action or event, qi+1, if it is an action, is effected, or, if it is an event, is the event state.

Example 5: Transport: Traffic Behaviour

10. There are further undefined vehicles.
11. Traffic is a discrete function from a ‘Proper subset of Time’ to pairs of nets and vehicle positions.
12. Vehicles positions is a discrete function from vehicles to vehicle positions.

type
10 Veh
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11 TF = Time →m (N × VehPos)
12 VehPos = Veh →m Pos

13. There are positions, and a position is either on a link or in a hub.
(a) A hub position is indicated just by a triple: the identifier of the hub in question, and a pair of (from

and to) link identifiers, namely of links connected to the identified hub.
(b) A link position is identified by a quadruplet: The identifier of the link, a pair of hub identifiers (of the

link connected hubs), designating a direction, and a real number, properly between 0 and 1, denoting
the relative offset from the from hub to the to hub.

type
13 Pos = HPos | LPos
13a) HPos == hpos(s hi:HI,s fli:LI,s tli:LI)
13b) LPos == lpos(s li:HI,s fhi:LI,s tli:LI,s offset:Frac)
13b) Frac = {|r:Real•0<r<1|}

3.2 Domain Facets

By a domain facet we mean one amongst a finite set of generic ways of analysing a domain: a view of the domain,
such that the different facets cover conceptually different views, and such that these views together cover the
domain

We shall postulate the following domain facets: intrinsics, support technologies, management & organisation,
rules & regulations, script languages [contract languages] and human behaviour. Each facet covers simple entities,
operations, events and behaviours.

We shall now illustrate these.

Intrinsics By domain intrinsics we mean those phenomena and concepts of a domain which are basic to any of
the other facets (listed earlier and treated, in some detail, below), with such domain intrinsics initially covering
at least one specific, hence named, stakeholder view.

Example 6: Intrinsics, I

The links, hubs, hence the nets, and the identifiers of links and hubs are intrinsic phenomena, respectively
concepts.

So are:
Example 7: Intrinsics, II

14. From any link of a net one can observe the two hubs to which the link is connected.
(a) We take this ‘observing’ to mean the following: From any link of a net one can observe the two distinct

identifiers of these hubs.
15. From any hub of a net one can observe the one or more links to which are connected to the hub.

(a) Again: by observing their distinct link identifiers.
16. Extending Item 14: the observed hub identifiers must be identifiers of hubs of the net to which the link

belongs.
17. Extending Item 15: the observed link identifiers must be identifiers of links of the net to which the hub

belongs.

value
14a obs HIs: L → HI-set,
15a obs LIs: H → LI-set,

axiom
14b ∀ l:L • card obs HIs(l)=2 ∧
15b ∀ h:H • card obs LIs(h)=1 ∧
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∀ (hs,ls):N •

14a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

15a) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

16 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
17 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

Support Technologies By domain support technologies we mean ways and means of concretesing certain
observed (abstract or concrete) phenomena or certain conceived concepts in terms of (possibly combinations
of) human work, mechanical, hydro mechanical, thermo-mechanical, pneumatic, aero-mechanical, electro-mechanical,
electrical, electronic, telecommunication, photo/opto-electric, chemical, etc. (possibly computerised) sensor, actuator
tools.

In this example of a support technology we shall illustrate an abstraction of the kind of semaphore sig-
nalling one encounters at road intersections, that is, hubs. The example is indeed an abstraction: we do not
model the actual “machinery” of road sensors, hub-side monitoring & control boxes, and the actuators of the
green/yellow/red sempahore lamps. But, eventually, one has to, all of it, as part of domain modelling.

Example 8: Hub Sempahores

To model signalling we need to model hub and link states.
A hub (link) state is the set of all traversals that the hub (link) allows. A hub traversal is a triple of

identifiers: of the link from where the hub traversal starts, of the hub being traversed, and of the link to where
the hub traversal ends. A link traversal is a triple of identifiers: of the hub from where the link traversal starts,
of the link being traversed, and of the hub to where the link traversal ends.

A hub (link) state space is the set of all states that the hub (link) may be in. A hub (link) state changing
operation can be designated by the hub and a possibly new hub state (the link and a possibly new link state).

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′ • syn wf LΣ{lnkσ} |}
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′ • wf HΣ{hubσ} |}
HΩ = HΣ-set, LΩ = LΣ-set

value
obs LΣ: L → LΣ, obs LΩ: L → LΩ
obs HΣ: H → HΣ, obs HΩ: H → HΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

Well, so far we have indicated that there is an operation that can change hub and link states. But one
may debate whether those operations shown are really examples of a support technology. (That is, one could
equally well claim that they remain examples of intrinsic facets.) We may accept that and then ask the
question: How to effect the described state changing functions ? In a simple street crossing a semaphore
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does not instantaneously change from red to green in one direction while changing from green to red in
the cross direction. Rather there is are intermediate sequences of, for example, not necessarily synchronised
green/yellow/red and red/yellow/green states to help avoid vehicle crashes and to prepare vehicle drivers. Our
“solution” is to modify the hub state notion.

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡
{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom
∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

We consider the colouring, or any such scheme, an aspect of a support technology facet. There remains,
however, a description of how the technology that supports the intermediate sequences of colour changing hub
states.

We can think of each hub being provided with a mapping from pairs of “stable” (that is non-yellow
coloured) hub states (hσi,hσf ) to well-ordered sequences of intermediate “un-stable’ (that is yellow coloured)
hub states paired with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉 and so that
each of these intermediate states can be set, according to the time interval information,1 before the final hub
state (hσf ) is set.

type
TI [ time interval ]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema, chg HΣ: H × HΣ → H, chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in
let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

Management and Organisation

Management By domain management we mean people (i) who determine, formulate and thus set standards
(cf. rules and regulations, a later lecture topic) concerning strategic, tactical and operational decisions; (ii)
who ensure that these decisions are passed on to (lower) levels of management, and to “floor” staff; (iii) who
make sure that such orders, as they were, are indeed carried out; (iv) who handle undesirable deviations in the
carrying out of these orders cum decisions; and (v) who “backstop” complaints from lower management levels
and from floor staff.
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Organisation By domain organisation we mean the structuring of management and non-management staff
levels; the allocation of strategic, tactical and operational concerns to within management and non-management
staff levels; and hence the “lines of command”: who does what and who reports to whom — administratively
and functionally.

Examples Formalisation of the next example is found in Sect. 3.2, Pages 13–15.

Example 9: Bus Transport Management & Organisation

In Sect. 3.2, Pages 13–15, we illustrate what is there called a contract language. “Programs” in that
language are either contracts or are orders to perform the actions permitted or obligated by contracts. The
language in question is one of managing bus traffic on a net. The management & organisation of bus
traffic involves contractors issuing contracts, contractees acting according to contracts, busses (owned or
leased) by contractees, and the bus traffic on the (road) net. Contractees, i.e., bus operators, "start" buses
according to a contract timetable, "cancel" buses if and when deemed necessary, "insert" rush-hour and
other buses if and when deemed necessary, and, acting as contractors, "sub-contract" sub-contractees to
operate bus lines, for example, when the issuing contractor is not able to operate these bus lines, i.e., not able
to fulfill contractual obligations, due to unavailability of buses or staff. Clearly the programs of bus contract
languages are “executed” according to management decisions and the sub-contracting “hierarchy” reflects
organisational facets.

Rules and Regulations Human stakeholders act in the domain, whether clients, workers, managers, suppliers,
regulatory authorities, or other. Their actions are guided and constrained by rules and regulations. These are
sometimes implicit, that is, not “written down”. But we can talk about rules and regulations as if they were
explicitly formulated.

The main difference between rules and regulations is that rules express properties that must hold and
regulations express state changes that must be effected if rules are observed broken.

Rules and regulations are directed not only at human behaviour but also at expected behaviours of support
technologies.

Rules and regulations are formulated by enterprise staff, management or workers, and/or by business and
industry associations, for example in the form of binding or guiding national, regional or international standards2,
and/or by public regulatory agencies.

Domain Rules By a domain rule we mean some text which prescribes how people or equipment are expected
to behave when dispatching their duty, respectively when performing their functions.

Domain Regulations By a domain regulation we mean some text which prescribes what remedial actions are
to be taken when it is decided that a rule has not been followed according to its intention.

Two Informal Examples The two informal examples will be followed up by sketches of formalisation.

Example 10: Trains at Stations: Available Station Rule and Regulation

– Rule: In China the arrival and departure of trains at, respectively from, railway stations is subject to the
following rule:

In any three-minute interval at most one train may either arrive to or depart from a railway station.

– Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which
prescribes administrative or legal management and/or staff action, as well as some correction to the
railway traffic.

2 Viz.: ISO (International Organisation for Standardisation, www.iso.org/iso/home.htm), CENELEC (European Com-
mittee for Electrotechnical Standardization, www.cenelec.eu/Cenelec/Homepage.htm), etc.
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Example 11: Trains Along Lines: Free Sector Rule and Regulation

– Rule: In many countries railway lines (between stations) are segmented into blocks or sectors. The purpose
is to stipulate that if two or more trains are moving along the line, then:

There must be at least one free sector (i.e., without a train) between any two trains along a line.
– Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which

prescribes administrative or legal management and/or staff action, as well as some correction to the
railway traffic.

A Formal Example We shall develop the above example (11, Page 10) into a partial, formal specification.
That is, not complete, but “complete enough” for the reader to see what goes on.

Example 12: Continuation of Example 11 Page 10

We start by analysing the text of the rule and regulation. The rule text: There must be at least one
free sector (i.e., without a train) between any two trains along a line. contains the following terms: free (a
predicate), sector (an entity), train (an entity) and line (an entity). We shall therefore augment our formal
model to reflect these terms. We start by modelling sectors and sector descriptors, lines and train position
descriptors, we assume what a train is,, and then we model the predicate free.

type
Sect′ = H × L × H,
SectDescr = HI × LI × HI
Sect = {|(h,l,h′):Sect′ • obs HIs(l)={obs HI(h),obs HI(h′)}|}
SectDescr = {|(hi,li,hi′):SectDescr′ •

∃ (h,l,j′):Sect•obs HIs(l)={obs HI(h),obs HI(h′)}|}
Line′ = Sect∗,
Line = {|line:Line′•wf Line(line)|}
TrnPos′ = SectDescr∗

TrnPos = {|trnpos′:TrnPos′•∃ line:Line•conv Line to TrnPos(line)=trnpos′|}
value

wf Line: Line′ → Bool
wf Line(line) ≡
∀ i:Nat • {i,i+1}⊆inds(line) ⇒

let ( ,l,h)=line(i),(h′,l′, )=line(i+1) in h=h′ end
conv Line to TrnPos: Line → TrnPos
conv Line to TrnPos(line) ≡
〈(obs HI(h),obs LI(l),obs HI(h′))|1≤i≤len line∧line(i)=(h,l,h′)〉

The function lines yield all lines of a net.

value
lines: N → Line-set
lines(hs,ls) ≡

let lns = {〈(h,l,h′)〉|h,h′:H,l:L•proper line((h,l,h′),(hs,ls))}
∪ {ln̂ln′|ln,l′:Line•{ln,ln′}⊆lns∧adjacent(ln,ln′)} in

lns end

The function lines makes use of an auxiliary function:

adjacent: Line × Line → Bool
adjacent(( ,l,h),(h′,l′, )) ≡ h=h′

pre {obs LI(l),obs LI(l′)}⊆ obs LIs(h)
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We reformulate traffic in terms of train positions.

type
TF = T →m (N × (TN →m TrnPos))

We formulate a necessary property of traffic, namely that its train positions correspond to actual lines of the
net.

value
wf TF: TF → Bool
wf TF(tf) ≡
∀ t:T•t ∈ dom tf ⇒

let ((hs,ls),trnposs) = tf(t) in
∀ trn:TN • trn ∈ dom trnposs ⇒
∃ line:Line • line ∈ lines(hs,ls) ∧

trnposs(trn) = conv Line to TrnPos(line) end

Nothing prevents two or more trains from occupying overlapping train positions. They have “merely” – and
regrettably – crashed. But such is the domain. So wf TF(tf) is not part of an axiom of traffic, merely a desirable
property.

value
has free Sector: TN × T → TF → Bool
has free Sector(trn,(hs,ls),t)(tf) ≡

let ((hs,ls),trnposs) = tf(t) in
(trn 6∈ dom trnposs ∨ (tn ∈ dom trnposs(t) ∧
∃ ln:Line • ln ∈ lines(hs,ls) ∧

is prefix(trnposs(trn),ln))(hs,ls)) ∧
∼∃ trn′:TN • trn′ ∈ dom trnposs ∧ trn′6=trn ∧

trnposs(trn′)=conv Line to TrnPos(〈follow Sect(ln)(hs,ls)〉)
end
pre exists follow Sect(ln)(hs,ls)

is prefix: Line × Line → N → Bool
is prefix(ln,ln′)(hs,ls) ≡ ∃ ln′′:Line • ln′′ ∈ lines(hs,ls) ∧ ln̂ln′′=ln′

The test ln′′ ∈ lines(hs,ls) in the definition of is prefix is not needed for the cases where that function is invoked
as only shown here.

The function follow Sect yields the sector following the argument line, if such a sector exists.

exists follow Sect: Line → Net → Bool
exists follow Sect(ln)(hs,ls) ≡
∃ ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls)
pre ln ∈ lines(hs,ls)

follow Sect: Line → Net ∼→ Sect
follow Sect(ln)(hs,ls) ≡

let ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls) in hd ln′ end
pre line ∈ lines(hs,ls)∧exists follow Sect(ln)(hs,ls)

We doubly recursively define a function free sector rule(tf)(r). tf is that part of the traffic which has yet to
be “searched” for non-free sectors. Thus tf is “counted” up from a first time t till the traffic tf is empty. That
is, we assume a finite definition set tf . r is like a traffic but without the net. Initially r is the empty traffic. r is
“counted” up from “earliest” cases of trains with no free sector ahead of them. The recursion stops, for a given
time when there are no more train positions to be “searched” for that time; and when the “to-be-searched”
traffic is empty.

type
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TNPoss = T →m (TN → TrnPos)
value

free sector rule: TF × TF → TNPoss
free sector rule(tf)(r) ≡

if tf=[ ] then r else
let t:T•t ∈ dom tf∧smallest(t)(tf) in
let ((hs,ls),trnposs)=tf(t) in
if trnposs=[ ] then free sector rule(tf\{t})(r) else
let tn:TN•tn ∈ dom trnposs in
if exists follow Sect(trnposs(tn))(hs,ls)∧∼has free Sector(tn,(hs,ls),t)(tf)

then
let r′ = if t ∈ dom r then r else r ∪ [ t 7→[ ] ] end in
free sector rule(tf†[ t7→((hs,ls),trnposs\{tn}) ])

(r†[ t 7→r(t)∪[ tn 7→trnposs(tn) ] ]) end
else

free sector rule(tf†[ t7→((hs,ls),trnposs\{trn}) ])(r)
end end end end end end

smallest(t)(tf) ≡ ∼∃ t′:T• t′isin dom tf∧t′<t pre t ∈ dom tf

Script Languages [Contract Languages] By a domain script language we mean the definition of a set of
licenses and actions where these licenses when issued and actions when performed have morally obliging power.

By a domain contract language a domain script language whose licenses and actions have legally binding
power, that is, their issuance and their invocation may be contested in a court of law.

A Script Language Some common, visual forms of bus timetables are shown in Fig. 1.

Fig. 1. Some bus timetables: Spain, India and Norway

The next examples exemplify narrative and formal description of syntax of bus timetables as well as formal
description of semantics of bus timetables.

Example 13: Narrative Syntax of a Bus Timetable Script Language

18. Time is a concept covered earlier. Bus lines and bus rides have unique names (across any set of time
tables). Hub and link identifiers, HI, LI, were treated from the very beginning.

19. A TimeTable associates to Bus Line Identifiers a set of Journies.
20. Journies are designated by a pair of a BusRoute and a set of BusRides.
21. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more intermediate Bus Stops and a

destination Bus Stop.
22. A set of BusRides associates, to each of a number of Bus Identifiers a Bus Schedule.
23. A Bus Schedule a triple of the initial departure Time, a list of zero, one or more intermediate bus stop

Times and a destination arrival Time.
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24. A Bus Stop (i.e., its position) is a Fraction of the distance along a link (identified by a Link Identifier) from
an identified hub to an identified hub.

25. A Fraction is a Real properly between 0 and 1.
26. The Journies must be well formed in the context of some net.

Example 14: Formal Syntax of a Bus Timetable Script Language

type
18. T, BLId, BId
19. TT = BLId →m Journies
20. Journies′ = BusRoute × BusRides
21. BusRoute = BusStop × BusStop∗ × BusStop
22. BusRides = BId →m BusSched
23. BusSched = T × T∗ × T
24. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
25. Frac = {|r:Real•0<r<1|}
26. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

Example 15: Semantics of a Bus Timetable Script Language

type
Bus

value
obs X: Bus → X

type
BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
BPos = atHub | onLnk | atBS
atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
Frac = {|r:Real•0<r<1|}

value
gen BusTraffic: TT → BusTraffic-infset
gen BusTraffic(tt) as btrfs

post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

We omit definition of several functions, including the interesting on time predicate.

A Contract Language We shall, as for the timetable script, just hint at a contract language.

Example 16: Informal Syntax of Bus Transport Contracts

An example contract can be ‘schematised’:

con id: contractor corn contracts contractee ceen
to perform operations "start","cancel","insert","subcontract"
with respect to bus timetable tt.

Example 17: Formal Syntax of a Bus Transport Contracts

type
CId, CNm
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Contract = CId × CNm × CNm × Body
Body = Op-set × TT
Op == ′′conduct′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

an example contract:

(cid,cor,cee,({′′start′′,′′cancel′′,′′insert′′,′′subcontract′′},tt))

Example 18: Informal Syntax of a Bus Transport Actions

Example actions can be schematised:

(a) cid: start bus ride (blid,bid) at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 13) shown earlier is almost like an action; here is the action form:

(d) cid: contractee cee is granted a license cid′

to perform operations {”start”,”cancel”,”insert”,subcontract”}
with respect to timetable tt′.

Example 19: Formal Syntax of a Bus Transport Actions

type
Action = CNm × CId × (SubLic | SmpAct) × Time
SmpAct = Start | Cancel | Insert
DoRide == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:ConId,s cee:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cee,cid,mkRid(blid,id),t)
(b) (cee,cid,mkCan(blid,id),t)
(c) (cee,cid,mkIns(blid,id),t)
(d) (cee,cid,mkCon(cid′,({′′start′′,′′cancel′′,′′insert′′,′′subcontract′′},tt′),t))

where: cid′ = generate ConId(cid,cee,t)

Example 20: Semantics of a Bus Transport Contract Language: States

type
Body = Op-set × TT
ConΣ = RcvConΣ×SubConΣ×CorBusΣ
RcvConΣ = CNm→m (CId→m (Body×TT))
SubConΣ = CNm→m (CId→m Body)
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×CId×CNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗
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BusTrace = (Time×BusStop)∗

CorBusΣ = CNm →m (CId →m ((BLId×BId)→m (BNo×BusTrace)))
AllBs=CNm→m BusNo-set

Example 21: Semantics of a Bus Transport Contract Language: Constants and Functions

value
cns:CNm-set, busnos:BNo-set, ibσ:IBΣs=CNm→m BusΣ,
rcor,icee:CNm • rcor 6∈ cns∧icee ∈ cns, itr:BusTraffic,
rcid:ConId, iops:Op-set={′′subcontract′′}, itt:TT, t0:Time
allbs:AllBs • dom allbs=cns ∪ {rcor}∧∪ rng allbs=busnos,
icon:Contract=(rcid,rcor,icee,(iops,itt)),
icσ:ConΣ=([ icee 7→ [ rcid 7→ [ icee 7→ icon ] ] ]

∪ [ cee 7→ [ ] | cee:CNm • cee ∈ cnms\{icee} ],[ ],[ ]),
system: Unit → Unit
system() ≡

cntrcthldr(icee)(ilσ(icee),ibσ(icee))
‖(‖{cntrcthldr(cee)(ilσ(cee),ibσ(cee))|cee:CNm•cee ∈ cns\{icee}})
‖(‖{bus ride(b,cee)(rcor,′′nil′′)

| cee:CNm,b:BusNo•cee ∈ dom allbs ∧ b ∈ allbs(cee)})
‖time clock(t0) ‖ bus traffic(itr)

bus−ride bus−ride bus−ride

bus−ridebus−ridebus−ride

bus−ride bus−ride bus−ride

bus−ride bus−ride bus−ride

...

...

...

...

...

...
Bus

Traffic

Time

contract−holder

contract−holder

contract−holder

contract−holder

contract−holder

...
...

...

...

...

...

...

...
...

Fig. 2. An organisation

The thin lines of Fig. 2 denote communication “channels”.
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Human Behaviour By human behaviour we mean any of a quality spectrum of carrying out assigned work:
from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv) outright
criminal pursuit.

Example 22: A Diligent Operation

The int Insert operation of Page 5 was expressed without stating necessary pre-conditions:

27. The insert operation takes an Insert command and a net and yields either a new net or chaos for the case
where the insertion command “is at odds” with, that is, is not semantically well-formed with respect to
the net.

28. We characterise the “is not at odds”, i.e., is semantically well-formed, that is: pre int Insert(op)(hs,ls), as
follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and yields a
truth value if the below relation between the command arguments and the net is satisfied.
Let (hs,ls) be a value of type N.

29. If the command is of the form 2oldH(hi′,l,hi′) then
?1 hi′ must be the identifier of a hub in hs,
?2 l must not be in ls and its identifier must (also) not be observable in ls, and
?3 hi′′ must be the identifier of a(nother) hub in hs.

30. If the command is of the form 1oldH1newH(hi,l,h) then
?1 hi must be the identifier of a hub in hs,
?2 l must not be in ls and its identifier must (also) not be observable in ls, and
?3 h must not be in hs and its identifier must (also) not be observable in hs.

31. If the command is of the form 2newH(h′,l,h′′) then
?1 h′ — left to the reader as an exercise (see formalisation !),
?2 l — left to the reader as an exercise (see formalisation !), and
?3 h′′ — left to the reader as an exercise (see formalisation !).

value
28′ pre int Insert: Ins → N → Bool
28′′ pre int Insert(Ins(op))(hs,ls) ≡
?2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
29 2oldH(hi′,l,hi′′) → {hi′,hi′′}⊆iohs(hs),
30 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∧h6∈ hs∧obs HI(h) 6∈ iohs(hs),
31 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

These must be carefully expressed and adhered to in order for staff to be said to carry out the link insertion
operation accurately.

Example 23: A Sloppy via Delinquent to Criminal Operation

We replace systematic checks (∧) with partial checks (∨), etcetera, and obtain various degrees of sloppy
to delinquent, or even criminal behaviour.

value
28′ pre int Insert: Ins → N → Bool
28′′ pre int Insert(Ins(op))(hs,ls) ≡
?2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
29 2oldH(hi′,l,hi′′) → hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),
30 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∨h6∈ hs∨obs HI(h) 6∈ iohs(hs),
31 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end
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Dialectics So now you should have a practical and technical “feel” for domain engineering: What it takes to
express a domain model.

But there is lots’ more: We have not shown you (i) the rôle of domain stakeholders: (i.1) how to identify
them, (i.2) how to involve them and (i.3) how they help validate resulting domain descriptions. (ii) the domain
(ii.1) knowledge acquisition and (ii.2) analysis processes, (ii) the domain (ii.1) model verification and (ii.2)
validation and processes, and (iii) the domain theory R&D process.

Can we agree that we cannot, as professional software engineers, start on gathering requirements, let alone
prescribing these before we have understood the domain ? Can we agree that, “ideally”, we must therefore first
R&D the domain model before we can embark on any requirements prescription process ?

By “ideally” we mean the following: Ideally domain engineering should fully precede requirements engineer-
ing, but for many practical reasons3 we must co-develop domain descriptions “hand-in-hand” with requirements
prescriptions. And that is certainly feasible, when done with care. So we shall, for years assume this to be the
case.

Pragmatics While the software industry “humps along”: co-developing domain descriptions and requirements
with their clients, or, for COTS, with their marketing departments, private and public research centres should
and will embark on large scale (5–8 manyears/year), long range projects (5–8 year) foundational research and
development (R&D) of infrastructure component domain models of the financial service industry: banking (all
forms); insurance (all forms); portfolio management; securities trading: brokers, traders, commodities and stock etc.
exchanges; transportation: road, rail, air, and sea; healthcare: physicians, hospitals, clinics, pharmacies, etc.; “the
market”: consumers, retailers, wholesalers, and the supply chain; etcetera.

3.3 Further on the Modelling of Domains

[8] Part IV, Chaps. 8–16 covers techniques of domain modelling.

4 Requirements Engineering

We cannot possibly, within the confines of a seminar talk and a reasonably sized paper cover, however superfi-
cially, both informal and formal examples of requirements engineering.

Instead we shall just briefly mention the major stages and sub-stages of requirements modeling:

– Domain Requirements: those which can be expressed sôlely using terms from the domain description;
– Interface Requirements: those which can be expressed using terms both from the domain description

and from IT; and
– Machine Requirements: those which can be expressed sôlely using terms from IT.

IEEE Definition of Requirements

By IT requirements we understand (cf. IEEE Standard 610.12): “A condition or capability needed by a user to solve
a problem or achieve an objective on a computing machine”.

By computing machine we shall understand a, or the, combination of computer (etc.) hardware and software
that is the target for, or result of the required computing systems development.

4.1 Domain Requirements

Domain Requirements

By domain requirements we mean such which can be expressed sôlely using terms from the domain description

To construct the domain requirements the domain engineer together with the various groups of requirements
stakeholder “apply” the following “domain-to-requirements” operations to a copy of the domain description:
projection, instantiation, determination, extension and fitting. First we briefly charaterise these.
3 Among the many practical reasons for not first fully developing a domain model are: (a) it takes literally “ages” to

develop a complete domain model, (b) in fact one will never achieve complete domain models, and (c) software houses
and their clients cannot wait for this software!
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The Domain-to-Requirements Operations The ‘domain-to-requirements’ operations cannot be automated.
They increasingly “turn” the copy of the domain description into a domain requirements prescription.

– Projection removes, from that emerging requirements document all the domain phenomena and concepts
for which the customer does not need IT support.

– Instantiation makes a number of entities: simple, operations, events and behaviours, less abstract, more
concrete.

– Determination makes the emerging requirements entities more determinate, that is, removes undesired
non-determinism.

– Extension introduces new, computable entities that were not possible in the non-IT domain.
– Fitting merges the domain requirements prescription with those of other, more-or-less independent IT

developments.

4.2 Interface Requirements

Interface Requirements

By interface requirements we mean such which those which can be expressed using terms from both the domain
description and from IT, that is, terminology of hardware and of software.

When phenomena and concepts of the domain are also to be represented by the machine, these phenomena
and concepts are said to be shared between the domain and the machine; the requirements therefore need be
expressed both in terms of phenomena and concepts of the domain and in terms of phenomena and concepts of
the machine.

Shared Phenomena and Concepts A shared phenomenon or concept is either a simple entity, an operation,
an event or a behaviour.

Shared simple entities need to be initially input to the machine and their machine representation need
to be regularly, perhaps real-time refreshed.

Shared operations need to be interactively performed by human or other agents of the domain and by
the machine.

Shared events are shared in the sense that their occurrence in the domain must be made known to the
machine.

Shared behaviours need to occur in the domain and in the machine by alternating means, that is, a
protocol need be devised.

For each of these four kinds of interface requirements the requirements engineers work with the requirements
stakeholders to determine the properties of these forms of sharing. These interface requirements are then narrated
and formalised. They are always “anchored” in specific items of the domain description.

4.3 Machine Requirements

Machine Requirements

By machine requirements we mean those which can be expressed sôlely using terms from the machine, that is,
terminology of hardware and of software.

We shall not cover any principles or techniques for developing machine requirements, but shall just list the very
many issues that must be captured by a machine requirements.

– Performance
• Storage
• Time
• Software Size

– Dependability
• Accessibility
• Availability
• Reliability

• Robustness
• Safety
• Security

– Maintenance
• Adaptive
• Corrective
• Perfective
• Preventive

– Platform (P)
• Development P
• Demonstration P
• Execution P
• Maintenance P

– Documentation
Requirements

– Other Requirements
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The machine requirements are usually not so easily, formalised, if at all, with today’s specification language
tools. Extra great care must therefore be exerted in their narration. Some formal modelling calculations, like
fault (tree) analysis, can be made in order to justify quantitative requirements.

4.4 Further on the Modelling of Requirements

[8] Part V, Chaps. 17–24 covers techniques of requirements modelling.

5 Why “Current” Requirements Engineering (RE) is Flawed

Current, conventional RE has no scientific basis: “My” RE starts with a domain model. It provides the scientific
basis. “Derivation” of domain and interface requirement provides a further scientific basis. The separation of
concerns: domain model, in-and-by-itself, and the requirements projection, instantiation, determination, exten-
sion and fitting operators provide a basis for scientific analysis. Current, conventional RE does not have these
bases. Current, research into and practice of conventional RE “must be stopped” if we are to pursue Software
Engineering in a professionally responsible manner.

6 Conclusion

6.1 Summary — A Wrap Up

We have illustrated the triptych concept: from domains via requirements to software. We spent most time on
domain engineering. We just sketched major requirements engineering concepts. And we assumed you know
how to turn formal requirements into correct software designs !

6.2 Dialectics

So, are we clear on this: (i) that we must understand the domain before we express the requirements; (ii) that
we can “derive” major parts of the requirements prescription from the domain description; (iii) that domains
are far more “stable” than requirements; (iv) that prescribing requirements with no prior domain description
is thoroughly unsound; (v) that describing [prescribing] domains [requirements] both informally (narratives)
and formally (formal specifications) helps significantly towards consistent specifications; and (vi) that we must
therefore embrace the triptych: from domains via requirements to software.

Implication: Theory-work So, get on with it ! Pick up one or another of the new domain engineering
ideas: business processes, facets, domain theories, etc., or the new requirements engineering ideas: projection,
instantiation, determination, extension and fitting, research them, write papers about it.

Implication: Engineering-work — Extrovert Applications But do it in connection with real life, actual
domains: banking, insurance, stock exchange and brokerage, hospitalisation, bus & tax transport, rail transport,
container line shipping, etcetera. That is, “build” some impressive domain theories !

Implication: Engineering-work — Introspective Applications By introspective applications we mean
such as providing software for, or such as the Internet, the Web, operating systems database management, data
communication, etcetera, etcetera, Also these are lack proper domain descriptions.

6.3 For More on Domain and Requirements Engineering

For details on domain and requirements engineering we refer to:

Software Engineering:
– Vol. 3: Domains, Requirements and Software Design, XXX+766 pages.

Texts in Theoretical Computer Science, EATCS Series, 2006 Springer
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and the upcoming book:

Software Engineering,

– Vol. I: The Triptych Approach,

– Vol. II: A Model Development.

To be submitted to Springer for evaluation, expected published 2009.

This book (draft) is the basis for lectures at Techn. Univ. of Graz, Austria Nov.-Dec. 2008; Univ. of Saarland,
Germany March 2009; and Univ. of Tokyo, Japan Fall (Oct.-Nov.) 2009.

6.4 For More on Extrovert Applications

We refer to some indicative Internet-based reports:

– air traffic www.imm.dtu.dk/~db/brisbane.pdf and /airtraffic.pdf;
– container line industry: www.imm.dtu.dk/~db/container-paper.pdf;
– the ‘Market’: www.imm.dtu.dk/~db/themarket.pdf;
– IT security: www.imm.dtu.dk/~db/5lectures/it-system-security-ISO.pdf;
– oil industry: Appendix: www.imm.dtu.dk/~db/de-p.pdf;
– railways: www.railwaydomain.org/;
– transportation (in general): Appendix: www.imm.dtu.dk/~db/tseb.pdf;
– etcetera.

6.5 Introvert Applications

Software Engineering Archeology In general I would prefer to see precise domain models of the Internet,
the Web, ‘Cloud Computing’, Windows Vista, Linux and idealised SQL4 as the basis for requirements and software
that claim that they are “based” on the Internet, the Web, ‘Cloud Computing’, Windows Vista, Linux and/or SQL.

Here is clearly a fascination engineering task.
I see the Internet as an instantiation of ‘Cloud Computing’.

6.6 For More on Research Topics

A number of research topics of domain theory has been outlined in:

– [9]: Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In
ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17,
Heidelberg, September 2007. Springer.

Acknowledgements. Thanks for inviting me to PSI’09. Indeed, very many THANKS.

4 By idealised SQL I mean an SQL where relations are indeed sets, and hence that all results of SQL queries are
sets. To my knowledge Oracle SQL does not satisfy this simple property, but the Frontbase SQL92 system does
(http://www.frontbase.com/cgi-bin/WebObjects/FrontBase)
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7 Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of domain and requirements specification,
refinement and verification, are dealt with in Alloy: [43], ASM: [60, 61], B/event B: [1, 16], CafeOBJ: [22, 23, 18,
19], CSP [38, 63, 64, 39], DC [68, 69] (Duration Calculus), Live Sequence Charts [17, 34, 45], Message Sequence
Charts [40–42], RAISE [25, 27, 6–8, 24] (RSL), Petri nets [44, 55, 58, 57, 59], Statecharts [30, 31, 33, 35, 32], Tem-
poral Logic of Reactive Systems [48, 49, 54, 56], TLA+ [46, 47, 50, 51] (Temporal Logic of Actions), VDM [11,
12, 21, 20], and Z [65–67, 37, 36]. Techniques for integrating “different” formal techniques are covered in [2, 28,
14, 13, 62]. The recent book on Logics of Specification Languages [10] covers ASM, B/event B, CafeObj, CASL,
DC, RAISE, TLA+, VDM and Z.
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