
Formal Methods in the 21’st Century

An Assessment of Today — Predictions for the Future

Dines Bjørner

Technical University of Denmark

bjorner@gmail.com

April 1998

ABSTRACT
It has been practice, during software engineering related
conferences in the last almost 20 years, to discuss and
debate the rôle of formal techniques: specification and
calculi, in software engineering. So also ICSE’98 will
feature such a panel. We outline a possible basis for a
discussion, cum debate (?), around the topic, but take
as our departure point a recent statement made by Tony
Hoare.

1 A Motto?

In preparation for a World Congress on Formal Meth-
ods1 Tony Hoare expressed:

• Maturity: Use of a formal method is no longer an
adventure; it is becoming routine.

• Convergence: The choice of a formal method or
tool is no longer controversial: they are chosen in
relation to their purpose and they are increasingly
used in effective combination.

• Cumulative progress: Promise of yet further
benefit is obtained by accumulation of tools, li-
braries, theories, and case studies based on the
work of scientists from many schools which were
earlier considered as competitors.

The present panel will consider this “triptych” and dis-
cuss, possibly debate it:

• Are Hoare’s statements applicable in your country,
in your region, on your continent?

• How do we achieve Cumulative Progress?

2 Formal Methods

Some definitions and delineations may be in order:

1World Congress on Formal Methods (in the design of com-
puting systems) to be held in Toulouse, France, 20–24 September
1999 and to be co-sponsored by ACM, AMAST, EATCS, ETAPS,
FME [Formal Methods Europe], IEEE CS, IFIP, etc. See ap-
pendix B.

• Method:

By a method we understand a set of principles for
selecting and applying techniques and tools in or-
der effectively to analyse and synthesise an effective
artifact: here software.

• Formal Method:

By a Formal Method we understand a set for For-
mal Specification and Design Calculi techniques.

When we say ‘formal method’ we thus do not imply

that the principles and all techniques and tools are

formalised or even formalisable.

A design calculi is usually a set of proof or specifi-
cation transformation rules.

• Formal Specification:

A Formal Specification is expressed in a Formal
Language.

It expresses, in a comprehensive and consistent way,
a model of whatever it describes: A Model of an
Application Domain (void of any reference to pos-
sible computing support), a Requirements (void of
any reference as to how to implement these require-
ments), a Software Architecture (emphasising ex-
ternal, but concrete, implementation-biased, inter-
faces); a Program Organisations (detailing internal
interfaces); etc.

• Formal Language:

A Formal Language is presented by specifying, at
a meta-level, (i) a syntax, (ii) a possibly model-
-oriented, for example denotational or structural
operational semantics, and (iii) a proof system.

• Design Calculi:

(i+ii) allows tools to be developed — tools that
support the input, editing and syntactic and ab-
stract interpretation processing of specifications.
(iii) allows tools to be developed — tools that sup-
port reasoning (automated theorem proving, me-
chanically assisted proofs) about specifications.

1



• Formal Development:

A development is formal iff all specifications are for-
mal: all proof obligations have been identified and
dutifully formally proved using the proof system.

• Rigorous Development:

A development is rigorous if all specifications have
been expressed in the formal specification language
and if relevant theorems of correctness and other
crucial properties have been formally expressed —
but where proofs have at most been conducted in a
way where the reasoning processes have referred to
model-theoretic properties of the modelled domain,
requirements or software — as the case may be.

• Systematic Development:

A development is rigorous if all specifications have
been expressed in the formal specification language
and if reasonable relations between steps of devel-
opment have been informally reasoned.

We refer to [1]. Here Jackson points out that profession-
alising software engineering seemingly requires a high
degree of specialisation — to which I add: — and that
within each highly specialised software engineering (viz.:
compiler development, reactive/real-time & safety crit-
ical systems, workpiece systems, etc.) an “own” (set
of) method(s) need evolve with their own distinct uses
of formal methods, i.e. formal specification and design
calculi techniques and tools.

3 Domain / Requirements / Software

Software Design: In order to design software we need
requirements. Requirements: In order to express func-
tional requirements we need clarify the domain.

• Domain Engineering embodies, it seems, systems
identification: Recognising which are the rele-
vant phenomena in the domain; capturing these;
analysing and validating emerging domain models.

• Requirements Engineering:

Requirements reside in the domain. Traditionally
requirements express functional and non-functional
properties.

• Software Design Engineering:

Software design is based on requirements:

– Software Architecture — restricted to reflect-
ing only the external interface behaviour —
implements functional behaviours (?)

– Program Organisation — that part of the more
generally understood concept of software ar-
chitecture which (additionally) reflects inter-
nal interface behaviour — additionally imple-
ments non-functional requirements.

To what extent are formal methods relevant in each of

these phases, stages, steps?

4 Regional/Continental Differences?

It seems to the chairman of this ICSE’98 Panel on For-
mal Methods that one can identify at least two, albeit
seemingly related differences of approach between US
and European “Formal Methods”:

• One Step vs. Indefinite # of Steps:

In the US there seems to be a predominant number
of researchers and practitioners of so-called Formal
Methods who primarily, or only, see formal develop-
ment as that of formally specifying a piece of soft-
ware and proving that software correct wrt. speci-
fication.

In Europe, notably Northern Europe, there seems
to be a predominant number of researchers and
practitioners of so-called Formal Methods who pri-
marily see development as a many stage refinement
of abstract specifications towards concrete, eventu-
ally executable specifications.

• Tools vs. Specifications:

In the US, perhaps as a consequence of the previ-
ous view, if correct, tools represent the essence of
formal methods.

In Northern Europe the essence of formal methods
is that of specification: of problem domain, require-
ments and software design analysis.

• Executable Specifications vs. Intellectual Documents:

And, perhaps again as a derived consequence of
the above views, it seems that many “US” software
engineering researchers and practitioners demand
that specifications be executable, whereas their
Norther European counterparts, in consequence of
“confessing” to specifications as analytical, intel-
lectual documents of knowledge do not expect exe-
cutability.

Possible discussion/debate items could be:

• Has the panel chairman gone nuts?

• Is there a difference between the US and Europe?

• Is Australia like Europe or the US?

• Where in the Spectrum is Japan Located?



5 Formal Method Myths & Commandments!

A background also for the panel are the following pub-
lications [2, 3, 4]. See references at end of this panel
statement.

5.1 Seven Myths of Formal Methods

In [2] Anthony Hall lists and dispels the following seven
“Myths”:

1. Formal Methods can Guarantee that Software is

Perfect

2. Formal Methods are all about Program Proving

3. Formal Methods are only Useful for Safety-Critical

Systems

4. Formal Methods Require highly trained Mathe-

maticians

5. Formal Methods Increase the Cost of Development

6. Formal Methods are Unacceptable to Users

7. Formal Methods are Not Used on Real, Large-Scale

Software

5.2 Seven More Myths of Formal Methods

In [3] Jonathan P. Bowen and Michael G. Hinchey con-
tinue dispelling myths:

8. Formal Methods Delay the Development Process

9. Formal Methods are Not Supported by Tools

10. Formal Methods mean Forsaking Traditional Engi-

neering Design Methods

11. Formal Methods only Apply to Software

12. Formal Methods are Not Required

13. Formal Methods are Not Supported

14. Formal Methods people always use Formal Meth-

ods

5.3 Ten Commandments of Formal Methods

In [4] Jonathan P. Bowen and Michael G. Hinchey sug-
gests ten rules of software engineering conduct:

I. Thou shalt choose an appropriate notation

II. Thou shalt formalise but not over-formalise

III. Thou shalt estimate costs

IV. Thou shalt shall have a formal methods guru on

call

V. Thou shalt not abandon thy traditional develop-

ment methods

VI. Thou shalt document sufficiently

VII. Thou shalt not compromise thy quality standards

VIII. Thou shalt not be dogmatic

IX. Thou shalt test, test, and test again

X. Thou shalt reuse

6 Panel Discussion

The panel will also discuss and debate:

• Adequacy and representability of Tony Hoare’s
statement, section 1

• Are the section 2 characterisations of formal meth-
ods adequate. and if not: what is missing — or is
the focus entirely wrong?

• Are there geographical differences, wrt. formal
methods (section 4), and if so Why?

• Relevance of 7+7 Myths and 10 Commandments,
section 5

• What, if so deemed, must we do to secure continu-
ous progress into the next century?

APPENDICES

A Web References to ‘Formal Methods’

We refer to the following overall www reference to a
repository on applied work on ‘Formal Methods’:

http://www.csr.ncl.ac.uk/-

projects/FME/InfRes/applications/methods.html

Enjoy the surfing!

B FM’99: World Congress on Formal Methods

Please also surf to:

http://www.it.dtu.dk/~db/fm99/cfp.ps

Here you will find a call for paper on a world congress
on formal methods. FM’99, in addition to a 10 stream
foundations & methodology and industrial applications
technical symposium will also feature a tools fair
and application forum, a set of formal methods
user group meetings, and industry tutorials on for-
mal software development for railway systems, avionics,
telecommunications, hardware, and many other appli-
cation areas.



REFERENCES

[1] Michael Jackson. Problems, methods and specialisa-
tion. Software Engineering Journal, pages 249–255,
November 1994. .

[2] Anthony Hall. Seven Myths of Formal Methods.
IEEE Software, 7(5):11–19, 1990.

[3] J.P. Bowen and M. Hinchey. Seven More Myths of
Formal Methods. Technical Report PRG–TR–7–94,
Oxford Univ., Programming Research Group, Wolf-
son Bldg., Parks Road, Oxford OX1 3QD, UK, June
1994. Shorter version published in LNCS Springer
Verlag FME’94 Symposium Proceedings.

[4] J.P. Bowen and M. Hinchey. Ten Command-
ments of Formal Methods. Technical report, Ox-
ford Univ., Programming Research Group, Wolfson
Bldg., Parks Road, Oxford OX1 3QD, UK, 1995.


