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Abstract. TLA+ is a language intended for the high-level specification of reactive,
distributed, and in particular asynchronous systems. Combining the linear-time
temporal logic TLA and classical set-theory, it provides an expressive specification
formalism and supports assertional verification.

1 A TASTE OF TLA+

The specification language TLA+ has been introduced by Leslie Lamport [20] for
the description of reactive and distributed, especially asynchronous systems. In
this paper, I describe the semantical base of TLA+, which combines the linear-
time temporal logic TLA and Zermelo-Fränkel set theory. My intention is not to
define a new or extended formalism nor to explain the use of TLA+ in practice.
Lamport’s original work covers much more material than this paper. In particular,
his recent book [25] presents a tutorial introduction to writing specifications in
TLA+, formally defines the language of TLA+, and describes the tools that support
it. In contrast, this presentation of TLA+ emphasizes the mathematical machinery
underlying TLA+, explaining Lamport’s choices from a logical perspective. It is
my hope that it will find some use for purposes such as comparing specification
formalisms or for constructing new tools to support system development in TLA+.

Before we begin exploring the semantics of TLA+, let us have a look at a simple
example that introduces the typical structure of a TLA+ specification. The TLA+

module SyncQueueInternal , shown in figure 1(b), describes an unbounded FIFO
queue, which is illustrated in figure 1(a). The external interface consists of an input
channel in and an output channel out . Internally, the FIFO maintains a queue q of
values that have been received via in but have not yet been sent via out .

The module consists of three sections, separated by horizontal bars for better
readability, that contain declarations, definitions, and assertions. This structure of
a module is conventional, but not mandatory: formally, a module is simply a list of
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(a) Pictorial representation.

module SyncQueueInternal

extends Sequences
constant Message
variables in, out, q

NoMsg
∆
= choose x : x /∈ Message

Init
∆
= q = 〈〉 ∧ in = NoMsg ∧ out = NoMsg

Enq(m)
∆
= ∧ in 6= m

∧ in ′ = m ∧ q ′ = Append(q ,m)
∧ out ′ = out

Deq
∆
= ∧ q 6= 〈〉

∧ out ′ = Head(q) ∧ q ′ = Tail(q)
∧ in ′ = in

Next
∆
= (∃m ∈ Message : Enq(m)) ∨ Deq

vars
∆
= 〈in, out , q〉

FifoI
∆
= Init ∧�[Next ]vars ∧WFvars(Deq)

theorem
FifoI ⇒ ∧ �(q ∈ Seq(Message))

∧ �[Deq ⇒ out ′ 6= out ]vars
∧ ∀m ∈ Message : in = m  out = m

(b) TLA+ specification with the internal behavior exposed.

module SyncQueue

constant Message
variables in, out

Internal(q)
∆
= instance SyncQueueInternal

Fifo
∆
= ∃∃∃∃∃∃ q : Internal(q)!FifoI

(c) TLA+ interface specification.

Fig. 1. A FIFO queue with synchronous communication.
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statements. Any identifier must have been declared or defined exactly once (possibly
in an imported module) before it is used.

The first section declares SyncQueueInternal to be based on the standard TLA+

module Sequences , which defines finite sequences and associated operations. Next,
we find a declaration of the module parameters. The constant parameter Message
intuitively represents the set of messages that are to be sent via the FIFO queue.
The variable parameters in, out , and q represent the current state of the queue as
shown in figure 1(a); their values will change as messages are received and forwarded.

The second section contains a list of definitions, which constitute the main body
of the specification. The constant NoMsg is defined to equal some value that is not
an element of the set Message (section 4 explains why this definition is sensible).
The state predicate Init identifies legal initial states of the specification: the value
of q should be the empty sequence 〈〉, while both in and out should equal the value
NoMsg . For any value m, the formula Enq(m) characterizes state transitions that
correspond to an “enqueue” action1: we require m to be different from the current
value of in so that the queue can recognize that the input channel has changed.
(This condition is not essential, but is introduced mainly for expository purposes.
An implementation could for example instantiate the parameter Message by a set of
pairs consisting of the underlying data and an extra bit, which serves to distinguish
two successive enqueue actions for the same data.) The value of the variable in
at the state following the transition, denoted by in ′, will be m, and the new value
of q is obtained by appending m at the end of whatever value q contains before
the transition. Finally, we stipulate that the output channel out should not change
during an enqueue action.The definition of the dequeue action Deq is similar. The
action Next is defined as the disjunction of all enqueue actions Enq(m), for m in
Message, and of the dequeue action Deq .

The main definition of module SyncQueueInternal is that of the temporal for-
mula FifoI , representing the “internal” specification of the FIFO queue. It is written
as a conjunction: the first conjunct Init asserts that the first state of any behavior
satisfying FifoI must respect the initial condition. The second conjunct specifies
the next-state relation of the queue. More precisely, it asserts that every transi-
tion allowed by FifoI must either respect the formula Next or leave the expression
vars unchanged; the latter is defined as the tuple 〈in, out , q〉 containing the state
variables of interest. Because the value of a tuple is unchanged if and only if all
its components are unchanged, this formula admits “stuttering steps” that do not
affect the variables of interest. In a larger system that contains the FIFO queue
as a component, such steps may represent actions of different components. The
final conjunct of formula FifoI asserts a condition of weak fairness concerning the
action Deq . It rules out behaviors where from some state onward, the Deq action
is always enabled, but never occurs. Section 2 explores in more detail the temporal

1 In this formula and throughout the paper, we use a standard TLA+ notation that
displays multi-line conjunctions and disjunctions as a list “bulleted” by the connective.
This layout makes long formulas easier to read and reduces the number of parentheses.
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logic TLA that underlies TLA+, and discusses the fundamental concept of stuttering
invariance.

The third section of module SyncQueueInternal asserts a theorem: it claims
that the formula shown follows from the definitions. (In general, a module may state
assumptions about constants, and theorems should then follow from the definitions
and the stated or imported assumptions.) In a loose reading, the assertion of a
theorem in a module can be regarded merely as a comment that highlights the
specifier’s intuitions. Formally, however, a theorem represents a proof obligation that
must be discharged for the module to be correct, and we will turn to proof rules for
verification in section 3. The theorem asserted of module SyncQueueInternal states
that every behavior that satisfies formula FifoI has the following properties:

• at every state, the value of the variable q is a finite sequence whose elements are
contained in Message,

• every Deq step changes the value of the output channel out , and

• every message that appears on the input channel will eventually be output.

The current version of TLA+ described in [25] does not contain a language for
writing proofs, although Lamport advocates a hierarchical proof notation [24].

Like HOL [15] and other logical specification languages, TLA+ is declarative:
the names of formulas such as Init , Next or FifoI are formally irrelevant, although
it is good practice to make them meaningful. The meaning of a formula can always
be uniquely and compositionally determined from the meaning of its subformulas,
and how to do this is the main subject of the present paper. As in any logic, there
are many logically equivalent ways to express a specification. For example, we could
have replaced the definitions of Enq and Next by

Enq
∆
= ∧ in ′ ∈ Message ∧ in ′ 6= in

∧ q ′ = Append(q , in ′) ∧ out ′ = out

Next
∆
= Enq ∨ Deq

without changing the meaning of formula FifoI .
TLA+ does not hide the complexity of a system by using built-in data types; as

we will see in section 4, every value is just a set. Similarly, it does not presuppose
any fixed system model such as shared-variable or message-passing concurrency,
synchronous or asynchronous communication, etc. Its expressiveness comes from
the unfettered use of set theory and the mechanism of definitional extension. For
our example, we have chosen the internal variable q to change at the same time as the
interface variables in and out , representing a synchronous style of communication.
A specification of a FIFO queue using asynchronous communication channels is
presented in Lamport’s book [25, ch. 4].

The specifications of module SyncQueueInternal describe the behavior of the
FIFO queue in terms of the three variables in, out , and q . One important principle
in writing specifications is that of information hiding, which requires a component
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specification not to reveal the internal structure (or “implementation details”) of
the component. In our example, the variable q is such an implementation detail:
as illustrated by the box in figure 1(a), only the behavior of the externally visi-
ble variables in and out should be constrained by the queue specification. Module
SyncQueue, shown in figure 1(c), contains an interface specification of the FIFO
queue based on the previous specification. In fact, it declares in and out as its only
variable parameters. The following line instantiates the previously discussed module
SyncQueueInternal : any operator Op defined in that module can be referenced as
Internal(q)!Op in module SyncQueue. The general form of instantiation in TLA+

allows for substitution of expressions for module parameters; any remaining param-
eters are implicitly instantiated with the identifier of the same name valid at the
point of instantiation; it is an error if that identifier has not been declared or defined.
In our case, the parameters Message, in, and out of module SyncQueueInternal are
instantiated by the corresponding parameters of module SyncQueue, whereas pa-
rameter q is instantiated by the local parameter of the operator Internal .

Module SyncQueue then defines the formula Fifo, representing the interface
specification of the FIFO queue, as the formula obtained from Internal(q)!FifoI by
existential quantification over q . This formula is satisfied by every behavior where
in and out take the values as described by the internal specification, but where q
may take arbitrary values. (The precise semantics is defined in section 2.4.) In this
respect, existential quantification represents hiding of internal state components,
and formula Fifo specifies the interface of the FIFO queue.

2 TLA: THE TEMPORAL LOGIC OF ACTIONS

TLA+ combines TLA, the Temporal Logic of Actions [23], and mathematical set
theory. We now present the semantics of TLA, while sections 3 and 4 explore
the verification of temporal formulas and the specification of data structures in set
theory. Again, we emphasize that this exposition is aimed at a precise definition
of TLA as a logical language; it does not attempt to explain the use of TLA for
system specification.

2.1 Rationale

The logic of time has its origins in philosophy and linguistics, where it was in-
tended to formalize temporal references in natural language [19, 32]. Around 1975,
Pnueli [31] and others recognized that such logics could be useful as a basis for the
semantics of computer programs. In particular, traditional formalisms based on pre-
and post-conditions were found to be ill suited for the description of reactive systems
that are continuously interacting with their environment and are not necessarily in-
tended to terminate. Temporal logic, as it came to be called in computer science,
offered an elegant framework to describe safety and liveness properties [9, 22] of re-
active systems. Different dialects of temporal logic can be distinguished according to
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the properties assumed of the underlying model of time (e.g., discrete or dense) and
to the connectives that can be used to refer to different moments in time (e.g., future
vs. past references). For computer science applications, the fundamental distinction
has been between linear-time and branching-time logics. In the linear-time view, a
system is identified with the set of its executions, modeled as infinite sequences of
states, whereas the branching-time view also considers the branching structure of a
system. Linear-time temporal logics, including TLA, suffice to formulate correctness
properties that hold of all the runs of a system, whereas branching-time temporal
logics can also express possibility properties such as the existence of a path, from
every reachable state, to a “reset” state. The discussion of the relative merits and
deficiencies of these two kinds of temporal logics is beyond the scope of this paper,
but see, e.g., [36] for a recent contribution to this subject, with many references to
earlier papers.

Despite initial enthusiasm about the elegance of temporal logics, attempts to
actually write complete system specifications in terms of their temporal logic prop-
erties revealed that not even a component as simple as a FIFO queue could be
unambiguously specified [33]. This observation has led many researchers to specify
reactive systems via some form of state machines while retaining temporal logic as a
high-level language to describe the properties expected of such systems. Finite-state
models are now routinely verified using model checking techniques [12], which have
matured into debugging tools for industrially relevant developments.

Another weakness of standard temporal logic manifests itself when one attempts
to compare two specifications of the same system, written at different levels of
abstraction. Specifically, atomic system actions are usually described via a “next-
state” operator, but the “grain of atomicity” typically changes during refinement,
complicating comparisons between specifications. For example, we might want to
refine the specification of the FIFO queue of figure 1(b) such that the operation
of appending an element to a queue is described as a sequence of more elementary
assignments.

TLA addresses these problems in the following ways: “internal” specifications
are written by defining their initial conditions and next-state relation, resembling
the description of a state machine, and are augmented by liveness and fairness con-
ditions. Abstractness in the sense of information hiding is ensured by quantification
over state variables. The refinement problem is solved by systematically allowing for
stuttering steps that do not change the values of the state variables of interest; an
implementation is allowed to refine such high-level stuttering into lower-level state
changes. Similar ideas can be found in Back’s refinement calculus [10] and in more
recent versions of Abrial’s B method [8]. These formalisms require side conditions
to prevent infinite stuttering, expressed in terms of well-founded orderings. Tempo-
ral logic can state such requirements more abstractly in terms of high-level fairness
conditions that must be preserved by a refinement.

Based on these concepts, TLA provides a unified logical language to express
system specifications and their properties. A single set of logical rules is used for
system verification and for proving refinement.
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2.2 Transition formulas

The language of TLA is two-tiered: the base tier contains formulas that describe
states and state transitions, whereas the top tier consists of temporal formulas that
are evaluated over infinite sequences of states. In this section, we define the syntax
and semantics of transition formulas, whereas the following sections will consider
temporal formulas. Because transition formulas are just ordinary (untyped, first-
order) predicate logic, this section can be quite brief.

Assume a given signature of first-order predicate logic, consisting of:

• at most denumerable sets LF and LP of function and predicate symbols, each
symbol equipped with its arity, and

• a denumerable set V of variables, partitioned into denumerable sets VF and VR

of flexible and rigid variables.

These sets should be disjoint from one another; moreover, no variable in V should
be of the form v ′. By VF ′ , we denote the set {v ′ | v ∈ VF} of primed flexible
variables, and by VE , the union V ∪ VF ′ of primed and unprimed variable symbols.

Transition functions and transition predicates (also called actions) are terms and
formulas built from the symbols in LF and LP , and from the variables in VE . For
example, if f is a ternary function symbol, p is a unary predicate symbol, x ∈ VR,
and v ∈ VF , then the term e defined as f (v , x , v ′) is a transition function, and the
formula C defined as ∃ v ′ : p(f (v , x , v ′))∧¬(v ′ = x ) is an action. We omit a formal
inductive definition of the syntax of transition functions and formulas. Collectively,
we use the term transition formula to refer to transition functions and predicates.

The semantics of transition formulas is also unsurprising. It is based on a first-
order interpretation, which defines a universe of values and interprets each symbol
in LF by a function and each symbol in LP by a relation of appropriate arities.
In preparation for the semantics of temporal formulas, we distinguish between the
valuations of flexible and rigid variables. A state is a mapping of the flexible variables
in VF to values of the universe. Given two states s and t and a valuation ξ of the
rigid variables in VR, we can define the valuation αs,t ,ξ of the variables in VE as the
mapping such that αs,t ,ξ(x ) = ξ(x ) for x ∈ VR, αs,t ,ξ(v) = s(v) for v ∈ VF , and
αs,t ,ξ(v

′) = t(v) for v ′ ∈ VF ′ . The semantics of a transition function or transition

formula E , written JE Kξ
s,t , is then simply the standard predicate logic semantics of

E with respect to the extended valuation αs,t ,ξ.

We say that a transition predicate A is valid for the interpretation iff JAKξ
s,t is

true for all states s , t and all valuations ξ. It is satisfiable iff JAKξ
s,t is true for some

s , t , and ξ. Similarly, A is valid (satisfiable) for a class C of interpretations iff it is
valid for all (satisfiable for some) interpretations in C.

Finally, the notions of free and bound variables in a transition formula are
defined as usual, as is the notion of substitution of a transition function a for a
variable v , written E [a/v ]. We assume that capture of free variables in a substitution
is avoided by an implicit renaming of bound variables. For example, the set of free
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variables of the transition function e shown above is {x , v , v ′}, and v ′ is a bound
variable of the action C . We emphasize that at the level of transition formulas, we
consider v and v ′ to be distinct, unrelated variables.

State formulas are transition formulas that do not contain free primed flexible
variables. For example, the action C above is actually a state predicate. Because
the semantics of state formulas only depends on a single state, we simply write JPKξ

s

when P is a state formula. Constant formulas are even more restrictive in that they
may contain free occurrences only of rigid variables; consequently, their semantics
depends only on the valuation ξ.

TLA introduces some specific abbreviations at the level of transition formulas. If
E is a state formula then E ′ is the transition formula obtained from E by replacing
each free occurrence of a flexible variable v in E with its primed counterpart v ′

(where bound variables are renamed as necessary). For example, since C is a state
formula, we may build the formula C ′ by substituting v ′ for v . Since v ′ is bound in
C , this results in the formula ∃ y : p(f (v ′, x , y)) ∧ ¬(y = x ), up to renaming of the
bound variable.

For an action A, the state formula Enabled A is obtained by existential quan-
tification over all primed flexible variables that occur free in A. Thus, JEnabled AKξ

s

holds if JAKξ
s,t holds for some state t , that is, if action A may occur in state s . For

actions A and B , the action A · B is defined as ∃ z : A[z/v ′] ∧ B [z/v ] where v is a
list of all flexible variables v i such that v i occurs free in B or v ′

i occurs free in A,
and z is a corresponding list of fresh variables. It follows that JA · BKξ

s,t holds iff

both JAKξ
s,u and JBKξ

u,t hold for some state u.

Because these abbreviations are defined in terms of quantification and substitu-
tion, their interplay can be quite delicate. For example, Enabled P is by definition
just P for any state predicate P , and therefore (Enabled P)′ equals P ′. On the
other hand, Enabled (P ′) is a constant formula—if P does not contain any rigid
variables then Enabled (P ′) is valid iff P is satisfiable.

For an action A and a state function t we write [A]t to denote A ∨ t ′ = t , and
〈A〉t for A ∧ ¬(t ′ = t). Therefore, [A]t requires A to hold only if t changes value
during a transition, whereas the dual formula 〈A〉t strengthens A in requiring that
t changes value while A holds true.

2.3 Temporal formulas

We now turn to the temporal tier of TLA. Because it is less familiar that first-order
predicate logic and because we wish to give precise definitions, we devote much more
space to its presentation. However, the temporal formulas that one actually writes
in TLA+ specifications usually follow a standard idiom, and more than 95% of a
typical specification consist of definitions at the transition level.

The (temporal) formulas of TLA are inductively defined as follows:

• Every state formula is a formula.
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• Boolean combinations (connectives including ¬, ∧, ∨, ⇒, and ≡) of formulas
are formulas.

• If F is a formula then so is �F (“always F”).

• If A is an action and t is a state function then �[A]t (“always square A sub t”)
is a formula.

• If F is a formula and x is a rigid variable then ∃ x : F is a formula.

• If F is a formula and v is a flexible variable then ∃∃∃∃∃∃ v : F is a formula.

In particular, an action A by itself is not a temporal formula, not even in the
form [A]t . Actions can occur only in subformulas �[A]t .

To determine free and bound variables at the temporal level, we do not dis-
tinguish between primed and unprimed occurrences of flexible variables, and the
quantifier ∃∃∃∃∃∃ binds both kinds of occurrences. More formally, the set of free vari-
ables of a temporal formula is a subset of VF ∪VR. The free occurrences of variables
in a state formula P , considered as a temporal formula, are precisely the free occur-
rences in P , considered as a transition formula. However, variable v ∈ VF has a free
occurrence in �[A]t iff either v or v ′ has a free occurence in A or in t . Similarly,
substitution F [e/v ] of a state function e for a flexible variable v substitutes both
e for v and e ′ for v ′ in the action subformulas of F , again after renaming bound
variables as necessary. For example, substitution of the state function h(v), where
h ∈ LF and v ∈ VF , for w in the temporal formula

∃∃∃∃∃∃ v : p(v ,w) ∧�[q(v , f (w , v ′),w ′)]g(v ,w)

results in the formula (up to renaming of the bound variable)

∃∃∃∃∃∃ u : p(u, h(v)) ∧�[q(u, f (h(v), u ′), h(v ′))]g(u,h(v))

Because state formulas do not contain free occurrences of primed flexible variables,
the definitions of substitutions for transition formulas and for temporal formulas
agree on state formulas. The substitution of a (proper) transition function for a
variable is not allowed as it could result in an expression that is not a well-formed
TLA formula.

The semantics of temporal formulas is defined in terms of behaviors, which are
infinite sequences of states, and of valuations of the rigid variables. For a behavior
σ = s0s1 . . ., we write σi to refer to state s i , and σ|i to denote the suffix s is i+1 . . ..
The following inductive definition assigns a truth value JF Kξ

σ ∈ {t, f} to every for-
mula F :

• JPKξ
σ = JPKξ

σ0
: state formulas are evaluated at the initial state of the behavior.

• The semantics of Boolean operators is the usual one.

• J�F Kξ
σ = t iff JF Kξ

σ|i = t for all i ∈ N: this is the usual clause from linear-time
temporal logic.
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• J�[A]tKξ
σ = t iff for all i ∈ N, JtKξ

σi
= JtKξ

σi+1
or JAKξ

σi ,σi+1
= t: such a formula

holds iff every state transition in σ that does not leave t unchanged satisfies A.

• J∃ x : F Kξ
σ = t iff JF Kη

σ = t for some valuation η such that η(y) = ξ(y) for all
y ∈ VR \ {x}.

• The semantics of formulas ∃∃∃∃∃∃ v : F will be defined in section 2.4 below.

Abbreviations for temporal formulas include the universal quantifiers ∀ and
∀∀∀∀∀∀ over rigid and flexible variables. The formula ♦F (“eventually F”), defined as
¬�¬F , asserts that F holds of some suffix of the behavior; similarly, ♦〈A〉t (“even-
tually angle A sub t”) is defined as ¬�[¬A]t and asserts that some transition satisfies
A and changes the value of t . We write F  G (“F leads to G”) for the formula
�(F ⇒ ♦G), which asserts that every occurrence of F will eventually be followed
by an occurrence of G . Combinations of the “always” and “eventually” operators
express “infinitely often” (�♦) and “almost always” (♦�). Observe that a formula
can be both infinitely often true and infinitely often false, thus “almost always” is
strictly stronger than “infinitely often”. These combinations are particularly impor-
tant as the building blocks to formulate fairness conditions. In particular, weak and
strong fairness for an action 〈A〉t are defined as

WFt(A) ≡ (�♦¬Enabled 〈A〉t) ∨�♦〈A〉t
SFt(A) ≡ (♦�¬Enabled 〈A〉t) ∨�♦〈A〉t

Weak fairness stipulates that an action 〈A〉t occurs infinitely often during a
behavior if it is almost always enabled; strong fairness even requires that the action
must happen infinitely often if it is infinitely often (but not necessarily persistently)
enabled.

2.4 Stuttering invariance and quantification

Formulas �[A]t allow for “stuttering”: besides state transitions that satisfy A, they
also allow any transitions that do not change the state function t . In particular,
duplications of states can not be observed by formulas of this form. Stuttering
invariance is important in connection with refinement and composition [22].

To formalize this notion, for a set V of flexible variables we define two states s
and t to be V-equivalent, written s =V t , iff s(v) = t(v) for all v ∈ V . We define V-
stuttering equivalence, written ≈V , as the smallest equivalence relation on behaviors
that contains ρ ◦ 〈s〉 ◦ σ and ρ ◦ 〈t , u〉 ◦ σ, for any finite sequence of states ρ, infinite
sequence of states σ, and V-equivalent states s =V t =V u. Intuitively, V-stuttering
equivalence allows for duplication and deletion of finite repetitions of V-equivalent
states. In particular, the relation ≈VF

, which we also write as ≈, identifies two
behaviors that differ by duplications or deletions of identical states.

The fundamental theorem asserting that TLA is not expressive enough to dis-
tinguish stuttering-equivalent behaviors can now be formally stated as follows:
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Theorem 1 (stuttering invariance). Assume that F is a TLA formula whose free
flexible variables are among V, that σ ≈V τ are V-stuttering equivalent behaviors,
and that ξ is a valuation. Then JF Kξ

σ = JF Kξ
τ .

For TLA formulas without quantification over flexible variables, it is not hard
to prove theorem 1 from the semantic clauses of section 2.3 by induction on the
structure of formulas [23, 5]. On the other hand, quantification over flexible variables
requires some attention: the “obvious” semantic clause for formulas ∃∃∃∃∃∃ v : F would
have J∃∃∃∃∃∃ v : F Kξ

σ = t iff JF Kξ
τ = t for some behavior τ whose states τ i agree with

the corresponding states σi on all variables except for v . This definition, however,
would not preserve stuttering invariance. For example, consider the formula

F
∆
= v = c ∧ w = c ∧ ♦(w 6= c) ∧�[v 6= c]w

-σ

v
w

c
c

d
c

d
d

· · ·
· · ·

that requires that both variables v and w initially equal the constant c, that eventu-
ally, w is different from c, and that v must be different from c whenever w changes
value. Any behavior σ that satisfies F must therefore contain two distinct transi-
tions, the first of which changes v from c to some other value (but preserving the
value of w), while the second transition changes w , as indicated in the picture. In
particular, σ1(w) must equal c, hence the above definition of quantification implies
that τ 1(w) must equal c, for any behavior τ satisfying the formula ∃∃∃∃∃∃ v : F . How-
ever, the behavior τ obtained from σ by removing the second state (where v equals d
but w equals c) is {w}-stuttering equivalent to σ. Because w is the only free flexible
variable of ∃∃∃∃∃∃ v : F , theorem 1 asserts that τ should satisfy ∃∃∃∃∃∃ v : F , although τ 1(w)
is different from c.

In other words, the definition of quantification over flexible variables must allow
for the removal of transitions that modify only the bound variables. This observation
motivates the following semantic clause for quantified formulas: for a flexible variable
v , we say that two behaviors σ and τ are equal up to v iff σi and τ i agree on all
variables in VF \{v}, for all i ∈ N. We say that σ and τ are similar up to v , written
σ 'v τ iff there exist behaviors σ′ and τ ′ such that

• σ and σ′ are stuttering equivalent (σ ≈ σ′),

• σ′ and τ ′ are equal up to v , and

• τ and τ ′ are again stuttering equivalent (τ ≈ τ ′).

Now, we define J∃∃∃∃∃∃ v : F Kξ
σ = t iff JF Kξ

τ = t holds for some behavior τ similar
to σ up to v . The definition of 'v explicitly allows for stuttering, and therefore
theorem 1 holds true for all TLA formulas.

2.5 Properties, refinement, and composition

As we have seen in the example of the FIFO queue, TLA uses the same formal-
ism of temporal logic to represent system specifications and properties. System
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specifications are usually written in the form

∃∃∃∃∃∃ x : Init ∧�[Next ]v ∧ L

where v is the list of all relevant state variables, x is the list of internal (hidden)
variables, Init is a state predicate representing the initial condition, Next is an ac-
tion that describes the next-state relation, usually written as a disjunction of more
elementary actions, and L is a conjunction of formulas WFv(A) or SFv(A) asserting
fairness assumptions of individual disjuncts of Next . However, other forms of spec-
ifications are possible and can occasionally be useful. Asserting that a property F
holds of a specification S amounts to saying that every behavior that satisfies S must
also satisfy F ; in other words, it asserts the validity of the implication S ⇒ F . For
example, the theorem asserted in module SyncQueueInternal states three essential
properties of the FIFO queue.

Unlike most other temporal logics, TLA is intended to support stepwise system
development by refinement of specifications [10]. The basic idea of refinement con-
sists in successively adding implementation detail while preserving the properties
established at an abstract level. In a refinement-based approach to system devel-
opment, one proceeds by writing successive models, each of which introduces some
additional detail while preserving the essential properties of the preceding model.
Fundamental properties of a system can thus be established at high levels of abstrac-
tion, errors can be detected in early phases, and the complexity of formal assurance
is spread over the entire development process. A refinement C preserves all TLA
properties established of an abstract specification A if and only if for every formula
F , if A ⇒ F is valid, then so is C ⇒ F . This condition is in turn equivalent to re-
quiring the validity of C ⇒ A. Because C will contain extra variables to represent
the lower-level detail, and because these variables will change in transitions that
have no counterpart at the abstract level, stuttering invariance of TLA formulas is
essential to make validity of implication a reasonable definition of refinement.

Stuttering invariance is also essential for composition to be representable as
conjunction [16]. In fact, if A and B are TLA specifications of two components, then
A ∧ B describes those behaviors that satisfy both components’ initial conditions,
that allow actions of either process to occur, synchronizing on common variables
(which represent interfaces between the components), and that satisfy all relevant
liveness properties. In particular, stuttering invariance ensures that each component
may perform local actions without interfering with the specification of the other
component.

As a test of these ideas, we might want to convince ourselves that two FIFO
queues in a row again implement a FIFO queue. Let us assume that the two queues
are connected by a channel mid , then the above principles seem to imply that the
formula

Fifo[mid/out ] ∧ Fifo[mid/in] ⇒ Fifo

is valid. Unfortunately, this is not true, for the following reason: formula Fifo implies
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that the in and out channels never change simultaneously, whereas the conjunction
on the left-hand side allows such changes (if the left-hand queue performs an Enq
action, while the right-hand queue performs a Deq). This technical problem can be
attributed to a design decision taken in the specification of the FIFO queue that does
not allow simultaneous changes to its input and output interfaces, a specification
style known as “interleaving specifications”. In fact, the argument merely shows
that the composition of two non-interleaving queues does not implement a non-
interleaving queue. Choosing an interleaving or a non-interleaving style is an artifact
of the model that represents the actual system: interleaving specifications are usually
easier to write and understand. The problem disappears if we explicitly add a
non-interleaving assumption for the composition, as shown by the validity of the
implication

Fifo[mid/out ] ∧ Fifo[mid/in] ∧�[in ′ = in ∨ out ′ = out ]in,out ⇒ Fifo (1)

whose proof will be considered in section 3.5.

2.6 Variations and extensions

We discuss some of the choices that we have made in the presentation of TLA, as
well as possible extensions.

Transition formulas and priming. Our presentation of TLA is based on stan-
dard first-order logic, to the extent possible. In particular, we have defined transition
formulas as formulas of ordinary predicate logic over a large set VE of variables where
v and v ′ are unrelated. An alternative presentation would consider ′ as an operator,
resembling the next-time modality of temporal logic. In fact, this appears to be the
presentation preferred by Lamport [25]. The semantics of temporal formulas is unaf-
fected by the choice of presentation, and the style adopted in this paper corresponds
well to the verification rules of TLA, explored in section 3.

Compositional verification. We have argued in section 2.5 that composition is
represented in TLA as conjunction. Because components can rarely be expected
to operate correctly in arbitrary environments, their specifications usually include
some assumptions about the environment. An open system specification is one that
does not constrain its environment; it asserts that the component will function cor-
rectly provided that the environment behaves as expected. One way to write such
specifications is in the form of implications E ⇒ M where E describes the environ-
ment assumptions and M , the component specification. However, it turns out that
often a stronger form of specifications is desirable that requires the component to
adhere to its description M for at least as long as the environment has not broken its
obligation E . In particular, when systems are built from “open” component speci-
fications, this form, written E +−. M , allows for a strong composition rule that can
discharge mutual assumptions between components [3, 13]. It can be shown that
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the operator +−. is actually definable in TLA, and that the resulting composition
rule can be justified in terms of an abstract logic of specifications, supplemented by
principles specific to TLA [4, 6].

TLA*. TLA defines distinct tiers of transition formulas and temporal formulas,
where transition formulas must be guarded by “brackets” to ensure stuttering invari-
ance. Although the separation between the two tiers is natural when writing system
specifications, it is not a prerequisite to obtaining stuttering invariance. In [30],
I have defined the logic TLA* whose syntax is defined by mutual induction on so-
called pure and impure formulas. The former correspond to the temporal formulas of
TLA, whereas the latter, generalizing transition formulas, are formed from Boolean
combinations of F and dG , where F and G are pure formulas and d is the next-time
modality of temporal logic. For example, the TLA* formula

�
[
A ⇒ d♦〈B〉u]

t

requires that every 〈A〉t action must eventually be followed by 〈B〉u . Assuming
appropriate syntactic conventions, TLA* is a generalization of TLA because every
TLA formula is also a TLA* formula, with the same semantics. On the other hand,
it can be shown that every TLA* formula can be expressed in TLA using some extra
quantifiers. For example, the formula above is equivalent to the TLA formula2

∃∃∃∃∃∃ v : ∧ �((v = c) ≡ ♦〈B〉u)
∧ �[A ⇒ v ′ = c]t

where c is a constant and v is a fresh flexible variable. Because of its richer syntax,
TLA* can be axiomatized in a rather straightforward manner. For example,

�[F ⇒ dF ]V ⇒ (F ⇒ �F )

where F is a temporal formula and V is a tuple containing all flexible variables
with free occurrences in F , is a TLA* representation of the usual induction axiom
of temporal logic; this is a TLA formula only if F is in fact a state formula.

Binary temporal operators. Unlike standard linear-time temporal logic [28],
TLA does not include binary operators such as until, because they are not necessary
for writing system specifications, and because they can be confusing, especially when
nested. These operators are, however, definable in TLA using quantification over
flexible variables. For example, suppose that P and Q are state predicates whose
free variables are among w , that v is a flexible variable that does not appear in w ,

2 This definition assumes that the universe contains at least two distinct values; one-
element universes are not very interesting.
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and that c is a constant. Then P until Q can be defined as the formula

∃∃∃∃∃∃ v : ∧ (v = c) ≡ Q
∧ �[(v 6= c ⇒ P) ∧ (v ′ = c ≡ (v = c ∨Q ′))]〈v ,w〉
∧ ♦Q

The idea is to use the auxiliary variable v to remember whether Q has already
been true. As long as Q has been false, P is required to hold. For arbitrary TLA
formulas F and G , the formula F until G can be defined along the same lines,
using a technique as shown for the translation of TLA* formulas above.

3 TLA PROOF RULES

As TLA formulas are used to describe systems as well as their properties, deductive
system verification can be based on logical axioms and rules of TLA. More precisely,
a system described by formula Spec has property Prop if and only if every behavior
that satisfies Spec also satisfies Prop, that is, iff the implication Spec ⇒ Prop is valid
over the class of interpretations where the function and predicate symbols have the
intended meaning. System verification, in principle, therefore requires reasoning
about sets of behaviors. The TLA proof rules are designed to reduce this temporal
reasoning, as far as possible, to the proof of verification conditions expressed in the
underlying predicate logic, a strategy that is commonly referred to as assertional
reasoning. In this section, we state some typical rules and illustrate their use; more
information can be found elsewhere [23].

3.1 Invariants

Invariants characterize the set of states that can be reached during system execution;
they constitute the basic safety properties of interest and are also the starting point
for almost any verification attempt. In TLA, an invariant is expressed by a formula
of the form �I where I is a state formula.

A basic rule for proving invariants is given by

I ∧ [N ]t ⇒ I ′

(INV1)
I ∧�[N ]t ⇒ �I

This rule asserts that for every interpretation for which the antecedent I ∧ [N ]t ⇒ I ′

is a valid transition formula, the consequent I ∧ �[N ]t ⇒ �I is a valid temporal
formula. The antecedent states that every possible transition (stuttering or not)
preserves I ; thus, if I holds initially it is guaranteed to hold forever. Formally, the
correctness of rule (INV1) is easily established by induction on behaviors. Because
the antecedent is a transition formula, its proof relies on standard axioms and proof
rules of predicate logic, augmented by “data” axioms that characterize the intended
interpretations.
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For example, we can use (INV1) to prove the invariant �(q ∈ Seq(Message)) of
the FIFO queue specified in module SyncQueueInternal of figure 1(b). We have to
prove

FifoI ⇒ �(q ∈ Seq(Message)) (2)

which, by rule (INV1), the definition of formula FifoI , and propositional logic can
be reduced to proving

Init ⇒ q ∈ Seq(Message) (3)

q ∈ Seq(Message) ∧ [Next ]vars ⇒ q ′ ∈ Seq(Message) (4)

Because the empty sequence is certainly a finite sequence of messages, (3) follows
from the definition of Init and appropriate data axioms. Similarly, the proof of (4)
reduces to proving preservation of the invariant under stuttering, Deq , and Enq(m)
actions, for any m ∈ Message, all of which are again straightforward.

3.2 Step simulation

The following rule can be used to prove “action invariants”; it relies on a previously
proven state invariant I :

I ∧ I ′ ∧ [M ]t ⇒ [N ]u
(TLA2)

�I ∧�[M ]t ⇒ �[N ]u

In particular, it follows from (TLA2) that the next-state relation can be strengthened
by an invariant:

�I ∧�[M ]t ⇒ �[M ∧ I ∧ I ′]t

Note that the converse of this implication is not valid: the right-hand side holds of
any behavior where t never changes, independently of the value of I .

We may use (TLA2) to prove that the FIFO queue never dequeues the same
value twice in a row:

FifoI ⇒ �[Deq ⇒ out ′ 6= out ]vars (5)

This proof requires an invariant that in particular asserts that no consecutive ele-
ments of the internal queue are identical:

Inv
∆
= let oq

∆
= 〈out〉 ◦ q

in ∧ in = oq [Len(oq)]
∧ ∀ i ∈ 1..Len(oq)− 1 : oq [i ] 6= oq [i + 1]

We have used some TLA+ syntax in formulating Inv : the local abbreviation oq
denotes the sequence obtained by prefixing the current value of the output channel
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out to the internal queue q ; also, TLA+ represents a sequence s as a function sucht
that its elements can be accessed as s [1], . . . , s [Len(s)]. Formula Inv asserts that the
current value of the input channel equals the last element of the sequence oq , and
that no two consecutive elements of oq are identical. The proof of FifoI ⇒ �Inv
follows the pattern used in proving invariant (2) above, using rule (INV1).

For the proof of (5), rule (TLA2) requires that we show the validity of

Inv ∧ Inv ′ ∧ [Next ]vars ⇒ [Deq ⇒ out ′ 6= out ]vars (6)

The proof of (6) reduces to the three cases of a stuttering transition, an Enq(m)
action, and a Deq action. Only the last case is non-trivial. Its proof relies on the
definition of Deq , which implies that q is non-empty and that out ′ = Head(q). In
particular, the sequence oq contains at least two elements, and therefore Inv implies
that oq [1], which is just out , is different from oq [2], which is Head(q). This suffices
to prove out ′ 6= out .

3.3 Liveness properties

Liveness properties, intuitively, assert that something good must eventually hap-
pen [9, 21]. TLA provides rules to deduce elementary liveness properties from the
fairness properties assumed of a specification; more complex properties can then be
inferred with the help of well-founded orderings.

The following rule can be used to prove a leads-to formula from a weak fairness
assumption; a similar rule exists for strong fairness.

I ∧ I ′ ∧ P ∧ [N ]t ⇒ P ′ ∨Q ′

I ∧ I ′ ∧ P ∧ 〈N ∧ A〉t ⇒ Q ′

I ∧ P ⇒ Enabled 〈A〉t
(WF1)

�I ∧�[N ]t ∧WFt(A) ⇒ (P  Q)

In this rule, P and Q are state predicates, I is again an invariant, [N ]t represents
the next-state relation, and 〈A〉t is a “helpful action” [27] for which weak fairness
is assumed. Again, all three premises of (WF1) are transition formulas. To see why
the rule is correct, assume that σ is a behavior satisfying �I ∧�[N ]t ∧WFt(A), and
that P holds of state σi . We have to show that Q holds of some σj with j ≥ i . By
the first premise, any successor of a state satisfying P has to satisfy P or Q , so P
must hold for as long as Q has not been true. The third premise ensures that in all of
these states, action 〈A〉t is enabled, and so the assumption of weak fairness ensures
that eventually 〈A〉t occurs, unless Q has become true before, in which case we are
done. Finally, by the second premise, any 〈A〉t -successor (which, by assumption, is
in fact an 〈N ∧ A〉t -successor) of a state satisfying P must satisfy Q , which proves
the claim.

For our running example, we can use rule (WF1) to prove that every message
stored in the queue will eventually move closer to the head of the queue or even to
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the output channel. Formally, let the state predicate at(k , x ) be defined by

at(k , x )
∆
= k ∈ 1..Len(q) ∧ q [k ] = x

We will use (WF1) to prove

FifoI ⇒
(
at(k , x ) (out = x ∨ at(k − 1, x ))

)
(7)

where k and x are rigid variables. The following proof outline illustrates the appli-
cation of rule (WF1), the lower-level steps relying on data axioms are omitted.

1. at(k , x ) ∧ [Next ]vars ⇒ at(k , x )′ ∨ out ′ = x ∨ at(k − 1, x )′

1.1. at(k , x ) ∧m ∈ Message ∧ Enq(m) ⇒ at(k , x )′

1.2. at(k , x ) ∧ Deq ∧ k = 1 ⇒ out ′ = x
1.3. at(k , x ) ∧ Deq ∧ k > 1 ⇒ at(k − 1, x )′

1.4. at(k , x ) ∧ vars ′ = vars ⇒ at(k , x )′

1.5. Q.E.D.
From steps 1.1–1.4 by the definitions of Next and at(k , x ).

2. at(k , x ) ∧ 〈Deq ∧ Next〉vars ⇒ out ′ = x ∨ at(k − 1, x )′

Follows from steps 1.2 and 1.3 above.
3. at(k , x ) ⇒ Enabled 〈Deq〉vars

For any k , at(k , x ) implies that q 6= 〈〉 and thus the enabledness condition.

However, rule (WF1) cannot be used to prove the stronger property that every
input to the queue will eventually be dequeued,

FifoI ⇒ ∀m ∈ Message : in = m  out = m (8)

because there is no single “helpful action”: the number of Deq actions necessary
to produce the input element on the output channel depends on the length of the
queue. Intuitively, the argument used to establish property (7) must be iterated.
The following rule formalizes this idea as an induction over a well-founded relation
(D ,�): a binary relation such that there does not exist an infinite descending chain
d1 � d2 � . . . of elements d i ∈ D .

(D ,�) is well−founded
F ⇒ ∀ d ∈ D :

(
G  (H ∨ ∃ e ∈ D : d � e ∧G [e/d ])

)
(LATTICE)

F ⇒ ∀ d ∈ D : (G  H )

In this rule, d and e are rigid variables such that d does not occur in H and e does
not occur in G . For convenience, we have stated rule (LATTICE) in a language of set
theory where, in particular, ∀ x ∈ S : F abbreviates the formula ∀ x : x ∈ S ⇒ F .

Unlike the premises of the rules considered so far, the second hypothesis of rule
(LATTICE) is itself a temporal formula that requires that every occurrence of G ,
for any value d ∈ D , be followed either by an occurrence of H , or again by some
G , for some smaller value e. Because the first hypothesis ensures that there cannot
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be an infinite descending chain of values in D , eventually H must become true.
In principle, the hypothesis of well-foundedness can itself be expressed in TLA by
asserting the validity of the formula

∧ ∀ d ∈ D : ¬(d � d)
∧ ∀∀∀∀∀∀ v : �(v ∈ D) ∧�[v � v ′]v ⇒ ♦�[false]v

whose first conjunct expresses the irreflexivity of � and whose second conjunct
asserts that any sequence of values in D that can only change by decreasing with
respect to � must eventually become stationary. In fact, if this formula is valid over
a given interpretation then � is interpreted by a well-founded relation. In system
verification, well-foundedness is however usually considered as a “data axiom”.

Choosing (Nat , >), the set of natural numbers with the standard “greater-than”
relation as the well-founded domain, the proof of property (8) follows from property
(7) and the invariant Inv defined in section 3.2 using rule (LATTICE).

Lamport [23] lists further (derived) rules for liveness properties, including intro-
duction rules for proving formulas WFt(A) and SFt(A).

3.4 Simple temporal logic

(STL1)
F

�F
(STL4) �(F ⇒ G) ⇒ (�F ⇒ �G)

(STL2) �F ⇒ F (STL5) �(F ∧G) ≡ (�F ∧�G)

(STL3) ��F ≡ �F (STL6) ♦�(F ∧G) ≡ (♦�F ∧ ♦�G)

Fig. 2. Simple temporal logic.

The proof rules considered so far support the derivation of typical correctness
properties of systems. In addition, TLA satisfies standard axioms and rules of linear-
time temporal logic that are useful when preparing the application of verification
rules. Figure 2 contains the axioms and rules of “simple temporal logic”, adapted
from Lamport [23]. It can be shown that this is just a non-standard presentation
of the modal logic S4.2 [17], implying that these laws by themselves characterize a
modal accessibility relation for � that is reflexive, transitive, and locally convex (or
confluent). The last condition asserts that for any state s and states t , u that are
both accessible from s there is a state v that is accessible from t and u.
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3.5 Quantifier rules

The elementary rules for quantification (over rigid or flexible variables) are those
familiar from first-order logic:

F [c/x ] ⇒ ∃ x : F (∃ I)
F ⇒ G

(∃E)
(∃ x : F ) ⇒ G

F [t/v ] ⇒ ∃∃∃∃∃∃ v : F (∃∃∃∃∃∃ I)
F ⇒ G

(∃∃∃∃∃∃E)
(∃∃∃∃∃∃ v : F ) ⇒ G

In these rules, x is a rigid and v is a flexible variable. The elimination rules (∃E)
and (∃∃∃∃∃∃E) require the usual proviso that the bound variable should not be free in
formula G . In the introduction rules, t is a state function, while c is a constant
function. Observe that if we allowed an arbitrary state function in rule (∃ I), we
could prove

∃ x : �(x = v) (9)

for any state variable v from the premise �(v = v), provable by (STL1). How-
ever, formula (9) asserts that v remains constant throughout a behavior, which can
obviously not be valid.

Since existential quantification over flexible variables corresponds to hiding of
state components, the rules (∃∃∃∃∃∃ I) and (∃∃∃∃∃∃E) play a fundamental role in proofs of
refinement for reactive systems. In this context, the “witness” t is often called a
refinement mapping [1]. For example, the concatenation of the two low-level queues
provides a suitable refinement mapping to prove the validity of formula (1), which
claimed that two FIFO queues in a row implement a FIFO queue, assuming non-
interleaving. Whereas these rules are standard, one should recall from section 2.2
that care has to be taken when substitutions are applied to formulas that are de-
fined in terms of quantification. In particular, the formulas WFt(A) and SFt(A)
contain the subformula Enabled 〈A〉t , and therefore, e.g., WFt(A)[e/v ] need not
be equivalent to the formula WFt [e/v ](A[e/v , e ′/v ′]), cf. also [23].

Unfortunately, refinement mappings need not always exist. For example, (∃∃∃∃∃∃ I)
cannot be used to prove the valid TLA formula (excluding one-element universes)

∃∃∃∃∃∃ v : �♦〈true〉v (10)

that asserts the existence of a flexible variable whose value changes infinitely often.
(Such a variable could serve as a trigger for some computations.) In fact, an attempt
to prove (10) by rule (∃∃∃∃∃∃ I) would require to exhibit a state function t whose value
is certain to change infinitely often in any behavior. However, it is easy to show by
induction on the syntax of state functions that for any t there exists a behavior such
that the value of t remains constant forever.
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An approach to solving this problem, advocated in [1], consists in adding aux-
iliary variables such as history and prophecy variables. Formally, this approach
consists in adding special introduction rules for auxiliary variables. The proof of
G ⇒ ∃∃∃∃∃∃ v : F is then reduced to first proving a formula of the form G ⇒ ∃∃∃∃∃∃ a : Gaux

using a rule for auxiliary variables, and then use the rules (∃∃∃∃∃∃E) and (∃∃∃∃∃∃ I) above to
prove G ∧Gaux ⇒ ∃∃∃∃∃∃ v : F .

4 FORMALIZED MATHEMATICS: THE ADDED VALUE OF TLA+

The definitions of the syntax and semantics of TLA in section 2 were generic in
terms of an underlying language of predicate logic and its interpretation. TLA+

instantiates this generic definition of TLA with a specific first-order theory, namely
Zermelo-Fränkel set theory with choice. This adoption of a standard interpretation
enables precise and unambiguous specifications of the “data structures” on which
specifications are based; we have seen in the example proofs in section 3 that rea-
soning about the data accounts for most of the steps that need to be proved during
system verification. TLA+ also provides facilities for structuring a specification as a
hierarchy of modules, for declaring parameters, and most importantly, for defining
operators. These facilities are essential for writing actual specifications and must
therefore be mastered by any user of TLA+. However, from the foundational point
of view adopted in this paper, they are just syntactic sugar. We will therefore con-
centrate on the set-theoretic foundations, referring the reader to Lamport’s book [25]
for a detailed presentation of the language of TLA+.

4.1 Elementary data structures: basic set theory

The signature of the predicate logic underlying TLA+ contains a single binary pred-
icate symbol ∈ and no function symbols.3 Terms and formulas at the transition
level are defined as indicated in section 2.2, with an extra term formation rule that
defines choose x : A to be a transition function, for any action A and variable
x .4 The occurrences of x in the term choose x : A are bound. To this first-order
language corresponds a set-theoretic interpretation: every TLA+ value is a set.
Moreover, ∈ is interpreted as set membership and the interpretation is equipped
with an (unspecified) choice function ε mapping every non-empty collection C of
values to some element c of C , and mapping the empty collection to an arbitrary
value. The interpretation of terms choose x : P is then defined as

Jchoose x : PKξ
s,t = ε({d | JPKαs,t,ξ[d/x ] = t})

3 Once again, our presentation deviates somewhat from Lamport [25] who prefers to
treat all subsequent constructs on an equal footing rather than distinguishing between
basic and derived operators.

4 Temporal formulas are defined as indicated in section 2.3; in particular, choose is
never applied to a temporal formula.
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This definition employs the choice function to return some element of the universe
satisfying P provided there is some such element. We should remark that the choice
function is applied to a collection that need not be an element of the universe: we
are here at the “meta level”, and in set-theoretic terminology, ε can be applied to
classes and not just to sets. Because ε is a function, it produces the same value
when applied to equal arguments. It follows that choice satisfies the laws

(∃ x : P) ≡ P [(choose x : P)/x ] (11)

(∀ x : (P ≡ Q)) ⇒ (choose x : P) = (choose x : Q) (12)

TLA+ defines many abbreviated connectives that we will freely use in the fol-
lowing. For example, ∃ x , y ∈ S : P abbreviates ∃ x : ∃ y : x ∈ S ∧ y ∈ S ∧P , and
similar notation is used with ∀ and choose . TLA+ also borrows some computer
science notation for conditionals if then else and local declarations, written
let in .

union union S ∆= choose M : ∀ x : (x ∈ M ≡ ∃T ∈ S : x ∈ T )
binary union S ∪ T ∆= union {S ,T}
subset S ⊆ T ∆= ∀ x : (x ∈ S ⇒ x ∈ T )
powerset subset S ∆= choose M : ∀ x : (x ∈ M ≡ x ⊆ S )
comprehension 1 {x ∈ S : P} ∆= choose M : ∀ x : (x ∈ M ≡ x ∈ S ∧ P)}
comprehension 2 {t : x ∈ S} ∆= choose M : ∀ y : (y ∈ M ≡ ∃ x ∈ S : y = t)

Table 1. Basic set-theoretic operators.

From membership and choice, one can build up the conventional language of
mathematics [26], and this is the foundation for the expressiveness of TLA+. Table 1
lists some of the basic set-theoretic constructs of TLA+; we write

{e1, . . . , en}
∆
= choose S : ∀ x : (x ∈ S ≡ x = e1 ∨ . . . ∨ x = en)

to denote set enumeration and assume the additional bound variables in the defining
expressions of table 1 to be chosen such that no variable clashes occur. The two
comprehension schemes act as binders for variable x , which must not have free
occurrences in S . These constructions make heavy use of the choice operator, and
some care has to be taken to justify such constructions in order to avoid paradoxes.
For example, the expression

choose S : ∀ x : (x ∈ S ≡ x /∈ x )

is a well-formed constant formula of TLA+, but the existence of a set S containing
precisely those sets that do not contain themselves would lead to the contradiction
that S ∈ S iff S /∈ S ; this is of course Russell’s paradox. Intuitively, S is “too big” to
be a set. More precisely, the universe of set theory does not contain collections that
are in bijection with the collection of all sets. Therefore, the above TLA+ expression
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denotes some value, but we do not know which one, the precise value depending on
the specific choice function supplied by the interpretation. Perhaps unexpectedly,
we can however infer from (12) that

(choose S : ∀ x : (x ∈ S ≡ x /∈ x )) = (choose x : x ∈ {})

because in both expressions, the choice function is applied to the empty collection.
Similarly, a generalized intersection operator dual to the union operator of table 1
cannot be sensibly defined, because the intersection of the empty set would have to
produce the set of all sets, which we know cannot exist.

The well-definedness of the constructions appearing in table 1 can be formally
justified using the axioms of Zermelo-Fränkel set theory [35], which provide the
deductive counterpart to the semantics underlying TLA+.

In a similar vein, because Message denotes a set and no set can contain all
values, the definition

NoMsg
∆
= choose x : x /∈ Message

that appears in figure 1(b) is sensible: NoMsg is certain to denote some value that
is not contained in (the interpretation of) Message.

4.2 More data structures

Some sets can conveniently be interpreted as functions. A traditional approach is
to construct functions via products and relations; this is the case in Z and B [7, 34].
TLA+ does not prescribe any concrete construction of functions. The set of functions
whose domain equals S and whose codomain is a subset of T is denoted by [S → T ],
the domain of a function f is denoted by domain f , and the application of function
f to an expression e is written as f [e]. The construct [x ∈ S 7→ e] denotes the
function with domain S that maps any x ∈ S to e; again, the variable x must not
occur in S and is bound by the function constructor. Therefore, any function f
obeys the law

f = [x ∈ domain f 7→ f [x ]] (13)

and this equation can in fact serve as a characteristic predicate for functional values.
TLA+ introduces a notation for overriding a function at a certain argument position
(a similar concept underlies Gurevich’s ASM notation [11]). Formally,

[f except ! [t ] = u]
∆
= [x ∈ domain f 7→ if x = t then u else f [x ]]

where x is a fresh variable.
Combining choice, sets, and function notation, one obtains an expressive lan-

guage for defining mathematical structures. For example, the standard TLA+ mod-
ule providing natural numbers defines them as an arbitrary set with constant zero
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and successor function satisfying the usual Peano axioms [25, p. 345], and Lamport
goes on to similarly define the integers and the real numbers, ensuring that the basic
arithmetic operations agree rather than having to overload the operation symbols.

Recursive definitions can be introduced in terms of choice, e.g.

factorial
∆
= choose f : f = [n ∈ Nat 7→ if n = 0 then 1 else n ∗ f [n − 1]]

which TLA+, using some syntactic sugar, allows to write even more concisely as

factorial [n ∈ Nat ]
∆
= if n = 0 then 1 else n ∗ factorial [n − 1]

Of course, as with any construction based on choice, this definition should be justified
by proving the existence of a unique function that satisfies the recursive equation.

Seq(S )
∆
= union {[1..n] → S : n ∈ Nat}

Len(s)
∆
= choose n ∈ Nat : domain s = 1..n

Head(s)
∆
= s [1]

Tail(s)
∆
= [i ∈ 1..Len(s)− 1 7→ s [i + 1]]

s ◦ t
∆
= [i ∈ 1..Len(s) + Len(t) 7→

if i ≤ Len(s) then s [i ] else t [i − Len(s)]]

Append(s , e)
∆
= s ◦ 〈e〉

Fig. 3. Finite sequences.

Tuples are represented in TLA+ as functions:

〈t1, . . . , tn〉
∆
= [i ∈ 1..n 7→ if i = 1 then t1 . . . else tn ]

where 1..n denotes the set {j ∈ Nat : 1 ≤ j ∧ j ≤ n} (and i is a “fresh” vari-
able), and selection of the i -th element is just function application. Records are
similarly represented as functions whose domains are finite sets of strings. The up-
date operation on functions can thus be applied to tuples and records as well. The
standard TLA+ module Sequences imported by the specification of the FIFO queue
in figure 1(b) represents finite sequences as tuples. The definitions of the standard
operations, some of which are shown in figure 3, is therefore quite simple. However,
this simplicity can sometimes be deceptive. For example, these definitions do not
indicate that the Head and Tail operations are “partial”. They should be validated
by proving the expected properties, such as

∀ s ∈ Seq(S ) : Len(s) ≥ 1 ⇒ s = 〈Head(s)〉 ◦ Tail(s)

5 CONCLUSIONS

The design of software systems requires a combination of ingenuity and careful
engineering. While there is no substitute for intuition, the correctness of a proposed
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solution can be checked by precise reasoning over a suitable model, and this is
the realm of logics and (formalized) mathematics. Any formalism should aid the
user in the difficult and important activity of writing and analysing formal models.
TLA+ builds on the experience of classical mathematics and adds just a thin layer of
temporal logic in order to describe executions as sets of traces. A distinctive feature
of TLA is its attention to refinement and composition, reflected in the concept of
stuttering invariance.

Whereas the expressiveness of TLA+ undoubtedly helps in writing concise, high-
level models of systems, one may wonder whether it lends itself as well to the analysis
of these models. For example, we have pointed out several times the need to prove
conditions of “well-definedness” related to the use of the choice operator. On the
other hand, the formal basis of TLA+ is the same one that underlies ordinary math-
ematics, namely Zermelo-Fränkel set theory, and there are well-known idioms, such
as primitive-recursive definitions, that ensure well-definedness. Similarly, there are
TLA idioms that control the delicate interplay between temporal operators, e.g. in
order to ensure that a specification is machine closed [2].

Reasoning about TLA+ specifications can be supported by proof assistants, and
in fact several encodings of TLA in the logical frameworks of different theorem
provers have been proposed [14, 18, 29], although no prover has yet been designed to
support full TLA+. Perhaps more surprisingly, there has been much recent activity
on developing a toolset based on the tlc model checker and simulator to aid in
validating and debugging TLA+ models [37], and this has found use in industrial
development projects. Obviously, model checking is possible only for a sublanguage
of TLA+, but interestingly, most real-world specifications are either written in this
sublanguage or can be translated into it using minor transformations. The modeling
language of tlc is still much more expressive that that of most other model checkers
and therefore enables users to write concise system specifications.
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