Computing and Informatics, Vol. 22, 2003, 1-2, V 2003-Oct-2

FOREWORD

Dines BIORNER

Department of Computer Science and Engineering
Institute of Informatics and Mathematical Modelling
The Technical University of Denmark

DK-2800 Kgs.Lyngby

Denmark

e-mail: db@imm. dtu.dk

www: http://www.imm.dtu.dk/"db

Before software can be designed, its requirements must be understood. And
before computing systems requirements can be seriously expressed, the application
domain must be reasonably well understood.

Aeronautics engineers, in the more serious parts of their work, rely on precise
models of aerodynamics. Aerospace engineers, likewise, rely on celestial mechanics.
Mechanical engineers rely on Newton’s laws. Electronics engineers rely on laws of
electricity, plasma physics, etc.

But, for some strange reason, software engineers hardly, if ever, refer to any
theories about the domains for which they program applications.

This lack of professionalism amongst software engineers cannot prevail. As
mathematically precise languages and proof systems for the formal specification —
and proofs of properties of models — of domains, requirements and software designs
evolve, as industrial-strength tools for creating and analysing such specifications for
seemingly large—scale applications emerge, and as legal responsibility for software
failures take hold, we shall see our field becoming more professional.

We shall see that trustworthy software (whose development needs several soft-
ware engineers) will be based on reasonably formally described domains — and that
theories will be researched and developed for such domain models. That software
will be based on reasonably formally described requirements, larger parts of which
will relate formally to the domain models. And that the ensuing software will be
likewise formally, first abstractly, later more concretely described. The abstract
software designs will be formally related to the requirements. Many design prop-
erties will be proved correct with respect to the requirements — in the context of
assumptions about the domain as expressed (already) in the domain models.



2 D.Bjgrner

This double issue of Computing and Informatics features seven! papers that de-
scribe corresponding formal specification languages: Aspects of their semantics and
logic. These languages, including those mentioned in the footnote, together with
their proof systems and tool sets, are of the kind that is today helping the field of
software engineering to become professional.

One can roughly “classify” the languages covered in this ussue and its subsequent
issues, in three ways: There are the model oriented specification languages (ASM,
B (eventB), RSL, VDM-SL, and Z), the property oriented languages (CafeOBJ, and
CASL), and the languages which specifically cater for temporal properties (DC and
TLA+).

But, as we see unfolding today, languages like the above need be used in conjunc-
tion with other formalisms in order to believably cover a full spectrum of attributes
of domains, requirements and software designs. Such “languages” as Petri Nets,
Statecharts, Live Sequence Charts, and even the diagrammatic facets of Entity Set
Relations (ER) (as for example presented in UML Class Diagrams) offer themselves.
Their virtues are often that they provide diagrammatic means of illustrating crucial
concepts. And, although: “A formula is worth a thousand pictures. A picture is
still worth a thousand words.” Intense and exciting research is today taking place
unifying the underlying theories of these specification paradigms (ie., in integrating
formal methods). Diagrammatic reasoning is likewise an emerging, exciting research
topic.

For now, enjoy the present papers. They provide, in some issues of Comput-
ing and Informatics, a significant insight into possibly the most important (textual)
specification languages.

I am most grateful to the many authors of the papers of this issue of Computing
and Informatics to have answered my solicitation so vigorously and professionally.
And I am very, very grateful to the many referees who have all worked very hard,
providing exceptionally thorough review reports. Their names will appear in a later
issue of this journal.

\w;b&kém,__.

Holte, October 2, 2003

1" A paper on the Duration Calculi (DC), authored by Michael Reichhardt Hansen, will be
published in a next issue of this journal. A paper on VDM-SL (The Vienna Development
Method Specification Language), authored by John Fitzgerald, will appear in a somewhat
later issue of Computing and Informatics.



