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Abstract.
B is a method for specifying, designing and coding software systems. It is

based on Zermelo-Fraenkel set theory with the axiom of choice, the concept of
generalized substitution and on structuring mechanisms (machine,refinement,
implementation). The concept of refinement is the key notion for developing B
models of (software) systems in an incremental way. B models are accompanied
by mathematical proofs that justify them. Proofs of B models convince the
user (designer or specifier) that the (software) system is effectively correct. We
provide a survey of the underlying logic of the B method and the semantic
concepts related to the B method; we detail the B development process partially
supported by the mechanical engine of the prover.

Keywords: Events, Actions, Systems, Refinement, Proof, Validation, Formal
Method.

1 INTRODUCTION

1.1 Overview of B

Classical B is a state-based method developed by Abrial for specifying, designing and cod-
ing software systems. It is based on Zermelo-Fraenkel set theory with the axiom of choice.
Sets are used for data modelling, “Generalised Substitutions” are used to describe state mod-
ifications, the refinement calculus is used to relate models at varying levels of abstraction,
and there are a number of structuring mechanisms (machine, refinement, implementation)
which are used in the organisation of a development. The first version of the B method is
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extensively described in The B-Book [2]. It is supported by the Atelier B tool [34] and by the
B ToolKit [49].
Central to the classical B approach is the idea of a software operation which will perform
according to a given specification if called within a given pre-condition. Subsequent to the
formulation of the classical approach, Abrial and others have developed a more general ap-
proach in which the notion of “event” is fundamental. An event has a firing condition (a
guard) as opposed to a pre-condition. It may fire when its guard is true. Event based mod-
els have proved useful in requirement analysis, modelling distributed systems and in the
discovery/design of both distributed and sequential programming algorithms.
After extensive experience with B, current work by Abrial is proposing the formulation of
a second version of the method[7]. This distills experience gained with the event based ap-
proach and provides a general framework for the development of “discrete systems”. Although
this widens the scope of the method, the mathematical foundations of both versions of the
method are the same.

1.2 Proof-based Development

Proof-based development methods [12, 2, 54] integrate formal proof techniques in the devel-
opment of software systems. The main idea is to start with a very abstract model of the
system under development. Details are gradually added to this first model by building a
sequence of more concrete ones. The relationship between two successive models in this se-
quence is that of refinement [12, 2, 32, 14]. The essence of the refinement relationship is that
it preserves already proved system properties including safety properties and termination.
A development gives rise to a number of, so-called, proof obligations, which guarantee its
correctness. Such proof obligations are discharged by the proof tool using automatic and
interactive proof procedures supported by a proof engine [34].
At the most abstract level it is obligatory to describe the static properties of a model’s data
by means of an “invariant” predicate. This gives rise to proof obligations relating to the
consistency of the model. They are required to ensure that data properties which are claimed
to be invariant are preserved by the events or operations of the model. Each refinement
step is associated with a further invariant which relates the data of the more concrete model
to that of the abstract model and states any additional invariant properties of the (possibly
richer) concrete data model. These invariants, so-called glueing invariants are used in the
formulation of the refinement proof obligations.
The goal of a B development is to obtain a proved model. Since the development process leads
to a large number of proof obligations, the mastering of proof complexity is a crucial issue.
Even if a proof tool is available, its effective power is limited by classical results over logical
theories and we must distribute the complexity of proofs over the components of the current
development, e.g. by refinement. Refinement has the potential to decrease the complexity of
the proof process whilst allowing for tracability of requirements.
B Models rarely need to make assumptions about the size of a system being modelled, e.g.
the number of nodes in a network. This is in contrast to model checking approaches [33]. The
price to pay is to face possibly complex mathematical theories and difficult proofs. The re-use
of developed models and the structuring mechanisms available in B help in decreasing the
complexity. Where B has been exercised on known difficult problems, the result has often
been a simpler proof development than has been achieved by users of other more monolithic
techniques [53].

1.3 Scope of the B modelling

The scope of the B method concerns the complete process of software and system develop-
ment. Initially, the B method was mainly restricted to the development of software sys-
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tems [16, 21, 41] but a wider scope for the method has emerged with the incorporation of the
event based approach [1, 11, 6, 7, 28, 26, 59] and is related to the systematic derivation of re-
active distributed systems. Events are simply expressed in the rich syntax of the B language.
Abrial and Mussat [11] introduce elements to handle liveness properties. The refinement
of the event-based B method does not deal with fairness constraints but introduces explicit
counters to ensure the happening of abstract events, while new events are introduced in a
refined model. Among case studies developed in B, we can mention the METEOR project [16]
for controlling train traffic, the PCI protocol [29], the IEEE 1394 Tree Identify Protocol [10].
Finally, B has been combined with CSP for handling communications systems [26, 25] and
with action systems [28, 59].

The proposal can be compared to action systems [13], UNITY programs [32] and TLA [43]
specifications but there is no notion of abstract fairness like in TLA or in UNITY.

1.4 Related techniques

The B method is a state-based method integrating set theory, predicate calculus and general-
ized substitution language. We briefly compare it to related notations.
Like Z [60], B is based on the ZF set theory; both notations share the same roots, but we can
point to a number of interesting differences. Z expresses state change by use of before and
after predicates, wheras the predicate transformer semantics of B allows a notation which is
closer to programming. Invariants in Z are incorporated into operation descriptions and alter
their meaning, wheras the invariant in B is checked against the state changes described by
operations and events to ensure consistency. Finally B makes a careful distinction between
the logical properties of pre-conditions and guards, which are not clearly distinguished in Z.
The refinement calculus used in B for defining the refinement between models in the event-
based B approach is very close to Back’s action systems, but tool support for action systems
appears to be less mechanized than B.
TLA+ [44] can be compared to B, since it includes set theory with the ε operator of Hilbert.
The semantics of TLA temporal operators is expressed over traces of states whereas the se-
mantics of B actions is expressed in the weakest precondition calculus. Both semantics are
equivalent with respect to safety properties, but the trace semantics of TLA+ allows an ex-
pression of fairness and eventuality properties that is not directly available in B.
VDM [42] is a method with similar objectives to classical B. Like B it uses partial functions
to model data, which can lead to meaningless terms and predicates e.g. when a function is a
applied outside its domain. VDM uses a special three valued logic to deal with undefinedness.
B retains classical two valued logic, which simplifies proof at the expense of requiring more
care with undefinedness. Recent approaches to this problem will be mentioned later.
ASM [38, 23] and B share common objectives related to the design and the analysis of (soft-
ware/hardware) systems. Both methods bridge the gap between human understanding and
formulation of real-world problems and the deployment of their computer-based solutions.
Each has a simple scientific foundation: B is based on set theory and ASM is based on the
algebraic framework with an abstract state change mechanism. An Abstract State Machine
is defined by a signature, an abstract state, a finite collection of rules and a specific rule; rules
provide an operational style very useful for modelling specification and programming mecha-
nisms. Like B, ASM includes a refinement relation for the incremental design of systems; the
tool support of ASM is under development but it allows one to verify and to analyse ASMs. In
applications, B seems to be more mature than ASM, even if ASM has several real successes
like the validation [61] of Java and the Java Virtual Machine.



4 D. Cansell,D. Méry

1.5 Organization and reading of the document

The document is organized with respect to the development process supported by B. It de-
tails the event-based B approach and sketches the classical B approach. We introduce some
notations and concepts with a simple case study of the factorial function. Section 2 presents
the mathematics of B and uses the factorial function to illustrate how mathematical objects
can be carefully described in B. Defined mathematical objects are used later in an abstract
specification or model, from which an algorithm is developed using the event-based B ap-
proach. Section 3 details the semantics of events and operations and defines the language of
actions that are used in B models. Section 4 introduces the B modelling of systems and the
different clauses of a B model. Section 5 covers the refinement of B models and details the
proof obligations required by the refinement process; we return to our factorial case study to
illustrate proof-based development. This takes an abstract specification of factorial based on
the mathematical definition discussed earlier, then uses an event based approach to derive
an algorithm for factorial. In section 6 we make some concluding remarks..

2 THE B LANGUAGE FOR SETS, PREDICATES AND LOGICAL STRUC-
TURES

The development of a model starts by an analysis of the mathematical structure: sets, con-
stants and properties over sets and constants and we produce the mathematical landscape
by requirements elicitation. However, the statement of mathematical properties can be ex-
pressed using different assumed properties; for instance, a constant n is a natural number
and is supposed to be greater than 3 - classically and formally written like n ∈ N ∧ n ≥ 3
- or a set of persons is not empty - classically and formally written like persons 6= ∅. Abrial
et al [8] develop a structure language which allows to one to encode mathematical structures
and their accompanying theorems. Structures improve the possibility of mechanized proofs
but they are not yet in the current version of the B tools; there is a close connection with
the structuring mechanisms and the algebraic structures [37], but the main difference is in
the use of sets rather than of abstract data types. B mathematical structures are built with
notations of set theory and we list the main notations (and their meanings) used in further
sections; the complete notation is described in the B book of Abrial [2].

2.1 Sets and predicates

Constants can be defined using first order logic and set-theoretical notations of B. A set can
be defined using either the comprehension schema { x | x ∈ s ∧ P (x)}, or the cartesian
product schema s × t or using operators over sets like power P(s), intersection ∩ and union ∪.
y ∈ s is a predicate which can be sometimes simplified either from y ∈ { x | x ∈ s ∧ P (x)}
into y ∈ s ∧ P (y), or from x 7→ y ∈ s × t into x ∈ s ∧ y ∈ t, or from t ∈ P(s) into
∀ x . ( x ∈ t ⇒ x ∈ s) where x is a fresh variable. A pair is denoted either ( x , y ) or
x 7→ y .
A relation over two sets s and t is an element of P(s × t); a relation r has a domain dom(r)
and a codomain ran(r). A function f from the set s to the set t is a relation such that each
element of dom(f) is related to at most one element of the set t.
A function f is either partial f ∈ A 7→ B, or total f ∈ A → B. Then, we can define
the term f(x) for every element x in dom(f) using the choice function (f(x) = choice(f [{x}])
where f [{x}] is the subset of t, whose elements are related to x by f . The choice function
assumes that there exists at least one element in the set, which is not the case of the ε
operator that can be applied to an empty set and returns some value. If x 7→ y ∈ f then
y = f(x) and f(x) is well defined, only if f is a function and x is in dom(f).
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We summarize in figure 1, set-theoretical notations that can be used in the writing of formal
definitions related to constants. In fact, the modelling of data is oriented by sets, relations
and functions; the task of the specifier is then to use effectively those notations.

Name Syntax Definition
Binary Relation s ↔ t P(s×t)

Composition of relations r1; r2 {x, y |x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x, z ∈ r1 ∧ z, y ∈ r2)}

Inverse relation r−1 {x, y|x ∈ P(a) ∧ y ∈ P(b) ∧ y, x ∈ r}
Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x, y|x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s � r id(s); r

Co-restriction r � s r; id(s)
Anti-restriction s C− r (dom(r)−s) � r

Anti-co-restriction r B− s r � (ran(r)−s)
Image r[w] ran(w � r)

Overriding q C− r (dom(r) C− q)∪r
Partial Function s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}

Fig. 1. Set-theoretical notations

2.2 A simple case study

Since we have a short space for explaining B concepts, we use a very simple case study,
namely the development of models for computing the factorial function; we can illustrate the
expressivity of the B language of predicates. Other case studies can be found in complete
work separatly published (see for instance,[2, 1, 6, 5, 3, 9, 29, 10]). When considering the
definition of a function, we can use different styles to characterize it. A function is mathe-
matically defined as a (binary) relation over two sets, called source and target and it satisfies
the functionality property. The set-theoretical framework of B invites us to follow this way
for defining functions; however, a recursive definition of a given function is generally used.
The recursive definition states that a given mathematical object exists and that it is the least
solution of a fixed-point equation. Hence, a first step of the B development proves that the
function defined by a relation is the least fixed-point of the given equation. Properties of the
function might be assumed, but we prefer to advocate a style of fully proved development with
respect to a minimal set of assumptions. The first step enumerates a list of basic properties
considered as axioms and the final step reaches a point where both definitions are proved to
be equivalent.
First, we define the mathematical function factorial, in a classical way; the first line states
that factorial is a total function from N into N and the next lines state that factorial satisfies a
fixed-point and, by default, it is supposed to be the least fixed-point. factorial is a B constant
and has B properties:

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ≥ 0 ⇒ factorial(n+1) = (n+1)×factorial(n))
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In previous work on B [31], we use this definition and write it as a B property (a logical
assumption or an axiom of the current theory) but nothing tells us that the definition is con-
sistent and that it defines an existing function. A solution is to define the factorial function
using a fixed-point schema such that the factorial function is the least fixed-point of the given
equation over relations. The factorial function is the smallest relation satisfying some condi-
tions and especially the functionality; the functionality is stated as a logical consequence of
the B properties. The point is not new but we are able to introduce notions to students putting
together fixed-point theory, set theory, theory of relations and functions and the process of val-
idation by proof (mechanically done by the prover). The computation of the factorial function
starts by a definition of the factorial function which is carefully and formally justified using
the theorem prover. factorial is still a B constant but it is differently defined.
The factorial function is a relation over natural numbers and it is defined by its graph over
pairs of natural numbers:

factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧

∀(n, fn) ·

 n 7→ fn ∈ factorial
⇒
n+1 7→ (n+1)×fn ∈ factorial

 (axioms or B properties)

The factorial function satisfies the fixed-point equation and is the least fixed-point:

∀f ·


f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)
⇒
factorial ⊆ f

 (axioms or B properties)

These last statements are B properties of the factorial function and from these B properties,
we should derive the functionality of the resulting least fixed-point: factorial is a function is
a logical consequence of the new definition of factorial.

factorial ∈ N −→ N ∧
factorial(0) = 1 ∧
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

(consequences or B assertions)

Now, factorial is proved to be a function and no assumption concerning the functionality is
left unspecified or simply an assumption. Proofs are carried out using the first order pred-
icate calculus together with set theory and arithmetic. When we have proved that factorial
is a function, it means that every derived property is effectively obtained by a mechanical
process of proof; the proof can be reused in another case study, if necessary. The proof is
an application of the induction principle; every inductive property mentions a property over
values of the underlying structure namely P(n); hence we should quantify over predicates
and derive theorems in higher order logic [8]. Using a quantification over subsets of a set,
we can get higher order theorems. For instance, P(n) is represented by the following set
{n|n ∈ NATURAL ∧ P(n)} and the inductive property is stated as follows; the first ex-
pression is given in the B language and the second expression (equivalent to the first one) in
classical mathematical notation:
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B statement

∀P ·


P ⊆ N ∧
0 ∈ P ∧
succ[P ] ⊆ P
⇒
N ⊆ P )


classical logical statement

∀P ·


P(n) a property on N ∧
P(0) ∧
∀n ≥ 0 · (P(n) ⇒ P(n+1))
⇒
∀n ≥ 0 · P(n)



The higher-order aspect is achieved by the use of set theory, which offers the possibility to
quantify over all the subsets of a set. Such quantifications give indeed the possibility to climb
up to higher-order in a way that is always framed.
The structure language introduced by Abrial et al [8] can be useful to provide the reuse of
already formally validated properties. It is then clear that the first step of our modelling
process is an analysis of the mathematical landscape. The analysis of properties is essential,
when dealing with the undefinedness of expressions and the work of Abrial et al [8] or the
doctoral thesis of Burdy [24] propose different ways to deal with this question. For instance,
the existence of a function like factorial may appear obvious but the technique of modelling
might lead to silly models, if no proof of definedness is done. The proof of the functionality of
factorial necessitates to instantiate the variable P in the inductive property by the following
set:

{n|n ∈ N ∧ 0..n � factorial ∈ 0..n −→ N}

Now, we consider the structures in B used for organizing axioms, definitions, theorems and
theories.

2.3 Logical structures in B

The B language of predicates denoted BP for expressing data and properties combine set the-
ory and first order predicate calculus with a simple arithmetic theory. The B environment
can be used to derive theorems from axioms; B provides a simple way to express axioms and
theorems using abstract machines without variables. It is a way to use the underlying B
prover and to implement the proof process that we have already described.

machine
m

sets
s

constants
c

properties
P (s, c)

assertions
A(x)

end

An abstract machine has a name m; the clause sets contains
definitions of sets in the problem; the clause constants allows
one to introduce information related to the mathematical struc-
ture of the problem to solve and the clause properties contains
the effective definitions of constants: it is very important to list
carefully properties of constants in a way that can be easily
used by the tool. The clause assertions contains the list of the-
orems to be discharged by the proof engine. The proof process
is based on the sequent calculus and the prover provides (semi-
)decision procedures [34] for proving the validity of a given log-
ical fact called a sequent and allows one to build interactively
the proof by applying possible rules of sequent calculus.

For instance, the machine FACTORIAL DEF introduces a new constant called factorial sat-
isfying given properties in the previous lines. The functionality of factorial is derived from
the assumptions in the clause assertions.
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machine
FACTORIAL DEF

constants
factorial

properties
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial) ∧

∀f ·


f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)
⇒
factorial ⊆ f


assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

end

The interactive prover breaks a sequent into simpler-to-prove sequents but the user must
know the global structure of the final proof. BP allows us to define underlying mathematical
structures required for a given problem; now we should introduce how to specify states and
how to describe transitions over states.

3 THE B LANGUAGE OF TRANSITIONS

The B language is not restricted to classical set-theoretical notations and the sequent cal-
culus; it includes notations for defining transitions over states of the model, called general-
ized substitutions. In its simple form, x := E(x), a generalized substitution looks like an
assignment; the B language of generalized substitutions called GSL (Generalized Substitu-
tion Language) (see figure 2) contains syntactical structures for expressing different kinds
of (states) transitions. Generalized substitutions of GSL allow us to write operations in the
classical B approach [2]; a restriction over GSL leads to events in the so called event-based B
approach [11, 7]. In the following subsections, we address the semantical issues of general-
ized substitutions and the differences between operations and events.

3.1 Generalized Substitutions

Generalized substitutions provide a way to express transformations of state variables of
a given model. In the construct x := E(x), x denotes a vector of state variables of the
model, and E(x) a vector of expressions of the same size as the vector x. The interpre-
tation we shall give here to this statement is not however that of an assignment state-
ment. The class of generalized substitutions contains the following possible forms of gen-
eralized substitutions: x := E (assignment), skip (stuttering), P | S (precondition) (or
PRE P THEN S END), S [ ] T (bounded choice) (or CHOICE S1 OR S2 END), P ⇒ S
(guard)(or SELECT P THEN S END), @z.S (unbounded choice), x :∈ S (set choice), x :
R(x0, x) (generalized assignement), S1;S2 (sequencing),
WHILE B DO S INVARIANT J VARIANT V END, . . .

The meaning of a generalized substitution S is defined in the weakest-precondition calcu-
lus [35, 36] by the predicate transformer λP ∈ BP.[S]P where [S]P means that S establishes
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P . Intuitively, it means that every accepted execution of S starting from a state s satisfy-
ing [S]P terminates in a state satisfying P ; certain substitutions can be feasibly executed
(or accepted for execution) by any physical computational device; it means also that S ter-
minates for every state of [S]P . The weakest-precondition operator has properties related to
implication over predicates: λP ∈ BP.[S]P is monotonic with respect to the implication, it
is distributive with respect to the conjunction of predicates. The properties of the weakest-
precondition operator are known, since the work of Dijkstra [35, 36] on the semantics defined
by predicate transformers. The definition of λP ∈ BP.[S]P is inductively expressed over the
syntax of B predicates and the syntax of generalized substitutions. [S]P can be reduced to a
B predicate, which is used by the proof-obligations generator. Figure 2 contains the inductive
definition of [S]P .

Name Generalized substitution : S [S]P

Assignment x := E P (E/x)

Skip skip P

Parallel Composition x := E||y := F [x, y := E, F ]P

Non-deterministic Choice x :∈ S ∀v.(v ∈ S ⇒ P (v/x))
in a Set
Relational Assignment x : R(x0, x) ∀v.(R(x0, v) ⇒ P (v/x))

Unbounded Choice @x.S ∀x.[S]P

Bounded Choice choice S1 or S2 end [S1]P ∧ [S2]P
(or equivalently S1[]S2)

Guard select G then T end G ⇒ [T ]P
(or equivalently G =⇒ S2)

Precondition pre G then T end G ∧ [T ]P
(or equivalently G|T )

Generalized Guard any t where G then T end ∀ t· ( G ⇒ [T ]P )

Sequential Composition S; T [S][T ]P

Iteration WHILE B DO T
INVARIANT J VARIANT V END

J ∧
∀x · (J ∧ B ⇒ [T ]J) ∧
∀x · (J ⇒ V ∈ N) ∧
∀x · (J ∧ B ⇒ [n := V ][T ](V < n)) ∧
∀x · (J ∧ ¬B ⇒ P )

Fig. 2. Definition of GSL and [S]P

We say that two substitutioons S1 and S2 are equivalent, denoted S1 = S2, if for any predicate
P of the B language, [S1]P ≡ [S2]P . The relation defines a way to compare substitutions.
Abrial [2] proves a theorem for normalized form related to any substitution and it proves that
a substitution is characterized by a precondition and a computation relation over variables.

Theorem 1. [2]
For any substitution S, there exists two predicates P and Q where x′ is not free in P such
that: S = P |@x′.(Q =⇒ x := x′).

The theorem tells us the importance of the precondition of a substitution, which should be
true, when the susbtitution is applied to the current state, else the resulting state is not
consistent with the transformation. Q is a relation between the initial state x and the next
state x′. In fact, a substitution should be applied to a state satisfying the invariant and should
preserve it. Intuitively, it means that, when one applies the substitution, one has to check
that the initial state is correct. The weakest-precondition operator allows to define specific
conditions over substitutions:

• Aborted computations: abt(S) ∆= for any predicate R,¬[S]R and it defines the set of states
that can not establish any predicate R and that are the non-terminating states.
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• Terminating computations: trm(S) ∆= ¬abt(S) and it defines the termination condition
for the substitution S.

• Miraculous computations: mir(S) ∆= for any predicate R, [S]R and means that among
states, some states may establish every predicate R, for instance FALSE, and they are
called miraculous states, since they establish a miracle.

• Feasible computations: fis(S) ∆= ¬mir(S) Miraculous states correspond to non-feasible
computations and the feasibility condition ensures that the computation is realistic.

Terminating computations and feasible computations play a central role in the analysis of
generalized substitutions, whose the expressivity if very important. The figures 3 and 4 pro-
vide two lists of rules for simplifying trm(S) and fis(S) into the B predicates language; both
lists are not complete (see Abrial [2] for complete lists).

Generalized substitution : S trm(S)

x := E TRUE

skip TRUE

x :∈ S TRUE

x : R(x0, x) TRUE

@x.S ∀x.trm(S)

choice S1 or S2 end trm(S1) ∧ trm(S2)
(or equivalently S1[]S2)

select G then T end G ⇒ trm(T )
(or equivalently G =⇒ S2)

pre G then T end G ∧ trm(T )
(or equivalently G|T )

any t where G then T end ∀ t· ( G ⇒ trm(T ) )

Fig. 3. Examples of definitions for trm(S)
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Generalized substitution : S fis(S)

x := E TRUE

skip TRUE

x :∈ S S 6= ∅

x : R(x0, x) ∃v.(R(x0, v)

@x.S ∃x.fis(S)

choice S1 or S2 end fis(S1) ∨ fis(S2)
(or equivalently S1[]S2)

select G then T end G ∧ fis(T )
(or equivalently G =⇒ S2)

pre G then T end G ⇒ fis(T )
(or equivalently G|T )

any t where G then T end ∃ t· ( G ∧ fis(T ) )

Fig. 4. Examples of definitions for fis(S)

For instance, fis(select FALSE then x := 0 end) is FALSE and mir(select FALSE then x :=
0 end) is TRUE; the substitution select FALSE then x := 0 end establishes any predicate
and is not feasible. We can not implement such a substitution in a programming language.

A relational predicate can be defined using the weakest-precondition semantics, namely
prdx(S), by the expression ¬[S](x 6= x′) which is the relation characterizing the computations
of S. The figure 5 contains a list of definitions of the predicate with respect to the syntax.
The next property is proved by Abrial and shows the relationship between weakest-precondition
and relational semantics. Predicates trm(S) and prdx(S) are respectively defined in figure 3
and figure 5.

Theorem 2. [2]
For any substitution S, we have: S = trm(S)|@x′.(prdx(S) =⇒ x := x′)
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Generalized substitution : S prdx(S)

x := E x′ = E

skip x′ = x

x :∈ S x′ ∈ S

x : R(x0, x) R(x, x′)

@z.S ∃z.prdx(S) if z 6= x′

choice S1 or S2 end prdx(S1) ∨ prdx(S2)
(or equivalently S1[]S2)

select G then T end G ∧ prdx(T )
(or equivalently G =⇒ S2)

pre G then T end G ⇒ prdx(T )
(or equivalently G|T )

any t where G then T end ∃ t· ( G ∧ prdx(T ) )

Fig. 5. Examples of definitions for prdx(S)

Both theorems emphasize the role of the precondition and the relation in the semantical def-
inition of a substitution. The refinement of two substitutions is simply defined using the
weakest-precondition calculus as follows: S is refined by T (written S v T ), if for any predi-
cate P , [S]P ⇒ [T ]P . We can give an equivalent version of the refinement that shows that it
decreases the non-determinism. Let us define the following sets: pre(S) = {x|x ∈ s∧ trm(S)},
rel(S) = {x, x′|x ∈ s ∧ x′ ∈ s ∧ prdx(S)} and dom(S) = {x|x ∈ s ∧ fis(S)} where s is sup-
posed to be the global set of states. The refinement can be defined equivalently using the
set-theoretical versions: S is refined by T , if, and only if, pre(S) ⊆ pre(T ) and rel(T ) ⊆ rel(S).
We can also use previous notations and define equivalently the refinement of two substitu-
tions by the expression: trm(S) ⇒ trm(T ) and prdx(T ) ⇒ prdx(S). The predicate prdx(S)
relates S to a relation over x and x′; it means that a substitution can be seen like a relation
over pairs of states. The weakest-precondition semantics over generalized substitutions pro-
vides the semantical foundation of the generator of proof obligations; in the next subsections
we introduce operations and events, which are two ways to use the B method.
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3.2 Operations and events

Generalized substitutions are used to construct operations of abstract machines or events of
abstract models. Both notions will be detailed in the next section. However, we should explain
the difference between those two notions. A (abstract) machine is a structure with a part
defining data (sets, constants, properties), a part defining state (variables,invariant)
and a part defining operations (operations, initialisation); it only gives its potential user
the ability to activate the operations, not to access its state directly and this aspect is very
important for refining the machine by making changes of variables and of operations, while
keeping their names. An operation has a precondition and the precondition should be true,
when one calls the operation. Operations are characterized by generalized substitutions and
their semantics is based on the semantics of generalized substitutions (either in the weakest-
precondition-based style, or in the relational style). It means that the condition of preserva-
tion of the invariant is simply written as follows:

I ∧ trm(O) ⇒ [O]I (1)

If one calls the operation, when the precondition is false, any state can be reached and the
invariant is not ensured. The style of programming is called genereous but it assumes that
an operation is always called when the precondition is true. An operation can have input and
output parameters and it is called in a state satisfying the invariant and it is a passive object,
since it requires to be called to have an effect.
On the other hand, an event has a guard and is triggered in a state validating the guard.
Both operation and event have a name, but an event has no input and output parameters.
An event is observed or not observed. and possible changes of variables should maintain the
invariant of the current model: the style is called defensive. Like an operation, an event is
characterized by a generalized substitution and it can be defined by a relation over variables
and primed variables: a before-after predicate denoted BA(e)(x, x′). An event is essentially a
reactive object and reacts with respect to its guard grd(e)(x). However, there is a restriction
over the language GSL used for defining events and we authorize only three kinds of gener-
alized substitutions (see the figure 6). In the definition of an event, three basic substitutions
are used to write an event (x := E(x), x : ∈ S(x), x : P (x0, x)) and the last substitution is the
normal form of the three ones. An event should be feasible and the feasibility is related to
the feasibility of the generalized substitution of the event: some next state must be reachable
from a given state. Since events are reactive objects, related proof obligations should guar-
antee that the current state satisfying the invariant should be feasible. The figure 7 contains
the definition of guards of events. We leave the classical abstract machines of the B classical
approach and we illustrate the system modelling through events and models.
When using the relational style for defining the semantics of events, we use the style advo-
cated by Lamport [43] in TLA; an event is seen as a transformation between states before
the transformation and states after the transformation. Lamport uses the priming of vari-
ables to separate before values from after values. Using this notation and supposing that x0

denotes the value of x before the transition of the event, events can get a semantics defined
over primed and unprimed variables in figure 6. The before-after predicate is already defined
in the B book as the predicate prdx(S) defined for every substitution S (see subsection 3.1).
Any event e has a guard defining the enabledness condition over the current state and it
expresses the existence of a next state. For instance, the disjunction of all guards is used for
strengthening the invariant of a B system of events to include the deadlock freedom of the
current model. Before to introduce B models, we give the expression stating the preservation
of a property by a given event e:

I(x) ⇒ [e] I(x) (2)



14 D. Cansell,D. Méry

Event : E Before-After Predicate

begin x : P (x0, x) end P (x, x′)

select G(x) then x : P (x0, x) end G(x) ∧ P (x, x′)

any t where G(t, x) then x : P (x0, x, t) end ∃ t· ( G(t, x) ∧ P (x, x′, t) )

Fig. 6. Definition of events and before-after predicates of events

Event : E Guard: grd(E)

begin S end TRUE

select G(x) then T end G(x)

any t where G(t, x) then T end ∃ t·G(t, x)

Fig. 7. Definition of events and guards of events

or equivalently in a relational style

I(x) ∧ BA(e)(x, x′) ⇒ I(x′) (3)

BA(e)(x, x′) is the before-after relation of the event e and I(x) is a state predicate over vari-
ables x. The equation 1 states the proof obligation of the operation O using the weakest-
precondition operator and the equation 3 defines the proof obligation for the preservation of
I(x), while e is observed. Since the two approaches are semantically equivalent, the proof-
obligations generator of the Atelier B can be reused for generating those assertions in the B
environment. In the next section, we detail abstract machines and abstract models, which
are using operations and events.

4 MODELLING SYSTEMS

Systems under consideration are software systems, control systems, protocols, sequential and
distributed algorithms, operating systems, circuits; they are generally very complex and have
parts interacting with an environment. A discrete abstraction of such systems constitutes an
adequate framework: such an abstraction is called a discrete model. A discrete model is more
generally known as a discrete transition system and provides a view of the current system;
the development of a model in B follows an incremental process validated by the refinement.
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A system is modelled by a sequence of models related by the refinement and managed in a
project.

A project [2, 7] in B contains informations for editing, proving, analysing, mapping and ex-
porting models or components. A B component has two separate forms: a first form concerns
the development of software models and B components are abstract machine, refinement, im-
plementation; a second form is related to modelling reactive systems using the event-based B
approach and B components are simply called models. Each form corresponds to a specific ap-
proach for developing B components; the first form is fully supported by the B tools [34, 49]
and the second one is partly supported by tools [34]. In the next subsections, we overview
each approach based on the same logical and mathematical concepts.

4.1 Modelling Systems in the B classical approach

The B method [2] is historically applied to software systems and has helped in developing safe
software controling trains [16]. The scope of the method is not restricted to the specification
step but includes facilities for designing larger models or machines gathered in a project.
The basic model is called an abstract machine and is defined in the A(bstract) M(achine)
N(otation) language. We describe an abstract machine in the next figure.

machine
m

sets
s

constants
c

properties
P (s, c)

variables
x

invariant
I(x)

assertions
A(x)

initialisation
<substitution>

operations
<list of operations>

end

An abstract machine encapsulates variables defining the state
of the system; the state should conform to the invariant and
each operation should be called, when the current state satis-
fies the invariant. Each operation should preserve the invari-
ant, when it is called. An operation may have input/output pa-
rameters and only operations can change state variables. An
abstract machine looks like a desk calculator and each time a
user presses the button of an operation, he should check that
the precondition of the operation is true, else no preservation of
invariant can be ensured (for instance, division by zero). Struc-
turing mechanisms will be reviewed in the subsection 4.3. An
abstract machine has a name m; the clause sets contains def-
initions of sets; the clause constants allows one to introduce
information related to the mathematical structure of the prob-
lem to solve and the clause properties contains the effective
definitions of constants: it is very important to list carefully
properties of constants in a way that can be easily used by the
tool. We do not mention structuring mechanisms like sees, in-
cludes, extends, promotes, uses, imports but they can help in the
management of proof obligations.

The second part of the abstract machine defines dynamic aspects of state variables and prop-
erties over variables using the invariant generally called inductive invariant and using as-
sertions generally called safety properties. The invariant I(x) types the variable x, which is
assumed to be initialized with respect to the initial conditions and which is supposed to be
preserved by operations (or transitions) of the list of operations. Conditions of verification
called proof obligations (see 1) are generated from the text of the model using the first part
for defining the mathematical theory and the second part is used to generate proof obligations
for the preservation (when calling the operation) of the invariant and proof obligations stat-
ing the correctness of safety properties with respect to the invariant. The figure 8 contains
an example of an abstract machine with only one operation setting the variable result to the
value of the factorial(m), with m a constant.
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machine
FACTORIAL MAC

constants
factorial, m

constants
factorial

properties
m ∈ N ∧
factorial ∈ N ↔ N ∧

∀f ·


f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)
⇒
factorial ⊆ f


variables

result
invariant

result ∈ N
assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

initialisation
result :∈ N

operations
computation = begin result := factorial(m) end

end

Fig. 8. An example of an abstract machine for the factorial computation

4.2 Modelling systems in the event-based B approach

Abstract machines are based on classical mechanisms like the call of operation or the in-
put/output mechanisms. On the other hand, reactive systems reacts to the environment with
respect to external stimuli; abstract models of the event-based B approach intend to integrate
the reactivity to stimuli by promoting events rather than operations. Contrary to operations,
events have no parameters and there is no access to state variables. At most one event is
observed at any time of the system.

A (abstract) model is made up of a part defining mathematical structures related to the prob-
lem to solve and a part containing elements on state variables, transitions and (safety and
invariance) properties of the model. Proof obligations are generated from the model to ensure
that properties are effectively holding: it is called internal consistency of the model. A model
is assumed to be closed and it means that every possible change over state variables is de-
fined by transitions; transitions correspond to events observed by the specifier. A model m is
defined by the following structure:
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model
m

sets
s

constants
c

properties
P (s, c)

variables
x

invariant
I(x)

assertions
A(x)

initialisation
<substitution>

events
<list of events>

end

A model has a name m; the clause sets contains definitions of
sets of the problem; the clause constants allows one to intro-
duce information related to the mathematical structure of the
problem to solve and the clause properties contains the effec-
tive definitions of constants: it is very important to list care-
fully properties of constants in a way that can be easily used by
the tool. Another point is the fact that sets and constants can
be considered like parameters and extensions of the B method
exploit this aspect to introduce parameterization techniques in
the development process of B models. The second part of the
model defines dynamic aspects of state variables and properties
over variables using the invariant called generally inductive in-
variant and using assertions called generally safety properties.
The invariant I(x) types the variable x, which is assumed to
be initialized with respect to the initial conditions and which is
preserved by events (or transitions) of the list of events. Condi-
tions of verification called proof obligations are generated from
the text of the model using the first part for defining the math-
ematical theory and the second part is used to generate proof
obligations for the preservation of the invariant and proof obli-
gations stating the correctness of safety properties with respect
to the invariant.

The predicate A(x) states properties derivable from the model invariant. A model states that
state variables are always in a given set of possible values defined by the invariant and it
contains the only possible transitions operating over state variables. A model is not a program
and no control flow is related to it; however, it requires a validation but we first define the
mathematics for stating sets, properties over sets, invariants, safety properties. Conditions
of consistency of the model are called proof obligations and they express the preservation of
invariant properties and avoidance of deadlock.

Proof obligation

(INV1) Init(x) ⇒ I(x)

(INV2) I(x) ∧ BA(e)(x, x′) ⇒ I(x′)

(DEAD) I(x) ⇒ (grd(e1) ∨ . . . grd(en))

e1, . . . , en is the list of events of the model m. (INV1) states the initial condition which should
establish the invariant. (INV2) should be checked for every event e of the model, where
BA(e)(x, x′) is the before-after predicate of e. (DEAD) is the condition of deadlock-freedom: at
least one event is enabled. Finally, predicates in the clause assertions should be implied by
the predicates of the clause invariant; the condition is simply formalized as follows:

P (s, c) ∧ I(x) ⇒ A(x)

Finally, the substitution of an event must be feasible; an event is feasible with respect to its
guard and the invariant I(x), if there is always a possible transition of this event or equiv-
alently, there exists a next value x′ satisfying the before-after predicate of the event. The
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feasibility of the initialisation event requires that at least one value exists for the predicate
defining the initial conditions. The feasibility of an event leads to a readability of the form
of the event; the recognition of the guard in the text of the event simplifies the semantical
reading of the event and it simplifies the translation process of the tool: no guard is hidden
inside the event. We summarize the feasibility conditions in the next table.

Event : E Feasibility : fis(E)

x : Init(x) ∃x · Init(x)

begin x : P (x0, x) end I(x) ⇒ ∃x′ · P (x, x′)

select G(x) then x : P (x0, x) end I(x) ∧ G(x) ⇒ ∃x′ · P (x, x′)

any l where G(l, x)
then x : P (x0, x, l) end I(x) ∧ G(l, x) ⇒ ∃x′ · P (x, x′, l)

Proof obligations for a model are generated by the proof-obligations generator of the B envi-
ronment; the sequent calculus is used to state the validity of the proof obligations in the cur-
rent mathematical environment defined by constants, properties. Several proof techniques
are available but the proof tool is not able to prove automatically every proof obligation and
interactions with the prover should lead to prove every generated proof obligation. We say
that the model is internally consistent when every proof obligation is proved. A model uses
only three kinds of events, while the generalized substitutions are richer; but the objectives
are to provide a simple and powerful framework for modelling reactive systems. Since the
consistency of a model is defined, we should introduce the refinement of models using the
refinement of events defined like the substitution refinement. We reconsider the example
of the factorial function and its computation and we propose the model of the figure 9. As
you notice, the abstract machine fac and the abstrcat model fac are very close and the main
difference is in the use of events rather than operations: the event computation eventually ap-
pears or is executed, because of the properties of the mathematical function called factorial.
The operation computation of the machine in the figure 8 is passive, but the event computation
of the model in the figure 9 is reactive, when it is possible. Moreover, events may hide other
ones and the refinement of models will play a central role in the development process. We
present in the next subsection classical mechanisms for structuring developed components of
specification.

4.3 Structuring mechanisms of the B method

In the last two subsections, we have introduced B models following the classification into two
main categories abstract machines and models; both are called components but they are not
dealing with the same approach. We detail structuring mechanisms of both approaches to be
complete on references of work on B.
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model
FACTORIAL EVENTS

constants
factorial, m

constants
factorial

properties
m ∈ N ∧
factorial ∈ N ↔ N ∧
0 7→ 1 ∈ factorial ∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial) ∧

∀f ·


f ∈ N ↔ N ∧
0 7→ 1 ∈ f ∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)
⇒
factorial ⊆ f


variables

result
invariant

result ∈ N
assertions

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

initialisation
result :∈ N

events
computation = begin result := factorial(m) end

end

Fig. 9. An example of an abstract model for the factorial computation

4.3.1 Sharing B components

The AMN notation provides clauses related to structuring mechanisms in components like
abstract machines but also like refinements or implementations. The B development process
starts from basic components mainly abstract machines and is layered development; the goal
is to obtain implementation components through structuring mechanisms like includes, sees,
uses, extends, promotes, imports, refines. The clauses includes, sees, uses, extends, promotes,
imports, refines allow one to compose B components in the classical B approach and every
clause leads to specific conditions for use. Several authors [57, 15] analyse the limits of exist-
ing B primitives to share data, while refining and composing B components; it is clear that
the B primitives for structuring B components can be used following strong conditions on the
sharing of data and operations. The limits are mainly due to the reuse of already proved
B components; reuse of variables, invariants, constants, properties, operations. In fact, the
problem to solve is the management of interferences among components and the seminal
solution of Owicki and Gries [55] faces the combinatorial explosion of the number of proof
obligations. The problem is to compose components according to given constraints of correct-
ness. The new event-based B approach considers a different way to cope with structuring
mechanisms and considers only two primitives: the refines primitive and the decomposition
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primitive.

4.3.2 B classical primitives for combining components

We focus on the meaning and the use of five primitives for sharing data and operations among
B components, namely includes,sees, uses, extends, promotes. Each primitive is related to a
clause of the AMN notation and allows access to data or operations of already developed
components; specific proof obligations state conditions to ensure a sound composition. A
structuring primitive makes accessed components visible under various degrees from the
accessing component.
The includes primitive can be used in an abstract machine or in a refinement; the included
component allows the including component to modify included variables by included opera-
tions; the included invariant is preserved by the including component and is really used by
the tool for deriving proofs of proof obligations of the including component. The including
component can not modify included variables but it can use them in read access. No interfer-
ence is possible under those constraints. The uses primitives can only appear in abstract ma-
chines and using machines have a read-only access to the used machine, which can be shared
by other machines. Using machines can refer to shared variables in their invariants and
data of the used machine are shared among using machines. When a machine uses another
machine, the current project must contain another machine including the using and the used
machines. The refinement is related to the including machine and the using machine can not
be refined. The sees primitive refers to an abstract machine imported in another branch of
the tree structure of the project and sets, constants and variables can be consulted without
change. Several machines can see the same machine. Finally, the extends primitive can only
be applied to abstract machines and only one machine can extend a given machine; the ex-
tends primitive is equivalent to the includes primitive followed by the promotes primitive for
every operation of the included machine. For instance, we can illustrate the implementation
and we can show that the implementation of the figure 10 implements (refines) the machine
of the figure 8. The operation computation is refined or implemented by a while statement;
proof obligations should take into account the termination of the operation in the implemen-
tation: the variant establishes the termination. Specific proof obligations are produced to
check the absence of overflow of variables.

4.3.3 Organizing components in a project

The B development process is based on a structure defined by a collection of components
which are either abstract machines, refinements or implementations. An implementation
corresponds to a stage of development leading to the production of codes when the language
of substitutions is restricted to the B0 language. The B0 language is a subset of the language
of substitutions and translation to C, C++ or ADA is possible in tools. The links between
components are defined by the B primitives previously mentioned and by the refinement.
When building a software system, the development starts from a document which may be
written in a semi-formal specification language; the system is decomposed into subsystems
and a model is progressively built using B primitives for composing B components. We em-
phasize the role of structuring primitives, since they allow to distribute the global proof
complexity. The B development process covers the classical life cycle: requirements analy-
sis, specification development, (formal) design and validation through the proof process and
animation. K. Lano [45] illustrates an object-oriented approach of the B development and
it identifies the layered development paradigm that we have already mentioned through B
primitives. Finally, implementations are B components that are close to real code; in an im-
plementation component, an operation can be refined by a while loop and the checking should
prove that the while loop is terminating.
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implementation
FACTORIAL IMP

refines
FACTORIAL MAC

values
m = 5

concrete variables
result, x

invariant
x ∈ 0..n ∧
result = factorial(x)

assertions
factorial(5) = 120 ∧
result ≤ 120

initialisation
result := 1; x := 0

operations
computation =

while x < m do
x := x+1; fn := x·fn

invariant
x ∈ 0..m
result = factorial(x)
result ≤ factorial(m)

variant
m−x

end
end

Fig. 10. An example of an implementation for the factorial computation

4.3.4 Structures for the event-based B approach
While the B classical approach is based on the B components and B structuring primitives,
the event-based B approach promotes two concepts: the refinement of models and the decom-
position of models [6, 7]. As we have already mentioned, the classical B primitives have limits
in the scope of their use; we need mainly to manage sharing data but without generating too
many proof obligations. So the main idea of Abrial is not to compose, but to decompose a first
model and to refine models obtained after decomposition step. The new proposed approach
simplifies the B method and focuses on the refinement. It means that previous development
in the B classical approach can be replayed in the event-based B one. Moreover, the founda-
tions of B remain useful and usable in the current environment of the Atelier B. In the next
section, we describe the mathematical foundations of B and we illustrate B concepts in the
event-based B approach.

4.3.5 Summary on structuring mechanisms
We have reviewed structuring mechanisms of the classical B approach and the new ones pro-
posed for the event-based B approach. While the classical approach provides several mech-
anisms for structuring machines, only two mechansims supports the event-based approach.
In fact, the crucial point is to compose abstract models or abstract machines; the limit of
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composition is related upon the production of a too high number of proof obligations. The
specifier wants to share state variables in read and write mode; the structuring machanisms
of classical B do not allow the sharing of variable, but in read mode. Our work on the feature
interaction problem [30] illustrates the use of refinement for composing features and other
approaches based on the detection of interaction by using a model checker on finite models,
do not cope the global problem because of finite models. Finally, we think that the choice of
events with the refinement provides a simple way to integrate proof into the development of
complex systems and conforms to the view of systems through different abstractions, thanks
to the stuttering [43].

5 PROOF-BASED DEVELOPMENT IN B

5.1 Refinement of B models

The refinement of a formal model allows one to enrich a model in a step by step approach. Re-
finement provides a way to construct stronger invariants and also to add details in a model.
It is also used to transform an abstract model in a more concrete version by modifying the
state description. This is essentially done by extending the list of state variables (possibly
suppressing some of them), by refining each abstract event into a corresponding concrete
version, and by adding new events. The abstract state variables, x, and the concrete ones,
y, are linked together by means of a, so-called, gluing invariant J(x, y). A number of proof
obligations ensure that (1) each abstract event is correctly refined by its corresponding con-
crete version, (2) each new event refines skip, (3) no new event take control for ever, and (4)
relative deadlockfreeness is preserved. We detail proof obligations of a refinement after the
introduction of the syntax of a refinement:

refinement
r

refines
m

sets
t

constants
d

properties
Q(t, d)

variables
y

invariant
J(x, y)

variant
V (y)

assertions
B(y)

initialisation
y : INIT (y)

events
<list of events>

end

A refinement has a name r; it is a model refining a model m in
the clause refines and m can be a refinement. New sets, new
constants and new properties can be declared in the clauses
sets, constants or properties. New variables y are declared
in the clause variables and are the concrete variables; vari-
ables x of the refined model m are called the abstract variables.
The glueing invariant defines a mapping between abstract vari-
ables and concrete ones; when a concrete event occurs, there
must be a corresponding one in the abstract model: the con-
crete model simulates the abstract model. The clause variant
controls new events, which can not take the control over others
events of the system. In a refinement, new events may appear
and are refining an event SKIP; events of the refined model can
be strengthened and one should prove that the new model does
not contain more deadlock configurations than the refined one:
if a guard is strengthened too much, it can lead to a dead re-
fined event. The refinement r of a model m is a system; its
trace semantics is based on traces of states over variables x
and y and the projection of concrete traces on abstract traces
is a stuttering-free traces semantics of the abstract model. The
mapping between abstract and concrete traces is called a re-
finement mapping by Lamport [43] and the stuttering is the
key concept for refining events systems. When an event e of
m is triggered, it modifies variables y and the abstract event
refining e modifies x. Proof obligations make precise the rela-
tionship between abstract model and concrete model.

The abstract system is m and the concrete system is r; INIT (y) denotes the initial condition
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of the concrete model; I(x) is the invariant of the refined model m; BAC(y, y′) is the concrete
before-after relation of an event of the concrete system r and BAA(x, x′) is the abstract before-
after relation of the event of the abstract system m; G1(x), . . . Gn(x) are the guards of the n
abstract events of m; H1(y), . . . , Hk(y) are the guards of k concrete events of r. Formally, the
refinement of a model is defined as follows:

(REF1) INIT (y) ⇒ ∃x·(Init(x) ∧ J(x, y)) :

The initial condition of the refinement model imply that there exists an abstract value
in the abstract model such that that value satisfies the initial conditions of the abstract
one and implies the new invariant of the refinement model.

(REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) :

The invariant in the refinement model is preserved by the refined event and the activa-
tion of the refined event triggers the corresponding abstract event.

(REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) :

The invariant in the refinement model is preserved by the refined event but the event
of the refinement model is a new event which was not visible in the abstract model; the
new event refines skip.

(REF4) : I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :

The guards of events in the refinement model are strengthened and we have to prove
that the refinement model is not more blocked than the abstract.

(REF5) : I(x) ∧ J(x, y)) ⇒ V (y) ∈ N and
(REF6) : I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) :

New events should not block forever abstract ones.

The refinement of models by refining events is close to the refinement of action systems [12],
the refinement of UNITY and the TLA refinement, even if there is no explicit semantics based
on traces but one can consider the refinement of events like a relation between abstract traces
and concrete traces. The stuttering plays a central role in the global process of development
where new events can be added into the refinement model. When one refines a model, one can
either refine an existing event by strengthening the guard or/and the before-after predicate
(removing non-determinism), or add a new event which is supposed to refine the skip event.
When one refines a model by another one, it means that the set of traces of the refined model
contains the traces of the resulting model with respect to the stuttering relationship. Models
and refined models are defined and can be validated through the proofs of proof obligations;
the refinement supports the proof-based development and we illustrate it by a case study on
the development of a program for computing the factorial function.

5.2 Proof-based development in action

The B language of predicates, the B language of events, the B language of models and the
B refinement constitute the B method; however, the objectives of the B method are to pro-
vide a framework for developing models and finally programs. The development is based on
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proofs and should be validated by a tool. The current version of Atelier B groups B models
into projects; a project is a set of B models related to a given problem. The statement of the
problem is expressed in a mathematical framework defined by constants, properties, struc-
tures and the development of a problem starts from a very high level model which is simply
stating the problem in an event-based style. The proof tool is central in the B method, since
it allows us to write models and to validate step-by-step each decision of development; it is
an assistant used by the user to integrate decisions into the models, especially by refining
them. The proof process is fundamental and the interaction of a user in the proof process is a
very critical point. We examine the different aspects of the development by an example. The
problem is to compute the value of the factorial function for a given data n. We have already
proved that the (mathematical) factorial function exists and we can reuse its definition and
its properties. Three successive models are provided by development, namely Fac1 (the ini-
tial model stating in one-shot the computation of factorial(n)), Fac2 (refinement of the model
Fac1 computing step by step factorial(n)), Fac3 (completing the development of an algorithm
for factorial(n)).
We begin by writing a first model which is re-phrasing the problem and we simply state that
an event is calculating the value factorial(n) where n is a natural number. The model has
only one event and is the one-shot model:

computation = begin
fn := factorial(n)

end

fn is the variable containing the value computed by the program; the expression one-shot
means that we show a solution just by assigning the value of mathematical function to fn.
It is clear that the one-shot event is not satisfactory, since it does not describe the algorith-
mic process for computing the result. Proofs are not difficult, since they are based on the
properties stated in the preliminary part. Our next model will be a refinement of Fac1. It
will introduce an iterative process of computation based on the mathematical definition of
factorial. We therefore add a new event prog which is extending the partial function un-
der construction called fac that contains a partial definition of the factorial function. The
initialisation is simply to set fac to the value for 0.

fac := {0 7→ 1}

and there is a new event progress which simulates the progress by adding the next pair in
the function fac.

progress = select n /∈ dom(fac) then
any x where

x ∈ N ∧ x ∈ dom(fac) ∧ x+1 /∈ dom(fac)
then

fac(x+1) := (x+1)×fac(x)
end

end

Secondly, the event computation is refined by the following event stating that the process
stops when the fac variable is defined for n.
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computation = select n ∈ dom(fac) then
fn := fac(n)

end;

The computation is based on the calculation of the fixed-point of the equation defining facto-
rial and the ordering is the set inclusion over domains of functions; fac is a variable satisfying
the following invariant property:

fac ∈ N 7→ N ∧ fac ⊆ factorial ∧
dom(fac) ⊆ 0..n ∧ dom(fac) 6= ∅

fac is a relation over natural numbers and it contains a partial definition of the factorial
function; as long as n is not defined for fac, the computing process adds a new pair in fac.
The system is deadlock-free, since the disjunction of the guards n ∈ dom(fac), or n /∈ dom(fac)
is trivially true. The event progress increases the domain of fac: dom(fac) ⊆ 0..n. The proof
obligations for the refinement are effectively proved by the proof tool:

n ∈ dom(fac) ∨
(n /∈ dom(fac) ∧ ∃x.(x ∈ N ∧ x ∈ dom(fac) ∧ x+1 /∈ dom(fac)))

The model is more algorithmic than the first one and it can be refined into a third one called
Fac3 closer to the classical algorithmic solution. Two new variables are introduced: a variable
i plays the role of index and a variable fq is an accumulator. A glueing invariant define
relations between old and new variables:

i ∈ N ∧ 0..i = dom(fac) ∧ fq = fac(i)

The two events of the second model are refined into the two next events.

computation = select i = n then
fn := fq

end;
progress = select i 6= n then

i := i+1‖ fq := (i+1)×fq
end

Proof obligations are completely discharged with the proof tool and we derive easily the algo-
rithm by analysing guards of the last model.

i := 0 ‖ fq := 1
while i 6= n do

i := i+1‖ fq := (i+1)×fq
end
fn := fq

Case studies provide information over the development process; different domains have been
considered for illustrating the event-based B approach: sequential programs [5, 9], distributed
systems [3, 10, 29], circuits [4].
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6 CONCLUSION

B gathers a large community of users whose contributions go beyond the scope of this docu-
ment; we focus our topics on the event-based B approach to illustrate the foundations of B.
Before to conclude our text, we should complete the B landscape by an outline of work on B
and with B.

6.1 Work on B and with B

The series of conferences [39, 18, 22, 19, 20] on B (in association with the Z community) and
books [2, 45, 40, 59] on B demonstrate the strong activity on B. The expressivity of the B lan-
guage lead to three kinds of work using concepts of B: extension of the B method, combination
of B with another approach and applications of B. We have already mentioned applications
of the B method in the introduction and, now, we sketch extensions of B and proposals to
integrate B with other methods:

6.1.1 Extending the B method

The concept of event as introduced in B by Abrial [1] acts on the global state space of the
system and has no parameter; on the contrary, Papatsaras and Stoddart [56] contrast this
global style of development with one based on interacting components which communicate
by means of shared events; parameters in events are permitted. The parametrisation of
events is also considered by Butler and Walden [28] who are implementing action systems in
the B AMN.
Events may or may not happen and new modalities are required to manage them; the lan-
guage of assertions of B is becoming too poor to express temporal properties like liveness,
for instance. Abrial and Mussat [11] introduce modalities into abstract systems and develop
proof obligations related to liveness properties; Méry [51] shows how the B concepts can be
easily used to deal with liveness and fairness properties. Bellegarde et al [17] analyse the
extension of B using the LTL logic and the impact on the refinement of event systems. Prob-
lems are related to the refinement of systems while maintaining liveness and even fairness
properties; it is difficult and in many cases not possible, because the refinement maintains
previously validated properties of the abstract model and it can not maintain every liveness
property.
Recently, McIver et al [50] extend the Generalized Substitution Language to handle probabil-
ity in B; an abstract probabilistic choice is added to B operators. A methodology is proposed
to use this extension.

6.1.2 Combining B with another formalim

The limited expressivity of the B language has inspired work on several proposals. Butler [26]
investigates a mixed language including B AMN and CSP; CSP is used to structure abstract
machines; the idea is exploited by Schneider and Treharne [62, 58] who control B machines.
Since diagrammatic formalisms offer a visual representation of models, another integration
of B with UML is achieved by Butler [27] and by Le Dang et al [47, 46, 48]; B provides
a semantical framework to UML components and allows one to analyse UML models. An
interesting problem would be to study the impact of the B refinement into UML models.
Mikhailov and Butler [52] combine the theorem proving and the model checking and focus
on the B-method and a theorem proving tool associated with it, and the Alloy specification
notation and its model checker Alloy Constraint Analyser. Software development in B can be
assisted using Alloy and Alloy can be used for verifying refinement of abstract specifications.
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6.2 Final remarks

The design of (software) systems is an activity based on logico-mathematical concepts such
as set-theoretical definitions; it gives rise to proof obligations that capture the essence of its
correctness. The use of theoretical concepts is mainly due to the requirements of safety and
quality of developed systems; it appears that the mathematics can help in improving the qual-
ity of software systems. B is a method that can help the designers to construct safer systems
and it provides a realistic framework for developing a pragmatic engineering. Mathemati-
cal theories [8] can be derived from scratch or reused; in forthcoming work, mechanisms for
re-usability of developments will demonstrate the increasing power of the applicability of B
to realistic case studies [10]. Tools are already very helpful and will evolve towards a toolset
for developing systems. The proof tool is probably a crucial element in the B approach and
recent developments of the prover, combined with the refinement, validates the applicability
of the B method to derive correct reactive systems from abstract specifications. In [7], Abrial
describes the new B method mainly related to B events.
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[10] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental
development of IEEE 1394 Tree Identify Protocol. Formal Aspects of Computing,
14(3), April 2003.

[11] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,
editor, B’98 :Recent Advances in the Development and Use of the B Method, vol-
ume 1393 of Lecture Notes in Computer Science. Springer Verlag, 1998.

[12] R. BACK. ON CORRECT REFINEMENT OF PROGRAMS. Journal of Computer and
System Sciences, 23(1):49–68, 1979.

[13] R.-J. BACK. A CALCULUS OF REFINEMENTS FOR PROGRAM DERIVATIONS.
Acta Informatica, 25:593–624, 1998.

[14] R.-J. Back and J. von Wright. Refinement Calculus. Springer Verlag, 1998.
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