
5

The Triptych Process Model1

Process Assessment and Improvement

Abstract

The triptych2 approach to software engineering proceeds on the basis of
carefully monitored and controlled possibly iterated progression through
domain engineering and requirements engineering to software design.

In this paper we will outline these three phases, show the many stages
of development within each and also indicate the many steps within each
stage. We will ever so briefly touch upon informal narration and formal
description (prescription and specification) of domains (requirements and
software designs), and the verification (theorem proving, model checking
and testing) and validation of domain descriptions (requirements prescrip-
tions and their relations to domain descriptions, as well as the software de-
sign specifications and their relations to requirements prescriptions). The
importance of process management and its relations to software process
assessment (SPA) and software process improvement (SPI) will then be
underscored. Our measuring “stick” is that set up by Watts Humphrey’s
capability maturity model (CMM). We will suggest and discuss seven as-
sessment and eight improvement categories. In closing we will have some
few words to say about software procurement.

5.1 The Triptych Dogma

5.1.1 Background

In the past, as exemplified in major software engineering textbooks [109,139,
200, 205, 228, 240], software engineering focused on requirements engineering
and software design. The triptych dogma extends the two (requirements en-
gineering and software design) into three (domain engineering plus the two
phases already mentioned).

1This is an edited version of [38]. Invited talk at JASPIC 2006 (Japan Association
for Software Process Improvement) meeting October 12-13, 2006 at Tsukuba.

2The term ‘triptych’ covers the three phases of software development: domain
description, requirements prescription and software design.

108 5 The Triptych Process Model

5.1.2 The Dogma

• Justifying requirements prescriptions:
⋆ Before software can be designed
⋆ we must understand the requirements.

• Justifying domain descriptions.
⋆ Before requirements can be prescribed
⋆ we must understand the domain.

• Justifying the triptych:
⋆ First analysing and describing the (application) domain,
⋆ then analysing and prescribing the requirements, and
⋆ finally analysing and specifying the software design and code.

5.1.3 New Aspects

The relatively new aspect of software development is here ‘domain engineer-
ing’. This new aspect “translates” into a number of new methodological as-
pects of domain and requirements engineering. The next, the major section
will survey these aspects. All of this is covered extensively in volume 3 of the
three volume book [31–33]. All figures and tables in this chapter are re-used
from [33](by permission from Springer).

5.2 The Triptych Process Models and Documents

5.2.1 Common Aspects

Process Models

The triptych process model is the composition of three process models: one
each for domain engineering, requirements engineering and software design.
We hint at this composition in Fig. 5.1 on the next page.

The internals of the three boxes (i.e., phases of development) of Fig. 5.1 on
the facing page are outlined in Figs. 5.4 on page 112, 5.8 on page 116 and 5.9
on page 117, respectively Fig. 5.11 on page 119.

The DO edges of Fig. 5.1 on the next page enter topmost boxes of respective
Figs. 5.4 on page 112, 5.8 on page 116 and 5.11 on page 119.

The REDO edges of Fig. 5.1 on the next page enter whichever boxes of
Figs. 5.4 on page 112, 5.8 on page 116 and 5.9 on page 117, respectively
Fig. 5.11 on page 119 that are found to be most appropriate. (More on this
later.)

5.2 The Triptych Process Models and Documents 109

Domain Engineering

Software Design

Requirements Engineering

REDO

REDO

REDO

DO

DO

Software Engineering

= Software Development

Fig. 5.1. A simplified view of the triptych process model

Documents

Common to all three phases of software development are that they primar-
ily manifest themselves in documents. Figure 5.3 on page 111, Fig. 5.5 on
page 114, Fig. 5.6 on page 115, Fig. 5.7 on page 116, and Fig. 5.10 on page 118,
to be commented later, illustrate the breadth, depth and quite substantial
number of such resulting documents. And common to each set of such doc-
uments is the more-or-less administrative “working out” of information doc-

ument, cf. items 1 of Fig. 5.3 on page 111, Fig. 5.5 on page 114, Fig. 5.6 on
page 115, Fig. 5.7 on page 116, and Fig. 5.10 on page 118. Figure 5.2 extracts
item 1. from Fig. 5.3 on page 111, Fig. 5.5 on page 114, 5.6 on page 115,
Fig. 5.7 on page 116, and Fig. 5.10 on page 118.

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management

ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

Fig. 5.2. Informative documents

Let us briefly review the pragmatics of Fig. 5.2. In any of the three phases
of development, domain engineering, requirements engineering and software

110 5 The Triptych Process Model

design, the information implied by the table-of-contents of Fig. 5.2 on the
previous page must be carefully worked out. Take items ‘Assumptions and
Dependencies’, and ‘Implicit/Derivative Goals’. The description, prescription
or design work to be done in the phase to which the information documents
apply rely on assumptions and dependencies. These must be fully understood,
hence documented before any proper development takes place. Consider items
‘Current Situation’, ‘Needs and Ideas’, and ‘Concepts and Facilities’. The cur-
rent situation which apparently warrants the proper development must be
recorded. It might change thus necessitating change of development. Develop-
ment — of whichever of the three phases — would not be undertaken unless
someone, the customer and/or the developer, has some needs for the (approx-
imately) expected results of the development, and, as well, has some ideas
as how (methodologically) to basically develop whatever is to be developed
(a domain description, a requirements description, a software design). The
customer and/or developer also, initially have made some thoughts of the
core concepts and facilities around which the development is expected to take
place. All of this need be properly recorded as any review of project status
occurs in the pragmatic context of ‘Assumptions and Dependencies’, ‘Implic-
it/Derivative Goals’, ‘Current Situation’, ‘Needs and Ideas’, and ‘Concepts
and Facilities’.

5.2.2 The Domain Engineering Process Model

We first rough-sketch narrate the stages and steps of the domain engineering
development of a domain model, then review the documents that should em-
anate from such development. Finally we diagram an essence of the narration
and the document table-of-contents.

But first some words on domain models.

Domain Models

A main result of domain engineering development, as applied to some specific
application domain3, is a domain model. Domain models are in the form of
descriptions. Domain descriptions describe what there is, and as it is. There
is no presumption of requirements implied by these descriptions. They are
not requirements prescriptions. By analogy, physicists [domain engineers] are
describing mother nature [application domains] and engineers [requirements
engineers and software designers] are prescribing and implementing require-
ments.

3Examples of domains are: (1) the financial service industry as a whole, (1.1) a
bank, (1.1.1) a bank’s mortgage lending business; (2) the transportation industry as
a whole, (2.1) a railway system, (2.1.1) an interlocking system; etcetera.

5.2 The Triptych Process Models and Documents 111

Domain Engineering, A Narrative

The domain engineering triptych dogma, and as argued in Chaps. 8–17 of [33],
advocates (item 2.) the following stages of description development (after work
on information documents [items 1.a–l] have been duly completed): (2.a) iden-
tification of as wide a spectrum of domain stakeholders, (2.b) acquisition of
domain understanding, (2.c) establishment (and subsequent, throughout all
stages, use and maintenance) of a domain terminology (ontological terms),
(2.d) understanding and rough-sketching all relevant business processes, (2.e)
domain modelling (all domain facets), and (2.f) the domain model comple-
tion (including consolidation). Intertwined with the domain description parts
(item 2., subitems (a–f)) are the analysis parts with (3.a) domain analysis
aiming at identifying inconsistencies, conflicts and incompletenesses, (3.b)
domain validation, (3.c) domain verification, and (3.d) possible work on
establishing a domain theory.

The new thing here is all of items 1.–2.–3.

Domain Engineering Documents

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

2. Descriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Terminology
(d) Business Processes
(e) Facets:

i. Intrinsics
ii. Support Technologies
iii. Management and

Organisation
iv. Rules and Regulations
v. Scripts
vi. Human Behaviour

(f) Consolidated Description
3. Analyses

(a) Domain Analysis and
Concept Formation

i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Domain Validation
i. Stakeholder Walkthroughs
ii. Resolutions

(c) Domain Verification
i. Model Checkings
ii. Theorems and Proofs
iii. Test Cases and Tests

(d) (Towards a) Domain Theory

Fig. 5.3. Domain engineering document table-of-contents

112 5 The Triptych Process Model

Figure 5.3 on the preceding page summarises the plenitude of highly interre-
lated sets of documents that must all be carefully worked out and carefully
correlated.

Domain Engineering Stages and Steps

Identification and Liaison
Stakeholder

Elicitation Studies

Elicitation Interviews

Preparation, Presentation

Description Unit Indexing

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapters 10−11

Chapter 11

DOMAIN
DEVELOPMENT

Chapter 9

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

Stakeholder Identification

ACQUISITION

Fig. 5.4. The domain engineering process model diagram

Figure 5.4 diagrams, in box-and-edge form, the stages and steps of domain
engineering development and their interrelations. The diagram does not give
a correct “picture” of the necessity for iteration: going “backwards and for-
wards” across the development, i.e., across the diagram. Obviously, having a
precise understanding of the syntax, semantics and pragmatics of boxes and
edges, helps developers and their managers monitor and control (including
“contain”) iterations.

5.2 The Triptych Process Models and Documents 113

5.2.3 The Requirements Engineering Process Model

We first rough-sketch narrate the stages and steps of the requirements en-
gineering development of a requirements model, then review the documents
that should emanate from such development. Finally we diagram an essence
of the narration and the document table-of-contents.

But first some words on “the machine” and on requirements models.

The Machine

Requirements is about prescribing the machine: the hardware and the software
which shall implement the requirements. The machine resides in the domain.
Once developed we shall sometimes refer to that domain as the environment
of the machine — with the machine + that environment becoming a new
domain.

Requirements Models

A main result of requirements engineering development, as applied to some
specific application domain4, is a requirements model. Domain models are
in the form of descriptions. Requirements prescriptions prescribe what there
should be.

Requirements Engineering, A Narrative

The requirements engineering triptych dogma, and as argued in Chaps. 18–26
of [33], advocates (item 2.) the following stages of prescription development
(after work on information documents [items 1.a–l] have been duly completed):
(2.a) identification of as wide a spectrum of requirements stakeholders, (2.b)
acquisition of requirements statements, (2.c) rough-sketching first ideas of
a requirements model in order to (“eureka”) discover un-formulated require-
ments, (2.d) establishment (and subsequent, throughout all stages, use and
maintenance) of a requirements terminology (ontological terms), and (2.e)
requirements modelling of all requirements facets: (2.e.i) business process
reengineering (BPR),

(2.e.ii) domain requirements, (2.e.iii) interface requirements, (2.e.iv) ma-
chine requirements, and (2.e.v) completion of a full requirements prescription.
Intertwined with the requirements prescription parts (item 2., subitems (a–e))
are the analysis parts with (3.a) requirements analysis aiming at identifying
inconsistencies, conflicts and incompletenesses, (3.b) requirements validation,

4Examples of domains are: (1) the financial service industry as a whole, (1.1) a
bank, (1.1.1) a bank’s mortgage lending business; (2) the transportation industry as
a whole, (2.1) a railway system, (2.1.1) an interlocking system; etcetera.

114 5 The Triptych Process Model

(3.c) requirements verification, and (3.d) possible work on establishing a
requirements theory.

The new things here are the way in which (2.b) ‘acquisition of require-
ments statements’ is pursued, and items (2.c) and (2.c subitems i., ii., and
iii.). Essentially (2.b) questionnaires are formulated on the basis of assumed
existing domain specifications.

Essentially the questionnaires and the rough sketching of a domain and
interface requirements model, after analysis of the requirements statements
(3.a), is pursued basically as follows (2.e.ii): which of the entities, functions,
events and behaviours described in the domain model must be partially or
fully supported by the machine being requirements prescribed? Must those
(entities, functions, events and behaviours) being so selected (i.e., projected)
be made more determinate, and/or more concretely instantiated, and/or ex-
tended, and/or fitted with, or to other, elsewhere developed requirements?
Similar for business processes of the “original” domain. Usually they need be
reconsidered (2.e.i). Etcetera.

Requirements Engineering Documents

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas (Eurekas, I)
(e) Concepts & Facilities (Eurekas,

II)
(f) Scope & Span
(g) Assumptions & Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis (Eurekas, III)
(j) Standards Compliance
(k) Contracts, with Design Brief
(l) The Teams

i. Management
ii. Developers
iii. Client Staff
iv. Consultants

(m) Plans
i. Project Graph
ii. Budget
iii. Funding
iv. Accounts

(n) Management
i. Assessement
ii. Improvement

A. Plans
B. Actions

Fig. 5.5. Requirements engineering informative document table-of-contents

Figures 5.5, 5.6 on the next page and 5.7 on page 116 summarise the plenitude
of highly interrelated sets of documents that must all be carefully worked out
and carefully correlated.

Requirements Engineering Stages and Steps

Figure 5.8 on page 116 and 5.9 on page 117 diagram, in box-and-edge form,
the stages and steps of requirements engineering development and their inter-

5.2 The Triptych Process Models and Documents 115

2. Prescriptions
(a) Stakeholders
(b) The Acquisition Process

i. Studies
ii. Interviews
iii. Questionnaires
iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)
(d) Terminology
(e) Facets:

i. Business Process
Re-engineering
• Sanctity of the Intrinsics
• Support Technology
• Management and

Organisation
• Rules and Regulation
• Human Behaviour
• Scripting

ii. Domain Requirements
• Projection
• Determination
• Instantiation
• Extension
• Fitting

iii. Interface Requirements
• Shared Phenomena and

Concept Identification
• Shared Data

Initialisation
• Shared Data

Refreshment
• Man-Machine Dialogue

• Physiological Interface
• Machine-Machine

Dialogue
iv. Machine Requirements

• Performance
⋆ Storage
⋆ Time
⋆ Software Size

• Dependability
⋆ Accessability
⋆ Availability
⋆ Reliability
⋆ Robustness
⋆ Safety
⋆ Security

• Maintenance
⋆ Adaptive
⋆ Corrective
⋆ Perfective
⋆ Preventive

• Platform
⋆ Development

Platform
⋆ Demonstration

Platform
⋆ Execution Platform
⋆ Maintenance

Platform
• Documentation

Requirements
• Other Requirements

v. Full Reqs. Facets Doc.

Fig. 5.6. Requirements engineering prescription document table-of-contents

relations. The diagram does not give a correct “picture” of the necessity for
iteration: going “backwards and forwards” across the development, i.e., across
the diagram. Obviously, having a precise understanding of the syntax, seman-
tics and pragmatics of boxes and edges, helps developers and their managers
monitor and control (including “contain”) iterations.

5.2.4 The Software Design Process Model

We first rough-sketch narrate the stages and steps of software design develop-
ment of a software architecture (etc.), then review the documents that should

116 5 The Triptych Process Model

3. Analyses
(a) Requirements Analysis and

Concept Formation
i. Inconsistencies
ii. Conflicts
iii. Incompletenesses
iv. Resolutions

(b) Requirements Validation
i. Stakeholder Walk-through

and Reports
ii. Resolutions

(c) Requirements Verification
i. Model Checkings

ii. Theorem Proofs

iii. Test Cases and Tests

(d) Requirements Theory

(e) Satisfaction and Feasibility
Studies

i. Satisfaction: Correctness,
unambiguity, completeness,
consistency, stability,
verifiability, modifiability,
traceability

ii. Feasibility: Technical,
economic, BPR

Fig. 5.7. Requirements engineering analytic document table-of-contents

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison

Acquisition
Requirements

Validation
& Verification

Requirements Modelling

Stakeholder

Fig. 5.8. Diagramming a requirements process model

emanate from such development. Finally we diagram an essence of the narra-
tion and the document table-of-contents.

Software Design, A Narrative

The software design process is here simplified into four stages (Fig. 5.10 on
page 118 items 2.a–d): software architecture design, component design, mod-
ule design, and (module) program coding. Each of these may consist of two
or more steps of development (cf. Fig. 5.11 on page 119). Between adjacent

5.2 The Triptych Process Models and Documents 117

Domain Requirements Machine Requirements

Shared Data Initialisation

Shared Data Refreshment

Physiological Dialogue

Dependability

Interface Requirements

Fitting

Extension

Instantiation

Determination

Projection

BPR

Shared Phenomena

Performance

Availability

Reliability

Safety

Security

Maintainability

Perfective

Adaptive

Corrective

Preventive

Portability

Documentation

Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Accessibility

Man−Machine Dialogue

Machine−Machine

Identification

Dialogue

Requirements Modelling

Fig. 5.9. The requirements modelling stage

steps there is a correctness obligation (V:MC:T, verification, model checking
and testing). Verification proofs usually are of the kind: D,S |= R which
means that the proof that the Software implements the Requirements entails
reference to the D.

Software Design Documents

Figure 5.10 on the next page summarises the plenitude of highly interrelated
sets of documents that must all be carefully worked out and carefully corre-
lated.

118 5 The Triptych Process Model

1. Information
(a) Name, Place and Date
(b) Partners
(c) Current Situation
(d) Needs and Ideas
(e) Concepts and Facilities and Facilities
(f) Scope and Span
(g) Assumptions and Dependencies
(h) Implicit/Derivative Goals
(i) Synopsis
(j) Standards Compliance
(k) Contracts
(l) The Teams

i. Management,
ii. Developers,
iii. Consultants

(m) Plans
i. Project Graph
ii. Budget, Funding, Accounts

(n) Management
i. Assessement Plans & Actions
ii. Improvement Plans & Actions

2. Software Specifications
(a) Architecture Design (Sa1

. . . San)
(b) Component Design (Sc1i

. . . Scnj
)

(c) Module Design (Sm1
. . . Smm)

(d) Program Coding (Sk1
, . . . , Skn)

3. Analyses
(a) Analysis Objectives and Strategies

(b) Verification (Sip , Si ⊒Li
Si+1)

i. Theorems and Lemmas Li

ii. Proof Scripts ℘i

iii. Proofs Πi

(c) Model Checking (Si ⊒ Pi−1)
i. Model Checkers
ii. Propositions Pi

iii. Model Checks Mi

(d) Testing (Si ⊒ Ti)
i. Manual Testing

• Manual Tests MS1
. . . MSµ

ii. Computerised Testing
A. Unit (or Module) Tests Cu

B. Component Tests Cc

C. Integration Tests Ci

D. System Tests Cs . . . Csits

(e) Evaluation of Adequacy of Analysis
Legend:
S Specification
L Theorem or Lemma
℘i Proof Scripts
Πi Proof Listings
P Proposition
M Model Check (run, report)
T Test Formulation
M Manual Check Report
C Computerised Check (run, report)
⊒ “is correct with respect to (wrt.)”
⊒ℓ “is correct, modulo ℓ, wrt.”

Fig. 5.10. Software design document table-of-contents

Software Design Stages and Steps

Figure 5.11 on the facing page diagram, in box-and-edge form, the stages
and steps of software design development and their interrelations. The dia-
gram does not give a correct “picture” of the necessity for iteration: going
“backwards and forwards” across the development, i.e., across the diagram.
Obviously, having a precise understanding of the syntax, semantics and prag-
matics of boxes and edges, helps developers and their managers monitor and
control (including “contain”) iterations.

5.3 Review of the Triptych Process

5.3.1 The Process Model: Diagrams and Tables-of-content

We have surveyed the (mainly) software development processes according to
the triptych dogma. We have seen that these processes can be diagrammed
and also be “mapped” onto tables-of-content of the documents resulting from
respective phases. Of course there is much more to these three phases, their
very many stages (within phases), and their potentially very many more steps
(within stages) than can be covered in chapter form.

5.3 Review of the Triptych Process 119

SA1

SA2

SAm

C11 Cn1

C12 C22 C2n

C21

C1L C2M CnN

K1 K2 Kn

.....

.....

.....

+

.....

++

+ + +

V:MC:T

V:MC:T V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:TV:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

DOMAIN DESCRIPTION DEVELOPMENT

REQUIREMENTS PRESCRIPTION DEVELOPMENT

SOFTWARE ARCHITECTURE DEVELOPMENT

COMPONENT

CODING

SOFTWARE

DEVELOPMENT

S
O

F
T

W
A

R
E

 C
O

M
P

O
N

E
N

T
 D

E
V

E
LO

P
M

E
N

T
C

O
D

IN
G

S
O

F
T

W
A

R
E

 A
R

C
H

IT
E

C
T

U
R

E
 D

E
V

E
LO

P
M

E
N

T
P

R
IO

R
 D

E
V

E
LO

P
M

E
N

T
S Domain

Requirements

Software Architecture

Software Components

Fig. 5.11. The software design development processes

5.3.2 Process Model Semantics

Diagrams, such as those of Figs. 5.1, 5.4, 5.8–5.9 and 5.11, reflect some prag-
matics, has some syntax and embodies, hopefully some semantics. We wish,
here, to emphasise the semantics:

What is important to mention here, justifying this separate section, is that
each of the boxes of the description, prescription and software design
parts of Figs. 5.4, 5.8, 5.9 and 5.11 and each of their interconnecting
edges embody a clear set of method principles, techniques and tools with
many of these techniques also being pursuable formally and supported,
or supportable, by theory-based tools.

In the following we shall assume that the above paragraph on the semantics
of the process model diagrams is taken for granted.

120 5 The Triptych Process Model

5.3.3 Informal versus Formal Development

The term ‘development’ covers any combination of the three phases: do-
main, requirements or software design only; domain+requirements or require-
ments+software design, or all three phases “more-or-less” consecutively.

Development can, as shown in [33] be pursued informally or formally,
and therefore in any “graded scale” combination of these.

0. Informal development means: no formalisation of domain descrip-
tions, requirements prescriptions or software design specifications are at-
tempted. Thus verification cannot be done using formal proofs or model check-
ing. Only code testing.

There are, roughly speaking three “points” on the semi-formal to formal
scale of development.

1. Systematic development formalises domain descriptions, require-
ments prescriptions and software design specifications. But that is just about
as much formalisation that is attempted.

2. Rigorous development extends systematic development by stating
all “crucial”5 properties and maybe even sketch or carry through the proof or
model checking of properties of some of these.

3. Formal development requires that all necessary (including correct-
ness) properties are formally expressed and theorem proved or model checked.

The triptych paradigm allows for any of these latter three (1.–2.–3.) forms
of development.

5.3.4 Adherence to Phases, Stages and Steps

It is important to stress the following assumption:

Adhering to the triptych paradigm, to us, means that all phases, stages
and steps as outlined above are followed. This means that documents are
produced as per the tables-of-contents shown in Fig. 5.3, Figs. 5.5–5.7
and Fig. 5.10.

Our treatment, next, of process assessment and improvement, is based on,
i.e., starts with the above assumption.

5.4 Process Assessment and Improvement Management

5.4.1 Notions of ‘Process Assessment’ and ‘Improvement’

In order to speak of ‘assessment’ and ‘improvement’ we must identify that
which is being assessed and improved: the results of following one set of

5We do not here further characterise what we mean by ‘crucial’.

5.4 Process Assessment and Improvement Management 121

method principles, techniques, tools and their management, over following an-
other such set. Process assessment is now about judging adherence of a given
process to its process model, Pragmatically, Semantically and Syntactically
(PSS, usually in reverse order): to which (PSS) degrees does the process
fulfill what is “laid down” in the process model. Process improvement is then
about changing the assessed development processes such that the results of
using the changed processes are assessed to have been improved.

By “assessment” and “improvement” we first of all mean “assessing and
improving documents”. The documents are those emanating from activities
denoted by nodes and edges of the process model.

Each such box and each such edge may have many documents “attached”
to it, and each such document has its syntax, semantics and pragmatics. The
syntax and semantics can usually be given very precise definitions. Hence we
can, in a sense, objectively “measure” (assess) whether a document “lives up”
to that syntax and that semantics! For pragmatics the “measure” is more
subjective. To be able to “measure” process improvement one must therefore
attach to each planned document for each box and each edge a “measure” of
compliance. Is a document in 100% compliance with those syntactic, semantics
and pragmatic measures or is it not? Or more precisely: where on a scale from
0 to 1 lies the quality of a document wrt. an “ideal”.

Software Process Assessment 1 Process Model Syntax and

Semantics: In order to handle process improvement (à la CMM, from
a lower to a higher level) — using the triptych approach — managers (as
well as, of course, developers), must be intimately familiar with the syntax
and semantics of the documents produced and expected to be produced
by process model node and edge activities. This is a strong requirement
and can not be expected by just any software development organisation.
And there are really no shortcuts.6 Process improvement — wrt. the pre-
cision of monitoring resource usage — is predicated on this assumption:
that management is strongly based on professional awareness of triptych
principles, techniques and tools. The “degree”7 to which a development
document adheres to the syntax and semantics of the relevant box or
edge thus provides an assessment.

Several groups, worldwide, the most well known is perhaps Praxis High In-
tegrity Systems, http://www.praxis-his.com, practices this on a daily basis. So
do many members of ForTIA: The Formal Techniques Industrial Association,
www.fortia.org.

6In other branches of engineering project managers (i.e., project leaders) and
developers, the “engineers at floor level” basically all have the same, normalising
education. Hence they are intimately familiar with the syntax and semantics of
their tasks. The problem is in software engineering.

7This “degree” notion is not defined here

122 5 The Triptych Process Model

Software Process Improvement 1 Process Model Syntax and

Semantics: To improve this general aspect of the possible processes
that developers and managers might be able to pursue under the banner
of the Triptych Process Model one simply has to resort to education and
training. There is no substitute.

We choose here to also “anchor” our discourse of ‘process improvement’ by
referring to the Capability Maturity Model (CMM) of Watts S. Humphrey
(WSH) [139]. CMM postulates five levels of maturity of development groups.
Level 1 being a lowest, in a sense “least desirable”, and level 5 being the
highest, “most desirable” level of professionalism that WSH finds useful to
define. Process improvement, by a development group, is now the improvement
of the development processes such that the group (i.e., the software house)
advances from level i to level i + j where i, j are positive numbers and i + j

is less than 6. So let us first review WSH’s notion of CMM.

5.4.2 The CMM: Capability Maturity Model

The following subsection are “lifted” from http://en.wikipedia.org/wiki/Capabili-

ty Maturity Model:

1. Level 1, Initial: At maturity level 1, processes are usually ad hoc and
the organization usually does not provide a stable environment. Success in
these organizations depends on the competence and heroics of the people
in the organization and not on the use of proven processes. In spite of
this ad hoc, chaotic environment, maturity level 1 organizations often
produce products and services that work; however, they frequently exceed
the budget and schedule of their projects.

Maturity level 1 organizations are characterized by a tendency to over
commit, abandon processes in the time of crisis, and not be able to repeat
their past successes again.

2. Level 2, Repeatable: At maturity level 2, software development suc-
cesses are repeatable. The organization may use some basic project man-
agement to track cost and schedule.

Process discipline helps ensure that existing practices are retained dur-
ing times of stress. When these practices are in place, projects are per-
formed and managed according to their documented plans.

Project status and the delivery of services are visible to management
at defined points (for example, at major milestones and at the completion
of major tasks).

Basic project management processes are established to track cost,
schedule, and functionality. The minimum process discipline is in place to
repeat earlier successes on projects with similar applications and scope.
There is still a significant risk of exceeding cost and time estimate.

5.4 Process Assessment and Improvement Management 123

3. Level 3, Defined: The organization’s set of standard processes, which is
the basis for level 3, is established and improved over time. These stan-
dard processes are used to establish consistency across the organization.
Projects establish their defined processes by the organization’s set of stan-
dard processes according to tailoring guidelines.

The organization’s management establishes process objectives based
on the organization’s set of standard processes and ensures that these
objectives are appropriately addressed.

A critical distinction between level 2 and level 3 is the scope of stan-
dards, process descriptions, and procedures. At level 2, the standards,
process descriptions, and procedures may be quite different in each spe-
cific instance of the process (for example, on a particular project). At
level 3, the standards, process descriptions, and procedures for a project
are tailored from the organization’s set of standard processes to suit a
particular project or organizational unit.

4. Level 4, Managed: Using precise measurements, management can effec-
tively control the software development effort. In particular, management
can identify ways to adjust and adapt the process to particular projects
without measurable losses of quality or deviations from specifications.

Subprocesses are selected that significantly contribute to overall process
performance. These selected subprocesses are controlled using statistical
and other quantitative techniques.

A critical distinction between maturity level 3 and maturity level 4 is
the predictability of process performance. At maturity level 4, the perfor-
mance of processes is controlled using statistical and other quantitative
techniques, and is quantitatively predictable. At maturity level 3, pro-
cesses are only qualitatively predictable.

5. Level 5, Optimizing: Maturity level 5 focuses on continually improving
process performance through both incremental and innovative technolog-
ical improvements. Quantitative process-improvement objectives for the
organization are established, continually revised to reflect changing busi-
ness objectives, and used as criteria in managing process improvement.
The effects of deployed process improvements are measured and evalu-
ated against the quantitative process-improvement objectives. Both the
defined processes and the organization’s set of standard processes are tar-
gets of measurable improvement activities.

Process improvements to address common causes of process variation
and measurably improve the organization’s processes are identified, eval-
uated, and deployed.

Optimizing processes that are nimble, adaptable and innovative de-
pends on the participation of an empowered workforce aligned with the
business values and objectives of the organization. The organization’s abil-
ity to rapidly respond to changes and opportunities is enhanced by finding
ways to accelerate and share learning.

124 5 The Triptych Process Model

A critical distinction between maturity level 4 and maturity level 5 is the
type of process variation addressed. At maturity level 4, processes are con-
cerned with addressing special causes of process variation and providing statis-
tical predictability of the results. Though processes may produce predictable
results, the results may be insufficient to achieve the established objectives.
At maturity level 5, processes are concerned with addressing common causes
of process variation and changing the process (that is, shifting the mean of
the process performance) to improve process performance (while maintain-
ing statistical probability) to achieve the established quantitative process-
improvement objectives.

5.4.3 Process Models and Processes

One thing is the process model, viz., the graph-like structures shown in, for
example, Figs. 5.4, 5.8, 5.9, and 5.11. (These are syntactic structures, but have
semantic meanings.) Another thing is the actual usage of such models, that is,
the actual processes that the software developers (domain, requirements and
software design engineers) “steer through” when developing domain models,
requirements models and software designs.

Graphs and Graph Traversal Traces

Assume some graph-like, let us call it, process model, see Fig. 5.12.

D

F

A

B

E

G

H

J

K

L

C

b

a

d
c

e
f

g

h

j

k

m

n

 ... etcetera ... etcetera

Fig. 5.12. A graph (left) and two (incomplete) traversal traces (center and right)

• So Fig. 5.12 shows a process model and two traces.
⋆ REDOs, that is, iterations of phases, stages and steps lead to additional

traces.
⋄ Let us call the totality (set) of these traces for OK traces.

⋆ And “jumping” or just “skipping” phases, stages and steps lead to
further additional traces.
⋄ Let us call these “jumped” or “skipped” traces for NOK traces.

• A process model thus denotes a possibly infinite set of such traces.

5.4 Process Assessment and Improvement Management 125

The leftmost part of Fig. 5.12 on the preceding page shows an acyclic graph.
The graph consists of distinctly labeled nodes and (therefrom distinctly la-
beled) edges. The center and right side of the figure shows some possible
traversal traces. By a traversal trace we understand a sequence of wavefronts.

By a wavefront we understand a set of node and edge labels such that
no two of these are on the same path from an input (i.e., in-degree 0) to an
output (i.e., out-degree 0) node, and such that there is a contribution to the
set from any path from an input to an output node.

The third wave of the two traces shown in the two rightmost figures can
thus be represented by {B, b} and {a, C}.

A process model is here taken to be a graph: boxes denote activities that
result in information and description, prescription or specification documents
and edges denote analytic activities that result in documents that record re-
sults of (concept formation, consistency, conflict and completeness) analysis,
verification, model checking, testing and possibly theory formation.

A development process is any trace over sets of these activities.
Figure 5.12 on the facing page’s center figure thus portrays the following

initial trace:

〈{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

Thus a process model denotes a set of such traces.

Incomplete and Extraneous Processes

The trace:

〈{A},{a,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

appears to have skipped the activity (phase, stage or step) designated by
B. Loosely speaking we call such processes incomplete with respect to their
underlying (i.e., assumed) process model (Fig. 5.12 on the preceding page, the
leftmost graph).

The trace:

〈{A},{a,z},{X},{D,Y,b},{D,E,C},...,etcetera〉

appears to have performed some activities (z, X, Y) not designated by the
process model of Fig. 5.12 on the facing page (the leftmost graph). Loosely
speaking we call such processes extraneous (or ad hoc) with respect to their
underlying process model.

Process Iterations

The trace

〈{A},{a,b},{B,b},{a,b},{B,b},{c,d,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...〉

126 5 The Triptych Process Model

designates an iterated process. After action B in {B,b} the process “goes-back”
to perform action b (in {a,b}); and after (either of) actions c or d in {c,d,b}
the process “goes-back” to perform action B in {B,b}. Loosely speaking we
call such processes iterated with respect to their underlying process model.

The above trace only shows simple “one-step” (or stage or phase) “back-
ward-and-then-onward” iterations. But the REDO idea, also indicated in
Fig. 5.1 on page 109, can be extended to any number of steps (etc.).

Degrees of Process Model Compliance

We can now define two notions of process model compliance, a syntactic and
a semantic. The syntactic notion of process model compliance has to do with
“the degree” to which an actual process matches a possibly iterated, i.e., an
OK trace of a process model. The semantic notion of process model compliance
is concerned with adherence to the semantics of boxes and edges.

We shall not, in this paper define these notions precisely — that should
be done in a future paper.

Suffice it to summarise that an ongoing process, i.e., an ongoing software
development project can be assessed wrt. its syntactic and its semantics com-
pliance wrt. its process model. One can precisely state which activities have
been omitted (incompleteness), and which activities were extraneous (or ad
hoc).

We first deal with syntactic compliance, then, in the next section, with
semantics compliance.

Software Process Assessment 2 Syntactic Process Compli-

ance: Given the generic process models diagrammed in Figs. 5.4, 5.8,
5.9 and 5.11, and given the project-specific software development graph
as exemplified by Fig. 5.13, one can now, in a process claimed to ad-
here to these models and graphs quite simply assess whether that actual
process follows those diagrams.

We assume that assessment takes place “regularly”, that is, with a frequency
higher than process wave transitions, that is, more often than the process
evolves through steps and stages. Otherwise it may be too late (or too cum-
bersome) to “catch-and-do” an omitted step.

Software Process Improvement 2 Syntactic Process Com-

pliance: Adherence to the process model can, at least “formally”, be
improved by actually ensuring that the process steps and stages (or even
phases) that were assessed to not having been performed, that these be
performed.

A “Base 0” for Triptych Developments

By a triptych development we mean a development which applies the prin-
ciples, techniques and tools as prescribed by the triptych dogma. Either in

5.4 Process Assessment and Improvement Management 127

a systematic, or in a rigorous, or in a formal way. A triptych development
process therefore, “by definition” has its base point at level 4 in the CMM
scale. This does not mean that a software development process which claims
to follow the triptych dogma (or the software house within which that process
occurs) at least measures at level 4. The dogma sets standards. The process
may follow, or may not follow such standards. Whether they are followed or
not is now an “easy” matter to resolve. The degree to which the dogma, in
all its very many instantiations, is followed is now “fairly easy” to resolve.
The “ease” (or “easiness”) depends on how well developers and management
understands the many triptych principles, techniques and tools, how well they
understand the prescribed syntax and semantics of required documents, and
on how well they understand their pragmatics, that is, the reason for these
principles, techniques and tools.

The pragmatics is what makes management interesting. Well mastered
pragmatics allows the managers leeway (i.e., discretion) in the dispatch of their
duties, that is, allow them to skip (or “go light” on) certain activities, including
choosing whether a step or even a stage should be performed “lightly” or more-
or-less “severely”, that is, be informal, or formal (and then in a scale from
systematic via rigorous to formal).

Software Process Assessment 3 Planned Syntactic and Se-

mantics Compliance: If a process is assessed (SPA) to be in full
compliance, syntactically and semantically with the process model then
we claim that the software development in this case is at CMM level 4
(or higher).

Software Process Improvement 3 Planned Syntactic and Se-

mantics Compliance: If it is assessed that a process has not reached
CMM level 4, and that at least CMM level 4 is desired, then one must first
secure syntactic compliance, see process improvement #2 (Page 126),
thereafter ensure that each of the steps (or stages, or phases) whose se-
mantic compliance was assessed too low be redone and according to their
semantic intents.

5.4.4 Proactive Measures

The above spoke in general about assessment and improvement.
We are now ready to deal with more specific issues of process assessment

and improvement. But first we need to refine our notion of process model.

Project Development Graphs

The process models (i.e., the graphs) are generic. They apply to any develop-
ment — whatever the software. They must be instantiated to fit the particular
problem frame (see [147] as well as [33, Chap. 28]).

128 5 The Triptych Process Model

Figure 5.13 shows the project development graph that was used in the
development of the Danish Ada compiler [58, 77] (1981–1984).

Semantics

Static
Semantics

Dynamic
Semantics

Sequential
Semantics Semantics

Concurrent

Machine

Compiling
Algorithm

Administrator
Multi-pass

Analysis
Semantic

Domain

Requirements
Capture

Software
Architecture

Host Compiler Target System

Run-time
System

Run-time

Design
to

Code
P1 P2 P4 P5 P9Front-end Back-endP6

P:

pass

1

2

5 6

7

8

9

3

4

10

11 12 13

T-code α

β

 γ

Architecture

Theory

45

Fig. 5.13. Project development graph: Compiler development

The top horizontal and dashed line of Fig. 5.13 separates domain engineering
from requirements engineering. The domain engineering box (“Semantics”)
represents a simplification of the usual domain engineering process diagram.
(You are to put that usual diagram into the “Semantics” box (a form of sup-
plementation)!) The second horizontal and dashed line of Fig. 5.13 separates
requirements engineering from software design. (Again you are to supplement
the requirements engineering and software design boxes etc. of Fig. 5.13 with
the generic process models for requirements engineering and software design.)

The software (domain, requirements, software design) development graphs
in the sense of supplementation are orthogonal to process models. They allow
more meaningful assignment of semantics to boxes and edges and they allow
more specific management (planning, monitoring and control).

In this paper we do not show how to construct a resulting pull graph from
the combination of the earlier process models with the later, domain specific
graph.

5.4 Process Assessment and Improvement Management 129

Management

So far, in this paper, we have not dealt with management. Management8 is
about planning, and monitoring and controlling process resource usage —
including the quality of the documents emanating from the use of resources.
Planning is about scheduling and rescheduling processes and allocating and
re- and deallocating resources to (from) processes.

A primary resource in software development is the set of domain and
requirements engineers and the set of software designers. Other primary re-
sources are the time, space and tools used by these developers.

Planning — Scheduling and Allocation:

Planning starts with instantiating, selecting, or developing a new, tenta-
tive, software development graph and detailing (i.e., annotating) it wrt. pro-
cess model concepts: phases (domain, requirements, software design), stages
(stakeholder identification, acquisition, analysis, description (prescription,
specification), verification, model checking, testing, validation, etc.), and make
allowances for more crucial, detailed steps.

Based on the resulting software development graph management can, in
a far more detailed (i.e., granular) way, ascribe resource usage (people, time,
offices, equipment, software development tools) to each box and edge, and can
schedule these in time and allocate them “in space”.

Software Process Assessment 4 Resource Planning: How can
one assess a software development project plan (i.e., graph), that is, some-
thing which designates something yet to happen? Well, one can compare
to previous software development graphs purporting to cover “similar” (if
not identical) development problems and their eventual outcome, that is,
the process that resulted from following those graphs. Based on actual
resource usage accounts one can now — “to the best of anyone’s ability”
— draw a software development graph and ascribe resource consumption
estimates (time, people, equipment) to each and every node and edge.
Thus ‘assessment’ here was “speculated assessment” of an upcoming
project.

Thus, if that ‘speculated assessment’ of an upcoming project is felt, by the
assessors, i.e., the management, to be flawed, to be questionable, then one has
to proceed to improvement:

Software Process Improvement 4 Resource Planning: One
must first improve the precision with which one designs the domain spe-
cific project development graphs. Then the precision with which we asso-
ciate resource usage with each box and edge of such a graph. Etcetera.

8We restrict management to the below items. That is: we do not consider product
management (which products to develop and in which sequence of deliverables) nor
project funding.

130 5 The Triptych Process Model

Some development projects are very much “repeats” of earlier such
projects and one can expect improvement in project development graphs
for each “repeat”. Other projects are very much tentative, explorative,
that is, are actually applied research projects — for which one only knows
of a project development graph at the end of the project, and then that
graph is not necessarily a “best such”!

Monitoring & Controlling Resource Usage:

As the project (i.e., the process) evolves management can now check a number
of things: adherence to schedule and allocation, and adherence to the syntactic
and the semantic notions of process model compliance.

Most process models do not possess other than rather superficial and then
mostly syntactic notions of compliance. In the triptych process model semantic
compliance is at the very core: Every box and every edge of the process models
have precise syntax and semantics of the documents that are the expected
results of these (box and edge) activities.

Software Process Assessment 5 Resource Usage: No problems
here. As each step (of the development process) unfolds one can assess
its compliance to estimated plan.

Should a resource usage assessment reveal that there are problems (for exam-
ple: all resources used well before completion of step) then something must
be done:

Software Process Improvement 5 Resource Usage: Well,
perhaps not this time around, when all planned resources have already
been consumed — no improvement can undo that — but perhaps “next”
time around. An audit may reveal what the cause of the over-consumption
was. Either a näıve, too low resource estimate, or unqualified staff, or
some simple or not so simple mistakes? Improvement now means: make
precautions to avoid a repetition.

Resource usage is at a very detailed and accountable level and can thus be
better assessed. Slips (usually excess usage) can be better foreseen and dis-
covered and more clearly defined remedies, should milestones be missed or
usage exceeded, can then be prescribed — including skipping stages and steps
whose omission are deemed acceptable.

Skipping stages and steps result in complete, perhaps extraneous (ad hoc)
processes. Given that management has an “ideal” process model and hence
an understanding of desirable, possibly iterated processes, management can
now better assess which are acceptable slips.

From Informal to Formal Development

By process improvement, to repeat and to enlarge on our previous character-
isation of what is meant by process improvement, we understand something

5.4 Process Assessment and Improvement Management 131

which improves the quality of resulting software. We “translate” the term ‘re-
sulting software’ into the term ‘resulting documents’. These documents can
— as defined on in Sect. 5.3.3 — be developed either informally (without
any use of any formalism other than the final programming language9), or
systematically formal, or rigorously formal or formally formal!

Informal Development:

It is an indispensable property of the triptych approach to software develop-
ment that the formalisable steps domain engineering, requirements engineer-
ing and software design be pursued in some systematic via rigorous to formal
manner. Hence the informal aspects of development is restricted to the devel-
opment of only the informative documents. Informative documents are usually
“developed” by project leaders and managers. Hence an “upper” level of man-
agement is process assessing and possibly prescribing process improvements
to a “lower” level of management!

Software Process Assessment 6 Informal Development of

Informative Documents: We refer to Fig. 5.2 on page 109. That
figure lists the kind of documents to be carefully developed — and hence
assessed. Since no prescribed syntax, let alone formal semantics can be
given for these documents — whose purpose is mainly pragmatic — as-
sessment is a matter of style. It is easy to write non-sensical, “pat” infor-
mative documents which do not convey any essence, any insight. Assess-
ment hence has to evaluate: dose a particular, of the many informative
documents listed in Fig. 5.2 on page 109, really convey, in succinct form,
an essence of the project being initiated?

Software Process Improvement 6 Informal Development of

Informative Documents: If an informative document is assessed to
not convey its intended message succinctly, with necessary pedagogical
and didactical “bravour”, then it must be improved. Only “seasoned”,
i.e., experienced managers can do this.

Systematic, Rigorous and Formal Development:

The development of domain description, requirements prescription and soft-
ware design documents as well as the development of analytic documents
(tests, verification, model checking and validation) can be done in a spectrum
from systematically via rigorously to formally.

9Thus we do not consider UML to be a formalism. For a “formalism” to qualify
as being properly formal it must have a precise syntax, the syntax must have a
precise semantics, and there must be a congruent proof system, that is, a set of
proof rules such that the semantics satisfy the proof rules.

132 5 The Triptych Process Model

Software Process Assessment 7 Staff and Tool Qualifica-

tion: Given the syntax and semantics of the specific step — in the
process model — of the tasks to be assessed a (syntax and semantics) a
knowledgeable person, a project (task) leader or a manager, can assess
compliance. That assessment is greatly assisted by the software tools10

that support activities of those tasks: If they can process the documents
then something seems OK. If not, assessment will have to be negative.

There are now two distinct, “extreme” reasons for a failure to meet assessment
criteria — with any actual reason possibly being a combination of these two
“extremes”. One is that the quality of the staff performing the affected tasks
is not up to expectations. The other is that the tools being deployed are not
capable of supporting the problem solution task.

Staff Qualification:

If the assessment of ‘Systematic, Rigorous and Formal Development of Specifi-
cations and Their Analysis’ is judged negative due to inadequate development
decisions then we suggest the following kind of improvement.

Software Process Improvement 7 Staff Qualification: It is
suggested that improvement, when deemed necessary, takes either of
three forms: Either “move” from a systematic to a rigorous level of devel-
opment, or from a rigorous to a formal level of development when that is
possible and redo the task(s) affected. Or educate and train staff to re-
perform the affected task(s) more accurately (while remaining systematic,
rigorous, or formal as the case may be. Or replace affected staff with bet-
ter educated and trained staff and redo the task(s) affected. These kinds
of improvement decisions are serious ones.

Tools

There are different categories of tools. Tools can serve management: for the
design of software development graphs (a la Fig. 5.13 on page 128) and
their “fusion” into the appropriate process model diagrams (a la Fig. 5.4,
Fig. 5.8 and 5.9, and Fig. 5.11) and for the monitoring and control (i.e., as-
sessment and improvement) of the process with respect to these diagrams.
And tools can serve developers: syntactic and semantic description, prescrip-
tion and software design tools as well as analytic tools: for testing, model
checking and verification (proof assistance or theorem provers). These tools
embody, that is, represent the formalisms of the textual or diagrammatic nota-
tions used — whether Alloy [146], B [1,71], CafeOBJ [89,90,99,100], Casl

[11, 78, 184, 185], Duration Calculus [247, 248], LSCs [80, 128, 153], MSCs

10These software tools mainly support the use of the main tools, namely the
specification languages, their transformation (or refinement) and their proof systems.

5.4 Process Assessment and Improvement Management 133

[142–144], Petri Nets [148, 199,210–212], RAISE RSL [31–33,101,104,106],
Statecharts [123, 124, 126, 127, 129], TLA+ [155, 156, 175, 176], VDM-SL

[55,56,95,96], or Z [132,133,229,230,242]. Thus the formal notations of the
above listed thirteen languages, whether textual or diagrammatic, or combi-
nations thereof, are tools, as are the software packages that support uses of
these linguistic and analytic means.

Tool Qualification:

If assessment of ‘Systematic, Rigorous and Formal Development of Specifica-
tions and Their Analysis’ is judged negative due to inadequate tools then we
suggest the following kind of improvement:

Software Process Improvement 8 Tool Qualification: Better
tools must be selected and applied to the task(s) affected (i.e., judged
negatively assessed). These tools are either intellectual, that is, the speci-
fication languages, whether textual or diagrammatic, and their refinement
and proof systems, or they are the manifest software tools that support
the intellectual tools. These are likewise a serious improvement decisions.

5.4.5 Review of Process Assessment and Improvement Issues

We have surveyed, somewhat cursorily, a number of software process assess-
ment and software process improvement issues. We characterise these from a
another viewpoint below.

1. Process Model Syntax and Semantics Assessment and Improve-

ment:

We refer to Page 121.
The issue here is whether the management and development staff really
understands and, to a satisfactory degree, can handle the triptych pro-
cess model in all its myriad of phases, stages and steps, specificationally
and analytically, and with all its myriad of documentation demands. If
not, then they cannot be effectively assessed and subjected to “standard”
improvement measures.
This is an assessment (and improvement) issue which precedes proper
project start.

2. Syntactic Process Compliance Assessment and Improvement:

We refer to Page 126.
This issue is a “going concern”, that is, an ongoing, effort of regular assess-
ment and possibly an occasional improvement. It merely concerns whether
a mandated step (or stage or even phase) of development and its expected
production of related documents has taken or is taking place.

3. Planned Syntactic and Semantics Compliance Assessment and

Improvement:

134 5 The Triptych Process Model

This is an assessment (and improvement) issue which, in a sense, sets a
proper framework for the project: Does management wish to attain at
least CMM level 4, or higher or lower? In that sense it precedes project
start while determining the rigour with which the next assessments and
improvements are to be pursued.

4. Resource Planning Assessment and Improvement:

We refer to Page 129.
This item of assessment and improvement takes place at project start
and may have to be repeated when resource consumption exceeds plans.
Assessment and improvement may involve “layers” of project leaders and
management.

5. Resource Usage Assessment and Improvement:

We refer to Page 130.
This item of assessment and improvement takes place at regular inter-
vals during an entire project and involves “layers” of project leaders and
management. It may lead to replanning, see Item 4.

6. Informative Document Assessment and Improvement:

We refer to Page 131.
Informative documents are usually directed at client and software house
management and not at software house software engineers. As such they
are often the result of the combined labour of client and software house
management. Assessments take place while the planned project is being
discussed between these partners. Improvements may then be suggested
at such mutual project planning meetings.

7. Staff and Tool Qualification Assessment

We refer to Page 132.
This form of assessment is probably the most crucial aspect of SPA (and
hence of SPI). It strikes at the core of software development. The resources
spent in what is being assessed conventionally represents a very large, a
dominating percentage of resource expenditures.
Thus this complex of “myriads” of process step, stage and phase (docu-
ment) assessment must be subject to utmost care.

7. Staff Qualification Improvement:

We refer to Page 132.
The implications of even minor staff improvement actions may be serious:
staff well-being, inavailability of staff, serious delays are just a few. Thus
improvement planning must be subject to utmost care, both technically
and socio-economically, but also as concerns human relations.

8. Tool Qualification Improvement:

We refer to Page 133.
The implications of even minor tool improvement actions may be serious:
serious retraining or restaffing, serious time delays, and serious hence cost
overruns.

5.4 Process Assessment and Improvement Management 135

5.4.6 Hindrances to Process Assessment and Improvement

What could be “standard” hindrances to assessment and improvement? And
what could be similar hindrances to actually carrying out projects according
to the triptych process model?

Lack of Knowledge of Methodology

Both management and development staff must be intimately familiar with the
triptych process model and its syntactic, semantic and pragmatic implications,
its need for from systematic via rigorous to formal development, its need
for the creation, use, maintenance and correlation of myriads of documents,
and its need for assessment and possible improvement. Lack of knowledge
of the methodology, ever so sporadically, is a hindrance to proper software
development processes.

Generation Gaps

Classically we see that young candidates join software houses as software engi-
neers, fluent in the kind of methods: principles, techniques and tools inherent
in the triptych approach. They are eager to use these. But they are usually
stifled: their slightly older colleagues as well as their project leaders and
managers do not possess the same skills, or are outright illiterate wrt. the
triptych methods: principles, techniques and tools. Lack of knowledge of the
methodology, across generations of staff, is a hindrance to proper software de-
velopment processes — and even a few years (say ten) count as a generation
today.

Lack of Tools

Above we pointed out that there we intellectual tools and there were software
tools that support the use of the intellectual tools. Here we mean both.

On one hand, the problem being tackled in a particular software develop-
ment project may be such that there are, as of today, year 2006, no obvious
or no good intellectual tools (and a methodological approach, i.e., a process
model) for the properly assessable and improvable pursuit of such a project.
On the other hand, even when appropriate intellectual tools are (and a process
model is) available there may not be good manifest, that is, software support
tools available.

Lack of tools is a serious hindrance to proper software development pro-
cesses.

136 5 The Triptych Process Model

Lack of Acceptance

By far the most common hindrance to proper software development processes
— such as suggested by the triptych process model — processes that can be
properly assessed and for which a continuum of improvement possibilities ex-
ists — is (1) the lack of acceptance of what is referred to as “formal methods”,
and (2) the lack of acceptance of the necessity to do proper domain modelling
before tackling requirements.

This is not the time and place to lament on those “facts”.

5.5 Conclusion

It is time to conclude.

5.5.1 Summary

We have overviewed a rather comprehensive process model, the triptych model
which prescribes three development phases: domain engineering, requirements
engineering and software design, and which, within these prescribes a number
of stages and within these again a number of steps. Phases, stages and steps
may be iterated, and phases, stages and steps, as well as the transition between
them results in documents. We have modelled process models as acyclic graphs
which denote possibly infinite sets of indefinite length traces of waves, where
a wave is a set of nodes and edges of the graph not on the same path from
an input node (of in-degree 0) to an output node (of out-degree 0), but where
subsequences of traces may be repeated (due to process iterations: redoing
“previous” tasks).

We have then identified a class of seven software process assessment cat-
egories and eight software process improvement categories, all in relation to
the syntax and semantics of the triptych process model. Finally we briefly
touched upon hindrances to process assessment and improvement.

5.5.2 Future

This is the first time the author has related the triptych model of [31–33] to
SPA and SPI: software process assessment and software process improvement,
and hence to CMM, Watts Humphrey’s Capability Maturity Model. It has
been instructive to do so. Clearly, for actual projects to apply the triptych
approach and to carry out the assessments and improvements suggested in this
paper, more clarifying directions must be given. And support tools developed.

5.5.3 Software Procurement

Software

By software we shall here mean not just the executable code and some man-
uals on how to install, use and possibly repair this code, but also all the
documents that emanates from a full project developing this code. That is,
all the documents listed in Fig. 5.3, Figs. 5.5, 5.6 and 5.7, and in Fig. 5.10.

Procurement

In software procurement it is therefore natural that the procurement includes
as large a set of the documents mentioned in those figures, and that all
these documents have passed an assessment with some positive, CMM level-
relatable degree of acceptance.

