
“What is an Infrastructure ?”

Towards an Informatics Answer

Dines Bjørner
Department of Computing Science and Engineering
Institute of Informatics and Mathematical Modelling

Technical University of Denmark
Bldg.322, Richard Petersens Place
DK–2800 Kgs.Lyngby, Denmark

db@imm.dtu.dk; http://www.imm.dtu.dk/˜db

Thursday June 19, 2003

Abstract

We briefly discuss the dogmas of a domain engineering oriented and a formal tech-
niques based approach to software engineering. Then we try delineate the concepts of
infrastructure and infrastructure components. Finally we hint at an abstract example
work flow domain model: transaction script work flows. It is claimed that such are one
of the core informatics characteristics of infrastructure components. The paper ends with
some reflections on 10 years of UNU/IIST.

1 Some Software Engineering Dogmas

1.1 From Science via Engineering to Technology

The “ST” in UNU/IIST stands for software technology. But UNU/IIST seems, in the last 10
years, to have stood for an engineering basis for construction of software. The engineering
basis was scientific, and was based on computer science. The approach to the construction
of software was based on computing science — programming methodology. We saw it, and I
believe UNU/IIST still sees it, this way: The engineer as “walking the bridge” between science
and technology: Creating technology based on scientific insight; and, vice–versa, analysing
technological artifacts with a view towards understanding their possible scientific contents.
Both science and technology; both synthesis and analysis.

1.2 CS ⊕ CS ⊕ SE

Computer science, to me, is the study and knowledge of the artifacts that can “exist” in-
side computers: Their mathematical properties: Models of computation, and the underlying
mathematics itself. Computing science, to me, is the study and knowledge of how to construct
those artifacts: programming languages, their pragmatics, their semantics, including proof
systems, their syntax; and the principles and techniques of use. The difference is, somehow,
dramatic. Software engineering is the art, discipline, craft, science and logic of conceiving,

1

2 “What is an Infrastructure ?”

constructing, and maintaining software. The sciences are those of applied mathematics and
computing. I consider myself both a computing scientist and a software engineer.

1.3 Informatics

Informatics, such as I saw it in the early 1990s, at UNU/IIST, was a combination of mathe-
matics, computer & computing science, software engineering, and applications. Perhaps this
is a way still to see it ? Some “sobering” observation: Informatics relates to information
technology (IT) as biology does to bio—technology; Etcetera ! The political (UN, Macau,
PRC, &c.) world is, forever (?) caught by the syntax of “gadgets”. UNU/IIST was steadfast
in its focus on pragmatics and semantics.

1.4 A Triptych Software Engineering

1.4.1 The Dogma

The Triptych Dogma: Before software can be designed, we must understand the requirements.
Before requirements can be expressed we must understand the domain. This then was a dogma
— is it still ? Software engineering consists of the engineering of domains, engineering of
requirements, and the design of software. In summary, and ideally speaking: We first describe
the domain: D, from which we define the domain requirements; from these and interface and
machine requirements, ie. from R, we specify the software design: S. In a suitable reality we
secure that all these are properly documented and related: D,S |= R, when all is done !

In proofs of correctness of software (S) wrt. requirements (R) assumptions are often stated
about the domain (D). But, by domain descriptions, D, we mean “much more” than just
expressing such assumptions.

1.4.2 Some Issues of Domain Engineering

The Facets: To understand the application domain we must describe it. We must, I believe,
describe it, informally (ie. narrate), and formally, as it is, the very basics, ie. the intrinsics;

the technologies that support the domain; the management & organisation structures of
the domain; the rules & regulations that should guide human behaviour in the domain;
those human behaviours: the correct, diligent, loyal and competent work; the absent–minded,
“casual”, sloppy routines; and the near, or outright criminal, neglect. &c.

In [2] we go into more details on domain facets while our lecture notes (cum planned book
[3]) brings the “full story”.

The Evidence: How are we describing the domain ? We are rough sketching it, and
analysing these sketches to arrive at concepts. We establish a terminology for the domain.
We narrate the domain: A concise professional language description of the domain using only
(otherwise precisely defined) terms of the domain. And we formalise the narrative. We then
analyse the narrative and the formalisation with the aims of validating the domain description

“against” domain stake–holders, and of verifying properties of the domain description.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 3

On Documentation in General: In general there will be many documents for each phase1,
stage2 and step3 of development: Informative documents: Needs and concepts, development
briefs, contracts, &c. Descriptive/prescriptive documents: Informal (rough sketches, ter-
minologies, and narratives) and (formal models) analytic documents: Concept formation,
validation, and verification. These sets of documents are related, and occur and re–occur for
all phases. See for example our distinction, below, between what is elsewhere called: User
requirements, vs. system requirements.

1.4.3 Some Issues of Requirements Engineering

How are we otherwise to formulate requirements ? We see requirements definitions as com-
posed from three viewpoints: Domain, interface and machine requirements. We survey these.

Requirements are about the machine: The hardware and software to be designed.

Domain Requirements: Requirements that can be expressed solely with reference to, ie.
using terms of, the domain, are called domain requirements. They are, in a sense, “derived”
from the domain understanding. Thus whatever vagueness, non–determinism and undesired
behaviour in the domain, as expressed by the respective parts of the domain intrinsics, support

technologies, management & organisation, rules & regulations, and human behaviour, can now
be constrained, if need be, by becoming requirements to a desirably performing computing
system.

The development of domain requirements can be supported by a number of principles and
techniques. Projection: Not all of the domain need be supported by computing — hence
we project only part of the domain description onto potential requirements; Determination:

Usually the domain description is described abstractly, loosely as well as non–deterministically
— and we may wish to remove some of this loosenes and non–determinism. Instantiation:

Typically domain rules & regulations are different from instance to instance of a domain.
In domain descriptions they are abstracted as functions. In requirements prescriptions we
typically design a script language to enable stake–holders to “program”, ie., to express, in an
easily computerisable form, the specific rules & regulations. Extension: Entities, operations
over these, events possible in connection with these, and behaviours on some kinds of such
entities may now be feasibly “realisable” — where before they were not, hence some forms
of domain requirements extend the domain. Initialisation: Phenomena in the world need be
represented inside the computer — and initialising computing systems, notably the software
“state”, is often a main computing task in itself, as is the ongoing monitoring of the “state”
of the ‘outside’ world for the purpose of possible internal state (ie. database) updates. There
are other specialised principles and techniques that support the development of requirements.

Interface Requirements: Requirements that deal with the phenomena shared between
external users (human or other machines) and the machine (hardware and software) to be
designed, such requirements are called interface requirements. Examples of areas of concern

1Domain, requirements and software design are three main phases of software development.
2Phases may be composed of stages, such as for example the domain requirements, the interface require-

ments and the machine requirements stages of the requirements phase, or, as another example, the software

architecture and the program organisation stages of the software design phase.
3Stages may then consist of one or more steps of development, typically data type reification and operation

transformation — also known as refinements.

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

4 “What is an Infrastructure ?”

for interface requirements are: Human computer interfaces (HCI, CHI), including graphical
user interfaces (GUIs), dialogues, etc., and general input and output (examples are: Process
control data sampling (input sensors) and controller activation (output actuator)). Some
interface requirements can be formalised, others not so easily, and yet others are such for
which we today do not know how to formalise them.

Machine Requirements: Requirements that deal with the phenomena which reside in
the machine are referred to as machine requirements. Examples of machine requirements
are: performance (resource [storage, time, etc.] utilisation), maintainability (adaptive, per-
fective, preventive, corrective and legacy–oriented), platform constraints (hardware and base
software system platform: development, operational and maintenance), business process re-
–engineering, training and use manuals, and documentation (development, installation, and
maintenance manuals, etc.).

1.4.4 Some Issues of Software Design

Once the requirements are reasonably well established software design can start. We see
software design as a potentially multiple stage, and, within stages, multiple step process.
Concerning stages one can identify two “abstract” stages: The software architecture design
stage in which the domain requirements find an computable form, albeit still abstract. Some
interface requirements are normally also, abstract design–wise “absolved”, and the programme
organisation design stage in which the machine requirements find a computable form. Since
machine requirements are usually rather operational in nature, the programme organisation
design is less abstract than the software architecture design. Any remaining interface require-
ments are also, abstract design–wise “absolved”.

This finishes our overview of the triptych phases of software development.

1.5 Formal Techniques

A significant characteristics in our approach is that of the use of formal techniques: formal
specification, and verification by proofs and by model checking. The area as such is usually
— colloquially — referred to as “formal methods”. By a method we understand a set of
principles of analysis and for selecting techniques and tools in order efficiently to achieve the
construction of an efficient artifact. By formal specification we mean description by means
of a formal language: One having a formal semantics, a formal proof system and a formal
syntax. In this paper we shall rather one–sidedly be illustrating just the specification side
and not at all show any verification issues. And in this paper we shall rather one–sidedly also
be using only one tool: The Raise Specification Language: RSL [11, 10].

2 On Infrastructures and their Components

UNU/IIST was placed in a UN + World Bank environment4. In that environment such terms
as: infrastructure, self–reliance, and sustainable development, were part of the daily parlance.
How was UNU/IIST to respond to this. It had to !

4Also known as the Bretton Woods Institutions.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 5

2.1 The World Bank Concept of Infrastructure — A 1st Answer

One may speak of a country’s or a region’s infrastructure.5 But what does one mean by that ?

2.1.1 A Socio–Economic Characterisation

According to the World Bank,6 ‘infrastructure’ is an umbrella term for many activities referred
to as ‘social overhead capital’ by some development economists, and encompasses activities
that share technical and economic features (such as economies of scale and spill-overs from
users to non-users).

Our interpretation of the ‘infrastructure’ concept, see below, albeit different, is, however,
commensurate.

2.1.2 Concretisations

Examples of infrastructure components are typically: The transportation infrastructure sub-
–components (road, rail, air and water [shipping]); the financial services industry (banks,
insurance companies, securities trading, etc.); health–care; utilities (electricity, natural gas,
telecommunications, water supply, sewage disposal, etc.), etc. ?

2.1.3 Discussion

There are thus areas of human enterprises which are definitely included, and others areas
that seem definitely excluded from being categorised as being infrastructure components.
The production (ie. the manufacturing) — of for example consumer goods — is not included.
Fisheries, agriculture, mining, and the like likewise are excluded. Such industries rely on
the infrastructure to be in place — and functioning. What about the media: TV, radio
and newspapers ? It seems they also are not part of the infrastructure. But what about
advertising and marketing. There seems to be some grey zones between the service and the
manufacturing industries.

2.2 The mid 1990’s UNU/IIST Concept of Infrastructure — A 2nd Answer

UNU/IIST took7 a more technical, and, perhaps more general, view, and saw infrastructures
as concerned with supporting other systems or activities.

Software for infrastructures is likely to be distributed and concerned in particular with
supporting communication of information, people and/or materials. Hence issues of (for ex-
ample) openness, timeliness, security, lack of corruption, and resilience are often important.8

2.3 “What is an Infrastructure ?” — A 3rd Answer

We shall try answer this question in stages: First before we bring somewhat substantial
examples; then, also partially, while bringing those examples; and, finally, in a concluding
section, Section 4.2 of this paper. The answer parts will not sum up to a definitive answer !

5Winston Churchill is quoted to have said, during a debate in the House of Commons, in 1946: . . . The

young Labourite speaker that we have just listened to, clearly wishes to impress upon his constituency the fact

that he has gone to Eton and Oxford since he now uses such fashionable terms a ‘infra–structure’ . . .
6Dr. Jan Goossenarts, an early UNU/IIST Fellow, is to be credited with having found this characterisation.
7I write “mid 1990’s” since that is what I can vouch for.
8The above wording is due, I believe, to Chris George, UNU/IIST.

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

6 “What is an Infrastructure ?”

2.3.1 An Analysis of the Characterisations

The World Bank characterisation, naturally, is “steeped” in socio–economics. It implies, I
claim, that what is characterised is well–functioning. It could, possibly, be criticised for
not giving a characterisation that allowed one to speak of well-functioning, and of not so
well–functioning infrastructures. It cannot be used as a test: Is something presented an
infrastructure, or is it not ? And it begs the question: Can one decompose an infrastructure
into parts, or as we shall call them, components ?

The UNU/IIST characterisation, naturally, is “steeped” in systems engineering. It seems
we were more defining requirements to the business process engineering of an infrastructure
(component), than the domain — which, as for the World Bank characterisation, assumes a
concept of “good functionality.”

We shall, despite these caveats, accept the two characterisations in the following spirit:
For a socio–economically well–functioning infrastructure (component) to be so, the character-
isations of the intrinsics, the support technologies, the management & organisation, the rules
& regulations, and the human behaviour, must, already in the domain, meet certain “good
functionality” conditions.

That is: We bring the two characterisations together, letting the latter “feed” the former.
Doing so expresses a conjecture: One answer, to the question” “What is an infrastructure”, is,
seen from the viewpoint of systems engineering, that it is a system that can be characterised
using the technical terms typical of computing systems.

2.3.2 The Question and its Background

The question and its first, partial answer, only makes sense, from the point of view of the
computer & computing sciences if we pose that question on the background of some of the
achievements of those sciences. We mention a few analysis approaches. They are the denota-
tional, the concurrency, the modal (incl. temporal) logic, the type/value, and the knowledge
engineering approaches.

An important aspect of my answer, in addition to be flavoured by the above, derives from
the semiotics distinctions between: pragmatics, semantics, and syntax. So we will also discuss
this aspect below.

2.3.3 A Third Attempt at an Answer

A first concern of the socio–economics of infrastructures seems to be one of pragmatics: For
society, through state or local government intervention, either by means of publicly owned,
or by means of licensed semi–private enterprises, to provide infrastructure component means
for “the rest of society”: Private people and private (or other public) enterprises, to function
properly. Depending on “the politics of the day” provision of such means may, or may not
be state subsidised. So efficiency and profitability of such infrastructure components were
sometimes not a main concern. The above observations certainly seems to have applied in
the past.

With the advent of informatics, the confluence of computing science, mathematics (incl.
mathematical modelling), and applications, the business process re–engineering of infrastruc-
ture components forces as well as enables a new way of looking at infrastructure components.
We therefore recapitulate the UNU/IIST view of infrastructures.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 7

Computing systems for infrastructures are distributed and concurrent, and are concerned
with the flow of information, people, materials,and control, and the manipulation of the
“flowed items”.

Concepts like denotations, concurrency, types, logics (including modal logics), agents and
speech acts, computational models, and semiotics (pragmatics, semantics and syntax) seems
to offer a mind set associated with a vocabulary that “lifts” daily, short-range, and hence
often short–sighted reasoning, and thus a framework for long–range thinking about necessary
infrastructure process re–engineering.

So our “third try” at an answer to the question: “What is an Infrastructure ?”, is a
rather unconventional one: An infrastructure, as seen from the point of view of informatics
(mathematics ⊕ computing science ⊕ applications), is a challenge: A class of systems that
we need characterise both from the point of view of socio–economics, and from the point of
view of computing science, and to relate the two answers.

3 Work Flow Domains

We first motivate these seeming digressions: From, in Section 1, overviewing a software
enineering paradigm, via, in Section 2, discussing the socio–economic as well as other meanings
of the term ‘infrastructure’, to now, in Section 3, bringing an example of a domain description.
It may puzzle some readers.

At UNU/IIST we had to be, and were glad to be involved with providing research and
methods for the development of software for the support of infrastructure components.

Firstly it was natural for us, then, to ask such questions as: “What is a Railway ?”,
mathematically, that is, formally speaking. What is a “Financial Service System ?”, etc. And
we found ways of answering these questions, well, to tolerably well ! So it was obvious that
we had to ask, and try answer the more general question: “What is an, or ‘the’ Infrastruc-
ture ?”. Since answers to such questions as: “What is a computer progam” can be given in
denotational, or other computer science terminology, we should, naturally think of railways
and infrastructures also having such computer science attributes.

Secondly, to provide such answers we had to delve deep into the modelling, such as we
knew how to do it, of example such domains. It seems that work flow systems, of various
kinds, are at the core of infrastructure component systems. And it seems, when abstracting
several rather different kinds of work flow systems, that transaction processing systems are
at the core of either of these infrastructure component systems.

So the first and the second section now finds its first “reunion” — in this section —
in trying to apply just a tiny fragment of software engineering (and then again it is only
a tiny fragment of domain engineering) to provide the basis for subsequent answers. The
larger setting of software engineering: With domains, requirements and software design, is
necessary, we believe, in order not to loose sight of the larger picture, namely that, eventually,
after answering esoteric, abstract questions, of providing software !

3.1 Work Flows and Transactions

We would have liked to exemplify three kinds of concrete work flow systems: (1) Electronic
business: Buyers and sellers in the form of consumers, retailers, wholesalers, and producers.
Agents and brokers acting on behalf of one side (buyer or seller), respectively both sides of
these. Transactions like inquiry, quotation, order placement, order confirmation, delivery,

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

8 “What is an Infrastructure ?”

acceptance, invoicing, payment, etc. &c. (See [1].) (2) Health–care system: Citizens visiting
medical doctors, pharmacies, clinical test laboratories, hospitals, etc. Medicine flowing from
doctor to patient, from pharmacy to patient, etc. Patient medical journals flowing between
the above “layers”. &c. (3) Freight transport logistics. People sending and receiving fraight.
Logistics firms arranging for the transport of freight. Transport companies: Railways, truck-
ing firms, shipping companies, air cargo lines. Their vehicles: Trains, trucks, boats and air
crafts. Transport networks: rail lines, road nets, shipping lanes and air corridors. Transport
hubs: Train stations, truck depots, harbours and airports. The traffics: Trains, trucks, ships,
air crafts. &c. All exemplify the movement of information, materials and control.

But we refrain — for lack of space !

Instead we illustrate some of the facets of a transaction script work flow example. You can
interpret the transaction script work flow as an abstract E–business, an abstract health–care,
or an abstract logistics system !

3.2 Transaction Scripts

3.2.1 The Problem

In domains 1–2–3 (see the previous section) tasks were carried out by a distributed set of
activities either on potential or real trade (as for the electronic business example), or on
patients (as for the health–care system), or on freight (as for the logistics example), The
distributed set of operations were somehow effected by there being an actual or a virtual (a
tacitly understood) protocol. We will now examine this notion of “protocol” further.

There are two issues at stake: To find a common abstraction, a general concept, by means
of which we can (perhaps better) understand an essence of what goes on in each of the
previously illustrated examples; and thus to provide a “common denominator” for a concept
of work flow systems, a concept claimed to be a necessary (but not sufficient) component
of “being an infrastructure”.9 We could now proceed to a slightly extended discussion &

analysis of various issues that are exemplified by the previous three examples; but we omit
such a discussion & analysis here — leaving it to a more vivid “class–room” interaction to do
so. Instead we delve right into one outcome of, ie. one solution to, this discussion & analysis,
respectively search for a common abstraction, a general concept.

3.2.2 Clients, Work Stations (Servers), Scripts and Directives

There are clients and there are work stations (servers). Clients initialise and interpret scripts.

A script is a set of time–interval stamped collection of directives. Interpretation of a script
may lead a client to visit (ie. to go to) a work station. A client can at most visit one work
station at a time. Thus clients are either idle, or on their way to or from a work station:
Between being idle or visiting a previous work station. At a work station a client is being
handled by the work station. Thus work stations handle clients, one at a time. That is, a client
and a work station enter into a “rendez vous”, ie. some form of co–operation. Client/work
station co–operation exhibits the following possible behaviours: A directive is fetched (thus
removed) from the script. It is then being interpreted by the client and work station in unison.

9Railway systems, as are indeed all forms of transportation systems, are thought of as being infrastructure

components, yet, in our past models of railway systems the work flow nature was somewhat hidden, somewhat

less obvious.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 9

A directive may either be one which prescribes one, or another, of a small set of operations
to take place — with the possible effect that, at operation completion, one or more directives
have been added to the client script; or a directive prescribes that the client goes on to visit
another work station; or a directive prescribes that the client be released. Release of a client
sets the client free to leave the work station. Having left a work station as the result of a
release directive “puts” the client in the idle state. In the idle state a client is free either
to fetch only go to work station directives, or to add a go to work station w directive to its
script, or to remain idle.

3.2.3 A Simple Model of Scripts

Formalisation of Syntax:

type
T, ∆

axiom
∀ t,t′:T, ∃ δ:∆ • t′>t ⇒ δ = t′−t

type
C, Cn, W, Wn
S′ = (T × T) →m D-set
S = {| s:S′ • wf S(s) |}
D == g(w:Wn) | p(w:W,f:F) | release
F′ = (C × W) → (W × C)
F = {| f:F • wf F(f) |}

value
obs Cn: C → Cn
obs S: C → S
obs Wn: W → Wn
wf S: S → Bool
wf S(s) ≡ ∀ (t,t′):(T×T) • (t,t′)∈ dom s • t≤t′

wf F: F → Bool
wf F(c,w) as (c′,w′)
post obs Cn(c)=obs Cn(c′) ∧ obs Wn(w)=obs Wn(w′)

Annotations I: There are notions of (absolute) time (T) and time intervals (∆). And there
are notions of named (Cn, Wn) clients (C) and work stations (W). Clients possess scripts,
one each. A script associates to (positively directed) intervals over (absolute) times zero, one
or more directives. A directive is either a go to, or a perform, or a release directive. Perform
directives specify a function to be performed on a pair of clients and work stations, leaving
these in a new state, however constrained by not changing their names.

3.2.4 A Simple Model of Work Flow

Formalisation of Semantics — The Work Flow System:

type
Cn, Wn

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

10 “What is an Infrastructure ?”

CΣ, WΣ
CΩ = Cn →m CΣ
WΩ = Wn →m WΣ

value
obs S: CΣ → S
remove: (T×T) × D → S → S
add: (T×T) × D → S → S
merge: S × CΣ → CΣ
obs CΣ: C → CΣ
obs WΣ: W → WΣ

cω:CΩ, wω:WΩ, t0:T, δ:∆

sys: Unit → Unit
sys() ≡ ‖{client(cn)(t0)(cω(cn))|cn:Cn}‖(‖{ work station(wn)(t0)(wω(wn))|wn:Wn})

Annotations II: Clients and work stations have (ie. possess) states. From a client state one
can observe its script. From a script one can remove or add a time interval stamped directive.
From the previous notions of clients and work stations one can observe their states.10 cω, wω
t0, and δ represent initial values of respective types — needed when intialising the system
of behaviours. A work flow system is now the parallel combination of a number (# Cn) of
clients and a number (# Wn) of work stations, the latter all occurring concurrently.

Formalisation of Semantics — Clients:

channel
{ cw[cn,wn] | cn:Cn, wn:Wn } M

value
client: cn:Cn → T → CΣ → in,out { cw[cn,wn] | wn:Wn } Unit
client(cn)(t)(cσ) ≡ c idle(cn)(t)(cσ) ⌈⌉ c step(cn)(t)(cσ)

c idle: Cn → T → CΣ → Unit
c idle(cn)(t)(cσ) ≡ let t′:T•t′>t in client(cn)(t′)(cσ) end

c step: cn:Cn → T → CΣ → in,out { cw[cn,wn] | wn:Wn } Unit

Annotations III: Any client can, in principle, visit any work station. Channels model
this ability. A client is either idle or potentially visiting a work station (making one or more
transaction steps). The client makes the (ie. a non–deterministic internal) choice, whether idle
or potential action steps. To “perform” an idle “action” is to non–deterministically advance
the clock.

10The two notions may eventually, in requirements be the same. In the domain it may be useful to make a

distinction.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 11

Formalisation of Semantics — Clients Continued:

c step(cn)(t)(cσ) ≡
let s = obs S(cσ) in
if ∃ (t′,t′′):(T×T),g(wn):D • (t′,t′′) ∈ dom s ∧ t′≤t≤t′′ ∧ g(wn) ∈ s(t′,t′′)

then
let (t′,t′′):(T×T),g(wn):D • (t′,t′′) ∈ dom s ∧ t′≤t≤t′′ ∧ g(w) ∈ s(t′,t′′) in
let cσ′ = remove((t′,t′′),g(wn))(cσ) in
let (t′′′,cσ′′) = c2ws visit(t′,t′′)(cn,wn)(t)(cσ′) in
client(cn)(t′′′)(cσ′′) end end end

else
let t′′′:T • t′′′ = t + δ in
client(cn)(t′′′)(cσ) end

end end

c2ws visit: (T×T×cn:Cn×wn:Wn)→T→CΣ→in,out {cw[cn,wn′]|wn′:Wn} (T×CΣ)
c2ws visit(t′,t′′)(cn,wn)(t)(cσ) ≡ cw[cn,wn]!((t′,t′′),cn,t,cσ);⌈⌉⌊⌋{cw[cn,wn′]?|wn′:Wn}

Annotations IV: From a client state we observe the script. If there is a time interval
recorded in the script for which there is a goto directive then such a time interval and goto
directive is chosen: removed from the script, and then a visit is made, by the client to the
designated work station, with this visit resulting in a new client state — at some “later” time.
Otherwise no such visit can be made, but the clock is advanced. A work station visit starts
with a rendez–vous initiated by the client, and ends with a rendez–vous initiated by the work
station.

Formalisation of Semantics — Work Stations:

work station: wn:Wn → WΣ → in,out { cw[cn,wn] | cn:Cn } Unit
work station(wn)(wσ) ≡

let ((t′,t′′),cn,t′′′,cσ) = ⌈⌉⌊⌋{cw[cn,wn]?|cn:Cn} in
let (t′′′′,(sσ′,wσ′)) = w step((t′,t′′),cn,t′′′,(cσ,wσ)) in
cw[cn,wn]!(t′′′′,sσ′) ;
work station(wn)(wσ′) end end

w step: (T×T) → wn:Wn → (CΣ×WΣ) → in,out { cw[cn,wn] | cn:Cn } Unit
w step((t′,t′′),(cn,wn),t′′′,(cσ,wσ)) ≡

let s = obs S(cσ) in
if s={} then (t′′′,(cσ,wσ))

else assert: (t′,t′′) ∈ dom s
let d:D • d ∈ s(t′,t′′) in
case d of

p(wn,f) →
let (t′′′′′,(sσ′,wσ′)) = act(f,t′′′′,(sσ′,wσ′)) in
let sσ′′ = remove((t′,t′′),p(wn,f))(sσ′) in
w step((t′,t′′),(cn,wn),t′′′′′,(sσ′′,wσ′)) end end

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

12 “What is an Infrastructure ?”

release →
let sσ′ = remove((t′,t′′),p(wn,f))(sσ) in
(t′′′,(cσ′,wσ)) end,
→ (t′′′,(cσ,wσ))

end end end end

Annotations V: Each work station is willing to engage in co–operation with any client.
Once such a client has been identified (cn, cσ), a work station step can be made. If the
client script is empty no step action can be performed. A work station step action is either
a function performing action, or a release action. Both lead to the removal of the causing
directive. Script go to directives are ignored (by work station steps). They can be dispensed
by client steps. Function performing actions may lead to further work station steps.

3.2.5 Discussion

We have sketched a semi–abstract notion of transaction flow. A syntactic notion of directives
and scripts have been defined. And the behavioural semantics of scripts as interpreted by
clients and work stations. We emphasize that the model given so far is one of the domain.
This is reflected in the many non–deterministic choices expressed in the model, and hence
in the seemingly “erratic”, unsystematic and not necessarily “exhaustive” behaviours made
possible by the model. We shall comment on a number of these. See the client behaviour:
Whether or not a client is step is possible, the client may choose to remain idle. See the client
idle behaviour: The client may choose to remain idle for any time interval, that is “across”
time points at which the script may contain directives “timed” for action. Now we turn to
the client step behaviour. The purpose of the client step behaviour is to lead up to a client
to (2) work station visit: Several ‘goto work station’ directives may be prescribed to occur
sometime during a time interval “surrounding” the “current” time t of the client: t′≤t≤t′′.
Which one is chosen is not specified. In fact, one could argue that we are over–specifying the
domain. A client may choose to go to a work station ahead of time: t<t′≤t′′. or late: t′≤t′′<t.
We leave such a domain “relaxation” as an exercises to the reader. If there are no selectable
‘goto work station’ directive, time (t) is stepped up by a fixed amount, but, again, one could
choose any positive increment, but that would make no difference as it would just “reduce”
(correspond) to the client idle behaviour. The client to (2) work station visit (c2ws visit)
behaviour models the interface between clients and work stations as seen from the client side.
That “same” interface as seen from the side of work stations is modelled by the two formula
lines surrounding the formula line in which the ‘work station step’ behaviour is invocated. We
now turn to work station step behaviour. This is the behaviour “where things get done !”.
The behaviours described above effected the flow. Now we describe the work. And the work
is done by performing functions. Here it should be recalled that when a client interacts with
a work station both their states are “present”. This is amply illustrated in the work station
step behaviour. The functions to be performed apply to both client and work station states,
and may affect both.

If the script is empty nothing more can be done — so we are finished. If the script is not
empty then we can assert that the work station step time interval argument is one for which
an entry can be, and is, selected from the script — non–deterministically. That entry can
(thus) be either of several: It can be a perform directive aimed at the present work station —

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 13

in which case the designated function is acted upon, the directive is removed from the script,
and another step is encouraged. It can be a release directive — in which case the client is
released, becoming an unengaged client again after the release directive has been removed. Or
it can be any other directive (other perform directives, aimed at other work stations, or go to
directives) — in which case the client is likewise “released”, but the directive is not removed.
Observe the looseness of description. Besides including all the possibly desirable behaviours,
the full model above also allows for such behaviours as could be described as being sloppy,
delinquent, or even outright criminal. This concludes our sketch model of transaction scripts
and their intended work flow.

4 Conclusion

4.1 Summary and Discussion

We have tried to conjure an image of a notion of infrastructure components. We have brought
forward both a question and a number of fragments of concurrency and type/value models
of such infrastructure components. And we have tried encircle the problem: Namely trying
to answer the question “What is an infrastructure ?” by mentioning claimed engineering
disciplines of software development: Denotational semantics, process algebras (concurrency),
type/value systems, logics, including modal logics, agents and linguistics.

Our attempt at “decomposing” development of software into “featuring” denotational,
concurrency, type/value, knowledge and other engineering considerations is, somehow, or-
thogonal (read: Complementary to) to Michael Jackson’s work on Problem Frames [12].

An Apology: It is lamentable that my examples did not illustrate uses of other than RSL

[10]. It ought also have contained examples of uses of one or another Duration Calculus

[5, 14, 8, 4, 9, 7, 6]. Especially since I brought an example which excudes temporalities. I
really apologise.

4.1.1 Infrastructure Models and Abstract Specification

UNU/IIST, had to address issues of developing countries, and newly industrialised countries,
and thus had to address issues of (i) infrastructures, (ii) self-sufficiency and (iii) self–reliance.
We found that we could do so, believably, with respect to all three facets mentioned above
(i–ii–iii), by applying the dogmas of: domain engineering, and abstract (hence: Formal)
specification. And we found that our Fellows had little problem in learning and practising
this ! Myths about so–called “Formal Methods” were — I should say —- decisively dispelled.

4.2 “What is an Infrastructure ?”

Perhaps the question is an ill–posed question ? One that does not make sense ! Are the
infrastructure components so complex, anyway, as to escape simple characterisations ? Per-
haps ! Do they not, these components, encompass the whole spectrum of all the applications
to which we put computers ? Perhaps ! &c. We shall, persist, however, and try a fourth
attempt at an answer. One that seems “a cop out”, an “escape from under the rug !”

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

14 “What is an Infrastructure ?”

4.2.1 A Fourth Answer

An infrastructure is a collection of infrastructure components. There is synchronisation
and communication between and within the components. The transaction script example
is claimed to illustrate some facets of this.

An infrastructure component is a language: The professional, specialised jargon language
spoken by professionals and users of the infrastructure component. We have, in Section 3.1,
mentioned several such languages: The language of “the market”; the language of logistics;
the language of health–care, and the language of transaction scripts and directives; &c.

Through the transaction script abstraction of work flow systems we have modelled verbs of
these languages in terms of behaviours over states and events. So infrastructure components
are seen as “computing systems” although they are not necessarily computable !

4.2.2 A Possible Impact of Computing Science upon Infrastructures

If, what we are saying above, has any relevance, then it is perhaps this: That in future
business process re–engineering (BPR) of infrastructure components the BPR engineer may
be well served in being fluent in — and in using — the kind of informatics and computing
science concepts exemplified by this paper.

It is all a matter of language !

4.3 10 Years of UNU/IIST

Having “founded” UNU/IIST, of course, makes my next statements rather biased. I believe
that UNU/IIST — exactly in spanning computer and computing science with software engi-
neering (along the lines of denotational, concurrency, temporal and type/value engineering)
was able to contribute (i) socio–economically, helping its “client” countries in easening their
way towards software reliance and self–sufficiency, (ii) “informatically” to better understand-
ing problems of infrastructure component computing systems development, (iii) programming
methodologically by researching and developing principles and techniques for development of
software for infrastructure components, and (iv) scientifically in providing firmer theoretical
bases for the development of real–time, embedded, safety critical systems. Macau, in the
1990s, was not like Florence of the Renaissance. For that to have been the case we needed
even more generous support from our sponsors — and Mr. Stanley Ho and others are not the
Medicis of our day — and Macau was not exactly at the science cross–roads. But I think we
did rather well in comparison.

When I started in Macau, my dear friends, at the Academy and at universities in China,
asked: “How big will the Institute be; how many staff ?”. When I answered, casually, and
truthfully: “Oh, I guess, some 6–8 scientists, some 6 administrative staff and some 12–24

Fellows !”, they rather immediately lost interest. Big was important. When I left after five
years we had been far more productive in science and, to some extent in advanced engineering,
than most of their departments. I believe there is no secret here: We were, and they still
are, two well–fitted, harmonious groups, both understanding the didactics of one anothers’
fields and disciplines; both supporting each other; and in a well-defined area. We did not,
as do usual departments, have to cover “the world”. Small, if not ‘important’ in the eyes of
politicians, can be beautiful.

Let us wish that UNU/IIST can continue along its course: improving here and there,
adjusting here and there, diversifying just a bit, not too much. “If it works, don’t fix it,” the

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

Towards an Informatics Answer 15

saying goes. It works.

4.4 Acknowledgements

UNU/IIST, in my days, owed its successes to several groups of people.

To my colleagues at the IBM Vienna Laboratory of the early 1970s, when VDM was first
conceived: To the late Hans Bekič, to Peter Lucas, Kurt Walk, Cliff Jones and others, and to
the visitors at IBM: Dana Scott, John Reynolds, and many others.

To the Board Members of UNU/IIST with whose much appreciated support we were able
to “fight” some myths. Perhaps that Board did not know it, but they were really of immense
help. A delight to work for.

More generally, to the computing scientists who have inspired us in what we had propa-
gated: The members of IFIP WG2.1, WG2.2 and WG2.3 — Manfred Broy, Sir Tony Hoare,
Michael Jackson, Cliff Jones, Jayadev Misra, Carroll Morgan, David Parnas, Amir Pnueli,
Natarajan Shankar, Douglas R. Smith, and several of whom came to visit us at Macau (Egidio
Astesiano, Hans Langmaack, J S. Moore, Wlad Turski, etc.). As well as to many others.

To the devoted and loyal staff and Fellows of UNU/IIST:

To the lovely ladies of the administrative staff who now for many, many years have endured
these strange scientists and their fellows, who have ensured our daily, smooth operations,
and who have stood by, in physical as well as mental typhoons; to the 77 Fellows who had
visited UNU/IIST by June 1997; and to the professional staff: To Mrs. Margaret Stewart,
my Financial & Administrative officer, and to such wonderful scientists as: Zhou Chaochen,
Søren Prehn, Chris George, Dang Van Hung, Xu Qi Wen, Tomasz Janowski, Richard Moore,
and Kees Middelburg — while I was in charge. What more can one want ?

My most emotional thanks, perhaps, goes to Zhou Chao Chen: Thanks for your readiness
to take charge, thanks for all the loyal support during the “mental typhoons”, and thanks
for your wise and wonderful way of continuing UNU/IIST. Like me, You will be very proud of
what has been achieved here. Thanks.

I also think it appropriate here to commemorate the memory of the late Dr. António
Rodrigues Juniór, the Macau Foundation President, who, on behalf of the Macau Government,
helped UNU/IIST through many, many years, but whose untimely passing away saddened us
all deeply. God Bless his Soul.

4.5 Bibliographical Notes

A book has just been published: Specification Studies in RAISE. It is edited by Chris George,
Tomasz Janowski, Richard Moore, and Dan Van Hung. It is published, early 2002, in the
Springer–Verlag UK FACT series [13]. It contains so many relevant papers and references
that the below should suffice.

References

[1] Dines Bjørner. Domain Models of “The Market” — in Preparation for E–Transaction Systems. In
Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski),
page 34 pages, The Netherlands, December 2002. Kluwer Academic Press.

[2] Dines Bjørner. “What is a Method ?” — An Essay of Some Aspects of Software Engineering,
chapter 9, pages 175–203. Monographs in Computer Science. IFIP: International Federation for

May 2, 2017, 10:16 c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003

16 “What is an Infrastructure ?”

Information Processing. Springer Verlag, New York, N.Y., USA, 2003. Programming Methodology:
Recent Work by Members of IFIP Working Group 2.3. Eds.: Annabelle McIver and Carrol Morgan. .

[3] Dines Bjørner. The SE Book: Principles and Techniques of Software Engineering, volume I: Abstraction
& Modelling (750 pages), II: Descriptions and Domains (est.: 500 pages), III: Requirements, Software
Design and Management (est. 450 pages). [Publisher currently (June 2003) being negotiated], 2003–
2004.

[4] Zhou Chaochen. Duration Calculi: An Overview. In Proceedings of Formal Methods in Programming
and Their Applications, D. Bjørner, M Broy, and I.V. Pottosin (Eds.), pages 256–266. LNCS 735,
Springer-Verlag, 1993.

[5] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information Processing
Letters, 40(5):269–276, 1991.

[6] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calculus with infinite intervals. In
Fundamentals of Computation Theory, Horst Reichel (Ed.), pages 16–41. LNCS 965, Springer-Verlag,
1995.

[7] Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear duration invariants. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, H. Langmack, W.-P. de Roever, and J. Vytopil
(Eds.), pages 86–109. LNCS 863, Springer-Verlag, 1994.

[8] Zhou Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for hybrid systems. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture
Notes in Computer Science, pages 36–59. Springer-Verlag, 1993.

[9] Zhou Chaochen and Li Xiaoshan. A mean value calculus of durations. In A.W. Roscoe, editor, A
Classical Mind: Essays in Honour of C.A.R. Hoare, pages 431–451. Prentice Hall International, 1994.

[10] Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert Milne, Claus Bendix Nielsen,
Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1992.

[11] Chris George, Anne Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank
Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

[12] Michael A. Jackson. Problem Frames — Analysing and structuring software development problems.
ACM Press, Pearson Education. Addison–Wesley, Edinburgh Gate, Harlow CM20 2JE, England, 2001.

[13] Hung Dang Van, Chris George, Tomasz Janowski, and Richard Moore, editors. Specification Case
Studies in RAISE. FACIT: Formal Approaches to Computing and Information Technology. Springer–
Verlag, April 2002. ISBN 1-85233-359-6.

[14] Liu Zhiming, A.P. Ravn, E.V. Sørensen, and Zhou Chaochen. A probabilistic duration calculus. In
H. Kopetz and Y. Kakuda, editors, Responsive Computer Systems, volume 7 of Dependable Computing
and Fault-Tolerant Systems, pages 30–52. Springer Verlag Wien New York, 1993.

c© Dines Bjørner, Fredsvej 11, DK–2840 Holte, Denmark, 2001–2003 May 2, 2017, 10:16

