
Software Engineering Education:

The Rôle of Formal Specification and Design Calculi

Dines Bjørner∗ Jorge R. Cuéllar†

October 1997, Revised May 1998

Tony Hoare on ‘Formal Methods’:

Maturity: Use of a formal method is no longer an adventure; it is becoming routine.

Convergence: The choice of a formal method or tool is no longer controversial: they are chosen in relation to

their purpose and they are increasingly used in effective combination.

Cumulative progress: Promise of yet further benefit is obtained by accumulation of tools, libraries, theories,

and case studies based on the work of scientists from many schools which were earlier considered as competitors.1

Abstract

This paper analyses current principles of software development: from domains via requirements
to design. On the basis of this analysis we outline a structure and contents of professional software
engineering. From this we extract some requirements to a university graduate (MSc.) curriculum in
software engineering. We summarise the four software engineering axes that we wish to emphasize
in this paper:

• software engineering as a responsible profession,

• abstraction, linguistics and logic,

• methodology, formal specification and design calculi

• domain, requirements and software-design engineering.

We view (i) engineering as ‘walking the bridge between science and technology’ — with engineers
using mathematics as and when appropriate, (ii) methods as ‘sets of principles for analysing prob-
lems and for selecting and applying techniques and tools in order efficiently to construct an efficient
artifact (here software)’; and (iii) software engineering as consisting of ‘domain engineering, require-
ments engineering and software design (engineering)’ — with software development comprising all
these stages and teams of engineers specially educated in sub-branches of software engineering.

Since software engineering produces and consumes descriptions and since professional engineers
create varieties of abstractions we conclude that they make use of varieties of formal specification
languages and design calculi — to represent abstract and concrete descriptions and to calculate over
and between these.

The paper may be incomplete in not covering aspects of AI and knowledge based engineering.
It also does not deal with the dimensioning and performance evaluation of hardware and software
systems.

∗Department of Information Technology, Bldgs. 343–345, Technical University of Denmark, DK–2800 Lyngby,
Denmark; Fax: +45-45.88.45.30, E–Mail: db@it.dtu.dk, http://www.it.dtu.dk/˜ db

†Siemens AG, Department of Research and Development, D-81730 Munich, Germany; E–Mail:
Jorge.Cuellar@mchp.siemens.de

1Private communication, August 1997, received in connection with the ongoing preparation of FM’99: World
Congress on Formal Methods (in the design of computing systems), Toulouse Congress Centre, 20–24 September,
1999 — an ACM, AMAST, EATCS, ETAPS, EU, FME, IFIP and IEEE sponsored event.

1

2 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Contents

1 Introduction 4
1.1 Background . 4
1.2 Still an Immature Profession . 4
1.3 The Thesis . 4
1.4 Curriculum Experience . 6

2 Software Engineering as a Responsible Profession 6
2.1 Some Occupations . 6
2.2 Computer Science . 7
2.3 Computing Science — Programming Methodology . 7
2.4 Software Engineering . 7
2.5 Discussion . 8
2.6 Professional Software Engineering . 8

3 Abstraction, Linguistics and Logic 8
3.1 Ambiguity . 8
3.2 Abstraction . 9
3.3 Syntax . 10
3.4 Semantics . 11
3.5 Pragmatics . 13
3.6 Type Theory . 13
3.7 Programming Languages for Structured Programming . 14

3.7.1 Functional Programming Languages . 14
3.7.2 Imperative Programming Languages . 15
3.7.3 Logic Programming Languages . 15
3.7.4 Parallel/Process Programming Languages . 15
3.7.5 Algebra Programming Languages . 15

3.8 Natural Language Linguistics . 16

4 Methodology, Formal Specification and Design Calculi 16
4.1 Compilers . 16
4.2 Specification . 17
4.3 Programming . 18
4.4 Verification . 19
4.5 Model Checking & Model Checkers . 19
4.6 Theorem Proving & Theorem Provers . 21
4.7 Synthesis . 21
4.8 Methods and Methodology . 23
4.9 Systematic, Rigorous and Formal Development . 25
4.10 Software Development . 27
4.11 Discussion . 27

5 Domain, Requirements and Design Engineering 28
5.1 Domain Engineering . 28

5.1.1 Domain Engineering Concepts . 28
5.1.2 Domain Engineering vs. Logical AI . 29
5.1.3 A Domain Engineering “Process Diagram” . 30
5.1.4 A Warning against Process Diagrams . 31

5.2 Requirements Engineering . 31
5.3 Software Design Engineering . 32

The Rôle of Formal Specification and Design Calculi — May 11, 1998 3

5.4 Documents . 32
5.5 Validation vs. Verification . 34
5.6 A Classical Example: From Programming Languages to Compilers 34

5.6.1 The Domain: Language Semantics . 34
5.6.2 The Requirements: Compiler Expectations . 34
5.6.3 The Software Design: Compilers . 35
5.6.4 A Compiler Development “Process” Diagram . 35
5.6.5 Discussion . 36

5.7 Software Support for Infrastructure Systems . 37

6 Problem Frames 37
6.1 Translation Frame . 37
6.2 Information System Frame . 38
6.3 Reactive Systems / Control Frame . 38
6.4 Workpiece Frame . 39
6.5 Other Frames . 40
6.6 Remarks . 40

7 Towards a Software Engineering Curriculum 40
7.1 Topics . 40
7.2 An Example Software Engineering Cluster . 42

8 Conclusion 42
8.1 General . 42
8.2 Specifics . 42
8.3 Acknowledgements . 44

9 Bibliographical Notes 45
References . 45

4 D.Bjørner and J.R.Cuéllar: Software Engineering Education

1 Introduction

1.1 Background

Some 30 years ago the term ‘software engineering’ was coined [173].

Today, 30 years later, there is still a great disparity in the education world-wide of software
engineers, and there is still a great disparity among educators as to the contents of a proper
education.

The practice of software construction is probably the only engineering profession left which
is not regulated by standards such as followed in other branches of engineering.

1.2 Still an Immature Profession

We find this situation, after more than 30 years of university education and industrial practice,
somewhat questionable.

We are ashamed that software products are put on the market although they are known to
contain thousands of bugs! We believe it should be possible to provide some form of guarantee
of proper software functioning — as we see it in other engineering fields.

With this paper we wish to outline facets of what we see as constituting professionalism, and
how a university graduate education might achieve this. We do so through extensive, yet terse
analysis and by advancing (i.e. proposing) a close-to-comprehensive view of software engineering.

1.3 The Thesis

The thesis of this paper is that formal techniques and tools based on formal understandings of
software development should be main components in proper, professional software development.

By formal techniques we mean such that are built on formal specification and design cal-
culi. By formal specification we basically mean a mathematics, including logic, and abstraction
oriented specification which emphasizes properties rather than algorithms — even when we are
abstracting properties of algorithms! — and by design calculi we mean formal, mathematical,
in particular formal logical rules that apply to formal specification texts and allow us to deduce
or calculate properties (as in other engineering disciplines).

The objects that can exist inside a computer are data and programs (or processes); but in or-
der to create them, to reason about them, to understand their relationship to one another and to
demonstrate that they really meet their objective we need more: models of application domains,
specifications, properties of programs, abstractions, algorithms, implementation procedures, etc.
Many people believe (or act as if they do) that it is not important to discuss semantical matters
when talking about programs: the meaning of programs (and specifications, etc.) is “clear”, a
program performs a sequence of steps of checking conditions, jumping accordingly in the code,
and setting variables to expressions of other variables. Many programmers become addicted to
the illusion that they understand a program as soon as they know, instruction by instruction,
how the instruction will be compiled. A low-level semantics based on the sequence of instruc-
tions seems sufficient. But as soon as the code is large or “tricky”, or contains side effects or
race conditions, this “understanding” of the program clearly becomes insufficient. Even within
structured programs, it is unavoidable to understand large pieces of code as performing a cer-
tain clearly defined functionality. Function calls, for instance, should not be understood as “a

The Rôle of Formal Specification and Design Calculi — May 11, 1998 5

sequence of programming-language instructions” but, as the name indicates, as computing a
function (say, f(n) = n2) which is naturally represented in a syntax different from the pro-
gram itself and at a different abstraction level. To reason about the relationship of a program
to the function that it calculates, one must necessarily be talking about semantics at several
abstraction levels.

One distinguishing feature of programs written in a given programming language, is that a
program is on the one hand a syntactical object (a sequence of strings in a certain alphabet)
but, on the other, its “meaning” is a semantical (mathematical) object, and it is this meaning
that really concerns us. For instance, a program may be replaced by a semantically equivalent
program in any context. This is also the case with mathematical formulas written in a given
logic.

It is relatively easy to write discrete chaotic dynamical systems as short programs using
simple arithmetic on real numbers. And it is of course very difficult to predict what this program
is going to do in the next one or two seconds. If we do not want that our compilers, operating
systems, transaction monitors, etc. act like chaotic systems (and too many, if not most, large
systems in unusual conditions are quite unpredictable and do not satisfy the expected behaviour)
we then need two things:

• structural rules on instructions/modules/programs that restrict the way they are composed
to larger systems (preferably of syntactical nature, or at least, “easy” to check) and

• to take formal methods (specifications, semantics, etc.) seriously.

The first is what is called “structured programming”: caution about go-to statements, type
checking or programming conventions. We believe that this topic is still not completely mature,
particularly for concurrent programming; still more research and experience is needed. The
second point implies quite a drastic change in the way we teach software engineering today.

Since our presentation hinges very much on the distinctions between domain engineering, re-
quirements engineering and software-design engineering, all of which we argue should be pursued
also using formal techniques, we very briefly define these three concepts. In domain engineering
we establish models of the application domain ideally without any reference to requirements
of contemplated software and without any reference to the software design. In requirements
engineering we establish models of the external properties that are expected from the software
and ideally without any reference to how that software might achieve those properties. Finally
by design engineering we establish models of the externally observable software interfaces (the
software architecture), of the internally observable interfaces (the program organization), and
stepwise refine the program organization into executable code. We summarise the four software-
engineering axes that we wish to emphasize:

• software engineering as a responsible profession,

• abstraction, linguistics and logic,

• methodology, formal specification and design calculi, and

• domain, requirements and software-design engineering.

Although we sweep our analysis broadly we fail to analyse a proper rôle for AI and knowledge
based engineering. That is a great pity and shame, and renders this paper a torso. We apologise.

6 D.Bjørner and J.R.Cuéllar: Software Engineering Education

1.4 Curriculum Experience

Since approximately 1984 the department of the first co-author has been moving in the direction
of software-engineering education here being proposed. In the first five years (mid 1992 — mid
1997) of the existence of UNU/IIST, the United Nations’ University’s International Institute for
Software Technology, under the UN Director–ship also of the first co-author, vigorously pursued
the formal specification and design calculi as well as the domain engineering, requirements
engineering and software design engineering paradigm here being brought forward. From the
successes of Danish software houses (CRI (Computer Resources Intl.), DDC Intl., PDC (Prolog
Development Center), etc.), and from the successful technology transfer of these paradigms also
to many groups in some one and a half dozen developing countries on four continents (Asia,
Africa, South America and Eastern Europe), we take the liberty of concluding that the ideas
put forward here have been thoroughly tried & tested.

The second co-author has applied successfully the formal software techniques paradigm,
especially in connection with real-time, safety-critical systems at Siemens. He has taught math-
ematics, computer science and industrial engineering courses in several universities, including
Ohio-State, U. de los Andes (Bogota), Dortmund, Chemnitz and Munich.

2 Software Engineering as a Responsible Profession

Before delving into the specific message of this paper, to be found from section 3 on, we analyse
the general position of our field: from science to technology via engineering.

We believe that it is important that the software engineer has a clear view of the professional
standing of software engineering: vis-a-vis and hand-in-hand with science and technology.

2.1 Some Occupations

Traditional scientists study nature and abstracts — using mathematics — its mechanics, elec-
tricity (including electronics), hydrology, chemistry or astronomy.

Mathematicians study mathematics and some apply it to for example the above natural
sciences.

We are taught some of these disciplines in school, with a view towards (i) understanding the
world around us, (ii) appreciating science and mathematics as used in modelling nature, and
(iii) preparing some of us for a further, academic or occupational career based on the sciences.

Engineers, be they mechanical, electronics, chemical or astrophysics engineers, build on
scientific results, and deploy mathematics in modelling their technological artifacts with a view
towards understanding them, being able to compute properties, and being able to predict their
behaviours. Likewise with software engineers — as we shall see.

Engineers “walk the bridge between science and technology”. Engineers create technology
based on scientific insight. And engineers “act like” scientists when studying an otherwise
insufficiently documented technology in order to understand it as a scientific and engineering
artifact.

Based on scientific results and also the use of mathematics, engineers are able to construct
technologies. The technologies that we focus on are those whose construction reflect an under-
standing of underlying theories, i.e., sciences.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 7

Technicians manipulate technologies without necessarily deploying mathematics or under-
standing their background sciences.

Technology managers are typically former engineers. They typically manage engineers,
projects and products, while pushing technologies to their limits, scientifically and commer-
cially.

By software we understand the translated program for some application (the target code) as
well as the program itself (the source code), its installation, maintenance and usage manuals,
and all the documentation that was generated when the software was first developed.

By software technology we understand software that fits specific computing platforms.

2.2 Computer Science

By computer science we understand the science of what programs are, i.e., the study and knowl-
edge of the properties of the artifacts that can exist inside computers: data and processes.

Although the borderline to computing science may be fuzzy, we do count as subjects of com-
puter science those of computability and complexity theory [127], automata theory and formal
languages [116], type theory [2, 88], foundations of algebraic semantics [20, 214], denotational
semantics [191], operational semantics [183], axiomatic semantics [112, 13] and process algebras
[110]. See also [96, 169, 213].

2.3 Computing Science — Programming Methodology

By computing science we understand the science of how programs can be developed, i.e., the
study and knowledge of how to construct the artifacts that can exist inside computers.

We count as subjects of computing science, also called programming methodology, the dis-
ciplines of algorithms and data structures [156], of functional programming, logic programming,
imperative programming, parallel programming and algebra programming, as well as those of
formal specification and design calculi such as the broad-range techniques of VDM [31, 126, 75],
Z [196, 197], Larch [100, 101], RAISE [92, 93] and B [6, 135, 217], etc., as well as the more
calculi-oriented: The Discipline of Programming [64], The Science of Programming [90], The
Craft of Programming [189] and The Logic of Programming [109, 91], including the refinement
calculi-oriented [164]. A recent programming methodology discipline to receive seminal treat-
ment is that of reactive systems [49, 146, 147]. The formal specification disciplines are best
understood, as we shall claim, in a semantics setting [96, 169, 191, 60, 176].

Disciplines that straddle programming methodology and software engineering are typically
covered in subjects such as operating systems [199], database systems [58, 59, 211], distributed
systems [144], and data communication including protocols [193].

2.4 Software Engineering

Software engineering is characterised by disciplines, as we shall see it in this paper, which
secures that the software fits the application domain (domain engineering), meets expectations
(requirements engineering) and is otherwise correct (programming methodology). A central
part of software engineering is programming. In addition software engineering is traditionally
concerned with securing pragmatic issues such as efficient use of computing platform resources,
trustworthy projects and products — including test-case generation and validation, version

8 D.Bjørner and J.R.Cuéllar: Software Engineering Education

control and configuration management, design-decision tracking, [adherence to] documentation
standards, etc. Quality assurance and quality control is interwoven with all this.

2.5 Discussion

Individually many of the disciplines listed deserve separate courses. The way software engineer-
ing is being taught and covered in most text books (whose title predominantly contains the term
‘software engineering’), does not harmonise with the expanding programming methodological
topics of computing science. We usually find that most software engineers do neither practice
formal specification nor design calculi, and that most — if not all — textbooks likewise skirt
the issues prefixed ‘formal’. If these text books do contain something about so-called “formal
methods”, then it is as a separate chapter tucked away towards the end.

The whole point of this paper is to show (i) that formal techniques (specification and calcu-
lation) are indispensable if one is to practice sound and professional engineering, (ii) that they
— to us and to an increasingly growing number of professionals — are woven into almost all
software engineering, (iii) that they are no harder than similar mathematics requirements of
other engineering branches, and (iv) that there is no choice!

2.6 Professional Software Engineering

We believe that the following properties characterise the professional software engineer: (i) an
education that covers the main concepts treated in this paper, (ii) a practice which apply the
kind of techniques and tools covered in this paper and in an engineeringly sound and pragmatic
manner, (iii) a reluctance to start on software development projects for which proper methods are
either not mandated or for which no time has been set aside to ensure a reasonable adherence to
correctness issues, and (iv) refusal to complete (sign off on) developments for which a reasonable
minimum of correctness cannot be achieved.

We have used some ‘hedges’ above: sound and pragmatic, reasonable adherence, reasonable
minimum.

The quotes brought in section 8.2 starting page 42 put the “ideals” of formal specification
and design calculi into the context of the “reality” of software engineering.

3 Abstraction, Linguistics and Logic

3.1 Ambiguity

The first problem of specifications written in natural languages is ambiguity. The sources of
ambiguity are diverse and sometimes very unexpected. Therefore, even if you are convinced
that a sentence is precise (that is, not ambiguous), it is possible that a hidden ambiguity will
later surface. A first obvious source of ambiguity is that some words have several, contradicting
definitions. Two ambiguous words that we will be using in this paper are method and model.
We will discuss them in a moment. When writing a specification, a usual solution is to include
re-definitions of all terms, but those definitions themselves may be ambiguous, incomplete or
circular. Sometimes it is not desirable to redefine the terms, but instead their use in different
contexts can be systematically distinguished. A second common source of ambiguity is that
sentences may be parsed in different ways. One well-known example is the sentence “time flies

The Rôle of Formal Specification and Design Calculi — May 11, 1998 9

like an arrow”, which with some effort may be parsed as stating that a certain kind of flies
has a predilection for an arrow. This illustrates how unexpected ambiguities can be. But even
if a sentence is parsed in a unique way and all its terms are precise, its meaning may remain
ambiguous. Just compare the signs (displayed at the foot of an escalator) “Shoes must be worn”
and “Dogs must be carried”. Does this mean that whenever I want to use the escalator, I must
be wearing shoes and carrying a dog? Or is the meaning that whenever I have a dog and shoes
with me and want to use the escalator I must carrying the dog and wearing the shoes? See [122]
for a very good discussion of this example.

The words “model” and “methodology” are ambiguous. Since we will be using them often,
let us make more precise. Model may be used in the sense of:

• Model: A model is an idea, a mental construct or a mathematical object (if you wish: a
platonic object) that, perhaps tentatively, describes a system or presents a theory that
accounts for some of the properties of the system. This is the sense in which the word is
used, for instance, in “performance modelling” or “domain modelling”.

• (Logical-theoretic) Model: In logics, more specifically in so called model–oriented semantics,
a model of a formula or theory is a mathematical object that satisfies the formula or theory.

Notice that in a certain sense the two meanings are quite opposite: in the first one a model
is a generalization an abstraction of the system, while in the second one the model is a conctrete
instance where the formula or theory is true.

We avoid the ambiguity by using the adjective logical-theoretic, when a confusion may be
possible. Usually we use the word in the first sense.

The word “method” will be discussed in section 4.8. We want to use the word in the strong
sense of a set of principles for analysing a problem, etc. and not just for away of doing something,
a procedure. In this loose sense of the word, formal methods are methods, but not in the strong
one.

3.2 Abstraction

By abstraction we understand the human activity of constructing a partial description of an
“object” (be it “reality” or a mathematical object, be it an actually constructed hardware- or
software-piece or a set of expectations (requirements) that it should fulfill). Also, by abstraction
we mean the result of this process of abstracting. The abstraction describes only some properties
of the object, those that want to be emphasized as being important in the given context.

A program is quite a concrete representation of a certain mathematical object which may be
viewed as a computable function, a discrete dynamical system, an abstract state machine, an
algorithm, a (discrete) dynamical system or the like. The program itself may be compiled and
it should run on appropriate hardware, but many interesting abstractions of the program may
not be directly compiled into code.

We consider the ability to continuously find abstractions at all levels of development, in
domain, in requirements and in software design engineering, as a most crucial property a leading
software engineer must possess. We also find that most software development projects that we
have witnessed fail to exhibit such clean abstractions. It seems to us that inability to abstract
usually lead to severely limited software functionalities, to software with far too many “case
distinctions”, and therefore may be a first serious cause of erroneous software. That is: software

10 D.Bjørner and J.R.Cuéllar: Software Engineering Education

that fails to meet its requirements; requirements that do not fit to the domain description; and
a description of the domain that misrepresents the ‘real domain’ !

3.3 Syntax

In programming and specification linguistics syntax is distinguished from semantics. The syntax
is concerned with the structure of programs or specifications as strings, i.e., sequence of letters
in an alphabet. Whether a certain string is a legal program or not and how to “connect” strings
of legal programs to build larger legal programs is a matter of syntax. Semantics deal with what
legal programs mean.

By syntax we understand the rules for forming inductively a language of finite strings on a
particular alphabet from atoms. Depending on the use, the elements of the language are called
terms or well-formed formulas or programs.

For instance, one could define two languages, N and I, in the following way. Define N as
the smallest set with two properties:

• The string ‘0’ belongs to N.

• If n is a string that belongs to N, then the concatenation of the string ‘S.’ and n also
belongs to N.

and define I as the smallest set with:

• Each string that belongs to N also belongs to I.

• If n is a string that belongs to N, then the concatenation of ‘−’ and n belongs to I.

This may be written in Backus-Normal Form notation:

n ::= 0 | S.n (1)

m ::= n | −S.n (2)

These rules define the two sets of strings:

N = {0, S.0, S.S.0, . . .} (3)

I = {. . . ,−S.S.0,−S.0, 0, S.0, S.S.0, . . .} (4)

In this way, each element of N represents uniquely a natural number: the symbol 0 represents
the zero and S.n represents the successor of the number represented by the string n. Also in
the same way, each element of I represents uniquely an integer number. But instead of thinking
that the natural and integer numbers have nothing to do with strings, let us think of N as being
the set of natural numbers and I the set of integer numbers.

In other words, we are identifying the meaning of the sequence ‘S.S.0’ with the sequence
‘S.S.0’ itself! We are identifying the syntax and the semantics of N and I. Later, we may
think of 2 as an abbreviation of the sequence ‘S.S.0’. But this ‘trick’ of identifying syntax and
semantics does not always work: firstly, on some domains, like R, not all values correspond to
a syntactical expression, and secondly, because different syntactical expressions may mean the
same thing. This is the case with programming languages.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 11

Let us now introduce the syntax of a simple imperative programming language which we call
IMP. Let first Var be a set of letters that we want to call variables, and let X range over Var.
(The variables X are intended to be integer valued). Let also m, m1, m2 range over integers.

The formation rules for IMP are:

a ::= m | X | a0 + a1 | a0 − a1 | a0 × a1 (5)

b ::= tt | ff | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1 (6)

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c (7)

This notation provides an inductive definition of three sets, which will be called, respectively,
the arithmetical expressions, the Boolean expressions and the commands or programs of IMP.
Actually, something is missing in the definition of the three sets of strings: parentheses. One says
that the given Backus-Normal Form rules define the abstract syntax of the sets, while a second
set of rules is still needed to complete the concrete syntax. For instance, orders of precedence
between the operation symbols or rules for parentheses may be introduced to enforce that each
string can be parsed correctly. Our convention is that we introduce enough parentheses to ensure
that the expressions are built in a unique way.

For instance, the string of symbols:

Y := X;X := 1; while Y > 0 do (X := X × Y ; Y := Y − 1)

is a legal program in the language IMP. Now we can ask ourselves what this program means.

3.4 Semantics

By semantics we understand rules for forming “meanings” of syntactic elements from the mean-
ings of atomic parts.

There are many ways of presenting the semantics of programming or specification languages,
the most common ones are denotationally [191, 96, 169, 213], axiomatically [112, 13], and oper-
ationally [183].

As an example, we will present the semantics of a set IntExp of integer expressions. Recall
the definition we gave of I, the set of integers. If, instead, we would have let

m ::= 0 | S.m | −m

then we would have obtained a larger set of strings, including for instance ‘−S.S.−S.S.0’. This
language (set of strings) is IntExp.

The basic idea in denotational semantics is simple: atomic syntactic constructs are ascribed
some mathematical value (or function) as their denotation, while composite syntactic constructs
have their semantics expressed as a function of the semantics of each of the constructs.

Although we can not identify IntExp with the set of integers, we may think of each element
of IntExp as denoting an integer: 0 denotes the zero, S.m denotes 1 plus whatever m denotes
and −m denotes the negative of what m denotes. This mapping M : IntExp→ I is called the
denotation. Thus ‘−S.S.−S.S.0’ and ‘S.−S.0’ denote both the integer zero: M(‘−S.S.−S.S.0’) =
M(‘S.−S.0’) = ‘0’. The formal definition of M is easily given by induction.

12 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Another way of giving semantics to IntExp by the set of rewrite rules [62]:

−0 → 0 (8)

−− → ǫ (9)

S.− S. → − (10)

where ǫ is the empty string. The rules define a relation “→” on strings. The rewrite rule α→ β

may be applied to any string m containing the substring α by replacing α by β in m. If the
resulting string is m1, we write m→ m1. Let →∗ be the reflexive transitive closure of →. Thus
m→∗ m1 iff m1 may be obtained from m by (zero or more) applications of the rewrite rules. It
is for instance easy to show that ‘S.− S.S.− −S.0’ →∗ ‘− S.S.0’ by applying the rules 9 and
10. It is not difficult to show that for each m0 ∈ IntExp there is exactly one m1 ∈ I such that
m0 →

∗ m1. In this sense, m1 is precisely Mm. Moreover, the structured operational semantics
of IntExp is to consider the rules 8-10 as defining a transition system where the vertices are
elements of IntExp. There is a transition from n0 to n1 iff n0 → n1. This transition system
may be seen as a program which calculates the value of n ∈ IntExp by rewriting it step by step
until the calculation stops in an element of I.

Analogously, but somewhat more involved, is the definition of the semantics of IMP. First,
let us ask ourselves what the denotation of program should be. There are several answers to this
question, one possibility is to think of programs as changing the values of the variables. Thus,
if we define a state as a valuation of Var (a function from Val to I) then a program may be seen

as a partial function from states to states. Thus if prog ∈ IMP, M(prog): States
partial
→ States.

(It is not a total function, since some programs starting on some states σ never terminate: the
function M(prog)(σ) is not defined). For example, M(x := 3)(σ) is the state that differs with σ

at most on the value of X, the first one being 3. We denote this state by σ(X ← 3). Recall the
program we had at the end of the last section: Fac := (Y := X;X := 1; while Y > 0 do (X :=
X×Y ; Y := Y −1)). Then, it is true that M(Fac) is the function that maps the state (X 7→ n)
(for n ≥ 0) to (X 7→ n!), in other words, it is the factorial function.

To define an operational semantics, consider the set of configurations, i.e. pairs of the form
< c, σ > where c is a program IMP and σ is a state. The operational semantics gives a
transition system on the set of configurations which describes how those configurations ‘evolve’.
For instance, < X := 3; c, σ > → < c, σ(X ← 3) >. Of course, the interesting point is how to
define the semantics for the if − then− else and, even more, for the while construct. Details
can be found in [213].

An archetypical axiomatic semantics for a programming language like IMP is Hoare logic.
Although today it is used more as a logic for proving correctness and properties of programs,
it was also intended originally as a method to explain what a program actually does, in other
words as a semantics.

Hoare logic, we think, plays a central rôle in the software education, since it can be taught
from the very beginning, when students learn their first programs (even at high school). It is
also possible to use informally (a version of) Hoare logic, just as programming languages are
informally used to start with.

For instance, consider again the program Fac applied to an input X = n ≥ 0. The program
may be annoted as follows:

The Rôle of Formal Specification and Design Calculi — May 11, 1998 13

{X ≥ 0}{X = n} Y := X; X := 1;
{X = 1 ∧ Y = n} while Y > 0 do
{n! = X × Y !} X := X × Y ;Y := Y − 1; {X = n!}

Think of {b} as asserting that when the program reaches this configuration the boolean expres-
sion b is true. The first one {X ≥ 0} is an assumption of the program. The next one {X = n}
binds the value of n to whatever the value of X is. To show that the next one is true we may
rewrite Y := X;X := 1 as a relation on state and next state: Y ′ = X ∧ X ′ = 1. The proof
obligation is then X = n ∧ Y ′ = X ∧ X ′ = 1 ⇒ X ′ = 1 ∧ Y ′ = n. This is trivial. Now, we
need to show that the loop invariant {n! = X × Y !} is indeed true. Initially it is when we
enter the loop, since X = 1 and Y = n. After one step, which may be rewritten in the form
Y > 0∧X ′ = X×Y ∧Y ′ = Y −1, the invariant still holds, since n! = X×Y ! = X×Y ×(Y −1)! =
X ′×Y ′!. After the last step of the loop, the invariant still holds and moreover Y = 0. Therefore,
n! = X × Y ! = X × 0! = X. A detail in the proof is missing: the loop does terminate. This is
true since Y is always decremented by one within the loop; therefore, Y = 0 is true eventually.

The use of annotations, in the sense of pre- and post-conditions as well as in the sense of
assertions on contracts, may be used, formally and informally, as a methodology for constructing
programs from specifications (see [164, 90]).

We find that every software engineer must have a reasonable working understanding of each
of the above-listed semantics definition styles.

The archetypical model–oriented semantics definition style is that of denotational semantics
[198, 191].

Compilers can be systematically derived from denotational semantics descriptions [36].

3.5 Pragmatics

By pragmatics we mean: the reasons for choosing a certain framework (say, a formal language
or a logic) over others, as well as the actual use of syntax. For instance, when representing a
graph as an algebraic structure it is a matter of pragmatics to model a graph by (V,E) where
V is a set of vertices and E (edges) as a relationship on V or as (V,E, I) where V and E are
sets (of atoms) and I is an incidence relationship with certain properties.

Syntax and semantics can usually be formalized, but it is in the nature of pragmatics that
it cannot be formalized.

Software engineers often dream the impossible dream of trying to construct programming or
software concepts that “float” somewhere in a mixture of syntax, semantics and pragmatics. And
many issues that the programmer would like to straight-jacket into a feature are of pragmatic
nature and hence can basically not be ‘incorporated’ into the software.

It is therefore important that software engineers have experienced, during their education,
enough examples of formal syntax and formal semantics in order to learn themselves why prag-
matics is so elusive!

3.6 Type Theory

Type theory is one of the most important contributions that computer science has made to
science.

Starting with the implicit or explicit simple and (“trivially”) composite typing of variables
and values of ordinary programming languages from Fortran to C, higher order types [88], such

14 D.Bjørner and J.R.Cuéllar: Software Engineering Education

as of functions (which may again take on functions as parameters), subtypes ordered in lattices
and used for example in object-oriented systems (multiple inheritance etc.) [44, 43], and finally
intuitionistic type theory [177], type theory is an exciting “universe”. Getting the types right
(determining the signatures) is “half the fun” and brings us a long way towards getting the
software right.

3.7 Programming Languages for Structured Programming

Although few software engineers design new languages they are constantly confronted with new
languages — often through hyped propaganda. It is therefore important that software engineers
know of the various language paradigms: functional programming (Lisp [149], Standard ML
[160, 195, 212], Miranda [205], Haskell [204]), logic programming [139, 125, 67], imperative
programming [175, 107], parallel programming [113, 114, 158, 159, 119] and algebra programming
[190].

In the area of imperative programming Dijkstra’s concept of non-determinism, paired with
his formulation of Hoare logic [112] in the concept of weakest pre– and strongest post-conditions,
has become a de facto “standard” for thinking about programming and for devising semantics
and certain refinement calculi [64]. Some ‘programming’ (called meta-programming by some) is
done in terms of composing calls to various platform packages such as those provided by X11
Windows, Athena Widgets, ODP, OMG, etc. Even for their proper exploitation it is useful that
these platforms be thought of a language interpreters.

“Real”, commercial, so-called “industrial-strength” programming languages — such as CHILL
[103, 11], Ada [36], C [129], C++ [61], Java [14] — as well as the more pleasing, equally pow-
erful programming languages — such as Modula–3 [175, 107] and Oberon [215, 187, 216] —
are all composed from various linguistic constructs: functional (expressions and procedures),
logic (Boolean expressions, conditionals), imperative (variables, pointers, statements, gotos),
and parallel (critical regions, semaphores, processes, synchronisation and communication).

Instead of training future software engineers in the commercial, “industrial-strength” pro-
gramming languages, we advocate teaching them a set of paradigmatic languages now listed.
Together with each language one then has the possibility of also teaching its foundations.

In addition to university teaching, each of the languages mentioned below has given rise to
extensive research. New language paradigms emerge “continuously”. In order for the future
software engineer to be able to cope, during the active years after graduation, it is probably
wisest to expose them at university to the latest “academic, paradigmatic” languages and their
foundations. We find that doing so better enables the software engineer to teach themselves any
new programming language (Ada, Java, whatever).

3.7.1 Functional Programming Languages

In functional programming one deals with variables (and constants) of various types, with general
arithmetic, conditionals, patterns, function abstraction and function application.

Examples of functional programming languages are: LISP [149], Standard ML [160, 195, 106],
Miranda [205] and Haskells [204].

Underlying theories include Type Theories [2, 88, 43, 44] and Recursive Function Theory
(including the λ-calculus and Computability) [130, 17, 127].

The Rôle of Formal Specification and Design Calculi — May 11, 1998 15

3.7.2 Imperative Programming Languages

In imperative programming one sequentially “programs” a changing state: assigns values to
variables, manipulate pointers, etc.

Most commercial programming languages, from Fortran via Cobol, to CHILL, Ada, C, C++

and Java are basically imperative. That is: are centered around a concept of statements, where
sequential execution of simple and structured statements changes the state.

With Algol, Pascal, Modula (–3) and Oberon we had and have some rather elegant languages
— and with Dijkstra’s ‘language’ of non-deterministic constructs (and guarded commands) [64,
65] we have imperative languages which have spurred the academic interest in proof systems and
techniques of proving properties of imperative programs [172, 76, 112, 13, 175, 63, 64, 65, 66].

Perhaps one of the most important and pervasive notions of imperative programming is
that of Dijkstra’s weakest pre-conditions and strongest post-conditions, etc. [64, 65, 66]. Their
importance in language design and in refinement calculi cannot be over-estimated.

3.7.3 Logic Programming Languages

In logic programming one “programs with truth values” (through so-called resolution theorem-
proving).

Prolog is the quintessential example of a logic programming language [139]. Additionally
constraint logic programs can be processed by such systems as CLPR (Constraint Logic Pro-
gramming / [IBM Yorktown] Research) [125], Chips [67], etc.

Basic logic programming centers around a first order propositional calculus, but teach-
ing logic programming provides a good basis for teaching mathematical logic, say first-order
predicate-calculus.

3.7.4 Parallel/Process Programming Languages

In parallel programming we define and use processes: we invoke and terminate them, put
them in “parallel” (in various ways: “true parallelism”, non-deterministic external choice, non-
-deterministic internal choice, etc.), synchronize them (and then are able to exchange data
between them: communicate).

Examples of “academic, parallel languages” are CSP (Hoare’s Communicating Sequential
Processes) [113, 114], CCS (Milner’s Calculus of Communication Systems) [158, 159], and (va-
rieties of) Petri Nets.In the π-Calculus [162, 161] (the so-called mobile) processes are first class
citizens that can be communicated!

CSP serves as the basis for the industrial-strength, but nevertheless very clean occam lan-
guage [119].

Besides the CSP, CCS, π-Calculus and occam theories, there are also those more specifically
regarded as process algebras [110].

3.7.5 Algebra Programming Languages

This kind of programming is less well known in comparison to those previously mentioned.
In algebra (not algebraic) programming one considers algebras as data types and compose

and decompose them in various ways [190].
The underlying theory is basically that of category theory [111, 18, 190].

16 D.Bjørner and J.R.Cuéllar: Software Engineering Education

3.8 Natural Language Linguistics

But not everything must or can be formally expressed, and formal expressions should usually
also always be annotated, i.e., explained informally.

Ability to command one’s own language, and being able to express things succinctly, finding
and using appropriate didactic devices, all these are important properties that leading software
engineers must possess. Add to this the ability to analyse other persons ambiguous and fuzzy
descriptions, identify the crucial verbs and nouns (i.e. the alphabet), separate pragmatic concerns
from syntactic and semantic ones — the leading software engineer must be quite a person!

Since, as we shall see shortly, specifications, of domains, requirements and software designs,
usually must be both informal, in natural language, and formal, in some well-founded specifica-
tion language, and since the informal part usually ought contain a clear and terse terminology,
it is important that the software engineers who are leading the development team master their
language.

It is not only AI (artificial intelligence) that resort to linguistics and language philosophy. In
domain engineering and in requirements engineering many linguistic issues (of phenomenology,
epistemology and ontology [94, 53]) arise.2 Related modelling often is expressed in some exotic
logic or other [46, 150, 151, 155, 152, 78, 79, 80, 81, 188, 138, 137, 155].

Insight into linguistics, including computational linguistics, and related logics is therefore
deemed indispensable: professional software engineers must be well educated in these areas.

4 Methodology, Formal Specification and Design Calculi

Pervasive to all software engineering is the use of compilers and hence of programming languages.
Core activities of a software engineer is specification and programming. The next subsections
will review these.

4.1 Compilers

The most basic kind of software technology is that of compilers. Since every kind of software
technology is ultimately based on some programs, and since these must pass through a com-
piler it is of utmost importance that we get the compilers right and that the software engineer
understands them properly.

Although only few software engineers actually develop compilers, to properly understand
modern compiler writing is, we believe, an essential prerequisite for any software engineering.

Every software engineer must be thoroughly exposed to not only the semantics of program-
ming and machine languages, but also to proper compiler development as it is not only of core
importance, but also because compiler development illustrates a number of formal techniques
and tools.

Section 5.6 brings one perspective of what we mean by getting it right. Later sections bring
more.

2We refer to the Stanford University Centre for the Study of Language and Information (CSLI):
http://www-csli.stanford.edu/publications/ home page.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 17

4.2 Specification

Small programs are relatively easy to program without errors because the (single) programmer
knows exactly how each part of the program (each instruction) fits into the whole system. Also,
the software engineer knows exactly what each instruction does. In large systems the situation
is much different: the chief-designer may perhaps have an intuition, a mental model or even a
description of how the different parts interact (say, as running tasks in a complex operational
system) and the software engineer may also have a model of each of those individual parts,
but the likelihood that a subtle error remains undetected increases with the complexity of the
system. The purpose of software engineering is to provide the user a set of methods and tools
to be able to design correct systems, even if they are large. How can this be done? Well, the
problem resides in the facts that:

a) the description that the designer has of the parts of the system (and of their running
environment) are informally described and ambiguous,

b) the developing team has no way of checking that a module indeed satisfies the informal
description that it is supposed to satisfy,

c) the developing team has no infallible (i. e. sound) means of drawing conclusions from the
ambiguous descriptions of the individual parts.

Therefore, one way of achieving the goal of software engineering is first to formalize the
description (“specification”) of the components and of their interaction and then to provide
techniques (calculi) and tools to prove that the parts of the system satisfy their specification
and that from those specifications and the model of the interaction it follows that the whole
system satisfies its requirements. Also partial solutions are welcome. Even if a formal notation
is not chosen, it is still possible to disambiguate the specifications.

Specifying is the process of writing those descriptions precisely. Precise, even informal spec-
ifications are already useful: the developers understand better their system and discover incon-
sistencies, errors and ambiguities. They also document the design and help to communicate
with the customer. But, without tools, precise specifications may still hide incongruencies or
errors. Practice has shown that any effort in specifying rigorously (or formally) helps. How
much formalization is needed is in many cases debatable, in principle it is possible to have
clean and precise mathematical models and to do mathematical proofs without choosing the
formal notation or calculus to start with. This point of view is advocated with some success
by the Gurevich’s abstract state-machines approach (see [97, 98, 99, 39, 40]). In many cases,
however, a computer supported verification method based on formal calculi seems to be abso-
lutely necessary. Without tools, precise specifications and proofs may still hide incongruencies
or errors.

We shall generally be using the term ‘specification’ to cover domain, requirements and soft-
ware models. But for now let us just use the term ‘specification’ in connection only with
requirements and software designs. A requirements specification describes what the software
is expected to offer — not how. A software specification, in contrast, describes various levels
of abstraction of how the software provides the offer. At the requirements level the software
engineer does not have to bother with concrete things such as executability of specifications.
Instead the software engineer is encouraged to abstract so as to capture as succinctly as possible

18 D.Bjørner and J.R.Cuéllar: Software Engineering Education

the what. In section 5 we shall have much more to say about abstract specifications, including
those of domains.

Suffice it here to state that abstract, both informal and formal specifications related to soft-
ware have come to stay and that todays professional software, like professional control engineers,
chemical engineers, etc., must master many different specification languages and their associated
design calculi.

Examples of specification languages (with associated design calculi) are: VDM [126, 75], Z
[196, 197], Larch [100, 101], RSL [92, 93], Duration Calculi [49], B [6, 135, 217], Temporal Logics
[146, 147, 49], and TLA [133].

4.3 Programming

Programming is here used in its broadest connotation and covers the act of contriving pleasing
domain, requirements and software architecture specifications as well as the act of contriving
efficient code.

Although it is in principle possible to write structured assembler code, even for large pro-
grams, as time passes this code tends to become unstructured. (Legacy code).

It is important that programs are right: meet their specifications functionally (including
relate to previous development steps), and that software designs are otherwise efficient, easily
modifiable, etc. Techniques of programming are therefore of crucial importance.

Programming, as well as domain and requirements-model development, typically proceeds
in steps of so-called refinement: from abstraction towards concretizations. Programming at
the software-design level usually implies the creation (discovery, invention, reapplication) of an
efficient algorithm in order to solve a computational problem. Programming at the domain
modelling or at the requirements modelling levels usually have to do with introducing, one-by-
one concepts such that complexity is “conquered” through separation of concerns.

In a sense one can claim that it may be straightforward to specify a computational problem,
but that it may require very special abilities to come up with an efficient algorithm and program
to solve that problem. Using formal techniques is no substitute for algorithmic cleverness, but
it is always wise to also formally document both the problem and its solution — in stages of
derivation.

Some of todays software engineers seem to excel in being “clever” wrt. algorithmic mat-
ters, but to being “stupid” in failing to properly document the algorithmic ideas and that the
algorithm indeed does solve the problem as posed.

Although we may claim that requirements and software architecture specification may yield
higher returns on investments as compared to algorithm specification, we nevertheless advocate
formal, or at least rigorous, stepwise refinement throughout! If you have to specify the “grand
things” you might as well also specify the “nitty-gritties”. It would be sad if a grandiose
architecture failed because of an erroneous algorithm.3 Which parts of the developemant process
may or can be specified in which level of formality is a question of pragmatics. Given the current
state-of-the-art, it is still quite costly to formalise and verify the complete design of a large
system. This of course depends on the availability of tools and people able to use them.

Sections 5.3–5.5, and 6 deal with this central matter.

3A Kingdom was lost for the want of a horse. William Shakespeare, Richard III

The Rôle of Formal Specification and Design Calculi — May 11, 1998 19

4.4 Verification

To verify steps of development, whether within each of the three main software-development
phases (domain, requirements or software-design engineering), or between them, and to otherwise
prove properties of individual specifications, including executable programs, is important. If not
already, future clients will increasingly demand that delivered software meets certain quality
standards wrt. various forms of correctness. The only way we know how to assure this to
highest attainable degrees of confidence is to deliver formal verification.

Let D, R and S stand for the theories of the domain, requirements and software (or more
generally, machine). Then verification means that D and S imply R, i.e., that the designed
software satisfies the requirements in the presence of a theory about the domain. This proof
obligation, (D, S |= R), is well known. For complex systems we are still far away from being
able of proving this statement to a full extent. But it is sometimes possible to prove (with Model
Checking or Theorem Proving) that for some abstract versions of D, S and R, the obligation
indeed holds [54].

4.5 Model Checking & Model Checkers

Some formal methods (Z, VDM, Larch and others) are appropriate for programs with rich data
types but a simple control structure (for instance, sequential while-programs), others (CCS,
CSP, Temporal Logic, Automata, etc.) may be used for concurrent or reactive systems but
support only simple state spaces. Still others (RAISE, LOTOS) combine methods for concurrent
systems with complex data structures. In the case that the state space is simple and finite, or
the data complexity may be abstracted away, it is possible to construct a finite transition system
which serves as a formal representation of the system. By construction, the program satisfies,
implements or refines the transition system in the sense that any behavior (trace) of the program
may be viewed as a trace of the transition system (by appropriate abstraction of data and of
“irrelevant” internal steps).

Then, this finite transition system is a formal specification. Model checking algorithms
use an efficient space search over the states (or transitions) of the transition system to prove
(check) that it satisfies (is a logical-theoretic model) of its specification. The specification may
be formalized as a temporal logic formula or also as a sort of transition system, like automata
or Kripke Structures.

In symbolic model-checking the state-space search is not done by inspecting states individ-
ually (i.e., valuations of all variables) but by inspecting at once sets of states (i.e., predicates
on variables). Binary decision diagrams (BDDs) offer a compact data structure for representing
predicates on finite sets.

In the following example we consider a pair of traffic lights on a street intersection. The
crossing is sketched in figure 1 page 20, a). In figure 1 page 20, b) we describe a property that
holds in D, i.e., a property of the domain. It simply states how cars behave: a car may legally
cross (event Car happens) only if the light is green, or more precisely, a car may cross from
South to North (Car1) only if the first light is green and cars may cross from East to West
(Car2) only if the second light is on. Do not think of this figure as telling what must happen,
but only of what can happen in any state. In particular, a car does not have to cross, even if the
light is green. For simplicity, we further assume that initially, when the system is installed, the
cars in the South-North direction may cross, while the others must wait for the Green2 event.

20 D.Bjørner and J.R.Cuéllar: Software Engineering Education

So much for properties that hold in D.

Green

Red

Green

Red

Car
Car

1

2

1

2

1

2

a) b)

Green Red

Car

2

2

2

Green Red

Car

1

1

1

Figure 1: a) A Street Intersection and b) the Domain Specification

Let us now look at R, the requirements. We want, among other things that will be irrelevant
here, that both events Car1 and Car2 never happen simultaneously. Thus, for the sake of this
example, this is all R.

Let us now assume that we know S, the specification of the machine, or as we call it, of
the controller of the lights, and that it satisfies the properties that always (Green1 ⇔ Red2) ∧
(Green2 ⇔ Red1), in words: each time the controller turns the first light to green it also changes
the other one to red and vice-versa. Thus we assume that this property follows from S.

It is quite obvious why in the composed system in no reachable global state cars in both
directions may cross. This is true because if one of the two automata of figure 1 is in the
first state then the other one is in the second state and vice-versa. This may be formalized
for instance by the statement that g1 ⇔ r2 is an invariant of the system (i.e., it holds in all
reachable states), where g1 and r1 (resp. g2 and r2) are the first and second state of the first
(resp. second) transition system. This analysis, based on a search of the reachable states, can
be efficiently mechanized, even for quite large systems with 1020 reachable states.

Notice a subtle point of the argument that we have presented. It may be argued that the
description D of the domain that we gave is incorrect: indeed a car can cross when the light is
red! But then if an accident happens it was not the hardware/software controlling the light to
be blamed for it. It is the car driver. Well don’t worry: the meaning of the event Car was not
simply that a car crosses, it was that it crosses on a green light. We may see the triple {D}S{R}
as stating a contract (see [16, 157]): we are to make sure that if the environment behaves as
stated in D, then the whole system will behave as stated in R. If that is the case for all possible
“environments” which satisfy D, we say that the “Hoare triple” {D}S{R} is true.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 21

4.6 Theorem Proving & Theorem Provers

Depending on the semantics that you associate with a program, and in particular with the logic
(description calculus) that you choose, to reason in that semantical world, you may decide which
theorem prover system meets your needs. If the formal model of the system is a (possibly infinite)
transition system where the states are given by valuations of variables, a theorem prover may
be used much in the same way that a symbolic model-checker is used. Instead of representing
predicates on variables as binary decision diagrams (BDDs), first-order (or higher-order) logic
predicates are used [182, 42, 180, 54].

4.7 Synthesis

Let us return to the system of two lights on a crossing, figure 1. Now regard the domain and the
requirements (D and R) to be given, and we search for a controller S with {D}S {R} We do
not assume, as we did in Section 4.5 that the Green events of one light correspond to the Red

events of the other. This was part of the theory of S. Now we know nothing about S, except
that it should satisfy {D}S{R}.

Let us now look at figure 2 as being a game board. Two players, the controller and the
environment, take turns in playing a game.

Green Red2

2

2Green Red1

1

1

CarCar

Figure 2: A Game between Controller and Environment

As we will see in a moment, each move of one of the two players, will define a set of events,
subset of {Green1, Green2, Red1, Red2, Car1, Car2}. The score of the game at any finite time
is a finite sequence of sets of events. After each move the new score is the result of appending
the set of events to the current score of the game. Imagine the game as running until a winning
condition is detected or else the game runs for ever. Even in this case, one of the players wins
the game (at “infinity”). In our example, the controller looses the game if two cars in different
directions cross at the same time, i.e. if both Car1 and Car2 happen simultaneously in one turn,
or if one of the lights remains red forever, i.e. if never Green2 happens or if after the occurrence
of Redi the corresponding event Greeni never happens.

Formally, a winning condition for one of the players is a language of infinite strings. In our
example the controller wins the safety game iff Φ1 is true, and it wins the safety-and-liveness
game iff Φ2 is true:

Let:

Φ1 := {< E1, E2, . . . >| for all i : {Car1, Car2} 6⊂ Ei}

22 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Φ2 := Φ1 ∩ {< E1, E2, . . . >| there is an i with Green2 ∈ Ei and

for all i : if Red1 ∈ Ei (resp.,Red2 ∈ Ei) then

there is a j ≥ i with Green1 ∈ Ei (resp. Green2 ∈ Ei)}

where Ei ⊂ {Green1, Green2, Red1, Red2, Car1, Car2} for each i ∈ N.
In other words, the controller wins the safety game if never two cars cross simultaneously (in

different directions), and it wins the safety-and-liveness game iff besides winning the safety game
it never blocks a car forever by not giving him the opportunity of crossing the light. Of course,
the controller perhaps wins a safety game because he was lucky: although an accident could
have happened, it didn’t (car drivers were more prudent driving than we were in constructing
the software). This is not what we want: we do not want to win a game, we want to win all
games (if the environment behaves as it should). We want a strategy for winning all games.

Place, initially, one token on the initial state of each graph. Now, the two players, controller
and the environment, take turns moving the tokens: if a token is on a state s and there is
a transition from s to s′ labelled by E, then the player may decide to choose the transition,
in which case the event E “happens” and the token is moved to s′.4 In the case of several
graphs, each token may moved independently of each other in the same turn: the union of the
corresponding events happens. It is also possible that a player decides not to move one or several
(or all) of the tokens.

Let us call the events Car1 and Car2 uncontrollable, and Green1, Red1, Green2, Red2 con-
trollable. This means that the controller can only influence directly the occurrence of the events
Greeni, Redi, but the environment “decides” when the events Cari will happen. (Of course, the
event Cari can only happen when a token is in the state which enables this action, that is when
the corresponding light is green.)

Now, it is clear that the problem of constructing a correct controller is equivalent finding a
strategy for the controller to win the game.

The most general strategy for the controller to win the safety game is to follow the recipe
given in figure 3. In other words, let the controller start at the initial state of the figure, and
let it decide (on non-specified way, perhaps based on the information given on extra sensors or
general traffic considerations) when and in which direction it will move in the graph.

But observe that this strategy does not win the safety-and-liveness game: one possibility for
the controller is to move back and forth turning the first light to red and green again. Although
this controller is safe (two cars will not collide), it is not fair: a car may “starve” on the second
light. To win also this game, “fairness” (or “acceptance”) conditions have to be imposed to the
graph. In our case they simply state that each of the two states upper-left and lower-right of
figure 3 have to be visited infinitely often. Notice that this example shows that ∗−languages do
not suffice for this type of applications: any finite sequence is unfair. This is why this sort of
games is treated over ω−languages (infinite sequences).

There are algorithms for finding these solutions (see [203, 186, 201, 202, 131]) that can be in-
tegrated into a model-checking/theorem-proving environment, as done in the TLT-project (Tem-
poral Language of Transition, see [56, 57]) and in the subsequent SCSL-project (Synchronous
Control Specification Language) at Siemens.

4In more general games, a transition may be labelled by a conjunction ∧Ei; if the transition is taken, all the
events Ei happen simultaneously. The type of automata considered here are labelled by elements of a Boolean
algebra, as in [132] and [55].

The Rôle of Formal Specification and Design Calculi — May 11, 1998 23

Red1

Green1

Red2 Green2

Red2

Green1

Green2

Red1

Figure 3: The most general control strategy

4.8 Methods and Methodology

Such terms as ‘formal methods’ are increasingly frequently used. Hence:

• Method:

By a method we understand a set of principles for analysing a problem and for selecting
and applying techniques and tools in order efficiently solve the problem.

The principles are presented in the form of natural (programming methodological) language
statements such as:

Example: Principle of State Identification:

In specification (say, of an aspect of the world or a computing system) one focuses on
the observable, including the controlled variables. A finite, or at least an effectively
enumerable alphabet representing these variables, call them the state components,
must be identified.

Each identifier of the alphabet must be given a type, i.e. the signature of the state must
be established. Finally, as we can only know of the state through the observations we
make when functions and operations are applied to it the alphabet and signature of
these functions and operations (observers and generator) must likewise be established.

or:

Example: Principle of Representational Abstraction:

Components (say, of a state) are representation abstractly specified when the speci-
fication emphasizes properties of the components when subject to operations (rather
than some arbitrary set-theoretic structuring).

Model-theoretic, rather than, as just above, proof–theoretic (i.e. property-oriented) can also be
representationally abstract if the mathematical type “fits” the desired properties.

Thus a telephone directory may be representation abstractly specified by some map (i.e.
finite domain function), whereas a balanced binary tree representation may be too concrete.

24 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Example: Principle of Operational Abstraction:

A function is operation abstractly specified if it emphasizes the function in intension
rather than the function in extension, that is: the properties that relate function
arguments to function results rather than how the function is computed.

Some principles, like the first of the above, if followed, are intended to help the developer identify
state components through Analysis. Other principles, like the second and third above, provides
techniques which are intended to help in abstractly expressing components, for example the
state. These principles help to achieve efficiency in development.

Other principles are associated with specific techniques and tools and therefore identify these
and gives guidance as to their use. Other principles are mere advice on whether or not to choose
a certain emphasis, perspective or view in specification or design.

• Methodology:

By methodology we understand the study and knowledge of methods.

No interesting software development (including domain, requirements and software-design de-
velopment) can today take place without resorting to several methods (and any of these would,
in an engineering environment be infeasible were it not for adequate, industrial strength tools).
Methods (perhaps we should call them meta–) principles help us choose among varieties of
methods.

• VDM: [31, 32, 126, 75]

Perhaps the first so-called method was that of VDM: the Vienna (Software) Development
Method. It emphasizes a model-theoretic approach together with the definition of func-
tions and operations either explicitly or in terms of pre–/post-conditions. First applied to
compiler development VDM has shown useful in a broad range of applications.

We refer to the following WWW source of VDM information:

– http://www.ifad.dk/vdm/vdm.html.

• Z: [196, 197]

Perhaps the second specification method was that provided by Z (Z as in Zermelo, the
mathematical set theoretician). Z provides rather elegant specification means.

We refer to the following WWW source of Z information:

– http://www.comlab.ox.ac.uk/archive/z.html

• RAISE: [92, 93]

RAISE stands for Rigorous approach to Industrial Software Engineering, and covers a
method, a specification language, RSL, and tool sets. RAISE is a further development of
VDM and includes features and techniques for concurrency and modularization.

We refer to the following WWW source of RAISE information:

– http://dream.dai.ed.ac.uk/raise/.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 25

• Duration Calculi: [49, 52, 51, 47, 48, 117, 50, 118]

The duration calculi is a set of closely related formal systems for dealing with temporal
notions: time, time intervals, time instances, etc. Applications focus on real-time and
safety-critical systems.

• B: [6, 135, 217]

Jean–Raymond Abrial, who initiated Z, has researched and developed another, very el-
egant approach called B (for B in Nicholas Bourbaki, the French group of set theory
mathematicians).

We refer to the following WWW source of B information:

– http://www.comlab.ox.ac.uk/archive/formal-methods/b.html.

There are many other Methods: Larch [100, 101], STeP/React [146, 147], etc.

We refer in general to the extremely comprehensive set of information on formal methods
given by the formal methods community home page:

• http://www.comlab.ox.ac.uk/archive/formal-methods.html.

Because of the different ranges of applicability it is important that software engineers have
working knowledge of two or more of “the most diverse” (viz. RAISE, B and Duration Calculi)!

The above discussion is very simplified: The refinement calculi covered in section 4 can just
as well qualify as methods.

4.9 Systematic, Rigorous and Formal Development

A formal notation may be used in many ways in a software development project. The software
development may be characterised as proceeding in either a systematic, rigorous or formal
manner — all depending on the extent to which the underlying formal notation is exploited in
documenting or reasoning about properties of the evolving descriptions. Also it is possible to
be more formal in one aspect (or view) of the system, for instance in the control flow, and to
treat more abstractly some other views, for instance the data dependencies. Which parts of the
system should be treated how formally is also a matter of pragmatics.

• Formal Notation:

By a formal notation we understand a language with a precise, mathematically defined
syntax and semantics and, eventually, a proof system. The first purpose of the formal
notation is to describe or model real objects. Also the formal notation may provide means
to express properties of the models of the real objects.

• Formal Systems:

By a formal system we understand a formal notation together with a design calculus
given by a set of syntactic rules for converting expressions of the formal notation into
other ‘derived’ expressions. For instance, the expressions are interpreted as properties and
the derivation as the construction of semantically equivalent or implied properties.

26 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Traditional engineering fields typically use formal notation in the form of classical mathematics:
calculus, differential and difference equations, linear algebra and matrix calculi, transformations,
etc. Often the mathematics is presented graphically for ease of comprehension. The purpose
of those languages is primarily to describe the physical reality. The difference between physical
reality and model is quite clear. This gap is bridged when a design is used to construct a
technological object.

In software engineering the “reality” that we want to understand and describe precisely
is two-fold: on one side we have the application domain and the requirements specification
and on the other the hardware/software system that we are designing. We start as in other
engineerings by describing the application and the requirements mathematically. The novel
aspect of software engineering is that those models themselves evolve to become programs,
which are the technological objects that we want to construct. In this sense the clear distinction
between model and reality is not exactly the same.

In all engineering fields the transition between mathematical models or engineering designs
and actual technological constructions, i.e., the gap between models and reality, is impossible to
bridge formally. In practical engineering projects this gap can be postponed sometimes until the
end of the design phase. This is due to the fact that the corresponding engineering discipline
has already a well established set of domain models, and engineers are trained in their use. In
software engineering this gap between reality and model appears already at the beginning of the
development process. It is precisely the biggest mental transition when we formally specify, i.e.,
abstract the application domain (see section 5.1.1) and when we “translate” user expectations
into formal requirements (see also section 5.2).

Each of the many engineering fields has several sets of mathematics-based calculi. They are
normally used to find correct dimensionings or to check designs. Those design calculi “model”
physical quantities approximately.

The minimal use of formal notation is to use it as a description medium:

• Systematic Use of Formal Notation:

By a systematic use of formal notation we understand a use of the notation in which we
follow the precise syntax and semantics to formally describe (an abstraction of) a domain,
requirements, design, etc.

Just formally specifying a part of the problem, or of the domain, or the requirements, or a
software architecture, or a program organization, has shown to lead to cleaner developments with
far fewer bugs, as has been documented in for instance [179] and in many papers of European
formal methods conferences: [33, 38, 30, 185, 136, 171, 86, 74].

On the other extreme, formal notation may be used as a straight-jacket:

• Formal Use of Formal Notation:

By formal use of formal notation we understand a systematic use in which we fully exploit
the formality of the design calculi by actually proving properties using only the syntactical
form of the rules in it. No appeal to the meaning or semantics of the formal notation is
allowed to show the validity of a deduction.

In which aspects of the design process you really need this “straight-jacket” is a matter of
careful evaluation. Without appropriate tools this can be too expensive when the complexity is

The Rôle of Formal Specification and Design Calculi — May 11, 1998 27

large. The intended meaning of the design calculi may sometimes be used in a more informal
way, just as in common mathematical arguments:

• Rigorous Use of Formal Notation:

By a rigorous use of formal notation we understand a systematic use of notation in which
a mathematical understanding of the semantical models behind the scene is used to state
and prove properties of the system. Although the derivations are expected to be correct,
their correctness does not immediately follow the syntactical form of the rules in a design
calculus, but rather by a mathematical, semantical argument.

4.10 Software Development

To us software development consists of three major components: domain engineering, require-
ments engineering and software design. Together they form software engineering.

Perhaps the term ‘software engineering’ is too restrictive. Since any implementation of es-
pecially a larger software system entails procurement also of hardware, development will also
include configuration and acquisition of hardware components. That larger concept that in-
cludes the development, procurement, installation, performance tuning, operation and disposal
of computing systems (hardware + software) is systems engineering. Thus, software engineering
is part of systems engineering.

The aim of software development is to create software that is to function on some hardware.
Together we call the software/hardware the machine ([122, 218]). Since domain engineering and
requirements engineering aim at descriptions that may eventually lead to procurement of both
software and hardware we shall refer to software development leading to a machine.

4.11 Discussion

In this section we just summarise what has been put forth in the preceding text, and which
will be assumed for all the succeeding text also: Namely that development, from domain, via
requirements to software design, in addition to being recorded in succinct, informal synopses,
terminologies and narratives, will also be formally recorded, and that these formal specifications
be subject to calculations (proofs of properties etc.). The term design calculi may be unfortunate
in that it not only applies to software designs but also to domain and requirements models.

The best way we know today to achieve trustworthy software is through the use of formal
techniques such as formal specification and design calculi. It is the same in other engineering
fields. They also use mathematics. But the case of software is special in that we are not
producing tangible artifacts based on laws of natural sciences. We are producing descriptions
“galore”: of domains, of requirements, of software architectures, of program organizations, and
of increasingly concrete, “executable” code. The only laws they can possibly satisfy are those
of mathematics and in particular mathematical logic. Other engineering design artifacts may
satisfy laws of natural sciences. Software engineering is unique in that “all it produces” are
textual descriptions and verifications, which are also textual structures.

Perhaps an essence of software engineering is the repeated construction, manipulation and
analysis of very large structured texts.

28 D.Bjørner and J.R.Cuéllar: Software Engineering Education

5 Domain, Requirements and Design Engineering

In this section we outline a main message of this paper: namely that software development has
three main phases: the development of domain models, of requirements models, and of software
(designs and code).

In the first three subsections first we look at these three phases. To drive home this point
we then present a classical example, namely that of a compiler for a given source “high-level”
programming language and a target, say machine language.

5.1 Domain Engineering

5.1.1 Domain Engineering Concepts

In domain engineering we wish to understand first the application domain in which the software
is to serve.

Two approaches seem current in today’s ‘domain engineering’: one which takes its departure
point in model–oriented, mathematical semantics specification work (and which again basically
represents the ‘algorithmic’ school), and one which takes its departure point in knowledge en-
gineering — an outgrowth from AI and expert systems. In this paper we focus on the former
approach.

By an application domain we understand an area of activities, that contains a more or
less clearly defined world of conceptual objects and actions on those objects. The application
domain is the stage where the customer presents his requirements and the developer presents
his solution. Examples of domains are: railways, air traffic, road transport, or shipping of a
region; a manufacturing industry with its consumers, suppliers, producers and traders.

Since we are developing software packages that serve in these domains it is important that the
software developers are presented with, or themselves help develop precise descriptions (models,
see later) of these domains.

The domain typically includes the system, the environment and the stake-holders.

In the sense we use the word, a system is a set of interacting elements organized or created
by people in order to provide some functionality. A system can be for instance an enterprise.
Within a system, the purpose of a software program is to provide part of this functionality. And
in many cases, the software/hardware machine is intended to replace a part of the old system.

A railway System consists of the railway net (lines, stations, signalling, etc.), the rolling
stock (locos, passenger waggons, freight cars, etc.) and trains, the time tables and train journey
plans, etc.

The environment is that part of the perceived world which interacts with the system.

The environment of a railway system includes the weather and the topology of the geograph-
ical areas.

By stake-holder we mean any of the many kinds of people that have some form of “interest” in
the (delivered) machine: enterprise owners, managers, operators and customers of the enterprise.
The client is the legal entity which procures the machine to be developed. A financial enterprise
client is usually the appropriate level executive who specifically contracts some software to serve
in the enterprise. The staff is the group of people who are employed in, or by the system:
who works for it, manages, operates and services the system. The customers are the people or

The Rôle of Formal Specification and Design Calculi — May 11, 1998 29

companies who enter into economic contracts with the client: they buy products and/or services
from the client.

Domain engineering is the art of establishing models of the domain. It is roughly divided
into domain acquisitions and domain modelling. The first part is characterised by discussions
with the stake-holders, or with other specialists on the domain. The second part is the process
of writing down, in both informal and formal notations, the domain model.

The domain capture process, when actually carried out, often becomes confused with the
subsequent requirements capture process. It is often difficult for some stake-holders and for
some developers, to make the distinction. It is an aim of this paper to advocate that there is a
crucial distinction and that much can be gained from keeping the two activities separate. They
need not be kept apart in time. They may indeed be pursued concurrently, but their concerns,
techniques and documentation need be kept strictly separate.

The informal description typically consists of a synopsis of the model, a terminology in which
every professional term is defined, and a narrative which — in a readable style — describes how
the terms otherwise relate. The formal model is then expressed in some formal specification
language and can be subject to calculations using a design calculi of that notation.

By domain analysis we understand informal and formal analyses of the domain and of the
resulting model — whether informal or formal. The purposes of the analyses can be to ascertain
whether a component and/or its behaviour qualifies as a component of the domain, and for
such included components analyses may reveal model properties not immediately recognized
as properties of the domain. Note the distinction being made here: the domain as it exists
“out there”, and the model as an abstraction thereof and which “exists” on the (electronic)
“paper” upon which the model is represented. The goal of domain analysis is to also establish
a theory (theorems, properties) of the domain, or rather, of the models purported to represent
the domain.

5.1.2 Domain Engineering vs. Logical AI

In logical artificial intelligence (AI) [154] “an agent can represent knowledge of the world, its
goals and the current situation by sentences in logic and decide what to do by inferring that
a certain action or course of action is appropriate to achieve its goals”. In domain engineering
we gather and represent knowledge about the world. In requirements engineering we establish
goals. And in software design we facilitate inference, perhaps using AI techniques, perhaps using
algorithmic, more classical means.

Many of the concerns of logical AI: epistemology (study of knowledge, its form and limita-
tions),circumscription (a technique of non-monotonic reasoning) [150, 80], ontology (the value
range of the alphabet of our observations about the world), phenomenology (on phenomena in
the world: rails, timetables, trains, lines, stations, etc., their types, and types of classes of phe-
nomena, etc.), bounded informatic situation and common sense (what people know about the
world without reference to laws of physics, chemistry, etc.) [152], speech act theories, situation
calculus (formalism for causal reasoning) [87], frame problems (how to express facts about the
effects of actions without having to state what remains unchanged) and non-monotonic reason-
ing (non-monotonicity arises when facts are true in one world but become false when additional
facts are considered) [155], are also concerns of domain engineering — and it can be expected
that domain engineering and logical AI will share many research topics as well as engineering

30 D.Bjørner and J.R.Cuéllar: Software Engineering Education

techniques.

5.1.3 A Domain Engineering “Process Diagram”

We can summarise domain engineering by the upper half of the diagram shown in figure 4.

DOMAIN

ENGINEERING

REQUIREMENTS

ENGINEERING

Acquisition

Document Modelling

Model Analysis

Theory

Document Modelling

Model Analysis

Theory

Goals & Needs

Elicitation

Formalisation

Capture

Capture

Formalisation

Validation

Verification

Validation

&

Verification

&

"Input" to Software Design

LEGEND: Description

Process

Partial Order

DE or RE Stage

Informal, or Formal Step

Figure 4: A Software Engineering Paradigm

The idea is that the domain engineer performs many tasks and that we wish to relate classes
of these.

The upper box shows a diagram for the domain engineering “process”. The lower for the
requirements engineering “process”. The left dot-framed boxes, one for domain engineering,
another for requirements engineering, gather the mostly informal capture steps of domain engi-
neering, resp. requirements engineering. The right dot-framed boxes, one for domain engineer-
ing, another for requirements engineering, gather the mostly formal modelling steps of domain
engineering, resp. requirements engineering.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 31

The arrow entering (from the left) to the dash framed domain engineering box (and inci-
dent upon the rounded acquisition box) designate the flow of information from stake-holders to
developers.

The three arrows, the first (leaving from the rounded analysis box) to the right, and, the last
two (leaving from the rectangular theory box) to the dash framed requirements engineering box
designate the flow of information from developers to stake-holders, respectively to requirements
engineers.

Rounded boxes basically show development processes, rectangular ones show development
documents, and internal arrows indicate the flow of information.

You may think of all rounded boxes as processes executing in parallel. That is, as human
endeavours taking place potentially concurrently.

The triples (arrow,rectangle,arrow) can now be considered synchronous or synchronous com-
munications between processes — in both directions: In those of the arrows communication
brings information that can be used in the models, in the opposite direction the communication
we may think of acquisition and elicitation (clarification) requests.

5.1.4 A Warning against Process Diagrams

The “process diagram” of figure 4 should not be taken too literally. Each problem that we face
as software engineers usually poses new challenges.

The diagram as shown does not reflect any specific problem, and hence its usefulness is rather
limited. “Real” software development problems tend to have their “process diagrams” be far
more detailed wrt. to any of the boxes shown in the figure.

5.2 Requirements Engineering

Requirements, as we have seen, form a bridge between the larger domain and the “narrower”
software which is to serve in the domain.

Requirements issues are either such which concern:

• The Domain:

The mapping of domain concepts and facilities onto the machine: a projection of domain
states, functions, operations and behaviours.

Michael Jackson emphasizes: Requirements reside in the domain.

• The Interface:

That is: the MMI (Man-Machine Interface) and the interfaces of the new software to other
parts of the system,

• The Machine:

Or they are requirements on the machine that do not constrain the (formal) interfaces
of the machine, but refer to its physical properties (size and robustness to movement or
temperature changes), internal dimensioning or velocity.

Requirements describe the system as the stake-holders would like to see it.

32 D.Bjørner and J.R.Cuéllar: Software Engineering Education

The process of capturing the requirements, writing them down in documents using a formal
notation and analysing them is similar to the process of specifying the domain. Requirement
models are formally derived from and extensions of domain models.

We are much inspired by Michael Jackson [121, 122, 218, 123].

5.3 Software Design Engineering

Given a design specification, the developer needs ingenuity and creativity to stepwise refine it
into several design levels until executable code. Typically, two of the most basic steps in the
design are software architecture specification and program organization specification.

A software architecture description specifies the concepts and facilities offered to the user of
the software — i.e. the external interfaces.

A program organization description specifies internal interfaces between program modules
(e.g., processes, platform components).

The concept of software architecture as treated in [7, 85, 4, 8, 9, 83, 82, 3, 84] more follows
our definition of program organization than that of our definition of software architecture.

Since development of a software architecture from a requirements definition proceeds in
stages of refinement that alternate between such which emphasize the external offerings (i.e. ar-
chitecture) and the internal interfaces (i.e. organization), that difference is basically an academic
one.

There are other, different ‘schools’ of software architecture: the Stanford Univ. Rapide (D.C.
Luckham) [140, 128, 143, 142, 141], and the SRI Intl. (M. Moriconi) [165, 168, 167, 166]. 5

There is also a “movement” on Domain Specific Software Architecture (DSSA) 6, and at SEI
(the US DoD Software Engineering Institute at CMU) there is a larger software architecture
effort [19]. We refer to:

• http://www.sei.cmu.edu/technology/architecture/

Other software architecture papers are [170, 89, 145, 70, 194]

5.4 Documents

All stages of software development result in documents. We document domains, requirements,
software architectures, program organizations, etc. We sometimes also, again synonymously,
refer to these descriptions as definitions (as for example for a domain model or a requirement
model), sometimes as specifications (as f.ex. for a software-architecture model), yes even as
designs (as for example for a program organization model).

The intended meaning of a document, that is, the semantical counterpart to this syntactic
object, is what we call a model (see also 3.1). Thus, if the teams of developers and customers
agree on the meaning of a document, this document presents a model (i.e., an abstraction) of
the domain, of the requirements, of the software architecture, or of the program organization.
Those models can be functions, relations, predicate transformers, labelled transition systems,
Petri Nets, Event Structures, sequences of operations (functions) on data, relationships between
entities (entity-relationship diagrams), abstract state machines, etc. It is not always obvious

5See also: http://www.csl.sri.com/ moriconi/mmprojects.html
6See http://www.owego.com/dssa/faq/faq.html

The Rôle of Formal Specification and Design Calculi — May 11, 1998 33

how to relate several of those models (even if you always use, say, labelled transition systems)
because of the different levels of granularity and atomicity that the different models use at the
different abstraction levels. Thus, there must also exist documents that relate those different
abstraction levels (see, for instance, [1]). Now, if the properties of a set of models are logically
coherent, we say that the corresponding documents are concordant. In other words, a set of
documents is concordant, if the union of the documents is a consistent description of a model,
each document emphasising a different aspect of the whole [218].

There seems to be a number of concordance issues:

• Domain Perspectives & Aspects:

When structuring a domain specification one can either focus on reasonably separated
issues within the domain such as pertaining to different groups of stake-holders (i.e. per-
spectives), and/or one can focus on the intrinsics, or the support technologies, or the rules
& regulations, or the staff behaviour, etc. (i.e. aspects). A resulting domain description
will probably be structured according to both principles.

• Requirements Facets:

We have briefly mentioned this concept earlier. That is the (i) projection of domain states,
functions, operations & behaviour form one facet; (ii) the focus on expectations about the
machine itself, independent of the application to a first approximation, is another facet; and
(iii) focus on the interface between the domain (users, equipment, etc.) and the machine
is a third facet. This operational definition of requirements facets should be compared to
[178, 72, 69, 73].

• Software Views:

Here we follow the definition of ‘views’ put forward by Daniel Jackson [120]. Essentially
a software view is a partial specification of components, functions, etc. Two or more
views may then “view” models of desired components rather differently. The approach, as
advanced by [120], then stipulates that the different views by correlated through invariants
on states.

‘View’ concepts are today found in proposals for both requirement definitions and software
designs.

As pointed out by Michael Jackson [122] the informal language of domain descriptions is
indicative: “what there is”, that of requirements descriptions is optative: “what there should
be”, and that of software design descriptions is imperative: “do this, do that — how to do
it!”. We could also use the terms descriptive and prescriptive theories in lieu of indicative and
optative descriptions.

In contrast, the languages of formal descriptions are mathematical, and in mathematics we
cannot distinguish between indicative, optative and imperative moods. Such distinctions are
meta-linguistic, but necessary [218].

All stages and steps of the software development process involves creation: domain ac-
quisition & domain modelling, requirements elicitation & requirement modelling, and design
ingenuity. This human [210, 174] process of invention leads to the construction of informal as
well as formal descriptions.

34 D.Bjørner and J.R.Cuéllar: Software Engineering Education

5.5 Validation vs. Verification

The domain acquisition and requirements elicitation processes alternate with domain modelling
and requirements modelling, respectively, and these again with validation and verification se-
curing satisfaction to the customer and to the developers.

This paper does not describe the crucial process of interactions between software developers
(i.e. software engineers, which we see as domain engineers, requirement engineers and software
designers) and the stake-holders. Validation is the act of securing, through discussion, with the
stake-holders that the domain model correctly reflects their understanding of the domain, that
the requirement model really corresponds to their expectations, that the assumptions on the
behaviour of the environment are correct, that the rules to which the staff and operators are
properly modelled, etc.

Verification was discussed in section 4.4.

5.6 A Classical Example: From Programming Languages to Compilers

5.6.1 The Domain: Language Semantics

In order to develop any compiler we must first fully document the source and the target lan-
guages. Hence we first establish or, if already existing, we study, the abstract and concrete
syntaxes of the languages and their formal, abstract semantics. We cannot convince anyone
that we have a sound semantics understanding of a programming language unless we can ex-
plain its formal semantics — which is assumed to be consistent and complete.

The application domain in this example is given by the two language syntaxes and seman-
tics as well as the machine(s) where the compiler and the target code are going to run and,
perhaps, (for purposes of optimizing), the type of optimizations that have a favourable impact
on the efficiency of the target code. Part of the domain knowledge has been attained through
“experimentation”, i.e., practise, simulation or measurements.

5.6.2 The Requirements: Compiler Expectations

Given the two languages (the source programming and the target, usually machine language),
we cannot just start developing a compiler before we have stated very clearly what is expected
from the compiler.

Indisputably we need to express, as part of a requirements, that some notion of “executing
a source program on an abstract machine with data” corresponds to “executing the compiled
program on the concrete target machine with similar data”.

In addition we may express a number of other expectations: either (i) that the compiler
compiles fast, or (ii) that it delivers extensive both compile-time and run-time (interactive)
diagnostics while allowing for “on-line” corrections (editing) of the originally submitted source
program, or (iii) that the compiler generates highly optimized code, i.e., results in efficient use
of run-time resources: time and/or space.

We expect that all these requirements are expressed in some formal manner — but recognize
that we may not today have industrial strength techniques for expressing for example compile
and run-time resource consumption!

Usually requirements include such non–functional expectations as the platform on which the
compiler is to run or the form and conceptual contents of diagnostics, etc. Other difficult-to-

The Rôle of Formal Specification and Design Calculi — May 11, 1998 35

formalize requirements may be: The compiler must compile “indefinitely large source programs”
although the platform on which the compiler executes may have a limited main store. And: The
compiler must generate code for such programs to execute on a target machine with limited
store.

5.6.3 The Software Design: Compilers

Now we may start the compiler design.

A first main task of compiler design is to establish a precise formalization of the compiling
algorithm as well as a precise formalization of which analyses the compiler must make — that
is: specifications of the back– and front–ends.

To do this compiler design proceeds from the domain formalizations of the source language
semantics by making these more concrete. The domain models’ static semantics then results,
after some stages of design refinement, in a static analysis. And the domain models’ dynamic se-
mantics results, again after some stages of design refinement, in an abstract compiling algorithm.
The former prescribes all the checks that the compiler must perform before it can accept the
source text for code generation. The latter prescribes exactly which sequence of target language
constructs each source language construct is to be compiled into.

A second main task of compiler design is to establish the structure of the compiler itself.
This can only be done after the first task has been basically completed. The so-called static
analysis specification, and the abstract compiling algorithm determine much of the structure of
the compiler.

Typically one may seek a multi-pass compiler such that one can honour an “indefinitely
large programs to be compiled” requirement. Analysis of the static analysis specification and
the abstract compiling algorithm then reveals how many passes are needed. Here a pass is
defined as a linear traversal of source program parse trees (in either direction and either from
the leaves up to the parse tree root, or vice versa).

A final main task of compiler design is now to code the multi-pass administrator as well as
all the passes which were individually identified (specified) during the second main task.

The refinement of the domain models modulo the requirements, the determination of an
exact multi-pass structure, and the coding of it and all the front and back end passes constitute
the software design.

It is likewise easy to see that software design is an altogether different activity whose com-
plexity can only be mastered if both the domain and the requirements have been carefully and
formally modelled.

5.6.4 A Compiler Development “Process” Diagram

We can “picture” the above compiler development. See figure 5 page 36.

We refer to [23, 24, 25, 35] for more on software development graphs as mentioned above.

Each box is an “explosion” and “specialisation” of the ‘Model’ boxes of respective layers of
figure 4. Especially the software design layer, not shown in that earlier figure, becomes detailed
in this compiler development “process” diagram.

36 D.Bjørner and J.R.Cuéllar: Software Engineering Education

Figure 5: A Compiler Development “Process” Diagram

Syntax + Semantics

Source Language

Syntax + Semantics

Target Language

Requirements

Dynamic
Operational

Compiling

Algorithm

Administrator

DOMAIN

REQUIREMENTS

DESIGN: System

Phase #MPhase #1
Front End Front End

Phase #1
Back End

Phase #N
Back End

DESIGN: Code

Administrator
Multipass

Multipass

Semantics

Static Semantics
Analysis

We refer to the referenced literature for further details. Suffice it here to say (i) that each
box in the present diagram corresponds to an entire specification, (ii) that subsequent boxes
are derived from preceding ones, and (iii) that there rests a proof of refinement (correctness)
obligation. Issues (ii–iii) are designations of the arrows.

5.6.5 Discussion

The purpose of bringing the example of this section (5.6) was to hint that compiler development
can be made much more easy and “safe”, fast and economic, when developing the compiler as
illustrated: (1) two language semantics, (2) formalization of functional requirements and precise
expressions of non-functional requirements, and (3) task, stage and stepwise refinement of the
compiler design itself as indicated.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 37

We believe that the first industrial strength compilers that were developed using this ap-
proach were the CHILL and the Ada compilers developed at Dansk Datamatik Center in the
early 1980’s [103, 11, 102, 36, 179].

We know that today, 1997, more industrial compilers are still being developed informally,
without any recourse to formal semantics, without any refinements, etc.

5.7 Software Support for Infrastructure Systems

An area much in need of research and poorly handled in practice is that of large scale soft-
ware systems development for infrastructure systems. Examples of infrastructures are: (i) the
financial service industry — of banks, insurance companies, securities brokers and traders, etc.
— or just an entire bank (with all its branches), (ii) a railway system — in fact any transport
system: airlines, shipping, a metropolitan transport system, etc., (iii) a manufacturing industry
(of consumers and suppliers, producers and traders), (iv) air traffic, etc.

Current software for these infrastructure systems was developed piecemeal, basically without
any form of formal model, let alone precise, reasonably exhaustive narrative description of the
domain in question. Trying to get interoperability between separately (in space, time, etc.)
developed program packages is a horrendous task that will effectively block serious progress.

Much research need be done [28, 29, 26, 27, 37]. Normative as well as example instantiated
domain descriptions need be experimentally developed. Properly done it will take years.

No matter how many resources one throws after software architecture research etc., one must
first understand the domains, then understand how requirements are derived from and relate to
domains, before one may finally be able meaningfully to derive software architectures from and
relate them to requirements definitions.

A good way to structure R&D into infrastructure software systems is to work within Michael
Jackson’s ‘Problem Frame’ paradigm — next!

6 Problem Frames

Based on the ideas of Polya [184], Michael Jackson’s delightful book [122, 124] introduces the
concept of problem frames. We now relate some of Jackson’s frames to our quest: to move
towards sensible, professional software engineering education programmes based on domain en-
gineering, requirements engineering and software design engineering.

6.1 Translation Frame

Compiler and interpreter developments are classical examples of translation problem frames, as
already described in sections 5.6 pages 34 to 35.

In summary we can say: we have the basis for a translation frame problem when its domain
primarily revolve around two languages and the possibility of congruence between respective
programs of these languages. We have a translation frame problem if that congruence is a major
facet of requirements. Design now amounts to applying all the theories, techniques and
tools of compiler (or interpreter) development: automata and lexical scanner generators, formal
languages and possibly error correcting parser generators, code optimization and generation and
attribute grammar processors, etc.

38 D.Bjørner and J.R.Cuéllar: Software Engineering Education

The translation problem frame is perhaps the best scientifically understood (researched),
and technology-wise supported problem frame. There is however, it appears, still a long way to
go before all the benefits of past research have become standard practice in the industry.

6.2 Information System Frame

The development of database (management) systems (DBs, resp. DBMSs) are typical examples
of solutions (and technologies) for information systems problem frames.

We have the basis for an information systems problem frame if the domain presents itself
in terms of well delineatable subsets of data “abstractions” of a “real world information” and
of various data vetting procedures applicable to such information in addition to various more
or less procedural treatments of such data. We have an information systems problem frame if
the requirements stipulate that the machine (software + hardware) is to support the regis-
tration, vetting, storage and manipulation of such data. The design typically involves such
considerations as mappings onto existing database management system schemes (DDLs, DMLs,
etc.).

The database (etc.) problem is likewise a seemingly well understood problem frame [58, 59,
206, 207, 208, 211].

Current emphasis in this area is on federated databases i.e. the co-existence of different, het-
erogeneous databases — even GISs (geographical information systems) and DISs (demographic
information systems). Spatial queries of remotely sensed images is currently en vogue.

6.3 Reactive Systems / Control Frame

The development of the digital computer control & monitoring of mechanical or chemical pro-
cesses are prime examples of reactive systems problem frames — usually understood by software
engineers as real-time, safety critical, etc. problems.

We have the basis for a reactive systems frame if the domain can be characterised in terms
of outputs of a system which can be abstracted (i.e. modelled) by sets of typically differential
equations over inputs, states and time. That is, if the problem can be identified as some —
usually complicated — state which, over time undergoes changes in reaction to inputs and
or (just) time, and whose output can be observed. We have a control frame problem if the
requirements express that the reactive system state and output are to be subject to certain
constraints.

Control theory and engineering have over the years produced respectable theories of control
(viz. Bang-bang, Direct Digital, Adaptive, Stochastic, Fuzzy, etc., Control [15, 68, 77]).

The systems being controlled now, by digital computers, are, however, so complex and
typically requires change of controllers during operation. Decisions as to controller changes are
often best done by logical reasoning and in a way that has yet to be captured in control theoretic
terms.

Software-based process-control (see the case study book [5]) is commonly a cycle-based reac-
tion: the controller in each cycle first reads the inputs and then computes the reaction producing
the corresponding outputs. During the cycle no input events from the process (or the console)
are “allowed” to happen, or more properly, are not presented to the controller until the begin-
ning of the new cycle. In this way, we may neglect the reaction time and consider the reaction
as instantaneous. At first sight, this queueing of input events may seem to be a dangerous

The Rôle of Formal Specification and Design Calculi — May 11, 1998 39

delay (systems should react fast), and this perfect synchrony hypothesis as unrealistic (in the
implementation it will take time). But, on the contrary, this simple trick introduces a higher
level of abstraction which simplifies the complexity of the problem enormously. In synchronous
circuit design this zero-delay viewpoint has been exploited for a long time, allowing the logic
designer to view the circuit as representing equations on Boolean values.

Therefore, the most important new development in the design and programming of auto-
matic control systems, embedded systems, system drivers, and signal-processing units is proba-
bly the introduction of the zero-delay hypothesis into software, the “synchronous programming”
paradigm, whose most prominent exponent is ESTEREL [21, 22]. Other synchronous languages
include Lustre [105], Signal [95], Argos [148], SyncCharts [10] (the last two being pure syn-
chronous versions of Statecharts [108]). The perfectly synchronous model and languages appear
independently in the beginning of the 80’s in different places. With the synchrony abstraction
the programmer may write ‘declarative’ code for each controller module, much like in logical or
constrained programming. The specification of each module may be understood as a set of equa-
tions (or constraints) and the implementation (compilation) of the system as solving efficiently
the conjunction of the sets of equations over all the modules). In control applications (as well
as in hardware) synchrony is only a good abstraction because the reaction time of the system is
bounded from above and a worst-case bound may be calculated efficiently off-line. This implies
that those systems don’t allow the use of recursive definition of functions (over unbounded or
too large domains).

6.4 Workpiece Frame

Development of accounting systems, project management systems, CAE/CAD systems, and
desk-top publication systems are examples of workpiece frame problems.

We have the basis for a workpiece problem frame if the domain represents itself in terms
of typically a few categories of (construction) documents. For example (1) templates (“blank
forms”, or design standards, rules and conventions), (2) (“filled-in”) forms (texts, or construction
drawing), and (3) aggregates. Administrative system templates are (“empty”, unused) forms
with predetermined fields with explanatory texts, given types and blank space for “filling-in”.
Examples are: requisition forms, order forms, invoices, job applications, salary slips, etc. For
technical constructions (CAE/CAD) templates are like logical rules for wiring power electricity,
or water pipes, or telecommunication lines. Partially or fully filled-in administrative templates
are the forms, and their summary into budgets and accounts are aggregates. Actual technical
drawing following prescribed template constraints are then the forms, while their combination
into (building) diagrams (where, for example, power lines are connected to water pumps and
telecommunications gear) are aggregates. We have a workpiece requirements if the computer
is to support the combination of all aspects of templates, forms and aggregates. The require-
ments may further turn the problem into also being an information systems frame problem.
The workpiece frame problem may, in its design, depend on some constraint logic (inexact
equational) solver.

The class of workpiece frame problems is very large and consists of rather different categories,
viz.: the forms administration system vs. the CAE/CAD system vs. the desk-top publication
system.

40 D.Bjørner and J.R.Cuéllar: Software Engineering Education

6.5 Other Frames

The above only suggests a number of frames. Jackson identifies further problem frames.

Among frames not mentioned above in detail are:

• Resource Monitoring & Control — Estimation, Scheduling, Allocation: This problem
frame is typical in connection with both computer operating systems development as well
as the development of resource management systems for such infrastructure systems as
transport systems (railways, airlines, shipping, etc.).

• Feature Interaction:

This problem frame is typical in connection with the development of telephony systems,
computer operating systems and computer integrated manufacturing systems.

6.6 Remarks

Most real problems contain several frame aspects. The transaction frame evolves into one also
containing parts of a workpiece frame when requirements mandate compile and/or runtime
diagnostics & editing facilities. And so on.

The importance of the frame concept is that its proper handling makes the development
process easier to manage: separate frame parts leads to separate concerns, and each frame part
usually comes with an “own” development method [34].

7 Towards a Software Engineering Curriculum

7.1 Topics

We list around 45 course topics that seem to emerge from the analysis and proposals of this
paper. Given a five year (10 semester) M.Sc.SE study a large subset of the course topics plus
some elective courses could be absolved over eight semesters. This leaves time for a mid-study
project semester and a final M.Sc. Thesis semester. Each semester could feature a 15 week
course part with five courses and a two week examination part. Time for project work should
also be assigned. The sequential listing of these course topics in no way indicates any ordering
in an actual curriculum. The numbers in parentheses only indicate whether the course might
conveniently be contained in a single, a double or a tri-semester course.

Each and every of the approximately 45 courses contain theory as well as practice parts.

You may thus view the below as a list of courses or as a list of topics. These can be ordered
temporally (according to pre-requisites) and then be mapped onto a course structure with the
weights given in parentheses. See section 7.2 page 42.

Basic Education: Mathematics and Natural Sciences
◦ Sets, Relations and Functions (1)
◦ Mathematical Logic & Meta-mathematics (1)
◦ Graph Theory & Combinatorics (1)
◦ Concrete, Abstract and Universal Algebras (1)
◦ Calculus: Differential Equations (2)

The Rôle of Formal Specification and Design Calculi — May 11, 1998 41

◦ Probability & Statistics (1)
◦ Numerical Analysis (1)
◦ Operations Research: Scheduling & Allocation (1)
◦ Optimization & Control Theory (1)
◦ Physics [71] (3)
◦ Chemistry (1)

Computer Engineering:
◦ Switching Theory & Circuits (1)
◦ Digital Electronics (1)
◦ Computer Architecture & Machine Organization [181, 200] (1)
◦ Data/Tele Communication (1)

Theoretical Computer Science:
◦ Computability and Complexity Theory [127] (1)
◦ Syntax: Automata Theory and Formal Languages [116] (1)
• Semantics: Denotational, Axiomatic, Operational [191, 176, 110, 169, 213] (1)
◦ Type Theory [88, 2] (1)

Programming Languages:
◦ Functional Programming & Recursive Function Theory [160, 195, 212] (1)
◦ Imperative Programming & Hoare/Dijkstra Proof Systems [112, 13] (1)
◦ Logic Programming & Mathematical Logic [139, 125, 67] (1)
◦ Parallel Programming & Process Algebras [119, 114, 159, 110] (1)

Domain and Requirements Engineering:
◦ Computational Linguistics [45, 163] (1)
• Abstraction & Formal Specification [75, 196, 197, 92, 93, 100, 101, 6, 135, 217] (1)
• Domain and Requirements Engineering (1)

Software Design:
• Software Architecture and Program Organisation (1)
◦ Algorithms & Data Structures [156] (2)
• Design Calculi — Refinement [164, 49, 146, 147] (1)
• Theorem Proving, Model Checking and Game Theories [182, 180, 54](1)

Frame Specific Software:
◦ Operating Systems (1)
◦ Translation: Grammars, Compiler Development (1)
◦ Information: Database Theory, Database Management Systems (1)
◦ Reactive Systems: Temporal Facets, Sampling & Feedback, Synchronous Approach (1)
◦ Communication: Connectors, Protocols (1)
◦ Transaction Processing: Distribution, Concurrency, 2-Phase Commit, Logging (1)

Software Technology:
◦ Pragmatics: Testing, Config. Management, Documentation, Quality Control (1)

42 D.Bjørner and J.R.Cuéllar: Software Engineering Education

◦ Information Technology Management: Project Management, Product Management (1)
◦ Platforms: Unix, C++, Java, Widgets (1)

7.2 An Example Software Engineering Cluster

If we take the bulleted (•) topics, these can be merged into for example a triple (1–2–3) or
quadruple (1–2–3–4) of courses:

• Abstraction, Modeling & Specification

• Semantics

• Refinement Calculi, Domains, Requirements & Design

• Project Courses: Student Developments

Similar “merges” can be done for other set of topics across the eight main categories of topics.

8 Conclusion

8.1 General

We agree with G. Lelann [134] that poor system engineering practice is responsible for the fact
that a large percentage of projects involving computing technology are significantly delayed,
cancelled, entail much higher costs than anticipated or result in operational failures. We also
agree with him that proof-based software engineering is the privileged vehicle to meet the ABC-
challenge (Asap, Better, Cheaper) successfully. But not only industry is responsible for this
state of affairs. Indeed, we would like to suggest that industry does not obtain properly educated
engineers from university for that purpose. Formal methods (specifications, semantics, calculi,
etc.) are not treated in the current curricula as the basic principles to get systems working
correctly. It is our strong belief that a firm education such as suggested, with emphasis on
abstraction and stepwise refinement, knowledge of formal semantics and methods for proving
properties paired with industrial relevant project work would be a huge step towards a software
which is reliable and maintainable. Who of us would not like to work in such environment?

8.2 Specifics

Paraphrasing Tony Hoare and He JiFeng [115], section 1.7: The ideal and the reality of engineering:

The first idealisation (in our proposed graduate curriculum in software engineering)
is that true domain knowledge, requirements and qualities of a product can be accu-
rately captured in precise descriptions. Domain and requirements modelling is in fact
the most impossible of all the engineers’ tasks, because there is no way of checking
that they describe what the customer actually is going to want when the product
is actually delivered. Even the best requirements specifications are peppered with

The Rôle of Formal Specification and Design Calculi — May 11, 1998 43

qualifications like “reasonable” and “normally” and “approximately” and “prefer-
ably”, which cannot be made more precise until much later in the investigation of
the design, or even after delivery. . . .

Another bold idealisation is that the specifications (also of domains), once formalized,
will remain constant. They surely will change.7 . . .

Finally, all other problems of engineering design must be subordinate to the over-
-riding imperative to deliver the promised product at the due time, and at a cost
within the allocated budget. All the ideals of formal specification and design calculi:
philosophy and logic, are of no avail if the engineer fails in this. . . .

. . . In engineering some will ignore theoretical ideals, and rely exclusively on experi-
ence of their craft; but others will on occasion find guidance from their understanding
and pursuit of an ideal, which is shared by other members of a recognized profession.
The ideal suggests an integrated approach to the overall task, and enables deviations
to be isolated and controlled separately.

. . . The privilege of the purest alliance to an ideal is that of the researcher, seeking to
build a scientific foundation which will contribute simultaneously to the advancement
of knowledge and education, as well as the continuous improvement of professional
practice of the accredited engineer. One final appeal to an analogy with the physical
sciences: it is in the pursuit of an ideal of truth that in the long run has led to the
development of modern technology and engineering methods; and these have been
of outstanding success in solving problems which continue to face the modern world.

We quote from Robert S. Boyer [41]:

Although Boyer is referring to undergraduate education in computer science, where we are
dealing with graduate education in software engineering, we find that we share most views.

The Rigor Resolution on Undergraduate Education — proposed for consideration by the
Department of Computer Sciences University of Texas at Austin by Robert S. Boyer,
Professor, September, 1995

Computer science is a mathematical rather than a physical science. Following
Church’s thesis, we believe that the class of computations based on any currently
imagined digital technology is completely characterized by the mathematical objects
known as the partial recursive functions. That is, computer scientists need not make
observations and experiments to determine the laws of the physical world relevant
to their discipline; rather, computer scientists already know the fundamental law
of computing, namely that we can compute exactly what can be computed by a
universal Turing machine.

Ideally, an undergraduate computer science curriculum should take as its principal
goal that the students become skilled in reasoning rigorously about computing. And
just as mathematics majors are taught rigorous mathematical thinking entirely by

7although it may surprise some that domain descriptions, rather than changing will converge (also a form of
change). The more careful the domain work has been done, the less havoc requirements changes will cause. But
this has to be verified through experience — and remains an idealistic claim.

44 D.Bjørner and J.R.Cuéllar: Software Engineering Education

the method of rigorously proving theorems about specific objects such as groups and
continuous functions, computer science undergraduates should be taught rigorous
mathematical thinking exclusively by the method of rigorously proving theorems
about specific computational objects, such as specific partial recursive functions,
i.e., algorithms.

. . .

As an antidote to what I perceive as a great overemphasis upon un-rigorous teaching
in computing, I propose, by the following four resolutions, a major change of direction
in our undergraduate curriculum.

The Rigor Resolution

RR-1. Resolved, that the Computer Sciences Department takes it as an objective,
over the next ten years, to revise completely the undergraduate curriculum so that
the following result is obtained, to wit, that every course in computing shall be
taught upon a strict, mathematical basis. In every case that a computing system,
language, architecture, algorithm, or technique is discussed, it will be presented to
(or developed by) the students in a strictly rigorous fashion. Any program or system
developed in such a class shall be developed in such a way that “correct” has a
strictly mathematical, proven meaning. For example, the program or system may be
proved to satisfy precisely given functional or performance requirements. This rigor
requirement shall be extended to any prerequisite course that we require a student
to take outside of computer science.

RR-2. Resolved, that those faculty members most skilled and experienced in reason-
ing rigorously about programs, and who also have some experience with undergradu-
ate teaching, shall be mainly responsible for designing and teaching the introductory
courses. A skill is best learned from the best. A skill badly learned is almost impos-
sible to unlearn.

RR-3. Resolved, that in systematically reconsidering each and every course in the
undergraduate curriculum, we shall insist upon identifying and publishing an answer
to the question “What precise, incontrovertible scientific propositions are stated and
proved in this course?”

RR-4. Resolved, that the primary societal objective we shall pursue in educating
our undergraduate majors will be to prepare students for admission to and success in
first rate graduate computer science programs, with the hope that these students will
go on to advance the science of computing. (We take it that an analogous objective
is currently followed in the departments of the two paradigm sciences, mathematics
and physics.)

8.3 Acknowledgements

The authors acknowledge inspiration from IFIP Working Group 2.3 Programming Methodology,
and from colleagues at UNU/IIST (Macau) and at their current respective places of work.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 45

9 Bibliographical Notes

References

[1] M. Abadi and L. Lamport. The Existence of Refinement Mappings. Theoretical Computer
Science, 82(2):253–284, 1991.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New York, NY,
USA, 1996.

[3] G. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions of software
architecture. SIGSOFT Software Engineering Notes, 18(5):9–20, December 1993. .

[4] G.D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions
of software architecture. ACM Transactions on Software Engineering and Methodology,
4(4):319–364, Oct 1995. .

[5] J.-R. Abrial, E. Boerger, and H. Langmaack. The Steam Boiler Case Study: Competition
of Formal Program Specification and Development Methods. Lecture Notes in Computer
Science, 1165:1–12, 1996.

[6] Jean-Raymond Abrial. The B Book: Assigning Programs to meanings. Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, England, 1996.

[7] R. Allen and D. Garlan. A formal approach to software architectures. In IFIP Transactions
A (Computer Science and Technology); IFIP Wordl Congress; Madrid, Spain, volume
vol.A-12, pages 134–141, Amsterdam, Netherlands, 1992. IFIP, North Holland. .

[8] R. Allen and D. Garlan. Formalizing architectural connection. In 16th International
Conference on Software Engineering (Cat. No.94CH3409-0); Sorrento, Italy, pages 71–80,
Los Alamitos, CA, USA, 1994. IEEE Comput. Soc. Press. .

[9] R. Allen and D. Garlan. A case study in architectural modeling: the AEGIS system. In 8th
International Workshop on Software Specification and Design; Schloss Velen, Germany,
pages 6–15, Los Alamitos, CA, USA, 1996. IEEE Comput. Soc. Press. .

[10] C. André. Representation and Analysis of Reactive Behaviors: A Synchronous Aproach.
In Proceedings of CESA’96, Lille, France, July 1996.

[11] Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book Fas-
cicle VI.12. See [104]. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1980 – 1985.

[12] Anon. C.C.I.T.T. High Level Language (CHILL), Recommendation Z.200, Red Book Fas-
cicle VI.12. See [104]. ITU (Intl. Telecmm. Union), Geneva, Switzerland, 1980 – 1985.

[13] K.R. Apt. Ten Years of Hoare’s Logic: A Survey — Part I. ACM Trans. on Prog. Lang.
and Systems, 3:431–483, 1981.

[14] K. Arnold and J. Gosily. The Java Programming Language. Addison Wesley, US, 1996.

46 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[15] K.J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley Publishing Company,
1989.

[16] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduc-
tion. To appear, 1998.

[17] H.P. Barendregt. The Lambda Caculus — Its Syntax and Semantics. North-Holland
Publ.Co., Amsterdam, 1981.

[18] M. Barr and G. Wells. Category Theory for Computing Science. Prentice-Hall, 1990.

[19] Len Bass, Paul Clements, and Rick Kazman. Software Architectur in Practice. SEI Series.
Addison-Wesley, 1997.

[20] J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. Addison-Wesley, ACM
Press, 1989.

[21] G. Berry. Proof, Language and Interaction: Essays in Honour of Robin Milner, chapter
The Foundations of Esterel. MIT Press, 1998.

[22] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Science Of Computer Programming, 19(2):87–152, 1992.

[23] D. Bjørner. Project Graphs and Meta-Programs: Towards a Theory of Software Develop-
ment. In N. Habermann and U. Montanari, editors, Proc. Capri ’86 Conf. on Innovative
Software Factories and Ada, Lecture Notes on Computer Science. Springer-Verlag, May
1986.

[24] D. Bjørner. Software Development Graphs – A Unifying Concept for Software Develop-
ment? In K.V. Nori, editor, Vol. 241 of Lecture Notes in Computer Science: Foundations
of Software Technology and Theoretical Computer Science, pages 1–9. Springer-Verlag,
Dec. 1986.

[25] D. Bjørner. The Stepwise Development of Software Development Graphs: Meta-
Programming VDM Developments. In See [33], volume 252 of LNCS, pages 77–96.
Springer-Verlag, Heidelberg, Germany, March 1987.

[26] D. Bjørner. A Software Engineering Paradigm: From Domains via Requirements to Soft-
ware. Research report, Dept. of Information Technology, Technical University of Denmark,
Bldg.345/167–169, DK–2800 Lyngby, Denmark, July 1997. .

[27] D. Bjørner. Towards a Domain Theory of The Financial Sevice Industry. Research report,
Dept. of Information Technology, Technical University of Denmark, Bldg.345/167–169,
DK–2800 Lyngby, Denmark, July 1997. .

[28] D. Bjørner, C.W. George, B.Stig Hansen, H. Laustrup, and S. Prehn. A Railway Sys-
tem, Coordination’97, Case Study Workshop Example. Research Report 93, UNU/IIST,
P.O.Box 3058, Macau, January 1997. .

[29] D. Bjørner, C.W. George, and S. Prehn. Scheduling and rescheduling of trains, page 24
pages. Prentice Hall (?), 1997.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 47

[30] D. Bjørner, C.A.R. Hoare, and H. Langmaack, editors. VDM and Z – Formal Methods in
Software Development. Third International Symposium of VDM Europe, Kiel, FRG, April
17-21, 1990, Springer-Verlag, Lecture Notes in Computer Science, Vol. 428, April 1990.

[31] D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer-Verlag, 1978.

[32] D. Bjørner and C.B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

[33] D. Bjørner, C.B. Jones, M. Mac an Airchinnigh, and E.J. Neuhold, editors. VDM – A For-
mal Method at Work. Proc. VDM-Europe Symposium 1987, Brussels, Belgium, Springer-
Verlag, Lecture Notes in Computer Science, Vol. 252, March 1987.

[34] D. Bjørner, Souleymane Koussoube, Roger Noussi, and Gueorgui Satchok. Jackson’s Prob-
lem Frames: Syntax, Semantics and Pragmatics; Domains, Requirements and Design. Re-
search Report 102, UNU/IIST, P.O.Box 3058, Macau, April + July 1997. Published as
invited paper for ICFEM’97, Hiroshima, Nov.1997. IEEE Computer Society Press, Los
Alamitos, Calif., USA.

[35] D. Bjørner and M. Nielsen. Meta Programs and Project Graphs. In ETW: Esprit Technical
Week, pages 479–491. Elsevier, May 1985.

[36] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of LNCS.
Springer-Verlag, 1980.

[37] Dines Bjørner. Requirements as an Arbiter between Domains and Software. Research
report, Dept. of Information Technology, Technical University of Denmark, Bldg.345/167–
169, DK–2800 Lyngby, Denmark, 1997.

[38] R. Bloomfield, L. Marshall, and R. Jones, editors. VDM – The Way Ahead. Proc. 2nd
VDM-Europe Symposium 1988, Dublin, Ireland, Springer-Verlag, Lecture Notes in Com-
puter Science, Vol.328, September 1988.

[39] Egon Börger. Annotated Bibliography on Evolving Algebras, chapter Specification and
Validation Methods, pages 37–51. Oxford University Press, 1995.

[40] Egon Börger. Why Use Evolving Algebras for Hardware and Software Engineering? Lec-
ture Notes in Computer Science, 1012:236–271, 1995.

[41] Robert S. Boyer. The Rigor Resolution. Technical report, University of Teas at Austin,
USA, 1995.
See http://www.cs.utexas.edu/users/boyer/index.html.

[42] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic
Press, second edition, 1997.

[43] L. Cardelli. Basic Polymorphic Type-checking. Science of Computer Programming,
8(2):147–172, 1987.

48 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[44] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
Computing Surveys, 17(4):471–522, 19.

[45] R. Carnap. The Logical Syntax of Language. Harcourt Brace and Co., N.Y., 1937.

[46] R. Carnap. Meaning and Necessity. University of Chicago Press, 1956.

[47] Zhou Chaochen. Duration Calculi: An Overview. Research Report 10, UNU/IIST, P.O.Box
3058, Macau, June 1993. Published in: Formal Methods in Programming and Their
Applications, Conference Proceedings, June 28 – July 2, 1993, Novosibirsk, Russia; (Eds.:
D. Bjørner, M. Broy and I. Pottosin) LNCS 736, Springer-Verlag, 1993, pp 36–59.

[48] Zhou Chaochen and Michael R. Hansen. Lecture Notes on Logical Foundations for the
Duration Calculus. Lecture Notes, 13, UNU/IIST, P.O.Box 3058, Macau, August 1993.

[49] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information
Processing Letters, 40(5):269–276, 1991.

[50] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A Duration Calculus with Infinite
Intervals. Research Report 40, UNU/IIST, P.O.Box 3058, Macau, February 1995. ublished
in: Fundamentals of Computation Theory, Horst Reichel (ed.), pp 16-41, LNCS 965,
Springer-Verlag, 1995.

[51] Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An Extended Duration Calculus
for Real-time Systems. Research Report 9, UNU/IIST, P.O.Box 3058, Macau, January
1993. Published in: Hybrid Systems, LNCS 736, 1993.

[52] Zhou Chaochen and Li Xiaoshan. A Mean Value Duration Calculus. Research Report 5,
UNU/IIST, P.O.Box 3058, Macau, March 1993. Published as Chapter 25 in A Classical
Mind, Festschrift for C.A.R. Hoare, Prentice-Hall International, 1994, pp 432–451.

[53] W.J. Clancey. The Knowledge Level Reinterpreted: Modelling Socio–Technical Systems.
International Jounral of Intellegent Systems, 8:33–49, 1993. .

[54] E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future Directions.
ACM Computing Survey, 28(4):626–643, December 1996.

[55] C. Courcoubetis, S. Graf, and J. Sifakis. An Algebra of Boolean Processes. In Proc. of
CAV’91, pages 454–465, 1991.

[56] J. Cuellar and I. Wildgruber. The Steam Boiler Problem — A TLT Solution. Lecture
Notes in Computer Science, 1165:165–183, 1996.

[57] Jorge Cuéllar, Dieter Barnard, and Martin Huber. A Solution relying on the Model
Checking of Boolean Transition Systems. In The RPC-Memory Specification Problem,
lncs, pages 213–??, 1996.

[58] C.J. Date. An Introduction to Database Systems. The Systems Programming Series.
Addison Wesley, 1981.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 49

[59] C.J. Date. An Introduction to Database Systems, volume II of The Systems Programming
Series. Addison Wesley, 1983.

[60] J.W. de Bakker and ??? Control Flow Semantics. The MIT Press, Cambridge, Mass.,
USA, 1995.

[61] Harvey M. Deitel and Paul J. Deitel. C++: How to Program. Engineering, Science &
Math. Prentice Hall, 2nd edition, December 1997.

[62] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite Systems. In van Leeuwen [209],
pages 243–320.

[63] E.W. Dijkstra. Guarded Commands, Non-Determinacy and Formal Program Derivation.
Communications of the ACM, 18(8):453–457, 1975.

[64] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[65] E.W. Dijkstra and W.H.L. Feijen. A Method of Programming. Addison-Wesley, 1988.

[66] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer–
Verlag: Texts and Monographs in Computer Science, 1990.

[67] M. Dincbas and et al. The Contraint Logic Programming Language CHIP. In FGCS’88:
Intl. Conf. on Fifth Generation Computer Systems. Japan, 1988.

[68] R.C. Dorf. Modern Control Systems. Addison-Wesley Publishing Company, 1967 (fifth ed.
1989).

[69] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Coordinating Distributed
ViewPoints: The Anatomy of a Consistency Check. International Journal on Concurrent
Engineering: Research & Applications, 2(3), 1994.

[70] J.S. Poulin et al. A reuse-based software architecture for management information systems.
In Fourth International Conference on Software Reuse (Cat. No.96TB100015); Orlando,
FL, USA, pages 94–103, Los Alamitos, CA, USA, 1996. IEEE Comput. Soc. Press. .

[71] Richard Feynmann, Robert Leighton, and Matthew Sands. The Feynmann Lectures on
Physics, volume Volumes I–II–II. Addison-Wesley, California Institute of Technology,
1963.

[72] A. Finkelstein, D. Gabbay, A.Hunter, J. Kramer, and B. Nuseibeh. Inconsistency Han-
dling In Multi-Perspective Specifications. IEEE Transactions on Software Engineering,
20(8):569–578, 1994.

[73] A. Finkelstein and I. Sommerville. The Viewpoints FAQ. Software Engineering Journal:
Special Issue on Viewpoints for Software Engineering, 1996.

[74] John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors. FME’97: Industrial Applications
and Strengthened Foundations of Formal Methods, volume LNCS 1313 of Lecture Notes
in Computer Science, Heidelberg - Berlin, Germany, September 1997. Formal Methods
Europe Symposium, Graz, Austria, Springer–Verlag.

50 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[75] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools and Tech-
niques. Cambridge University Press, 1997–1998.

[76] R.W. Floyd. Assigning Meanings to Programs. In [192], pages 19–32, 1967.

[77] G.F. Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dynamic Systems.
Addison-Wesley Publishing Company, 1980 (second ed. 1990).

[78] D. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial
Intelligence and Logic Programming: Logical Foundations. Oxford Science Publications,
Oxford University Press, Clarendon Press, 1993.

[79] D. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial In-
telligence and Logic Programming: Deduction Methodologies. Oxford Science Publications,
Oxford University Press, Clarendon Press, 1994.

[80] D. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial
Intelligence and Logic Programming: Nonmonotonic Reasoning and Uncertain Reasoning.
Oxford Science Publications, Oxford University Press, Clarendon Press, 1994.

[81] D. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial
Intelligence and Logic Programming: Epistemic and Temporal Reasoning. Oxford Science
Publications, Oxford University Press, Clarendon Press, 1995.

[82] D. Garlan. Research directions in software architecture. ACM Computing Surveys,
27(2):257–261, June 1995. .

[83] D. Garlan. Formal approaches to software architecture. In Studies of Software Design.
ICSE ‘93 Workshop. Selected Papers, pages 64–76, Berlin, Germany, 1996. Springer-
Verlag. .

[84] D. Garlan and M. Shaw. Experience with a course on architectures for software systems.
In Software Engineering Education. SEI Conference 1992; San Diego, CA, USA, pages
23–43, Berlin, Germany, 199. Springer-Verlag. .

[85] D. Garlan and M. Shaw. An introduction to software architecture, pages 1–39. World
Scientific, Singapore, 1993. .

[86] Marie-Claude Gaudel and Jim Woodcock, editors. FME’96: Industrial Benefit and Ad-
vances in Formal Methods, volume LNCS ??? of Formal Methods Europe Symposium,
Oxford, England, Heidelberg - Berlin, Germany, March 1996. Formal Methods Europe,
Springer–Verlag.

[87] M. Gelfond, V. Lifscitz, and A. Rabinov. What are the limitations of the situation calculus.
In Robert Boyer, editor, Automated Reasoning: Essays in Honour of Woody Bledsoe, pages
167–179. 1991.

[88] Jean-Yves Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7. Cambridge Univ.
Press, Cambridge, UK, cambridge tracts in theoretical computer science edition, 1989.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 51

[89] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli. A prototype do-
main modeling environment for reusable software architectures. In W.B. Frakes, editor,
Third International Conference on Software Reuse: Advances in Software Reusability (Cat.
No.94TH06940); Rio de Janeiro, Brazil, pages 74–83, Los Alamitos, CA, USA, 1994. IEEE
Comput. Soc. Press. .

[90] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[91] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer–Verlag,
1993.

[92] The RAISE Language Group. The RAISE Specification Language. The BCS Practitioner
Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[93] The RAISE Method Group. The RAISE Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[94] Nicola Guarino. Formal Ontology, Conceptual Analysis and Knowledge Representation.
International Journal of Human and Computer Studies, 1996. Special issue on: (see
title) Formal Ontology, Conceptual Analysis and Knowledge Representation; edited by N.
Guarino and R. Poli.

[95] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming Real Time
Applications with Signal. In Another Look at Real Time Programming, volume Special
Issue of Proceedings of the IEEE, September 1991.

[96] C.A. Gunther. Semantics of Programming Languages. The MIT Press, Cambridge, Mass.,
USA, 1992.

[97] Yuri Gurevich. Evolving Algebras: An Attempt to Discover Semantics. In G. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Computer Science, pages 266–292.
World Scientific, 1993.

[98] Yuri Gurevich. Evolving Algebras. IFIP 13th World Computer Congress, I: Technology
and Foundations:423–427, 1994.

[99] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Brger, editor, Specification
and Validation Methods, pages 9–36. Oxford University Press, 1995.

[100] J. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy Pieces. Technical Report 5,
DEC SRC, Dig. Equipm. Corp. Syst. Res. Ctr., Palo Alto, California, USA, 1985.

[101] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, , and J.M. Wing.
Larch: Languages and Tools for Formal Specification. Texts and Monographs in Computer
Science. Springer-Verlag, Springer-Verlag New York, Inc., Attn: J. Jeng, 175 Fifth Avenue,
New York, NY 10010-7858, USA, 1993.

[102] P. Haff and A.V. Olsen. Use of VDM within CCITT. In [33], pages 324–330. Springer-
Verlag, 1987.

52 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[103] P.L. Haff, editor. The Formal Definition of CHILL. See [12]. ITU (Intl. Telecmm. Union),
Geneva, Switzerland, 1981.

[104] P.L. Haff, editor. The Formal Definition of CHILL. See [12]. ITU (Intl. Telecmm. Union),
Geneva, Switzerland, 1981.

[105] N. Halbwachs, P. Caspi, and Pilaud. The Synchronous Dataflow Programming Language
Lustre. In Another Look at Real Time Programming, volume Special Issue of Proceedings
at the IEEE, September 1991.

[106] M.R. Hansen and H. Rischel. Functional Programming in Standard ML. Lecture Notes,
August 1997.

[107] Samuel Harbinson. Modula 3. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1992.

[108] David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, October 1996.

[109] E.C.R. Hehner. The Logic of Programming. Prentice-Hall, 1984.

[110] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass., USA,
1988.

[111] H. Herrlich and G.E. Strecker. Category Theory. Allyn and Bacon, Boston, 1973.

[112] C.A.R. Hoare. The Axiomatic Basis of Computer Programming. Communications of the
ACM, 12(10):567–583, Oct. 1969.

[113] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8),
Aug. 1978.

[114] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[115] C.A.R. Hoare and He Ji Feng. Unifying Theories of Programming. Publ.: Prentice Hall,
1997.

[116] J. Hopcroft and J. Ullman. Introduction to Automa Theory, Languages and Computation.
Reading. Addison-Wesley, 1979.

[117] Dang Van Hung and Zhou Chaochen. Probabilistic Duration Calculus for Continuous
Time. Research Report 25, UNU/IIST, P.O.Box 3058, Macau, May 1994. resented at
NSL’94 (Workshop on Non-standard Logics and Logical Aspects of Computer Science,
Kanazawa, Japan, December 5–8, 1994), submitted to Formal Aspects of Computing.

[118] Dang Van Hung and Phan Hong Giang. A Sampling Semantics of Duration Calculus.
Research Report 50, UNU/IIST, P.O.Box 3058, Macau, November 1995. ublished in:
Formal Techniques for Real-Time and Fault Tolerant Systems, Bengt Jonsson and Joachim
Parrow (Eds), LNCS 1135, Spriger-Verlag, pp. 188–207, 1996.

[119] Inmos Ltd. Specification of instruction set & Specification of floating point unit instruc-
tions. In Transputer Instruction Set – A compiler writer’s guide, pages 127–161. Prentice
Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1988.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 53

[120] Daniel Jackson. Structuring Z Specifications with Views. ACM Transactions on Software
Engineering and Methodology, 4(4):365–389, October 1995.

[121] M. Jackson. Problems and requirements (software development). In Second IEEE Inter-
national Symposium on Requirements Engineering (Cat. No.95TH8040), pages 2–8. IEEE
Comput. Soc. Press, 1995. .

[122] Michael Jackson. Software Requirements & Specifications: a lexicon of practice, princi-
ples and prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham, nr.
Reading, England; E-mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv +
228 pages.

[123] Michael Jackson. The meaning of requirements. Annals of Software Engineering, 3:5–21,
1997.

[124] Michael Jackson. Software Hakubutsushi: Sekai to Kikai no Kijutsu (Software Require-
ments & Specifications: a lexicon of practice, principles and prejudices). Toppan Company,
Ltd., 2-2-7 Yaesu, Chuo-ku, Tokyo 104, Japan, 1997. In Japanese. Translated by Tetsuo
Tamai (Univ. of Tokyo, tamai@graco.c.u-tokyo.ac.jp) and Hiroshi Sako; ISBN 4-8101-
8098-0; xxv + 267 pages.

[125] J.Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. Technical
report, IBM Research, Yorktown, 1987.

[126] C.B. Jones. Systematic Software Development using VDM. Prentice Hall International,
second edition, 1990.

[127] Neil D. Jones. Computability and Complexity — From a Programming Point of View. The
MIT Press, Cambridge, Mass., USA, 1996.

[128] John J. Kenney. Executable Formal Models of Distributed Systems based on Event Pro-
cessing. PhD thesis, Stanford University, Computer Systems Laboratory, 1996.

[129] Brian Kernighan and Dennis Ritchie. C Programming Language. Prentice Hall, 2nd
edition, 1989.

[130] S.C. Kleene. Introduction to Meta-Mathematics. Van Nostrand, New York and Toronto,
1952.

[131] Orna Kupferman and Moshe Y. Vardi. Synthesis with Incomplete Information. In Pro-
ceedings of the ICTL’97, 1997.

[132] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univer-
sity Press, 1994.

[133] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872–923, May 1994.

[134] Gérard Le Lann. Proof-Based System Engineering for Computing Systems. In ESA-
INCOSE Conference on Systems Engineering, Noordwijk, NL, November 1997.

54 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[135] K. Lano. The B Language and Method, A Guide to Pratical Formal Development. Springer-
Verlag, Formal Approaches to Computing and Information Technology (FACIT). Ed.: S.A.
Schuman, 1996.

[136] Peter Gorm Larsen, editor. Formal Methods, volume LNCS ??? of Formal Methods Eu-
rope Symposium, Odense, Denmark, Heidelberg - Berlin, Germany, April 1993. Springer–
Verlag.

[137] V. Lifschitz. (1) Pointwise Circumscription, (2) On the Semantics of Strips. In Ginsberg,
editor, Readings in Nonmonotonic Reasoning.

[138] V. Lifschitz. An Introduction to Common Sense Reasoning. Lecture Notes, Stanford
University and University of Texas at Austin.

[139] J.W. Lloyd. Foundation of Logic Programming. Springer-Verlag, 1984.

[140] D.C. Luckham. Rapide: A Language and a Toolset for Simulation of Distributed Systems
by Partial Orderings. In DIMACS Partial Order Methods Workshop. Princeton University,
July 1996, 25 pages.

[141] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specifi-
cation and Analysis of System Architecture using Rapide. IEEE Transaction on Software
Engineering, 21(4):336–355, April 1995.

[142] D.C. Luckham and J. Vera. An Event–based Architecture Definitions Language. IEEE
Transactions on Software Engineering, 21(9):717–734, Sept. 1995.

[143] D.C. Luckham, J. Vera, and S. Meldal. Three Concepts of Software Architecture. Technical
report, Stanford University, Computer Systems Laboratory.

[144] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[145] J. Magee and J. Kramer. Dynamic structure in software architectures. In D. Garlan, editor,
SIGSOFT ’96. Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations
of Software Engineering; San Francisco, CA, USA, pages 3–14, New York, NY, USA, 1996.
ACM. .

[146] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems: Specifications.
Addison Wesley, 1991.

[147] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems: Safety. Addison
Wesley, 1995.

[148] F. Maraninchi. The Argos Language: Graphical Representation of Automata and Descrp-
tion of Reactive Systems. In International Conference on Visual Languages, Kobe, Japan,
1991.

[149] J. McCarthy and et al. LISP 1.5, Programmer’s Manual. The MIT Press, Cambridge,
Mass., USA, 1962.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 55

[150] John McCarthy. Circumscription—A Form of Non-Monotonic Reasoning. Artificial Intel-
ligence, 13:27–39, 1980. Reprinted in [153].

[151] John McCarthy. Applications of Circumscription to Formalizing Common Sense Knowl-
edge. Artificial Intelligence, 28:89–116, 1986. Reprinted in [153].

[152] John McCarthy. Formalization of Common Sense, papers by John McCarthy. Ablex, San
Diego, Calif., USA, 1990.

[153] John McCarthy. Formalization of common sense, papers by John McCarthy edited by V.
Lifschitz. Ablex, 1990.

[154] John McCarthy. Concepts of Logical AI. Note, Stanford Univ., Comp. Sci. Dept., Oct. 15
1997.

[155] John McCarthy. CS323: Nonmonotonic Reasoning. Stanford University Department of
Computer Science Lecture Notes, Course 323, 14 lectures, 103 pages, 1997.

[156] K. Melhorn. Data Structures and Algorithms: 3 vols.: 1: Multi-Dimensional Searching
and Computational Geometry, 2: Graph Algorithms and NP-Completeness, 3: Sorting
and Searching. Springer-Verlag, EATCS Monographs, Heidelberg, 1984.

[157] Bertrand Meyer. Applying Design by Contract. Computer (IEEE), 25(10):40–51, 1992.

[158] R. Milner. Calculus of Communication Systems, volume 94 of LNCS. Springer-Verlag,
1980.

[159] R. Milner. Communication and Concurrency. C.A.R. Hoare Series in Computing Science.
Prentice Hall, 1989.

[160] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
Cambridge, Mass., USA and London, England, 1990.

[161] Robin Milner. Pi-Nets: A Graphical Form of pi-Calculus, pages 26–42. Lecture Notes in
Computer Science, Vol. 788, Springer 1994, ISBN 3-540-57880-3, 1994.

[162] Robin Milner, Joachim Parrow, and David Walker. Modal Logics for Mobile Processes.
Journal of Thepretical Computer Science, 114(1):149–171, 1993.

[163] R. Montague. Formal Philosophy: Selected Papers of Richard Montague. Eds.: Thomason
and Richmond. Yale Univ. Press, 1974.

[164] C. Carroll Morgan. Programming from Specifications. International Series in Computer
Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1990.

[165] M. Moriconi and R.A. Rimenschneide. Introduction to SADL 1,0: A Language for Speci-
fying Software Architecture Hierarchies. Technical Report SRI-CSL-97-01, SRI Intl., CSL:
Compter Science Lab., March 1997. 33 pages.

[166] M. Moriconi and Qian XiaoLei. Correctness and Composition of Software Architectures. In
ACM SIGSOFT’94 Symposium on Foundations of Software Engineering, pages 164–174,
New Orleans, Louisiana, December 1994. ACM SigSoft.

56 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[167] M. Moriconi, Qian XiaoLei, and R.A. Rimenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, 21(4):356–372, April 1995.

[168] M. Moriconi, Qian XiaoLei, R.A. Rimenschneider, and Gong Li. Secure Software Archi-
tectures. In Security and Privacy. IEEE Computer Society Press, May 4–7, 1997.

[169] Peter D. Mosses. Action Semantics. Cambridge University Press: Tracts in Theoretical
Computer Science, 1992. .

[170] T. Mowbray. The seven deadly sins of OO architecture. Object Magazine; SIGS Publica-
tions, 7(1):21, 24, March 1997. .

[171] Maurice Naftalin, Tim Denvir, and Miquel Bertran, editors. FME’94: Industrial Benefit
of Formal Methods, Formal Methods Europe Symposium, Barcelona, Spain, Heidelberg -
Berlin, Germany, October 1994. Springer–Verlag.

[172] P. Naur. Proof of Algorithms by General Snapshots. BIT, Nordisk Tidsskrift for Infor-
mations Behandling, 6:310–316, 1966.

[173] P. Naur and B. Randall, editors. Software engineering: The Garmisch Conference. NATO
Science Committee, Brussels, 1969.

[174] Peter Naur. Computing: A Human Activity. Dordrecht, 1995. Although I find this book
problematic in many ways, I do strongly support many of Peter Naur’s views on the human
aspect of Computing.

[175] Greg Nelson, editor. Systems Programming in Modula 3. Innovative Technologies. Prentice-
Hall, Englewood Cliffs, New Jersey, USA, 1991.

[176] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal In-
troduction. John Wiley & Sons Ltd., Baffins Lane, Chishester West Sussec PO19 1UD,
England.

[177] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s Type
Theory An Introduction, volume 7 of International Series of Monographs on Computer
Science. Clarendon Press, Oxford University Press, Oxford, England, June 1990. .

[178] B. Nuseibeh, J. Kramer, and Finkelstein. A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specification. IEEE Transactions on Software
Engineering, 20(10):760–773, 1994.

[179] O. Oest. VDM From Research to Practice. In H.-J. Kugler, editor, Information Pro-
cessing ’86, pages 527–533. IFIP World Congress Proceedings, North-Holland Publ.Co.,
Amsterdam, 1986.

[180] S. Owre, J. Rushby, and N. Shankar. PVS: Prototype Verification System. In 11th Intl.
Conf. on Automated Deduction (CADE-11), LNCS 607; Lecture Notes in Computer Sci-
ence, pages 748–752, Saratoga, NY., USA, 1995. Springer-Verlag.

[181] Patterson and Hennesey. Guess: Machine Organisation. ???, ???

The Rôle of Formal Specification and Design Calculi — May 11, 1998 57

[182] L.C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Oddifreddi, editor, Logic in
Computer Science, pages 361–386. Academic Press, 1990.

[183] G.D. Plotkin. A Structural Approach to Operational Semantics. Technical report, Comp.
Sci. Dept., Aarhus Univ., Denmark; DAIMI-FN-19, 1981.

[184] G. Polya. How to Solve It. Princeton Univ. Press, 1957.

[185] S. Prehn and W.J. Toetenel, editors. VDM ??? Fourth International Symposium of
VDM Europe, Noordwijkerhout, The Netherlands, October, 1991, Springer-Verlag, Lec-
ture Notes in Computer Science, Vol. 551, October 1991.

[186] P.J. Ramadge and W.M. Wonham. The Control of Discrete Event Systems. Proc. of the
IEEE, 77(1):81–98, January 1989.

[187] M. Reiser. The OBERON System, User Guide and Programmer’s Manual. ACM Press.
Addison-Wesley Publishing Company, 1991.

[188] R. Reiter. A Logic for Default Reasoning. In Ginsberg, editor, Readings in Nonmonotonic
Reasoning.

[189] J.C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

[190] David Rydeheard and Rod M. Burstall. Computational Category Theory. Prentice-Hall
Intl., 1991.

[191] D.A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn
& Bacon, 1986.

[192] J.T. Schwartz. Mathematical Aspects of Computer Science, Proc. of Symp. in Appl. Math.
AMS, 1967.

[193] Robin Sharp. Principles of Protocol Design. International Series in Computer Science.
Prentice Hall, 1994. ISBN 0-13-182155-5.

[194] C. Shekaran, D. Garlan, and et al. The role of software architecture in require-
ments engineering. In First International Conference on Requirements Engineering (Cat.
No.94TH0613-0); Colorado Springs, CO, USA, pages 239–245, Los Alamitos, CA, USA,
1994. IEEE Comput. Soc. Press. .

[195] S. Soko lowski. Applicative Higher-Order Programming: the Standard ML Perspective.
Chapman and Hall, 1991.

[196] J. Michael Spivey. Understanding Z: A Specification Language and its Formal Semantics,
volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, UK, January 1988.

[197] J. Michael Spivey. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1989.

58 D.Bjørner and J.R.Cuéllar: Software Engineering Education

[198] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. The MIT Press, Cambridge, Mass., USA, 1977.

[199] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Engineering, Science &
Math, 1992.

[200] Tenenbaum. Guess: Architectures. ???, ???

[201] J.G. Thistle and W.M. Wonham. Control of Infinite Behaviour of Finite Automata. SIAM
J. Control Optim., 32(4): , July 1994.

[202] J.G. Thistle and W.M. Wonham. Supervision of Infinite Behaviour of Discrete-Event
Systems. SIAM J. Control Optim., 32(4): , July 1994.

[203] W. Thomas. Automata on Infinite Objects. In van Leeuwen [209], pages –.

[204] Simon Thompson. Haskell: The Craft of Functional Programming. Addison Wesley, 1996.

[205] D.A. Turner. Miranda: A Non-strict Functional Language with Polymorphic Types. In
J.P. Jouannaud, editor, Functional Programming Languages and Computer Architectures,
number 201 in LNCS. Springer-Verlag, Heidelberg, Germany, 1985.

[206] Jeffry D. Ullman. Principles of database Systems. Pitman, 1980.

[207] Jeffry D. Ullman. Principles of Data and Knowledgebased Systems, volume I. Computer
Sciences Press, 1988.

[208] Jeffry D. Ullman. Principles of Data and Knowledgebased Systems, volume II. Computer
Sciences Press, 1989.

[209] J. van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics. Elsevier, 1990.

[210] Gerald M. Weinberg. The Psychology of Computer Pogramming. Van Nostrand Reinhold,
1971.

[211] Geo Wiederhold. Database design. McGraw-Hill, New York,N.Y., 2nd ed. edition, 1983.

[212] Å. Wikström. Functional Programming using Standard ML. Prentice-Hall, 1984.

[213] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press, Cam-
bridge, Mass., USA, 1993.

[214] M. Wirsing and M. Nivat (Eds.). Algebraic Methodology and Software Technology.
Springer-Verlag, Lecture Notes in Computer Science, Vol. 1101, 1996. 5th International
Conference, AMAST ’96 Munich, Germany.

[215] N. Wirth. From Modula to Oberon. Software — Practice and Experience, 18:661–670,
1988.

[216] N. Wirth. The Programming Language Oberon. Software — Practice and Experience,
18:671–690, 1988.

The Rôle of Formal Specification and Design Calculi — May 11, 1998 59

[217] John Wordsworth. Software Engineering with B. Addison-Wesley Longman, 1996.

[218] P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Transactions
on Software Engineering and Methodology, 6(1):1–30, January 1997. .

