
10

A Family of Script Languages

Licenses and Contracts — Incomplete Sketch1

Drs. Arimoto Yasuhito, Chen Xiaoyi and Xiang Jianwen were co-partners in this study

Caveat

This chapter is incomplete. Its basis, [62], is even more so. We leave a number
of formal semantic function definitions undefined.

Summary

Classical digital rights license languages, [3,9,10,72,74–76,113,117,141,
154,166,167,177,188,189,206,207,220] applied to the electronic “down-
loading”, payment and rendering (playing) of artistic works (for example
music, literature readings and movies). In this chapter we generalise such
applications languages and we extend the concept of licensing to also
cover work authorisation (work commitment and promises) in health care
and in public government. The digital works for these two new applica-
tion domains are patient medical records, public government documents
(Sects. 10.2–10.4.3) and bus transport contracts (Sect. 10.6).

Digital rights licensing for artistic works seeks to safeguard against
piracy and to ensure proper payments for the rights to render these
works. Health care and public government license languages seek to en-
sure transparent and professional (accurate and timely) health care, re-
spectively ‘good governance’. Bus transport contract languages seeks to
ensure timely and reliable bus services by an evolving set of transport
companies.

Proper mathematical definition of licensing languages seeks to ensure
smooth and correct computerised management of licenses and contracts.

In this chapter we shall motivate and exemplify four license languages,
the pragmatics and syntax of four (Sects. 10.2–10.6) of them as well as
the formal semantics of one of them (Sect. 10.6).

1This is an edited version of [62].
Section 10.6 (Pages 309–326) is new and authored only by Dines Bjørner.

284 10 Towards a Family of Script Languages

10.1 Introduction

10.1.1 Computing Science cum Programming Methodology

• This chapter is not about [so-called Theoretical] Computer Science:
⋆ The study & knowledge of concepts that can ∃ “inside” computers.
⋆ Establishing computational models.
⋆ Proving foundational lemmas.

• This chapter is about Computing Science
⋆ The study & knowledge of how to construct “those” things !
⋆ No proving foundational lemmas as in TCS.
⋆ Instead establishing method principles, techniques and tools
⋆ for formal specification and design calculi,
⋆ and verifying, model checking and formally testing properties.

10.1.2 Caveats

This document constitutes a comprehended set of R&D development notes.
It is not a report, let alone a JAIST report, and it is certainly not a publish-
able science and/or technology paper. This document is to serve as a basis
for further work on the design, pragmatics, semantics and syntax of license
languages, for upcoming work on understanding permissions and obligations,
for upcoming work on studying possible understandings of license languages
in terms of game theory, transaction costs, and possibly other issues such as
technological feasibilities. This document is grossly incomplete.

We paraphrase the above. We do so since it has shown difficult for some to
understand that this is not a paper anywhere close to submission for publica-
tions, let alone an internal JAIST report. To repeat: these are working notes.
They are being “constantly” revised2.

The formal semantics given “late” in the chapter (Sect. 10.6) is a standard,
near “classical” way of (i) securing that the author of that formalisation has
understood the design of the language. (ii) That CSP + RSL3 definition can
be used to write users reference manuals for constructing, issuing and acting
upon licenses, and (ii) as a basis for implementing trustworthy interpreters
for licenses and contracts and for license contract uses; that is for possibly
provably correct implement a distributed license and contract management
(monitoring and control) system.

If you are looking for “deeper” results, results that span any family of
license languages adhering to the basic semantic principles developed in this
document, then this is not the document to read. Well, you had better first
read this document, or the reports and paper(s) that are planned to emanate

2Well, they have not been worked on since late 2006. I hope, during the summer
of 2009, to be able to completely revise this chapter into a publishable paper.

3
CSP: [137,138,218,222], RSL: [31–33,101,104,106]

10.1 Introduction 285

from this document. Then you may have to do the research that may lead to
generic results. It is to be expected from such theoretical computer science
work that a mathematical notation — invented explicitly for the purpose
— will then “redefine” a suitably commensurate (congruent) and perhaps
“vastly” generic sub-language, and the desired generic results are then proved
to hold of that special notation “semantics”.

10.1.3 On Licenses

License:

a right or permission granted in accordance with law by a competent authority

to engage in some business or occupation,

to do some act, or to engage in some transaction

which but for such license would be unlawful

Merriam Webster Online [232]

The concepts of licenses and licensing express relations between (i) actors

(licensors (the authority) and licensees), (ii) entities (artistic works, hospital
patients, public administration, citizen documents) and bus transport con-
tracts and (iii) functions (on entities), and as performed by actors. By issuing
a license to a licensee, a licensor wishes to express and enforce certain permis-
sions and obligations: which functions on which entities the licensee is allowed
(is licensed, is permitted) to perform. In this chapter we shall consider four4

kinds of entities: (i) digital recordings of artistic and intellectual nature: mu-
sic, movies, readings (“audio books”), and the like, (ii) patients in a hospital
as represented also by their patient medical records, (iii) documents related
to public government, and (iv) busses, time tables and road nets (of a bus
transport system).

The permissions and obligations issues are, (1) for the owner (agent) of
some intellectual property to be paid (an obligation) by users when they per-
form permitted operations (rendering, copying, editing, sub-licensing) on their
works; (2) for the patient to be professionally treated — by medical staff who
are basically obliged to try to cure the patient; (3) for public administrators
and citizens to enjoy good governance: transparency in law making (national
parliaments and local prefectures and city councils), in law enforcement (i.e.,
the daily administration of laws), and law interpretation (the judiciary) — by
agents who are basically obliged to produce certain documents while being
permitted to consult (i.e., read, perhaps copy) other documents; and (4) for
bus passengers to enjoy reliable bus schedules — offered by bus transport com-
panies on contract to, say public transport authorities and on sub-contract
to other such bus transport companies where these transport companies are
obliged to honour a contracted schedule.

4During our 2006 study we only studied and in [62] we only reported on the li-
cense languages related to (i–iii) below. The bus transport contract language, related
to (iv), emerged during late 2008.

286 10 Towards a Family of Script Languages

10.1.4 What Kind of Science Is This?

It is experimental computing science: The study and knowledge of how to de-
sign and construct software that is right, i.e., correct, and the right software,
i.e., what the user wants. To study methods for getting the right software is
interesting. To study methods for getting the software right is interesting. Do-
main development helps us getting the right software. Deriving requirements
from domain descriptions likewise. Designing software from such requirements
helps us get the software right. Understanding a domain and then designing
license languages from such an understanding is new. We claim that computer-
supported management of properly designed license languages is a hallmark
of the e-Society.

10.1.5 What Kind of Contributions?

The experimental nature of the project being reported on is as follows: Pos-
tulate four domains. Describe these informally and formally. Postulate the
possibility of license languages (LLs) that somehow relate to activities of re-
spective domains. Design these – experimentally. Try discover similarities and
differences between the four LLs (LLDRM, LLHHLL, LLPALL, CLBUS). Formalise
the common aspects: CLL. Formalise the three LLs — while trying to “param-
eterise” the CLL to achieve LLDRM, LLHHLL, LLPALL, CLBUS. This investigation
is bound to tell us something, we hope.

The above outlines our ultimate goals. In reality, this chapter brings us
only part of the way towards such a goal. To do the study as outlined in this
section we first need complete the formal semantics of all the four languages.

10.2 Pragmatics of Three License Languages

• By pragmatics we understand the study and practice of the factors that
govern our choice of language in social interaction and the effects of our
choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the three
domains of (1) production, distribution and consumption of artistic works, (2)
the hospitalisation of patient, i.e., hospital health care and (3) the handling of
law-based document in public government. The emphasis is on the pragmatics
of the terms, i.e., the language used in these three domains. We leave the
discussion of the bussing contract language till Sect. 10.6.

10.2.1 The Performing Arts: Producers and Consumers

The intrinsic entities of the performing arts are the artistic works: drama
or opera performances, music performances, readings of poems, short stories,

10.2 Pragmatics of Three License Languages 287

novels, or jokes, movies, documentaries, newsreels, etc. We shall limit our
span to the scope of electronic renditions of these artistic works: videos, CDs
or other. In this paper we shall not touch upon the technical issues of “down-
loading”(whether ”streaming” or copying, or other). That and other issues
should be analysed in [245].

Operations on Digital Works

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while
protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

License Agreement and Obligation

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

The Artistic Electronic Works: Two Assumptions

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from
the fulfilment of the first). The second assumption is that the consumer is
not allowed to, or cannot operate5 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results
in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

5render, copy and edit

288 10 Towards a Family of Script Languages

Protection of the Artistic Electronic Works

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

10.2.2 Hospital Health Care: Patients and Medical Staff

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients, in
a sense, issue a request to be treated with the aim of full or partial restitution.
This request is directed at medical staff, that is, the patient authorises medical
staff to perform a set of actions upon the patient. One could claim, as we shall,
that the patient issues a license.

Hospital Health Care: Patients and Patient Medical Records

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

Hospital Health Care: Medical Staff

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

10.2.3 Public Government and the Citizens

The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)6, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of public

6De l’esprit des lois (The Spirit of the Laws), published 1748

10.2 Pragmatics of Three License Languages 289

government. Typically national parliament and local (province and city) coun-
cils are part of law-making government. Law-enforcing government is called
the executive (the administration). And law-interpreting government is called
the judiciary [system] (including lawyers etc.).

Documents

A crucial means of expressing public administration is through documents.7

We shall therefore provide a brief domain analysis of a concept of documents.
(This document domain description also applies to patient medical records
and, by some “light” interpretation, also to artistic works — insofar as they
also are documents.)

Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

Document Attributes

With documents one can associate, as attributes of documents, the actors who
created, edited, read, copied, distributed (and to whom distributed),shared,
performed calculations and shredded documents.

With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

Actor Attributes and Licenses

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as

licenses.

Document Tracing

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

7Documents are, for the case of public government to be the “equivalent” of
artistic works.

290 10 Towards a Family of Script Languages

10.3 The Semantic Intents of Licensor and Licensee Actions

10.3.1 Overview

There are two parties to a license: the licensor and the licensee. And there is
a common agreement concerning a shared “item” between them, namely: the
license and the work item: the artistic work, the patient, the document.

The licensor gives the licensee permission, or mandates the licensee to be
obligated to perform certain actions on designated “items”.

The licensee performs, or does not perform permitted and/or obligated
actions

And the licensee may perform actions not permitted or not obligated.
The license shall serve to ensure that only permitted actions are carried

out, and to ensure that all obligated actions are carried out.
Breach of the above, that is, breach of the contracted license may or shall

result in revocation of the license.

10.3.2 Licenses and Actions

Licenses

Conceptually a licensor o (for owner) may issue a license named ℓ to licensee
u (for user) to perform some actions. The license may syntactically appear as
follows:

ℓ : licensor o licenses licensee u to

perform actions {a1,a2,...,an} on work item w

Actions

And, conceptually, licensee (u) may perform actions which can be expressed
as follows:

ℓ:a(w); ℓ:a′(w); ...; ℓ:a′′(w); ...; ℓ:a′′′(w)

These actions (a, a′, ..., a′′, ..., a′′′) may be in the set {a1,a2,...,an}, mentioned
in the license, or they may not be in that set. In the latter case we have a
breach of license ℓ.

Any one licensee may have licensed several licenses ℓ1, ℓ2, . . . , ℓn. And such
a licensee may, in an interleaved fashion, perform actions referring to different
licenses:

ℓi : ai(w); ℓj : a′

j(w); ...; ℓk : a′′

k(w); ...; ℓn : a′′′

n (w)

10.3 The Semantic Intents of Licensor and Licensee Actions 291

Two Languages

Thus there is the language of licenses and the language of actions.
We advise the reader to take note of the distinction between the permitted

or obligated actions enumerated in a license and the license name labelled
actions actually requested by a licensee.

10.3.3 Sub-licensing, Scheme I

A licensee u may wish to delegate some of the work associated with performing
some licensed actions to a colleague (or customer). If, for example the license
originally stated:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

the licensee (u) may wish a colleague u′ to perform a subset of the actions,
for example

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Therefore u would like if the above license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

instead was formulated as:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

where

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Now licensee u can perform the action

ℓ : license actions {a′,a′′,a′′′} to u′

The above is an action designator. Its practical meaning is that a license is
issued by u:

η(ℓ,u,t): licensor u licenses licensee u′

to perform actions {a′,a′′,a′′′} on work item w

The above license can be easily “assembled” from the action including the
action named license: the context determines who (namely u) is issuing the
license, and who or which is the work item. η is a function which applies to
license name, agent identifications and time and yields unique new license
names.

292 10 Towards a Family of Script Languages

10.3.4 Sub-licensing, Scheme II

The subset relation

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

mentioned in the sub-licensing part of license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

may be omitted. In fact one could relax the relation completely and allow
any actions {ai,aj,...,ak} whether in {a1,a2,...,an} or not ! That is, the orig-
inal licensor may mandate that a licensee allow a sub-licensee to perform
operations that the licensee is not allowed to perform. Examples are: a li-
censee may break the shrink-wrap around some licensed software package —
an action which may not be performed by the licensor; a medical nurse (i.e.,
a licensee) may perform actions on patients not allowed performed by the
licensor (say, a medical doctor); and a civil servant (say, an archivist) may
copy, distribute or shred documents, actions that may not be allowed by the
licensor (i.e., the manager of that civil servant), while that civil servant (the
archivist) is not allowed to create or read documents.

10.3.5 Multiple Licenses

Consider the following scenario: A licensee u is performing actions ap, aq, . . . ,
ar, on work item ω, and has licensed u′ to perform actions ai, aj , . . . , ak, also
on work item ω. The action whereby u licenses u′ occurs at some time. At
that time u has performed none or some of the actions ap, aq, . . . , ar (on work
item ω), but maybe not all. What is going to happen? Can u and u′ go on, in
parallel, performing actions on the same work item (ω) ? Our decision is yes,
and they can do so in an interleaved manner, not concurrently but alternating,
i.e., not accessing the same work item simultaneously.

10.4 Syntax and Informal Semantics

We distinguish between the pragmatics, the semantics and the syntax of lan-
guages. Leading textbooks on (formal) semantics of programming languages
are [82, 114,215,221,236,241].

We have already covered the concept of pragmatics and illustrated its
application to some issues of license language design.

We shall now illustrate the use of syntax and semantics in license language
design.

10.4 Syntax and Informal Semantics 293

• By syntax we mean (i) the ways in which words are arranged to show mean-
ing (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences.

• By semantics we mean the study and knowledge [incl. specification] of mean-
ing in language [79].

• By informal semantics we mean a semantics which is expressed in concise
natural language, for example, as here, English.

10.4.1 General Artistic License Language

We refer to the abstract syntax formalised below (that is, formulas 0.–14.).
The work on the specific form of the syntax has been facilitated by the work
reported by Xiang JenWen [245].8

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

Syntax

We first present an abstract syntax of the language of licenses, then we an-
notate this abstract syntax, and finally we present an informal semantics of
that language of licenses.

type

0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′

readme
′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

8As this work, [245], has yet to be completed the syntax and annotations given
here may change.

294 10 Towards a Family of Script Languages

Syntax Annotations

0: Syntax Sorts (0.) Licenses are given names, ln:Ln, so are actors (owners,
licensors, and users, licensees), nn:Nm. By w:W we mean a (net) reference to
(a name of) the downloaded possibly segmented artistic work being licensed,
where segments are named (s:S), that is, s:S is a selector to either a segment
of a downloaded work or to a segment of a copied and or and edited work.

(1.) Every license (lic:Lic) has a unique name (ln:Ln).
(2.) A license (lic:Lic) contains four parts: the name of the licensor, the

name of the licensee, a reference to (the name of) the work, a set of commands
(that may be permitted to be performed on the work).

(3.) A command is either a render, a copy or an edit or a readme command,
or a sub-licensing (sub-license) command.

(4.–6.) The render, copy and edit commands are each “decorated” with
an ordered list of selectors (i.e., selector names) and a (work) variable name.
The license command

copy 〈s1,s2,s7〉 v

means that the licensed work, ω, may have its sections s1, s2 and s7 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands.

(7.) The ”readme” license command, in a license, ln, referring, by means of
w, to work ω, somehow displays a graphical/textual “image” of, that is, infor-
mation about ω. We do not here bother to detail what kind of information may
be so displayed. But you may think of the following display information names
of artistic work,artists, authors, etc., names and details about licensed com-
mands, a table of fees for performing respective licensed commands, etcetera.

(8.) The license command

license cmd1,cmd2,...,cmdn on work v
mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensee to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one to reflect such
constraints. The license also do not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted.

Informal Semantics

A license licenses the licensee to render, copy, edit and license (possibly the
results of editing) any selection of downloaded works. In any order — but see
below — and any number of times. For every time any of these operations

10.4 Syntax and Informal Semantics 295

take place payment according to the payment function occurs (that can be
inspected by means of the read license command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied
versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function.

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” (see next section) functions are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage.

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary.

Actions

Syntax

type

9. V
10. Act = Ln × (Rndr|Copy|Edit|License)
11. Rndr == mkR(sel:S∗,wrk:(W|V))
12. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
13. Edit == mkE(wrks:V∗,into:V)
14. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

Annotations and Informal Semantics:

9: Variables By V we mean the name of a variable in the users own storage
into which downloaded works can be copied (now becoming a local work. The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested.

296 10 Towards a Family of Script Languages

10: Actions Every action of a licensee is tagged by the name of a relevant
license. If the action is not authorised by the named license then it is re-
jected. Render and copy actions mention a specific sequence of selectors. If
this sequence is not an allowed (a licensed) one, then the action is rejected.
(Notice that the license may authorise a specific action, a with different sets
of sequences of selectors — thus allowing for a variety of possibilities as well
as constraints.)

11: Render The licensee, having now received a license, can render selections
of the licensed work, or of copied and/or edited versions of the licensed work.
No reference is made to the payment function. When rendering the semantics
is that this function is invoked and duly applied. That is, render payments
are automatically made: subtracted from the licensees account and forwarded
to the licensor.

12: Copy The licensee can copy selections of the licensed work, or of previously
copied and/or edited versions of the licensed work. The licensee identifies a
name for the local storage file where the copy will be kept. No reference is made
to the payment function. When copying the semantics is that this function
is invoked and duly applied. That is, copy payments are automatically made:
subtracted from the licensees account and forwarded to the licensor.

13: Edit The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function.
When copying the semantics is that this function is invoked and duly applied.
That is, copy payments are automatically made: subtracted from the licensees
account and forwarded to the licensor. Although no reference is made to any
edit functions these are made available to the licensee when invoking the edit
command. You may think of these edit functions being downloaded at the
time of downloading the license. Other than this we need not further specify
the editing functions. Same remarks apply to the above copying functions.

14: Sub-Licensing The licensee can further sub-license copied and/or edited
work. The licensee must give the license being assembled a unique name. And
the licensee must choose to whom to license this work. A sub-license, like does
a license, authorises which actions can be performed, and then with which one
of a set of alternative selection sequences. No payment function is explicitly
mentioned. It is to be semi-automatically derived (from the originally licensed
payment fee function and the licensee’s payment demands) by means of func-
tionalities provided as part of the licensed payment fee function.

The sub-license command information is thus compiled (assembled) into a
license of the form given in (1.–3.). The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
issuing the sub-license. From the license label of the command it is known

10.4 Syntax and Informal Semantics 297

whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

10.4.2 Hospital Health Care License Language

We refer to the abstract syntax formalised below (that is, formulas 1.–5.).
The work on the specific form of the syntax has been facilitated by the work
reported in [8].9

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

A Notion of License Execution State

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations on local works could
not be done before these had been created — say by copying. Editing could
only be done on local works and hence required a prior action of, for example,
copying a licensed work. In the context of hospital health care most of the
actions can only be performed if the patient has reached a suitable state in
the hospitalisation. We refer to Fig. 10.1 on the following page for an idealised
hospitalisation plan.

We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same !) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice ! One cannot design a language and
prevent it being misused!

Licenses

type

0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt

9As this work, [8], has yet to be completed the syntax and annotations given
here may change.

298 10 Towards a Family of Script Languages

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. 10.1. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL [31–33, 101, 104, 106]. But it is decorated!
The subtypes {|boldface keyword|} are inserted for readability.

Syntax Annotations

(0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for CoL) the
licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative.

(5.) A command (Cmd) is a state-labelled statement.

10.4 Syntax and Informal Semantics 299

(3.) A sub-license just states the command set that the sub-license licenses.
As for the Artistic License Language the licensee chooses an appropriate sub-
set of commands. The context “inherits” the name of the patient. But the
sub-licensee is explicitly mandated in the license!

(6.) An alternative is also just a set of commands. The meaning is that
either the licensee choose to perform the designated actions or, as for ML, but
now freely choosing the sub-licensee, the licensee (now new licensor) chooses
to confer actions to other staff.

(7.) A statement is either an admit, an interview, a plan analysis, an
analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive Information given in the patient medical report for the designated
state inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc.

Actions

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

Syntax Annotations

(8.) Each action actually attempted by a medical staff refers to the license,
and hence the patient name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analy-
sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap-
pears in the named license and the patient (medical record) designates state
σ.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3.) is compiled from contextual information.

Informal Semantics

An informal, rough-sketch semantics (here abbreviated) would state that a
prescribed action is only performed if the patient, cum patient medical record
is in an appropriate state; and that the patient is being treated according
to the action performed; that records of this treatment and its (partially)
analysed outcome is introduced into the patient medical record. The next
state of the patient, cum patient medical record, depends on the outcome
of the treatment10; and hence the patient medical record carries with it, i.e.,
embodies a, or the, hospitalisation plan in effect for the patient, and a reference
to the current state of the patient.

10Cf. the diamond-shaped decision boxes in Fig. 10.1 on the preceding page.

300 10 Towards a Family of Script Languages

10.4.3 Public Administration License Language

We refer to the abstract syntax formalised below (that is, formulas 1.–15.).
The work on the specific form of the syntax has been facilitated by the work
reported in [26, 46, 73].11

Licenses and Actions

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

License Classes

type

0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

Licensed Operations

type

7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12. Licn == mkLi(kind:LiTy)
13. LiTy == grant | extend | restrict | withdraw
14. Shar == mkSh(doc:UDI,with:An-set)
15. Rvok == mkRv(doc:UDI,from:An-set)
16. Rlea == mkRl(dn:Dn)
17. Rtur == mkRt(dn:Dn)
18. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
19. Shrd == mkSh(doc:UDI)

11As part this work, [73], has yet to be completed the syntax and annotations
given here may change.

10.4 Syntax and Informal Semantics 301

Syntax & Informal Semantics Annotations

(0.) The are names of licenses (Ln), actors (An), documents (UDI), document
classes (DCn) and calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and
withdrawing.

(2.) Actors (licensors) grant licenses to other actors (licensees). An actor
is constrained to always grant distinctly named licenses. No two actors grant
identically named licenses.12 A set of operations on (named) documents are
granted.

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations, or fully).

(6.) There are nine kinds of operation authorisations. Some of the next
explications also explain parts of some of the corresponding actions (see (16.–
24.).

(7.) There are names of documents (Dn), names of classes of documents
(DCn), and there are unique document identifiers (UDI).

(8.) Creation results in an initially void document which is
not necessarily uniquely named (dn:Dn) (but that name is uniquely as-

sociated with the unique document identifier created when the document is
created13) typed by a document class name (dcn:DCn) and possibly based
on one or more identified documents (over which the licensee (at least) has
reading rights). We can presently omit consideration of the document class
concept. “based on” means that the initially void document contains refer-
ences to those (zero, one or more) documents.14 The “based on” documents
are moved from licensor to licensee.

(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved from licensor to licensee — if not al-
ready so moved as the result of the specification of other authorised actions.

(10.) Reading a document only changes its “having been read” status (etc.)
— as per [26]. The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions.

(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied

12This constraint can be enforced by letting the actor name be part of the license
name.

13— hence there is an assumption here that the create operation is invoked by
the licensee exactly (or at most) once.

14They can therefore be traced (etc.) — as per [26].

302 10 Towards a Family of Script Languages

document is marked to be a copy (etc.) — as per [26]. The master document,
if not the result of a create or copy, is moved from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions.

(12.) A licensee can sub-license (sL) certain operations to be performed by
other actors.

(13.) The granting, extending, restricting or withdrawing permissions, can-
not name a license (the user has to do that), do not need to refer to the licensor
(the licensee issuing the sub-license), and leaves it open to the licensor to freely
choose a licensee. One could, instead, for example, constrain the licensor to
choose from a certain class of actors. The licensor (the licensee issuing the
sub-license) must choose a unique license name.

(14.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead the licensing actions with a shared attribute.) The
shared document, if not the result of a create and edit or copy, is moved from
licensor to licensee — if not already so moved as the result of the specification
of other authorised actions. Sharing a document does not move nor copy it.

(15.) Sharing documents can be revoked. That is, the reading rights are
removed.

(16.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy.

(17.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document.

(18.) Two or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of a creates
and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(19.) A document can be shredded. It seems pointless to shred a document
if that was the only right granted wrt. document.

Actions

20. Action = Ln × Clause
21. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
22. Cre == mkCre(dcn:DCn,based on docs:UID-set)
23. Edt == mkEdt(uid:UID,based on docs:UID-set)
24. Rea == mkRea(uid:UID)

10.4 Syntax and Informal Semantics 303

25. Cop == mkCop(uid:UID)
26. Lic == mkLic(license:L)
27. Sha == mkSha(uid:UID,with:An-set)
28. Rvk == mkRvk(uid:UID,from:An-set)
29. Rel == mkRel(dn:Dn,uid:UID)
30. Ret == mkRet(dn:Dn,uid:UID)
31. Cal == mkCal(fct:Cfn,over docs:UID-set)
32. Shr == mkShr(uid:UID)

Preliminary Remarks

A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”.

Syntax & Informal Semantics Annotations

(20.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited.

(21.) Actions clauses are either create, edit, read, copy, sub-license, share,
revoke, release, return, calculate or shred.

(22.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(23.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(24.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(25.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy.

(26.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if
any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.

(27.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,

304 10 Towards a Family of Script Languages

for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(28.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.

(29.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created now is being able to
see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(30.) A document may be returned. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it.

(31.) A license may (conditionally) apply any of a licensed set of calculation
functions to “downloaded” (edited, copied, etc.) documents, or can (uncondi-
tionally) apply any of a licensed set of calculation functions to created (etc.)
documents. The result of a calculation is a document. The licensee obtains all
operation authorisations to this document (— as for created documents).

(32.) A license may (conditionally) shred a “downloaded” (etc.) document.

10.4.4 Discussion

Comparisons

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages.

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

Differences

Work Items The work items of the artistic license language(s) are essentially
“kept” by the licensor. The work items of the hospital health care license
language(s) are fixed and, for a large set of licenses there is one work item,
the patient which is shared between many licensors and licenses. The work
items of the public administration license language(s) — namely document
— are distributed to or created and copied by licenses and may possibly be
shared.

Operations The operations of the artistic license language(s) are are essen-
tially “kept” by the licensor. The operations of the hospital health care license
language(s) are are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct). The operations of the public administration
license language(s) are essentially “kept” by the licensees (as reflected in their
professional training and conduct).

10.5 Formal Semantics 305

Permissions and Obligations Generally we can say that the modalities of the
artistic license language(s) are essentially permissions with payment (as well
as use of licensor functions) being an obligation; that the modalities of the
hospital health care license language(s) are are essentially obligations; and,
as well, that the modalities of the public administration license language(s)
are essentially obligations We shall have more to say about permissions and
obligations later (much later).

10.5 Formal Semantics

By formal semantics we understand a definition expressed in a formal lan-
guage, that is, a language with a mathematical syntax, a mathematical se-
mantics, and a consistent and relative complete proof system. We shall deploy
the CSP [137, 138, 218, 222] Specification Language embedded in a Landin–
like notation of let clauses15. We hope someone will complement our definition
with a commensurate CafeOBJ [89,90, 99, 100] definition.

10.5.1 A Model of Common Aspects

Actors: Behaviours and Processes

We see the system as a set of actors. An actor is either a licensor, or a licensee,
or, usually, such as we have envisaged our license languages, both. To each
actor we associate a behaviour — and we model actor behaviours as CSP
processes. So the system is then modelled as a set of concurrent behaviours,
that is, parallel (‖) CSP processes. Actors are uniquely identified (Aid).

System States

With each actor behaviour we associate a state (ω : Ω). “Globally” initial
such state components are modelled as maps from actor identifiers to states.
We shall later analyse these states into major components.

type

Aid, Ω

Ωs = Aid →m Ω

System Processes

Actor processes communicate with one another over channels. There is a set of
actor identifier indexed channels. Potential licensees request licenses. Licensors
issue licenses in response to requests. Work items are communicated over
these channels. As are payments and reports on use of licensed operations on

15— known since the very early 1960’s

306 10 Towards a Family of Script Languages

licensed work items. An actor is either pro-active, requesting licenses, sending
payment or reports, or re-active: responding to license requests, sending work
items. An actor non-deterministically (⌈⌉) alternates between these activities.

type

M = Lic | Pay | Rpt | ...

channel

{a[i]|i:Aid} (Aid×M)
value

actor: j:Aid × Ω → in,out {a[i]|i:Aid•i6=j} Unit

actor(j)(ω) ≡ let ω′ = pro act(j)(ω)⌈⌉re act(j)(ω) in actor(j)(ω′) end

system: Ωs → Unit

system(ωs) ≡ ‖ {actor(i)(ωs(i))|i:Aid}

Actor Processes

We have identified two kinds of actor processes: pro-active, during which the
actor, by own initiative, (as a prospective licensee) may request a license from
a prospective licensor, or, (as an actual licensee) as the result of performing
licensed actions sends payments or reports (or other) to the licensor. and re-
active, during which the actor, in response to requests (as a licensor) sends
a requesting actor a license (whereby the requester becomes a licensee), or
“downloads” (access to) requested works or functions. functions.

The Pro-active Actor Behaviour In the pro-active behaviour an actor, at will,
i.e., non-deterministically internal choice (⌈⌉), decides to either request a li-
cense (rl) or to perform some action (op). In the former case the actor inquires
(l iq) an own state to find out from which licensor (aid) which kind of license
requirements (l rq) is to be requested. This licensor and these requirements
are duly noted in the state. After sending the request the actor continues
being an actor in the duly noted state. In the latter case (op) there may be
many “next” actions to do (act). The actor inquires (a iq) an own state to
find out which action (designated by op i) is “next”. The actor them per-
forms (act) the designated operation. It is here, for simplification assumed
that all operation completions imply a “completion” message (a payment, a
report, or other) to the operation licensing actor. So such a message is sent
and the operation updated local state is yielded — whereby the pro-active
actor “resumes” being an actor as from that state.

type

M = Lic | Pay | Rpt | ...

channel

{a[i]|i:Aid} (Aid×M)
value

pro act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω

10.5 Formal Semantics 307

pro act(j)(ω) ≡
let what to do = rl ⌈⌉ op in

case what to do of

rl → let (k,l rq,ω′)=iq l Ω(ω) in

a(aid)!(j,l rq);ω′ end

op → let op i=iq a Ω(ω) in

let (k,m,ω′)=act(op i)(ω) in

a(k)!(j,m) ; ω′ end end

end end

The Re-active Actor Behaviour In the re-active behaviour an actor (j), is
willing to engage in communication with other actors. This is formalised by a
non-deterministic external choice (⌈⌉⌊⌋) between either of a set ({...}) of (zero, or
more) other actors (k:Aid\{j}) who are trying to contact the re-active actor.
The communicated message reveals the identity (k) of the requesting, i.e.,
the pro-active actor,16 The message, m, reveals what action (act(m)) the re-
active actor is requested to perform. The actor does so/ This results in a reply
message m′ and a state change. The reply message is sent to the requesting
actor; and the re-active actor yields the requested action-updated state —
whereby the re-active actor “resumes” being an actor as from that state.

type

M = Lic | Pay | Rpt | ...

channel

{a[i]|i:Aid} (Aid×M)
value

re act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω

re act(j)(ω)≡
let (k,m)=⌈⌉⌊⌋{a(k)?|k:Aid} in

let (m′,ω′)=act(m)(ω) in

a(k)!(j,m′);ω′ end end

Functions

We first list (and “read”) the signatures of the two auxiliary (iq l Ω, iq a Ω)
and one elaboration (act) function assumed in the definition of the pro- and
re-active actor processes. After that we discuss the former and suggest defini-
tions of the latter.

16Do not get confused by the two k’s on either side of the let clause. The left k is
yielded by the (input) communication a(k)?. The defining scope of the right side k,
as in a(k), is just the right-hand side of the left clause.

308 10 Towards a Family of Script Languages

Auxiliary Function Signatures

The inquire license function (iq l Ω) inspects the actor’s state to (“eureka”)
determine which most desirable licensor (Aid) offers which one kind of de-
sired license requirements (License Requirements). The inquire action func-
tion (iq a Ω) inspects the actor’s state to (somewhat “eureka”) determine
which action is “next” in tine to be performed. That action is being designated
(Action Designator).

type

License Requirements,Action Designation
value

iq l Ω: Ω → Aid × License Requirements × Ω

iq a Ω: Ω → Action Designator

By ‘eureka’17 is meant that the inquiry is internal non-deterministic that is,
is not influenced by an outside, could have any one of very many outcomes,
and can thus only be rather loosely defined.

Elaboration Function Signature

The action performing function (act) “finds” the designated operation in the
current state, applies it in the current state, and yields (“read” backwards)
a possibly new state (ω : Ω), a message (M) to be sent to the licensor (Aid)
who authorised the operation and may need or which to have a payment, a
report, or some such thing “back”!

type

Action Designation
value

act: Action Designation → Ω → Aid × M × Ω

Discussion of Auxiliary Functions

The auxiliary functions are usually not computable functions. The actors are
not robots. And it is not necessary to further define these functions beyond
stating their signatures as they are usually performed by human actors. The
signature of the inquire license function expresses a possible change to the
inquired state. One would think of the inquiring actor somehow noting down,
remembering, as it were, which inquiries were attempted or had been made.
The signature of the inquire actions function does not express such a state
change. But it could be expressed as well.

17“Eureka” used to express triumph on a discovery, heuristics

10.6 A Transport Contract Language 309

Schema Definitions of Elaboration Functions

10.6 A Transport Contract Language

10.6.1 Narrative

Preparations

In a number of steps (‘A Synopsis’, ‘A Pragmatics and Semantics Analysis’,
and ‘Contracted Operations, An Overview’) we arrive at a sound basis from
which to formulate the narrative. We shall, however, forego such a detailed
narrative. Instead we leave that detailed narrative to the reader. (The detailed
narrative can be “derived” from the formalisation.)

A Synopsis

Contracts obligate transport companies to deliver bus traffic according to
a timetable. The timetable is part of the contract. A contractor may sub-
contract (other) transport companies to deliver bus traffic according to timeta-
bles that are sub-parts of their own timetable. Contractors are either public
transport authorities or contracted transport companies. Contracted trans-
port companies may cancel a subset of bus rides provided the total amount
of cancellations per 24 hours for each bus line does not exceed a contracted
upper limit18. The cancellation rights are spelled out in the contract19. A sub-
contractor cannot increase a contracted upper limit for cancellations above
what the sub-contractor was told (in its contract) by its contractor20. Etcetera.

A Pragmatics and Semantics Analysis

The “works” of the bus transport contracts are two: the timetables and, im-
plicitly, the designated (and obligated) bus traffic. A bus timetable appears
to define one or more bus lines, with each bus line giving rise to one or more
bus rides. We assume a timetable description along the lines of Appendix G.
Nothing is (otherwise) said about regularity of bus rides. It appears that bus
ride cancellations must be reported back to the contractor. And we assume
that cancellations by a sub-contractor is further reported back also to the sub-
contractor’s contractor. Hence eventually that the public transport authority
is notified.

Nothing is said, in the contracts, such as we shall model them, about
passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be
paid back from a sub-contractor to the contractor. So we shall not bother,
in this example, about transport costs nor transport subsidies. But will leave
that necessary aspect as an exercise.

18We do not treat this aspect further in this chapter.
19See Footnote 18.
20See Footnote 18.

310 10 Towards a Family of Script Languages

The opposite of cancellations appears to be ‘insertion’ of extra bus rides,
that is, bus rides not listed in the time table, but, perhaps, mandated by
special events21 We assume that such insertions must also be reported back
to the contractor.

We assume concepts of acceptable and unacceptable bus ride delays. De-
tails of delay acceptability may be given in contracts, but we ignore further
descriptions of delay acceptability. but assume that unacceptable bus ride
delays are also to be (iteratively) reported back to contractors.

We finally assume that sub-contractors cannot (otherwise) change timeta-
bles. (A timetable change can only occur after, or at, the expiration of a
license.) Thus we find that contracts have definite period of validity. (Expired
contracts may be replaced by new contracts, possibly with new timetables.)

Contracted Operations, An Overview

So these are the operations that are allowed by a contractor according to a
contract: (i) start: to perform, i.e., to start, a bus ride (obligated); (ii) cancel:

to cancel a bus ride (allowed, with restrictions); (iii) insert: to insert a bus
ride; and (iv) subcontract: to sub-contract part or all of a contract.

10.6.2 A Formalisation

Syntax

We treat separately, the syntax of contracts (for a schematised example see
Page 310) and the syntax of the actions implied by contracts.

Contracts

A concrete example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (including
contracting) takes place and in which the implicit transport net (see Ap-
pendix B) is defined.

63. contracts, contractors and sub-contractors have unique identifiers CId,
CNm, CNm.

21Special events: breakdown (that is, cancellations) of other bus rides, sports event
(soccer matches), etc.

10.6 A Transport Contract Language 311

64. A contract has a unique identification, names the contractor and the sub-
contractor (and we assume the contractor and sub-contractor names to be
distinct). A contract also specifies a contract body.

65. A contract body stipulates a timetable and the set of operations that are
mandated or allowed by the contractor.

66. An Operation is either a "start" (i.e., start a bus ride), a bus ride
"cancel"lation, a bus ride "insert", or a "subcontrat"ing operation.

type

63. CId, CNm
64. Contract = CId × CNm × CNm × Body
65. Body = Op-set × TT
66. Op == ′′

start
′′ | ′′

cancel
′′ | ′′

insert
′′ | ′′

subcontract
′′

An abstract example contract:

(cid,cnmi,cnmj ,({
′′
start

′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

Actions

Example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 310) shown earlier is almost like an action; here
is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

All actions are being performed by a sub-contractor in a context which defines
that sub-contractor cnm, the relevant net, say n, the base contract, referred
here to by cid (from which this is a sublicense), and a timetable tt of which tt′

is a subset. contract name cnm′ is new and is to be unique. The subcontracting
action can (thus) be simply transformed into a contract as shown on Page 310.

type

Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

312 10 Towards a Family of Script Languages

examples:

(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,

mkCon(cid′,
({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 69

We observe that the essential information given in the start, cancel and insert
action prescriptions is the same; and that the RSL record-constructors (mkSta,
mkCan, mkIns) make them distinct.

Contract Identification

67. There is a “root” contract name, rcid.
68. There is a “root” contractor name, rcnm.

value

67 rcid:CId
68 rcnm:CNm

All other contract names are derived from the root name. Any contractor can
at most generate one contract name per time unit. Any, but the root, sub-
contractor obtains contracts from other sub-contractors, i.e., the contractor.
Eventually all sub-contractors, hence contract identifications can be referred
back to the root contractor.

69. Such a contract name generator is a function which given a contract iden-
tifier, a sub-contractor name and the time at which the new contract
identifier is generated, yields the unique new contract identifier.

70. From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its cre-
ation.

value

69 gen CId: CId × CNm × Time → CId

70 obs CId: CId
∼

→ CIdL [pre obs CId(cid):cid6=rcid]

70 obs CNm: CId
∼

→ CNm [pre obs CNm(cid):cid6=rcid]

70 obs Time: CId
∼

→ Time [pre obs Time(cid):cid6=rcid]

71. All contract names are unique.

10.6 A Transport Contract Language 313

axiom

71 ∀ cid,cid′:CId•cid6=cid′⇒
71 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
71 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
71 ⇒ obs Time(cid)6=obs Time(cid′)

72. Thus a contract name defines a trace of license name, sub-contractor name
and time triple, “all the way back” to “creation”.

type

CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value

72 contract trace: CId → LCIdCNmTTrace
72 contract trace(cid) ≡
72 case cid of

72 rcid → 〈〉,
72 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
72 end

72 obs TraceTriple: CId → TraceTriple
72 obs TraceTriple(cid) ≡
72 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

The trace is generated in the chronological order: most recent contract name
generation times last.

Well, there is a theorem to be proven once we have outlined the full formal
model of this contract language: namely that time entries in contract name
traces increase with increasing indices.

theorem

∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

Semantics

Execution State

Local and Global States Each sub-contractor has an own local state and has
access to a global state. All sub-contractors access the same global state. The
global state is the bus traffic on the net. There is, in addition, a notion of
running-state. It is a meta-state notion. The running state “is made up” from
the fact that there are n sub-contractors, each communicating, as contractors,

314 10 Towards a Family of Script Languages

over channels with other sub-contractors. The global state is distinct from
sub-contractor to sub-contractor – no sharing of local states between sub-
contractors. We now examine, in some detail, what the states consist of.

Global State The net is part of the global state (and of bus traffics). We
consider just the bus traffic.

type

133. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI) 420

183. BusTraffic = T →m (N × (BusNo →m (Bus × BPos))) 425
184. BPos = atHub | onLnk | atBS
185. atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
186. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
187. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

We shall consider BusTraffic (with its Net) to reflect the global state.

Local sub-contractor contract States: Semantic Types A sub-contractor state
contains, as a state component, the zero, one or more contracts that the sub-
contractor has received and that the sub-contractor has sublicensed.

type

Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm →m (LicNm →m (Body×TT))
SubLicΣ = LeeNm →m (LicNm →m Body)
LorBusΣ ... [see below and Page 315] ...

(Recall that LorNm and LeeNm are the same.)
In RecvLics we have that LorNm is the name of the contractor by whom

the contract has been granted, LicNm is the name of the contract assigned by
the contractor to that license, Body is the body of that license, and TT is that
part of the timetable of the Body which has not (yet) been sublicensed.

In DespLics we have that LeeNm is the name of the sub-contractor to whom
the contract has been despatched, the first (left-to-right) LicNm is the name
of the contract on which that sublicense is based , the second (left-to-right)
LicNm is the name of the sublicense, and License is the contract named by the
second LicNm.

Local sub-contractor Bus States: Semantic Types The sub-contractor state
further contains a bus status state component which records which buses are
free, FreeBusΣ, that is, available for dispatch, and where “garaged”, which
are in active use, ActvBusΣ, and on which bus ride, and a bus history for
that bus ride, and histories of all past bus rides, BusHistΣ. A trace of a bus
ride is a list of zero, one or more pairs of times and bus stops. A bus history,

10.6 A Transport Contract Language 315

BusHistory, associates a bus trace to a quadruple of bus line identifiers, bus
ride identifiers, contract names and sub-contractor name.22

type

BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId) →m (BNo×BusTrace)))

A bus is identified by its unique number (i.e., registration) plate (BusNo).
We could model a bus by further attributes: its capacity, etc., for for the
sake of modelling contracts this is enough. The two components are modified
whenever a bus is commissioned into action or returned from duty, that is,
twice per bus ride.

Constant State Values There are a number of constant values, of various
types, which characterise the “business of contract holders”. We define some
of these now.

73. For simplicity we assume a constant net — constant, that is, only with
respect to the set of identifiers links and hubs. These links and hubs ob-
viously change state over time.

74. We also assume a constant set, leens, of sub-contractors. In reality sub-
contractors, that is, transport companies, come and go, are established and
go out of business. But assuming constancy does not materially invalidate
our model. Its emphasis is on contracts and their implied actions — and
these are unchanged wrt. constancy or variability of contract holders.

75. There is an initial bus traffic, tr.
76. There is an initial time, t0, which is equal to or larger than the start of

the bus traffic tr.
77. To maintain the bus traffic “spelled out”, in total, by timetable tt one

needs a number of buses.
78. The various bus companies (that is, sub-contractors) each have a number

of buses. Each bus, independent of ownership, has a unique (car number
plate) bus number (BusNo).
These buses have distinct bus (number [registration] plate) numbers.

79. We leave it to the reader to define a function which ascertain the minimum
number of buses needed to implement traffic tr.

22In this way one can, from the bus history component ascertain for any bus which
for whom (sub-contractor), with respect to which license, it carried out a further
bus line and bus ride identified tour and its trace.

316 10 Towards a Family of Script Languages

value

73. net : N,
74. leens : LeeNm-set,
75. tr : BusTraffic, axiom wf Traffic(tr)(net)
76. t0 : T • t0 ≥ mindom tr,
77. min no of buses : Nat • necessary no of buses(itt),
78. busnos : BusNo-set • cardbusnos ≥ min no of buses

79. necessary no of buses: TT → Nat

80. To “bootstrap” the whole contract system we need a distinguished con-
tractor, named init leen, whose only license originates with a “ghost”
contractor, named root leen (o, for outside [the system]).

81. The initial, i.e., the distinguished, contract has a name, root licn.
82. The initial contract can only perform the "sublicense" operation.
83. The initial contract has a timetable, tt.
84. The initial contract can thus be made up from the above.

value

80. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
81. root licn : LicNm
82. iops : Op-set = {′′sublicense′′},
83. itt : TT,
84. init lic:License = (root licn,root leen,(iops,itt),init leen)

Initial sub-contractor contract States

type

InitLicΣs = LeeNm →m LicΣ
value

ilσ:LicΣ=([init leen 7→ [root leen 7→ [iln 7→ init lic]]]
∪ [leen 7→ [] | leen:LeeNm • leen ∈ leenms\{init leen}],[],[])

Initial sub-contractor Bus States

85. Initially each sub-contractor possesses a number of buses.
86. No two sub-contractors share buses.
87. We assume an initial assignment of buses to bus stops of the free buses

state component and for respective contracts.
88. We do not prescribe a “satisfiable and practical” such initial assignment

(ibσs).
89. But we can constrain ibσs.
90. The sub-contractor names of initial assignments must match those of ini-

tial bus assignments, allbuses.
91. Active bus states must be empty.

10.6 A Transport Contract Language 317

92. No two free bus states must share buses.
93. All bus histories are void.

type

85. AllBuses′ = LeeNm →m BusNo-set
86. AllBuses = {|ab:AllBuses′•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
87. InitBusΣs = LeeNm →m BusΣ
value

86. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

87. ibσs:InitBusΣs
88. wf InitBusΣs: InitBusΣs → Bool

89. wf InitBusΣs(iσs) ≡
90. dom iσs = leenms ∧
91. ∀ (,abσ,):BusΣ•(,abσ,) ∈ rng iσs ⇒ abσ=[] ∧
92. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

92. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
92. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)
92. ⇒ rng fbiσ ∩ rng fbjσ = {}
93. ∧ actiσ=[]=actjσ

Communication Channels The running state is a meta notion. It reflects the
channels over which contracts are issued; messages about committed, cancelled
and inserted bus rides are communicated, and fund transfers take place.

Sub-Contractor↔Sub-Contractor Channels Consider each sub-contractor
(same as contractor) to be modelled as a behaviour. Each sub-contractor (li-
censor) behaviour has a unique name, the LeeNm. Each sub-contractor can
potentially communicate with every other sub-contractor. We model each such
communication potential by a channel. For n sub-contractors there are thus
n × (n − 1) channels.

channel { l to l[fi,ti] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi6=ti } LLMSG
type LLMSG = ...

We explain the declaration: channel { l to l[fi,ti] | fi:LeeNm, ti:LeeNm • fi 6=ti
} LLMSG. It prescribes n × (n − 1) channels (where n is the cardinality of
the sub-contractor name sets). Each channel is prescribed to be capable of
communicating messages of type MSG. The square brackets [...] defines l to l
(sub-contractor-to-sub-contractor) as an array.

We shall later detail the BusRideNote, CancelNote, InsertNote and FundXfer
message types.

Sub-Contractor↔Bus Channels Each sub-contractor has a set of buses.
That set may vary. So we allow for any sub-contractor to potentially commu-
nicate with any bus. In reality only the buses allocated and scheduled by a
sub-contractor can be “reached” by that sub-contractor.

318 10 Towards a Family of Script Languages

channel { l to b[l,b] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

Sub-Contractor↔Time Channels Whenever a sub-contractor wishes to
perform a contract operation that sub-contractor needs know the time. There
is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[l] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

Bus↔Traffic Channels Each bus is able, at any (known) time to ascertain
where in the traffic it is. We model bus behaviours as processes, one for each
bus. And we model global bus traffic as a single, separate behaviour.

channel { b to tr[b] | b:BusNo • b ∈ busnos } LTrMSG
type

BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

Buses↔Time Channel Each bus needs to know what time it is.

channel { b to t[b] | b:BNo • b ∈ busnos } BTMSG
type

BTMSG ...

Local sub-contractor Bus States: Update Functions

value

update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡

let (blid,bid,licn,leen,trace) = actσ(bno) in

actσ†[bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉)] end

pre bno ∈ dom actσ

value

update FreeΣ ActΣ:
BNo×BusStop→BusΣ→BusΣ

update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡
let (, , , ,trace) = actσ(b) in

let freeσ′ = freeσ†[bs 7→ (freeσ(bs))∪{b}] in

(freeσ′,actσ\{b}) end end

pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

10.6 A Transport Contract Language 319

value

update LorBusΣ:
LorNm×lin:LicNm×len:LeeNm×(BLId×BId)×(BNo×Trace)→LorBusΣ

→ out {l to l[len,lorn]|lon:LorNm•lon ∈ leens\{len}} LorΣ
update LorBusΣ(lon,lin,len,(bli,bi),(bno,tr))(lbσ) ≡

l to l[len,lon]!Licensor BusHistΣMsg(bno,bli,bi,lin,len,tr) ;
lbσ†[len7→(lbσ(len))†[lin7→((lbσ(len))(lin))†[(bli,bi)7→(bno,trace)]]]
pre len ∈ dom lbσ ∧ lin ∈ dom (lbσ(len))

value

update ActΣ FreeΣ:
LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo

update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡
let bno:Bno • bno ∈ freeσ(bs) in

((freeσ\{bno},actvσ ∪ [bno 7→(blid,bid,licnm,leenm,〈〉)]),bno) end

pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ ...

Run-time Environment So we shall be modelling the transport contract do-
main as follows: As for behaviours we have this to say. There will be n

sub-contractors. One sub-contractor will be initialised to one given license.
You may think of this sub-contractor being the transport authority. Each
sub-contractor is modelled, in RSL, as a CSP-like process. With each sub-
contractor, li, there will be a number, bi, of buses. That number may vary
from sub-contractor to sub-contractor. There will be bi channels of commu-
nication between a sub-contractor and that sub-contractor’s buses, for each
sub-contractor. There is one global process, the traffic. There is one channel
of communication between a sub-contractor and the traffic. Thus there are n

such channels.
As for operations, including behaviour interactions we assume the follow-

ing. All operations of all processes are to be thought of as instantaneous, that
is, taking nil time ! Most such operations are the result of channel communi-
cations either just one-way notifications, or inquiry requests. Both the former
(the one-way notifications) and the latter (inquiry requests) must not be in-
definitely barred from receipt, otherwise holding up the notifier. The latter
(inquiry requests) should lead to rather immediate responses, thus must not
lead to dead-locks.

The System Behaviour

The system behaviour starts by establishing a number of licenseholder and
bus ride behaviours and the single time clock and bus traffic behaviours

value

system: Unit → Unit

system() ≡

320 10 Towards a Family of Script Languages

licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})
‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)

| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})
‖ time clock(t0) ‖ bus traffic(tr)

The initial licenseholder behaviour states are individually initialised with ba-
sically empty license states and by means of the global state entity bus states.
The initial bus behaviours need no initial state other than their bus regis-
tration number, a “nil” route prescription, and their allocation to contract
holders as noted in their bus states.

Only a designated licenseholder behaviour is initialised to a single, received
license.

Semantic Elaboration Functions

The Licenseholder Behaviour

94. The licenseholder behaviour is a sequential, but internally non-deterministic
behaviour.

95. It internally non-deterministically (⌈⌉) alternates between
(a) performing the licensed operations (on the net and with buses),
(b) receiving information about the whereabouts of these buses, and in-

forming contractors of its (and its subsub-contractors’) handling of
the contracts (i.e., the bus traffic), and

(c) negotiating new, or renewing old contracts.

94. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit

95. licenseholder(leen)(licσ,busσ) ≡
95. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

The Bus Behaviour

96. Buses ply the network following a timed bus route description.
A timed bus route description is a list of timed bus stop visits.

97. A timed bus stop visit is a pair: a time and a bus stop.
98. Given a bus route and a bus schedule one can construct a timed bus route

description.
(a) The first result element is the first bus stop and origin departure time.
(b) Intermediate result elements are pairs of respective intermediate sched-

ule elements and intermediate bus route elements.
(c) The last result element is the last bus stop and final destination arrival

time.
99. Bus behaviours start with a “nil” bus route description.

10.6 A Transport Contract Language 321

type

96. TBR = TBSV∗

97. TBSV = Time × BusStop
value

98. conTBR: BusRoute × BusSched → TBR
98. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
98(a)) 〈(dt,bs1)〉
98(b)) ̂ 〈(til[i],bsl[i])|i:Nat•i:〈1..len til〉〉
98(c)) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type

99. BRD == ′′
nil

′′ | TBR

100. The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

101. The bus repeatedly observes the time, t, and its position, po, in the traffic.
102. There are now four case distinctions to be made.
103. If the bus is idle (and a a bus stop) then it waits for a next route, brd′ on

which to engage.
104. If the bus is at the destination of its journey then it so informs its owner

(i.e., the sub-contractor) and resumes being idle.
105. If the bus is ‘en route’, at a bus stop, then it so informs its owner and

continues the journey.
106. In all other cases the bus continues its journey

value

100. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
100. in,out l to b[leen,bno], in,out b to tr[bno], in b to t[bno] Unit

100. bus ride(leen,bno)(licn,brd) ≡
101. let t = b to t[bno]? in

101. let (bus,pos) = (b to tr[bno]!reqBusAndPos(bno,t) ; b to tr[bno]?) in

102. case (brd,pos) of

103. (′′nil′′,mkAtBS(, , ,)) →
103. let (licn,brd′) = (l to b[leen,bno]!reqBusRid(pos);l to b[leen,bno]?) in

103. bus ride(leen,bno)(licn,brd′) end

104. (〈(at,pos)〉,mkAtBS(, , ,)) →
104s l to b[l,b]!BusΣMsg(t,pos);
104 l to b[l,b]!BusHistΣMsg(licn,bno);
104 l to b[l,b]!FreeΣ ActΣMsg(licn,bno) ;
104 bus ride(leen,bno)(ilicn,′′nil′′),
105. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS(, , ,)) →
105s l to b[l,b]!BusΣMsg(t,pos) ;
105 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),
106. → bus ride(leen,bno)(licn,brd) end end end

322 10 Towards a Family of Script Languages

In formula line 101 of bus ride we obtained the bus. But we did not use “that”
bus ! We we may wish to record, somehow, number of passengers alighting
and boarding at bus stops, bus fees paid, one way or another, etc. The bus,
which is a time-dependent entity, gives us that information. Thus we can revise
formula lines 104s and 105s:

Simple: 104s l to b[l,b]!BusΣMsg(pos);
Revised: 104r l to b[l,b]!BusΣMsg(pos,bus info(bus));

Simple: 105s l to b[l,b]!BusΣMsg(pos);
Revised: 105r l to b[l,b]!BusΣMsg(pos,bus info(bus));

type

Bus Info = Passengers × Passengers × Cash × ...

value

bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

It is time to discuss our description (here we choose the bus ride behaviour)
in the light of our claim of modeling “the domain”. These are our comments:

• First one should recognise, i.e., be reminded, that the narrative and formal
descriptions are always abstractions. That is, they leave out few or many
things. We, you and I, shall never be able to describe everything there is
to describe about even the simplest entity, operation, event or behaviour.

The Global Time Behaviour

107. The time clock is a never ending behaviour — started at some time t0.
108. The time can be inquired at any moment by any of the licenseholder

behaviours and by any of the bus behaviours.
109. At any moment the time clock behaviour may not be inquired.
110. After a skip of the clock or an inquiry the time clock behaviour continues,

non-deterministically either maintaining the time or advancing the clock!

value

107. time clock: T →
107. in,out {l to t[leen] | leen:LeeNm • leen ∈ leenms}
107. in,out {b to t[bno] | bno:BusNo • bno ∈ busnos} Unit

107. time clock:(t) ≡
109. (skip ⌈⌉
108. (⌈⌉⌊⌋{l to t[leen]? ; l to t[leen]!t | leen:LeeNm•leen ∈ leens})
108. ⌈⌉ (⌈⌉⌊⌋{b to t[bno]? ; b to t[bno]!t | bno:BusNo•bno ∈ busnos})) ;
110. (time clock:(t) ⌈⌉ time clock(t+δt))

10.6 A Transport Contract Language 323

The Bus Traffic Behaviour

111. There is a single bus traffic behaviour. It is, “mysteriously”, given a con-
stant argument, “the” traffic, tr.

112. At any moment it is ready to inform of the position, bps(b), of a bus, b,
assumed to be in the traffic at time t.

113. The request for a bus position comes from some bus.
114. The bus positions are part of the traffic at time t.
115. The bus traffic behaviour, after informing of a bus position reverts to

“itself”.

value

111. bus traffic: TR → in,out {b to tr[bno]|bno:BusNo•bno ∈ busnos} Unit

111. bus traffic(tr) ≡
113. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[b]? in assert b=bno
112. if time 6∈ dom tr then chaos else

114. let (,bps) = tr(t) in

112. if bno 6∈ dom tr(t) then chaos else

112. b to tr[bno]!bps(bno) end end end end | b:BusNo•b ∈ busnos} ;
115. bus traffic(tr)

License Operations

116. The lic ops function models the contract holder choosing between and
performing licensed operations.
We remind the reader of the four actions that licensed operations may
give rise to; cf. the abstract syntax of actions, Page 311.

117. To perform any licensed operation the sub-contractor needs to know the
time and

118. must choose amongst the four kinds of operations that are licensed.
The choice function, which we do not define, makes a basically non-
deterministic choice among licensed alternatives. The choice yields the
contract number of a received contract and, based on its set of licensed
operations, it yields either a simple action or a sub-contracting action.

119. Thus there is a case distinction amongst four alternatives.
120. This case distinction is expressed in the four lines identified by: 120.
121. All the auxiliary functions, besides the action arguments, require the same

state arguments.

value

116. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
116. lic ops(leen)(licσ,busσ) ≡
117. let t = (time channel(leen)!req Time;time channel(leen)?) in

118. let (licn,act) = choice(licσ)(busσ)(t) in

119. (case act of

120. mkCon(blid,bid) → cndct(licn,leenm,t,act),

324 10 Towards a Family of Script Languages

120. mkCan(blid,bid) → cancl(licn,leenm,t,act),
120. mkIns(blid,bid) → insrt(licn,leenm,t,act),
120. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

Bus Monitoring Like for the bus ride behaviour we decompose the bus monitoring
behaviour into two behaviours. The local bus monitoring behaviour mon-
itors the buses that are commissioned by the sub-contractor. The licen-
sor bus monitoring behaviour monitors the buses that are commissioned by
sub-contractors sub-contractd by the contractor.

value

bus mon: l:LeeNm → (LicΣ×BusΣ)
→ in {l to b[l,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)

bus mon(l)(licσ,busσ) ≡
local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

122. The local bus monitoring function models all the interaction between a
contract holder and its despatched buses.

123. We show only the communications from buses to contract holders.
124. Etcetera.

122. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
123. → in {l to b[leen,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
122. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
124. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[l,b]?)|b:BNo•b ∈ allbuses(leen)} in

124. let (blid,bid,licn,lorn,trace) = abσ(bno) in

124. case msg of

124. BusΣMsg(t,bs) →
124. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in

124. (licσ,(fbσ,abσ′,histσ)) end,
124. BusHistΣMsg(licn,bno) →
124. let lbσ′ = update LorBusΣ
124. (obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in

124. l to l[leen,obs LorNm(licn)] !
124. Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
124. ((rlσ,slσ,lbσ′),busσ) end

124. FreeΣ ActΣMsg(licn,bno) →
124. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in

124. (licσ,(fbσ′,abσ′)) end

124. end end end

10.6 A Transport Contract Language 325

125. Reader is to provide the narrative!

125. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
125. → in {l to l[lorn,leen]|leen:LeeNm•leen ∈ leenms\{lorn}}
125. (LicΣ×BusΣ)
125. licensor bus mon(lorn)(licσ,busσ) ≡
125. let (rlσ,slσ,lbhσ) = licσ in

125. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))
125. = ⌈⌉⌊⌋{(leen′,l to l[lorn,leen′]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in

125. let lbhσ′ =
125. update BusHistΣ
125. (obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in

125. l to l[leenm,obs LorNm(licnm)] !
125. Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
125. ((rlσ,slσ,lbhσ′),busσ)
125. end end end

The Conduct Bus Ride Action

126. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes place
in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that the timetable in the contract named ln does

indeed provide a journey, j, indexed by bli and (then) bi, and that that
journey starts (approximately) at time t′ which is the same as or later
than t.

(c) Being so the action results in the contractor, whose name is “embed-
ded” in ln, receiving notification of the bus ride commitment.

(d) Then a bus, selected from a pool of available buses at the bust stop of
origin of journey j, is given j as its journey script, whereupon that bus,
as a behaviour separate from that of sub-contractor li, commences its
ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this is
reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ notifi-
cation, records the bus as no longer in actions but available at the
destination bus stop.

The Cancel Bus Ride Action

127. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes place
in a context and shall have the following effect:

326 10 Towards a Family of Script Languages

(a) The action is performed by contractor li and at time t. This is known
from the context.

(b) First a check like that prescribed in Item 126(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the bus ride can-
cellation.
That’s all !

The Insert Bus Ride Action

128. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes place in
a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First a check like that prescribed in Item 126(b)) is performed.
(c) If the check is OK, then the action results in the contractor, whose

name is “embedded” in ln, receiving notification of the new bus ride
commitment.

(d) The rest of the effect is like that prescribed in Items 126(d))–126(g)).

The Contracting Action

129. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes
place in a context and shall have the following effect:
(a) The action is performed by contractor li and at time t. This is known

from the context.
(b) First it is checked that timetable tt is a subset of the timetable con-

tained in, and that the operations ops are a subset of those granted
by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,-
tt′),li′). ln′ is a unique new contract name computed on the basis of
ln, li, and t. li′ is a sub-contractor name chosen by contractor li. tt′ is
a timetable chosen by contractor li. ops′ is a set of operations likewise
chosen by contractor li.

(d) This contract is communicated by contractor li to sub-contractor li′.
(e) The receipt of that contract is recorded in the license state.
(f) The fact that the contractor has sublicensed part (or all) of its obli-

gation to conduct bus rides is recorded in the modified component of
its received contracts.

10.6.3 Discussion

10.7 Conclusion

It really is too early — in the development of the topic of this chapter — to
conclude!

10.7.1 Achievements

What Did We Wish to Achieve?

Or rather, at this early, incomplete stage, what do we wish to achieve? In
a first round we wish to achieve the following: an understanding of different
kinds of license languages; an understanding of obligations and permissions
(yet to be “designed” more explicitly into the three languages; a formalisation
of both common aspects of the license systems (as a “vastly” distributed set
of very many actors acting on even more licenses “competing” for resources,
etc.), as well as of each individual language.

What Have We Achieved?

We think we have achieved what we set out to achieve.

What Do We Now Wish to Achieve?

First we would like to complete the full formalisation of each of the four lan-
guages: three license languages and one contract language. Based on those
four formalisations we hope to be able to identify some common, better for-
malised, i.e., parametrised, license and contract concepts and thus to “lift”
the four sets of syntaxes, well-formedness predicates and semantic functions
into one set of parametrised functions and syntaxes. We think that given such
four, widely separate examples and their parametrised “lifting” we can offer
better contract and license language design, parametrised formalisations and
common parametrised implementation software designs.

