
Domain Analysis and Description –
Formal Models of Processes and Prompts

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Denmark

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

Written in 2014, Compiled: September 24, 2018, 09:19 am

Abstract

In [Bjø16d, Manifest Domains: Analysis & Description] we introduced a method for analysing and
describing manifest domains. In this paper we shall formalise the calculus of this method. The
formalisation has two aspects: the formalisation of the process of sequencing the prompts of the
calculus, and the formalisation of the individual prompts.

1 Introduction

The presentation of a calculus for analysing and describing manifest domains, introduced in [Bjø16d]
and summarised in Sect. 2, was and is necessarily informal. The human process of “extracting” a
description of a domain, based on analysis, “wavers” between the domain, as it is revealed to our
senses, and therefore necessarily informal, and its recorded description, which we present in two
forms, an informal narrative and a formalisation. In the present paper we shall provide a formal,
operational semantics formalisation of the analysis and description calculus. There are two aspects
to the semantics of the analysis and description calculus. There is the formal explanation of the
process of applying the analysis and description prompts, in particular the practical meaning1 of the
results of applying the analysis prompts, and there is the formal explanation of the meaning of the
results of applying the description prompts. The former (i.e., the practical meaning of the results
of applying the analysis prompts) amounts to a model of the process whereby the domain analyser
cum describer navigates “across” the domain, alternating between applying sequences of one or more
analysis prompts and applying description prompts. The latter (formal explanation of the meaning
of the results of applying the description prompts) amounts to a model of the domain (as it evolves
in the mind of the analyser cum describer2), the meaning of the evolving description, and thereby
the relation between the two.

1in contrast to a formal mathematical meaning
2By ‘domain analyser cum describer’ we mean a group of one or more professionals, well-educated and trained in

the domain analysis & description techniques outlined in, for example, [Bjø16d], and where these professionals work
closely together. By ‘working closely together’ we mean that they, together, day-by-day work on each their sections of
a common domain description document which they “buddy check”, say every morning, then discuss, as a group, also
every day, and then revise and further extend, likewise every day. By “buddy checking” we mean that group member
A reviews group member B’s most recent sections – and where this reviewing alternates regularly: A may first review
B’s work, then C’s, etcetera.
We shall, occasionally refer to the ‘domain analyser cum describer’ as the ‘domain engineer’.

1

2 Domain Analysis and Description

1.1 The Triptych Approach to Software Development

Before software can be designed and coded one must have firm understanding of its requirements.
Before requirements can be prescribed one must have a clear grasp of the application domain.

Definition 1. The Triptych Approach to Software Development: By a triptych software de-
velopment we shall understand a development which, in principle, starts with either studying an
existing or developing a new domain description, then proceeds to systematically deriving a require-
ments prescription from the domain description, and finally designs and codes the software from the
requirements prescription

1.2 Method and Methodology

Definition 2. Method: By a method we shall understand a set of principles for selecting and
applying a number of techniques and tools for analysing and synthesizing an artifact

Definition 3. Methodology: By methodology we shall understand the study and knowledge of one
or more methods

Definition 4. Formal Method: By formal method we shall understand a method some or most of
whose techniques and tools can be understood mathematically

Definition 5. Formal Software Development: By a formal software development method we
shall understand a formal method where domain descriptions, requirements prescriptions and software
designs are expressed in mathematically founded specification languages with the possibility of proving
properties of these specifications, of steps and stages of development (refinements within domain
descriptions, requirements prescriptions, software designs and between these) — properties such as
correctness of software designs with respect to requirements, and satisfaction of user expectations
(from software) with respect to domains

This paper deals with some of the triptych method principles and techniques for developments of
domain descriptions. The paper puts forward a formal explanation of some of that method.

1.3 Related Work

To this author’s knowledge there are not many papers, other than the author’s own, [Bjø16d, Bjø18,
Bjø16c, Bjø16b] and the present paper, which proposes a calculus of analysis and description prompts
for capturing a domain, let alone, as this paper tries, to formalise aspects of this calculus.

There is, however a “school of software engineering”, “anchored” in the 1987 publication: [Ost87,
Leon Osterweil]. As the title of that paper reveals: “Software Processes Are Software Too” the
emphasis is on considering the software development process as prescribable by a software program.
That is not what we are aiming at. We are aiming at an abstract and formal description of a large
class of domain analysis & description processes in terms of possible development calculi. And in such
a way that one can reason about such processes. The Osterweil paper suggests that any particular
software development can be described by a program, and, if we wish to reason about the software
development process we must reason over that program, but there is no requirement that the “software
process programs” be expressed in a language with a proof system.3 In contrast we can reason over
the properties of the development calculi as well as over the resulting description.

3The RAISE Specification Language [GHH+95] does have a proof system.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 2 Domain Analysis and Description

Formal Models of Processes and Prompts 3

There is another “school of programming”, one that more closely adheres to the use of a calculus
[BAvWS98, Mor90]. The calculus here is a set of refinement rules, a Refinement Calculus4, that
“drives” the developer from a specification to an executable program. Again, that is not what we
are doing here. The proposed calculi of analysis and of description prompts [Bjø16d] “drives” the
domain engineer in developing a domain description. That description may then be ‘refined’ using a
refinement calculus.

1.4 Structure of Paper

Section 2 provides a terse summary of the analysis & description of endurants. It is without examples.
For such we refer to [Bjø16d, Sects. 2.–3., Pages 7–29.]. Section 3 is informal. It discusses issues of
syntax and semantics. The reason we bring this short section is that the current paper turns “things
upside/down”: from semantics we extract syntax ! From the real entities of actual domains we
extract domain descriptions. Section 4 presents a pseudo-formal operational semantics explication
of the process of proceeding through iterated sequences of analysis prompts to description prompts.
The formal meaning of these prompts are given in Sect. 8. But first we must “prepare the ground”:
The meaning of the analysis and description prompts is given in terms of some formal “context” in
which the domain engineer works. Section 5 discusses this notion of “image” — an informal aspect of
the ‘context’. It is a brief discussion. Section 6 presents the formal aspect of the ‘context’: perceived
abstract syntaxes of the ontology of domain endurants and of endurant values. Section 7 Discusses, in
a sense, the mental processes – from syntax to semantics and back again ! – that the domain engineer
appears to undergo while analysing (the semantic) domain entities and synthesizing (the syntactic)
domain descriptions. Section 8 presents the analysis and description prompts meanings. It represents
a high point of this paper. It so-to-speak justifies the whole “exercise” ! Section 9 concludes the
paper. We summarize what we have “achieved”. And we discuss whether this “achievement” is a
valid one ! Appendix A details some formalisations of a “standard” nature. Appendix B brings a
“full” example of a domain description. It is that of the essence of a credit card system.

2 Domain Analysis and Description

In the rest of this paper we shall consider entities in the context of their being manifest (i.e., spatio-
temporal). The restrictions of what we cover with respect to [Bjø16d, Manifest Domains: Analysis &
Description] are: we do not cover perdurants, only endurants, and within endurants we do not cover
update mereology, update attributes and shared attributes. These omissions do not affect the main aim
of this paper, namely that of presenting a plausible example of how one might wish to operationally
formalise the notions of the analysis & description process and of the analysis & description prompts.
The presentation is very terse. We refer to [Bjø16d] for details. Appendix B (Pages 38–49) gives an
“full” example of a “smallish” domain, including perdurants.

2.1 General

In [Bjø16d] we developed an ontology for structuring and a prompt calculus analysing and describing
domains. Figure 1 on the following page captures the ontology structure.5 It is thus a slight simpli-

4Ralph–Johan Back appears to be the first to have proposed the idea of refinement calculi, cf. his 1978 PhD thesis On
the Correctness of Refinement Steps in Program Development, http://users.abo.fi/backrj/index.php?page=Refinement
calculus all.html&menu=3.

5The differences, in Fig. 1, with respect to that of [Bjø16d], are: (i) we have “collapsed” the is continuous and the
is material nodes of [Bjø16d] into one here, and (ii) we omit details on attribute categories.

Formal Models of Processes and Prompts 3 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

4 Domain Analysis and Description

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete

is_entity

is_endurant

is an abbreviation for ‘observe’

Analysis Prompts

Description Prompts

obs_

is_part

unique identifiers attributes

obs_materialshas_materials

is_atomic

is_composite
obs_part_sorts

has_concrete_type
observe_parts

has_mereology

is_component

obs_uid obs_mereology obs_attributes

is_continuous

=is_material

qualities: content

en
du

ra
nt

 s
tr
uc

tu
re

: f
or

m

Figure 1: An Annotated Upper Ontology

fication of the ‘upper ontology’ figure given in [Bjø16d] in that it omits the component ontology. The
rest of this section will summarise the calculus. We refer to [Bjø16d] for examples.
To the nodes of the upper ontology of Fig. 1 we have affixed some names. Names beginning with a
capital stand for sub-ontologies. Names starting with a slanted obs stand for description prompts.
Other names (starting with an is or a has , or other) stand for analysis prompts.6

2.2 Entities

Definition 6. Entity: By an entity we shall understand a phenomenon, i.e., something that can
be observed, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an
entity. We further demand that an entity can be objectively described 7

Analysis Prompt 1 . is entity: The domain analyser analyses “things” (θ) into either entities
or non-entities. The method can thus be said to provide the domain analysis prompt:

• is entity — where is entity(θ)holds if θ is an entity 8

Although “reasonably” precise, the definition of the concept of entity is still not precise enough for
us to formalise it. In Sect. 8.2 we attempt a series of formalisations of the analysis prompts. This is
done on the background of some formalisation (Sect. 6) of the ontology being unfolded in this section
(i.e., Sect. 2). A formalisation that covers the notion of phenomena and entities is not offered.

2.3 Endurants and Perdurants

Definition 7. Endurant: By an endurant we shall understand an entity that can be observed or
conceived and described as a “complete thing” at no matter which given snapshot of time. Were we
to “freeze” time we would still be able to observe the entire endurant

6In a coloured version of this document the description prompts are coloured red and the analysis prompts are
coloured blue.

7Definitions and examples are delimited by respectively
8Analysis prompt definitions and description prompt definitions and schemes are delimited by respectively .

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 4 Domain Analysis and Description

Formal Models of Processes and Prompts 5

Definition 8. Perdurant: By a perdurant we shall understand an entity for which only a fragment
exists if we look at or touch them at any given snapshot in time, that is, where we to freeze time we
would only see or touch a fragment of the perdurant

Analysis Prompt 2 . is endurant: The domain analyser analyses an entity, φ, into an endurant
as prompted by the domain analysis prompt:

• is endurant — e is an endurant if is endurant(e)9 holds.

is entity is a prerequisite prompt for is endurant

Analysis Prompt 3 . is perdurant: The domain analyser analyses an entity φ into perdurants
as prompted by the domain analysis prompt:

• is perdurant — e is a perdurant if is perdurant(e)10 holds.

is entity is a prerequisite prompt for is perdurant

2.4 Discrete and Continuous Endurants

Definition 9. Discrete Endurant: By a discrete endurant we shall understand an endurant which
is separate, individual or distinct in form or concept

Definition 10. Continuous Endurant: By a continuous endurant we shall understand an endurant
which is prolonged, without interruption, in an unbroken series or pattern

Analysis Prompt 4 . is discrete: The domain analyser analyse endurants e into discrete entities
as prompted by the domain analysis prompt:

• is discrete — e is discrete if is discrete(e)11 holds

Analysis Prompt 5 . is continuous: The domain analyser analyse endurants e into continuous
entities as prompted by the domain analysis prompt:

• is continuous — e is continuous if is continuous(e)12 holds

2.5 Parts, Components and Materials

2.5.1 General

Definition 11. Part: By a part we shall understand a discrete endurant which the domain engineer
chooses to endow with internal qualities such as unique identification, mereology, and one or more
attributes

Definition 12. Component: By a component we shall understand a discrete endurant which
the domain engineer chooses to not endow with internal qualities such as unique identification,
mereology, and, even perhaps no attributes

Definition 13. Material: By a material we shall understand a continuous endurant

9We formalise is endurant in Sect. 8.2.2 on Page 27.
10Since we do not cover perdurants in this paper we shall also refrain from trying to formalise this prompt.
11We formalise is discrete in Sect. 8.2.3 on Page 27.
12We formalise is continuous in Sect. 8.2.5 on Page 28.

Formal Models of Processes and Prompts 5 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

6 Domain Analysis and Description

2.5.2 Part, Component and Material Prompts

Analysis Prompt 6 . is part: The domain analyser analyse endurants e into part entities as
prompted by the domain analysis prompt:

• is part — e is a part if is part(e)13 holds

Analysis Prompt 7 . is component: The domain analyser analyse endurants e into part entities
as prompted by the domain analysis prompt:

• is component — e is a component if is component(e)14 holds

Analysis Prompt 8 . is material: The domain analyser analyse endurants e into material entities
as prompted by the domain analysis prompt:

• is material — e is a material if is material(e)15 holds

There is no difference between is continuous and is material, that is is continuous≡ is material.
We shall henceforth use is material.

2.6 Atomic and Composite Parts

Definition 14. Atomic Part: Atomic parts are those which, in a given context, are deemed to not
consist of meaningful, separately observable proper sub-parts

A sub-part is a part

Definition 15. Composite Part: Composite parts are those which, in a given context, are deemed
to indeed consist of meaningful, separately observable proper sub-parts

Analysis Prompt 9 . is atomic: The domain analyser analyses a discrete endurant, i.e., a part p
into an atomic endurant:

• is atomic(p): p is an atomic endurant if is atomic(p)16 holds

Analysis Prompt 10 . is composite: The domain analyser analyses a discrete endurant, i.e., a
part p into a composite endurant:

• is composite(p): p is a composite endurant if is composite(p)17 holds

13We formalise is part in Sect. 8.2.4 on Page 28.
14We formalise is component in Sect. 8.2.6 on Page 28.
15We formalise is material in Sect. 8.2.5 on Page 28.
16We formalise is atomic in Sect. 8.2.7 on Page 28.
17We formalise is composite in Sect. 8.2.8 on Page 28.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 6 Domain Analysis and Description

Formal Models of Processes and Prompts 7

2.7 On Observing Part Sorts

2.7.1 Part Sort Observer Functions

Domain Description Prompt 1 . observe part sorts : If is composite(p) holds, then the anal-
yser “applies” the description language observer prompt

• observe part sorts(p)18

resulting in the analyser writing down the part sorts and part sort observers domain description text
according to the following schema:

1. observe part sorts(p:P) schema

Narration:

[s] ... narrative text on sorts ...
[o] ... narrative text on sort observers ...
[p] ... narrative text on proof obligations ...

Formalisation:

type

[s] P1, P2, ..., Pn

value

[o] obs part Pi: P → Pi [1≤i≤m]
proof obligation [Disjointness of part sorts]
[p] D

D is some predicate over P1, P2, ..., Pn. It expresses their disjointedness. is composite is a prereq-
uisite prompt of observe part sorts

2.7.2 On Discovering Concrete Part Types

Analysis Prompt 11 . has concrete type: The domain analyser may decide that it is expedient,
i.e., pragmatically sound, to render a part sort, P, whether atomic or composite, as a concrete type,
T. That decision is prompted by the holding of the domain analysis prompt:

• has concrete type(p).19

is discrete is a prerequisite prompt of has concrete type

Many possibilities offer themselves to model a concrete type as: either a set of abstract sorts, or a list
of abstract sorts, or any compound of such sorts. Without loss of generality we suggest, as concrete
type, as set of sorts. We have modeled many domains. So far, only the set concrete type has been
needed.

Domain Description Prompt 2 . observe concrete type : Then the domain analyser applies the
domain description prompt:

• observe concrete type(p)20

18We formalise observe part sorts in Sect. 8.3.2 on Page 30.
19We formalise has concrete type in Sect. 8.2.9 on Page 28.
20We formalise observe concrete type in Sect. 8.3.3 on Page 30.

Formal Models of Processes and Prompts 7 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

8 Domain Analysis and Description

to parts p:P which then yield the part type and part type observers domain description text according
to the following schema:

2. observe concrete type(p:P) schema

Narration:

[t1] ... narrative text on types ...
[t2] ... narrative text on types ...
[o] ... narrative text on type observers ...

Formalisation:

type

[t1] Q
[t2] T = Q-set
value

[o] obs part T: P → T

Q may be any part sort; has concrete type is a prerequisite prompt of observe part type

2.7.3 External and Internal Qualities of Parts

By an external part quality we shall understand the is atomic, is composite, is discrete and
is continuous qualities. By an internal part quality we shall understand the part qualities to be
outlined in the next sections: unique identification, mereology and attributes. By part
qualities we mean the sum total of external endurant and internal endurant qualities.

2.8 Unique Part Identifiers

We assume that all parts and components have unique identifiers. It may be, however, that we do
not always need to define such a part or component identifier.

Domain Description Prompt 3 . observe unique identifier : We can, however, always apply
the domain description prompt:

• observe unique identifier(pk)21

to parts, p:P, or components, k, resulting in the analyser writing down the unique identifier type and
observer domain description text according to the following schema:

3. observe unique identifier(pk:(P|K)) schema

Narration:

[s] ... narrative text on unique identifier sort ...
[u] ... narrative text on unique identifier observer ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s] PI, KI
value

[u] uid P: P → PI

21We formalise observe unique identifier in Sect. 8.3.4 on Page 31.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 8 Domain Analysis and Description

Formal Models of Processes and Prompts 9

[u] uid K: K → KI
axiom

[a] U

U is a predicate over part sorts and unique part identifier sorts, respectively component sorts and
unique component identifiers. The unique part (component) identifier sort, PI (KI), is unique

2.9 Mereology

2.9.1 Part Mereology: Types and Functions

Analysis Prompt 12 . has mereology: To discover necessary, sufficient and pleasing “mereology-
hoods” the analyser can be said to endow a truth value true to the domain analysis prompt:

• has mereology.22

Domain Description Prompt 4 . observe mereology : If has mereology(p) holds for parts p of
type P, then the analyser can apply the domain description prompt:

• observe mereology(p)23

to parts of that type and write down the mereology types and observers domain description text ac-
cording to the following schema:

4. observe mereology(p:P) schema

Narration:

[t] ... narrative text on mereology type ...

[m] ... narrative text on mereology observer ...
[a] ... narrative text on mereology type constraints ...

Formalisation:

type

[t] MT = E(PI1,PI2,...,PIm)
value

[m] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies]
[a] A

MT is a type expression over unique part identifiers. A is some predicate over unique part identifiers.
The PIi are unique part identifier types

2.10 Part, Material and Component Attributes

Domain Description Prompt 5 . observe attributes : The domain analyser experiments, thinks
and reflects about attributes of endurants (parts p:P , components, k:K, or materials, m:M). That
process is initiated by the domain description prompt:

22We formalise has mereology in Sect. 8.2.10 on Page 29.
23We formalise observe mereology in Sect. 8.3.5 on Page 31.

Formal Models of Processes and Prompts 9 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

10 Domain Analysis and Description

• observe part attributes(e).24

The result of that domain description prompt is that the domain analyser cum describer writes down
the attribute (sorts or) types and observers domain description text according to the following schema:

5. observe part attributes(e:(P|K|M)) schema

Narration:

[t] ... narrative text on attribute sorts ...
[o] ... narrative text on attribute sort observers ...
[p] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[t] A1, A2, ..., An

value

[o] attr Ai:(P|K|M)→Ai [1≤i≤n]
proof obligation [Disjointness of Attribute Types]
[p] A

The type (or rather sort) definitions: A1, A2, ..., An inform us that the domain analyser has decided
to focus on the distinctly named A1, A2, ..., An attributes.25 A is a predicate over attribute types A1,
A2, ..., An. It expresses their Disjointness

2.11 Components

We now complement the observe part sorts (of Sect. 2.7.1). We assume, without loss of generality,
that only atomic parts may contain components. Let p:P be some atomic part.

Analysis Prompt 13 . has components: The domain analysis prompt:

• has components(p)26

yields true if atomic part p potentially contains components otherwise false

Domain Description Prompt 6 . observe component sort : The domain description prompt:

• observe component sort(p)27

yields the part component sorts and component observers domain description text according to the
following schema:

6. observe component sort(p:P) schema

Narration:

[s] ... narrative text on component sort ...
[o] ... narrative text on component sort observer ...

24We formalise observe attributes in Sect. 8.3.6 on Page 31.
25The attribute type names are not like type names of, for example, a programming language. Instead they are

chosen by the domain analyser to reflect on domain phenomena.
26We formalise has components in Sect. 8.2.12 on Page 29.
27We formalise observe component sort in Sect. 8.3.8 on Page 32.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 10 Domain Analysis and Description

Formal Models of Processes and Prompts 11

Formalisation:

type

[s] K
value

[o] obs comps: P → K-set

Components have unique identifiers and attributes, but no mereology

2.12 Materials

Only atomic parts may contain materials and materials may contain [atomic] parts.

2.12.1 Part Materials

Let p:P be some atomic part.

Analysis Prompt 14 . has material: The domain analysis prompt:

• has material(p)28

yields true if the atomic part p:P potentially contains a material otherwise false

Domain Description Prompt 7 . observe material sort : The domain description prompt:

• observe material sort(p)29

yields the part material sort and material observer domain description text according to the following
schema:

7. observe material sort(p:P) schema

Narration:

[s] ... narrative text on material sort ...
[o] ... narrative text on material sort observer ...

Formalisation:

type

[s] M
value

[o] obs mat M: P → M

2.12.2 Material Parts

Materials may contain parts. We assume that such parts are always atomic and always of the same
sort. Example: Pipe parts usually contain oil material. And that oil material may contain pigs which
are parts whose purpose it is to clean and inspect (i.e., maintain) pipes

28We formalise has materials in Sect. 8.2.11 on Page 29.
29We formalise observe material sorts in Sect. 8.3.7 on Page 32.

Formal Models of Processes and Prompts 11 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

12 Domain Analysis and Description

Analysis Prompt 15 . has parts: The domain analysis prompt:

• has parts(m)30

yields true if material m:M potentially contains parts otherwise false

Domain Description Prompt 8 . observe material part sorts : The domain description
prompt:

• observe material part sort(e)31

yields the material part sorts and material part observers domain description text according to the
following schema:

8. observe material part sorts(m:M) schema

Narration:

[s] ... narrative text on material part sort ...
[o] ... narrative text on material part sort observer ...

Formalisation:

type

[s] mP
value

[o] obs mat mP: M → mP

2.13 Components and Materials

Experimental evidence32 appears to justify the following “limitations”: only atomic parts may contain
either at most one material, and always of the same sort, or a set of zero, one or more components,
all of the same sort; but not both; materials need not be characterised by unique identifiers; and
components and materials need not be endowed with mereologies.

2.14 Discussion

We have covered the analysis and description calculi for endurants. We omit covering analysis and
description techniques and tools for perdurants.AppendixB.2 exemplifies perdurants – not otherwise
covered here. We leave it to the reader to study that appendix section and to otherwise study [Bjø16d,
Sect. 4.].

3 Syntax and Semantics

3.1 Form and Content

Section 2 appears to be expressed in the syntax of the Raise [GHH+95] Specification Language, RSL

[GHH+92]. But it only “appears” so. When, in the “conventional” use of RSL, we apply meaning
functions, we apply them to syntactic quantities. In Sect. 2 the “meaning” functions are the analysis,
a.–o., and description, [1]–[8], prompts:

30We formalise has parts in Sect. 8.2.13 on Page 29.
31We formalise observe material part sort in Sect. 8.3.9 on Page 32.
32— in the form of more than 20 medium-to-large scale domain models

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 12 Domain Analysis and Description

Formal Models of Processes and Prompts 13

a. is entity, 6
b. is endurant, 7
c. is perdurant, 7
d. is discrete, 7
e. is continuous, 7
f. is part, 8
g. is component, 8
h. is material, 8
i. is atomic, 9
j. is composite, 9
k. has concrete type, 10
l. has mereology, 11

m. has components, 13
n. has material, 14
o. has parts, 15

and
[1] observe part sorts, 9
[2] observe concrete type, 10
[3] observe unique identifier, 11
[4] observe mereology, 12
[5] observe attributes, 12
[6] observe component sorts, 13
[7] observe part material sort, 14
[8] observe material part sorts, 15

The quantities that these prompts are “applied to” are semantic ones, in effect, they are the “ultimate”
semantic quantities that we deal with: the real, i.e., actual domain entities ! The quantities that these
prompts “yield” are syntactic ones ! That is, we have “turned matters inside/out”. From semantics
we “extract” syntax. The arguments of the above-listed 23 prompts are domain entities, i.e., in
principle, in-formalisable things. Their types, typically listed as P , denote possibly infinite classes,
P , of domain entities. When we write P we thus mean P .

3.2 Syntactic and Semantic Types

When we, classically, define a programming language, we first present its syntax, then it semantics.
The latter is presented as two – or three – possibly interwoven texts: the static semantics, i.e., the
well-formedness of programs, the dynamic semantics, i.e., the mathematical meaning of programs —
with a corresponding proof system being the “third texts”. We shall briefly comment on the ideas of
static and dynamic semantics. In designing a programming language, and therefore also in narrating
and formalising it, one is well advised in deciding first on the semantic types, then on the syntactic
ones. With describing [f.ex., manifest] domains, matters are the other way around: The semantic
domains are given in the form of the endurants and perdurants; and the syntactic domains are given
in the form that we, the humans of the domain, mention in our speech acts [Sea69, Aus76]. That is,
from a study of actual life domains, we extract the essentials that speech acts deal with when these
speech acts are concerned with performing or talking about entities in some actual world.

3.3 Names and Denotations

Above, we may have been somewhat cavalier with the use of names for sorts and names for their
meaning. Being so, i.e., “cavalier”, is, unfortunately a “standard” practice. And we shall, regrettably,
continue to be cavalier, i.e., “loose” in our use of names of syntactic “things” and names for the
denotation of these syntactic “things”. The context of these uses usually makes it clear which use we
refer to: a syntactic use or a semantic one. As from Sect. 6 we shall be more careful distinguishing
clearly between the names of sorts and the values of sorts, i.e., between syntax and semantics.

Formal Models of Processes and Prompts 13 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

14 Domain Analysis and Description

4 A Model of the Domain Analysis & Description Process

4.1 Introduction

4.1.1 A Summary of Prompts

In Sect. 3.1 we listed the two classes of prompts: the domain [endurant] analysis prompts: and the
domain [endurant] description prompts: These prompts are “imposed” upon the domain by the domain
analyser cum describer. They are “figuratively” applied to the domain. Their orderly, sequenced ap-
plication follows the method hinted at in the previous section, detailed in [Bjø16d, Manifest Domains:
Analysis & Description], and exemplified in Appendix B. This process of application of prompts will
be expressed in a pseudo-formal notation in this section. The notation looks formal but since we have
not formalised these prompts it is only pseudo-formal. We formalise these prompts in Sect. 8.

4.1.2 Preliminaries

Let P be a sort, that is, a collection of endurants. By P we shall understand both a syntactic quantity:
the name of P, and a semantic quantity, the type (of all endurant values of type) P. By ιp:P we shall
understand a semantic quantity: an (arbitrarily selected) endurant in P. To guide our analysis &
description process we decompose it into steps. Each step “handles” a part sort p:P or a material
sort m:M or a component sort k:K. Steps handling discovery of composite part sorts generates a set
of part sort names P1, P2, . . . , Pn:PNm. Steps handling discovery of atomic part sorts may generate
a material sort name, m:MNm, or component sort name, k:KNm. The part, material and component
sort names are put in a reservoir for sorts to be inspected. Once handled, the sort name is removed
from that reservoir. Handling of material sorts besides discovering their attributes may involve the
discovery of further part sorts — which we assume to be atomic. Each domain description prompt
results in domain specification text (here we show only the formal texts, not the narrative texts)
being deposited in the domain description reservoir, a global variable τ . We do not formalise this text.
Clauses of the form observe XXX(p), where XXX ranges over part sorts, concrete type, unique i-

dentifier, mereology, part attributes, part component sorts, part material sorts, and
material part sorts, stand for ′′text′′ generating functions. They are defined in Sect. 8.3.

4.1.3 Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities. The domain analysis
approach covered in Sect. 2 was based on decomposing an understanding of a domain from the “overall
domain” into its components, and these, if not atomic, into their sub-domains. So we need to initialise
the domain analysis & description process by selecting (or choosing) the domain ∆. Here is how we
think of that “initialisation” process. The domain analyser & describer spends some time focusing
on the domain, maybe at the “white board”33, rambling, perhaps in an un-structured manner, across
its domain, ∆, and its sub-domains. Informally jotting down more-or-less final sort names, building,
in the domain analyser & describer’s mind an image of that domain. After some time doing this the
domain analyser & describer is ready. An image of the domain includes the or a domain endurant,
δ:∆. Let ∆nm be the name of the sort ∆. That name may be either a part sort name, or a material
sort name, or a component sort name.

33Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow “post-it” stickers, or it could be
an electronic conference “gadget”.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 14 Domain Analysis and Description

Formal Models of Processes and Prompts 15

4.2 A Model of the Analysis & Description Process

4.2.1 A Process State

1 Let Nm denote either a part or a material or a component sort name.

2 A global variable αps will accumulate all the sort names being discovered.

3 A global variable νps will hold names of sorts that have been “discovered”, but have yet to be
analysed & described.

type

1. Nm = PNm | MNm | KNm
variable

2. αps := [∆nm] type Nm-set

3. νps := [∆nm] type Nm-set

We shall explain the use of [...]s and operations on the above variables in Sect. 4.3.3 on Page 18.
Each iteration of the “root” function, analyse and describe endurant sort(Nm,nι:nm), as we shall call
it, involves the selection of a sort (value) (which is that of either a part sort or a material sort) with
this sort (value) then being removed.

4 The selection occurs from the global state component νps (hence: ()) and changes that state
(hence Unit).

value

4. sel and rem Nm: Unit → Nm
4. sel and rem Nm() ≡ let nm:Nm • nm ∈ νps in νps := νps \ {nm} ; nm end; pre: νps 6= {}

4.2.2 A Technicality

5 The main analysis & description functions of the next sections, except the “root” function, are
all expressed in terms of a pair, (nm,val):NmVAL, of a sort name and an endurant value of that
sort.

type

5. NmVAL = (PNm×PVAL) | (MNm×MVAL) | (KNm×KVAL)

4.2.3 Analysis & Description of Endurants

6 To analyse and describe endurants means to first

7 examine those endurants which have yet to be so analysed and described

8 by selecting (and removing from νps) a yet un-examined sort nm;

9 then analyse and describe an endurant entity (ι:nm) of that sort — this analysis, when applied
to composite parts, leads to the insertion of zero34 or more sort names35.

34If the sub-parts of ι:nm are all either atomic and have no materials or components or have already been analysed,
then no new sort names are added to the repository νps).

35These new sort names are then “picked-up” for sort analysis &c. in a next iteration of the while loop.

Formal Models of Processes and Prompts 15 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

16 Domain Analysis and Description

As was indicated in Sect. 2, the mereology of a part, if it has one, may involve unique identifiers of
any part sort, hence must be done after all such part sort unique identifiers have been identified.
Similarly for attributes which also may involve unique identifiers,

10 then, if it has a mereology,

11 to analyse and describe the mereology of each part sort,

12 and finally to analyse and describe the attributes of each sort.

value

6. analyse and describe endurants: Unit → Unit

6. analyse and describe endurants() ≡
7. while ∼is empty(νps) do
8. let nm = sel and rem Nm() in
9. analyse and describe endurant sort(nm,ι:nm) end end ;
10. for all nm:PNm • nm ∈ αps do if has mereology(nm,ι:nm)36

11. then observe mereology(nm,ι:nm)37 end end

12. for all nm:Nm • nm ∈ αps do observe attributes(nm,ι:nm)38 end

The ι:nm of Items 9, 10, 11 and 12 are crucial. The domain analyser is focused on (part or material
or component) sort nm and is “directed” (by those items) to choose (select) an endurant (a part or
a material or component) ι:nm of that sort.

13 To analyse and describe an endurant

14 is to find out whether it is a part. If so then
it is to analyse and describe it.

15 If it instead is a material, then to analyse
and describe it as a material.

16 If it instead is a component, then to analyse
and describe it as a component.

value

13. analyse and describe endurant sort: NmVAL → Unit

13. analyse and describe endurant sort(nm,val) ≡
14. is part(nm,val)39 →40 analyse and describe part sorts(nm,val),
15. is material(nm,val)41 → observe material part sort(nm,val)42,
16. is component(nm,val)43 → observe component sort(nm,val)44

17 The analysis and description of a part

18 first describe its unique identifier.

19 If the part is atomic it is analysed and de-
scribed as such;

20 If composite it is analysed and described as
such.

21 Part p must be discrete.
36We formalise has mereology in Sect. 8.2.10 on Page 29.
37We formalise observe mereology in Sect. 8.3.5 on Page 31.
38We formalise observe attributes in Sect. 8.3.6 on Page 31.
39We formalise is part in Sect. 8.2.4 on Page 28.
40The conditional clause: cond1→clau1,cond2→clau2,...,condn→claun

is same as if cond1 then clau1 else if cond2 then clau2 else ... if condn then claun end end ... end .
41We formalise is material in Sect. 8.2.5 on Page 28.
42We formalise observe material part sort in Sect. 8.3.9 on Page 32.
43We formalise is component in Sect. 8.2.6 on Page 28.
44We formalise observe component sort in Sect. 8.3.8 on Page 32.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 16 Domain Analysis and Description

Formal Models of Processes and Prompts 17

value

17. analyse and describe part sorts: NmVAL → Unit

17. analyse and describe part sorts(nm,val) ≡
18. observe unique identifier(nm,val)45;
19. is atomic(nm,val)46→ analyse and describe atomic part(nm,val),
20. is composite(nm,val)47→ analyse and describe composite parts(nm,val)
21. pre: is discrete(nm,val)48

22 To analyse and describe an atomic part is to inquire whether

a it embodies materials, then we analyse and describe these;

b and if it further has components, then we describe their sorts.

value

22. analyse and describe atomic part: NmVAL → Unit

22. analyse and describe atomic part(nm,val) ≡
22a. if has material(nm,val)49 then observe part material sort(nm,val)50 end ;
22b. if has components(nm,val)51 then observe part component sort(nm,val)52 end

23 To analyse and describe a composite endurant of sort nm (and value val)

24 is to analyse if the sort has a concrete type

25 then we analyse and describe that concrete sort type

26 else we analyse and describe the abstract sort.

value

23. analyse and describe composite endurant: NmVAL → Unit

23. analyse and describe composite endurant(nm,val) ≡
24. if has concrete type(nm,val)53

25. then observe concrete type(nm,val)54

26. else observe abstract sorts(nm,val)55

24. end

23. pre is composite(nm,val)56

We do not associate materials or components with composite parts.

45We formalise observe unique identifier in Sect. 8.3.4 on Page 31.
46We formalise is atomic in Sect. 8.2.7 on Page 28.
47We formalise is composite in Sect. 8.2.8 on Page 28.
48We formalise is discrete in Sect. 8.2.3 on Page 27.
49We formalise has material in Sect. 8.2.11 on Page 29.
50We formalise observe part material sort in Sect. 8.3.7 on Page 32.
51We formalise has components in Sect. 8.2.12 on Page 29.
52We formalise observe part component sort in Sect. 8.3.8 on Page 32.
53We formalise has concrete type in Sect. 8.2.9 on Page 28.
54We formalise observe concrete type in Sect. 8.3.3 on Page 30.
55We formalise observe part sorts in Sect. 8.3.2 on Page 30.
56We formalise is composite in Sect. 8.2.8 on Page 28.

Formal Models of Processes and Prompts 17 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

18 Domain Analysis and Description

4.3 Discussion of The Process Model

The above model lacks a formal understanding of the individual prompts as listed in Sect. 4.1.1; such
an understanding is attempted in Sect. 8.

4.3.1 Termination

The sort name reservoir νps is “reduced” by one name in each iteration of the while loop of the
analyse and describe endurants, cf. Item 8 on Page 15, and is augmented by new part, material and
component sort names in some iterations of that loop. We assume that (manifest) domains are finite,
hence there are only a finite number of domain sorts. It remains to (formally) prove that the analysis
& description process terminates.

4.3.2 Axioms and Proof Obligations

We have omitted, from Sect. 2, treatment of axioms concerning well-formedness of parts, materials
and attributes and proof obligations concerning disjointedness of observed part and material sorts
and attribute types. [Bjø16d] exemplifies axioms and sketches some proof obligations.

4.3.3 Order of Analysis & Description: A Meaning of ‘⊕’

The variables αps, νps and τ can be defined to hold either sets or lists. The operator ⊕ can be
thought of as either set union (∪ and [...]≡{...}) — in which case the domain description text in τ is
a set of domain description texts — or as list concatenation (̂ and [...]≡〈...〉) of domain description
texts. The list operator ℓ1 ⊕ ℓ2 now has at least two interpretations: either ℓ1̂ℓ2 or ℓ2̂ℓ1. Thus,
in the case of lists, the ⊕, i.e., ̂, does not (suffix or prefix) append ℓ2 elements already in ℓ1. The
sel and rem Nm function on Page15 applies to the set interpretation. A list interpretation is:

value

8. sel and rem Nm: Unit → Nm
8. sel and rem Nm() ≡ let nm = hd ν ps in ν ps := tl ν ps; nm end; pre: νps 6=<>

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the root, breadth first, In
the second case (ℓ2̂ℓ1) the analysis and description process proceeds from the root, depth first. .

4.3.4 Laws of Description Prompts

The domain ‘method’ outlined in the previous section suggests that many different orders of analysis
& description may be possible. But are they ? That is, will they all result in “similar” descriptions ?
If, for example, Da and Db are two domain description prompts where Da and Db can be pursued in
any order will that yield the same description ? And what do we mean by ‘can be pursued in any
order’, and ‘same description’ ? Let us assume that sort P decomposes into sorts Pa and Pb (etcetera).
Let us assume that the domain description prompt Da is related to the description of Pa and Db to
Pb. Here we would expect Da and Db to commute, that is Da;Db yields same result as does Db;Da.
In [Bjø11a] we made an early exploration of such laws of domain description prompts. To answer
these questions we need a reasonably precise model of domain prompts. We attempt such a model
in Sect. 8. But we do not prove theorems.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 18 Domain Analysis and Description

Formal Models of Processes and Prompts 19

5 A Domain Analyser’s & Describer’s Domain Image

Assumptions: We assume that the domain analysers cum describers are well educated and well trained
in the domain analysis & description techniques such as laid out in [Bjø16d]. This assumption entails
that the domain analysis & description development process is structured in sequences of alternating
(one or more) analysis prompts and description prompts. We refer to Footnote 2 (Page1) as well as
to the discussion, “Towards a methodology of manifest domain analysis & description” of [Bjø16d,
Sect. 1.6]. We further assume that the domain analysers cum describers makes repeated attempts
to analyse & describe a domain. We assume, further, that it is “the same domain” that is being
analysed & described – two, three or more times, “all-over”, before commitment is made to attempt a
– hopefully – final analysis & description57, from “scratch”, that is, having “thrown away”, previous
drafts58. We then make the further assumption, as this iterative analysis & description process
proceeds, from iteration i to i + 1, that each and all members of the analysis & description group
are forming, in their minds (i.e., brains) an “image” of the domain being analysed. As iterations
proceed one can then say that what is being analysed & described increasingly becomes this ‘image’
as much as it is being the domain — which we assume is not changing across iterations. The iterated
descriptions are now postulated to converge: a “final” iteration “differs” only “immaterially.” from
the description of the “previous” iteration.

• • •

The Domain Engineers’s Image of Domains: In the opening (‘Assumptions’) of this section, i.e.,
above, we hinted at “an image”, in the minds of the domain analysers & describers, of the domain
being researched and for which a description document is being engineered. In this paragraph we
shall analyse what we mean by such a image. Since the analysis & description techniques are based
on applying the analysis and description prompts (reviewed in Sect. 2) we can assume that the image
somehow relates to the ‘ontology’ of the domain entities, whether endurants or perdurants, such as
graphed in Fig. 1. Rather than further investigating (i.e., analysing / arguing) the form of this, until
now, vague notion, we simply conjecture that the image is that of an ‘abstract syntax of domain
types’.

• • •

The Iterative Nature of The Description Process: Assume that the domain engineers are analysing
& describing a particular endurant; that is, as we shall understand it, are examining a given endurant
node in the domain description tree ! The domain description tree is defined by the facts that
composite parts have sub-parts which may again be composite (tree branches), ending with atomic
parts (the leaves of the tree) but not “circularly”, i.e. recursively

To make this claim: the domain analysers cum describers are examining a given endurant node in the
domain description tree amounts to saying that the domain engineers have in their mind a reasonably
“stable” “picture” of a domain in terms of a domain description tree.

We need explain this assumption. In this assumption there is “buried” an understanding that
the domain analysers cum describers during the — what we can call “the final” — domain analysis
& description process, that leads to a “deliverable” domain description, are not investigating the
domain to be described for the first time. That is, we certainly assume that any “final” domain
analysis & description process has been preceded by a number of iterations of “trial” domain analysis
& description processes.

57– and if that otherwise planned, final analysis & description is not satisfactory, then yet one more iteration is taken.
58It may be useful, though, to keep a list of the names of all the endurant parts and their attribute names, should

the group members accidentally forget such endurants and attributes: at least, if they do not appear in later document
iterations, then it can be considered a deliberate omission.

Formal Models of Processes and Prompts 19 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

20 Domain Analysis and Description

Hopefully this iteration of experimental domain analysis & description processes converges. Each
iteration leads to some domain description, that is, some domain description tree. A first iteration is
thus based on a rather incomplete domain description tree which, however, “quickly” emerges into a
less incomplete one in that first iteration. When the domain engineers decide that a “final” iteration
seems possible then a “final” description emerges If acceptable, OK, otherwise yet an “final” iteration
must be performed. Common to all iterations is that the domain analysers cum describers have in
mind some more-or-less “complete” domain description tree and apply the prompts introduced in
Sect. 4.

6 Domain Types

There are two kinds of types associated with domains: the syntactic types of endurant descriptions,
and the semantic types of endurant values.

6.1 Syntactic Types: Parts, Materials and Components

In this section we outline an ‘abstract syntax of domain types’. In Sect. 6.1.1 we introduce the
concept of sort names. Then, in Sects. 6.1.2–6.1.3, we describe the syntax of part, material and
component types. Finally, in Sects. 6.1.4–6.1.4, we analyse this syntax with respect to a number of
well-formedness criteria.

6.1.1 Syntax of Part, Material and Component Sort Names

27 There is a further undefined sort, N, of tokens (which we shall consider atomic and the basis
for forming names).

28 From these we form three disjoint sets of sort names:

a part sort names,

b material sort names and

c component sort names,

27 N
28a PNm :: mkPNm(N)
28b MNm :: mkMNm(N)
28c KNm :: mkKNm(N)

6.1.2 An Abstract Syntax of Domain Endurants

29 We think of the types of parts, materials
and components to be a map from their type
names to respective type expressions.

30 Thus part types map part sort names into
part types;

31 material types map material sort names into
material types; and

32 component types map components sort
names into component types.

33 Thus we can speak of endurant types to be
either part types or material types or com-
ponent types.

34 A part type expression is either an atomic
part type expression or is a composite part

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 20 Domain Analysis and Description

Formal Models of Processes and Prompts 21

type expression or is a concrete composite
part type expression.

35 An atomic part type expression consists
of a type expression for the qualities of
the atomic part and, optionally, a mate-
rial type name or a component type name
(cf. Sect. 2.13).

36 An abstract composite part type expression
consists of a type expression for the quali-
ties of the composite part and a finite set of

one or more part type names.

37 A concrete composite part type expression
consists of a type expression for the qualities
of the part and a part sort name standing
for a set of parts of that sort.

38 A material part type expression consists of
of a type expression for the qualities of the
material and an optional part type name.

39 We omit consideration of component types.

Endurants: Syntactic Types

29 TypDef = PTypes ∪ MTypes ∪ KTypes
30 PTypes = PNm →m PaTyp
31 MTypes = MNm →m MaTyp
32 KTypes = KNm →m KoTyp
33 ENDType = PaTyp | MaTyp | KoTyp
34 PaTyp == AtPaTyp | AbsCoPaTyp | ConCoPaTyp
35 AtPaTyp :: mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm))
36 AbsCoPaTyp :: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set)
36 axiom ∀ mkAbsCoPaTyp(pq,pns):AbsCoPaTyp • pns 6= {}
37 ConCoPaTyp :: mkConCoPaTyp(s qs:PQ,s p:PNm)
38 MaTyp :: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm))
39 KoTyp :: mkKoTyp(s qs:KQ)

6.1.3 Quality Types

40 There are three aspects to part qualities:
the type of the part unique identifiers, the
type of the part mereology, and the name
and type of attributes.

41 The type unique part identifiers is a not fur-
ther defined atomic quantity.

42 A part mereology is either "nil" or it is
an expression over part unique identifiers,
where such expressions are those of either
simple unique identifier tokens, or of set, or
otherwise over simple unique identifier to-

kens, or ..., etc.

43 The type of attributes pairs distinct at-
tribute names with attribute types —

44 both of which we presently leave further un-
defined.

45 Material attributes is the only aspect to ma-
terial qualities.

46 Components have unique identifiers. Com-
ponent attribute types are left undefined.

Qualities: Syntactic Types

40 PQ = s ui:UI×s me:ME×s atrs:ATRS}
41 UI
42 ME == “nil”|mkUI(s ui:UI)|mkUIset(s uil:UI)|...
43 ATRS = ANm →m ATyp
44 ANm, ATyp
45 MQ = s atrs:ATRS
46 KQ = s uid:UI × s atrs:ATRS

Formal Models of Processes and Prompts 21 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

22 Domain Analysis and Description

It is without loss of generality that we do not distinguish between part and material attribute names
and types. Material and component attributes do not refer to any part or any other material and
component attributes.

6.1.4 Well-formed Syntactic Types

Well-formed Definitions

47 We need define an auxiliary function,
names, which, given an endurant type ex-
pression, yields the sort names that ar ref-
erenced immediately by that type.

a If the endurant type expression is that
of an atomic part type then the sort
name is that of its optional component
sort.

b If an abstract composite part type then
the sort names of its parts.

c If a concrete composite part type then
the sort name is that of the sort of its
set of parts.

d If a material type then sort name is
that of the sort of its optional parts.

e Component sorts have no references to
other sorts.

value

47. names: TypDef → (PNm|MNm|KNm) → (PNm|MNm|KNm)-set
47. names(td)(n) ≡
47. ∪ { ns | ns:(PNm|MNm|KNm)-set •

47. case td(n) of
47a. mkAtPaTyp(,n′) → ns={n′},
47b. mkAbsCoPaTyp(,ns′) → ns=ns′,
47c. mkConCoPaTyp(,pn) → ns={pn},
47d. mkMaTyp(,n′) → ns={n′},
47e. mkKoTyp() → ns={}
47. end }

48 Endurant sort names being referenced in part types, PaTyp, in material types, MaTyp, and in
component types, KoTyp, of the typdef:Typdef definition, must be defined in the defining set,
dom typdef, of the typdef:Typdef definition.

value

48. wf TypDef 1: TypDef → Bool

48. wf TypDef 1(td) ≡ ∀ n:(PNm|MNm|CNm)•n ∈ dom td ⇒ names(td)(n)⊆dom td

Perhaps Item48. should be sharpened:

49 from “must be defined in” [48.] to “must be equal to”:

49. ∧ ∀ n:(PNm|MNm|CNm) • n ∈ dom td ⇒ names(td)(n)=dom td

No Recursive Definitions

50 Type definitions must not define types recursively.

a A type definition, typdef:TypDef, defines, typically composite part sorts, named, say, n, in
terms of other part (material and component) types. This is captured in the

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 22 Domain Analysis and Description

Formal Models of Processes and Prompts 23

• mncs (Item 35),

• pns (Item 36),

• p (Item37) and

• pns (Item38),

selectable elements of respective type definitions. These elements identify type names of
materials and components, parts, a part, and parts, respectively. None of these names
may be n.

b The identified type names may further identify type definitions none of whose selected
type names may be n.

c And so forth.

value

50. wf TypDef 2: TypDef → Bool

50. wf TypDef 2(typdef) ≡ ∀ n:(PNm|MNm)• n ∈ dom typdef ⇒ n 6∈ type names(typdef)(n)

50a. type names: TypDef → (PNm|MNm) → (PNm|MNm)-set
50a. type names(typdef)(nm) ≡
50b. let ns = names(typdef)(nm) ∪ { names(typdef)(n) | n:(PNm|MNm) • n ∈ ns } in

50c. nm 6∈ ns end

ns is the least fix-point solution to the recursive definition of ns.

6.2 Semantic Types: Parts, Materials and Components

6.2.1 Part, Material and Component Values

We define the values corresponding to the type definitions of Items 27.–46, structured as per type
definition Item 33 on Page 20.

51 An endurant value is either a part value, a
material values or a component value.

52 A part value is either the value of an atomic
part, or of an abstract composite part, or of
a concrete composite part.

53 A atomic part value has a part quality
value and, optionally, either a material or
a possibly empty set of component values
(cf. Sect. 2.13).

54 An abstract composite part value has a part
quality value and of at least (hence the ax-

iom) of

55 one or more (distinct part type) part values.

56 A concrete composite part value has a part
quality value and a set of part values.

57 A material value has a material quality
value (of material attributes) and a (usually
empty) finite set of part values.

58 A component value has a component quality
value (of a unique identifier and component
attributes).

Formal Models of Processes and Prompts 23 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

24 Domain Analysis and Description

Endurant Values: Semantic Types

51 ENDVAL = PVAL | MVAL | KVAL
52 PVAL == AtPaVAL|AbsCoPVAL|ConCoPVAL
53 AtPaVAL :: mkAtPaVAL(s qval:PQVAL,s omkvals:({|”nil”|}|MVAL|KVAL-set))
54 AbsCoPVAL :: mkAbsCoPaVAL(s qval:PQVAL,s pvals:(PNm→m PVAL))
55 axiom ∀ mkAbsCoPaVAL(pqs,ppm):AbsCoPVAL • ppm 6= []
56 ConCoPVAL :: mkConCoPaVAL(s qval:PQVAL,s pvals:PVAL-set)
57 MVAL :: mkMaVAL(s qval:MQVAL,s pvals:PVAL-set)
58 KVAL :: mkKoVAL(s qval:KQVAL)

6.2.2 Quality Values

59 A part quality value consists of three qual-
ities:

60 a unique identifier type name, resp. value,
which are both further undefined (atomic
value) tokens;

61 a mereology expression, resp. value, which
is either a single unique identifier (type,
resp.) value, or a set of such unique identi-
fier (types, resp.) values, or ...; and

62 an aggregate of attribute values, modeled
here as a map from attribute type names to
attribute values.

63 In this paper we leave attribute type names
and attribute values further undefined.

64 A material quality value consists just of an
aggregate of attribute values, modeled here
as a map from attribute type names to at-
tribute values.

65 A component quality value consists of a
pair: a unique identifier value and an aggre-
gate of attribute values, modeled here as a
map from attribute type names to attribute
values.

Qualities: Semantic Types

59 PQVAL = UIVAL×MEVAL×ATTRVALS
60 UIVAL
61 MEVAL == mkUIVAL(s ui:UIVAL)|mkUIVALset(s uis:UIVAL-set)|...
62 ATTRVALS = ANm→m AVAL
63 ANm, AVAL
64 MQVAL = ATTRVALS
65 KQVAL = UIVAL×ATTRVALS

We have left to define the values of attributes. For each part and material attribute value we assume
a finite set of values. And for each unique identifier type (i.e., for each UI) we likewise assume a finite
set of unique identifiers of that type. The value sets may be large. These assumptions help secure
that the set of part, material and component values are also finite.

6.2.3 Type Checking

For part, material and component qualities we postulate an overloaded, simple type checking function,
type of, that applies to unique identifier values, uiv:UIVAL, and yield their unique identifier type name,
ui:UI, to mereology values, mev:MEVAL, and yield their mereology expression, me:ME, and to attribute
values, AVAL and ATTRSVAL, and yield their types: ATyp, respectively (ANm→m AVAL)→(ANm→m ATyp).
Since we have let undefined both the syntactic type of attributes types, ATyp, and the semantic type
of attribute values, AVAL, we shall leave type of further unspecified.

value type of: (UIVAL→UI)|(MEVAL→ME)|(AVAL→ATyp)|((ANm →m AVAL)→(ANm→m ATyp))

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 24 Domain Analysis and Description

Formal Models of Processes and Prompts 25

The definition of the syntactic type of attributes types, ATyp, and the semantic type of attribute
values, AVAL, is a simple exercise in a first-year programming language semantics course.

7 From Syntax to Semantics and Back Again !

The two syntaxes of the previous section: that of the syntactic domains, formula Items 27–46 (Pages 20–
21), and that of the semantic domains, formula Items 51–65 (Pages 23–24), are not the syntaxes of
domain descriptions, but of some aspects common to all domain descriptions developed according to
the calculi of this paper. The syntactic domain formulas underlie (“are common to”, i.e., “abstracts”)
aspects of all domain descriptions. The semantic domain formulas underlay (“are common to”, i.e.,
“abstracts”) aspects of the meaning of all domain descriptions. These two syntaxes, hence, are, so-
to-speak, in the minds of the domain engineer (i.e., the analyser cum describer) while analysing the
domain.

7.1 The Analysis & Description Prompt Arguments

The domain engineer analyse & describe endurants on the basis of a sort name i.e., a piece of syntax,
nm:Nm, and an endurant value, i.e. a “piece” of semantics, val:VAL, that is, the arguments, (nm,ι:nm),
of the analysis and description prompts of Sect. 4. Those two quantities are what the domain engineer
are “operating” with, i.e., are handling: One is tangible, i.e. can be noted (i.e., “scribbled down”),
the other is “in the mind” of the analysers cum describers. We can relate the two in terms of the two
syntaxes, the syntactic types, and the meaning of the semantic types. But first some “preliminaries”.

7.2 Some Auxiliary Maps: Syntax to Semantics and Semantics to Syntax

We define two kinds of map types:

66 Nm to ENDVALS are maps from endurant sort names to respective sets of all corresponding
endurant values of, and

67 ENDVAL to Nm are maps from endurant values to respective sort names.

type

66. Nm to ENDVALS = (PNm→m PVAL-set)∪(MNm→m MVAL-set)∪(KNm→m KVAL-set)
67. ENDVAL to Nm = (PVAL→m PNm)∪(MVAL→m MNm)∪(KVAL→m KNm)

We can derive values of these map types from type definitions:

68 a function, typval, from type definitions, typdef:TypDef to Nm to ENDVALS, and

69 a function valtyp, from Nm to ENDVALS, to ENDVAL to Nm.

value

68. typval: TypDef
∼

→ Nm to ENDVALS

69. valtyp: Nm to ENDVALS
∼

→ ENDVAL to Nm

70 The typval function is defined in terms of a meaning functionM (let ρ:ENV abbreviateNm to ENDVALS:

Formal Models of Processes and Prompts 25 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

26 Domain Analysis and Description

70. M: (PaTyp→ENV
∼

→PVAL-set)|(MaTyp→ENV
∼

→MVAL-set)|(KoTyp→ENV
∼

→KVAL-set)

68. typval(td) ≡ let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm|KNm)•n ∈ dom td] in ρ end

69. valtyp(ρ) ≡ [v7→n|n:(PNm|MNm|CNm),v:(PVAL|MVAL|KVAL)•n ∈ dom ρ∧v ∈ ρ(n)]

The environment, ρ, of typval, Item68, is the least fix point of the recursive equation

• 68. let ρ = [n 7→M(td(n))(ρ)|n:(PNm|MNm|CNm)•n ∈ dom td] in ...

The M function is defined in Appendix A (Pages 35–37).

7.3 The ι Description Function

We can now define the meaning of the syntactic clause:

• ιNm:Nm

71 ιNm:Nm “chooses” an arbitrary value from amongst the values of sort Nm:

value

71. ι nm:Nm ≡ iota(nm)
71. iota: Nm → TypDef → VAL
71. iota(nm)(td) ≡ let val:(PVAL|MVAL|KVAL)•val ∈ (typval(td))(nm) in val end

7.4 Discussion

From the above two functions, typval and valtyp, and the type definition “table” td:TypDef and
“argument value” val:PVAL|MVAL|KVAL, we can form some expressions. One can understand these
expressions as, for example reflecting the following analysis situations:

• typval(td): From the type definitions we form a map, by means of function typval, from sort
names to the set of all values of respective sorts: Nm to ENDVALS.

That is, whenever we, in the following, as part of some formula, write typval(td), then we mean
to express that the domain engineer forms those associations, in her mind, from sort names to
usually very large, non-trivial sets of endurant values.

• valtyp(typval(td)): The domain analyser cum describer “inverts”, again in his mind, the typ-
val(td) into a simple map, ENDVAL to Nm, from single endurant values to their sort names.

• (valtyp(typval(td)))(val): The domain engineer now “applies”, in her mind, the simple map
(above) to an endurant value and obtains its sort name nm:Nm.

• td((valtyp(typval(td)))(val)): The domain analyser cum describer then applies the type defini-
tion “table” td:TypDef to the sort name nm:Nm and obtains, in his mind, the corresponding
type definition, PaTyp|MaTyp|KoTyp.

We leave it to the reader to otherwise get familiarised with these expressions.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 26 Domain Analysis and Description

Formal Models of Processes and Prompts 27

8 A Formal Description of a Meaning of Prompts

8.1 On Function Overloading

In Sect. 4 the analysis and description prompt invocations were expressed as

• is XXX(e), has YYY(e) and observe ZZZ(e)

where XXX, YYY, and ZZZ were appropriate entity sorts and e were appropriate endurants (parts,
components and materials). The function invocations, is XXX(e), etcetera, takes place in the context
of a type definition, td:TypDef, that is, instead of is XXX(e), etc. we get

• is XXX(e)(td), has YYY(e)(td) and observe ZZZ(e)(td).

We say that the functions is XXX, etc., are “lifted”.

8.2 The Analysis Prompts

The analysis is expressed in terms of the analysis prompts:

a. is entity, 6
b. is endurant, 7
c. is perdurant, 7
d. is discrete, 7
e. is continuous, 7

f. is part, 8
g. is component, 8
h. is material, 8
i. is atomic, 9
j. is composite, 9

k. has concrete type, 10
l. has mereology, 11
m. has components, 13
n. has material, 14
o. has parts, 15

The analysis takes place in the context of a type definition “image”, td:TypDef, in the minds of the
domain engineers.

8.2.1 is entity

The is entity predicate is meta-linguistic, that is, we cannot model it on the basis of the type
systems given in Sect. 6. So we shall just have to accept that.

8.2.2 is endurant

See analysis prompt definition 2 on Page 5 and Formula Item 14 on Page 16.

value

is endurant: Nm×VAL → TypDef
∼

→ Bool

is endurant(,val)(td) ≡ val ∈ dom valtyp(typval(td)); pre: VAL is any value type

8.2.3 is discrete

See analysis prompt definition 4 on Page 5 and Formula Item 21 on Page 16.

value

is discrete: NmVAL → TypDef
∼

→ Bool

is discrete(,val)(td) ≡ (is PaTyp|is CoTyp)(td((valtyp(typval(td)))(val)))

Formal Models of Processes and Prompts 27 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

28 Domain Analysis and Description

8.2.4 is part

See analysis prompt definition 6 on Page 6 and Formula Item 14 on Page 16.

value

is part: NmVAL → TypDef
∼

→ Bool

is part(,val)(td) ≡ is PaTyp(td((valtyp(typval(td)))(val)))

8.2.5 is material [≡ is continuous]

See analysis prompt definition 8 on Page 6 and Formula Item 15 on Page 16.
We remind the reader that is continuous≡is material.

value

is material: NmVAL → TypDef
∼

→ Bool

is material(,val)(td) ≡ is MaTyp(td((valtyp(typval(td)))(val)))

8.2.6 is component

See analysis prompt definition 7 on Page 6 and Formula Item 16 on Page 16.

value

is component: NmVAL → TypDef
∼

→ Bool

is component(,val)(td) ≡ is CoTyp(td((valtyp(typval(td)))(val)))

8.2.7 is atomic

See analysis prompt definition 9 on Page 6 and Formula Item 19 on Page 16.

value

is atomic: NmVAL → TypDef
∼

→ Bool

is atomic(val)(td) ≡ is AtPaTyp(td((valtyp(typval(td)))()))

8.2.8 is composite

See analysis prompt definition 10 on Page 6 and Formula Item 20 on Page 16.

value

is composite: NmVAL → TypDef
∼

→ Bool

is composite(,val)(td) ≡ (is AbsCoPaTyp|is ConCoPaTyp)(td((valtyp(typval(td)))(val)))

8.2.9 has concrete type

See analysis prompt definition 11 on Page 7 and Formula Item 24 on Page 17.

value

has concrete type: NmVAL → TypDef
∼

→ Bool

has concrete type(,val)(td) ≡ is ConCoPaTyp(td((valtyp(typval(td)))(val)))

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 28 Domain Analysis and Description

Formal Models of Processes and Prompts 29

8.2.10 has mereology

See analysis prompt definition 12 on Page 9 and Formula Item 10 on Page 16.

value

has mereology: NmVAL → TypDef
∼

→ Bool

has mereology(,val)(td) ≡ s me(td((valtyp(typval(td)))(val)))6=′′nil′′

8.2.11 has materials

See analysis prompt definition 14 on Page 11 and Formula Item 22a on Page 17.

value

has material: NmVAL → TypDef
∼

→ Bool

has material(,val)(td) ≡ is MNm(s omkn(td((valtyp(typval(td)))(val))))
pre: is AtPaTyp(td((valtyp(typval(td)))(val)))

8.2.12 has components

See analysis prompt definition 13 on Page 10 and Formula Item 22b on Page 17.

value

has components: NmVAL → TypDef
∼

→ Bool

has components(,val)(td) ≡ is KNm(s omkn(td((valtyp(typval(td)))(val))))
pre: is AtPaTyp(td((valtyp(typval(td)))(val)))

8.2.13 has parts

See description prompt definition 15 on Page 12.

value

has parts: NmVAL → TypDef
∼

→ Bool

has parts(,val)(td) ≡ is PNm(s opn(td((valtyp(typval(td)))(val))))
pre: is MaTyp(td((valtyp(typval(td)))(val)))

8.3 The Description Prompts

These are the domain description prompts to be defined:

[1] observe part sorts, 9
[2] observe concrete type, 10
[3] observe unique identifier, 11
[4] observe mereology, 12

[5] observe attributes, 12
[6] observe component sorts, 13
[7] observe part material sort, 14
[8] observe material part sorts, 15

Formal Models of Processes and Prompts 29 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

30 Domain Analysis and Description

8.3.1 A Description State

In addition to the analysis state components αps and νps there is now an additional, the description
text state component.

72 Thus a global variable τ will hold the (so far) generated (in this case only) formal domain
description text.

variable

72. τ := [] Text-set

We shall explain the use of [...]s and the operations of \ and ⊕ on the above variables in Sect. 4.3.3
on Page 18.

8.3.2 observe part sorts

See description prompt definition 1 on Page 7 and Formula Item 26 on Page 17.

value

observe part sorts: NmVAL → TypDef → Unit

observe part sorts(nm,val)(td) ≡
let mkAbsCoPaTyp(,{P1,P2,...,Pn}) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [” type P1,P2,...,Pn;
value

obs part P1nm→P1

obs part P2:nm→P2

...,
obs part Pn:nm→Pn;

proof obligation
D; ”]

‖ νps := νps ⊕ ([P1,P2,...,Pn] \ αps)
‖ αps := αps ⊕ [P1,P2,...,Pn]

end

pre: is AbsCoPaTyp(td((valtyp(typval(td)))(val)))

D is a predicate expressing the disjointness of part sorts P1,P2,...,Pn

8.3.3 observe concrete type

See description prompt definition 2 on Page 7 and Formula Item 25 on Page 17.

value

observe concrete type: NmVAL → TypDef → Unit

observe concrete type(nm,val)(td) ≡
let mkConCoPaTyp(,P) = td((valtyp(typval(td)))(val)) in

τ := τ ⊕ [”type T = P-set ; value obs part T: nm→T; ”]
‖ νps := νps ⊕ ([P] \ αps)
‖ αps := αps ⊕ [P]

end

pre: is ConCoPaTyp(td((valtyp(typval(td)))(val)))

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 30 Domain Analysis and Description

Formal Models of Processes and Prompts 31

8.3.4 observe unique identifier

See description prompt definition 3 on Page 8 and Formula Item 18 on Page 16.

value

observe unique identifier: P → TypDef → Unit

observe unique identifier(nm,val)(td) ≡
τ := τ ⊕ [” type PI ; value uid PI: nm → PI ; axiom U ; ”]

U is a predicate expression over unique identifiers.

8.3.5 observe mereology

See description prompt definition 4 on Page 9 and Formula Item 11 on Page 16.

value

observe mereology: NmVAL → TypDef → Unit

observe mereology(nm,val)(td) ≡
τ := τ ⊕ [”type MT = M(PI1,PI2,...,PIn) ;

value obs mereo P: nm → MT ;
axiom ME ; ”]

pre: has mereology(nm,val)(td) 59

M(PI1,PI2,...,PIn) is a type expression over unique part identifiers. ME is a predicate expression
over unique part identifiers.

8.3.6 observe part attributes

See description prompt definition 5 on Page 9 and Formula Item 12 on Page 16.

value

observe part attributes: NmVAL → TypDef → Unit

observe part attributes(nm,val)(td) ≡
let {A1,A2,...,Aa} = dom s attrs(s qs(val)) in
τ := τ ⊕ [” type A1, A2, ..., Aa

value attr A1: nm→Ai

attr A2: nm→A1

...

attr Aa: nm→Ai

proof obligation [Disjointness of Attribute Types]
A ; ”]

end

A is a predicate over attribute types A1, A2, ..., Aa.

59See analysis prompt definition 12 on Page 9

Formal Models of Processes and Prompts 31 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

32 Domain Analysis and Description

8.3.7 observe part material sort

See description prompt definition 7 on Page 11 and Formula Item 22a on Page 17.

value

observe part material sort: NmVAL → TypDef → Unit

observe part material sort(nm,val)(td) ≡
let M = s pns(td((valtyp(typval(td)))(val))) in
τ := τ ⊕ [” type M ; value obs mat M:nm→M ”]
‖ νps := νps ⊕ ([M]\αps)
‖ αps := αps ⊕ [M]
end

pre: is AtPaVAL(val) ∧ is MNm(s pns(td((valtyp(typval(td)))(val))))

8.3.8 observe component sort

See description prompt definition 6 on Page 10 and Formula Item 22b on Page 17.

value

observe component sort: NmVAL → TypDef → Unit

observe component sort(nm,val)(td) ≡
let K = s omkn(td((valtyp(typval(td)))(val))) in
τ := τ ⊕ [” type K ; value obs-comps: nm → K-set; ”]
‖ νps := νps ⊕ ([K]\αps)
‖ αps := αps ⊕ [K]
end

pre: is AtPaTyp(td((valtyp(typval(td)))(val))) ∧ has components(nm,val)

8.3.9 observe material part sort

See description prompt definition 8 on Page 12 and Formula Item 16 on Page 16.

value

observe material part sort: NmVAL → TypDef → Unit

observe material part sort(nm,val)(td) ≡
let P = s pns(td((valtyp(typval(td)))(val))) in
τ := τ ⊕ [” type P ; value obs part P: nm → P ”]
‖ νps := νps ⊕ ([P] \ αps)
‖ αps := αps ⊕ [P]
end

pre is MaTyp(td((valtyp(typval(td)))(val))) ∧ is PNm(s pns(td((valtyp(typval(td)))(val))))

8.4 Discussion of The Prompt Model

The prompt model of this section is formulated so as to reflect a “wavering”, of the domain engineer,
between syntactic and semantic reflections. The syntactic reflections are represented by the syntactic
arguments of the sort names, nm, and the type definitions, td. The semantic reflections are repre-
sented by the semantic argument of values, val. When we, in the various prompt definitions, use the

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 32 Domain Analysis and Description

Formal Models of Processes and Prompts 33

expression td((valtyp(typval(td)))(val)) we mean to model that the domain analyser cum describer
reflects semantically: “viewing”, as it were, the endurant. We could, as well, have written td(nm) —
reflecting a syntactic reference to the (emerging) type model in the mind of the domain engineer.

9 Conclusion

It is time to summarise, conclude and look forward.

9.1 What Has Been Achieved

[Bjø16d] proposed a set of domain analysis & description prompts – and Sect. 2. summarised that
language. Sections 4. and 8. proposed an operational semantics for the process of selecting and
applying prompts, respectively a more abstract meaning of of these prompts, the latter based on
some notions of an “image” of perceived abstract types of syntactic and of semantic structures of the
perceived domain. These notions were discussed in Sects. 5. and 6. To the best of our knowledge this
is the first time a reasonably precise notion of ‘method’ with a similarly reasonably precise notion
of a calculi of tools has been backed up formal definitions.

9.2 Are the Models Valid ?

Are the formal descriptions of the process of selecting and applying the analysis & description prompts,
Sect. 4., and the meaning of these prompts, Sect. 8., modeling this process and these meanings re-
alistically ? To that we can only answer the following: The process model is definitely modeling
plausible processes. We discuss interpretations of the analysis & description order that this process
model imposes in Sect. 4.3.3. There might be other orders, but the ones suggested in Sect. 4. can
be said to be “orderly” and reflects empirical observations. The model of the meaning of prompts,
Sect. 8., is more of an hypothesis. This model refers to “images” that the domain engineer is claimed
to have in her mind. It must necessarily be a valid model, perhaps one of several valid models. We
have speculated, over many years, over the existence of other models. But this is the most reasonable
to us. We have hinted at possible ‘laws of description prompts’ in Sect. 4.3.4. Whether the process
and prompt models (Sects. 4. and 8.) are sufficient to express, let alone prove such laws is an open
question. If the models are sufficient, then they certainly are valid.

10 Bibliography

10.1 Bibliographical Notes

This paper, [Bjø16a], concludes a series of five papers by this author on domain engineering. The
other papers are [Bjø16d, Bjø18, Bjø16b, Bjø16c].

10.2 References

[Aus76] John Longshaw Austin. How To Do Things With Words. Oxford University Press,
second edition, 1976.

[BAvWS98] Ralph-Johan Back, Abo Akademi, J. von Wright, and F. B. Schneider. Refinement
Calculus: A Systematic Introduction. Springer–Verlag New York, Inc., 1998.

Formal Models of Processes and Prompts 33 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

34 Domain Analysis and Description

[Bjø08] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, vol-
ume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De
Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer. URL:
http://www.imm.dtu.dk/˜dibj/montanari.pdf.

[Bjø10] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal
Methods: State of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen,
pages 1–42, London, UK, 2010. Springer.

[Bjø11a] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics Part II of II: The Science Part. Kibernetika i sistemny analiz, (2):100–120, May
2011.

[Bjø11b] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of
Ideas and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Mau-
rer on the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg
and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011. URL:
http://www2.imm.dtu.dk/˜dibj/maurer-bjorner.pdf.

[Bjø14] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model.
In Shusaku Iida and José Meseguer and Kazuhiro Ogata, editor, Specification, Algebra,
and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May
2014. URL: http://www.imm.dtu.dk/˜dibj/2014/kanazawa/kanazawa-p.pdf.

[Bjø16a] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and
Prompts. Technical report, Technical University of Denmark, Fredsvej 11, DK-2840
Holte, Denmark, 2016. Extensive revision of [Bjø14]. URL: http://www.imm.dtu.dk-
/˜dibj/2016/process/process-p.pdf.

[Bjø16b] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of
Ideas and Suggestions. Technical report, Technical University of Denmark, Fredsvej 11,
DK-2840 Holte, Denmark, 2016. Extensive revision of [Bjø11b]. URL: http://www.-
imm.dtu.dk/˜dibj/2016/demos/faoc-demo.pdf.

[Bjø16c] Dines Bjørner. From Domain Descriptions to Requirements Prescriptions – A Different
Approach to Requirements Engineering. Technical report, Technical University of Den-
mark, Fredsvej 11, DK-2840 Holte, Denmark, 2016. Extensive revision of [Bjø08] URL:
http://www2.compute.dtu.dk/˜dibj/2015/faoc-req/faoc-req.pdf.

[Bjø16d] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Comput-
ing, 29(2):175–225, Online: July 2016. URL: https://doi.org/10.1007/s00165-016-
0385-z (doi: 10.1007/s00165-016-0385-z).

[Bjø18] Dines Bjørner. Domain Facets: Analysis & Description. Technical report, Technical
University of Denmark, Fredsvej 11, DK-2840 Holte, Denmark, May 2018. Extensive re-
vision of [Bjø10]. URL: http://www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[GHH+92] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert
Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Speci-
fication Language. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, Eng-
land, 1992.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 34 Domain Analysis and Description

Formal Models of Processes and Prompts 35

[GHH+95] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren
Prehn, and Jan Storbank Pedersen. The RAISE Development Method. The BCS Prac-
titioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[Mor90] C. Carroll Morgan. Programming from Specifications. International Series in Computer
Science. Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK, 1990.

[Ost87] Leon Osterweil. Software processes are software too. In Proceedings of the 9th Interna-
tional Conference on Software Engineering, ICSE ’87, pages 2–13, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press.

[Sea69] John R. Searle. Speech Act. CUP, 1969.

A M: A Meaning of Type Names

A.1 Preliminaries

The typval function provides for a homomorphic image from TypDef to TypNm to VALS. So, the
narrative below, describes, item-by-item, this image. We refer to formula Items 68 and 70 on Page 25.
The definition of M is decomposed into five sub-definitions, one for each kind of endurant type:

• Atomic parts: mkAtPaTyp(s qs:(UI×ME×ATRS),s omkn:({|”nil”|}|MNn|KNm)), Sect. A.2, Items 73–
73(d)iii on the next page;

• Abstract composite parts: mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set), Sect. A.3 on the following
page, Items 74– 74d on the next page;

• Concrete composite parts: mkConCoPaTyp(s qs:PQ,s p:PNm), Sect. A.4 on the following page,
Items 75– 75d on Page 37;

• Materials: mkMaTyp(s qs:MQ,s opn:({|”nil”|}|PNm)), Sect. A.5 on Page 37, Items 76– 76b on
Page 37; and

• Components: mkKoTyp(s qs:KQ), Sect. A.6 on Page 37, Items 77– 77b on Page 37.

We abbreviate, by ENV, the M function argument, ρ, of type: Nm to ENDVALS.

A.2 Atomic Parts

73 The meaning of an atomic part type expression,
Item35. mkAtPaTyp((ui,me,attrs),omkn)
in mkAtPaTyp(s qs:PQ,s omkn:({|”nil”|}|MNn|KNm)),
is the set of all atomic part values,
Items 53., 59., 62. mkAtPaVAL((uiv,mev,attrvals),omkval)
in mkAtPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),

s omkvals:({|”nil”|}|MVAL|KVAL-set)).

a uiv is a value in UIVAL of type ui,

b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d omkvals is a value in ({|”nil”|}|MVAL|KVAL-set):

Formal Models of Processes and Prompts 35 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

36 Domain Analysis and Description

i either ’’nil’’,

ii or one material value of type MNm,

iii or a possibly empty set of component values, each of type KNm.

73. M: mkAtPaTyp((UI×ME×(ANm→m ATyp))×({|”nil”|}|MVAL|KVAL-set))→ENV
∼

→PVAL-set
73. M(mkAtPaTyp((ui,me,attrs),omkn))(ρ) ≡
73. { mkATPaVAL((uiv,mev,attrval),omkvals) |
73a. uiv:UIVAL•type of(uiv)=ui,
73b. mev:MEVAL•type of(mev)=me,
73c. attrval:(ANm→m AVAL)•type of(attrval)=attrs,
73d. omkvals: case omkn of

73(d)i. ”nil” → ”nil”,
73(d)ii. mkMNn() → mval:MVAL•type of(mval)=omkn,
73(d)iii. mkKNm() → kvals:KVAL-set•kvals⊆{kv|kv:KVAL•type of(kval)=omkn}
73d. end }

Formula terms 73a–73(d)iii express that any applicable uiv is combined with any applicable mev is
combined with any applicable attrval is combined with any applicable omkvals.

A.3 Abstract Composite Parts

74 The meaning of an abstract composite part type expression,
Item36. mkAbsCoPaTyp((ui,me,attrs),pns)
in mkAbsCoPaTyp(s qs:PQ,s pns:PNm-set),
is the set of all abstract, composite part values,
Items 54., 59., 62., mkAbsCoPaVAL((uiv,mev,attrvals),pvals)
in mkAbsCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:(PNm→m PVAL)).

a uiv is a value in UIVAL of type ui: UI,

b mev is a value in MEVAL of type me: ME,

c attrvals is a value in (ANm→m AVAL) of type (ANm→m ATyp), and

d pvals is a map of part values in (PNm→m PVAL), one for each name, pn:PNm, in pns such
that these part values are of the type defined for pn.

74. M: mkAbsCoPaTyp((UI×ME×(ANm→m ATyp)),PNm-set) → ENV
∼

→ PVAL-set
74. M(mkAbsCoPaTyp((ui,me,attrs),pns))(ρ) ≡
74. { mkAbsCoPaVAL((uiv,mev,attrvals),pvals) |
74a. uiv:UIVAL•type of(uiv)=ui
74b. mev:MEVAL•type of(mev)=me,
74c. attrvals:(ANm→m ATyp)•type of(attrsval)=attrs,
74d. pvals:(PNm→m PVAL)•pvals∈{[pn 7→pval|pn:PNm,pval:PVAL•pn∈ pns∧pval∈ρ(pn)]} }

A.4 Concrete Composite Parts

75 The meaning of a concrete composite part type expression, Item 37.
mkConCoPaTyp((ui,me,attrs),pn)
in mkConCoPaTyp(s qs:(UI×ME×(ANm→m ATyp)),s pn:PNm),
is the set of all concrete, composite set part values,
Item56. mkConCoPaVAL((uiv,mev,attrvals),pvals)
in mkConCoPaVAL(s qval:(UIVAL×MEVAL×(ANm→m AVAL)),s pvals:PVAL-set).

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 36 Domain Analysis and Description

Formal Models of Processes and Prompts 37

a uiv is a value in UIVAL of type ui,

b mev is a value in MEVAL of type me,

c attrvals is a value in (ANm→m AVAL) of type attrs, and

d pvals is a[ny] value in PVAL-set where each part value in pvals is of the type defined for
pn.

75. M: mkConCoPaTyp((UI×ME×(ANm→m ATyp))×PNm) → ENV
∼

→ PVAL-set
75. M(mkConCoPaTyp((ui,me,attrs),pn))(ρ) ≡
75. { mkConCoPaVAL((uiv,mev,attrvals),pvals) |
75a. uiv:UIVAL•type of(uiv)=ui,
75b. mev:MEVAL•type of(mev)=me,
75c. attrsval:(ANm→m AVAL)•type of(attrsval)=attrs,
75d. pvals:PVAL-set•pvals⊆ρ(pn) }

A.5 Materials

76 The meaning of a material type, 38.,
expression mkMaTyp(mq,pn) in mkMaTyp(s qs:MQ,s pn:PNm)
is the set of values mkMaVAL(mqval,ps)
in mkMaVAL(s qval:MQVAL,s pvals:PVAL-set) such that

a mqval in MQVAL is of type mq, and

b ps is a set of part values all of type pn.

76. M: mkMaTyp(s mq:(ANm→m ATyp),s pn:PNm) → ENV
∼

→ MVAL-set
76. M(mq,pn)(ρ) ≡
76. { mkMVAL(mqval,ps) |
76a. mqval:MVAL•type of(mqval)=mq,
76b. ps:PVAL-set•ps⊆ρ(pn) }

A.6 Components

77 The meaning of a component type, 39., expression mkKoType(ui,atrs)
in mkKoTyp(s qs:(s uid:UI×s atrs:ATRS)) is the set of values, 38., mkKQVAL(uiv,attrsval)
in, 58, mkKoVAL(s qval:(uiv,attrsval)).

a uiv is in UIVAL of type ui, and

b attrsval is in ATTRSVAL of type atrs.

77. M: mkKoTyp(UI×ATRS) → ENV → KVAL-set
77. M(mkKoType(ui,atrs))(ρ) ≡
77. { mkKoVAL(uiv,attrsval) |
77a. uiv:UIVAL•type of(uiv)=ui,
77b. attrsval:ATRSVAL•type of(attrsval)=atrs }

Formal Models of Processes and Prompts 37 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

38 Domain Analysis and Description

B A Domain Description Example: A Credit Card System

This appendix section presents a first attempt at a model of a credit card system. We present a
domain description of an abstracted credit card system. The narrative part of the description is
terse, perhaps a bit too terse. Credit cards are moving from simple plastic cards to smart phones.
Uses of credit cards move from their mechanical insertion in credit card terminals to being swiped.
Authentication (hence not modeled) moves from keying in security codes to eye iris “prints”, and/or
finger prints and/or voice prints or combinations thereof. The description of this section abstracts
from all that in order to understand a bare, minimum essence of credit cards and their uses. Based
on a model, such as presented here, the reader should be able to extend/refine the model into any
future technology – for requirements purposes.

B.1 Endurants

B.1.1 Credit Card Systems
[Bjø16d, Sect.3.1.6, pg.11:]: observe part sorts

78 Credit card systems, ccs:CCS, consists of three kinds of parts:

79 an assembly, cs:CS, of credit cards60,

80 an assembly, bs:BS, of banks, and

81 an assembly, ss:SS, of shops.

type

78 CCS
79 CS
80 BS
81 SS
value

79 obs part CS: CCS → CS
80 obs part BS: CCS → BS
81 obs part SS: CCS → SS

The composite part CS can be thought of as a credit card company, say VISA61. The composite part
BS can be thought of as a bank society, say BBA: British Banking Association. The composite part SS
can be thought of as the association of retailers, say bira: British Independent Retailers Association62.

[Bjø16d, Sect.3.1.7, pg.13]: observe part type

82 There are credit cards, c:C, banks b:B, and shops s:S.

83 The credit card part, cs:CS, abstracts a set, soc:Cs, of card.

84 The bank part, bs:BS, abstracts a set, sob:Bs, of banks.

85 The shop part, ss:SS, abstracts a set, sos:Ss, of shops.

60We “equate” credit cards with their holders.
61Our simple model allows for only one credit card company. But that model can easily be extended to model a set

of credit card companies, viz.: VISA, MasterCard, American Express, Diner’s Club, etc..
62The model does not prevent “shops” from being airlines, or car rental agencies, or dentists, or consultancy firms.

In this case SS would be some appropriate association.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 38 Domain Analysis and Description

Formal Models of Processes and Prompts 39

type

82 C, B, S
83 Cs = C-set
84 Bs = B-set
85 Ss = S-set
value

83 obs part CS: CS → Cs, obs part Cs: CS → Cs
84 obs part BS: BS → Bs, obs part Bs: BS → Bs
85 obs part SS: SS → Ss, obs part Ss: SS → Ss

[Bjø16d, Sect.3.2, pg.16]: observe unique identifier

86 Assembliers of credit cards, banks and shops have unique identifiers, csi:CSI, bsi:BSI, and
ssi:SSI.

87 Credit cards, banks and shops have unique identifiers, ci:CI, bi:BI, and si:SI.

88 One can define functions which extract all the

89 unique credit card,

90 bank and

91 shop identifiers from a credit card system.

86 CSI, BSI, SSI
87 CI, BI, SI
value

86 uid CS: CS→CSI, uid BS: BS→BSI, uid SS: SS→SSI,
87 uid C: C→CI, uid B: B→BI, uid S: S→SI,
89 xtr CIs: CCS → CI-set
89 xtr CIs(ccs) ≡ {uid C(c)|c:C•c ∈ obs part Cs(obs part CS(ccs))}
90 xtr BIs: CCS → BI-set
90 xtr BIs(ccs) ≡ {uid B(s)|b:B•b ∈ obs part Bs(obs part BS(ccs))}
91 xtr SIs: CCS → SI-set
91 xtr SIs(ccs) ≡ {uid S(s)|s:S•s ∈ obs part Ss(obs part SS(ccs))}

92 For all credit card systems it is the case that

93 all credit card identifiers are distinct from bank identifiers,

94 all credit card identifiers are distinct from shop identifiers,

95 all shop identifiers are distinct from bank identifiers,

axiom

92 ∀ ccs:CCS •

92 let cis=xtr CIs(ccs), bis=xtr BIs(ccs), sis = xtr SIs(ccs) in
93 cis ∩ bis = {}
94 ∧ cis ∩ sis = {}
95 ∧ sis ∩ bis = {} end

Formal Models of Processes and Prompts 39 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

40 Domain Analysis and Description

B.1.2 Credit Cards

[Bjø16d, Sect.3.3.2, pg.18]: observe mereology

96 A credit card has a mereology which “connects” it to any of the shops of the system and to
exactly one bank of the system,

97 and some attributes — which we shall presently disregard.

98 The wellformedness of a credit card system includes the wellformedness of credit card mereolo-
gies with respect to the system of banks and shops:

99 The unique shop identifiers of a credit card mereology must be those of the shops of the credit
card system; and

100 the unique bank identifier of a credit card mereology must be of one of the banks of the credit
card system.

type

96. CM = SI-set × BI
value

96. obs mereo CM: C → CM
98 wf CM of C: CCS → Bool

98 wf CM of C(ccs) ≡
96 let bis=xtr BIs(ccs), sis=xtr SIs(ccs) in
96 ∀ c:C•c ∈ obs part Cs(obs part CS(ccs)) ⇒
96 let (ccsis,bi)=obs mereo CM(c) in
99 ccsis ⊆ sis
100 ∧ bi ∈ bis
96 end end

B.1.3 Banks

[Bjø16d, Sect.3.3.2 pg.18]: observe mereology

[Bjø16d, Sect.3.4.3 pg.20]: observe attributes

Our model of banks is (also) very limited.

101 A bank has a mereology which “connects” it to a subset of all credit cards and a subset of all
shops,

102 and, as attributes:

103 a cash register, and

104 a ledger.

105 The ledger records for every card, by unique credit card identifier,

106 the current balance: how much money, credit or debit, i.e., plus or minus, that customer is
owed, respectively has borrowed from the bank,

107 the dates-of-issue and -expiry of the credit card, and

108 the name, address, and other information about the credit card holder.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 40 Domain Analysis and Description

Formal Models of Processes and Prompts 41

109 The wellformedness of the credit card system includes the wellformedness of the banks with
respect to the credit cards and shops:

110 the bank mereology’s

111 must list a subset of the credit card identifiers and a subset of the shop identifiers.

type

101 BM = CI-set × SI-set
103 CR = Bal
104 LG = CI →m (Bal×DoI×DoE×...)
106 Bal = Int

value

101 obs mereo B: B → BM
103 attr CR: B → CR
104 attr LG: B → LG
109 wf BM B: CCS → Bool

109 wf BM B(ccs) ≡
109 let allcis = xtr CIs(ccs), allsis = xtr SIs(ccs) in
109 ∀ b:B • b ∈ obs part Bs(obs part BS(ccs)) in
110 let (cis,sis) = obs mereo B(b) in
111 cis ⊆ ∀ cis ∧ sis ⊆ allsis end end

B.1.4 Shops

[Bjø16d, Sect.3.3.2 pg.18]: observe mereology

112 The mereology of a shop is a pair: a unique bank identifiers, and a set of unique credit card
identifiers.

113 The mereology of a shop

114 must list a bank of the credit card system,

115 band a subset (or all) of the unique credit identifiers.

We omit treatment of shop attributes.

type

112 SM = CI-set × BI
value

112 obs mereo S: S → SM
113 wf SM S: CCS → Bool

113 wf SM S(ccs) ≡
113 let allcis = xtr CIs(ccs), allbis = xtr BIs(ccs) in
113 ∀ s:S • s ∈ obs part Ss(obs part SS(ccs)) ⇒
113 let (cis,bi) obs mereo S(s) in
114 bi ∈ allbis
115 ∧ cis ⊆ allcis
113 end end

Formal Models of Processes and Prompts 41 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

42 Domain Analysis and Description

B.2 Perdurants

B.2.1 Behaviours

[Bjø16d, Sect.4.11.2, pg.36]: Process Schema I: Abstract is composite(p)

[Bjø16d, Sect.4.11.2, pg.37]: Process Schema II: Concrete is concrete(p)

116 We ignore the behaviours related to the CCS, CS, BS and SS parts.

117 We therefore only consider the behaviours related to the Cs, Bs and Ss parts.

118 And we therefore compile the credit card system into the parallel composition of the parallel
compositions of all the credit card, crd, all the bank, bnk, and all the shop, shp, behaviours.

value

116 ccs:CCS
116 cs:CS = obs part CS(ccs),
116 uics:CSI =uid CS(cs),
116 bs:BS = obs part BS(ccs),
116 uibs:BSI =uid BS(bs),
116 ss:SS = obs part SS(ccs),
116 uiss:SSI =uid SS(ss),
117 socs:Cs = obs part Cs(cs),
117 sobs:Bs = obs part Bs(bs),
117 soss:Ss = obs part Ss(ss),

value

118 sys: Unit → Unit,
116 sys() ≡
118 cardsuics(obs mereo CS(cs),...)
118 ‖ ‖ {crduid C(c)(obs mereo C(c))|c:C•c ∈ socs}
118 ‖ banksuibs(obs mereo BS(bs),...)
118 ‖ ‖ {bnkuid B(b)(obs mereo B(b))|b:B•b ∈ sobs}
118 ‖ shopsuiss(obs mereo SS(ss),...)
118 ‖ ‖ {shpuid S(s)(obs mereo S(s))|s:S•s ∈ soss},
116 cardsuics(...) ≡ skip,
116 banksuibs(...) ≡ skip,
116 shopsuiss(...) ≡ skip

axiom skip ‖ behaviour(...) ≡ behaviour(...)

B.2.2 Channels

[Bjø16d, Sect. 4.5.1, pg.31]: Channels and Communications

[Bjø16d, Sect. 4.5.2, pg.31]: Relations Between Attributes Sharing and Channels

119 Credit card behaviours interact with bank (each with one) and many shop behaviours.

120 Shop behaviours interact with bank (each with one) and many credit card behaviours.

121 Bank behaviours interact with many credit card and many shop behaviours.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 42 Domain Analysis and Description

Formal Models of Processes and Prompts 43

The inter-behaviour interactions concern:

122 between credit cards and banks: withdrawal requests as to a sufficient, mk Wdr(am), balance on
the credit card account for buying am:AM amounts of goods or services, with the bank response
of either is OK() or is NOK(), or the revoke of a card;

123 between credit cards and shops: the buying, for an amount, am:AM, of goods or services:
mk Buy(am), or the refund of an amount;

124 between shops and banks: the deposit of an amount, am:AM, in the shops’ bank account:
mk Depost(ui,am) or the removal of an amount, am:AM, from the shops’ bank account: mk Removl(bi,si,am)

channel

119 {ch cb[ci,bi]|ci:CI,bi:BI•ci ∈ cis ∧ bi ∈ bis}:CB Msg
120 {ch cs[ci,si]|ci:CI,si:SI•ci ∈ cis ∧ si ∈ sis}:CS Msg
121 {ch sb[si,bi]|si:SI,bi:BI•si ∈ sis ∧ bi ∈ bis}:SB Msg
122 CB Msg == mk Wdrw(am:aM) | is OK() | is NOK() | ...
123 CS Msg == mk Buy(am:aM) | mk Ref(am:aM) | ...
124 SB Msg == Depost | Removl | ...
124 Depost == mk Dep((ci:CI|si:SI),am:aM) |
124 Removl == mk Rem(bi:BI,si:SI,am:aM)

B.2.3 Behaviour Interactions

125 The credit card initiates

a buy transactions

i [1.Buy] by enquiring with its bank as to sufficient purchase funds (am:aM);

ii [2.Buy] if NOK then there are presently no further actions; if OK

iii [3.Buy] the credit card requests the purchase from the shop – handing it an appropriate
amount;

iv [4.Buy] finally the shop requests its bank to deposit the purchase amount into its bank
account.

b refund transactions

i [1.Refund] by requesting such refunds, in the amount of am:aM, from a[ny] shop;
whereupon

ii [2.Refund] the shop requests its bank to move the amount am:aM from the shop’s bank
account

iii [3.Refund] to the credit card’s account.

Thus the three sets of behaviours, crd, bnk and shp interact as sketched in Fig. 2 on the following
page.

Formal Models of Processes and Prompts 43 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

44 Domain Analysis and Description

1.B
uy

2.B
uy

3.Buy

4
.B

u
y

1.Refund

NOK OK

Credit Card

Bank

Shop

2.Refund
3.Refund

Figure 2: Credit Card, Bank and Shop Behaviours

[1.Buy] Item131, Pg.45 card ch cb[ci,bi]!mk Wdrw(am) (shown as ... three lines down) and
Item 140, Pg.46 bank mk Wdrw(ci,am)=⌈⌉⌊⌋{ch cb[bi,bi]?|ci:CI•ci ∈ cis}.

[2.Buy] Items 133-134, Pg.45 bank ch cb[ci,bi]!is [N]OK() and
Item 131, Pg.45 shop (...;ch cb[ci,bi]?).

[3.Buy] Item133, Pg.45 card ch cs[ci,si]!mk Buy(am) and
Item 155, Pg.47 shop mk Buy(am)=⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci∈ cis}.

[4.Buy] Item156, Pg.47 shop ch sb[si,bi]!mk Dep(si,am) and
Item 145, Pg.46 bank mk Dep(si,am)=⌈⌉⌊⌋{ch cs[ci,si]?|si:SI•si∈sis}.

[1.Refund] Item137, Pg.45 card ch cs[ci,si]!mk Ref((ci,si),am) and
Item156, Pg.47 shop (si,mk Ref(ci,am))=⌈⌉⌊⌋{si′,ch sb[si,bi]?|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[2.Refund] Item160, Pg.48 shop ch sb[si,cbi]!mk Ref(cbi,(ci,si),am and
Item149, Pg.47 bank (si,mk Ref(cbi,(ci,am)))=⌈⌉⌊⌋{(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}.

[3.Refund] Item161, Pg.48 shop ch sb[si,sbi]!mk Wdr(si,am)) end and
Item150, Pg.47 bank (si,mk Wdr(ci,am))=⌈⌉⌊⌋{(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′}

B.2.4 Credit Card

[Bjø16d, Sect. 4.11.2, pg. 37]: Processs Schema III: is atomic(p)

126 The credit card behaviour, crd, takes the credit card unique identifier, the credit card mereology,
and attribute arguments (omitted). The credit card behaviour, crd, accepts inputs from and
offers outputs to the bank, bi, and any of the shops, si∈sis.

127 The credit card behaviour, crd, non-deterministically, internally “cycles” between buying and
getting refunds.

value

126 crdci:CI : (bi,sis):CM → in,out ch cb[ci,bi],{ch cs[ci,si]|si:SI•si ∈ sis} Unit

126 crdci(bi,sis) ≡ (buy(ci,(bi,sis)) ⌈⌉ ref(ci,(bi,sis))) ; crdci(ci,(bi,sis))

[Bjø16d, Sect. 4.11.2, pg. 38]: Process Schemas IV–V: Core Processes (I–II)

128 By am:AM we mean an amount of money, and by si:SI we refer to a shop in which we have
selected a number or goods or services (not detailed) costing am:AM.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 44 Domain Analysis and Description

Formal Models of Processes and Prompts 45

129 The buyer action is simple.

130 The amount for which to buy and the shop from which to buy are selected (arbitrarily).

131 The credit card (holder) withdraws am:AM from the bank, if sufficient funds are available63.

132 The response from the bank

133 is either OK and the credit card [holder] completes the purchase by buying the goods or services
offered by the selected shop,

134 or the response is “not OK”, and the transaction is skipped.

type

128 AM = Int

value

129 buy: ci:CI × (bi,sis):CM →
129 in,out ch cb[ci,bi] out {ch cs[ci,si]|si:SI•si ∈ sis} Unit

129 buy(ci,(bi,sis)) ≡
130 let am:aM • am>0, si:SI • si ∈ sis in
131 let msg = (ch cb[ci,bi]!mk Wdrw(am);ch cb[ci,bi]?) in

132 case msg of

133 is OK() → ch cs[ci,si]!mk Buy(am),
134 is NOK() → skip

129 end end end

135 The refund action is simple.

136 The credit card [handler] requests a refund am:AM

137 from shop si:SI.

This request is handled by the shop behaviour’s sub-action ref , see lines 153.–162. page 48.

value

135 rfu: ci:CI × (bi,sis):CM → out {ch cs[ci,si]|si:SI•si ∈ sis} Unit

135 rfu(ci,(bi,sis)) ≡
136 let am:AM • am>0, si:SI • si ∈ sis in
137 ch cs[ci,si]!mk Ref(bi,(ci,si),am)
135 end

B.2.5 Banks

[Bjø16d, Sect. 4.11.2, pg. 37]: Processs Schema III: is atomic(p)

138 The bank behaviour, bnk, takes the bank’s unique identifier, the bank mereology, and the
programmable attribute arguments: the ledger and the cash register. The bank behaviour, bnk,
accepts inputs from and offers outputs to the any of the credit cards, ci∈cis, and any of the
shops, si∈sis.

63First the credit card [holder] requests a withdrawal. If sufficient funds are available, then the withdrawal takes
place, otherwise not – and the credit card holder is informed accordingly.

Formal Models of Processes and Prompts 45 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

46 Domain Analysis and Description

139 The bank behaviour non-deterministically externally chooses to accept either ‘withdraw’al re-
quests from credit cards or ‘deposit’ requests from shops or ‘refund’ requests from credit cards.

value

138 bnkbi:BI : (cis,sis):BM → (LG×CR) →
138 in,out {ch cb[ci,bi]|ci:CI•ci ∈ cis} {ch sb[si,bi]|si:SI•si ∈ sis} Unit

138 bnkbi((cis,sis))(lg:(bal,doi,doe,...),cr) ≡
139 wdrw(bi,(cis,sis))(lg,cr)
139 ⌈⌉⌊⌋ depo(bi,(cis,sis))(lg,cr)
139 ⌈⌉⌊⌋ refu(bi,(cis,sis))(lg,cr)

140 The ‘withdraw’ request, wdrw, (an action) non-deterministically, externally offers to accept
input from a credit card behaviour and marks the only possible form of input from credit cards,
mk Wdrw(ci,am), with the identity of the credit card.

141 If the requested amount (to be withdrawn) is not within balance on the account

142 then we, at present, refrain from defining an outcome (chaos), whereupon the bank behaviour
is resumed with no changes to the ledger and cash register;

143 otherwise the bank behaviour informs the credit card behaviour that the amount can be with-
drawn; whereupon the bank behaviour is resumed notifying a lower balance and ‘withdraws’
the monies from the cash register.

value

139 wdrw: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch cb[bi,ci]|ci:CI•ci ∈ cis} Unit

139 wdrw(bi,(cis,sis))(lg,cr) ≡
140 let mk Wdrw(ci,am) = ⌈⌉⌊⌋ {ch cb[ci,bi]?|ci:CI•ci ∈ cis} in

139 let (bal,doi,doe) = lg(ci) in
141 if am>bal
142 then (ch cb[ci,bi]!is NOK(); bnkbi(cis,sis)(lg,cr))
143 else (ch cb[ci,bi]!is OK(); bnkbi(cis,sis)(lg†[ci 7→(bal−am,doi,doe)],cr−am)) end
138 end end

The ledger and cash register attributes, lg,cr, are programmable attributes. Hence they are modeled
as separate function arguments.

144 The deposit action is invoked, either by a shop behaviour, when a credit card [holder] buy’s for
a certain amount, am:AM, or requests a refund of that amount. The deposit is made by shop
behaviours, either on behalf of themselves, hence am:AM, is to be inserted into the shops’ bank
account, si:SI, or on behalf of a credit card [i.e., a customer], hence am:AM, is to be inserted
into the credit card holder’s bank account, si:SI.

145 The message, ch cs[ci,si]?, received from a credit card behaviour is either concerning a buy [in
which case i is a ci:CI, hence sale, or a refund order [in which case i is a si:SI].

146 In either case, the respective bank account is “upped” by am:AM – and the bank behaviour is
resumed.

value

144 deposit: bi:BI × (cis,sis):BM → (LG×CR) →

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 46 Domain Analysis and Description

Formal Models of Processes and Prompts 47

145 in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit

144 deposit(bi,(cis,sis))(lg,cr) ≡
145 let mk Dep(si,am) = ⌈⌉⌊⌋ {ch cs[ci,si]?|si:SI•si ∈ sis} in

144 let (bal,doi,doe) = lg(si) in
146 bnkbi(cis,sis)(lg†[si 7→(bal+am,doi,doe)],cr+am)
144 end end

147 The refund action

148 non-deterministically externally offers to either

149 non-deterministically externally accept a mk Ref(ci,am) request from a shop behaviour, si, or

150 non-deterministically externally accept a mk Wdr(ci,am) request from a shop behaviour, si.

The bank behaviour is then resumed with the

151 credit card’s bank balance and cash register incremented by am and the

152 shop’ bank balance and cash register decremented by that same amount.

value

147 rfu: bi:BI × (cis,sis):BM → (LG×CR) → in,out {ch sb[bi,si]|si:SI•si ∈ sis} Unit

147 rfu(bi,(cis,sis))(lg,cr) ≡
149 (let (si,mk Ref(cbi,(ci,am))) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in

147 let (balc,doic,doec) = lg(ci) in
151 bnkbi(cis,sis)(lg†[ci 7→(balc+am,doic,doec)],cr+am)
147 end end)
148 ⌈⌉⌊⌋
150 (let (si,mk Wdr(ci,am)) = ⌈⌉⌊⌋ {(si′,ch sb[si,bi]?)|si,si′:SI•{si,si′}⊆sis∧si=si′} in

147 let (bals,dois,does) = lg(si) in
152 bnkbi(cis,sis)(lg†[si 7→(bals−am,dois,does)],cr−am)
147 end end)

B.2.6 Shops

[Bjø16d, Sect. 4.11.2, pg. 37]: Processs Schema III: is atomic(p)

153 The shop behaviour, shp, takes the shop’s unique identifier, the shop mereology, etcetera.

154 The shop behaviour non-deterministically, externally

either

155 offers to accept a Buy request from a credit card behaviour,

156 and instructs the shop’s bank to deposit the purchase amount.

157 whereupon the shop behaviour resumes being a shop behaviour;

158 or

159 offers to accept a refund request in this amount, am, from a credit card [holder].

Formal Models of Processes and Prompts 47 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

48 Domain Analysis and Description

160 It then proceeds to inform the shop’s bank to withdraw the refund from its ledger and cash
register,

161 and the credit card’s bank to deposit the refund into its ledger and cash register.

162 Whereupon the shop behaviour resumes being a shop behaviour.

value

153 shpsi:SI : (CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi′]|bi′:BI•bi′isin bis} Unit

153 shpsi((cis,bi),...) ≡
155 (sal(si,(bi,cis),...)
158 ⌈⌉⌊⌋
159 ref(si,(cis,bi),...)):

153 sal: SI×(CI-set×BI)×...→in,out: {cs[ci,si]|ci:CI•ci ∈ cis},sb[si,bi] Unit

153 sal(si,(cis,bi),...) ≡
155 let mk Buy(am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in

156 ch sb[si,bi]!mk Dep(si,am) end ;
157 shpsi((cis,bi),...)

153 ref: SI×(CI-set×BI)×...→in,out: {ch cs[ci,si]|ci:CI•ci ∈ cis},{ch sb[si,bi′]|bi′:BI•bi′isin bis} Unit

159 ref(si,(cis,sbi),...) ≡
159 let mk Ref((ci,cbi,si),am) = ⌈⌉⌊⌋{ch cs[ci,si]?|ci:CI•ci ∈ cis} in

160 (ch sb[si,cbi]!mk Ref(cbi,(ci,si),am)
161 ‖ ch sb[si,sbi]!mk Wdr(si,am)) end ;
162 shpsi((cis,sbi),...)

B.3 Discussion

163 The credit card system narrated and formalised in this document is an abstraction. We claim
that it portrays an essence of credit cards.

164 The reader may object to certain things:

a We do not model how a credit card holder selects services from a service provider (here
modelled as shops) or products in a shop. Nor do we model that the card holder actually
obtains those services or products.

All this is summarised in Item 130 on Page 45: let am:aM • am>0, si:SI • si ∈ sis in.

In other words: this is not considered an element of “an essence” of credit cards.

b We, “similarly” do not model how the refund request is arrived at.

All this is summarised in Item 136 on Page 45: let am:AM • am>0, si:SI • si ∈ sis in.

In other words: this is not considered an element of “an essence” of credit cards.

165 Also: we do not model whether the balance of the shop’s bank account is sufficient to refund a
card holder.

166 Etcetera.

The present credit card system model can “easily” be extended to incorporate these and other
matters.

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 48 Domain Analysis and Description

Formal Models of Processes and Prompts 49

167 Without showing explicit evidence we claim that present domain description can serve as a
basis for both the domain and requirements modeling of standard as well as current and future
credit/pay/etc. card systems.

168 Etcetera.

Contents

1 Introduction 1

1.1 The Triptych Approach to Software Development 2
1.2 Method and Methodology . 2
1.3 Related Work . 2
1.4 Structure of Paper . 3

2 Domain Analysis and Description 3

2.1 General . 3
2.2 Entities . 4

a: Analysis Prompt: is-entity . 4
2.3 Endurants and Perdurants . 4

b: Analysis Prompt: is-endurant . 5
c: Analysis Prompt: is-perdurant . 5

2.4 Discrete and Continuous Endurants . 5
d: Analysis Prompt: is discrete . 5
e: Analysis Prompt: is continuous . 5

2.5 Parts, Components and Materials . 5
2.5.1 General . 5
2.5.2 Part, Component and Material Prompts . 6

f: Analysis Prompt: is part . 6
g: Analysis Prompt: is component . 6
h: Analysis Prompt: is material . 6

2.6 Atomic and Composite Parts . 6
i: Analysis Prompt: is-atomic . 6
j: Analysis Prompt: is-composite . 6

2.7 On Observing Part Sorts . 7
2.7.1 Part Sort Observer Functions . 7

1: Description Prompt: observe-part-sorts . 7
2.7.2 On Discovering Concrete Part Types . 7

k: Analysis Prompt: has-concrete-type . 7
2: Description Prompt: observe-concrete-type 7

2.7.3 External and Internal Qualities of Parts . 8
2.8 Unique Part Identifiers . 8

3: Description Prompt: observe-unique-identifier 8
2.9 Mereology . 9

2.9.1 Part Mereology: Types and Functions . 9
l: Analysis Prompt: has-mereology . 9
4: Description Prompt: observe-mereology 9

2.10 Part, Material and Component Attributes . 9
5: Description Prompt: observe-attributes . 9

Formal Models of Processes and Prompts 49 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

50 Domain Analysis and Description

2.11 Components . 10

m: Analysis Prompt: has-components . 10

6: Description Prompt: observe-part-components 10

2.12 Materials . 11

2.12.1 Part Materials . 11

n: Analysis Prompt: has-materials . 11

7: Description Prompt: observe-part-material-sorts 11

2.12.2 Material Parts . 11

o: Analysis Prompt: has-parts . 12

8: Description Prompt: observe-material-part-sorts 12

2.13 Components and Materials . 12

2.14 Discussion . 12

3 Syntax and Semantics 12

3.1 Form and Content . 12

3.2 Syntactic and Semantic Types . 13

3.3 Names and Denotations . 13

4 A Model of the Domain Analysis & Description Process 14

4.1 Introduction . 14

4.1.1 A Summary of Prompts . 14

4.1.2 Preliminaries . 14

4.1.3 Initialising the Domain Analysis & Description Process 14

4.2 A Model of the Analysis & Description Process . 15

4.2.1 A Process State . 15

4.2.2 A Technicality . 15

4.2.3 Analysis & Description of Endurants . 15

4.3 Discussion of The Process Model . 18

4.3.1 Termination . 18

4.3.2 Axioms and Proof Obligations . 18

4.3.3 Order of Analysis & Description: A Meaning of ‘⊕’ 18

4.3.4 Laws of Description Prompts . 18

5 A Domain Analyser’s & Describer’s Domain Image 19

6 Domain Types 20

6.1 Syntactic Types: Parts, Materials and Components 20

6.1.1 Syntax of Part, Material and Component Sort Names 20

6.1.2 An Abstract Syntax of Domain Endurants . 20

6.1.3 Quality Types . 21

6.1.4 Well-formed Syntactic Types . 22

Well-formed Definitions . 22

No Recursive Definitions . 22

6.2 Semantic Types: Parts, Materials and Components 23

6.2.1 Part, Material and Component Values . 23

6.2.2 Quality Values . 24

6.2.3 Type Checking . 24

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 50 Domain Analysis and Description

Formal Models of Processes and Prompts 51

7 From Syntax to Semantics and Back Again ! 25

7.1 The Analysis & Description Prompt Arguments . 25
7.2 Some Auxiliary Maps: Syntax to Semantics and Semantics to Syntax 25
7.3 The ι Description Function . 26
7.4 Discussion . 26

8 A Formal Description of a Meaning of Prompts 27

8.1 On Function Overloading . 27
8.2 The Analysis Prompts . 27

8.2.1 is entity . 27
8.2.2 is endurant . 27
8.2.3 is discrete . 27
8.2.4 is part . 28
8.2.5 is material [≡ is continuous] . 28
8.2.6 is component . 28
8.2.7 is atomic . 28
8.2.8 is composite . 28
8.2.9 has concrete type . 28
8.2.10 has mereology . 29
8.2.11 has materials . 29
8.2.12 has components . 29
8.2.13 has parts . 29

8.3 The Description Prompts . 29
8.3.1 A Description State . 30
8.3.2 observe part sorts . 30
8.3.3 observe concrete type . 30
8.3.4 observe unique identifier . 31
8.3.5 observe mereology . 31
8.3.6 observe part attributes . 31
8.3.7 observe part material sort . 32
8.3.8 observe component sort . 32
8.3.9 observe material part sort . 32

8.4 Discussion of The Prompt Model . 32

9 Conclusion 33

9.1 What Has Been Achieved . 33
9.2 Are the Models Valid ? . 33

10 Bibliography 33

10.1 Bibliographical Notes . 33
10.2 References . 33

A M: A Meaning of Type Names 35

A.1 Preliminaries . 35
A.2 Atomic Parts . 35
A.3 Abstract Composite Parts . 36
A.4 Concrete Composite Parts . 36
A.5 Materials . 37
A.6 Components . 37

Formal Models of Processes and Prompts 51 c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19

52 Domain Analysis and Description

B A Domain Description Example: A Credit Card System 38

B.1 Endurants . 38
B.1.1 Credit Card Systems . 38
B.1.2 Credit Cards . 40
B.1.3 Banks . 40
B.1.4 Shops . 41

B.2 Perdurants . 42
B.2.1 Behaviours . 42
B.2.2 Channels . 42
B.2.3 Behaviour Interactions . 43
B.2.4 Credit Card . 44
B.2.5 Banks . 45
B.2.6 Shops . 47

B.3 Discussion . 48

c© Dines Bjørner 2016, Fredsvej 11, DK–2840 Holte, Denmark – September 24, 2018: 09:19 52 Domain Analysis and Description

