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1

Introduction

CTSM is a computer program for performing Continuous Time Stochastic
Modelling. The program has been developed at Informatics and Mathematical
Modelling (IMM) at the Technical University of Denmark (DTU).

�

Continuous time stochastic modelling means semi-physical modelling of dy-
namic systems based on stochastic differential equations. Stochastic differential
equations contain a diffusion term to account for random effects, but are other-
wise structurally similar to ordinary differential equations. Therefore conven-
tional modelling principles can be applied to set up the model structure.

With the model structure given, the program provides methods for estimating
any unknown parameters of the model from data, including the parameters of
the diffusion term. These methods are able to handle both linear and nonlinear
models, and the program also provides flexibility with respect to the data sets
that can be used for estimation. The parameter estimation methods implemen-
ted in the program are a maximum likelihood (ML) method and a maximum
a posteriori (MAP) method. Both methods allow several independent data
sets to be used. Once the parameters have been estimated, various statistical
methods can be applied to investigate the quality of the model, and features
that facilitate application of such methods are also included in the program.



2 Introduction

CTSM and the original program on which it is based, CTLSM (Madsen and
Melgaard, 1991; Melgaard and Madsen, 1993), has been successfully applied for
modelling a variety of systems, including building heat dynamics (Madsen and
Holst, 1995), environmental systems (Jacobsen and Madsen, 1996), fed-batch
processes within chemical and biotechnological industry (Kristensen, 2002) and
pharmacokinetic and pharmacodynamic systems (Tornøe, 2002).

This manual is meant to give a short introduction to the ideas behind and the
use of CTSM. Chapter 2 gives a brief mathematical description of the features
in the program and provides instructions for installing it, Chapter 3 contains
a step-by-step guide to using the program, Chapter 4 provides some basic tips
and tricks, and in chapter 5 some hints for advanced troubleshooting are given.

Appendix A and B contain tutorial examples illustrating the procedure for
parameter estimation for a linear and a nonlinear model respectively.
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Getting started

This chapter gives a brief mathematical description of the features in CTSM
and provides instructions for downloading and installing the program.

A complete description of the mathematics behind the algorithms of the pro-
gram can be found in the Mathematics Guide.

2.1 Features of CTSM

CTSM provides features for performing maximum likelihood (ML) and maxi-
mum a posteriori (MAP) estimation of the unknown parameters of continuous-
discrete stochastic state space models. Continuous-discrete stochastic state
space models are models that consist of a set of stochastic differential equa-
tions describing the dynamics of a system in continuous time and a set of
algebraic equations describing how measurements are obtained at discrete time
instants. Several independent data sets can be used for the estimation, and
the program also provides features for dealing with varying sample times, oc-
casional outliers and missing observations. In addition, the program provides
features for performing statistical tests and for facilitating residual analysis.

2.1.1 Model structures

Within CTSM the class of continuous-discrete stochastic state space models
is divided into three distinct subclasses, which are handled separately.

The class of nonlinear (NL) models

The class of NL models is the class of models described by the equations:

dxt = f(xt,ut, t, θ)dt + σ(ut, t,θ)dωt (2.1)
yk = h(xk, uk, tk, θ) + ek (2.2)

where t ∈ R is time, xt ∈ Rn is a vector of state variables, ut ∈ Rm is a vector
of input variables, yk ∈ Rl is a vector of output variables, θ ∈ Rp is a vector
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of parameters, f(·) ∈ Rn, σ(·) ∈ Rn×n and h(·) ∈ Rl are nonlinear functions,
{ωt} is an n-dimensional standard Wiener process and {ek} is an l-dimensional
white noise process with ek ∈ N (0,S(uk, tk,θ)).

The class of linear time-varying (LTV) models

The class of LTV models is the class of models described by the equations:

dxt = (A(xt, ut, t, θ)xt + B(xt, ut, t, θ)ut) dt + σ(ut, t, θ)dωt (2.3)
yk = C(xk, uk, tk,θ)xk + D(xk,uk, tk, θ)uk + ek (2.4)

where t ∈ R is time, xt ∈ Rn is a state vector, ut ∈ Rm is an input vec-
tor, yk ∈ Rl is an output vector, θ ∈ Rp is a parameter vector, A(·) ∈ Rn×n,
B(·) ∈ Rn×m, σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are nonlinear func-
tions, {ωt} is an n-dimensional standard Wiener process and {ek} is an l-dimen-
sional white noise process with ek ∈ N (0, S(uk, tk, θ)).

The class of linear time invariant (LTI) models

The class of LTI models is the class of models described by the equations:

dxt = (A(θ)xt + B(θ)ut) dt + σ(θ)dωt (2.5)
yk = C(θ)xk + D(θ)uk + ek (2.6)

where t ∈ R is time, xt ∈ Rn is a state vector, ut ∈ Rm is an input vec-
tor, yk ∈ Rl is an output vector, θ ∈ Rp is a parameter vector, A(·) ∈ Rn×n,
B(·) ∈ Rn×m, σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are nonlinear func-
tions, {ωt} is an n-dimensional standard Wiener process and {ek} is an l-dimen-
sional white noise process with ek ∈ N (0, S(θ)).

2.1.2 Parameter estimation methods

CTSM allows a number of different parameter estimation setups to be used.

Maximum likelihood estimation

Given a particular model structure, maximum likelihood (ML) estimation of
the unknown parameters can be performed by finding the parameters θ that
maximize the likelihood function of a sequence of measurements y0, y1, . . . ,
yk, . . . , yN of the output variables. By introducing the notation:

Yk = [yk,yk−1, . . . , y1,y0] (2.7)

the likelihood function is the joint probability density:

L(θ;YN ) = p(YN |θ) (2.8)
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or equivalently:

L(θ;YN ) =

(
N∏

k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (2.9)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product
of conditional probability densities. By introducing the notation:

ŷk|k−1 = E{yk|Yk−1, θ} (2.10)

Rk|k−1 = V {yk|Yk−1,θ} (2.11)

and:
εk = yk − ŷk|k−1 (2.12)

and by assuming that the conditional probability densities are Gaussian, the
likelihood function can be written as follows:

L(θ;YN ) =




N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)

√
det(Rk|k−1)

(√
2π

)l


 p(y0|θ) (2.13)

where εk and Rk|k−1 can be computed by means of a Kalman filter (LTI mo-
dels) or an iterated extended Kalman filter (LTV and NL models). Further
conditioning on y0 and taking the negative logarithm gives:

− ln (L(θ;YN |y0)) =
1
2

N∑

k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

(
N∑

k=1

l

)
ln(2π)

(2.14)

and ML estimates of the parameters (and the initial states if these are unknown)
can now be determined by solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (L(θ;YN |y0))} (2.15)

Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN ) =
p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ) (2.16)
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and finding the parameters that maximize this function, i.e. by performing
maximum a posteriori (MAP) estimation. By introducing the notation:

µθ = E{θ} (2.17)
Σθ = V {θ} (2.18)

and:
εθ = θ − µθ (2.19)

and by assuming that the prior probability density of the parameters is Gaus-
sian, the posterior probability density function can be written as follows:

p(θ|YN ) ∝



N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)

√
det(Rk|k−1)

(√
2π

)l


 p(y0|θ)

×exp
(− 1

2εT
θΣ

−1
θ εθ

)
√

det(Σθ)
(√

2π
)p

(2.20)

Further conditioning on y0 and taking the negative logarithm gives:

− ln (p(θ|YN , y0)) ∝
1
2

N∑

k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

((
N∑

k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT
θΣ

−1
θ εθ

(2.21)

and MAP estimates of the parameters (and the initial states if these are un-
known) can now be determined by solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (p(θ|YN , y0))} (2.22)

Using several independent data sets

Instead of a single sequence of measurements, several separate sequences, i.e.
Y1

N1
, Y2

N2
, . . . , Yi

Ni
, . . . , YS

NS
, possibly of varying length, may be available.

In this case a similar estimation method can be applied by expanding the
expression for the posterior probability density function to a more general form:

p(θ|Y) ∝
S∏

i=1




Ni∏

k=1

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)
−1εi

k

)
√

det(Ri
k|k−1)

(√
2π

)l


 p(yi

0|θ)

×exp
(− 1

2εT
θΣ

−1
θ εθ

)
√

det(Σθ)
(√

2π
)p

(2.23)
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where:

Y = [Y1
N1

,Y2
N2

, . . . ,Yi
Ni

, . . . ,YS
NS

] (2.24)

and where the individual sequences of measurements are assumed to be stochas-
tically independent. Further conditioning on:

y0 = [y1
0, y

2
0, . . . , y

i
0, . . . , y

S
0 ] (2.25)

and taking the negative logarithm gives:

− ln (p(θ|Y,y0)) ∝ 1
2

S∑

i=1

Ni∑

k=1

(
ln(det(Ri

k|k−1)) + (εi
k)T (Ri

k|k−1)
−1εi

k

)

+
1
2

((
S∑

i=1

Ni∑

k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT
θΣ

−1
θ εθ

(2.26)

and estimates of the parameters (and the initial states if these are unknown)
can now be determined by solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (p(θ|Y,y0))} (2.27)

2.1.3 Data issues

Within CTSM features have also been implemented for dealing with varying
sample times, occasional outliers and missing observations.

2.1.4 Statistical tests

In addition to the parameter estimates themselves, CTSM computes the stan-
dard deviations of the estimates, the corresponding t-test scores and associated
probabilities for testing the significance of the parameters, as well as the cor-
relation matrix of the estimates. Altogether these quantities allow a number
of statistical tests to be performed to investigate the quality of the model.

2.1.5 Residual analysis

To facilitate residual analysis CTSM can also be used to generate validation
data in the form of state and output estimates corresponding to a given input
data set, using either pure simulation, prediction, filtering or smoothing.
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2.2 Installing CTSM

CTSM is available for Linux, Solaris and Windows platforms. This section
provides instructions for downloading and installing the program on all three
platforms. More information can be found on the program homepage:

http://www.imm.dtu.dk/ctsm

2.2.1 Downloading CTSM

CTSM can be downloaded or installed directly from the download section
of the program homepage. To be able to install directly from the program
homepage, your web browser must support Java applets.

2.2.2 Installing CTSM on Linux platforms

CTSM for Linux has only been tested on Red Hat Linux 7.3 but is expected
to work on other Linux implementations as well. To install on Linux:

1. Use the installer applet on the program homepage or download the in-
staller to a temporary directory, open a shell, cd to the temporary di-
rectory and type: sh ./install.bin.

2. Follow the on-screen instructions provided by the installer to automati-
cally install the program on your system.

3. Update your system’s LD LIBRARY PATH environment variable as in-
structed by the installer when installation is complete.

Updating the LD LIBRARY PATH environment variable

To permanently add newDir for bash, ksh and keysh shells:

1. Open the .profile file in your home directory.

2. Add the line: LD LIBRARY PATH=$LD LIBRARY PATH:newDir.

3. Add the line: export LD LIBRARY PATH.

4. Save, log out and log in again.

To permanently add newDir for csh and tcsh shells:

1. Open the .login file in your home directory.

2. Add the line: setenv LD LIBRARY PATH ${LD LIBRARY PATH}:newDir.
3. Save, log out and log in again.
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2.2.3 Installing CTSM on Solaris platforms

CTSM for Solaris has been optimized specifically for SUN servers equipped
with ULTRASPARC-III processors using the Forte Developer 7 compiler suite.
It will not run on systems with pre-ULTRASPARC-III processors and other
versions of the compiler suite (use the workaround described on the program
homepage for Solaris systems where Forte Developer 7 is installed but is not the
default compiler suite). To find out if your system fulfills these requirements,
contact your system administrator. To install on Solaris:

1. Use the installer applet on the program homepage or download the in-
staller to a temporary directory, open a shell, cd to the temporary di-
rectory and type: sh ./install.bin.

2. Follow the on-screen instructions provided by the installer to automati-
cally install the program on your system.

3. Update your system’s LD LIBRARY PATH environment variable as in-
structed by the installer when installation is complete.

Updating the LD LIBRARY PATH environment variable

To permanently add newDir for bash, ksh and keysh shells:

1. Open the .profile file in your home directory.

2. Add the line: LD LIBRARY PATH=$LD LIBRARY PATH:newDir.

3. Add the line: export LD LIBRARY PATH.

4. Save, log out and log in again.

To permanently add newDir for csh and tcsh shells:

1. Open the .login file in your home directory.

2. Add the line: setenv LD LIBRARY PATH ${LD LIBRARY PATH}:newDir.
3. Save, log out and log in again.

2.2.4 Installing CTSM on Windows platforms

CTSM for Windows has only been tested on Windows 2000 and XP, but is
expected to work on other Windows versions as well. To install on Windows:

1. Use the installer applet on the program homepage or download the in-
staller to a temporary directory and double-click install.exe.
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2. Follow the on-screen instructions provided by the installer to automati-
cally install the program on your system.

3. Update your system’s PATH environment variable as instructed by the
installer when installation is complete.

4. Make sure your system’s TEMP environment variable is DOS-compliant
(no blanks and no long path names).

Updating the PATH environment variable

To permanently add newDir on Windows 95, 98 and ME:

1. Open C:\Autoexec.bat.
2. Add the line: PATH=%PATH%;newDir.

3. Save and reboot.

To permanently add newDir on Windows NT, 2000 and XP:

1. Right-click My Computer.

2. Choose Properties - Advanced - Environment Variables.

3. Edit the PATH by adding: newDir.

4. Save and reboot.

Checking the TEMP environment variable

To check the TEMP variable on Windows 95, 98 and ME:

1. Open C:\Autoexec.bat.
2. If there is a TEMP line, make sure it is DOS-compliant.

3. Save and reboot, if you made any changes.

To check the TEMP variable on Windows NT, 2000 and XP:

1. Right-click My Computer.

2. Choose Properties - Advanced - Environment Variables.

3. Make sure the TEMP variable is DOS-compliant.

4. Save and reboot, if you made any changes.



3

Using CTSM

The various features of CTSM can all be controlled via the program’s graphical
user interface (GUI). The following is a step-by-step guide, which shows how
to do this, with screen shots taken from the tutorial example in Appendix B.

3.1 Starting up CTSM

Depending on the platform, there are different ways of starting up CTSM.

3.1.1 Starting up CTSM on Linux platforms

If CTSM has been installed correctly and if the system’s LD LIBRARY PATH
environment variable has been updated appropriately (see Section 2.2.2), the
program can be started from a shell by typing Ctsm in the directory where the
program is installed or in the directory of the installed link.

3.1.2 Starting up CTSM on Solaris platforms

If CTSM has been installed correctly and if the system’s LD LIBRARY PATH
environment variable has been updated appropriately (see Section 2.2.3), the
program can be started from a shell by typing Ctsm in the directory where the
program is installed or in the directory of the installed link.

3.1.3 Starting up CTSM on Windows platforms

If CTSM has been installed correctly and if the system’s PATH variable has
been updated and the TEMP variable is DOS-compliant (see Section 2.2.4),
the program can be started by double-clicking the installed shortcut.
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3.2 Setting up a model

When CTSM has been started up, the GUI (Windows Look and Feel) appears
as in Figure 3.1. The only enabled actions are New model and Open model (see
Section 3.7 for details about opening an existing model).

�

Figure 3.1. GUI when CTSM has been started.

3.2.1 Creating a new model

To create a new model, select the New model action. The New Model Spe-
cification dialog now appears (see Figure 3.2), and you can specify the type
and dimensions of the new model, you want to create. CTSM distinguishes
between three different model types: LTI, LTV and NL, and the dimensions
that must be specified are the number of inputs, the number of outputs, the
number of states and the number of algebraic equations. At present, CTSM
can only handle explicit algebraic equations, i.e. algebraic equations that can
be substituted directly into the other equations of the model.
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�

Figure 3.2. The empty New Model Specification dialog.

Models must have at least 1 output and 1 state. Models without
inputs and algebraic equations are allowed. The upper limit on the
number of inputs, outputs, states and algebraic equations is 50.

Figure 3.3 shows the New Model Specification dialog with values appropriately
assigned. To proceed from here, press OK.

�

Figure 3.3. The New Model Specification dialog with values assigned.

3.2.2 Typing in the model equations

When a new model has been created, the GUI appears as in Figure 3.4 (with
the Model tab and the Close model, Save model and Analyze model actions
enabled), and the model equations can now be typed in.
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�

Figure 3.4. GUI when a new model has been created.

Typing in the model equations means typing in the symbolic names
of the inputs (u), outputs (y) and states (x) and the symbolic ex-
pressions for the elements of vectors f and h (NL models), matrices
A, B, C and D (LTI and LTV models) and matrices σ and S. If
the model has algebraic equations, their symbolic names and the
symbolic expressions for the right hand sides must be typed in too.

The rules for typing in model equations are determined by CTSM’s interpreter:

• Characters accepted by the interpreter are letters A-Z and a-z, integers
0-9, operators +, -, *, /, ˆ, parentheses ( and ) and decimal separator ..

• The interpreter is case sensitive with respect to the symbolic names of
inputs, outputs, states, algebraic equations and parameters, but not with
respect to common mathematical functions. This means that the names
’k1’ and ’K1’ are different, whereas the names ’exp()’ and ’EXP()’ are
the same. The single character ’t’ is treated as the time variable, whereas
the single character ’T’ is treated as any other single character.
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• The number formats accepted by the interpreter are the following: Sci-
entific (i.e. 1.2E+1), standard (i.e. 12.0) and integer (i.e. 12).

• Each factor, i.e. each collection of latin letters and integers separated by
operators or parentheses, which is not a number or a common mathe-
matical function, is checked to see if it corresponds to the symbolic name
of any of the inputs, outputs, states or algebraic equations or to the time
variable. If not, the factor is regarded as a parameter.

• The common mathematical functions recognized by the interpreter are
the following: abs(), sign(), sqrt(), exp(), log(), sin(), cos(), tan(),
arcsin(), arctan(), sinh() and cosh().

3.2.3 Analyzing the model equations

An example of how the GUI appears when the model equations have been
typed in is shown in Figure 3.5. To proceed from here by letting CTSM’s
interpreter analyze the model equations, select the Analyze model action.

�

Figure 3.5. GUI when the model equations have been typed in.
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When analyzing the model equations the interpreter first checks for compliance
with the rules for typing in model equations (see Section 3.2.2), and then
analyzes each symbolic expression in turn to determine the symbolic names of
the parameters of the model, which are then displayed along with the symbolic
names of the initial states under the Parameters tab as shown in Figure 3.6.

�

Figure 3.6. GUI when the model has been analyzed.

Once the model equations have been analyzed the Analyze model action remains
disabled until a change is made to the model equations.

3.3 Estimating parameters

When the initial states and parameters are first displayed under the Parameters
tab (see Figure 3.6), they all have a default Initial value of 0 and radio buttons
set to Fix. To perform an estimation, you have to specify an estimation method.

3.3.1 Specifying estimation method

The rules for specifying estimation method are the following:
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• For fixed parameters, i.e. with radio buttons set to Fix, only the Initial
value must be specified. The program will use this value as a fixed value.

• For parameters to be estimated with the maximum likelihood method (see
Section 2.1), i.e. with radio buttons set to ML, the Minimum value and
Maximum value must also be specified. In this case the program will use
the Initial value as an initial guess.

• For parameters to be estimated with the maximum a posteriori method
(see Section 2.1), i.e. with radio buttons set to MAP, the Prior std. dev.
and the corresponding elements of the Prior Correlation Matrix, which
appears below, must also be specified. In this case the program will
regard the Initial value as the prior mean and use it as an initial guess.

An example of how the GUI appears when an estimation method has been
specified for all initial states and parameters is shown in Figure 3.7.

�

Figure 3.7. GUI when estimation methods have been specified.
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3.3.2 Specifying estimation data

To start an estimation, select the Estimate parameters action. The Specification
of Data for Estimation dialog now appears (see Figure 3.8), and you can select
the data file(s), you want to use for the estimation.

�

Figure 3.8. The Specification of Data for Estimation dialog.

CTSM expects data in semi-colon delimited CSV files (*.csv)
with 1 + m + l columns, i.e. as many columns as there are inputs
and outputs plus a column for time instants. Within each row the
column entries must be separated by semi-colons ’;’ and appear in
the order: time, inputs and outputs. For models with more than
one input and/or more than one output the inputs and outputs
must appear in the order they were typed in. Missing observations
must be indicated with the number 1E300 (or larger). Note that
when selecting more than one data file, the program will use the
same initial states when processing all the selected files.

Apart from specifying data file(s), you must also specify to the program whether
to use Constant or Varying sample time and whether to use a Zero order hold or
a First order hold on the inputs between sample instants.

If Constant sample time is specified, the program will determine the
sample time from the first two time instants in the data file(s). If
Varying sample time is specified, sample times will be determined
successively from the time instants.

When all necessary information has been provided, press OK to proceed.
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3.3.3 Monitoring computation progress

An example of how the GUI appears when the computation has commenced is
shown in Figure 3.9. You can monitor the progress of the computation via the
Trace of optimisation panel, which shows the number of iterations, the number
of objective function evaluations, the gradient approximation method and the
value of the objective function, and via the Trace of parameter estimates panel,
which shows the values of the individual parameter estimates.

�

Figure 3.9. GUI when the computation has commenced.

The computation can be stopped at any time by pressing the Stop
button in the Status panel. The Stop button terminates execution,
so it cannot be used to pause the computation.

3.3.4 Interpreting estimation results

Once the computation is complete, and the initial states and parameters have
been estimated (see Section 5.1 for an explanation of common error messages
if the computation stops prematurely), the GUI appears as in Figure 3.10.
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�

Figure 3.10. GUI when the initial states and parameters have been estimated.

For each result set (here Results 1) a number of panels are displayed: An Op-
timisation Results panel with information about the course of the optimisation,
three, or four if MAP estimation has been used, panels with the results of the
estimation, a Data panel with information about the data file(s) used for the
estimation, a Model panel with the model equations, and a Settings panel.

The Optimisation Results panel displays the value of the objective function, and
the value of the prior probability density function if MAP estimation has been
used, along with the value of the penalty function and the negative logarithm
of the determinant of the Hessian (see the Mathematics Guide for details), the
number of iterations and the number of objective function evaluations.

If the value of the penalty function is significant compared to the
value of the objective function, a parameter may be close to one of
its limits, and you should consider to loosen this limit.

The panels with the results of the estimation display information about all the
initial states and parameters, the Correlation Matrix of the parameter estimates,
and the Prior Correlation Matrix if MAP estimation has been used.
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For each initial state and parameter the information provided under the Para-
meters tab is redisplayed along with the Estimate, the Std. dev. and the corres-
ponding t-score (see Section 2.1). The p(>|t|) value is the fraction of probability
of the corresponding t-distribution outside the limits set by the t-score.

Loosely speaking, the p(>|t|) value is the probability that the par-
ticular initial state or parameter is insignificant, i.e. equal to 0.

The dF/dPar and dPen/dPar values are derivatives of the objective function and
the penalty function with respect to the particular initial state or parameter.

If the dF/dPar value is not close to zero, the solution found may
not be the true optimum, and you should consider changing some
settings for the optimisation and repeating the computation. If
the dPen/dPar value is significant compared to the dF/dPar value,
the particular initial state or parameter may be close to one of its
limits, and you should consider to loosen this limit.

Below the initial states and parameters the Correlation Matrix of the parameter
estimates (see Section 2.1) is displayed, and below that the Prior Correlation
Matrix is redisplayed if MAP estimation has been used.

If the Correlation Matrix has off-diagonal values close to 1 or -1, it is
an indication that the model is overparameterized, and you should
consider eliminating some of the parameters.

3.3.5 Printing estimation results

The results of an estimation, i.e. the contents of a result set, can be printed on
paper by selecting the Print selected result set action.

CTSM prints the contents of the Optimisation Results panel, the
panels with the results of the estimation, the Data panel and the
Settings panel. The Model panel is not printed. The Correlation
Matrix and the Prior Correlation Matrix are only printed if they are
small enough to fit (in terms of width) on a single piece of paper.

3.3.6 Exporting estimation results

Some of the contents of a result set can be exported to a file by selecting the
Export selected result set action. This will make the Specification of Export of
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Results dialog appear (see Figure 3.11), and you can specify which parts of the
exportable results you want to export and to what output file.

�

Figure 3.11. The Specification of Export of Results dialog.

CTSM exports results in three different file formats: Tab delimited
ASCII files (*.txt), semi-colon delimited CSV files (*.csv) and
appropriately formatted LATEX files (*.tex).

3.3.7 Deleting estimation results

The results of an estimation, i.e. the contents of a result set, can be permanently
deleted by selecting the Remove selected result set action.

3.4 Generating validation data

Having estimated the initial states and parameters, you have the possibility of
generating validation data for performing residual analysis.

CTSM saves validation data in semi-colon delimited CSV files
(*.csv). Data files of this type can easily be imported into
Matlab, S-Plus and standard spreadsheet programs.



3.4. Generating validation data 23

3.4.1 Generating pure simulation data

Pure simulation data, i.e. state and output estimates based only on the inputs in
a given data file (which must, however, also include outputs) can be generated
for a given set of initial states and parameters by selecting the Generate pure
simulation data action, which will make the Specification of Data for Validation
dialog appear (see Figure 3.12), so you can select the data file, you want to use
(see Section 3.3.2 for details about specifying a data file). The state and output
estimates generated are x̂k|0 and ŷk|0, along with their standard deviations
SD(x̂k|0) =

√
diag(P k|0) and SD(ŷk|0) =

√
diag(Rk|0), corresponding to each

time instant tk in the data file (see Section 2.1). Apart from specifying the
data file, you must also specify whether to use Constant or Varying sample time
and whether to use a Zero order hold or a First order hold on the inputs between
sample instants (see Section 3.3.2). When all necessary information has been
provided, press OK to proceed. Once the pure simulation data set has been
generated, you must specify an output file for saving the data.

�

Figure 3.12. The Specification of Data for Validation dialog.

CTSM saves pure simulation data in semi-colon delimited CSV
files (*.csv) with 1 + 2n + 2l columns. Within each row the
column entries will be separated by semi-colons ’;’ and appear in
the order: tk, x̂k|0, SD(x̂k|0), ŷk|0 and SD(ŷk|0). For models with
more than one state and/or more than one output the state and
output estimates will appear in the order they were typed in.
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3.4.2 Generating prediction data

Prediction data, i.e. state and output estimates based on the inputs and lagged
values of the outputs in a given data file can be generated for a given set of
initial states and parameters by selecting the Generate prediction data action,
which will make the Specification of Data for Validation dialog appear (see Fig-
ure 3.12), so you can select the data file, you want to use (see Section 3.3.2
for details about specifying a data file). The state and output estimates gener-
ated are x̂k|k−j , j ≥ 1, and ŷk|k−j , j ≥ 1, along with their standard deviations
SD(x̂k|k−j) =

√
diag(P k|k−j) and SD(ŷk|k−j) =

√
diag(Rk|k−j), correspond-

ing to each time instant tk in the data file (see Section 2.1). Apart from
specifying the data file, you must also specify j, whether to use Constant or
Varying sample time and whether to use a Zero order hold or a First order hold
on the inputs between sample instants (see Section 3.3.2). When all necessary
information has been provided, press OK to proceed. Once the prediction data
set has been generated, you must specify an output file for saving the data.

CTSM saves prediction data in semi-colon delimited CSV files
(*.csv) with 1 + 2n + 2l columns. Within each row the column
entries will be separated by semi-colons ’;’ and appear in the order:
tk, x̂k|k−j , SD(x̂k|k−j), ŷk|k−j and SD(ŷk|k−j). For models with
more than one state and/or more than one output the state and
output estimates will appear in the order they were typed in.

3.4.3 Generating filtering data

Filtering data, i.e. state estimates based on the inputs and non-lagged values
of the outputs in a given data file can be generated for a given set of initial
states and parameters by selecting the Generate filtering data action, which will
make the Specification of Data for Validation dialog appear (see Figure 3.12),
so you can select the data file, you want to use (see Section 3.3.2 for details
about specifying a data file). The state estimates generated are x̂k|k, along with
their standard deviations SD(x̂k|k) =

√
diag(P k|k), corresponding to each time

instant tk in the data file (see Section 2.1). Apart from specifying the data file,
you must also specify to the program whether to use Constant or Varying sample
time and whether to use a Zero order hold or a First order hold on the inputs
between sample instants (see Section 3.3.2). When all necessary information
has been provided, press OK to proceed. Once the filtering data set has been
generated, you must specify an output file for saving the data.
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CTSM saves filtering data in semi-colon delimited CSV files
(*.csv) with 1 + 2n columns. Within each row the column entries
will be separated by semi-colons ’;’ and appear in the order: tk, x̂k|k
and SD(x̂k|k). For models with more than one state the estimates
will appear in the order they were typed in.

3.4.4 Generating smoothing data

For nonlinear models, smoothing data, i.e. state estimates based on all of the
inputs and all of the outputs in a given data file can be generated for a given
set of initial states and parameters by selecting the Generate smoothing data
action, which will make the Specification of Data for Validation dialog appear (see
Figure 3.12), so you can select the data file, you want to use (see Section 3.3.2
for details about specifying a data file). The state estimates generated are x̂k|N ,
along with their standard deviations SD(x̂k|N ) =

√
diag(P k|N ), corresponding

to each time instant tk in the data file (see Section 2.1). Apart from specifying
the data file, you must also specify to the program whether to use Constant or
Varying sample time and whether to use a Zero order hold or a First order hold
on the inputs between sample instants (see Section 3.3.2). When all necessary
information has been provided, press OK to proceed. Once the smoothing data
set has been generated, you must specify an output file for saving the data.

CTSM saves smoothing data in semi-colon delimited CSV files
(*.csv) with 1 + 2n columns. Within each row the column entries
will be separated by semi-colons ’;’ and appear in the order: tk,
x̂k|N and SD(x̂k|N ). For models with more than one state the
estimates will appear in the order they were typed in.

3.5 Changing the settings for a model

Using the Settings menu, it is possible to control a number of the computational
features within CTSM, which may be useful to obtain better results.

3.5.1 Changing filter settings

Selecting the Filter . . . menu item brings up the Filter Settings dialog (see
Figure 3.13), which holds the controls for the (iterated extended) Kalman filter
part of CTSM (see the Mathematics Guide for details).
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�

Figure 3.13. The Filter Settings dialog.

LTI models

For LTI models, only the Scaling factor for initial covariance (default: 1.0) is
displayed. It is used in the calculation of the covariance of the initial states.

The larger the scaling factor, the more uncertain the initial states.

LTV models

For LTV models, the Number of subsamples in iterated extended Kalman fil-
ter (default: 10) is displayed in addition to the above scaling factor. This is
the number of subsamples used in the subsampling approximation to the true
solution of the propagation equations in the iterated extended Kalman filter.

The more subsamples, the more accurate the approximation.

NL models

For NL models, all settings are displayed. The top panel of the dialog provides
a possibility for choosing which method to apply for solving the propagation
equations of the iterated extended Kalman filter: 1) Subsampling approxima-
tion, 2) numerical ODE solution with the Adams method for non-stiff systems
(default) or 3) numerical ODE solution with the BDF method for stiff systems.



3.5. Changing the settings for a model 27

In the lower panel the Tolerance for numerical ODE solution (default: 1.0E-12) is
the tolerance used by the ODE solvers in the iterated extended Kalman filter.

The lower the tolerance, the more accurate the ODE solution.

The Maximum number of iterations in iterated extended Kalman filter (default:
1) is the maximum number of iterations performed to reduce the effects of
measurement equation nonlinearities in the iterated extended Kalman filter,
and the Tolerance for iterated extended Kalman filter (default: 1.0E-12) is the
corresponding tolerance. The measurement equation is iterated until the tole-
rance is met or until the maximum number of iterations is reached.

The more iterations and the lower the tolerance, the better.

3.5.2 Changing optimisation settings

Selecting the Optimisation . . . menu item brings up the Optimisation Settings
dialog (see Figure 3.14), which holds the basic controls for the optimisation
part of CTSM (see the Mathematics Guide for details).

�

Figure 3.14. The Optimisation Settings dialog.

The Maximum number of objective function evaluations (default: 500) is simply
a limit on the number of objective function evaluations, the Adjustment factor
for initial step length in line search (default: 1.0E-6) is a value used to adjust
the initial step length in the line search, and the Relative error in calculation of
objective function (default: 1.0E-14) is a value used to determine a step size for
the finite difference gradient approximations within the optimisation algorithm.

There is usually no need to adjust any of these values.
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3.5.3 Changing advanced settings

Selecting the Advanced . . . menu item brings up the Advanced Settings dialog
(see Figure 3.15), which holds the advanced controls for the optimisation part
of CTSM and controls for some computational settings (see the Mathematics
Guide for details). The Cut-off value for Huber’s psi-function (default: 3.0) is
the constant c in Huber’s ψ-function. The Padé approximation order (default: 6)
is the order of the Padé approximation used to compute matrix exponentials.
The Tolerance for singular value decomposition (default: 1.0E-12) is a value used
to determine if the A matrix is singular or not. The Lagrange multiplier in
penalty function (default: 1.0E-4) is the λ value used in the penalty function.
The Minimum absolute value used for normalizing in penalty function is a value
used to ensure numerical stability in calculation of the penalty function.

�

Figure 3.15. The Advanced Settings dialog.

There is usually no need to adjust any of these values.

3.6 Modifying the structure of a model

Using the Add/remove inputs, Add/remove outputs, Add/remove states and
Add/remove algebraic equations actions, the structure of a model can be modi-
fied. As an example, Figure 3.16 shows the Add/remove inputs dialog that
appears when the Add/remove inputs action is selected. Using this dialog, exis-
ting input variables can be eliminated and new input variables can be added.
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�

Figure 3.16. The Add/remove inputs dialog.

3.7 Saving and opening a model

To save a model, you simply select the Save model action, which will allow you
to specify an output file for saving the current model.

CTSM saves models in binary files of type *.ctsm. When a model
is saved, the current state of the model equations, the current spe-
cifications under the Parameters tab, all result sets and the current
settings are saved. Model files are platform independent, so the
same model file can be used on both Linux, Solaris and Windows.

To open a model, you simply select the Open model action, which will allow
you to select the file with the model you want to open.

IMPORTANT: Models created in CTSM 2.0, in CTSM 2.1
and in CTSM 2.2 are unfortunately incompatible with
CTSM 2.3. Trying to open such models will result in an error.
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4

Tips and tricks

This chapter provides some tips for making CTSM run more smoothly and
some tricks and workarounds for handling complicated modelling tasks.

4.1 Tips for making the estimation run smoothly

To avoid numerical problems and to ensure an appropriate level of accuracy
when performing estimations in CTSM, the following tips may be useful.

4.1.1 Scaling of variables

Numerical problems may be avoided by using appropriately scaled values of the
inputs, outputs and states of the model. Therefore, if possible, these variables
should have physical units that confine their numerical values to the interval
[−1, 1]. If this is not possible, scaled or normalized variables should be used.

4.1.2 Selecting appropriate parameter values

To ensure an appropriate level of accuracy of the estimation results (especially
to obtain accurate standard deviations and an accurate correlation matrix),
the Number of iterations should not be too low. What too low means depends
on the particular model, but as a rule of thumb the Number of iterations should
be above 20. The Number of iterations can be influenced by appropriatelty
selecting the Minimum values, Initial values and Maximum values of the initial
states and parameters to be estimated, e.g. in accordance with these tips:

1. Use a non-zero Initial value if possible.

2. If you know the ”true” value, use a different Initial value.

3. Do not set the Minimum value and Maximum value too close to each other.

4. Do not set the Minimum value and Maximum value too far from each other.



32 Tips and tricks

Another tip that may be useful is that it is sometimes a good idea to let the
program estimate all of the initial states and parameters instead of fixing some
of them. In particular, it is usually more robust to estimate the initial states.

4.1.3 Data issues

CTSM has built-in features for automatically handling varying sample times,
occasional outliers and missing observations in the data sets used for estimation.

With respect to the latter, the program recognizes the number 1E300 (or larger)
as a missing observation. When a missing observation is reached the (iterated
extended) Kalman filter predicts its value based on previous observations and
the calculation of the objective function is modified accordingly. If, however,
there are missing input values in the data sets it is more difficult. In this case
it is necessary to fill in the missing input values before running CTSM.

4.2 Various tricks and workarounds

CTSM has certain limitations with respect to introducing discontinuous func-
tionalities in a model, because Dirac’s δ-function, Heaviside’s unit function and
other threshold-based model components cannot be implemented directly, but
these limitations may be circumvented with one of the following workarounds.

4.2.1 A general trick for modelling thresholds

The workaround for modelling thresholds consists of replacing a sharp threshold
with an equivalent smooth threshold, i.e. by replacing the threshold model:

f(z) =
{

f1(z) , g(z) ≤ a
f2(z) , g(z) > a

(4.1)

with the corresponding smooth threshold model:

f(z) =
f1(z)

1 + exp(−γ(a− g(z)))
+

f2(z)
1 + exp(γ(a− g(z)))

(4.2)

where the smoothness is introduced by means of two sigmoidal functions. The
γ parameter is used to tune to sharpness of the threshold. The larger γ, the
sharper threshold. In the above formulation z is a vector variable, signifying
that, in general, thresholds depending on the states x, the inputs u and the
parameters θ as well as the time variable t can be modelled this way. A special
case of (4.1) depending only on the time variable t is Heaviside’s unit function:

f(t) =
{

0 , t ≤ 0
1 , t > 0 (4.3)
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which can be modelled by replacing it with:

f(t) =
1

1 + exp(−γt)
(4.4)

which is a special case of (4.2). In a similar fashion, simple thresholds depending
on other variables can be modelled. Replacing sharp thresholds with smooth
approximations may affect the accuracy of the results, but the only other danger
in doing this is the effect of a very large value of γ on numerical stability.

4.2.2 Tricks for modelling pulses and steps in inputs

A workaround that can be used for modelling pulses and steps in one or more
of the inputs u is to modify the corresponding columns in the data files.

Modelling a single pulse in a specific input

• Start by setting all values in the column corresponding to the specific
input in the data file equal to 0.

• If there are not already rows in the data file that correspond to the time
of the beginning and the end of the pulse, add new lines that do.

• Fill in the value of the size of the pulse in the beginning row and in all
rows between the beginning and end rows (not in the end row itself).

• If you added new lines, fill in the values for the other inputs in these rows
as well (you may have to use interpolation), and remember to mark all
the corresponding outputs as missing (1E300).

• Finally, remember to use Zero order hold interpolation between inputs
when performing the estimation to correctly obtain the desired pulse.

As an example, the following regularly sampled data file for a two-input, two-
output system has a pulse of size 1 between time 2.5 and 3.5 in the first input:

0; 0; 1; 0.1; 0.1

1; 0; 0.5; 0.2; 0.1

2; 0; 0; 0.3; 0.1

2.5; 1; 0.25; 1E300; 1E300

3; 1; 0.5; 0.1; 0.2

3.5; 0; 0.75; 1E300; 1E300

4; 0; 1; 0.2; 0.3

5; 0; 0.5; 0.3; 0.3

6; 0; 0; 0.4; 0.3
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Modelling a single step in a specific input

• Start by setting all values previous to the step in the column correspond-
ing to the specific input in the data file equal to 0.

• If there is not already a row in the data file that corresponds to the time
of the step, add a new line that does.

• Fill in the value of the size of the step in this and all subsequent rows.

• If you added a new line, fill in the values for the other inputs in this row
as well (you may have to use interpolation), and remember to mark all
the corresponding outputs as missing (1E300).

• Finally, remember to use Zero order hold interpolation between inputs
when performing the estimation to correctly obtain the desired step.

As an example, the following regularly sampled data file for a two-input, two-
output system has a step of size 1 at time 2.5 in the first input:

0; 0; 1; 0.1; 0.1

1; 0; 0.5; 0.2; 0.1

2; 0; 0; 0.3; 0.1

2.5; 1; 0.25; 1E300; 1E300

3; 1; 0.5; 0.2; 0.3

4; 1; 1; 0.3; 0.3

5; 1; 0.5; 0.4; 0.3

6; 1; 0; 0.5; 0.3
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Troubleshooting

This chapter focuses on what to do if problems occur while running CTSM.

5.1 Common error messages

This section explains the error messages that may occur while running CTSM
and seeks to provide information about how to avoid the corresponding errors.

5.1.1 GUI input errors

All input to CTSM provided via the dialogs for New Model Specification, Spe-
cification of Data for Estimation, Specification of Export of Results, Specification
of Data for Validation, Filter Settings, Optimisation Settings and Advanced Set-
tings is checked immediately upon being typed in, and all errors are reported
via error messages intended to be selfexplanatory. The latter also applies to
errors in the typed in model equations revealed when the model is analyzed.

5.1.2 Computational errors

Within CTSM’s computational code, i.e. within the code used for estimation
or generation of validation data, a number of errors may occur due to misspe-
cification or numerical problems, some of which are more common than others.

Common errors

The following computational errors are the most common:

Unable to calculate matrix exponential!

To solve this problem (within the iterated extended Kalman filter), try increasing the
Number of subsamples in iterated extended Kalman filter (see Section 3.5.1).
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Unable to perform numerical ODE solution!

To solve this problem (within the iterated extended Kalman filter), try decreasing
the Tolerance for numerical ODE solution (see Section 3.5.1).

The maximum number of objective function evaluations has been exceeded!

The maximum objective function value (1e300) has been exceeded!

The measurement noise covariance matrix is not positive definite!

The state covariance matrix is not positive definite!

To solve these problems (with optimisation), try different Initial value’s and different

limits on some of the initial states and parameters (see Section 3.3.1).

Uncommon errors

The following computational errors are much less common:

The amount of data available is insufficient to perform the estimation!

To solve this problem, provide a data file with more observations.

The prior covariance matrix is not positive definite!

To solve this specification problem, make sure the Prior Correlation Matrix and the
Prior std. dev.’s have been correctly specified (see Section 3.3.1).

Unable to determine reciprocal condition number!

Unable to compute singular value decomposition!

Unable to solve system of linear equations!

To solve these problems (with linear algebra), try different Initial value’s and maybe

different limits on some of the initial states and parameters (see Section 3.3.1).
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5.1.3 Exceptions

In addition to the above errors, a number of exceptions may be triggered if
something unexpected happens within the program’s code. If an exception
occurs, CTSM displays an error message explaining in which part of the code
the exception occured. If you experience this, you are kindly asked to file a
bug report, which describes, if possible, what made the exception occur.

5.2 Frequently asked questions

Other reports on problems with CTSM, and how they may be solved, can be
found in the FAQ section of the program homepage:

http://www.imm.dtu.dk/ctsm
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A

Example: LTI model of the
heat dynamics of a wall

This appendix provides an example of using CTSM for estimating parameters
in an LTI model of the heat dynamics of a wall. The model file generated in
this example and the two data files used can be found in a subdirectory of the
documentation directory (a subdirectory of the main directory CTSM23). The
files are also available for download on the program homepage:

http://www.imm.dtu.dk/ctsm

A.1 Model equations

Imagine that we want to estimate the parameters in a simple model of the heat
dynamics of a wall. The system equation of the model is:
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(A.1)

where the state variables T1 and T2 are the outer wall temperature and the inner
wall temperature, the input variables Te and Ti are the outdoor temperature
and the indoor temperature, and G1, G2, H1, H2 and H3 are parameters of
the thermal network describing the wall. The measurement equation is:
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] (
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)

k

+ ek (A.2)

where the output variable (qi) is the heat flux and ek ∈ N (0, S). The true
parameter values used for generating the data we will use are given in Table A.1.
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G1 G2 H1 H2 H3 σ11 σ22 S
100 50 1 2 0.5 0 0 0.01

Table A.1. True values of the parameters of the wall heat dynamics model.

A.2 Setting up the model

We begin our work by starting up CTSM (see Section 3.1).

A.2.1 Creating a new model

We then select the New model action, provide the appropriate information (i.e.
that the model is linear time invariant and has 2 inputs, 1 output and 2 states)
in the New Model Specification dialog and press OK (see Figure A.1).

�

Figure A.1. The New Model Specification dialog with values assigned.

A.2.2 Typing in the model equations

The GUI now appears as in Figure A.2 and we are ready to type in the model
equations. After doing this, the GUI appears as in Figure A.3.

A.2.3 Analyzing the model equations

We are now ready to let CTSM’s interpreter analyze the model equations,
so we select the Analyze model action. When analyzing the model equations
the interpreter first checks for compliance with the rules for typing in model
equations (see Section 3.2.2) and then determines the symbolic names of the
parameters of the model, which are then displayed along with the symbolic
names of the initial states under the Parameters tab as in Figure A.4.
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�

Figure A.2. GUI when the new model has been created.

�

Figure A.3. GUI when the model equations have been typed in.
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�

Figure A.4. GUI when the model has been analyzed.

As expected, CTSM finds 2 initial states and 8 parameters in the model.

A.3 Estimating parameters

We are now ready to set up an estimation problem.

A.3.1 Specifying estimation method

To set up an estimation problem, we have to specify an estimation method for
each of the initial states and parameters (see Section 3.3.1). After we have
finished doing this, the GUI appears as in Figure A.5.

A.3.2 Specifying estimation data

We are now ready to start the estimation, so we select the Estimate parame-
ters action and the dialog for Specification of Data for Estimation appears (see
Figure A.6), and we can select the data file(s), we want to use for the esti-
mation. Apart from specifying data file(s), we must provide some additional
information for the program as shown in Section 3.3.2. We want to use the data
file ltidata.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that and press OK, and the computation starts.
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�

Figure A.5. GUI when estimation methods have been specified.

�

Figure A.6. The Specification of Data for Estimation dialog.
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A.3.3 Monitoring computation progress

When the computation has commenced, the GUI appears as in Figure A.7, and
we can monitor the progress of the computation as shown in Section 3.3.3.

�

Figure A.7. GUI when the computation has commenced.

A.3.4 Interpreting estimation results

Once the computation is complete, and the initial states and parameters have
been succesfully estimated, the GUI appears as in Figure A.8 and we are ready
to take a look at the results (see Section 3.3.4 for details about interpreting
results). Inspecting the results of the estimation we have performed, there
does not seem to be any particular need for changing optimisation settings or
loosening any limits on the initial states or parameters to try to obtain more
accurate results. Furthermore, comparing the Estimates with the true values
listed in Table A.1, we see that they are in very good agreement.

A.4 Generating validation data

Having estimated the initial states and parameters, we have the possibility of
generating validation data for performing residual analysis.
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�

Figure A.8. GUI when the initial states and parameters have been estimated.

A.4.1 Generating pure simulation data

To demonstrate how to generate pure simulation data, we select the Generate
pure simulation data action and the dialog for Specification of Data for Validation
appears (see Figure A.9), and we can select the data file, we want to use (see
Section 3.3.2 for details about specifying a data file). We want to use the data
file ltidatawind.csv with Constant sample time and Zero order hold inter-
polation between inputs, so we specify that, press OK, and computation starts.

A.4.2 Generating prediction data

To demonstrate how to generate prediction data, we select the Generate predic-
tion data action and the dialog for Specification of Data for Validation appears
(see Figure A.9), and we can select the data file, we want to use (see Sec-
tion 3.3.2 for details about specifying a data file). We want to use the data file
ltidatawind.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that, press OK, and computation starts.

A.4.3 Generating filtering data

To demonstrate how to generate filtering data, we select the Generate filter-
ing data action and the dialog for Specification of Data for Validation appears
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�

Figure A.9. The Specification of Data for Validation dialog.

(see Figure A.9), and we can select the data file, we want to use (see Sec-
tion 3.3.2 for details about specifying a data file). We want to use the data file
ltidatawind.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that, press OK, and computation starts.

A.5 Saving the model

We now want to finish working with the model, but before we do that, we would
like to save it, so we can use it later on. We do that by selecting the Save model
action, which allows us to specify an output file for saving the model.

We save the model in the file lti.ctsm, and if we want to work with it again,
we can re-open it by selecting the Open model action.
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Example: NL model of a
fed-batch bioreactor

This appendix provides an example of using CTSM for estimating parameters
in an NL model of a fed-batch bioreactor. The model file generated in this
example and the two data files used can be found in a subdirectory of the
documentation directory (a subdirectory of the main directory CTSM23). The
files are also available for download on the program homepage:

http://www.imm.dtu.dk/ctsm

B.1 Model equations

Imagine that we want to estimate the parameters in a simple model of a fed-
batch bioreactor. The system equation of the model is:

d




X
S
V


 =




µ(S)X − FX
V

−µ(S)X
Y + F (SF−S)

V

F


dt +




σ11 0 0
0 σ22 0
0 0 σ33


dωt (B.1)

where the states X, S and V are the biomass concentration, the substrate
concentration and the volume, the input F is the feed flow rate, Y is a yield
coefficient and SF is the feed concentration. The growth rate µ(S) is:

µ(S) = µmax
S

K2S2 + S + K1
(B.2)

where µmax, K1 and K2 are kinetic parameters. The measurement equation is:
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where y1, y2 and y3 are outputs. The true parameter values used for generating
the data we will be using for the estimation are given in Table B.1.
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µmax K1 K2 Y SF σ11 σ22 σ33 S11 S22 S33

1 0.03 0.5 0.5 10 0 0 0 0.01 0.001 0.01

Table B.1. True values of the parameters of the fed-batch bioreactor model.

B.2 Setting up the model

We begin our work by starting up CTSM (see Section 3.1).

B.2.1 Creating a new model

We then select the New model action, provide the appropriate information (i.e.
that the model is nonlinear and has 1 input, 3 outputs and 3 states) in the New
Model Specification dialog and press OK (see Figure B.1).

�

Figure B.1. The New Model Specification dialog with values assigned.

Note that we have also specified that we want to use 1 algebraic equation to
avoid having to type in the expression for the growth rate µ(S) more than once.

B.2.2 Typing in the model equations

The GUI now appears as in Figure B.2 and we are ready to type in the model
equations. After doing this, the GUI appears as in Figure B.3. Note that
we have typed in the expression for the growth rate µ(S) on the right hand
side of the algebraic equation and introduced the abbreviation mu on the left
hand side. This abbreviation we have then used in place of µ(S) in the system
equations of the model to reduce the amount of typing we have to do.
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�

Figure B.2. GUI when the new model has been created.

�

Figure B.3. GUI when the model equations have been typed in.
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B.2.3 Analyzing the model equations

We are now ready to let CTSM’s interpreter analyze the model equations,
so we select the Analyze model action. When analyzing the model equations
the interpreter first checks for compliance with the rules for typing in model
equations (see Section 3.2.2) and then determines the symbolic names of the
parameters of the model, which are then displayed along with the symbolic
names of the initial states under the Parameters tab as in Figure B.4.

�

Figure B.4. GUI when the model has been analyzed.

As expected, CTSM finds 3 initial states and 11 parameters in the model.

B.3 Estimating parameters

We are now ready to set up an estimation problem.

B.3.1 Specifying estimation method

To set up an estimation problem, we have to specify an estimation method for
each of the initial states and parameters (see Section 3.3.1). After we have
finished doing this, the GUI appears as in Figure B.5.
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�

Figure B.5. GUI when estimation methods have been specified.

B.3.2 Specifying estimation data

We are now ready to start the estimation, so we select the Estimate parameters
action and the dialog for Specification of Data for Estimation appears (see Fi-
gure B.6), and we can select the data file(s), we want to use for the estimation.

�

Figure B.6. The Specification of Data for Estimation dialog.

Apart from specifying data file(s), we must provide some additional information
for the program as shown in Section 3.3.2. We only want to use the data
file sde0 1.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that and press OK, and the computation starts.
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B.3.3 Monitoring computation progress

When the computation has commenced, the GUI appears as in Figure B.7, and
we can monitor the progress of the computation as shown in Section 3.3.3.

�

Figure B.7. GUI when the computation has commenced.

B.3.4 Interpreting estimation results

Once the computation is complete, and the initial states and parameters have
been succesfully estimated, the GUI appears as in Figure B.8 and we are ready
to take a look at the results (see Section 3.3.4 for details about interpreting
results). Inspecting the results of the estimation we have performed, there
does not seem to be any particular need for changing optimisation settings or
loosening any limits on the initial states or parameters to try to obtain more
accurate results. Furthermore, comparing the Estimates with the true values
listed in Table B.1, we see that they are in very good agreement.

B.4 Generating validation data

Having estimated the initial states and parameters, we have the possibility of
generating validation data for performing residual analysis.
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�

Figure B.8. GUI when the initial states and parameters have been estimated.

B.4.1 Generating pure simulation data

To demonstrate how to generate pure simulation data, we select the Generate
pure simulation data action and the dialog for Specification of Data for Validation
appears (see Figure B.9), and we can select the data file, we want to use (see
Section 3.3.2 for details about specifying a data file). We want to use the data
file sde0 2.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that and press OK, and computation starts.

B.4.2 Generating prediction data

To demonstrate how to generate prediction data, we select the Generate predic-
tion data action and the dialog for Specification of Data for Validation appears
(see Figure B.9), and we can select the data file, we want to use (see Sec-
tion 3.3.2 for details about specifying a data file). We want to use the data
file sde0 2.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that and press OK, and computation starts.

B.4.3 Generating filtering data

To demonstrate how to generate filtering data, we select the Generate filtering
data action and the dialog for Specification of Data for Validation appears (see
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�

Figure B.9. The Specification of Data for Validation dialog.

Figure B.9), and we can select the data file, we want to use (see Section 3.3.2 for
details about specifying a data file). We want to use the data file sde0 2.csv
with Constant sample time and Zero order hold interpolation between inputs,
so we specify that and press OK, and computation starts.

B.4.4 Generating smoothing data

To demonstrate how to generate smoothing data, we select the Generate smooth-
ing data action and the dialog for Specification of Data for Validation appears
(see Figure B.9), and we can select the data file, we want to use (see Sec-
tion 3.3.2 for details about specifying a data file). We want to use the data
file sde0 2.csv with Constant sample time and Zero order hold interpolation
between inputs, so we specify that and press OK, and computation starts.

B.5 Saving the model

We now want to finish working with the model, but before we do that, we would
like to save it, so we can use it later on. We do that by selecting the Save model
action, which allows us to specify an output file for saving the model.

We save the model in the file nl.ctsm, and if we want to work with it again,
we can re-open it by selecting the Open model action.
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