
Continuous Time
Stochastic Modelling

CTSM 2.3
-

Mathematics Guide

Niels Rode Kristensen, Henrik Madsen

December 10, 2003

Technical University of Denmark

Copyright c© Niels Rode Kristensen, Henrik Madsen, December 10, 2003

Contents

1 The mathematics behind the algorithms of CTSM 1

1.1 Parameter estimation . 1

1.1.1 Model structures . 1

1.1.2 Parameter estimation methods 2

1.1.3 Filtering methods . 5

1.1.4 Data issues . 20

1.1.5 Optimisation issues . 22

1.1.6 Performance issues . 26

1.2 Other features . 26

1.2.1 Various statistics . 26

1.2.2 Validation data generation 28

References 31

iv Contents

1

The mathematics behind
the algorithms of CTSM

The following is a complete mathematical outline of the algorithms of CTSM.

1.1 Parameter estimation

The primary feature in CTSM is estimation of parameters in continuous-
discrete stochastic state space models on the basis of experimental data.

1.1.1 Model structures

CTSM differentiates between three different model structures for continuous-
discrete stochastic state space models as outlined in the following.

1.1.1.1 The nonlinear model

The most general of these model structures is the nonlinear (NL) model, which
can be described by the following equations:

dxt = f(xt,ut, t, θ)dt + σ(ut, t,θ)dωt (1.1)
yk = h(xk, uk, tk, θ) + ek (1.2)

where t ∈ R is time, xt ∈ X ⊂ Rn is a vector of state variables, ut ∈ U ⊂ Rm

is a vector of input variables, yk ∈ Y ⊂ Rl is a vector of output variables,
θ ∈ Θ ⊂ Rp is a vector of parameters, f(·) ∈ Rn, σ(·) ∈ Rn×n and h(·) ∈ Rl

are nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0, S(uk, tk, θ)).

2 The mathematics behind the algorithms of CTSM

1.1.1.2 The linear time-varying model

A special case of the nonlinear model is the linear time-varying (LTV) model,
which can be described by the following equations:

dxt = (A(xt, ut, t, θ)xt + B(xt, ut, t, θ)ut) dt + σ(ut, t, θ)dωt (1.3)
yk = C(xk, uk, tk,θ)xk + D(xk,uk, tk, θ)uk + ek (1.4)

where t ∈ R is time, xt ∈ X ⊂ Rn is a state vector, ut ∈ U ⊂ Rm is an input
vector, yk ∈ Y ⊂ Rl is an output vector, θ ∈ Θ ⊂ Rp is a vector of parameters,
A(·) ∈ Rn×n, B(·) ∈ Rn×m, σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are
nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0, S(uk, tk, θ)).

1.1.1.3 The linear time-invariant model

A special case of the linear time-varying model is the linear time-invariant
(LTI) model, which can be described by the following equations:

dxt = (A(θ)xt + B(θ)ut) dt + σ(θ)dωt (1.5)
yk = C(θ)xk + D(θ)uk + ek (1.6)

where t ∈ R is time, xt ∈ X ⊂ Rn is a state vector, ut ∈ U ⊂ Rm is an input
vector, yk ∈ Y ⊂ Rl is an output vector, θ ∈ Θ ⊂ Rp is a vector of parameters,
A(·) ∈ Rn×n, B(·) ∈ Rn×m, σ(·) ∈ Rn×n, C(·) ∈ Rl×n and D(·) ∈ Rl×m are
nonlinear functions, {ωt} is an n-dimensional standard Wiener process and
{ek} is an l-dimensional white noise process with ek ∈ N(0, S(θ)).

1.1.2 Parameter estimation methods

CTSM allows a number of different methods to be applied to estimate the
parameters of the above model structures as outlined in the following.

1.1.2.1 Maximum likelihood estimation

Given a particular model structure, maximum likelihood (ML) estimation of
the unknown parameters can be performed by finding the parameters θ that
maximize the likelihood function of a given sequence of measurements y0, y1,
. . . , yk, . . . , yN . By introducing the notation:

Yk = [yk,yk−1, . . . , y1,y0] (1.7)

the likelihood function is the joint probability density:

L(θ;YN) = p(YN |θ) (1.8)

1.1. Parameter estimation 3

or equivalently:

L(θ;YN) =

(
N∏

k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (1.9)

where the rule P (A ∩B) = P (A|B)P (B) has been applied to form a product
of conditional probability densities. In order to obtain an exact evaluation of
the likelihood function, the initial probability density p(y0|θ) must be known
and all subsequent conditional densities must be determined by successively
solving Kolmogorov’s forward equation and applying Bayes’ rule (Jazwinski,
1970), but this approach is computationally infeasible in practice. However,
since the diffusion terms in the above model structures do not depend on the
state variables, a simpler alternative can be used. More specifically, a method
based on Kalman filtering can be applied for LTI and LTV models, and an
approximate method based on extended Kalman filtering can be applied for
NL models. The latter approximation can be applied, because the stochastic
differential equations considered are driven by Wiener processes, and because
increments of a Wiener process are Gaussian, which makes it reasonable to
assume, under some regularity conditions, that the conditional densities can be
well approximated by Gaussian densities. The Gaussian density is completely
characterized by its mean and covariance, so by introducing the notation:

ŷk|k−1 = E{yk|Yk−1, θ} (1.10)

Rk|k−1 = V {yk|Yk−1,θ} (1.11)

and:
εk = yk − ŷk|k−1 (1.12)

the likelihood function can be written as follows:

L(θ;YN) =

N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)

√
det(Rk|k−1)

(√
2π

)l

 p(y0|θ) (1.13)

where, for given parameters and initial states, εk and Rk|k−1 can be computed
by means of a Kalman filter (LTI and LTV models) or an extended Kalman
filter (NL models) as shown in Sections 1.1.3.1 and 1.1.3.2 respectively. Further
conditioning on y0 and taking the negative logarithm gives:

− ln (L(θ;YN |y0)) =
1
2

N∑

k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

(
N∑

k=1

l

)
ln(2π)

(1.14)

and ML estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (L(θ;YN |y0))} (1.15)

4 The mathematics behind the algorithms of CTSM

1.1.2.2 Maximum a posteriori estimation

If prior information about the parameters is available in the form of a prior
probability density function p(θ), Bayes’ rule can be applied to give an im-
proved estimate by forming the posterior probability density function:

p(θ|YN) =
p(YN |θ)p(θ)

p(YN)
∝ p(YN |θ)p(θ) (1.16)

and subsequently finding the parameters that maximize this function, i.e. by
performing maximum a posteriori (MAP) estimation. A nice feature of this
expression is the fact that it reduces to the likelihood function, when no prior
information is available (p(θ) uniform), making ML estimation a special case
of MAP estimation. In fact, this formulation also allows MAP estimation on a
subset of the parameters (p(θ) partly uniform). By introducing the notation1:

µθ = E{θ} (1.17)
Σθ = V {θ} (1.18)

and:
εθ = θ − µθ (1.19)

and by assuming that the prior probability density of the parameters is Gaus-
sian, the posterior probability density function can be written as follows:

p(θ|YN) ∝

N∏

k=1

exp
(
− 1

2εT
k R−1

k|k−1εk

)

√
det(Rk|k−1)

(√
2π

)l

 p(y0|θ)

×exp
(− 1

2εT
θΣ

−1
θ εθ

)
√

det(Σθ)
(√

2π
)p

(1.20)

Further conditioning on y0 and taking the negative logarithm gives:

− ln (p(θ|YN , y0)) ∝
1
2

N∑

k=1

(
ln(det(Rk|k−1)) + εT

k R−1
k|k−1εk

)

+
1
2

((
N∑

k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT
θΣ

−1
θ εθ

(1.21)

and MAP estimates of the parameters (and optionally of the initial states) can
now be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (p(θ|YN , y0))} (1.22)

1In practice Σ� is specified as Σ� = ��R��� , where �� is a diagonal matrix of the prior
standard deviations and R� is the corresponding prior correlation matrix.

1.1. Parameter estimation 5

1.1.2.3 Using multiple independent data sets

If, instead of a single sequence of measurements, multiple consecutive, but
yet separate, sequences of measurements, i.e. Y1

N1
, Y2

N2
, . . . , Yi

Ni
, . . . , YS

NS
,

are available, a similar estimation method can be applied by expanding the
expression for the posterior probability density function to the general form:

p(θ|Y) ∝

S∏

i=1

Ni∏

k=1

exp
(
− 1

2 (εi
k)T (Ri

k|k−1)−1εi
k

)
√

det(Ri
k|k−1)

(√
2π

)l

 p(yi

0|θ)

×exp
(− 1

2εT
θΣ

−1
θ εθ

)
√

det(Σθ)
(√

2π
)p

(1.23)

where:
Y = [Y1

N1
,Y2

N2
, . . . ,Yi

Ni
, . . . ,YS

NS
] (1.24)

and where the individual sequences of measurements are assumed to be stochas-
tically independent. This formulation allows MAP estimation on multiple data
sets, but, as special cases, it also allows ML estimation on multiple data sets
(p(θ) uniform), MAP estimation on a single data set (S = 1) and ML estimation
on a single data set (p(θ) uniform, S = 1). Further conditioning on:

y0 = [y1
0, y

2
0, . . . , y

i
0, . . . , y

S
0] (1.25)

and taking the negative logarithm gives:

− ln (p(θ|Y,y0)) ∝ 1
2

S∑

i=1

Ni∑

k=1

(
ln(det(Ri

k|k−1)) + (εi
k)T(Ri

k|k−1)
−1εi

k

)

+
1
2

((
S∑

i=1

Ni∑

k=1

l

)
+ p

)
ln(2π)

+
1
2

ln(det(Σθ)) +
1
2
εT
θΣ

−1
θ εθ

(1.26)

and estimates of the parameters (and optionally of the initial states) can now
be determined by solving the following nonlinear optimisation problem:

θ̂ = arg min
θ∈Θ

{− ln (p(θ|Y,y0))} (1.27)

1.1.3 Filtering methods

CTSM computes the innovation vectors εk (or εi
k) and their covariance matri-

ces Rk|k−1 (or Ri
k|k−1) recursively by means of a Kalman filter (LTI and LTV

models) or an extended Kalman filter (NL models) as outlined in the following.

6 The mathematics behind the algorithms of CTSM

1.1.3.1 Kalman filtering

For LTI and LTV models εk (or εi
k) and Rk|k−1 (or Ri

k|k−1) can be computed
for a given set of parameters θ and initial states x0 by means of a continuous-
discrete Kalman filter, i.e. by means of the output prediction equations:

ŷk|k−1 = Cx̂k|k−1 + Duk (1.28)

Rk|k−1 = CP k|k−1C
T + S (1.29)

the innovation equation:
εk = yk − ŷk|k−1 (1.30)

the Kalman gain equation:

Kk = P k|k−1C
T R−1

k|k−1 (1.31)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (1.32)

P k|k = P k|k−1 −KkRk|k−1K
T
k (1.33)

and the state prediction equations:

dx̂t|k
dt

= Ax̂t|k + But , t ∈ [tk, tk+1[(1.34)

dP t|k
dt

= AP t|k + P t|kAT + σσT , t ∈ [tk, tk+1[(1.35)

where the following shorthand notation applies in the LTV case:

A = A(x̂t|k−1,ut, t,θ) , B = B(x̂t|k−1,ut, t, θ)
C = C(x̂k|k−1, uk, tk, θ) , D = D(x̂k|k−1, uk, tk,θ)

σ = σ(ut, t, θ) , S = S(uk, tk,θ)
(1.36)

and the following shorthand notation applies in the LTI case:

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)
σ = σ(θ) , S = S(θ)

(1.37)

Initial conditions for the Kalman filter are x̂t|t0 = x0 and P t|t0 = P 0, which
may either be pre-specified or estimated along with the parameters as a part
of the overall problem (see Section 1.1.3.4). In the LTI case, and in the LTV
case, if A, B, C, D, σ and S are assumed constant between samples2, (1.34)

2In practice the time interval t ∈ [tk, tk+1[is subsampled for LTV models, and A, B, C,
D, � and S are evaluated at each subsampling instant to provide a better approximation.

1.1. Parameter estimation 7

and (1.35) can be replaced by their discrete time counterparts, which can be
derived from the solution to the stochastic differential equation:

dxt = (Axt + But) dt + σdωt , t ∈ [tk, tk+1[(1.38)

i.e. from:

xtk+1 = eA(tk+1−tk)xtk
+

∫ tk+1

tk

eA(tk+1−s)Busds+
∫ tk+1

tk

eA(tk+1−s)σdωs (1.39)

which yields:

x̂k+1|k = E{xtk+1 |xtk
} = eA(tk+1−tk)x̂k|k +

∫ tk+1

tk

eA(tk+1−s)Busds (1.40)

P k+1|k = E{xtk+1x
T
tk+1

|xtk
} = eA(tk+1−tk)P k|k

(
eA(tk+1−tk)

)T

+
∫ tk+1

tk

eA(tk+1−s)σσT
(
eA(tk+1−s)

)T

ds
(1.41)

where the following shorthand notation applies in the LTV case:

A = A(x̂k|k−1, uk, tk,θ) , B = B(x̂k|k−1, uk, tk, θ)
C = C(x̂k|k−1, uk, tk, θ) , D = D(x̂k|k−1, uk, tk,θ)

σ = σ(uk, tk, θ) , S = S(uk, tk, θ)
(1.42)

and the following shorthand notation applies in the LTI case:

A = A(θ) , B = B(θ)
C = C(θ) , D = D(θ)
σ = σ(θ) , S = S(θ)

(1.43)

In order to be able to use (1.40) and (1.41), the integrals of both equations
must be computed. For this purpose the equations are rewritten to:

x̂k+1|k = eA(tk+1−tk)x̂k|k +
∫ tk+1

tk

eA(tk+1−s)Busds

= eAτs x̂k|k +
∫ tk+1

tk

eA(tk+1−s)B (α(s− tk) + uk) ds

= Φsx̂k|k +
∫ τs

0

eAsB (α(τs − s) + uk) ds

= Φsx̂k|k −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uk)

(1.44)

8 The mathematics behind the algorithms of CTSM

and:

P k+1|k = eA(tk+1−tk)P k|k
(
eA(tk+1−tk)

)T

+
∫ tk+1

tk

eA(tk+1−s)σσT
(
eA(tk+1−s)

)T

ds

= eAτsP k|k
(
eAτs

)T
+

∫ τs

0

eAsσσT
(
eAs

)T
ds

= ΦsP k|kΦ
T
s +

∫ τs

0

eAsσσT
(
eAs

)T
ds

(1.45)

where τs = tk+1 − tk and Φs = eAτs , and where:

α =
uk+1 − uk

tk+1 − tk
(1.46)

has been introduced to allow assumption of either zero order hold (α = 0) or
first order hold (α 6= 0) on the inputs between sampling instants. The matrix
exponential Φs = eAτs can be computed by means of a Padé approximation
with repeated scaling and squaring (Moler and van Loan, 1978). However,
both Φs and the integral in (1.45) can be computed simultaneously through:

exp
([−A σσT

0 AT

]
τs

)
=

[
H1(τs) H2(τs)

0 H3(τs)

]
(1.47)

by combining submatrices of the result3 (van Loan, 1978), i.e.:

Φs = HT
3 (τs) (1.48)

and: ∫ τs

0

eAsσσT
(
eAs

)T
ds = HT

3 (τs)H2(τs) (1.49)

Alternatively, this integral can be computed from the Lyapunov equation:

ΦsσσT ΦT
s − σσT = A

∫ τs

0

eAsσσT
(
eAs

)T
ds

+
∫ τs

0

eAsσσT
(
eAs

)T
dsAT

(1.50)

but this approach has been found to be less feasible. The integrals in (1.44)
are not as easy to deal with, especially if A is singular. However, this problem
can be solved by introducing the singular value decomposition (SVD) of A, i.e.
UΣV T, transforming the integrals and subsequently computing these.

3Within CTSM the specific implementation is based on the algorithms of Sidje (1998).

1.1. Parameter estimation 9

The first integral can be transformed as follows:

∫ τs

0

eAssds = U

∫ τs

0

UT eAsUsdsUT = U

∫ τs

0

eÃssdsUT (1.51)

and, if A is singular, the matrix Ã = ΣV T U = UT AU has a special structure:

Ã =
[
Ã1 Ã2

0 0

]
(1.52)

which allows the integral to be computed as follows:

∫ τs

0

eÃssds =
∫ τs

0

(
Is +

[
Ã1 Ã2

0 0

]
s2 +

[
Ã1 Ã2

0 0

]2
s3

2
+ · · ·

)
ds

=
∫ τs

0

(
Is +

[
Ã1 Ã2

0 0

]
s2 +

[
Ã

2

1 Ã1Ã2

0 0

]
s3

2
+ · · ·

)
ds

=

[∫ τs

0
eÃ1ssds

∫ τs

0
Ã
−1

1

(
eÃ1s − I

)
sÃ2ds

0 I
τ2

s

2

]

=

[[
Ã
−1

1 eÃ1s
(
Is− Ã

−1

1

)]τs

0
0

Ã
−1

1

[
Ã
−1

1 eÃ1s
(
Is− Ã

−1

1

)
− I s2

2

]τs

0
Ã2

I
τ2

s

2

]

=

[
Ã
−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)

0

Ã
−1

1

(
Ã
−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
− I

τ2
s

2

)
Ã2

I
τ2

s

2

]

(1.53)

where Φ̃
1

s is the upper left part of the matrix:

Φ̃s = UT ΦsU =

[
Φ̃

1

s Φ̃
2

s

0 I

]
(1.54)

The second integral can be transformed as follows:

∫ τs

0

eAsds = U

∫ τs

0

UT eAsUdsUT = U

∫ τs

0

eÃsdsUT (1.55)

10 The mathematics behind the algorithms of CTSM

and can subsequently be computed as follows:
∫ τs

0

eÃsds =
∫ τs

0

(
I +

[
Ã1 Ã2

0 0

]
s +

[
Ã1 Ã2

0 0

]2
s2

2
+ · · ·

)
ds

=
∫ τs

0

(
I +

[
Ã1 Ã2

0 0

]
s +

[
Ã

2

1 Ã1Ã2

0 0

]
s2

2
+ · · ·

)
ds

=

[∫ τs

0
eÃ1sds

∫ τs

0
Ã
−1

1

(
eÃ1s − I

)
Ã2ds

0 Iτs

]

=

[[
Ã
−1

1 eÃ1s
]τs

0
Ã
−1

1

[
Ã
−1

1 eÃ1s − Is
]τs

0
Ã2

0 Iτs

]

=

[
Ã
−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã
−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]

(1.56)

Depending on the specific singularity of A (see Section 1.1.3.3 for details on
how this is determined in CTSM) and the particular nature of the inputs,
several different cases are possible as shown in the following.

General case: Singular A, first order hold on inputs

In the general case, the Kalman filter prediction can be calculated as follows:

x̂j+1 = Φsx̂j −U

∫ τs

0

eÃssdsUT Bα + U

∫ τs

0

eÃsdsUT B (ατs + uj) (1.57)

with:
∫ τs

0

eÃsds =

[
Ã
−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã
−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(1.58)

and:
∫ τs

0

eÃssds =

[
Ã
−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)

0

Ã
−1

1

(
Ã
−1

1

(
−Ã

−1

1

(
Φ̃

1

s − I
)

+ Φ̃
1

sτs

)
− I

τ2
s

2

)
Ã2

I
τ2

s

2

] (1.59)

Special case no. 1: Singular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j + U

∫ τs

0

eÃsdsUT Buj (1.60)

1.1. Parameter estimation 11

with:

∫ τs

0

eÃsds =

[
Ã
−1

1

(
Φ̃

1

s − I
)

Ã
−1

1

(
Ã
−1

1

(
Φ̃

1

s − I
)
− Iτs

)
Ã2

0 Iτs

]
(1.61)

Special case no. 2: Nonsingular A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uj) (1.62)

with: ∫ τs

0

eAsds = A−1 (Φs − I) (1.63)

and: ∫ τs

0

eAssds = A−1
(−A−1 (Φs − I) + Φsτs

)
(1.64)

Special case no. 3: Nonsingular A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = Φsx̂j +
∫ τs

0

eAsdsBuj (1.65)

with: ∫ τs

0

eAsds = A−1 (Φs − I) (1.66)

Special case no. 4: Identically zero A, first order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j −
∫ τs

0

eAssdsBα +
∫ τs

0

eAsdsB (ατs + uj) (1.67)

with: ∫ τs

0

eAsds = Iτs (1.68)

and: ∫ τs

0

eAssds = I
τ2
s

2
(1.69)

12 The mathematics behind the algorithms of CTSM

Special case no. 5: Identically zero A, zero order hold on inputs

The Kalman filter prediction for this special case can be calculated as follows:

x̂j+1 = x̂j +
∫ τs

0

eAsdsBuj (1.70)

with: ∫ τs

0

eAsds = Iτs (1.71)

1.1.3.2 Extended Kalman filtering

For NL models εk (or εi
k) and Rk|k−1 (or Ri

k|k−1) can be computed for a given
set of parameters θ and initial states x0 by means of a continuous-discrete
extended Kalman filter, i.e. by means of the output prediction equations:

ŷk|k−1 = h(x̂k|k−1, uk, tk,θ) (1.72)

Rk|k−1 = CP k|k−1C
T + S (1.73)

the innovation equation:
εk = yk − ŷk|k−1 (1.74)

the Kalman gain equation:

Kk = P k|k−1C
T R−1

k|k−1 (1.75)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk (1.76)

P k|k = P k|k−1 −KkRk|k−1K
T
k (1.77)

and the state prediction equations:

dx̂t|k
dt

= f(x̂t|k, ut, t, θ) , t ∈ [tk, tk+1[(1.78)

dP t|k
dt

= AP t|k + P t|kAT + σσT , t ∈ [tk, tk+1[(1.79)

where the following shorthand notation has been applied4:

A =
∂f

∂xt

∣∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

, C =
∂h

∂xt

∣∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

σ = σ(uk, tk,θ) , S = S(uk, tk,θ)

(1.80)

4Within CTSM the code needed to evaluate the Jacobians is generated through analytical
manipulation using a method based on the algorithms of Speelpenning (1980).

1.1. Parameter estimation 13

Initial conditions for the extended Kalman filter are x̂t|t0 = x0 and P t|t0 = P 0,
which may either be pre-specified or estimated along with the parameters as
a part of the overall problem (see Section 1.1.3.4). Being a linear filter, the
extended Kalman filter is sensitive to nonlinear effects, and the approximate
solution obtained by solving (1.78) and (1.79) may be too crude (Jazwinski,
1970). Moreover, the assumption of Gaussian conditional densities is only
likely to hold for small sample times. To provide a better approximation, the
time interval [tk, tk+1[is therefore subsampled, i.e. [tk, . . . , tj , . . . , tk+1[, and
the equations are linearized at each subsampling instant. This also means that
direct numerical solution of (1.78) and (1.79) can be avoided by applying the
analytical solutions to the corresponding linearized propagation equations:

dx̂t|j
dt

= f(x̂j|j−1, uj , tj ,θ) + A(x̂t − x̂j) + B(ut − uj), t ∈ [tj , tj+1[(1.81)

dP t|j
dt

= AP t|j + P t|jA
T + σσT , t ∈ [tj , tj+1[(1.82)

where the following shorthand notation has been applied5:

A =
∂f

∂xt

∣∣∣∣
x=x̂j|j−1,u=uj ,t=tj ,θ

, B =
∂f

∂ut

∣∣∣∣
x=x̂j|j−1,u=uj ,t=tj ,θ

σ = σ(uj , tj ,θ) , S = S(uj , tj , θ)

(1.83)

The solution to (1.82) is equivalent to the solution to (1.35), i.e.:

P j+1|j = ΦsP j|jΦ
T
s +

∫ τs

0

eAsσσT
(
eAs

)T
ds (1.84)

where τs = tj+1 − tj and Φs = eAτs . The solution to (1.81) is not as easy to
find, especially if A is singular. Nevertheless, by simplifying the notation, i.e.:

dx̂t

dt
= f + A(x̂t − x̂j) + B(ut − uj) , t ∈ [tj , tj+1[(1.85)

and introducing:

α =
uj+1 − uj

tj+1 − tj
(1.86)

to allow assumption of either zero order hold (α = 0) or first order hold (α 6= 0)
on the inputs between sampling instants, i.e.:

dx̂t

dt
= f + A(x̂t − x̂j) + B(α(t− tj) + uj − uj) , t ∈ [tj , tj+1[(1.87)

5Within CTSM the code needed to evaluate the Jacobians is generated through analytical
manipulation using a method based on the algorithms of Speelpenning (1980).

14 The mathematics behind the algorithms of CTSM

and by introducing the singular value decomposition (SVD) of A, i.e. UΣV T ,
a solvable equation can be obtained as follows:

dx̂t

dt
= f + UΣV T (x̂t − x̂j) + Bα(t− tj)

UT dx̂t

dt
= UT f + UT UΣV T UUT (x̂t − x̂j) + UT Bα(t− tj)

dzt

dt
= UT f + ΣV T U(zt − zj) + UT Bα(t− tj)

dzt

dt
= f̃ + Ã(zt − zj) + B̃α(t− tj) , t ∈ [tj , tj+1[

(1.88)

where the transformation zt = UT x̂t has been introduced along with the vector
f̃ = UT f and the matrices Ã = ΣV T U = UT AU and B̃ = UT B. Now, if A
is singular, the matrix Ã has a special structure:

Ã =
[
Ã1 Ã2

0 0

]
(1.89)

which makes it possible to split up the previous result in two distinct equations:

dz1
t

dt
= f̃1 + Ã1(z1

t − z1
j) + Ã2(z2

t − z2
j) + B̃1α(t− tj), t ∈ [tj , tj+1[

dz2
t

dt
= f̃2 + B̃2α(t− tj), t ∈ [tj , tj+1[

(1.90)

which can then be solved one at a time for the transformed variables. Solving
the equation for z2

t , with the initial condition z2
t=tj

= z2
j , yields:

z2
t = z2

j + f̃2(t− tj) +
1
2
B̃2α(t− tj)2 , t ∈ [tj , tj+1[(1.91)

which can then be substituted into the equation for z1
t to yield:

dz1
t

dt
= f̃1 + Ã1(z1

t − z1
j) + Ã2

(
f̃2(t− tj) +

1
2
B̃2α(t− tj)2

)

+ B̃1α(t− tj) , t ∈ [tj , tj+1[
(1.92)

Introducing, for ease of notation, the constants:

E =
1
2
Ã2B̃2α , F = Ã2f̃2 + B̃1α , G = f̃1 − Ã1z

1
j (1.93)

and the standard form of a linear inhomogenous ordinary differential equation:

dz1
t

dt
− Ã1z

1
t = E(t− tj)2 + F (t− tj) + G , t ∈ [tj , tj+1[(1.94)

1.1. Parameter estimation 15

gives the solution:

z1
t = eÃ1t

(∫
e−Ã1t

(
E(t−tj)2+F (t−tj)+G

)
dt + c

)
, t ∈ [tj , tj+1[(1.95)

which can be rearranged to:

z1
t = −Ã

−1

1

(
I(t− tj)2 + 2Ã

−1

1 (t− tj) + 2Ã
−2

1

)
E

− Ã
−1

1

((
I(t− tj) + Ã

−1

1

)
F + G

)
+ eÃ1tc , t ∈ [tj , tj+1[

(1.96)

Using the initial condition z1
t=tj

= z1
j to determine the constant c, i.e.:

z1
j = −Ã

−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ eÃ1tj c

c = e−Ã1tj

(
Ã
−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

) (1.97)

the solution can be rearranged to:

z1
t = −Ã

−1

1

(
I(t− tj)2 + 2Ã

−1

1 (t− tj) + 2Ã
−2

1

)
E

− Ã
−1

1

((
I(t− tj) + Ã

−1

1

)
F + G

)

+ eÃ1(t−tj)
(
Ã
−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

)
, t ∈ [tj , tj+1[

(1.98)

which finally yields:

z1
j+1 = −Ã

−1

1

((
Iτ2

s + 2Ã
−1

1 τs + 2Ã
−2

1

)
E +

(
Iτs + Ã

−1

1

)
F + G

)

+ Φ̃
1

s

(
Ã
−1

1

(
2Ã

−2

1 E + Ã
−1

1 F + G
)

+ z1
j

)

= −Ã
−1

1

((
Iτ2

s + 2Ã
−1

1 τs + 2Ã
−2

1

) 1
2
Ã2B̃2α

)

− Ã
−1

1

((
Iτs + Ã

−1

1

) (
Ã2f̃2 + B̃1α

)
+

(
f̃1 − Ã1z

1
j

))

+ Φ̃
1

s

(
Ã
−1

1

(
2Ã

−2

1

1
2
Ã2B̃2α + Ã

−1

1

(
Ã2f̃2 + B̃1α

)))

+ Φ̃
1

s

(
Ã
−1

1

(
f̃1 − Ã1z

1
j

)
+ z1

j

)

= z1
j − Ã

−1

1

(
1
2
Ã2B̃2ατ2

s +
(
Ã
−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

)

+
(
Φ̃

1

s − I
)

Ã
−2

1

(
Ã
−1

1 Ã2B̃2α + Ã2f̃2 + B̃1α + Ã1f̃1

)

= z1
j −

1
2
Ã
−1

1 Ã2B̃2ατ2
s − Ã

−1

1

(
Ã
−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

+ Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1

(
Ã
−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)

+ f̃1

)

(1.99)

16 The mathematics behind the algorithms of CTSM

and:

z2
j+1 = z2

j + f̃2τs +
1
2
B̃2ατ2

s (1.100)

where Φ̃
1

s is the upper left part of the matrix:

Φ̃s = UT ΦsU =

[
Φ̃

1

s Φ̃
2

s

0 I

]
(1.101)

and where the desired solution in terms of the original variables x̂j+1|j can be
found by applying the reverse transformation x̂t = Uzt.

Depending on the specific singularity of A (see Section 1.1.3.3 for details on
how this is determined in CTSM) and the particular nature of the inputs,
several different cases are possible as shown in the following.

General case: Singular A, first order hold on inputs

In the general case, the extended Kalman filter solution is given as follows:

z1
j+1|j = z1

j|j −
1
2
Ã
−1

1 Ã2B̃2ατ2
s

− Ã
−1

1

(
Ã
−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)
τs

+ Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1

(
Ã
−1

1 Ã2B̃2α+Ã2f̃2+B̃1α
)

+ f̃1

)
(1.102)

and:

z2
j+1|j = z2

j|j + f̃2τs +
1
2
B̃2ατ2

s (1.103)

where the desired solution in terms of the original variables x̂j+1|j can be found
by applying the reverse transformation x̂t = Uzt.

Special case no. 1: Singular A, zero order hold on inputs

The solution to this special case can be obtained by setting α = 0, which yields:

z1
j+1|j = z1

j|j − Ã
−1

1 Ã2f̃2τs + Ã
−1

1

(
Φ̃

1

s − I
)(

Ã
−1

1 Ã2f̃2 + f̃1

)
(1.104)

and:
z2

j+1|j = z2
j|j + f̃2τs (1.105)

where the desired solution in terms of the original variables x̂j+1|j can be found
by applying the reverse transformation x̂t = Uzt.

1.1. Parameter estimation 17

Special case no. 2: Nonsingular A, first order hold on inputs

The solution to this special case can be obtained by removing the SVD depen-
dent parts, i.e. by replacing z1

t , Ã1, B̃1 and f̃1 with xt, A, B and f respec-
tively, and by setting z2

t , Ã2, B̃2 and f̃2 to zero, which yields:

x̂j+1|j = x̂j|j −A−1Bατs + A−1 (Φs − I)
(
A−1Bα + f

)
(1.106)

Special case no. 3: Nonsingular A, zero order hold on inputs

The solution to this special case can be obtained by removing the SVD depen-
dent parts, i.e. by replacing z1

t , Ã1, B̃1 and f̃1 with xt, A, B and f respec-
tively, and by setting z2

t , Ã2, B̃2 and f̃2 to zero and α= 0, which yields:

x̂j+1|j = x̂j|j + A−1 (Φs − I)f (1.107)

Special case no. 4: Identically zero A, first order hold on inputs

The solution to this special case can be obtained by setting A to zero and
solving the original linearized state propagation equation, which yields:

x̂j+1|j = x̂j|j + fτs +
1
2
Bατ2

s (1.108)

Special case no. 5: Identically zero A, zero order hold on inputs

The solution to this special case can be obtained by setting A to zero and α = 0
and solving the original linearized state propagation equation, which yields:

x̂j+1|j = x̂j|j + fτs (1.109)

Numerical ODE solution as an alternative

The subsampling-based solution framework described above provides a bet-
ter approximation to the true state propagation solution than direct numer-
ical solution of (1.78) and (1.79), because it more accurately reflects the true
time-varying nature of the matrices A and σ in (1.79) by allowing these to
be re-evaluated at each subsampling instant. To provide an even better ap-
proximation and to handle stiff systems, which is not always possible with the
subsampling-based solution framework, an option has been included in CTSM
for applying numerical ODE solution to solve (1.78) and (1.79) simultaneously6,
which ensures intelligent re-evaluation of A and σ in (1.79).

6The specific implementation is based on the algorithms of Hindmarsh (1983), and to be
able to use this method to solve (1.78) and (1.79) simultaneously, the n-vector differential
equation in (1.78) has been augmented with an n× (n + 1)/2-vector differential equation
corresponding to the symmetric n× n-matrix differential equation in (1.79).

18 The mathematics behind the algorithms of CTSM

Iterated extended Kalman filtering

The sensitivity of the extended Kalman filter to nonlinear effects not only
means that the approximation to the true state propagation solution provided
by the solution to the state prediction equations (1.78) and (1.79) may be too
crude. The presence of such effects in the output prediction equations (1.72)
and (1.73) may also influence the performance of the filter. An option has
therefore been included in CTSM for applying the iterated extended Kalman
filter (Jazwinski, 1970), which is an iterative version of the extended Kalman
filter that consists of the modified output prediction equations:

ŷi
k|k−1 = h(ηi,uk, tk, θ) (1.110)

Ri
k|k−1 = CiP k|k−1C

T
i + S (1.111)

the modified innovation equation:

εi
k = yk − ŷi

k|k−1 (1.112)

the modified Kalman gain equation:

Ki
k = P k|k−1C

T
i (Ri

k|k−1)
−1 (1.113)

and the modified updating equations:

ηi+1 = x̂k|k−1 + Kk(εi
k −Ci(x̂k|k−1 − ηi)) (1.114)

P k|k = P k|k−1 −Ki
kRi

k|k−1(K
i
k)T (1.115)

where:

Ci =
∂h

∂xt

∣∣∣∣
x=ηi,u=uk,t=tk,θ

(1.116)

and η1 = x̂k|k−1. The above equations are iterated for i = 1, . . . , M , where M
is the maximum number of iterations, or until there is no significant difference
between consecutive iterates, whereupon x̂k|k = ηM is assigned. This way, the
influence of nonlinear effects in (1.72) and (1.73) can be reduced.

1.1.3.3 Determination of singularity

Computing the singular value decomposition (SVD) of a matrix is a computa-
tionally expensive task, which should be avoided if possible. Within CTSM
the determination of whether or not the A matrix is singular and thus whether
or not the SVD should be applied, therefore is not based on the SVD itself,
but on an estimate of the reciprocal condition number, i.e.:

κ̂−1 =
1

|A||A−1| (1.117)

where |A| is the 1-norm of the A matrix and |A−1| is an estimate of the 1-norm
of A−1. This quantity can be computed much faster than the SVD, and only
if its value is below a certain threshold (e.g. 1e-12), the SVD is applied.

1.1. Parameter estimation 19

1.1.3.4 Initial states and covariances

In order for the (extended) Kalman filter to work, the initial states x0 and their
covariance matrix P 0 must be specified. Within CTSM the initial states may
either be pre-specified or estimated by the program along with the parameters,
whereas the initial covariance matrix is calculated in the following way:

P 0 = Ps

∫ t1

t0

eAsσσT (eAs)T ds (1.118)

i.e. as the integral of the Wiener process and the dynamics of the system over
the first sample, which is then scaled by a pre-specified scaling factor Ps ≥ 1.

1.1.3.5 Factorization of covariance matrices

The (extended) Kalman filter may be numerically unstable in certain situa-
tions. The problem arises when some of the covariance matrices, which are
known from theory to be symmetric and positive definite, become non-positive
definite because of rounding errors. Consequently, careful handling of the co-
variance equations is needed to stabilize the (extended) Kalman filter. Within
CTSM, all covariance matrices are therefore replaced with their square root
free Cholesky decompositions (Fletcher and Powell, 1974), i.e.:

P = LDLT (1.119)

where P is the covariance matrix, L is a unit lower triangular matrix and D
is a diagonal matrix with dii > 0, ∀i. Using factorized covariance matrices, all
of the covariance equations of the (extended) Kalman filter can be handled by
means of the following equation for updating a factorized matrix:

P̃ = P + GDgG
T (1.120)

where P̃ is known from theory to be both symmetric and positive definite and
P is given by (1.119), and where Dg is a diagonal matrix and G is a full matrix.
Solving this equation amounts to finding a unit lower triangular matrix L̃ and
a diagonal matrix D̃ with d̃ii > 0, ∀i, such that:

P̃ = L̃D̃L̃
T

(1.121)

and for this purpose a number of different methods are available, e.g. the
method described by Fletcher and Powell (1974), which is based on the modified
Givens transformation, and the method described by Thornton and Bierman
(1980), which is based on the modified weighted Gram-Schmidt orthogonali-
zation. Within CTSM the specific implementation of the (extended) Kalman
filter is based on the latter, and this implementation has been proven to have
a high grade of accuracy as well as stability (Bierman, 1977).

20 The mathematics behind the algorithms of CTSM

Using factorized covariance matrices also facilitates easy computation of those
parts of the objective function (1.26) that depend on determinants of covariance
matrices. This is due to the following identities:

det(P) = det(LDLT) = det(D) =
∏

i

dii (1.122)

1.1.4 Data issues

Raw data sequences are often difficult to use for identification and parameter
estimation purposes, e.g. if irregular sampling has been applied, if there are
occasional outliers or if some of the observations are missing. CTSM also
provides features to deal with these issues, and this makes the program flexible
with respect to the types of data that can be used for the estimation.

1.1.4.1 Irregular sampling.

The fact that the system equation of a continuous-discrete stochastic state
space model is formulated in continuous time makes it easy to deal with ir-
regular sampling, because the corresponding state prediction equations of the
(extended) Kalman filter can be solved over time intervals of varying length.

1.1.4.2 Occasional outliers

The objective function (1.26) of the general formulation (1.27) is quadratic
in the innovations εi

k, and this means that the corresponding parameter esti-
mates are heavily influenced by occasional outliers in the data sets used for the
estimation. To deal with this problem, a robust estimation method is applied,
where the objective function is modified by replacing the quadratic term:

νi
k = (εi

k)T (Ri
k|k−1)

−1εi
k (1.123)

with a threshold function ϕ(νi
k), which returns the argument for small values

of νi
k, but is a linear function of εi

k for large values of νi
k, i.e.:

ϕ(νi
k) =

{
νi

k , νi
k < c2

c(2
√

νi
k − c) , νi

k ≥ c2 (1.124)

where c > 0 is a constant. The derivative of this function with respect to εi
k is

known as Huber’s ψ-function (Huber, 1981) and belongs to a class of functions
called influence functions, because they measure the influence of εi

k on the
objective function. Several such functions are available, but Huber’s ψ-function
has been found to be most appropriate in terms of providing robustness against
outliers without rendering optimisation of the objective function infeasible.

1.1. Parameter estimation 21

1.1.4.3 Missing observations.

The algorithms of the parameter estimation methods described above also make
it easy to handle missing observations, i.e. to account for missing values in the
output vector yi

k, for some i and some k, when calculating the terms:

1
2

S∑

i=1

Ni∑

k=1

(
ln(det(Ri

k|k−1)) + (εi
k)T (Ri

k|k−1)
−1εi

k

)
(1.125)

and:
1
2

((
S∑

i=1

Ni∑

k=1

l

)
+ p

)
ln(2π) (1.126)

in (1.26). To illustrate this, the case of extended Kalman filtering for NL models
is considered, but similar arguments apply in the case of Kalman filtering for
LTI and LTV models. The usual way to account for missing or non-informative
values in the extended Kalman filter is to formally set the corresponding ele-
ments of the measurement error covariance matrix S in (1.73) to infinity, which
in turn gives zeroes in the corresponding elements of the inverted output co-
variance matrix (Rk|k−1)−1 and the Kalman gain matrix Kk, meaning that
no updating will take place in (1.76) and (1.77) corresponding to the missing
values. This approach cannot be used when calculating (1.125) and (1.126),
however, because a solution is needed which modifies both εi

k, Ri
k|k−1 and l to

reflect that the effective dimension of yi
k is reduced. This is accomplished by

replacing (1.2) with the alternative measurement equation:

yk = E (h(xk, uk, tk, θ) + ek) (1.127)

where E is an appropriate permutation matrix, which can be constructed from
a unit matrix by eliminating the rows that correspond to the missing values
in yk. If, for example, yk has three elements, and the one in the middle is
missing, the appropriate permutation matrix is given as follows:

E =
[
1 0 0
0 0 1

]
(1.128)

Equivalently, the equations of the extended Kalman filter are replaced with the
following alternative output prediction equations:

ŷk|k−1 = Eh(x̂k|k−1,uk, tk, θ) (1.129)

Rk|k−1 = ECP k|k−1C
T ET + ESET (1.130)

the alternative innovation equation:

εk = yk − ŷk|k−1 (1.131)

22 The mathematics behind the algorithms of CTSM

the alternative Kalman gain equation:

Kk = P k|k−1C
T ET R

−1

k|k−1 (1.132)

and the alternative updating equations:

x̂k|k = x̂k|k−1 + Kkεk (1.133)

P k|k = P k|k−1 −KkRk|k−1K
T

k (1.134)

The state prediction equations remain the same, and the above replacements
in turn provide the necessary modifications of (1.125) to:

1
2

S∑

i=1

Ni∑

k=1

(
ln(det(R

i

k|k−1)) + (εi
k)T (R

i

k|k−1)
−1εi

k

)
(1.135)

whereas modifying (1.126) amounts to a simple reduction of l for the particular
values of i and k with the number of missing values in yi

k.

1.1.5 Optimisation issues

CTSM uses a quasi-Newton method based on the BFGS updating formula and
a soft line search algorithm to solve the nonlinear optimisation problem (1.27).
This method is similar to the one described by Dennis and Schnabel (1983),
except for the fact that the gradient of the objective function is approximated
by a set of finite difference derivatives. In analogy with ordinary Newton-
Raphson methods for optimisation, quasi-Newton methods seek a minimum of
a nonlinear objective function F(θ): Rp → R, i.e.:

min
θ
F(θ) (1.136)

where a minimum of F(θ) is found when the gradient g(θ) = ∂F(θ)
∂θ satisfies:

g(θ) = 0 (1.137)

Both types of methods are based on the Taylor expansion of g(θ) to first order:

g(θi + δ) = g(θi) +
∂g(θ)

∂θ
|θ=θi δ + o(δ) (1.138)

which by setting g(θi + δ) = 0 and neglecting o(δ) can be rewritten as follows:

δi = −H−1
i g(θi) (1.139)

θi+1 = θi + δi (1.140)

1.1. Parameter estimation 23

i.e. as an iterative algorithm, and this algorithm can be shown to converge to
a (possibly local) minimum. The Hessian Hi is defined as follows:

Hi =
∂g(θ)

∂θ
|θ=θi (1.141)

but unfortunately neither the Hessian nor the gradient can be computed ex-
plicitly for the optimisation problem (1.27). As mentioned above, the gradient
is therefore approximated by a set of finite difference derivatives, and a secant
approximation based on the BFGS updating formula is applied for the Hes-
sian. It is the use of a secant approximation to the Hessian that distinguishes
quasi-Newton methods from ordinary Newton-Raphson methods.

1.1.5.1 Finite difference derivative approximations

Since the gradient g(θi) cannot be computed explicitly, it is approximated by
a set of finite difference derivatives. Initially, i.e. as long as ||g(θ)|| does not
become too small during the iterations of the optimisation algorithm, forward
difference approximations are used, i.e.:

gj(θi) ≈ F(θi + δjej)−F(θi)
δj

, j = 1, . . . , p (1.142)

where gj(θi) is the j’th component of g(θi) and ej is the j’th basis vector. The
error of this type of approximation is o(δj). Subsequently, i.e. when ||g(θ)||
becomes small near a minimum of the objective function, central difference
approximations are used instead, i.e.:

gj(θi) ≈ F(θi + δjej)−F(θi − δjej)
2δj

, j = 1, . . . , p (1.143)

because the error of this type of approximation is only o(δ2
j). Unfortunately,

central difference approximations require twice as much computation (twice the
number of objective function evalutions) as forward difference approximations,
so to save computation time forward difference approximations are used ini-
tially. The switch from forward differences to central differences is effectuated
for i > 2p if the line search algorithm fails to find a better value of θ.

The optimal choice of step length for forward difference approximations is:

δj = η
1
2 θj (1.144)

whereas for central difference approximations it is:

δj = η
1
3 θj (1.145)

where η is the relative error of calculating F(θ) (Dennis and Schnabel, 1983).

24 The mathematics behind the algorithms of CTSM

1.1.5.2 The BFGS updating formula

Since the Hessian Hi cannot be computed explicitly, a secant approximation
is applied. The most effective secant approximation Bi is obtained with the
so-called BFGS updating formula (Dennis and Schnabel, 1983), i.e.:

Bi+1 = Bi +
yiy

T
i

yT
i si

− Bisis
T
i Bi

sT
i Bisi

(1.146)

where yi = g(θi+1)− g(θi) and si = θi+1 − θi. Necessary and sufficient con-
ditions for Bi+1 to be positive definite is that Bi is positive definite and that:

yT
i si > 0 (1.147)

This last demand is automatically met by the line search algorithm. Further-
more, since the Hessian is symmetric and positive definite, it can also be written
in terms of its square root free Cholesky factors, i.e.:

Bi = LiDiL
T
i (1.148)

where Li is a unit lower triangular matrix and Di is a diagonal matrix with
di

jj > 0, ∀j, so, instead of solving (1.146) directly, Bi+1 can be found by up-
dating the Cholesky factorization of Bi as shown in Section 1.1.3.5.

1.1.5.3 The soft line search algorithm

With δi being the secant direction from (1.139) (using Hi = Bi obtained from
(1.146)), the idea of the soft line search algorithm is to replace (1.140) with:

θi+1 = θi + λiδ
i (1.149)

and choose a value of λi > 0 that ensures that the next iterate decreases F(θ)
and that (1.147) is satisfied. Often λi = 1 will satisfy these demands and (1.149)
reduces to (1.140). The soft line search algorithm is globally convergent if each
step satisfies two simple conditions. The first condition is that the decrease in
F(θ) is sufficient compared to the length of the step si = λiδ

i, i.e.:

F(θi+1) < F(θi) + αg(θi)T si (1.150)

where α ∈]0, 1[. The second condition is that the step is not too short, i.e.:

g(θi+1)T si ≥ βg(θi)T si (1.151)

where β ∈]α, 1[. This last expression and g(θi)T si < 0 imply that:

yT
i si =

(
g(θi+1)− g(θi)

)T
si ≥ (β − 1)g(θi)T si > 0 (1.152)

1.1. Parameter estimation 25

which guarantees that (1.147) is satisfied. The method for finding a value of
λi that satisfies both (1.150) and (1.151) starts out by trying λi = λp = 1. If
this trial value is not admissible because it fails to satisfy (1.150), a decreased
value is found by cubic interpolation using F(θi), g(θi), F(θi + λpδ

i) and
g(θi + λpδ

i). If the trial value satisfies (1.150) but not (1.151), an increased
value is found by extrapolation. After one or more repetitions, an admissible
λi is found, because it can be proved that there exists an interval λi ∈ [λ1, λ2]
where (1.150) and (1.151) are both satisfied (Dennis and Schnabel, 1983).

1.1.5.4 Constraints on parameters

In order to ensure stability in the calculation of the objective function in (1.26),
simple constraints on the parameters are introduced, i.e.:

θmin
j < θj < θmax

j , j = 1, . . . , p (1.153)

These constraints are satisfied by solving the optimisation problem with respect
to a transformation of the original parameters, i.e.:

θ̃j = ln

(
θj − θmin

j

θmax
j − θj

)
, j = 1, . . . , p (1.154)

A problem arises with this type of transformation when θj is very close to one
of the limits, because the finite difference derivative with respect to θj may
be close to zero, but this problem is solved by adding an appropriate penalty
function to (1.26) to give the following modified objective function:

F(θ) = − ln (p(θ|Y,y0)) + P (λ, θ, θmin, θmax) (1.155)

which is then used instead. The penalty function is given as follows:

P (λ, θ, θmin,θmax) = λ

p∑

j=1

|θmin
j |

θj − θmin
j

+
p∑

j=1

|θmax
j |

θmax
j − θj

 (1.156)

for |θmin
j | > 0 and |θmax

j | > 0, j = 1, . . . , p. For proper choices of the Lagrange
multiplier λ and the limiting values θmin

j and θmax
j the penalty function has no

influence on the estimation when θj is well within the limits but will force the
finite difference derivative to increase when θj is close to one of the limits.

Along with the parameter estimates CTSM computes normalized (by multi-
plication with the estimates) derivatives of F(θ) and P (λ, θ, θmin,θmax) with
respect to the parameters to provide information about the solution. The de-
rivatives of F(θ) should of course be close to zero, and the absolute values
of the derivatives of P (λ,θ,θmin, θmax) should not be large compared to the
corresponding absolute values of the derivatives of F(θ), because this indicates
that the corresponding parameters are close to one of their limits.

26 The mathematics behind the algorithms of CTSM

1.1.6 Performance issues

Solving optimisation problems of the general type in (1.27) is a computationally
intensive task. The binary code within CTSM has therefore been optimized
for maximum performance on all supported platforms, i.e. Linux, Solaris and
Windows. On Solaris systems CTSM also supports shared memory parallel
computing using the OpenMP Application Program Interface (API).

More specifically, the finite difference derivative approximations used to ap-
proximate the gradient of the objective function can be computed in parallel,
and Figure 1.1 shows the performance benefits of this approach in terms of re-
duced execution time and demonstrates the resulting scalability of the program
for the bioreactor example used in the User’s Guide. In this example there are
11 unknown parameters, and in theory using 11 CPU’s should therefore be
most optimal. Nevertheless, using 12 CPU’s seems to be slightly better, but
this may be due to the inherent uncertainty of the determination of execution
time. The apparently non-existing effect of adding CPU’s in the interval 6-10
is due to an uneven distribution of the workload, since in this case at least one
CPU performs two finite difference computations, while the others wait.

1.2 Other features

Secondary features of CTSM include computation of various statistics and
facilitation of residual analysis through validation data generation.

1.2.1 Various statistics

Within CTSM an estimate of the uncertainty of the parameter estimates is
obtained by using the fact that by the central limit theorem the estimator in
(1.27) is asymptotically Gaussian with mean θ and covariance:

Σθ̂ = H−1 (1.157)

where the matrix H is given by:

{hij} = −E

{
∂2

∂θi∂θj
ln (p(θ|Y,y0))

}
, i, j = 1, . . . , p (1.158)

and where an approximation to H can be obtained from:

{hij} ≈ −
(

∂2

∂θi∂θj
ln (p(θ|Y,y0))

)∣∣∣
θ=θ̂

, i, j = 1, . . . , p (1.159)

which is the Hessian evaluated at the minimum of the objective function, i.e.
Hi|θ=θ̂. As an overall measure of the uncertainty of the parameter estimates,

1.2. Other features 27

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

CPU’s

E
xe

cu
tio

n
tim

e
(s

)

(a) Performance.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

CPU’s

C
P

U
’s

(b) Scalability.

Figure 1.1. Performance (execution time vs. no. of CPU’s) and scalability (no. of
CPU’s vs. no. of CPU’s) of CTSM when using shared memory parallel computing.
Solid lines: CTSM values; dashed lines: Theoretical values (linear scalability).

the negative logarithm of the determinant of the Hessian is computed, i.e.:

− ln
(
det

(
Hi|θ=θ̂

))
(1.160)

The lower the value of this statistic, the lower the overall uncertainty of the
parameter estimates. A measure of the uncertainty of the individual parameter
estimates is obtained by decomposing the covariance matrix as follows:

Σθ̂ = σθ̂Rσθ̂ (1.161)

into σθ̂, which is a diagonal matrix of the standard deviations of the parameter
estimates, and R, which is the corresponding correlation matrix.

The asymptotic Gaussianity of the estimator in (1.27) also allows marginal
t-tests to be performed to test the hypothesis:

H0: θj = 0 (1.162)

against the corresponding alternative:

H1: θj 6= 0 (1.163)

i.e. to test whether a given parameter θj is marginally insignificant or not.
The test quantity is the value of the parameter estimate divided by the stan-
dard deviation of the estimate, and under H0 this quantity is asymptotically
t-distributed with a number of degrees of freedom DF that equals the total
number of observations minus the number of estimated parameters, i.e.:

zt(θ̂j) =
θ̂j

σθ̂j

∈ t(DF) = t

((
S∑

i=1

Ni∑

k=1

l

)
− p

)
(1.164)

28 The mathematics behind the algorithms of CTSM

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) P (t < |zt(θ̂j)|).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) P (t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|).

Figure 1.2. Illustration of computation of P (t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|) via (1.167).

where, if there are missing observations in yi
k for some i and some k, the

particular value of l is reduced with the number of missing values in yi
k. The

critical region for a test on significance level α is given as follows:

zt(θ̂j) < t(DF)α
2
∨ zt(θ̂j) > t(DF)1−α

2
(1.165)

and to facilitate these tests, CTSM computes zt(θ̂j) as well as the probabilities:

P
(
t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|

)
(1.166)

for j = 1, . . . , p. Figure 1.2 shows how these probabilities should be interpreted
and illustrates their computation via the following relation:

P
(
t<−|zt(θ̂j)| ∧ t>|zt(θ̂j)|

)
= 2

(
1− P (t < |zt(θ̂j)|)

)
(1.167)

with P (t < |zt(θ̂j)|) obtained by approximating the cumulative probability den-
sity of the t-distribution t(DF) with the cumulative probability density of the
standard Gaussian distribution N(0, 1) using the test quantity transformation:

zN (θ̂j) = zt(θ̂j)
1− 1

4DF√
1 + (zt(θ̂j))2

2DF

∈ N(0, 1) (1.168)

The cumulative probability density of the standard Gaussian distribution is
computed by approximation using a series expansion of the error function.

1.2.2 Validation data generation

To facilitate e.g. residual analysis, CTSM can also be used to generate vali-
dation data, i.e. state and output estimates corresponding to a given input data
set, using either pure simulation, prediction, filtering or smoothing.

1.2. Other features 29

1.2.2.1 Pure simulation data generation

The state and output estimates that can be generated by means of pure si-
mulation are x̂k|0 and ŷk|0, k = 0, . . . , N , along with their standard deviations
SD(x̂k|0) =

√
diag(P k|0) and SD(ŷk|0) =

√
diag(Rk|0), k = 0, . . . , N . The es-

timates are generated by the (extended) Kalman filter without updating.

1.2.2.2 Prediction data generation

The state and output estimates that can be generated by prediction are x̂k|k−j ,
j ≥ 1, and ŷk|k−j , j ≥ 1, k = 0, . . . , N , along with their standard deviations
SD(x̂k|k−j) =

√
diag(P k|k−j) and SD(ŷk|k−j) =

√
diag(Rk|k−j), k = 0, . . . , N .

The estimates are generated by the (extended) Kalman filter with updating.

1.2.2.3 Filtering data generation

The state estimates that can be generated by filtering are x̂k|k, k = 0, . . . , N ,
along with their standard deviations SD(x̂k|k) =

√
diag(P k|k), k = 0, . . . , N .

The estimates are generated by the (extended) Kalman filter with updating.

1.2.2.4 Smoothing data generation

The state estimates that can be generated by smoothing are x̂k|N , k = 0, . . . , N ,
along with their standard deviations SD(x̂k|N) =

√
diag(P k|N), k = 0, . . . , N .

The estimates are generated by means of a nonlinear smoothing algorithm
based on the extended Kalman filter (for a formal derivation of the algorithm,
see Gelb (1974)). The starting point is the following set of formulas:

x̂k|N = P k|N
(
P−1

k|k−1x̂k|k−1 + P
−1

k|kx̂k|k
)

(1.169)

P k|N =
(
P−1

k|k−1 + P
−1

k|k
)−1

(1.170)

which states that the smoothed estimate can be computed by combining a
forward filter estimate based only on past information with a backward fil-
ter estimate based only on present and “future” information. The forward
filter estimates x̂k|k−1, k = 1, . . . , N , and their covariance matrices P k|k−1,
k = 1, . . . , N , can be computed by means of the EKF formulation given above,
which is straightforward. The backward filter estimates x̂k|k, k = 1, . . . , N ,
and their covariance matrices P k|k, k = 1, . . . , N , on the other hand, must be
computed using a different set of formulas. In this set of formulas, a transform-
ation of the time variable is used, i.e. τ = tN − t, which gives the SDE model,
on which the backward filter is based, the following system equation:

dxtN−τ = −f(xtN−τ ,utn−τ , tN − τ, θ)dτ − σ(utN−τ , tN − τ, θ)dωτ (1.171)

30 The mathematics behind the algorithms of CTSM

where τ ∈ [0, tN]. The measurement equation remains unchanged. For ease of
implementation a coordinate transformation is also introduced, i.e. st = P

−1

t x̂t,
and the basic set of formulas in (1.169)-(1.170) is rewritten as follows:

x̂k|N = P k|N
(
P−1

k|k−1x̂k|k−1 + sk|k
)

(1.172)

P k|N =
(
P−1

k|k−1 + P
−1

k|k
)−1

(1.173)

The backward filter consists of the updating equations:

sk|k = sk|k+1 + CT
k S−1

k

(
yk − h(x̂k|k−1, uk, tk, θ) + Ckx̂k|k−1

)
(1.174)

P
−1

k|k = P
−1

k|k+1 + CT
k S−1

k Ck (1.175)

and the prediction equations:

dstN−τ |k
dτ

= AT
τ stN−τ |k − P

−1

tN−τ |kστσT
τ stN−τ |k (1.176)

− P
−1

tN−τ |k
(
f(x̂tN−τ |k,utN−τ , tN − τ, θ)−Aτ x̂tN−τ |k

)
(1.177)

dP
−1

tN−τ |k
dτ

= P
−1

tN−τ |kAτ + AT
τ P

−1

tN−τ |k − P
−1

tN−τ |kστσT
τ P

−1

tN−τ |k (1.178)

which are solved, e.g. by means of an ODE solver, for τ ∈ [τk, τk+1]. In all of
the above equations the following simplified notation has been applied:

Aτ =
∂f

∂xt
|x̂tN−τ|k,utN−τ ,tN−τ,θ , Ck =

∂h

∂xt
|x̂k|k−1,uk,tk,θ

στ = σ(utN−τ , tN − τ, θ) , Sk = S(uk, tk,θ)
(1.179)

Initial conditions for the backward filter are sN |N+1 = 0 and P
−1

N |N+1 = 0,
which can be derived from an alternative formulation of (1.172)-(1.173):

x̂k|N = P k|N
(
P−1

k|kx̂k|k + sk|k+1

)
(1.180)

P k|N =
(
P−1

k|k + P
−1

k|k+1

)−1

(1.181)

by realizing that the smoothed estimate must coincide with the forward filter
estimate for k = N . The smoothing feature is only available for NL models.

References

Bierman, G. J. (1977). Factorization Methods for Discrete Sequential Estima-
tion. Academic Press, New York, USA.

Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice-Hall, Englewood
Cliffs, USA.

Fletcher, R. and Powell, J. D. (1974). On the Modification of LDLT Factori-
zations. Math. Comp., 28, 1067–1087.

Gelb, A. (1974). Applied Optimal Estimation. The MIT Press, Cambridge,
USA.

Hindmarsh, A. C. (1983). ODEPACK, A Systematized Collection of ODE Sol-
vers. In R. S. Stepleman, editor, Scientific Computing (IMACS Transactions
on Scientific Computation, Vol. 1), pages 55–64. North-Holland, Amster-
dam.

Huber, P. J. (1981). Robust Statistics. Wiley, New York, USA.

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory . Academic
Press, New York, USA.

Moler, C. and van Loan, C. F. (1978). Nineteen Dubious Ways to Compute
the Exponential of a Matrix. SIAM Review , 20(4), 801–836.

Sidje, R. B. (1998). Expokit: A Software Package for Computing Matrix Ex-
ponentials. ACM Transactions on Mathematical Software, 24(1), 130–156.

Speelpenning, B. (1980). Compiling Fast Partial Derivatives of Functions Given
by Algorithms. Technical Report UILU-ENG 80 1702, University of Illinois-
Urbana, Urbana, USA.

Thornton, C. L. and Bierman, G. J. (1980). UDUT Covariance Factorization for
Kalman Filtering. In C. T. Leondes, editor, Control and Dynamic Systems.
Academic Press, New York, USA.

van Loan, C. F. (1978). Computing Integrals Involving the Matrix Exponential.
IEEE Transactions on Automatic Control , 23(3), 395–404.

32 References

