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Motivation
Accurate and efficient simulation of multiphase flow in
large-scale heterogenous natural formations is crucial
for a wide range of application, including hydrocar-
bon production optimisation, risk managementof carbon
capture and storage, water resources utilisations and
geothermal power extraction. Therefore, developing fast
linear solvers is an ongoing challenge and is necessary
due to the complexity of the models and the increasing
fidelity of the subsurface description.
In order to solve efficiently large-scale elliptic problems
and to take into account the details of the physics of
different scales in complex geological formations (see
Fig.1), the Algebraic Multiscale (AMS) solver [Wang et
al., 2012] has been developed. AMS is a multilevel algo-
rithm that constructs the solution (fine-scale) by mean of
a set of local problems coupled by a conservative global
(coarse-scale) problem, employing domain decomposi-
tion with a localization assumption.

Figure 1: Real-field reservoir model.

AMS Method
In reservoir simulation, a considerable portion of the sim-
ulation time is spent in solving a variant of the follow-
ing elliptic partial differential equation, which represent
the mass balance equation of an incompressible flow
through a porous medium

− ∇ · (λt · ∇p) = q, on Ω (1)
where p is the pressure, λt is the total mobility defined as
the ratio between the porous medium permeability and
to the fluid viscosity, and q is the source or sink term.
If we discretise the problem with a standard two-point
flux approximation scheme on a fine grid, see Fig.2

Fij = Tij(pj − pi)

where Fij is the flux between fine-cell i and fine-cell j,
and Tij is the transmissibility, we obtain the following al-
gebraic system of equations

Afpf = qf

where pf refers to the discretised pressure unknowns on
a given fine grid computational domain Ωf.

Figure 2: Two-point flux approximation scheme.

We construct the multiscale grids, see Fig.3, by first di-
viding the fine grid domain, Ωf , into subdomains, Ωc

k,
called primal coarse grid blocks. Then we define the
dual coarse grid, Ωd

m, which is constructed by joining the
centres of the primal coarse grid blocks.

Figure 3: Primal coarse, dual coarse and fine cells.

Each dual coarse cell Ωd
m defines a local subdomain on

which Equation 1 is solved locally using reduced
boundary conditions in order to obtain basis functions.
Algebraically, the basis functions are obtained by
solving

∇ · (λt∇ϕi
j) = 0, ∈ Ωd

j

∇|| · (λt∇ϕi
j)|| = 0, ∈ ∂Ωd

j

∇ · (λt∇ϕi
j) = δik, ∀xk ∈ {1, ..., Nc}

where ϕi
j is the basis function associated with the

coarse node i in the dual coarse cell Ωd
j , and || denotes

the projection of the vector or operator along the
tangential direction of ∂Ωd

j .

Figure 4: From fine-scale to coarse-scale.

The multiscale solution, p̃f , will be then calculated by
juxtaposition of the basis function with the coarse
pressure solution, pc, as coefficients, see Fig.4, namely

p ≈ p̃f =

Nd∑
j=1

Nc∑
i=1

ϕi
jp

c
i = Ppc

where P is the Nf × Nc prolongation operator

P = [ϕ1, ϕ2, . . . , ϕNc].

In order to construct the coarse-scale operator, Ac, we
need to map the fine-space into the coarse-space. To
this aim, we define the Nc × Nf restriction operator

R = PT .

So the Nc × Nc coarse-scale operator is

Ac = RAfP
which is much smaller and less expensive to solve than
the original fine-scale system. So the multiscale
solution is

p̃f = P(Ac)−1qc = P(RAfP)−1Rqf

from which we can derive the global-stage multiscale
preconditioner

M−1
g = P(RAfP)−1R

If used alone, M−1
g is rank deficient by Nf − Nc and

does not yield a convergent scheme [Manea et al.,
2015]. Due to its inability to eliminate high-frequency
error modes, so we must use it together with a local
preconditioner, M−1

l . The overall preconditioning
scheme, called two-stage algebraic multiscale solver
(TAMS) [Wang et al., 2012] can be written as

M−1
TAMS = M−1

g + M−1
l − M−1

l AfM−1
g

Fig.5 shows an application of AMS in our sequantial 2-
D reservoir simulator. In particular we can notice the
reduced number of pressure dof.

Figure 5: SPE 10 top layer, fine-scale vs. Multiscale
solutions.

AMS and PETSC
We carried out the parallel implementation within
PETSC, a framework of data structures and routines for
scalable and parallel solution of applications modelled
by PDE, which supports MPI, CUDA, OpenCL, and hy-
brid MPI-GPU parallelism. In this preliminary work we
developed a one-dimensional parallel linear solver for a
heterogeneous case without forcing term.
For the fine-scale solution we implemented the following
scheme

λ
i−1/2
t

∆x2
(pi − pi−1) +

λ
i+1/2
t

∆x2
(pi − pi+1) = qi

where λt is randomly generated

λt = 10−5 · eξ, ξ ∼ N (0, 1)

Fig.6 shows a realisation of λt and its harmonic aver-
age at the fine-cell interface, the basis function, the so-
lution, and a scalability test on 16 cores, performed on a
dual socket configuration of Intel Xeon Processor X5550,
which is sufficiently close to be O(N).
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Figure 6: 1-D AMS, λt, basis functions, solution, and
scalability on 16 cores.

Conclusions and Perspectives
▶ Promising results of AMS scalability on large-scale

problems.
▶ Fit larger problems on same hardware and extend to

multi-dimensional simulations.
▶ Next step: profile the code and show the speed-up.
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