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Abstract—The aim of this work is to compare in terms of
performance, area and power dissipation, the implementations
of complex FIR filters based on the following number represen-
tations: traditional two’s complement (TCS), Quadratic Residue
Number System (QRNS) and radix-2j Redundant Complex Num-
ber Systems (RCNS)). The resulting implementations, designed
to work at the same clock rate, show that filters implemented in
QRNS outperforms in terms of area and power dissipation the
filters implemented in TCS and RCNS.

I. INTRODUCTION

In modern electronic systems, complex arithmetic computa-
tion plays an important role in the implementation of different
Digital Signal Processing (DSP) and scientific computation
algorithms [�], [�]. Most of the interest in complex signal
processing is related to the implementation of wireless com-
munication systems based on new concepts and architectures
[�]. A very interesting tutorial paper on complex signal
processing and its applications has been presented recently
in [�]. In this paper, the importance of the use of complex
signal processing in wireless communications systems has
been shown. Regarding communication systems, one of the
most critical computations to be implemented in hardware
is complex FIR filtering. In fact, FIR filters are generally
characterized by a high order (number of taps) to obtain
sharp transition bands that, in case of high speed real time
computation, require a lot of resources and have high power
dissipation. In particular, for complex FIR filters, the hardware
complexity is mostly determined by the number of complex
multipliers (i.e. each complex multiplication is actually imple-
mented with four scalar multiplications). Different solutions
have been proposed to lower the hardware complexity of
the complex multiplication either at algorithmic level (Golub
Rule) [�], or by using different number systems such as
the Quadratic Residue Number System (QRNS) [�] and the
Quater-Imaginary Number System (QINS) [�].

The aim of this work is to compare in terms of performance,
area and power dissipation, the implementations of complex
FIR filters based on the traditional Two’s Complement System
(TCS), the QRNS and the QINS (or radix-�j) implemented in
the Redundant Complex Number Systems (RCNS) [�].

Previous work was done on both the QRNS ([�], [�]) and
on the radix-�j and the RCNS ([�0], [��], [��]). In this paper,
we compare for a specific application, the complex FIR filter,
the performance and the tradeoffs of TCS, QRNS and RCNS.

The results of the implementations show that the complex filter
implemented in QRNS has the lowest power dissipation and
the smallest area with respect to filters implemented in TCS
and RCNS.

The paper is organized as follows: in Section II a back-
ground on the QRNS and the radix-�j number systems is
given; the FIR filter architectures for the three number systems
are described in Section III; the synthesis results and the com-
parisons are discussed in Section IV. Finally, the conclusions
are drawn in Section V.

II. THE QRNS AND THE RADIX-�J NUMBER SYSTEMS

In this section, the basic theory regarding the QRNS and
the radix-2j arithmetic is briefly recalled.

A. The QRNS Number System
A Residue Number System (RNS) is defined by a set of P

relatively prime integers {m1,m2, . . . ,mP } which identify
the RNS base. Its dynamic range is given by the product
M = m1 ·m2 · . . . ·mP .
Any integer X ∈ {0, 1, 2, . . .M − 1} has a unique RNS rep-
resentation given by:

X
RNS
→ ( �X�m1

, �X�m2
, . . . , �X�mP

)

where �X�mi
denotes the operation X mod mi [��]. Opera-

tions on different mi (moduli) are done in parallel

Z = X op Y
RNS
→















Zm1
= �Xm1

op Ym1
�m1

Zm2
= �Xm2

op Ym2
�m2

. . . . . . . . .

ZmP
= �XmP

op YmP
�mP

(�)

As a consequence, operations on large wordlengths can be
split into several modular operations executed in parallel and
with reduced wordlength [��].

In the complex case, we can transform the imaginary term
into an integer if the equation q2 + 1 = 0 has two distinct
roots q1 and q2 in the ring of integers modulo M (ZM ). A
complex number xR + jxI = (xR, xI) ∈ ZM × ZM , with q
root of q2 + 1 = 0 in ZM , has a unique Quadratic Residue
Number System representation given by

(xR, xI)
QRNS
→ (Xi, X̂i) i = 0, 1, . . . , P

Xi = �xR + q · xI�mi

X̂i = �xR − q · xI�mi
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Fig. 1. Structure of FIR filter in transposed form.

The inverse QRNS transformation is given by

xR = �2−1(Xi + X̂i)�mi

xI = �2−1 · q−1(Xi − X̂i)�mi

where 2−1 and q−1 are the multiplicative inverses of 2 and q,
respectively, modulo mi:

�2 · 2−1�mi
= 1 and �q · q−1�mi

= 1 .

Moreover, it can be proved that for all the prime integers
which satisfy

p = 4k + 1 k ∈ N

the equation q2 + 1 = 0 has two distinct roots q1 and q2.
As a consequence, the product of two complex numbers

xR + jxI and yR + jyI is in QRNS

(xR + jxI)(yR + jyI)
QRNS
→ (�XiYi�mi

, �X̂iŶi�mi
) (�)

and it is realized by using two integers multiplications instead
of four.

B. The Radix-2j Number System and its derivations
It is well known that an integer x can be represented by a

digit-vector
X = (xn−1, . . . , x1, x0)r

such that

x =

n−1
�

i=0

xi · r
i

where r is the radix of the representation. By choosing r = 2j,
we obtain a Quater-Imaginary Number System (QINS) [�].
Complex numbers can be represented in QINS by vectors with
the non-redundant digit set {0, 1, 2, 3}. Therefore, a complex
number a+ jb is represented in QINS as:

a+ jb = xn−1(2j)
n−1 + xn−2(2j)

n−2 + . . .+
+x3(−8j) + x2(−4) + x1(2j) + x0(1)

= (xn−1, . . . , x1, x0)2j

The above expression, shows that the real part is represented
by the digits of even weight, while the imaginary one by the
digits of odd weight. Furthermore, the sign is embedded in the
representation.
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Fig. 2. Structure of tap in TCS complex FIR filter.

The implementation of the basic arithmetic operators in
radix-2j can take advantage of the Signed-Digit (SD) represen-
tation [��], which allows carry free addition. The combination
of radix-2j and SD representation, resulted in the Redundant
Complex Number Systems (RCNS), which is described in [�],
[�0], [��], [��] and [��].

We now briefly recall the characteristics of the RCNS. The
RCNS is a redundant positional number system based on
the radix rj where its digits can assume the 2α + 1 values:
Aα = {α, · · · , 1, 0, 1, · · · , α} where α = −α. .
In the case of the radix 2j, two possible RCNSs [�0] are:

�) RCNS �j, � with digit set A2 = {2, 1, 0, 1, 2}
�) RCNS �j, � with digit set A3 = {3, 2, 1, 0, 1, 2, 3}

In this paper, RCNS �j, � is used to recode the multiplier,
and RCNS �j, � is used for the signed-digit additions, as
illustrated next.

III. FIR FILTER IMPLEMENTATIONS

A complex FIR filter of order N is expressed by

y(n) =
N−1
�

k=0

akx(n− k) (�)

where x, y and ak denote complex numbers. We consider the
implementation of a FIR filter in transposed form because its
structure is more regular with respect to the filter order N and
it does not require a tree of adders. The filter in transposed
form can be regarded as the sequence of groups, often referred
as taps, composed of:

• a multiplier
• an adder
• a register

as highlighted in Fig. �.
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Fig. �. QRNS FIR Filter architecture

We perform our design space exploration for programmable
N-tap complex FIR filters with input and coefficients size of
�0 bits for both the real part and imaginary parts. The �0 bit
dynamic range of the filter guarantees error free operations�.

A. TCS FIR Filter
A single tap of the The programmable N-tap TCS complex

FIR filter is realized as sketched in Fig. 2. The real and imag-
inary products are both realized with two Booth multipliers
each, and the resulting partial products are accumulated in
a Wallace’s tree structure which produces a carry-save (CS)
representation of the product in each side of the filter. We
convert the CS representation of yRe and yIm with two carry-
propagate adders at the filter output.

B. QRNS FIR Filter
The architecture of the QRNS filter, is a direct consequence

of (�), (�) and (�), and it can be realized by two RNS
filters in parallel as shown in Fig. 3. Each RNS filter is then
decomposed into P filters working in parallel, where P is the
number of moduli used in the RNS representation. In addition,
the RNS filter requires both binary to QRNS and QRNS to
binary converters. In order to have a dynamic range of �0
bits, as required by the specifications, we chose the following
set of moduli:

mi = {5, 13, 17, 29, 41}

�These wordlengths are derived from the specification of an actual digital
filter for satellite TV broadcasting.
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Fig. 4. Structure of RNS tap for filter in transposed form.

such that
log2(5 · 13 · 17 · 29 · 41) > 20 .

For each path mod mi, we have to build a FIR filter with
a structure similar to that of Fig. �. Therefore, we need to
implement modular multiplication and addition. By using the
isomorphism technique, the product of the two residues is
transformed into the sum of their indices which are obtained
by an isomorphic transformation [��]. As a result, in each tap,
the modular multiplication is reduced to a modular addition
followed by an access to table (inverse isomorphism) as
depicted in Fig. � (see [�] for more detail).

C. Radix-2j Filter (RCNS)
Because of the radix-2j representation, the filter tap is sim-

ply implemented with a multiplier and an adder. We implement
the multiplier as described in [�0]. The complex x and ak are
converted in non-redundant QINS and then ak is recoded into
RCNS �j, �. The partial products (PPs) are then accumulated
by a tree of arrays of signed-digit full-adders (SDFA) which
operates in RCNS �j, �. An extra array of SDFAs adds the
product x · ak to the partial sum coming from the previous
tap. The implementation of the RCNS tap is sketched in Fig.
�.

IV. SYNTHESIS AND COMPARISONS

The filters are implemented in the 90 nm STM library of
standard cells and they have been synthesized by Synopsys
Design Compiler. All the filters can be clocked at fmax =
300 MHz. By interpolating the results obtained by synthesis
on filters of different order (number of taps), we obtain the
trends shown in Fig. � for the area and Fig. � for the power.
The values of area and power dissipation for the single tap
(Fig. �, Fig. � and Fig. �) determine the slopes of the curves
in the figures. The conversions from the TCS to the other
number systems (and vice versa) are a constant contribution
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Area P at �00 MHz
tap conv. tap conv.

TCS ��.�K �.0K �.00 0.�0
QRNS �.�K ��.0K 0.�� �.�0
RCNS ��.�K �.0K �.0� 0.�0

[µm2] [mW ]

TABLE I
VALUES OF AREA AND POWER DISSIPATION.

that does not depend on the number of taps, but only on the
dynamic range of the filters. Table I reports the data for tap
and conversion contribution for the three number systems.

The results show that complex filters implemented in QRNS
consume significantly less power than the corresponding ones
in TCS and RCNS. The expression for the power dissipated
dynamically [��] in a system composed of n cells is

Pdyn = V 2

DDf ·

n
�

i=1

CLiai (�)

where
VDD is the power supply voltage;
f is the clock frequency;
CLi is the load connected to the i-th cell (both active load

and interconnections);
ai is the activity factor of the i-th cell, which is the

measure of how many transitions occur at its output.
The activity factor is normally related to the clock
ai ∈ [0, 1].

The lower power dissipation in the QRNS filter is due to the
combination of two factors:

�) As clearly shown in Fig. �, the smaller area results in a
global reduced capacitance

�n

i=1
CLi (including shorter

interconnections).
�) The work in [��] showed that the number of transitions,

i.e. the switching activity, for vectors of the same number
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of bits k, in RNS is lower than in TCS
�

k
�

i=1

ai

�

RNS

<

�

k
�

i=1

ai

�

TCS

Therefore, the switched capacitance
�n

i=1
CLiai, and by (�

the power consumption, in QRNS is smaller than in TCS and
RCNS.

V. CONCLUSION

In this work, the use of different number representations
for the implementation of complex FIR filters has been inves-
tigated.

Complex multipliers determine the performance, area and
power dissipation of complex filters. Previously in [10], com-
plex multipliers in TCS and RCNS were evaluated, while in
[9], complex filters in QRNS and TCS were compared. Here
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we extended the comparison to complex filters implemented
in TCS, QRNS and RCNS.

The experimental results on complex filters with 20 bit
dynamic range show that for the TCS and the RCNS the area
and power dissipation are similar and confirms the findings
of [10]. As for the QRNS, the results presented here, confirm
those of [�], based on the implementation of TCS and QRNS
complex filters in a 0.35 µm technology.

To summarize, this work shows that for complex high order
FIR filters implementations based on QRNS offer significant
advantages in area and power dissipation without any perfor-
mance degradation.
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