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Abstract—In this paper, we present the hardware design of
a combined decimal and binary floating-point divider, based
on specifications in the IEEE 754-2008 Standard for Floating-
point Arithmetic. In contrast to most recent decimal divider
designs, which are based on the Binary Coded Decimal (BCD)
encoding, our divider operates on either 64-bit binary encoded
decimal floating-point (DFP) numbers or 64-bit binary floating-
point (BFP) numbers. The division approach implemented in
our design is based on a digit-recurrence algorithm. We describe
the hardware resources shared between the two floating-point
datatypes and demonstrate that hardware sharing is advanta-
geous. Compared to a standalone DFP divider, the combined
divider has the same worst case delay and 17% more area.

I. INTRODUCTION

Decimal floating-point (DFP) research and hardware im-

plementations of decimal arithmetic units have gained im-

portance in recent years. DFP representations provide better

accuracy in commercial and financial applications than binary

floating-point (BFP) units, because BFP representations cannot

accurately represent many fractional decimal numbers [1].

Furthermore, correct decimal rounding is required in several

commercial and financial applications. In 2008, the IEEE 754

Standard for Binary Floating-point Arithmetic was revised and

specifications for DFP formats and operations were added [2].

In the revised IEEE 754-2008 Standard, significands of DFP

numbers can be represented with either the Densely-Packed

Decimal (DPD) encoding or the Binary Integer Decimal (BID)

encoding. DPD is a compressed form of the Binary Coded

Decimal (BCD) encoding. With the BID encoding, also known

as the binary encoding of DFP numbers, the significand of a

DFP number is encoded as an unsigned binary integer. For

example, the DFP number 0.105 is represented in BID by

105 × 10−3, with significand 0 . . . 0011010012 and exponent

−3 + bias.
Although most recent decimal divider designs are based

on the BCD encoding [3],[4],[5], using the DPD encoding

for floating-point and the BCD encoding for fixed-point, this

work proposes a combined DFP and BFP unit for division

operating on BID-encoded DFP numbers. Since the BID

encoding represents significands as unsigned binary integers,

it seems appropriate to combine both BID and BFP in the

same arithmetic unit. A combined BID and BFP unit has been
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proposed for multiplication [6]. Combined binary and BCD

units have been proposed for addition [7], multiplication [8],

[9] and division [10].

The combined unit we propose operates on either 64-bit

BID-encoded DFP numbers or 64-bit BFP numbers and it is

based on the radix-10 division unit presented in [11]. This unit

is implemented using the digit-recurrence approach [12] and

it has been modified to also support 64-bit BFP numbers. The

BFP division is implemented with a retimed radix-16 (two

overlapped radix-4 stages) digit-recurrence unit with selection

by comparison, as in [10].

We show that adding BFP support for division in the BID

divider of [11] does not affect the delay and has a small

impact on the total area. Contributions of this paper include

(1) providing the first algorithm and hardware design for a

combined BFP and BID division unit, (2) providing area and

delay estimates through synthesis of the proposed design, and

(3) comparing the area and delay estimates of the proposed

combined division unit to the standalone BID division unit and

the combined DPD/BFP unit from [10].

The remainder of this paper is organized as follows: Section

II describes the BFP and BID datatypes that our design

supports. Section III introduces our combined BFP and BID

digit-recurrence division algorithm. Section IV summarizes the

division unit design and analyzes hardware sharing potential in

the combined BFP and BID division unit. Section V presents

and discusses our synthesis results. Section VI concludes the

paper.

II. IEEE 754-2008 FORMATS

The IEEE 754-2008 Standard, includes four formats to

represent BFP numbers (binary16, binary32, binary64 and
binary128), and three formats (decimal32, decimal64 and
decimal128) to represent DFP numbers. The BFP and DFP
number formats use three fields to define a number: a sign, an

exponent, and a significand. The value of a finite BFP/DFP

number is: (−1)s × C × be−bias, where s is the sign, C is
the significand, b is the base (b = 2 for BFP and b = 10
for DFP numbers), e is the biased exponent, and bias is a
positive constant which ensures that the stored exponent is

non-negative. In the case of BFP numbers, C is normalized,
and its most significant bit is implicitly 1. However, in the

case of DFP the significand C is not normalized. Table I shows
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the parameter values of the 64-bit formats supported by our

division unit.

TABLE I
64-BIT FLOATING-POINT FORMAT PARAMETERS

Format Precision Exponent Exponent
length (bits) bias

binary64 53 bits 11 1023
decimal64 16 digits 10 398

III. COMBINED FLOATING-POINT DIVISION ALGORITHM

In this section, we introduce the combined BID/BFP di-

vider and summarize the theory of the radix-r division digit-
recurrence algorithm.

The BID/BFP division algorithm consists of the following

steps:

Step 1: If the inputs operand are DFP numbers, normalize

their significands.

Step 2: Divide significands, compute the sign, and subtract

the exponents to obtain the intermediate exponent.

Step 3: If needed, normalize and round the quotient and

update the exponent.

The division of the significands in Step 2 is implemented

using a digit-recurrence algorithm [12]. Therefore, in order to

apply this algorithm, the divisor has to be normalized. It is

also convenient to normalize the dividend to help guarantee

convergence and to reduce the number of leading zeros in

the quotient. Therefore, both operands are normalized be-

fore dividing significands. Since BFP numbers are already

normalized, Step 1 is applied only for DFP numbers. The

normalization for BID-encoded DFP numbers is explained in

detail in [11]. The algorithm is completed by converting the

quotient from signed-digit to the required representation and

rounding.

We now summarize the theory of the radix-r digit-
recurrence algorithm assuming that the divisor and dividend

are normalized. The division q = x/d is implemented by the
radix-r digit-recurrence iteration [12]

w[j + 1] = rw[j] − qj+1d j = 0, 1, 2, . . . (1)

where d is the divisor and w[j] is the residual at iteration j.
The quotient-digit qj+1 is computed at each iteration by a

selection function

qj+1 = SEL(d̂, ̂rw[j])

where d̂ and ̂rw[j] are estimates of the divisor and the residual,
respectively.

To obtain simpler selection functions we use a redundant

digit set [12]. Moreover, the quotient-digit is split into two

parts qH and qL such that

qj+1 = kqHj+1 + qLj+1

where k = 5 for r = 10 and k = 4 for r = 16, and
the digit sets for radix-16 are qH = {−2,−1, 0, 1, 2} and

qL = {−2,−1, 0, 1, 2}, and for radix-10 are qH = {−1, 0, 1}
and qL = {−2,−1, 0, 1, 2}.
By the quotient-digit decomposition, we obtain from (1) the

two recurrences

v[j] = rw[j] − qHj+1(kd)
w[j + 1] = v[j] − qLj+1d

(2)

with quotient digit selection functions

qHj+1 = SELH( ̂rw[j], d̂)

qLj+1 = SELL(v̂[j], d̂)

Values for r and k are shown in Table II.
The digit-recurrence algorithm converges if

|w[j]| ≤ ρd (3)

where ρ is the redundancy factor [12] and is a function of the
quotient-digit set and the radix r (see Table II). Therefore, to
ensure convergence for the given redundancy, the recurrence

is initialized with a scaled value of the dividend such that

w[0] = scaled(x) < ρd.

TABLE II
DIGIT-RECURRENCE PARAMENTERS

radix-10 radix-16
r 10 16
k 5 4
ρ 7/9 2/3

IV. COMBINED DIVIDER DESIGN

A high-level diagram of the combined BID/BFP divider is

shown in Fig. 1. The high-level blocks include a normalization

block, a recurrence block and a convert-and-round unit. All

these blocks are shared to perform BID or BFP division, except

the normalization block which is only used in the case of BID-

encoded DFP operands. The high-level design is completed

by the logic to compute the exponent, the sign (Sq = Sx ⊕
Sd) and the controller which is partially shown in the figure

(counter). The inputs to the unit are: the significands of the

dividend,Mx, and the divisor,Md; the exponents,Ex, and Ed;

and signs of both operands, Sx and Sd. The operands may

either both be binary64 or both be BID-encoded decimal64

numbers. The inputs to the recurrence are the normalized BID-

encoded numbers or the BFP significands, x and d. There is a
control CR signal not shown in the diagram that manages the
execution of BID or BFP division via multiplexers. The output

from the convert-and-round block is the non-normalized BID

or normalized BFP quotient, Mq.

The rest of this section describes the implementations of the

blocks shown in Fig. 1 in more detail.

A. Normalization

As mentioned before, the operands should be normalized

in order to apply the digit-recurrence algorithm. As BFP

significands are already normalized, this unit only performs

normalization on 64-bit BID-encoded significands. Normaliza-

tion of DFP operands corresponds to multiplying the operands
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Fig. 1. Architecture of combined divider.

by the required power of ten. This is performed in two steps: 1)

obtain the power of ten required for the normalization; and 2)

multiply the operand by the corresponding power of ten using

a rectangular multiplier. A detailed diagram of the hardware

needed to carry out the normalization is shown in Fig. 2. More

details on the normalization unit are found in [11].
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Fig. 2. Normalization unit for BID-encoded significands.

B. Combined Recurrence Unit

Fig. 3 shows the hardware to perform the retimed recurrence

v[j] = rw[j − 1] − qHj(kd)
w[j] = v[j] − qLjd

(4)

Furthermore, to speed-up the iteration time, the residual w[j]
(and v[j]) is implemented in carry-save format. The position
of registers is indicated with a thicker (blue) horizontal line.

The residual is initialized to w[0] with a scaled value of x
that for radix-10 is determined in the normalization step and

for radix-16 is x/16.
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Fig. 3. Recurrence unit.

The selection constants for radix-10 are the same used in

[11], while the selection constants used for radix-16 are listed

in Table III. For both radices, the mk constants are chosen

such that mk−1 = −mk2 and mk0 = −mk1. In this way,

only one constant is stored per d̂ interval, and the other is
obtained by a two’s complement. The combined radix-10 and

radix-16 selection function is shown in Fig. 4. The selection

of the quotient-digit is done by preloading the corresponding

selection constants and by comparing [13] them with the

truncated residual y = ŵ[j]. Moreover, qL is calculated

speculatively for all possible values of qH and the correct qL

is selected as soon as qH is computed (Fig. 4).

The radix-switch CR (not shown in Fig. 3) selects the
correct values to be used according to the radix.

radix-10:
- Selection constants: mH1, mL2 and mL1 for radix-10;

- Precomputed multiple of d: 5d (input to qH Mult/mux);

- Shifted ws and wc values to have 10w = 8w+2w in the
4:2 CSA before the rw registers.

radix-16:
- Selection constants:mH2, mH1, mL2 and mL1 for radix-

16;

- Shifted d: 8d and 4d (input to qH Mult/mux);

- Shifted ws and wc values to have 16w = 8w + 8w.

The negatives multiples of d are obtained by inverting the bits
(one’s complement) and by setting the carry-in to one in the

CSA. The sign-and-zero detection (SZD) unit determines the

sign of the residual (wsign), and when the residual is zero

(w[j] = 0). In the latter case, the quotient is exact and for
decimal division the signal wzero is used to stop the execution

of the division if the preferred exponent is obtained. Otherwise,

to produce decimal results that comply with IEEE 758-2008,

the division should not be stopped until the value with the

preferred exponent or closest to the preferred exponent is

produced. In case of binary division, if the quotient is exact
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TABLE III
SELECTION CONSTANTS FOR RADIX-16 DIVISION

d̂ mH2 mH1 mL2 mL1

1.0002 50 16 13 4
1.0012 56 16 14 4
1.0102 66 20 16 5
1.0112 68 20 17 5
1.1002 72 24 18 6
1.1012 80 24 20 6
1.1102 88 28 22 7
1.1112 88 28 22 7

the division is continued until 1 ≤ Mq < 2.0 (the result
significand is normalized). Both wsign and wzero signals are

used for rounding as explained in the next section.

C. Combined Convert-and-Round unit

The on-the-fly conversion and rounding implemented in [11]

can be easily be adapted to the radix-16 case because the

significands of BID-encoded numbers are binary integers. The

quotient-digits are converted and assimilated by the unit shown

in Fig. 5. At each iteration j, the quotient-digits qj = kqH+qL

are converted from signed-digit (SD) to the two’s complement

digit, B. Then, the partial quotient (Q) is updated as

Q[j] ← rQ[j − 1] + B (5)

In addition to qj , qj −1 and qj +1 are stored because they are
used for rounding. As Figure 5 shows, in radix-10 division,

the detection of exact division (wzero=1) occurs at the same

time as the qj conversion and assimilation. Therefore, the

assimilation of digit qj is delayed one cycle.

Rounding is performed in the same unit as conversion and

assimilation. In this work, we only consider the rounding

mode roundTiesToEven. The other rounding modes can be
implemented similarly. Rounding is performed in the least-

significant digit of the quotient to be assimilated in Q, qR.

The rounding is performed by adding a rounding amount to

the least-significant digit to be assimilated, and checking the

conditions shown in Table IV.
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The rounding amount is

R = U − wsign − (wzero AND LSB(qR))

where U is 5 for radix-10 and 8 or 4 (depending on the scaling
of the dividend1) for radix-16. Following the conditions shown
in Table IV, the last digit to assimilate is qR, qR−1 or qR +1.

V. IMPLEMENTATIONS AND COMPARISONS

In this section, we present the results from evaluating the

combined BID/BFP divider. The divider has been modeled in

RTL-level VHDL and was simulated using Synopsys VSS and

synthesized by using Synopsys Design Compiler and the STM

90nm CMOS standard cell library. The synthesis results are

shown in Table V, along with the results of the BID standlone

1The first quotient-digit produced is either 1 or 0.
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TABLE IV
ROUNDING CONDITIONS FOR RADIX-R

Condition digit to assimilate
(B + R) ≥ r qR + 1
0 ≤ (B + R) < r qR

(B + R) < 0 qR − 1

divider presented in [11]. In this table, TC indicates the critical

path delay.

TABLE V
COMPARISON STANDALONE BID AND COMBINED BID/BFP DIVIDER

Timing (ns) BID∗ BID/BFP
TC 1.0 1.0
Latency r-10 24.0 24.0
Latency r-16 - 17.0

Area (μm2) BID∗ BID/BFP
normalization 83,000 85,000 +2%
recurrence 33,300 51,900 +56%
convert-round 10,600 12,700 +20%
controller 660 680
divider 127,000 149,000 +17%
∗ BID divider of [11]

The results indicate that adding support to perform BFP di-

vision in a BID divider does not change the clock period of the

standalone BID divider. However, the total area is increased by

17%, mostly due to the increased area of the recurrence block.

Furthermore, the normalization block for BID operands has a

large impact on the total area of each divider. In particular, the

rectangular multiplier of the normalization unit has an area of

61, 000μm2.

The data in Table VI show the number of cycles required

by each of the blocks of the combined divider of Fig. 1. We

can see that BID normalization penalizes BID division again.

The results of the combined BID/DFP divider are compared

TABLE VI
COMBINED BID/BFP DIVISION UNIT DELAY BREAKDOWN

radix-10 radix-16
Normalization 4 -
Initialization 1 1
Recurrence 17 14
Rounding digit 1 1
Rounding 1 1
TOTAL 24 17

with the DPD/BFP combined unit of [10] and are shown

in Table VII. The results show that the BID/BFP divider

can be clocked faster. This was somewhat expected as in

the DPD/BFP divider the same datapath is shared by BCD

and binary numbers. The total operation latencies are similar

because BCD normalization takes fewer cycles. The area

of the recurrence plus conversion-and-rounding units of the

combined BID/BFP is 20% less than the combined DPD/BFP

unit. However, the normalization in the combined BID/BFP

divider has a large impact on the area.

TABLE VII
COMPARISON COMBINED DPD/BFP AND COMBINED BID/BFP DIVIDER

DPD/BFP∗ BID/BFP
Timing cycles ns cycles ns
TC 1.05 1.00
Latency r-10 2+20=22 23.1 4+20=24 24.0
Latency r-16 16 16.8 17 17.0

Area (μm2) DPD/BFP BID/BFP
normalization 12,500 85,000 +680%
rec. + C.& R. 78,500 +20% 65,000
divider 91,000 149,000 +74%
∗ DPD/BFP divider of [10]

VI. CONCLUSIONS

This paper presents a combined decimal and binary floating-

point divider for BID-encoded decimal numbers. Relative to

a standalone BID divider, the combined BID/BFP divider has

the same clock period, the same latency for BID division, and

only a 17% increase in area. This indicates that a combined

BID/BFP divider may have advantages over separate BID and

BFP divider designs. A significant portion of the combined

divider’s area is due to a large binary multiplier in the

normalization unit. However, this multiplier or a similar binary

multiplier could also be used to help perform other BID

operations, such as addition, subtraction, and multiplication.
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