Impact of RNS Coding Overhead
on FIR Filters Performance

Gian Carlo Cardarilli, Andrea Del Ref, Alberto Nannarelli* and Marco Re

Department of Electronics, University of Rome Tor Vergata, Rome, Italy
Skytechnology s.r.l., Rome, Italy
*Dept. of Informatics & Math. Modelling, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract—In this paper a design space exploration for FIR
filter implementations in Residue Number System (RNS) is pre-
sented. The exploration regards different aspects of the RNS FIR
filter design such as the dynamic range, the overhead due to the
coding of the RNS base with respect to the application dynamic
range, and delay-area tradeoffs. The design space exploration and
its results, are helpful in evaluating the effects of the RNS coding
overhead and to choose an efficient filter architecture trading-off
filter order, dynamic range, clock frequency and area.

[. INTRODUCTION

The use of non traditional number systems in the imple-
mentation of application specific Digital Signal Processing
(DSP) systems is gaining importance due to the needs of strong
optimizations in terms of power consumption and speed. This
is mainly related to the extremely fast growth in complexity
of the algorithms to be implemented on silicon often targeting
portable platforms. The renewed interest in these alternative
number systems is also related to the availability of hardware
platforms (FPGAs) and technologies suitable for the imple-
mentation of arithmetic blocks that are based on the use of
look-up tables.

A number of papers and books illustrating DSP applications
based on the Logarithmic Number System (LNS) [1] and the
Residue Number System (RNS) [2], [3] have been presented
in the literature. Recently, studies about power consumption
in LNS/RNS and the implementation of FIR filters have been
presented in [4], [5], [6], [7] and [8]. In [9] the authors show
that filters implemented in RNS not only are convenient in
terms of dynamic power dissipation, but also in terms of static
power reduction when state-of-the-art dual threshold transistor
libraries are used in the synthesis process.

In [8] and [9] the power dissipation of RNS FIR filters
is characterized as a function of the filter order for a fixed
dynamic range. In this paper, an exploration of the design
space for FIR filters considering delay-area tradeoffs as a
function of the filter dynamic range is presented.

The Design Space Exploration (DSE) is carried out taking
advantage of the results of a characterization of the composing
blocks of the filters. Moreover, the DSE is validated by actual
implementations of a selected set of complete filters.

The results show that for high-order and large dynamic
range, that are typical of many today’s applications, filters
implemented in RNS are significantly smaller than filters

978-1-4244-2110-7/08/$25.00 ©2007 IEEE

implemented in the traditional two’s complement number
system (TCS).
II. BACKGROUND AND METRICS

A Residue Number System (RNS) is defined by a set of P
relatively prime integers {mi,ms,...,mp } which identify
the RNS base. Its dynamic range is given by the product
M:ml‘mg'..."mp .
Any integer X € {0,1,2,
resentation given by:

X (X mys (XD -

...M — 1} has a unique RNS rep-

(X)mp)

where (X),,, denotes the operation X mod m; [10]. Opera-
tions on different m,; (moduli) are done in parallel

Zm1 = <Xm1 op Ym1>m1

R]_V)S ng = <X’m2 op Ym2>m2

Z=XopY @)

Zmp = <me op 1/mp>mp

As a consequence, operations on large wordlengths can be
split into several modular operations executed in parallel and
with reduced wordlength [10].

By defining D the dynamic range of an application, which
corresponds to d bits (D = 29) in the two’s complement
number system (TCS), the RNS base is chosen such that

P

[[mi=M=D=2".

i=1
Because each modulus of the RNS base is encoded in binary
for a total number of bits

P
b= Z[logQ m;| ,
i=1

we define OH = b — d as the RNS coding overhead.

The effect of this overhead is investigated as a function
of the dynamic range in the implementation of FIR filter
architectures. Specifically, we evaluate all combinations of P
prime moduli covering the required dynamic range, select the
suitable moduli set with different criteria (see Section V), and
compare in terms of delay and area the RNS implementation
of the filter with the TCS implementation. We do not consider
power-of-two moduli (m; = 2F) because they do not add
coding overhead with respect to the TCS.

1426

Addér Tree

N

TCS FIR filter in direct form.

Fig. 1.

Fig. 2. TCS FIR filter in transposed form.

III. FIR FILTER ARCHITECTURES

A Finite Impulse Response (FIR) filter of order N is
described by the expression

yn) = 3 ayrn — k) @
k=0

We consider error-free programmable FIR filters in both direct
and transposed form implemented in RNS and TCS.

A. FIR filter in TCS

The straightforward implementation of (2) is the implemen-
tation of the filter in direct form as shown (for a portion of
the filter) in Fig. 1.

We assume to have a dynamic range of d bits, generated
at the output of g X g square multipliers, which guarantees
error-free operations for the given N. In order to keep the
delay small, the multiplication is performed carry-save and,
therefore, the input to the adder tree consists of 2N d-bit
operands. The carry-save representation of y(n) is converted
in two’s complement by a carry-propagate adder (CPA) placed
at the output of the tree.

RNS filter mod m 4
Binary - RNS to
RNS filter mod m »

—| toRNS Binary :
x(n) y(n)
Converter Converter
RNS filter mod m p
Fig. 3. FIR filter implemented in RNS

Fig. 5.

RNS FIR filter in transposed form.

Alternatively, expression (2) can be implemented in trans-
posed form as shown in Fig. 2. We make the same assumptions
for the dynamic range as for the direct form filter case,
and perform again carry-save multiplication, but accumulate
(by using a CPA) the partial value of y(n) in each register.
Although this solution is not the fastest, the area is reduced
to a minimum.

The storage, in number of bits, required for each tap is
2 x £ = { bits for filters in direct form, and g +d= %d bits

2
for filters in transposed form.

B. FIR filter in RNS

As a direct consequence of (1) and (2), a FIR filter is
implemented in RNS by decomposing it into P filters working
in parallel, as sketched in Fig. 3.

Each of the P RNS filters can be implemented in either
direct or transposed form with schemes similar to those of
Figs. 1 and 2, and by replacing multipliers and adders with
their modular counterparts. By choosing prime moduli of
limited wordlength (m; < 2°), the modular multiplication can
be efficiently implemented by isomorphism [11] (see [12] for
the implementation). The resulting RNS filter architectures are
shown in Fig. 4 (direct form) and Fig. 5 (transposed form). In
the figures, the bitwidth s; = [log, m;] in each filter mod m;
is such that b = 7 s;.

Differently from the TCS case, the storage bits required per
tap is the same for the direct and transposed form: 2 x b bits.

IV. DESIGN SPACE EXPLORATION

The design space exploration is carried out to identify the
tradeoffs between filters realized in TCS and RNS with respect

1427

to dynamic range, clock frequency (throughput) and area.
We use the architectures presented in the previous section
for TCS and RNS filters in direct and transposed form.
For filters in direct form, the size and depth of the adder
tree depend on the filter order N. For this reason, we have
characterized TCS and RNS direct form filters of the same
order (number of taps).
In the DSE, we run the following experiments:

EXP-1: In this experiment, we consider the RNS moduli
selected to obtain the "worst case” coding overhead
(OH) conditions for the RNS filters.

EXP-2: In this experiment, we consider the RNS moduli
selected to obtain the best tradeoff delay-area for the
given dynamic range.

EXP-3: The moduli are chosen as in EXP-2, but the
evaluation is carried on a complete N-tap filter.

In EXP-1 and EXP-2, we do not include the TCS/RNS/TCS
conversion and consider the area value per tap, while in EXP-
3 we take into account the impact of the converters on FIR
filters of the same order V.

The first two experiments are based on the characterization
of the filter composing blocks (multipliers, adders, registers,
etc.) performed by Synopsys Design Compiler and the STM
90 nm library of standard cells [13]. The results of EXP-3 are
obtained by synthesis of the actual filters.

EXP-1: worst case OH

In this experiment, the choice of moduli (RNS base) is done
by selecting the set that for the given dynamic range has the
largest RNS coding overhead OH = b — d. This is done in
two steps:

1) The group of RNS bases for which M > 27 are first

selected;

2) The base which has the largest b is selected. In case

of tie, the set with the largest number of moduli P is
chosen.

The results of this selection are shown in Table 1.

In EXP-1, we consider a very large clock period so that the
evaluation is based on the results of the characterization of
circuits optimized for minimum area.

Because for the RNS bases of Table I there is not a
significant difference in area per tap between the filters in
direct and transposed form, in Fig. 6 we plot the curves' of
direct and transposed TCS (D-TCS and T-TCS) and just one
curve for the RNS filters. The area unit is 1 pm?.

Fig. 6 show that for dynamic ranges d from 12 to 24, the
area is roughly the same for the four architectures (D-TCS
is slightly better), and that for d > 24 bits RNS filters are
significantly smaller than TCS.

EXP-2: best delay-area tradeoff
The results of EXP-1 are obtained for the worst case
choice of the RNS base and considering a very long clock

! Actually the curve is a visual aid to better display the distribution of the
experiment’s discrete points.

d Moduli Set b b—d
12 {5 7,11,17 } 15 3
16 {5, 7,11,17,19 } 20 4
20 {3,5 11,17,19,37 } 25 5
24 {3,5 11,13,17,19,37 } 29 5
28 {3,5 11,13,17,19,23,29 } 33 5
32 {3,5,7,11,13,17, 19,37, 41 } 38 6
36 {3,57,11,13,17, 19, 23,29, 37 } 42 6
40 { 3,5, 11,13,17, 19,37, 41,43, 47 } 47 7
44 {3,511, 13,17, 19, 23, 29, 37, 41, 43 } 51 7
48 {3,5,7,11, 17, 19, 23, 29, 31, 37, 41, 43 } 55 7
TABLE 1
MODULI SET AND DYNAMIC RANGE FOR EXP-1.
30000 T
T-TCS
25000 [
20000 [D-TCS
§15000 r RNS 1
10000 [
5000 [
o
10 15 20 25 30 35 40 45 50

dynamic range

Fig. 6. Results of EXP-1: direct and transposed TCS vs. RNS

period. In this experiment, we make more realistic assumptions
by introducing a timing constraint on the clock frequency
(500 M H %) and by selecting the moduli according not to the
worst case OH, but to the results of the characterization of de-
lay/power/area done with a RNS filter design tool [14]. Given
a target clock period, the tool selects the RNS base which
guarantees the smallest area (or lower power dissipation). The
selected RNS bases are reported in Table II.

For filters in direct form (see Fig. 1 and Fig. 4) the timing
constraint might cause modifications in the filter architecture
when for deep adder trees (large NN) it might be necessary
to break the critical path and introduce pipeline registers. For
this reason, we limit EXP-2 to the case of filters in transposed
form, where the critical path is independent? of the number of
taps (see Fig. 2 and Fig. 5).

The results of the experiment are plotted in Fig. 7. The
dotted curves refer to the corresponding results of EXP-1 (Fig.
6). The figure clearly shows that, when a timing constraint
(Tc = 2.0 ns) is introduced, the taps in the TCS filter
grow larger (tradeoff speed-area), while for the RNS this
growth is compensated by a choice of the moduli set which
minimizes the area. The difference is larger as the dynamic
range increases. For d = 48 the area of the TCS is double
than the RNS filter.

2We do not consider the increased buffering on z for large N in this
experiment.

1428

d Moduli Set b b—d
2 {3,7,13, 17 } 14 2
16 {5 711,13, 17 } 19 3
20 {3,7,11,13,17,23 } 23 3
24 {3,7,11,13,17,19,23 } 28 4
28 {3,5,7,13,17,19, 23,31 } 32 4
32 {3,5,7,11,13,17, 19,29, 31 } 36 4
36 {5,7,11, 13,17, 23,29, 31, 41 } 40 4
40 11, 13, 17, 19, 23, 29, 31, 37, 41 45 5
44 17, 19, 23, 29, 31, 37, 41, 43, 47 49 5
48 23, 29, 31, 37, 43, 47, 53, 59, 61 51 3

TABLE 11
MODULI SET AND DYNAMIC RANGE FOR EXP-2.

40000 T T T T T T T

35000

30000

25000

20000

area per tap

15000 [

10000 [

5000 [

10 15 20 25 30 35 40 45 50
dynamic range

Fig. 7. Results of EXP-2: transposed TCS vs. RNS

Moreover, by tracing horizontal lines in Fig. 7, we can
roughly determine the truncated TCS tap equivalent to the
error-free RNS tap. For example, for d = 40 the RNS area
per tap is 10,000 pm?. This area is equivalent to that of a
truncated TCS with dynamic range d = 24, that is a TCS
filter with error > 216 unit-in-last-position with respect to the
RNS.

EXP-3: complete N-order filter

In this experiment we validate the results of the DSE with
an actual implementation to see the impact of the TCS/RNS
and RNS/TCS converters.

From Fig. 7 we select d = 16 and determine the filter order
N for which the RNS has a smaller area than the TCS filter.
We implement 10, 50 and 100-tap complete filters in both TCS
and RNS and plot the data-points, together with their trends
in Fig. 8. From the figure we can see that for N* > 12 taps
the RNS filter is smaller than the TCS filter.

V. CONCLUSIONS

In this work we investigated the tradeoffs between TCS
and RNS filters in terms of filter order, dynamic range, clock
frequency and area. With a few exceptions for very small
dynamic ranges and worst case selection of the RNS base,
filters implemented in RNS are significantly smaller than the
corresponding filters implemented in the two’s complement
system (TCS).

600000
TCS 7
///
500000 7 1
-
=
.
s RNS .-
400000 [. PR
// -7
/// -7 -
e |
© - -
£ 300000 - P 1
/// -7 .
/Z g -
200000 [T]
e
// P -
N s
10000 N7 1
//’// -
ey
-
o
0 20 40 60 80 100 120
filter order
Fig. 8. Results of EXP-3: complete filter TCS vs. RNS

ACKNOWLEDGMENTS

This work was partially supported by University of Rome
Tor Vergata, Department of Electronics and Denmark Techni-
cal University, Department of Informatics and Mathematical
Modelling through visiting professor grants.

REFERENCES

[1] E. Swartzlander, “The Sign/Logarithm Number System,” [EEE Trans-
actions on Computers, vol. 24, pp. 1238-1242, Dec. 1975.

[2] M. Sodestrand, W. Jenkins, G. A. Jullien, and F. J. Taylor, Residue
Number System Arithmetic: Modern Applications in Digital Signal
Processing. New York: IEEE Press, 1986.

[3] S. Mitra and J. F. Kaiser, Handobook for Digital Signal Processing.
John Wiley & Sons, 1993.

[4] T. Stouraitis and V. Paliouras, “Considering the alternatives in low-power
design,” IEEE Circuits and Devices Magazine, vol. 17, pp. 22-29, July
2001.

[5] M. Bhardwaj and A. Balaram, “Low power signal processing archi-
tectures using residue arithmetic,” Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ASSP’98),
vol. 5, pp. 3017-3020, 1998.

[6] W. Freking and K. Parhi, “Low-power digital filters using residue
arithmetic,” Thirty-First Asilomar Conference on Signals, Systems and
Computers, vol. 1, pp. 739-743, 1998.

[7] M. Mahesh and M. Mehndale, “Low power realization of residue number
system based FIR filters,” Thirteenth International Conference on VLSI
Design, pp. 30-33, 2000.

[8] G. C. Cardarilli, A. Del Re, R. Lojacono, A. Nannarelli, and M. Re,
“RNS Implementation of High Performance Filters for Satellite Demul-
tiplexing,” Proc. of IEEE Aerospace Conference, vol. 3, pp. 1365-1379,
Mar. 2003.

[9] G. Cardarilli, A. D. Re, A. Nannarelli, and M. Re, “Low power and low
leakage implementation of RNS FIR filters,” Proc. of 39th Asilomar
Conference on Signals, Systems, and Computers, pp. 1620-1624, Oct.
2005.

[10] N. Szabo and R. Tanaka, Residue Arithmetic and its Applications in
Computer Technology. New York: McGraw-Hill, 1967.
[11] 1. Vinogradov, 4An Introduction to the Theory of Numbers.
Pergamon Press, 1955.
[12] A. Nannarelli, G. C. Cardarilli, and M. Re, “Power-delay tradeoffs in
residue number system,” [EEE International Symposium on Circuits and
Systems (ISCAS 2003), vol. 5, pp. 413—416, May 2003.
STMicroelectronics. 90nm CMOS090 Design Platform. [Online]. Avail-
able: http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm
[14] A. Del Re, A. Nannarelli, and M. Re, “A tool for automatic generation
of RTL-level VHDL description of RNS FIR filters,” Proc. of 2004
Design, Automation and Test in Europe Conference (DATE), vol. 48,
pp. 686—687, Feb. 2004.

New York:

[13]

1429

