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Abstract— In this work we extend a previously proposed digit-
recurrence radix-10 division unit to be able to perform also radix-
16 division. The extension is simplified by the fact that in the
radix-10 implementation the quotient digit is decomposed into
two parts and that this decomposition is also appropriate for
the radix-16 case. Moreover, to reduce the latency in the radix-
10 the most-significant portion of the datapath, including the
selection function, has been implemented in radix-2, so that the
modifications of that part to include radix-16 consists mainly in
combining the two modules to obtain the selection constants. The
rest of the modifications relate to the generation of multiples, to
the carry-save adder, to the carry-propagate adder, and to the
on-the-fly conversion and rounding. The implementation results
show that the delay of an iteration is similar to that of the radix-
10 case and that the area is about thirty percent larger.

[. INTRODUCTION

Hardware implementations of decimal arithmetic units have
recently gained importance because they provide higher ac-
curacy in financial applications [1]. Moreover, to reduce the
required area, it is convenient to perform in the same unit
the operation for both decimal and binary representations.
Combined units of this type have been proposed for addition
[2] and multiplication [3]. In this work we propose a combined
unit for the division operation.

Previously we described a radix-10 division unit using the
digit-recurrence approach [4]. Moreover, this approach has
been used extensively for radix-2 representation [5].

Specifically, since the radix-10 unit produces one digit of
the quotient per iteration and the radix-10 digit is represented
in BCD by four bits, it seems appropriate to combine it with a
radix-16 unit. This combination is simplified by the fact that in
the radix-10 case we have decomposed the quotient digit into
two parts, which is also the preferred method for implementing
radix-16 division [5].

II. DIVISION ALGORITHM

The expressions for the digit-recurrence iteration for the
radix-10 case are [4]

10w[j — 1] — qu,; (5d)
v[j] — qr;d

il =
wlj] =

with gg; € {—1,0,1} and ¢qr; € {—2,—1,0,1,2} for a re-
dundancy factor p19 = 7/9.
Similarly, for the radix-16 case

16w[j — 1] — qur;(4d)
vlj] = qr;d

ofj] =
wlj] =
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with gz, € {-2,-1,0,1,2} and qr; € {-2,-1,0,1,2} for
a redundancy factor p16 = 10/16.
Therefore, the two recurrences can be combined into

ojl = rwlj— 1) - qm;(kd) (1)
wlj] = wvlj] —qr;d 2
with quotient digit selection functions
qu = SELg(rw,d) 3)
qr = SELL(3.d) @)

and quotient digit q; = kqg; + qrj. The switch between the
two radices is performed by setting a bit R such that

when R=0 — r=16and k=4 (radix-16)
when R=1 — r=10and k=5 (radix-10)

To ensure convergence, the recurrence is initialized as
wl0] = z/r? .
III. DIVIDER ARCHITECTURE

The scheme implementing the division recurrence of (1) and
(2) is shown in Fig. 1. The divider is completed by a unit to
convert the quotient-digit ¢; from the signed-digit to the BCD,
or to the binary unsigned, representation, and to perform the
rounding.

As mentioned above, the radix selection is done with a
signal R such that for radix-16 R = 0 and for radix-10
R = 1. Therefore, in the recurrence, we have to process data
both in BCD (for radix-10) and in binary (for radix-16). This
requires some modifications in the carry-save adders (CSAs)
as explained in Section III-D.

In [4], to speed up the radix-10 division, we implement the
most-significant slice (MS-slice) of the recurrence in radix-2
(two’s complement). The conversion, one digit per iteration,
from a BCD digit to a 4-bit binary digit is straightforward.
When combining with radix-16, we need to apply only minor
modifications in the MS-slice, as explained in Section III-C.
One radix-16 digit is simply transferred from the dual-radix
recurrence part every iteration.

In the following, we indicate with lower case letters (e.g.
d) digit-vectors in the dual radix part of the recurrence and
with upper case letters (e.g. D) bit-vectors in the MS-slice.
When necessary to specify the radix, radix-10 digit-vectors
are indicated with the subscript BCD (e.g. dpcop).

We now discuss the implementation of the relevant blocks
in Fig. 1 and the convert-and-round unit.
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Fig. 1. Basic implementation of radix-10/radix-16 recurrence.

A. Precomputation of the multiples

This block computes the multiples of d necessary for both
the recurrence and the selection function. In the radix-10 case
the multiples five times the divisor (5d o p) and two times the
divisor (2dpcp), and their negatives, are precomputed. For
the radix-16 the multiples required are eight, four, and two
times the divisor (8d, 4d, and 2d); these are straightforward to
compute (by shifting) and a selector is used to select among the
multiples depending on the radix. The detail of the multiples
selection for the dual radix recurrence is shown in Table 1.

In the radix-2 MS-slice for the radix-16 division, we simply
use a truncated representation of 8d, 4d, and 2d. For radix-10
division, the multiples 5dpcp, 2dpcp and their negatives are
converted into two’s complement.

B. Quotient-digit selection

In the quotient digit selection functions described by (3) and
(4), the estimates 7w and v are obtained by using a limited
number of digits of the carry-save representation. Although
in principle this number could be different, we use the same
number to simplify the scheme.

The selection of the quotient-digit is done by preloading
selection constants and comparison [6]. With respect to the
radix-10 implementation of [4], in this dual radix divider we
need to combine the radix-10 selection function with the radix-
16 one. We explored two alternatives:

1) separate modules to generate the constants for each

radix;

2) a combined module for both.

The combination of the radices can be done if the constants
mys satisfy the conditions on the bounds of the selection
intervals (see [5] and [4] for the detailed derivations). These
bounds are shown in Fig. 2, for the positive quadrant. The
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-qud -qrd
qH r-16 r-10 qrL r-16 r-10

-2 8d N/A -2 2d 2dpcp
-1 4d 5dBcp -1 d d

0 0 0 0 0 0

1 —4d | —bdpcp 1 —d —dcp
2| —8d N/A 2 | —2d | —2dcp

TABLE 1

OPERATION OF MULT/MUX.

Fig. 2.

PD plot for gz (top) and gz, (bottom) (positive quadrant).

dotted lines in the figure, represents the bounds for radix-
16, and the solid lines the bounds for radix-10. The selection
constants are then chosen by
LY <my <U%,  k={-1,0,1,2}

where L0 is the bound obtained for radix-10 (solid lines in
Fig. 2) and U}, is the bound for radix-16 (dotted lines in
Fig. 2).

Moreover, we choose constants which are symmetric with

respect to the sign:
mog = —M_1 and mp = —mo .

For radix-16 (which selection function is decomposed into
two radix-4 selection functions), 3 bits of the divisor d are
sufficient to select the constant my

d = 0.1b2b3bs . ..
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Fig. 3.

Therefore, to unify the intervals on d for both radices, we map
the 8 configurations 0.1 b2b3by into the closest 3 fractional
digits BCD representation of dgcp.

The resulting intervals on d and the constants for both qg
and ¢z, are reported in Table II. Their bounds are plotted in
Fig. 2.

The values in Table II represent fractional numbers, that
has to be implemented as integers in the radix-2 selection
functions. This conversion fraction to integer is done by

M = my, - r?
and therefore, we get two different encodings for radix-10 and
radix-16.

Moreover, with respect to the radix-10 only implementation,
the digit-set of ¢ is extended from three to five values for
radix-16. For this reason, the selection by comparison is mod-
ified by computing speculatively the five possible outcomes of

o[j]-
C. Radix-2 most-significant slice

With respect of the implementation of [4], the radix-2 MS-
slice is modified as follows. A picture of the implementation
of the recurrence is shown in Fig. 3.

1) To produce a 5-value quotient-digit qg, the selection
function for gz is composed of four sign-detectors and
the encoder of the quotient digit ¢ is slightly changed.

2) As a consequence of 1), the multiplexer producing
qu (kD) is changed into a 5:1 mux and two extra flip-
flops are required to store ggr.

3) The speculative selection function for ¢r is in this
dual radix unit composed of five blocks computing

Position of registers

Implementation of the dual-radix recurrence.

speculatively

ar = SELL(W = qu (kD),d) , g = {~2,1,0,1,2}
Consequently, a mux 5:1, controlled by gy, must be
used to select among the possible values of qr..

4) The multiplication rWj] is performed by a CSA 4:2
and a multiplexer:

radix | R | inputs to CSA 4:2
16 | 0 | 8W, + 8W, + 8W, + 8W,
10 1 | 8Ws + 8W, + 2W, + 2W,

D. Dual-radix carry-save adders

The carry-save adders (CSA) in the recurrence can be
operated by selecting the radix with R. A scheme of the dual-
radix CSA is shown in Fig. 4 for one digit, we indicate with
x(;) the digit of weight r~—",

E. Conversion and Rounding

The on-the-fly conversion and rounding implemented in
[4] can be easily be adapted to the radix-16 case, with the
exception of the normalization that in the binary case requires
shifts of one bit, while in radix-10 the shifts is one BCD
digit (4 bits). Moreover, the adder necessary to compute the
sign of the final reminder, and to determine if it is zero, is
implemented in dual-radix.

IV. IMPLEMENTATION AND COMPARISONS

In this section we present the results of the evaluation of
the dual radix division unit and a comparison with the decimal
divider of [4] and a double-precision radix-16 digit-recurrence
division unit.
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[di, dit1) qH qrL
muz | ma1 | muo | myg || mr2 [ m1 [ mpo [ mo 3
0.100, 0.106 - 0.26 | -0.26 0.16 | 0.04 | -0.04 | -0.16
0.106, 0.120 0.28 | -0.28
0.12,0.13 032 [ -0.32 0.20 0.08 | -0.08 | -0.20
0.13,0.14 034 | -0.34
0.14, 0.15 0.36 | -0.36
0.15,0.17 0.40 [ -0.40 0.24 -0.24
0.17 , 0.20 0.46 | -0.46 0.28 -0.28
0.20, 0.22 0.52 [ -0.52 0.32 -0.32
0.22,0.25 0.58 [ -0.58 0.36 -0.36
0.25, 0.30 0.68 | -0.68 0.40 -0.40
0.30, 0.35 0.80 [ -0.80 0.48 0.16 | -0.16 | -0.48
0.35, 042 0.96 | -0.96 0.56 -0.56
0.42 , 0.50 .14 | -1.14 0.68 024 | -024 | -0.68
0.50 , 0.57 3.20 132 | -1.32 | 320 0.80 -0.80
0.57 , 0.63 3.52 144 | -1.44 | 3532 0.88 0.36 | -0.36 | -0.88
0.63 , 0.69 3.84 158 | -1.58 | -3.84 0.96 -0.96
0.69 , 0.75 4.16 1.80 | -1.80 | -4.16 1.12 -1.12
0.75,0.82 4.48 1.88 | -1.88 | -4.48
0.82,0.88 5.12 208 | -2.08 | -5.12 1.28 -1.28
0.88 , 0.94 224 [ 224
0.94 , 1.00 5.76 -5.76 1.40 -1.40
TABLE II
CONSTANTS mj, FOR BOTH RADIX-10 AND RADIX-16 SELECTION.
Unit cycle time  n. cycles latency speed-up area ratio
[ns] [rs] [pm?]
Radix-16 (standard) 1.00 16 16.0 1.00 38000 0.40
Radix-10 [4] 1.00 20 20.0 0.80 59700  0.60
97700  1.00
Dual-radix (this work) 1.04 16/20 16.6/20.8  0.96/0.96 | 78500  0.80
TABLE III

SUMMARY OF RESULTS FOR THE SYNTHESIZED UNIT.

a b Ci )
+4 +2 ]
4 4 4 4
CPA —r CPA —
sign Cout
sign Cout 4 4
1 0L r\ 1 0 R* Sign
1 4
Cis1) S (1)

Fig. 4. Scheme of radix-10/radix-16 CSA (one digit).

We performed a synthesis of the unit of Fig. 3 (plus convert-
and-round unit) using the STM 90 nm CMOS standard cells
library [7] and Synopsys Design Compiler. From the synthesis
we estimated the critical path (including estimations at netlist
level of wire load) and the area. The critical path is highlighted
in Fig. 3 (dotted line).

The results are compared with those of [4] for the radix-10
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division and with those of [8] for radix-16.

The data in Table III show that the delay of the critical
path for the dual radix unit is practically the same since the
difference is about one INVFO4.

The additional area with respect to the implementation of
[4] corresponds mainly to the following modules:

« multiplexers to select the multiples of the divisor in the

precomputation block;

« module to compute the selection constants;

o the extra modules in the selection functions;

« the multiplexers for the CSAs in the dual radix recurrence

(Fig. 4).

However, by comparing the area of the combined divider
with separate units for each radix, we have about 20% less
area.

V. CONCLUSIONS

We conclude that the combination of both radices in a single
unit is feasible. The cycle time is similar to that of the radix-
10 (and radix-16) implementation and the additional area can
be justified by considering that the unit can perform both
radix-10 and radix-16 divisions. The selection function might
be simplified somewhat by modifying the implementation for
radix-10 of [4] using a set for gz = {—2,—1,0, 1,2}, since
that is also required for radix-16.
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