
A Radix-10 Combinational Multiplier
Tomás Lang and Alberto Nannarelli∗

Dept. of Electrical Engineering and Computer Science, University of California, Irvine, USA
∗Dept. of Informatics & Math. Modelling, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract— In this work, we present a combinational decimal
multiply unit which can be pipelined to reach the desired
throughput. With respect to previous implementations of decimal
multiplication, the proposed unit is combinational (parallel) and
not sequential, has a simpler recoding of the operands which
reduces the number of partial product precomputations and
uses counters to eliminate the need of the decimal equivalent
of a 4:2 adder. The results of the implementation show that
the combinational decimal multiplier offers a good compromise
between latency and area when compared to other decimal
multiply units and to binary double-precision multipliers.

I. INTRODUCTION

Hardware implementations of decimal arithmetic units have
recently gained importance because they provide higher ac-
curacy in financial applications [1]. In this work, we present
a combinational decimal multiplier which can be pipelined to
reach the desired throughput. The multiply unit is organized as
follows: the multiplier is recoded; the partial products are kept
in a redundant format; the partial product are accumulated by
a tree of redundant adders and the final product is obtained
by converting the carry-save tree’s outputs into binary-coded
decimal (BCD) format.

With respect to previous implementations of radix-10 multi-
pliers such as the ones in [2], [3] and [4], our design is different
in the following aspects: 1) the multiplier is combinational
(parallel) and not sequential; 2) we recode only the multiplier
while in [4] both operands are recoded in -5 to +5; 3) in
the partial product generation only multiples of 5 and 2 are
required; 4) the accumulation of partial products is done in a
tree of radix-10 carry-save adders and counters while in the
sequential unit of [4] signed-digit adders are used.

We present the standard cells implementation of the mul-
tiplier and compare its latency with those of the schemes
presented in [2] and [3]. Moreover, we compare the delay and
the area of the decimal combinational multiplier with those
obtained by the implementation of a binary (radix-4) double-
precision multiplier.

II. MULTIPLIER ARCHITECTURE

For the multiplication p = x · y, we assume that both the
multiplicand x and the multiplier y are sign-and-magnitude
n-digit fractional numbers in BCD format normalized in
[0.1, 1.0). The multiplication shift-and-add algorithm is based
on the identity

p = x · y =
n−1∑
i=0

xyir
i

where for decimal operands r = 10, yi ∈ [0, 9] and x is a
n-digit BCD vector. We consider in the following n = 16.

To avoid complicated multiples of x, we recode
yi = yHi + yLi with yH ∈ {0, 5, 10} and yL ∈ {−2, 1, 0, 1, 2}
as indicated in Table I. With this recoding, we need to precom-
pute only the multiples 5x and 2x, while 10x is obtained by
left-shifting x one digit. The negative values −x and −2x
are represented in radix-10 radix-complement. Each partial
product xyi is positive and sign extension is not necessary.
The partial products are accumulated by using an adder tree,
and the multiplication is completed by a carry-save to BCD
conversion, as shown in Fig. 1.

A. Precomputation of 2x and 5x
The multiplication by 2 is straightforward. Each digit is

multiplied by 2 and the carry is propagated to the next digit.
The carry does not propagate any further.

In [5] the multiples 5x and 2x are used for decimal
multiplication and division. However, the generation of 5x is
performed with a carry propagation over the whole number.
We now present the algorithm we use for the precomputation
of 5x without carry propagation.
To obtain g = 5x = 10x/2 we perform the following two
steps:

(1) e = 10x (shift left one digit)
(2) g = e/2:

To perform this operation we divide by two each digit of e.
However, since ei/2 has a fractional part when ei is odd, we
have

ei/2 = fi + hi+1/2 fi = 0, . . . , 4 and hi = 0, 1
gi = fi + 5hi gi = 0, . . . , 9

That is, the algorithm to produce g = 5x is

hi+1 = 1 if ei (or xi+1) odd
fi = � ei/2 � = � xi+1/2 �
gi = fi + 5hi

yi yH yL yi yH yL

0 0 0 5 5 0
1 0 1 6 5 1
2 0 2 7 5 2
3 5 -2 8 10 -2
4 5 -1 9 10 -1

TABLE I
RECODING OF DIGITS OF y.

3131424407850/06/$20.00

Adder

Tree

pr
ec

om
pu

ta
tio

ns

Partial

Product

Generation

16 16

32

X Y

P

carry−save −> BCD

Fig. 1. Scheme of the multiplier.

B. Partial Product Generation

The recoding of Table I produces two n-digit terms for
each partial product (PP). Table II shows an example of
multiplication (4×4 digits). Negative numbers are represented
in radix-10 complement and are implemented by doing the
9’s complement of the BCD digit and adding a 1 in the least-
significant position.

To reduce the delay of the additions, we perform the
addition xyi = xyHi + xyLi carry save and use a radix-10
carry-save representation of the partial products

xyi = xyHi + xyLi =
{

xyiS ∈ [0, 9]
xyiC ∈ [0, 1]

That is, the addition to produce a partial product results in

x : 1 9 6 3 ×
y : 8 1 4 5 =

xy0 : 5x 9 8 1 5
0 0 0 0 0

xy1 : 5x 9 8 1 5
−x - 1 9 6 3

xy2 : x 1 9 6 3
0 0 0 0 0

xy3 : 10x 1 9 6 3 0
−2x - 3 9 2 6

1 5 9 8 8 6 3 5

TABLE II
EXAMPLE OF MULTIPLICATION (4 × 4 DIGITS).

−2 −1 0 1 2

5:1−digit mux

10 5 0
3:1−digit mux

0

0

radix−10 carry−save adder cin

(n+1)*4

n+1(n+1)*4

(n+1)*4

precom
pute 5X

precom
pute 2X

9’s com
plem

ent

9’s com
plem

ent

shift−left 1 digit

X
n*4

5x10x

2xxx
_

2x
__

xy
i S

xy
i C

Precomputations

Partial−Product generation

4

Y
i

recoder

1

4

2

Fig. 2. Partial product generation.

n − 1 . . . 1 0
xyHi xxxx . . . xxxx xxxx
xyLi xxxx . . . xxxx xxxx
xyiS ssss . . . ssss ssss
xyiC c . . . c b

b= 1 if yLi < 0
The scheme for the generation of a partial product is shown

in Fig. 2.

C. Partial Product Accumulation

The carry-free accumulation of the partial products is done
using radix-10 carry-save adders (CSA), which add a carry-
save operand plus another BCD operand to produce a carry-
save result (see Fig. 3).

For 16-digit operands, we obtain 16 carry-save partial
products. Because the radix-10 CSA reduces two BCD digits
and one carry bit to one BCD digit and one carry bit, by
arranging in a first-level of the tree the xyiSs and by using 8
CSAs, we leave the carries (xyiCs) of 8 partial products not
accounted for. This is shown in Fig. 4.

These carry vectors are added by using an array of carry-
counters (CC). A digit counter of this array adds 8 carries of
the same weight and produces a decimal digit. That is,

inputs 8 m-bit vectors Ci cj ∈ [0, 1]
output 1 m-digit vector Z zj ∈ [0, 8]

as shown in Fig. 5.
By arranging the radix-10 carry-save adders and the carry-

counters as in Fig. 6, we can accumulate the partial products
in a 6-level tree.

314

r−10 CSA

n*4 n*4

n*4

n

n

A B D

S C
n − 1 . . . 1 0

A aaaa . . . aaaa aaaa
B bbbb . . . bbbb bbbb
D d . . . d d
S ssss . . . ssss ssss
C c . . . c 0

Fig. 3. n-digit radix-10 CSA.

Fig. 4. Array for partial products. Solid circles indicate BCD digits, hollow
circles indicate bits.

D. Radix-10 carry-save to BCD converter

The final carry-propagating addition consists in converting
the radix-10 carry-save representation into the BCD one. This
can be done with a simplified radix-10 CPA in which the input
is just a value in radix-10 carry-save representation. The inputs
are the 2n-digit/bit outputs of the adder tree and the output
is the product of x and y represented in 32-digit BCD (no
truncation or rounding are considered)

inputs: A 2n-digit vec. with ai ∈ [0, 9]
D 2n-bit vec. with di ∈ [0, 1]

output: S 2n-digit vec. with si ∈ [0, 9] (BCD)

r−10 CC

Z

C i
m m

m*4

m − 1 m − 2 . . . 2 1 0
C1 c c . . . c c c
C2 c c . . . c c c
C3 c c . . . c c c
C4 c c . . . c c c
C5 c c . . . c c c
C6 c c . . . c c c
C7 c c . . . c c c
C8 c c . . . c c c

Z zzzz zzzz . . . zzzz zzzz zzzz

Fig. 5. m-digit radix-10 counter.

The adder can be divided into three stages. Like in radix-2,
the first stage of the unit produces p and g defined as

pi =
{

1 if ai + di = 9
0 otherwise gi =

{
1 if ai + di = 10
0 otherwise

In parallel, the following operations are computed (modulo
10)

s0i = 〈ai + di〉10
s1i = 〈ai + di + 1〉10 i = 0, 1, . . . , 2n − 1

A second stage consists of a parallel prefix structure to
compute the carries ci from the ps and gs and a final stage
selects the precomputed digits of s0 or s1 according to the
specific carry bit ci

si =
{

s0i if ci = 0
s1i if ci = 1 i = 0, 1, . . . , 2n − 1

This adding scheme can be generalized to a BCD carry-
propagate adder by first applying a simplified radix-10 CSA1

which reduces the two BCD vectors to a radix-10 carry-save
representation. Then, the above presented converter is used to
complete the carry-propagate addition.

III. IMPLEMENTATION AND COMPARISONS

The 16-digit radix-10 combinational multiplier (Fig. 1) has
been synthesized using the STM 90 nm CMOS standard cells
library [6] and Synopsys Design Compiler. The synthesized
unit has a critical path of 2.65 ns and an area of 0.3 mm2

equivalent to the area of about 68, 000 NAND-2 gates (Ta-
ble III).

The unit can be pipelined to achieve a target clock cycle
TC . For example, allowing a latch overhead of 20% of TC ,
our unit can be pipelined into

m =
⌈

critical path
0.8 · TC

⌉
stages.

1Obtained by omitting the input D in the scheme of Fig. 3.

315

r−10 CC

xy
0

xy
1

xy
2

xy
3

xy
4

xy
5

xy
6

xy
7

xy
8

xy
9

xy
A

xy
B

xy
C

xy
D

xy
E

xy
F oddxy carries

s10s11s12s13s14s15s16s17 s18

s10s11s12s13s14s15s16s17

0s21s22s23s2

0s21s22s23s2

s3
0

s3
0

s3
1

s3
1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6

LEVEL 1

32*4

r−10 CSA

r−10 CSA

r−10 CSA

s18

r−10 CC

s1odd s2odd s3
odd carries

s4 s cs4

s5s s5c

ps pc

32*4 32

32*4

r−10 CSA r−10 CSA r−10 CSA r−10 CSA r−10 CSA r−10 CSA r−10 CSA r−10 CSA

r−10 CSA r−10 CSA

r−10 CSA r−10 CSA r−10 CSA r−10 CSA

18*4 1818*4 18 18*4 18 18*4 18 18*4 18 18*4 18 18*4 18

20*4 20 20*4 20 20*4 20 20*4 20

24*4 24 24*4 24

32*4 32

32*4 32

18*4 18

Fig. 6. Adder tree.

To clock the unit at a frequency of 1 GHz, the multiplier can
be split into 4 stages with a resulting latency of 4.0 ns.

The sequential decimal multipliers of [2] and [4] for 16-digit
operands have a latency of n + 4 = 20 cycles. The unit of [2]
has been implemented in [3] in a 0.11 μm library of standard
cells and the reported critical path is 0.58 ns. Because between
the 0.11 μm and the 90 nm libraries, the CMOS transistor
channel lenght L and the supply voltage VDD scale by about
the same amount

S =
L(0.11μm)

L(90 nm)
=

110
90

� 1.2 V

1.0 V
=

VDD(0.11μm)

VDD(90 nm)

we can assume the constant field scaling model applies. As a

consequence, the critical path 0.58 ns scales to 0.58
S = 0.47 ns

in the 90 nm library. Therefore, the latency of the the radix-10
multiplier of [2] for 16-digit operands can be estimated to be
(n + 4) · 0.47 = 9.5 ns.

The sequential multiplier of [3] has a latency of n + 8
cycles and is implemented in the 0.11 μm library for different
operand sizes. The reported value of TC = 0.5 ns for 16-
digit operands scales to TC = 0.4 ns in our library with a
corresponding latency of (n + 8) · 0.40 = 9.6 ns.

By pipelining the combinational multiplier to match
TC = 0.4 ns, we get 11 stages (see delays in Table III) and
an operation latency of 11 · 0.40 = 4.4 ns.

Furthermore, we compared the radix-10 combinational mul-

316

Block Delay [ns] Area [μm2]
Comp. 2x, 5x 0.20
PPs gen. mux 0.21 155,000
PPs gen. CSA 0.29
Tree level 1 0.26
Tree level 2 0.27
Tree level 3 0.21 135,000
Tree level 4 0.27
Tree level 5 0.29
Tree level 6 0.21
r-10 CS→BCD 0.40 10,000
Whole multiplier 2.65 300,000

crit. path

TABLE III
RESULTS OF IMPLEMENTATION.

tiplier with a binary double-precision tree-multiplier (with
radix-4 recoding) which has a comparable dynamic range
(253 < 1016). The latency of the binary unit is 1.4 ns and
its area 0.20 mm2 (Table IV). By comparing the radix-10 and
the binary multipliers, the binary one is about two times faster
and 33% smaller.

IV. CONCLUSIONS

In this work, we presented the architecture of a radix-10
combinational multiplier and its implementation in standard
cells. The partial products are generated in such a way that
only multiples 2 and 5 of the multiplicand are required,
and their accumulation is done by using radix-10 CSAs and
counters.

The synthesized unit has a operation latency of 2.65 ns and
can be pipelined to obtain a target throughput.

Critical path Area
Unit [ns] ratio [mm2] ratio
radix-4 mult 1.40 1.00 0.20 1.00
decimal mult 2.65 1.90 0.30 1.50

TABLE IV
COMPARISON OF RADIX-4 AND RADIX-10 MULTIPLIERS.

Although it might not be reasonable to compare the latencies
of combinational and sequential units, the proposed multiplier
has the shortest latency when pipelined and clocked at the
maximum frequency of pre-existing radix-10 sequential mul-
tipliers.

Finally, the radix-10 multiplier is compared with a binary
double-precision multiplier, which is a de facto standard in
most processors. The delay of the radix-10 multiplier is about
twice that of the binary multiplier, and its area its about 50%
larger.

REFERENCES

[1] M. F. Cowlishaw, “Decimal floating-point: algorism for computers,” in
Proc. of 16th Symposium on Computer Arithmetic, June 2003, pp. 104–
111.

[2] M. Erle and M. Schulte, “Decimal Multiplication via Carry-save Addi-
tion,” in Proc. of 14th International Conference on Application-Specific
Systems, Architectures and Processors, July 2003, pp. 337–347.

[3] R. Kenney, M. Erle, and M. Schulte, “A High-Frequency Decimal
Multiplier,” in Proc. of International Conference on Computer Design
(ICCD), Oct. 2004, pp. 26–29.

[4] M. Erle, E. Schwarz, and M. Schulte, “Decimal multiplication with
efficient partial product generation,” in Proc. of 17th Symposium on
Computer Arithmetic, June 2005, pp. 21–28.

[5] R. K. Richards, Arithmetic Operations in Digital Computers. D. Van
Nostrand Company, Inc., 1955.

[6] STMicroelectronics. 90nm CMOS090 Design Platform. [Online]. Avail-
able: http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

317

