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Abstract—In this paper we present a Residue Number System
(RNS) implementation of digital filters to be used for space
applications. The RNS is particularly attractive because of
the reduced power dissipation with respect to filters realized
in the traditional binary representation. Furthermore, the re-
duced circuit complexity allows the implementation of pro-
grammable structures, in terms of filter coefficients and dy-
namic range, a feature appealing for remote operations on
systems onboard satellites.
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1. INTRODUCTION

Residue Number System (RNS) arithmetic has been consid-
ered for long time as an interesting theoretical topic due to
the complexity of the architectures deriving by the use of this
number representation. However, the rapid growth of Inte-
grated Circuits (IC) technology makes the use of RNS suit-
able for many DSP applications. A number of papers have
been presented in the past years showing the advantages of
the implementation of entire DSP subsystems in RNS arith-
metic [1], [2].

The main advantages of the RNS representation are:

• the decomposition of a given dynamic range into parallel
paths of smaller dynamic ranges, defined by the moduli set,
which leads to carry-free operations among paths in different
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moduli and reduced delay;
• reduced complexity of the arithmetical units when large
word lengths are needed;
• reduced power consumption.

The drawbacks of the RNS are illustrated in the following
points:

• an input converter is required to translate numbers from the
standard format (two’s complement) into the residual one;
• an output converter is needed to implement the translation
from the RNS to the standard representation.

The converters have a significant impact on complexity, la-
tency and power consumption. However, in the case of data
intensive computations (e.g. filters or filter banks) these dis-
advantages can be easily compensated by the earnings in the
internal RNS computations. For these reasons, recently, the
RNS arithmetic has been used in public-key cryptography,
which requires multiplications of very large numbers, and in
transmission systems based on the Code Division Multiple
Access (CDMA).

A number of papers have been presented on the direct con-
version from analog to RNS [3],[4]. The inverse conversion,
from RNS to analog, which is not very appealing in actual
applications, has been presented in [2]. However, the most
popular conversion schemes are from binary (two’s comple-
ment) to RNS and vice-versa [5].

The payload of a satellite system represents a typical system
which can take advantage from the use of RNS arithmetic. In
this application two main aspects are crucial:

• the power consumption;
• the access to the onboard resources.

Low power consumption is an intrinsic feature of the RNS
architectures, due to the lower complexity and, consequently,
to a reduced switching capacitance. As already mentioned,
the parallelization usually implies a shortening of the critical
path of a system, because narrower datapaths have shorter
carry chains and consequently smaller delays. In [6] and [7]
the power dissipation in RNS structures is reduced by taking
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Figure 1. RNS FIR filter.

advantage of this parallelism.

In [6], the supply voltage is reduced, resulting in a quadratic
reduction of power, until the speed-up over the traditional im-
plementation is one. In [7], the supply voltage is reduced until
a desired value of delay. In [8], we presented an approach to
reduce the power dissipation in a RNS filter without penal-
izing its speed. We used the time slack available in the non
critical parallel paths and reduced the power supply for these
moduli until delays in all paths are equalized to the critical
one. In this way, we reduce the power dissipation without
affecting the overall performance.

In addition, because these structures are parallel, we can,
for some applications, make partial use of the computing re-
sources, by disabling the circuitry in some moduli path and
reducing the power dissipation.

Another consequence of the lower complexity of the RNS
datapaths, is that they can be made programmable or con-
figurable at a smaller cost than corresponding binary datap-
aths. For example, in the implementation of FIR filters in the
two’s complement system (TCS), usually the multipliers are
realized by hard-wiring the filter coefficient to simplify the
partial products array (when a bit is zero the corresponding
partial product is not generated) and obtain a smaller area.
In RNS, multipliers have lower complexity and therefore, the
impact on the area, and on the power, of implementing full
multipliers (with programmable coefficients) is not as expen-
sive as in TCS.

This work proposes a complete RNS architecture for an on-
board satellite front-end. A RNS low power FIR filter ar-
chitecture is connected to a direct converter from analog to
RNS [4]. The performances of the proposed architecture
are compared to the existing traditional realizations. Results
show that RNS filter offer lower power dissipation than cor-
responding TCS filters, and also more flexibility in terms of
programmability.

2. BACKGROUND ON RNS

In a Residue Number System, defined by a set of rela-
tively prime integers{m1,m2, . . . ,mP } with dynamic range
M =

∏
mi, any integerX ∈ {0, 1, . . .M − 1} has a unique

representation given by:

X
RNS→ ( 〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mP

)

where〈X〉mi
= X mod mi = ri, i.e.

X = αi ·mi + ri ; i = 1, . . . , P

Operations on single moduli are done in parallel

Z = X op Y
RNS→





Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

. . . . . . . . .
ZmP = 〈XmP op YmP 〉mP

Therefore, the RNS allows the decomposition of a given dy-
namic range in slices of narrower bit-width on which the com-
putation can be implemented in parallel [1], [2].

The conversion of the RNS representation ofZ can be ac-
complished by the Chinese Remainder Theorem (CRT) [2]:

Z =

〈
P∑

i=1

mi · 〈mi
−1〉mi · Zmi

〉

M

with mi =
M

mi

andmi
−1 obtained by〈mi ·mi

−1〉mi = 1.

3. RNS FIR FILTERS

The starting point of our design is a programmable N taps
error-free FIR filter which, as shown in Figure 1, is decom-
posed into P filters working in parallel

y(n) =
N∑

k=1

akx(n− k) RNS→





Ym1(n) =
〈∑N

k=1 〈Am1(k) ·Xm1(n− k)〉m1

〉
m1

Ym2(n) =
〈∑N

k=1 〈Am2(k) ·Xm2(n− k)〉m2

〉
m2

. . . . . . . . .

YmP (n) =
〈∑N

k=1 〈AmP (k) ·XmP (n− k)〉mP

〉
mP

In the paper, we indicate thei−th modulus withmi in ex-
pressions where other moduli appear, and just withm when
we refer to operation done in a RNS path (only one modulus
involved).
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Figure 2. FIR filter in a) direct form, b) transposed form and c) carry-save transposed form.

FIR filters can be either realized in direct (Figure 2.a) or trans-
posed form (Figure 2.b). For filters in direct form, the accu-
mulation of the contributes of all the taps can be done with
a tree of adders. In general, filters in different moduli paths
can be implemented in different forms, as long as the timing
is consistent.

Considering the delay of FIR filters, both the direct and the
transposed form show a delay which depends on the number
of taps (N). For filters in direct form the increased number of
taps, implies a delay increase in the tree of adders. Further-
more, for direct form, we need to reduce the result of the addi-
tion in a number modulusmi. We call this operation modulus
reduction. For filters in transposed form, as N grows, we have
to add (or increase) the buffering forx. The expressions for
the delays of the filters in the two forms, except conversions,
are:

tDIR = tREG + tmodMULT + ttree(N) + tred(N)
tTR = txbuf (N) + tmodMULT + tmodADD + tREG

where:

tREG is the delay due to both propagation delay and set-up

time in registers.
txbuf (N) is the delay due to buffering ofx: input to all taps.
tmodMULT is the delay of the modular multiplication which

does not depends on N, but is proportional to the size of the
moduli.
tmodADD is the delay of the modular addition, which de-

pends on the size of the moduli.
ttree(N) is the delay introduced by the tree of adders, which

has a logarithmic dependency of N.
tred(N) is the time needed to reduce the output of the tree

to a modulusmi value.

In [8], we introduced the carry-save (CS) representation of
the residues which allows a reduction on the addition time in
the transposed form (Figure 2.c). With the CS representation
we avoid to compute the modular addition in every tap and
reduce the addition time to the delay of a XOR gate, as later
explained in detail. The drawback of the CS representation
is that registers are doubled and that, at some point, we need
to perform the two term addition and extract its modulusm.
However, the critical path for a carry-save transposed form
RNS-path (CS-RNS in the following) is

tCS−RNS = txbuf (N) + tmodMULT + tXOR + tREG
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Figure 3. a) Structure of modular adder. b) Modular adder whenm = 2n − 1.

In the rest of this section, we describe the implementation
detail of filter taps, limiting the discussion to filters in trans-
posed and carry-save form.

Implementation of modular addition

The modular addition〈a1 + a2〉m, consists of two binary ad-
ditions. If the result ofa1 + a2 exceeds the modulus (it is
larger thanm − 1), we have to subtract the modulusm. In
order to speed-up the operation two additions are executed in
parallel:

(a1 + a2) and (a1 + a2 −m).

If the sign of the three-term addition is negative it means that
(a1 + a2) < m and the modular sum is(a1 + a2), otherwise
the modular addition is the result of(a1 + a2 −m). The
above algorithm can be implemented with a carry-save adder
(CSA), two n-bit (n = dlog2 me) adders1 (nCPA), and a mul-
tiplexer as shown in Figure 3.a.

The modular adder can be simplified when:

m = 2n. In this case a modulus2n addition only requires
the sum of then least-significant bits.
m = 2n − 1. In this case, indicating withcout the carry-

out of the most-significant bit (MSB), the modulus2n − 1
addition is computed as

a = 〈a1 + a2〉2n−1 = a1 + a2 + cout

and it can implemented, eliminating the carry-save adder of
Figure 3.a, with two n-bit adders in parallel, one with carry-in
cin = 0, the other withcin = 1 and then selecting the cor-
rect result according to thecout computed in the adder with
cin = 0 (Figure 3.b).

In the general case of Figure 3.a, the delay of the modular

1Adders are implemented in a carry-look-ahead scheme. An extra inverter
is required in the(a1 + a2 −m) adder to obtain the sign.
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Figure 4. Structure of isomorphic multiplier.

adder is

tmodADD = tCSA + tnCPA + tMUX .

The delaytnCPA depends on the bit-width of the operands
and, therefore, on the modulusm.

Modular Multiplication

To reduce the complexity of modular multiplication, we use
the isomorphism technique [9] to implement the product of
residues. This method works quite well for small prime mod-
uli (m < 64). By using isomorphisms, the product of the two
residues is transformed into the sum of their indices which
are obtained by an isomorphic transformation. According to
[9], if m is prime there exists a primitive radixq such that its
powers modulusm cover the set[1,m− 1]:

p = 〈qw〉m with p ∈ [1,m− 1] , w ∈ [0,m− 2] .

Both transformationsp → w andw → p can be implemented
with m-1-entry tables. Therefore, the product ofa andb mod-
ulusm can be obtained as:

〈a · b〉m = 〈qw〉m , w = 〈x + y〉m−1 , a = 〈qx〉m
b = 〈qy〉m
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In order to implement the modular multiplication the follow-
ing operations are performed:

1. Two direct isomorphic transformations (DIT) to obtainx
andy;
2. One modulusmI = m− 1 addition〈x + y〉mI ;
3. One inverse isomorphic transformations (IIT) to obtain the
product.

The tables are implemented as synthesized multi-level logic
and special attention has to be paid when one of the two
operands is zero. In this case there exists no isomorphic cor-
respondence and the modular adder has to be bypassed. The
delay of the resulting scheme, shown in Figure 4, is

tisomult = tDIT + tCSA + tnCPA + tMUX + tIIT .

As a first step to simplify the structure, we eliminate one of
the adders in parallel and we incorporate the modulus reduc-
tion in IIT table, as follows:

1. we compute:x + y −mI (mI = m − 1, x andy are the
indices of the isomorphism);
2. if the result is positive (e.g.x + y ≥ mI ) we access the
normal IIT table;
otherwise we access a modified table (IIT∗) in which the in-
verse isomorphism is addressed by〈x + y −mI〉k, where
k = dlog2 mIe.

In this new scheme, depicted in Figure 5, the IIT tables
are more complex (entries are doubled) than in the original
scheme, but the delay is not increased because the multiplexer
in the last stage of the modular adder is eliminated.

As a second step, we can incorporate the addition of the con-
stant−mI in one of the DIT tables. The scheme of Figure 5
is modified as follows:

1. In one of the DIT tables instead of addressing the index of
y we addresse = y −mI ;
2. using a n-bit adder, we compute
w = x + e = x + y −mI ;

D I T
table table

det. 0 det. 0

a b

x
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n−bit   adder
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Figure 6. Isomorphic multiplier after second modification.

3. if w is positive (e.g.x + y ≥ mI ) we access the normal
IIT table;
otherwise we access the IIT∗ table, as previously shown.

In this new scheme (Figure 6) we have eliminated the carry-
save adder which was in the critical path, while the modifica-
tions in DIT∗ do not affect the table delay.

In conclusion, with these two modifications we reduced the
critical path of the isomorph multiplier to:

tmodMULT = t′isomult = tDIT + tnCPA + tIIT∗ .

Because the inputx (or its delayed value for direct form) is
the multiplicand of all the multiplications (see Figure 2), DIT
tables can be incorporated in the binary to RNS conversion,
while the coefficients of the filter (multiplicators) can be di-
rectly loaded at start-up as isomorphism indexes.

Carry-Save RNS path

In order to speed-up the operations by making the clock pe-
riod shorter, we can resort to a carry-save (CS) represen-
tation for the binary representation of residues (Y sk, Y ck)
and avoid to compute the modular addition in every tap.
The operands to be added in a tap are three: the product
pk = 〈A(k)X(n− k)〉m and the carry-save representation of
Yk−1 (Figure 2.c)

Y sk = sum(Y sk−1, Y ck−1, pk),
Y ck = carry(Y sk−1, Y ck−1, pk).

The structure of the carry-save RNS tap is shown in Figure 7.
The critical path is:

tCS−RNS = txbuf (N) + tmodMULT + tXOR + tREG

The critical path is essentially determined by the multiplier
latency, beingtxbuf andtREG unavoidable, and beingtXOR

the minimum delay for a half-adder.

However, the CS-representation implies the doubling of the
registers, and, as the number of taps increases, a logarithmic
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increase in the bit-width of CSAs and registers. For this rea-
son, it might be convenient to insert everyn taps somere-
lay stations(RS), which assimilate the CS representation of
Yk and extract its modulusm, to prevent the bit-width from
growing too much. Relay stations are depicted in Figure 8
and their delay is

tRS = tcpa&mod(n) + tREG

They introduce an extra cycle of latency, but they can also
be used to better dimension the buffering ofX (i.e. reduce
txbuf ).

The spacing of relay stations (i.e. the numbern of taps be-
tween two relay stations) can be determined by finding then
which satisfies
{

tbufi + tbufL · n + tmodMULT + tXOR + tREG < Tclock

tcpa&mod(n) + tREG < Tclock

4. ANALOG TO RNS CONVERTER.

Recently, in order to take advantage from the RNS represen-
tation, a new architecture for a RNS flash Analog to Digital
Converter (ADC) was proposed by the authors [4]. This ar-
chitecture, which exhibits a complexity comparable with that
of a traditional ADC, provides a suitable algorithm for the de-
tection and the correction of the RNS residues, avoiding the
errors that can be induced in such a non-positional represen-
tation.
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Figure 9. ADC architecture.
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The proposed architecture is derived from the two stage flash
converter. This last kind of converter was introduced because
the flash converter becomes too complex when the the word-
length is greater than eight bits and the resulting circuits are
too slow. The analog to RNS converter (ARNS) proposed is
shown in Fig. 9. The figure refers to a three moduli repre-
sentation. In this figure, the determination of each residue is
implemented by a structure similar to the scheme of the two
stage flash converter. A first stage determines the integer quo-
tient (α-extractor) and a second stage determines the residue.
However, since the integer quotient is not of interest, its de-
termination can remain analog, thus avoiding the A/D and
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D/A converters. Theα-extractor is realized by the circuitry
of Fig. 10, very similar to the input part of the two stage flash
converter. A correction block is also introduced to avoid the
problems of wrong conversion.

If some errors occur in the ARNS conversion, some of thepi

are not equal toLSB(X). We can assume that the correct
value of the parity (p∗) can be chosen on the basis of the ma-
jority voting rule. Therefore, we can select the wrong parity
pj j = 1...L for which we have that eitherαi or ri are wrong
(if αi andri are together wrong, the paritypj is equal top∗

and the presence of these errors cannot be detected.

Assuming that we have an error in the least significant bit,
αj can be wrong ifX is very close to a multiple ofmj : in
this case, the correspondingrj will be either0 or mj − 1. To
determine the correctαj we must checkrj .

If rj = mj − 1, αj must be changed inαj + 1 andrj in 0.

If rj = 0, αj must be changed inαj − 1 andrj in mj − 1.

Therefore, the paritypj is changed inp∗.

If X is not close to a multiple of mj , i.e. rj 6= 0 and
rj 6= mj−1, it is not reasonable to suppose thatαj is wrong;
then we assume thatrj is wrong and must be changed inrj+1
or rj − 1. Unfortunately, we do not have sufficient informa-
tion to resolve this ambiguity. This problem can be overcome
by introducing some additional hardware. In fact, we can per-

form a binary conversion of the difference

αimi − αjmj = rj − ri = rij

Using this difference, it results that the correct value ofrj is
given by

rj = rij + ri

Fig. 11 shows the structure of the correction block.

The structure of the proposed ARNS converter, shown in Fig.
9, is composed by N ideal converter chains (one for each
modulus) compose that scheme. Each chain is considered
ideal; i.e. noise and non-linearity effects are absent. More-
over, the overall actual internal noise is taken into account by
noise sources placed at the input of each modular converter.
In the following analysis, we consider truncation quantization
but similar methods can be developed for analyzing ARNS
converters based on other quantization laws.

Let us consider an input noiseless voltageV and the chain
conversion related to thei-th modulus. The sum of the input
and the noise voltages gives the final valueVi = V + ni,
whereni represents the introduced noise.

It is worth noting that, in the analog to RNS conversion,



all the modular converters use the same quantization stepq,
therefore the distance∆ of the voltageV from the quantized
quantityV ′ (defined by the expressionV ′ ≤ V < V ′ + q) is
the same for all the modular chains. This concept is sketched
in Fig. 12 where the input voltageV and its quantized repre-
sentationV ′ are shown, together with noiseless quantization
error ∆. For each modular chain is also reported the corre-
sponding residue value.

In that figure, beside the quantization grid, for each modulus,
is also represented the Probability Distribution Function (pdf)
of the actual input voltageVi of each channel. For the sake
of simplicity, our analysis supposes that all the channel noise
sources have the same varianceσ2. For the i-th modulus we
have the error probability expression

p(i)
e =

1
σ
√

2π

(∫ ∞

|∆|
e−

ε
2σ dε +

∫ ∞

q−|∆|
e−

ε
2σ dε

)

Above expression computes the probability of obtaining a
voltage valueVi lying outside the correct quantization in-
terval. For anN -moduli converter, according to the major-
ity voting rule, we are able to correct the final values of the
residuesri if and only if the number of wrong residues is
less thanbN

2 c (here we assume that the probability of uncor-
rectable errors that preserve the parity is negligible).

Considering all the possible correctable error combinations
and their own probabilities, the probabilitypc to obtain a cor-
rect conversion result is given by the following expression:

pc = Σb
N
2 c

j=0

N(N − 1)...(N − J + 1)
j!

pj
e(1− pe)N−j

The probability values of correct conversion result computed
for various values of N (the number of the moduli used in
the RNS representation) are compared with the probability of
correct result for the traditional ADC having the same quan-
tization step (see fig.13).

5. THE OUTPUT CONVERSION

In this section a new efficient architecture for the implementa-
tion of the output conversion is shown. This architecture can
be configured for a set ofN moduli and for the conversion of
unsigned and signed integers. The classical formulation for
the Chinese Remainder Theorem based on aN moduli set is

〈X〉M =

〈
N∑

i=1

m̂i〈m̂−1
i · ri〉mi

〉

M

= 〈H〉M (1)

where〈 〉T is themod T operator,M =
∏N

i=1 mi,
ri = 〈X〉mi i ∈ [1, N ],

Figure 12. Quantization voltage levels grid for the different
modular chains.

Figure 13. Error vs. noise variance

m̂i =
M

mi

and the quantitieŝm−1
i represent the multiplicative inverse of

m̂i, i.e.

〈m̂im̂
−1
i 〉mi = 1 (2)

When (1) is implemented by a digital architecture two prob-
lems arise. The first one concerns the complexity of the in-
volved arithmetic operations (a set of modulo additions and
modulo multiplications are required). There are a number of
methods to efficiently implement the computation of the term
H. In [10] look-up tables (LUT) are used to compute the
terms and a tree of carry save adders implements the summa-
tion.

The second problem is related to the computation of the ex-
ternalmod M operation. This operation is very complex [11]
due to the large value ofM in the finalmod M operator and



to the dynamic range of the termH. In fact, from (1) we
obtain the following bounds

0 ≤ H =
N∑

i=1

m̂i〈m̂−1
i ·ri〉mi

≤
N∑

i=1

M

mi
· (mi−1) < N ·M

(3)

Equation (3) shows the relation between the range ofH and
N . Moreover, the methodologies used for the modulo com-
putation of specific modulus set (as those based on moduli
close to powers of two) do not appear to be useful for this
modulo operation. Indeed, if we maintain the generality of
the procedure, the final modulo cannot be constrained. To
obtain a more suitable form for themod M operation, let us
consider the numberX ·2k beingk a suitable integer quantity.
Multiplying both the members of (1) by2k we obtain

〈X · 2k〉M =

〈
N∑

i=1

m̂i〈m̂−1
i · ri · 2k〉mi

〉

M

(4)

The terms of the summation in (4) have the same dynamic
range as given by (3) since the factor2k appears inside a
mod mi operation. Equation (4) can be rewritten as

X · 2k =
N∑

i=1

m̂i〈m̂−1
i · ri · 2k〉mi − α ·M (5)

whereα comes from the external modulo operation. From (5)
we get

X =
∑N

i=1 m̂i〈m̂−1
i · ri · 2k〉mi − α ·M

2k
=

H − α ·M
2k

(6)

Properties of (6) has been exploited in [12]. Due to the pres-
ence of a power of two modulus, this expression cannot be
directly used for the computation of the output conversion.
In the present case, (5) must be modified by taking into ac-
count that one of the residues, is a power of two (we suppose
mN = 2h). In this case, we have

〈X〉2h = rN (7)

From (7) it derives that theh least significant bits ofX corre-
spond to theh bits of rN . This means that the reconstruction
of these bits does not require any operation in the residue to
binary conversion process. In this case, the main task of the
converter is the reconstruction of the remaining most signifi-
cant bits ofX. These bits correspond to the numberε defined
as

ε =
X − 〈X〉2h

2h
=

X − rN

2h
(8)

Starting from this value the converted valueX can be ob-
tained by

X = ε · 2h + rN . (9)

Theε value can be computed by introducing (6) in (8)

ε =
H−2krN

2h − αM̃

2k
(10)

whereM̃ = M/2h. Since the definition of the termH im-
plies that

〈H〉2h =
〈
2krN

〉
2h (11)

the first term of the numerator of (10) is an integer quantity
H̃ given by

H̃ =
H − 2krN

2h
(12)

Using (12), (10) can be rewritten as

ε =
H̃ − α · M̃

2k
(13)

Due to the scaling by the factor2h, this expression requires
for its computation a reduced dynamic range. Eq.(13) is sim-
ilar to (6) and, as we show later, a simplified method can be
used to select the valueαM̃ . In the following, all the expres-
sions are defined in terms ofε, H̃, M̃ .

The most difficult task, in the evaluation of (13), is the com-
putation of the termαM̃ . To solve this problem, we first
evaluate the dynamic range of the term̃H. Starting from (12)
we obtain

−2k < H̃ < N · M̃ (14)

consequently, the factorα belongs to the interval−2k < α < N .

Starting from this result, (13) suggests an efficient method to
find the right valueα · M̃ to be subtracted tõH. In fact, in
order to obtain integer values ofε (the reconstructed value),
the quantityH̃ −α · M̃ must be a multiple of2k. This means



that thek least significant bits of̃H − α · M̃ must be equal
to zero. Starting from this observation, we can derive that the
correct value of the termα belongs to the subset

Υ = {α ∈ I : 〈α · M̃〉2k = 〈H̃〉2k} (15)

WhereI is the set of integer numbers. This subset only de-
pends on thek least significant bits of̃H. Unfortunately, us-
ing these bits we are able to select only2k values ofα · M̃ ,
out of theN + 2k + 1 possible values, according with (14).
If k is chosen such that

2k ≥ N − 1 (16)

the values ofα · M̃ can be computed starting from the2k

positive values stored in a very small LUT. In fact, sinceε

must be a positive number, the quantitỹH − α · M̃ must
be positive. If this does not happen, the obtained value of
α ∈ Υ is incorrect. From (14) and (15) the correct value is
obtained by subtracting2k from the incorrect one. So, ifα′ is
the incorrect value addressed by the LUT andα is the correct
one,ε is obtained by

ε =
H̃ − α · M̃

2k
=

H̃ − α′ · M̃
2k

+ M̃ (17)

The procedure deriving from (17) can be summarized by the
following steps.

1. The termα′ · M̃ is read from the LUT addressed by thek

least significant bits of̃H.
2. The sumH̃−α ·M̃ is computed and thek least significant
bits are discarded.
3. If the obtained result is negative the quantitỹM is added.

A numerical example

In the following, a numerical example is given. Let us con-
sider the case of a RNS representation based on the moduli
set,

mi = {3, 5, 7, 8}
wherer4 = 23 (i.e. h = 3). The number of moduli is four
therefore, from (16),k = 2. For this set we have

m̂i = {280, 168, 120, 105}, m̂−1
i = {1, 2, 1, 1}, M = 840

M̃ = 105, P = 420

and

H = 280〈1 · 2k · (r1 + P )〉3 − 168〈2 · 2k · (r2 + P )〉5+
120〈1 · 2k · (r3 + P )〉7 + 105〈1 · 2k · (r4 + P )〉8

Consider the valueX = −209 RNS−−−→ {1, 1, 1, 7}.

H = 1684, H̃ = 1684−4·〈7+420〉8
8 = 209

The correctα value is1. Consequently we haveε′ = 26 and
for X ′ we obtainX ′ = 26 · 8 + 〈7 + 420〉8 = 211 > 0.

In this case we have to subtract the termP = 420 obtaining
X = 211− 420 = −209.

The VLSI Architecture

The converter architecture for a generic set of moduli is
sketched in Fig. 1. TheN LUTs are addressed by the residues
ri and store the terms

m̂i〈m̂−1
i · 2k · (ri + P )〉mi

The LUT-N stores the term̂mN 〈m̂−1
N 2k(rN + P )〉mN

−
2k〈rN + P 〉2h . A Carry-Save Adder tree is used to compute
H̃. Thek least significant bits of̃H are used to address the
LUT αM̃ that stores the multiplesα′M̃ . The selected multi-
ple is added tõH in order to obtain the valueε′. Theh least
significant bits of the value〈rn+P 〉2h are directly juxtaposed
with ε′ to obtain the valueX ′. The correct signed valueX is
obtained by a final summation. Depending on the sign ofX ′

the value−P or M − P is conditionally added toX ′.

A VLSI implementation based on the moduli set{3, 5, 7, 11,
17, 64} for a 20 bit converter has been implemented (Fig.
2). The architecture requires six LUTs that are normally
very small. In fact the input LUTs are related to the moduli
wordlength that can be chosen sufficiently small for the most
common dynamic ranges. The computation of the termH̃
has been obtained by using a Carry-Save Adder (CSA), and
a carry-save representation has been maintained where possi-
ble. A Carry-Propagate Adder (CPA) has been used to obtain
the address to the LUT-αM̃ . In the architecture, two different
results are computed in parallel and the correct one is selected
by usingSgn(ε′). The architecture has been mapped on a
XILINX-V1000-6 FPGA. The number of used Configurable
Logic Blocks (CLB) is 80 and the maximum delay is 14 ns
(taking into account the routing delays).

6. FILTERS IMPLEMENTATION ON FPGAS

In order to evaluate the performance of RNS and CS-RNS
filters, we have implemented error-free FIR filters (20 bits
dynamic range) in the traditional two’s complement system
(TCS), in RNS and in RNS using the carry-save scheme (CS-
RNS).

For the traditional TCS filter we opted for a carry-save rep-
resentation in the taps to keep the cycle time as short as
possible. The productpk = akx(n − k) is realized with
a Booth multiplier [13] and the resulting partial products
are accumulated in a Wallace tree structure which produces
a carry-save representation of the product. Because the
sum at the(k − 1)-th tapYk−1 =

∑k−1
i=0 aix(n− i) is stored

in carry-save representation, an array of 4:2 compressors



Figure 14. The converter architecture

[14] is required to reduce the CS representation ofpk and
the CS representation ofYk−1 to the CS representation of
Yk = Yk−1 + pk in thek-th tap.

The carry-save representation is finally converted into the
two’s complement representation by a carry-propagate adder
(realized with a carry-look-ahead scheme) in the last stage of
the filter.

The critical path is:

tTCS = txbuf + tMULT + tCSA−4:2 + tREG .

We implemented six different filters: 8-tap and 16-tap TCS,
8-tap and 16-tap RNS and 8-tap and 16-tap CS-RNS, all with
dynamic range of 20 bits. The VHDL RT-level description of
the filters was synthesized and mapped on a FPGA by using
the Xilinx Foundation suite of tools. By measuring the aver-
age current consumptionI, we computed the average power
dissipation from

P = VDD · I
in whichVDD is the FPGA core voltage supply.

Table 1 shows the values of average power dissipation and
area occupation of the different circuits implemented. To im-

Figure 15. The implemented architecture

prove the accuracy of the measurement, we averaged the val-
ues obtained for different clock frequencies (f = 1/Tc) by
converting average power dissipation into energy consumed
in a cycle:

Ec = P · Tc [nJ ] .

Values ofEc, and their average are also reported in Table 1.
Then, by fitting the experimental points in a curve (Figure 16)

Ec(N) = E1 ·N + E0 , (18)

we find an expression of the energy dissipated in filters of a
given structure with any number of taps (Table 2). To better
evaluate the termE0, we implemented a circuit with just the
two converters (binary-RNS and RNS-binary), connected in
cascade, for the RNS and CS-RNS filter. We obtained an
average value ofEc(0) = 5.8 nJ

Table 2. Expressions ofEc for the filters.

Ec [nJ ] N∗

TCS 2.5 ·N + 0.2 -

RNS 0.9 ·N + 5.6 4

CS-RNS 0.7 ·N + 5.7 3



Table 1. Measurements of average power andEc.

TCS RNS CS-RNS

8-tap 16-tap 8-tap 16-tap 8-tap 16-tap

Tc P Ec P Ec P Ec P Ec P Ec P Ec

[ns] [mW ] [nJ ] [mW ] [nJ ] [mW ] [nJ ] [mW ] [nJ ] [mW ] [nJ ] [mW ] [nJ ]

1,000 20.5 20.5 41.2 41.2 12.4 12.4 20.2 20.2 10.6 10.6 16.7 16.7

500 40.7 20.3 81.2 40.6 24.3 12.2 40.3 20.2 21.6 10.8 33.5 16.7

250 80.3 20.0 160.0 40.0 49.1 12.3 81.0 20.3 42.8 10.7 66.6 16.7

200 99.9 19.9 198.5 39.7 60.8 12.2 101.0 20.2 53.3 10.6 83.0 16.6

100 197.6 19.7 387.9 38.8 121.5 12.1 198.7 19.9 105.8 10.6 164.7 16.5

average 20.1 40.1 12.2 20.1 10.7 16.6

# slices 1240 2440 1364 2310 1358 2274

(% area) 17% 35% 19% 33% 19% 32%
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20 22 240 2 4 6 8 10 12 14 16 18

number of taps (N)

E
ne

rg
y 

pe
r 

cy
cl

e 
 (

nJ
)

5

10

15

20

25

30

35

N *

CS−RNS

Figure 16. Curves ofETCS , ERNS andECSRNS .

From Figure 16 we can see that for filters with more than
4 taps (N∗ = 4) the RNS filter consumes less power. The
result obtained for CS-RNS filters is even more interesting:
in carry-save RNS filters, the modular sum

sk = 〈sk−1 + akx(n− k)〉mi

is not done in each tap, butsk (kept in carry-save format) is
reduced to modulomi every 8 taps. Because additional reg-
isters are required to keep a carry-save representation ofsk-s,
there is a tradeoff between combinational logic (adders) and
flip-flops. By eliminating modular adders we speed-up the
operations and reduce the power dissipation. The power con-
sumption in the extra flip-flops does not offset this reduction.
Therefore, CS-RNS filters not only are faster than plain RNS
(and TCS) filters, but also occupy less area and consume less
power in a FPGA implementation.

7. CONFIGURABLE DYNAMIC RANGE FILTER

The RNS reconfigurable filter is depicted in Figure 17. The
figure shows a control Unit which is used to configure the fil-
ter and the converters, according to a command string, to se-

Binary

to RNS

Converter

RNS to

Binary 

Converter

...     ...

RNS  paths

1

2

P

Control Unit

data in data out

command

Figure 17. RNS reconfigurable filter.

lect the dynamic range and to load the filter coefficients. The
filter includes the conversions binary/RNS and RNS/binary.

Once a dynamic rangeM1 < M is chosen, and consequently,
the number of bits required is smaller that the bit-width of the
filter (log2 M1 < log2 M ) we can turn-off in the RNS filter
the paths modulomi which are not needed to cover the dy-
namicM1.

For example, by choosing the following set of moduli:
{3, 5, 7, 11, 13, 17, 19} a 22-bit dynamic range can be cov-
ered. If our system requires a dynamic range of 16 bits we
can use the set of moduli:{3, 7, 11, 17, 19} turning off the
paths through the moduli 5 and 13. As a consequence, for
dynamic ranges smaller than the maximum range the power
dissipation is reduced.

We designed the configurable RNS filter to have a maximum
dynamic range of 32 bits by choosing the following set of
moduli:

{13, 17, 19, 23, 29, 31, 64}.
With these moduli, we have a granularity of four bits in scal-
ing the dynamic range.

Each RNS path (Figure 18) is composed of 64 modular mul-
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Figure 18. Architecture of a RNS path.

tipliers (isomorph multipliers except form7 = 64), a tree of
adders to add 64 operands, and twodlog2 mie-bit shift regis-
ters (Reg. A and B).

With this unit, we implement a programmable 64-tap FIR fil-
ter

y(n) =
63∑

k=0

akx(n− k)

realized in direct form. The coefficientsak are loaded in
register A in the first 64 cycles after reset, and the samples
x(n− k) are fed into register B one per clock cycle.

The dynamic range is adjusted to have an error free filter. The
main feature of the filter is the reconfigurability in terms of
dynamic range. The filter dynamic range is adapted to the
processing specifications. The RNS paths not used to cover
a given dynamic range are deactivated by disabling the clock
of registers A and B in the path.

A command string, a sort of micro-instruction, is given to the
controller to perform the following tasks:

• to set the dynamic range by selecting the required moduli
paths in filter;
• to load the coefficients in shift-register A;
• to stop/start the data acquisition/output, if requested.

Because register A holds values which are constant for the
whole processing, we can use one binary to RNS converter
to load both register A (at start-up) and register B (runtime).
The RNS to binary converter is programmable in terms of dy-
namic range as well: when some moduli are not used in the
filter, the corresponding parts in the converter are disabled
by switching off the clock in the registers at the interface be-
tween the RNS paths and the converter.

The implementation of the reconfigurable RNS filter has been
realized with the AMS0.35µm library of standard cells. In
order to compare the performance of the reconfigurable RNS
filter in terms of throughput, area and power dissipation, we
implemented a programmable 64-tap FIR filter realized in the
traditional two’s complement system (TCS) with 32-bit dy-
namic range. Table 3 reports the characteristics of the TCS
filter and the reconfigurable RNS filter. The table shows that
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Figure 19. Power dissipation of TCS and RNS for different
dynamic ranges.

the RNS processor is about 25% faster than the traditional
FIR filter and consume less power (at the same frequency).

By reducing the dynamic range, we obtain for the power dis-
sipation, computed at 100 MHz, the results shown in Fig-
ure 19. For the TCS filter the range is reduced simply by
feeding data with shorter wordlength, while for the RNS filter,
we also disabled, by turning off the clock, the paths through
the moduli not necessary to cover that dynamic range. The
figure shows that the TCS filter working at 20 bit dynamic
range consumes almost the same energy of the RNS work-
ing at full dynamics. ¿From the RNS set of points (staircase
shape), we can see that the power reductions are due to the
different configurations of active moduli, and, once a mod-
uli set is selected, the power dissipation is constant. For the
TCS, the set of points is on a straight line because by reducing
the input wordlength, the most-significant portion of the dat-
apath get filled with sign-extension bits2, which significantly
reduce switching activity.

Table 3. Comparison of TCS and RNS.

max. freq. area power

(ND2 equiv.) @ 100 MHz

TCS 100 MHz 201,000 1,170 mW

RNS 125 MHz 177,000 840 mW

8. CONCLUSIONS

In this paper a RNS implementation of digital filters for satel-
lite demultiplexing applications has been presented.

The RNS filter shows a lower power dissipation with respect
to filters realized in the traditional binary representation. Fur-
thermore, the reduced circuit complexity allows the imple-
mentation of coefficient programmable structures, a very ap-
pealing feature for satellite applications.

2Radix-4 Booth recoding in multipliers transforms a sequence of 1s (neg-
ative numbers) in a sequence of 0s.
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