
Division Unit for Binary Integer Decimals

Tomás Lang and Alberto Nannarelli∗

Dept. of Electrical Engineering and Computer Science, University of California, Irvine, USA
∗Dept. of Informatics, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

In this work, we present a radix-10 division unit that
is based on the digit-recurrence algorithm and implements
binary encodings (Binary Integer Decimal or BID) for
significands. Recent decimal division designs are all based
on the Binary Coded Decimal (BCD) encoding. We adapt the
radix-10 digit-recurrence algorithm to BID representation
and implement the division unit in standard cell technology.
The implementation of the proposed BID division unit is
compared to that of a BCD based unit implementing the
same algorithm. The comparison shows that for normalized
operands the BID unit has the same latency as the BCD unit
and reduced area, but the normalization is more expensive
when implemented in BID.

1. Introduction

In recent years, the miniaturization of devices and the
resulting extra space available on silicon, made possible
to implement decimal processors in hardware. Companies
such as IBM are already commercializing processors which
include decimal arithmetic units [1] [2]. Consequently, dur-
ing the revision of IEEE standard 754 for floating-point
representation, support for decimal representation was added
to the binary one. In the revised IEEE standard 754 [3], the
significand of decimal floating-point numbers can be rep-
resented in two different formats: Densely Packed Decimal
(DPD) format or Binary Integer Decimal (BID) format.

In the DPD format, a word representing the significand of
a decimal number is divided into 10 bit fields, called ”de-
clets”, representing 3 decimal digits each. The conversion
from declet to Binary Coded Decimal (BCD) format, and
vice versa, can be implemented with simple logic [4].

In the BID format, a word represents the significand of a
decimal number as an unsigned integer in binary. For exam-
ple, the decimal floating-point number 0.125 is represented
in BID by 125× 10−3 with significand 0 . . . 0 0111 11012

and exponent −3 + bias.
In decimal processors implementing the DPD/BCD for-

mat, operations such as operand shifting, i.e. radix multipli-
cation, are easy to implement. On the other hand, addition
and multiplication present overhead in BCD over their binary
counterparts.

In the BID format, addition and multiplication are binary
operations without overhead. However, when normalization
for floating-point operands is required, a multiplication by
10k, which can be implemented by a table and a multiplier
or by a special radix-10 shifter [5], is needed. Right shift is
even more complicated as it requires a division by 10k.

Binary division is implemented in hardware in the
most popular general-purpose processors. Division is imple-
mented by two classes of algorithms: approximation meth-
ods (Newton-Raphson, Goldschmidt) or digit-recurrence [6].
Recently, a number of decimal implementations of division
all based on BCD operand representation has been pre-
sented. An iterative divider based on the Newton-Raphson
approximation has been presented in [7]. On the other hand,
examples of decimal digit-recurrence division are described
in [8], [9] and [10].

In this work, we implement a radix-10 digit-recurrence
division unit for the Binary Integer Decimal (BID) format.
To our knowledge, this is the first implementation of decimal
division in BID. A BID floating-point adder and multiplier
were presented in [11] and in [12].

Comparing to the corresponding radix-10 divider with
BCD format [9], the following modifications are described:
the normalization of operands using a rectangular multiplier,
the recurrence using binary carry-save adders and reducing
the iteration delay, the selection function for binary divisor,
and the on-the-fly conversion from decimal signed-digit
representation to binary, including rounding. The resulting
unit has been synthesized and its delay and area compared
to the corresponding BCD unit.

2. Decimal Division Algorithm for BID

The division q = x/d is implemented by the radix-r digit-
recurrence iteration [6]

w[j + 1] = rw[j] − qj+1d j = 0, 1, 2, . . . (1)

where d is the divisor, w[j] is the residual at iteration j and
it is initialized with the dividend x. The quotient-digit qj+1

is computed at each iteration by a selection function

qj+1 = SEL(d̂, ̂rw[j])

from the truncated normalized divisor and the truncated
residual.

2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors

1063-6862/09 $25.00 © 2009 IEEE

DOI 10.1109/ASAP.2009.42

1

Since in the IEEE Standard for decimal representation
the operands are not normalized, to apply the algorithm it is
necessary to normalize the divisor. Moreover, to reduce the
number of leading zeros in the quotient, it is also convenient
to normalize the dividend. In the sequel, d and x correspond
to the normalized divisor and dividend, respectively.

For the decimal (radix-10) case, as done for BCD rep-
resentation [9], the quotient-digit is split into two parts qH

and qL such that

qj+1 = 5qHj+1 + qLj+1

with digit sets qH = {−1, 0, 1} and qL = {−2,−1, 0, 1, 2},
and a redundancy factor ρ = 7/9.

By the quotient-digit decomposition, we obtain from (1)
the two recurrences

v[j] = 10w[j]− qHj+1(5d)
w[j + 1] = v[j]− qLj+1d

(2)

with quotient digit selection functions

qHj+1 = SELH(1̂0w, d̂)

qLj+1 = SELL(v̂, d̂)

The digit-recurrence algorithm converges if

|w[j]| ≤ ρd (3)

Therefore, to ensure convergence for the given redundancy,
the recurrence is initialized with a scaled value of the
dividend such that w[0] =scaled(x) < ρd.

The algorithm is completed by a conversion-and-round
unit that converts the digits qH and qL from signed-digit to
the required representation (sign-and-magnitude for floating-
point quotient) and performs the rounding.

The architecture of the BID divider is shown in Fig-
ure 1. The input significands are two BID integers Mx

and Md. The inputs to the recurrence are the normalized
BID representation x and d. The output from the convert-
and-round unit is the non normalized BID quotient Mq.
The unit is completed by the logic to compute the sign
(Sq = Sx ⊕ Sd), a controller and some controller signals not
shown in Figure 1.

As indicated before, the operands should be normalized.
This is performed by multiplying the operands by the
required powers of 10. This corresponds to simple shifts
in the BCD representation, but is more complicated in the
Binary Integer Decimal (BID) decimal64 format. In this
case, the normalization process consists of the following two
steps:

1) Obtain the power of ten required for the normalization.
To simplify this function, we use as input the number
of leading zeros in the binary representation. Because
of this, the normalized value can overflow by one bit.

2) Multiply the operand by the corresponding power of
ten. This can be done by using a multiplier or a
decimal shifter.

x d

M q

M x M d

Normalization

Recurrence

Convert−and−round

Unit

q
j+1 wsign

wzero

co
un

te
r

exponent
update

xE dE

qE

DONE

C

ex e d,

start

Figure 1. Architecture of BID significand divider.

In addition to the actual normalization, it is necessary to
satisfy the condition for convergence. In the BCD case
we divided the normalized dividend by 100 to achieve
this. However, for the binary case, this division by 100
is not satisfactory when the original dividend is already
normalized. Consequently, we normalize the divisor to a
larger value so that the condition of convergence is satisfied.
That is, the normalization is described as follows:

• For the dividend we obtain the normalized value by
multiplying the integer dividend significand Mx by
10ex such that 0.1 ≤Mx · 10ex · 2−54 < 2.

• Similarly, for the divisor we multiply Md by 10ed such
that 0.1 ≤ Md · 10ed · 2−(54+s) < 2, where s is the
number of additional bits of the normalized divisor.

The value of s is determined so that we use the normal-
ized x as the initial residual w[0] and assure convergence.
Specifically, we need that

xmax

dmin
< ρ (4)

where x and d are the normalized dividend and divisor,
respectively. So, if we normalize d to s additional bits, we
get

2
0.1 · 2s

< 7/9 (5)

resulting in s ≥ 5.
That is, the normalized dividend x has 54+1=55 bits

(bits 0 to 53 plus bit 54 if there is an overflow in the
normalization) with up to five most-significant zeros and the
divisor has 54+5+1=60 bits (bits 0 to 58 plus bit 59 if there

2

pt

LOD

M x M d

10

Th

mxxd

Rectangular

Multiplier

RMX

RMY

x d

32

1

0

0

1

MUX 2:1

>>1

xld dld

P

dld

P

Th

db2

exp10

Table

10e

6

5

54

57

e

mxxd

57

Stage 1 Stage 2
5454

= MSB(P)

M

6

LZ

+5

60

59

59

to exp.

update
55

Figure 2. Normalization unit. The thicker marks indicate the position of the registers.

is an overflow), again with up to 5 most-significant zeros.
To reduce the range of the divisor, in case of overflow (bit
59 equal to 1) both the divisor and the dividend are shifted
one bit to the right, resulting in a normalized divisor with
59 bits (bits 0 to 58).

The operation stops when the result is exact (w[j] = 0)
or after 17 iterations (the 17th iteration is used to determine
the rounding digit). Calling C the number of iterations (up
to 16), the exponent of the quotient is obtained as

Eq = (Ex − ex)− (Ed − ed) + 16− C

where Ex and Ed are the exponent of the operands and 10ex

and 10ed are the powers of ten used for the normalization.

3. Normalization

The normalization unit of Figure 2 is divided into two stages:

• In Stage 1, the number of leading zeros of each
significand is obtained. If the operand is the dividend
this number of leading zeros is used to obtain from a
table the power of ten required to normalize it. On the
other hand, if the operand is the divisor, we add five
to the number of zeros and obtain the corresponding
power of ten from the table.

• In Stage 2, the multiplication of the operands stored
in registers RMX and RMY is performed. The 57× 32
bit multiplier produces a 60-bit product P (57 bits are
required to represent the largest power of ten, namely,
1017). In case the normalized value of d overflows (bit
59 is equal to 1) both d and x are divided by two
(shifted one bit to the right).

We opted for a rectangular multiplier and operand
swapping because one of the factors (either the power
of ten or the non normalized operand) is less than
30 bits while the other is larger but at most 57 bits.
We send to the multiplicand input (57-bit) the larger
between the two operands.

The operations in Stage 1 can be detailed as:
1) Control signal mxxd selects which significand M is

to be normalized.
2) Leading one detection (LOD) for M . This produces

the number of leading zeros LZ. If the significand
corresponds to the divisor add five to LZ.
Furthermore, the LOD sets the bit Th if M ≥ 230.
The value of LZ is used to obtain e, such that multi-
plying by 10e produces the normalized significand.

3) Signal e addresses the table to determine the corre-
sponding power of 10 to be used in the multiplier.

pt = Table10e(e)

4) Based on the size of the significand and power of 10,
signal Th selects which operands are multiplicand and
multiplier.

RMX =
{

M
pt

RMY =
{

pt if Th = 1
M otherwise

The operations in Stage 2 are:
1) Multiplication P = M × pt.
2) If during the computation of d, the most-significant

bit of P P59 = 1 then P is shifted one position to the
right:

d←
{

P >> 1 (shift 1-bit to right) if P59 = 1
P otherwise

3

L
q

q
H

L
qq

H
SEL &

q
HL

q

mH1 mL2 L1m

Mux 2:1

−2d −d0d 2d

Mult/mux

−5d 0 5d

Mult/mux

mH1 mL2 L1m

km Table

d
^

d

precomp.

5d

vcvs

wcws

10wc

10ws

C S A

C S A

14

14

C S A 4:2

10wc

10ws

14

d/2

7

6464

x

6464

6464

sign−and−zero detection (SZD)wsign

wzero

to
 c

on
ve

rs
io

n

y
s

c
y

59

55

Figure 3. Recurrence.

Then the shifted/unshifted product is stored in register
d and P59 in a 1-bit register (db2). This is necessary
to ”remember” that x must be shifted if d was shifted.
Similarly,

x←
{

P >> 1 if db2 = 1
P otherwise

and the shifted/unshifted product is stored in register
x.

4. Recurrence

Because the retiming of the recurrence (1) is advantageous
to reduce the latency of the division [13], we can retime the
recurrence of (2) to obtain

v[j] = 10w[j − 1]− qHj(5d)
w[j] = v[j]− qLjd

(6)

with quotient digit selection functions

qHj = SELH(1̂0w, d̂) (7)

qLj = SELL(v̂, d̂) (8)

The recurrence, implemented as shown in Figure 3, is
initialized by w[0] = x. The residual w[j] (and v[j]) is
kept in carry-save format to speed-up the iteration time. The
negative multiples of d (−5d, −2d and −d) are obtained
by inverting the bits (one’s complement) and by setting the
carry-in to one in the carry-save adder (CSA) which follows.

A sign-and-zero detection unit (SZD) is used in each
iteration to determine if w[j] = 0. In this case, the quotient

is exact and we stop the iterations. The SZD is also needed
in the rounding step to determine the sign of the remainder
and if it is zero.

4.1. Selection Function

The selection function is similar to the one for the decimal
divider with BCD format [9]. The corresponding block
diagram is shown in Figure 4. Note that to avoid the delay
of the multiplication by 10 in the critical path, we use ŵ
instead of 1̂0w for the selection function.

Since the quotient-digit sets are the same, we obtain the
same selection intervals (except that the values are divided
by 10, because of the note above). However, the selection
constants are somewhat different because 1) the divisor is
now in a binary representation, so that the divisor regions
are different, 2) the error committed by using a redundant
representation of the residual is now a power of two, and
3) to convert the selection function to operate on integers,
it is necessary to multiply by a power of two instead of a
power of ten. The resulting constants are shown in Table 1.
The 7 MSBs of d (d̂ in Figure 3 and Table 1) are required
to select the interval. From the table we can notice that
mH0 = −mH1 − 1 = mH1 that is mH1 one’s complement.
In this way, we just need to store one constant per d̂ interval,
and the other can be obtained by bit-inversion. Similarly,
mL1 = −mL2 − 1 = mL2 and mL0 = −mL1 − 1 = mL1.

The selection function of Figure 4 is realized by overlap-
ping the computation of qL to that of qH . To speculatively
compute all the possible outcomes of qH selection we need
to use a truncated d/2 because the selection of qH has been
done on ŵ and not 1̂0w:

v̂[j] =
1̂0w[j − 1]− qH(5d)t

10
= ŵ[j − 1]− qH

(
d

2

)
t

d̂ qH qL

[di, di+1) mH1 mH0 mL2 mL1 mL0 m
L1

13 , 14 28 -29 18 4 -5 -19
14 , 16 30 -31
16 , 17 34 -35 22 8 -9 -23
17 , 18 34 -35
18 , 19 36 -37
19 , 22 42 -43 24 -25
22 , 26 48 -49 27 -28
26 , 30 56 -57 32 -33
30 , 33 64 -65 40 -41
33 , 39 72 -73
39 , 46 84 -85 48 16 -17 -49
46 , 54 100 -101 56 -57
54 , 64 115 -116 68 -69
64 , 77 139 -140 84 -85
77 , 90 166 -167 105 32 -33 -106
90 , 108 195 -196 113 -114
108 , 128 230 -231 128 -129

Table 1. Selection constants.

4

L
q q

H

mH1

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2 CSA 3:2CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

CSA 3:2

sign−det.

mux

CSA 3:2

sign−det.

CSA 3:2

q
H

4

2

11 11

4 4 4

__
mL2L1mmL2 L1m
__

sign−det.sign−det.

__
mH1

coder codercoder

sign−det.

__
mL2L1mmL2 L1m
__ __

mL2L1mmL2 L1m
__

coder

y
s c

y d/2
d/2
__

CSA 3:2 CSA 3:2

141414

11 11

11 11 11 11

14

14

14

Figure 4. Detail of the selection function.

with the carry-save ŵ[j−1] indicated as ys and yc in Figure 3
and Figure 4.

5. Conversion and Rounding

The conversion of the quotient-digits qj = 5qH +qL from
signed-digit (SD) to two’s complement and their assimilation
into the quotient are performed in the unit of Figure 5.

The partial quotient (Q), which is a binary integer while
the division produces decimal digits, is updated, at iteration
j, as

Q[j]← 10Q[j − 1] + B (9)

where B is the two’s complement sign-extended representa-
tion of qj . In addition to qj , qj +1 and qj−1 (necessary for
rounding) are stored as well. Expression (9) is implemented
by a CSA followed by a carry-propagate adder (CPA) adding
two left-shifted (3 and 1 positions) copies of Q[j − 1] and
B. The multiplexer in the figure, always selects qj when not
in the rounding cycle.

The converted digit qj assimilation is delayed one cycle to
avoid division by 10 when the quotient is exact. By looking
at Figure 3, it is clear that 10w[j] = 0 (wzero = 1) is
detected at the same time qj is converted (and assimilated).
By storing qj in a register its assimilation is delayed one
cycle when the outcome of the SZD (wzero) is known. When
the result is exact, a completion flag (DONE=1) is set. We
show an example of the conversion when the quotient is
exact in Table 2 for Mx = 1 and Md = 8.

5.1. Rounding

In the implementation of the unit, we only consider
the rounding mode roundTiesToEven that in the revised
IEEE 754 standard corresponds to the old denomination
round-to-the-nearest-even. The other rounding modes can be
implemented similarly.

We refer to Figure 5 and we call qR the last digit to be
assimilated in Q, qR+1 the rounding digit, and B the two’s

CPA

CSA 3:2

54

54

54

Q

qM

sign−extended

MUX

4

SD−>2’ c

qH Lq

44

MZP

<<3 <<1

QLOAD

w
s
i
g
n

w
z
e
r
o

R
O

U
N

D

3

q
j
+
1

round logic

LS
B

q
R

q j

−
1

q
j

Figure 5. Convert and round unit.

complement value of qR+1. The rounding amount (ulp/2
plus conditions on the remainder) is

R = 5− wsign − (wzero AND LSB(qR))

and the rounding is performed as follows:

Condition digit to assimilate M Z P
(B + R) ≥ 10 qR + 1 0 0 1
0 ≤ (B + R) < 10 qR 0 1 0
(B + R) < 0 qR − 1 1 0 0

The three signals M , Z and P select the digit to be added
to Q (Figure 5).

5

j Q[j] QLOAD reg. qj wzero DONE
1 0000 0000 0 - 0 0
2 0000 0000 0 0 0 0
3 0000 0000 1 1 0 0
4 0000 0001 1 3 0 0
5 0000 000D 1 -5 1 0
6 0000 007D 1 0 1 1

(0000 007D)16 = (125)10

Table 2. Example of conversion for exact quotient
q = 1

8 = 0.125.

The same delaying mechanism for the assimilation of the
converted digit, introduced for exact quotient, is used to
avoid division by 10 after rounding.

6. Implementation and Comparisons

We implemented the BID division unit of Figure 1 using
the STM 90 nm CMOS standard cells library1 [14] and
Synopsys Design Compiler.

The target was to obtain the shortest delay in the recur-
rence which we consider the main block of the unit. Then
we adapted the delay of the other blocks, when necessary,
to the recurrence delay. The delay of the critical path in the
recurrence (Figure 3) is 1.0 ns and it is illustrated in detail
in Figure 6.

All the other blocks, except the second stage of the
normalization (Figure 2) had a shorter delay than the critical
path in the recurrence. In the normalization, the rectangular
multiplier plus the multiplexer used to conditionally divide
by 2 had a delay of 1.4 ns. The rectangular multiplier
is implemented with radix-4 Booth recoding of the 32-bit
multiplier which results in 16 partial-products (PPs). The
PPs are then reduced by a 3-level tree of 4:2 CSAs. The
tree is followed by a 61-bit CPA which is synthesized in a
prefix-adder structure as fast as allowed by the time slack
available for the target clock period.

Because the normalization unit is just used once for
each operand during the whole division, we introduced a
pipeline register inside the rectangular multiplier (between
the reduction tree and the CPA). With this modification the
whole unit can clocked at a frequency of 1

1.0 ns = 1 GHz
at expenses of an extra cycle of latency.

The total latency of the division when the quotient is not
exact (worst case) is 24 clock cycles: 4 for the normalization
and 20 for the recurrence and rounding.

Table 3 reports the area of the unit and its break-down
in the main composing blocks. From the table, it is clear
that the multiplier has a large impact on the total area. We
considered the alternative of using a decimal shifter similar

1. For comparison purposes, the FO4 inverter delay is 45 ps and the
area of the NAND2 gate is 4.4 µm2 in this library.

REG. qH MULT qH CSA (H) CSA (H) SEL FF set-up
100 120 60 120 520 80

←————————– 1000 ps ————————–→

Figure 6. Delay of the critical path in the recurrence of
Figure 3.

AREA [µm2]
block

LOD 850
tables 770
rect. multiplier 65,500
registers 10,400
MUXes 1840
normalization 79,500
SEL 13,231
SZD 3,600
recurrence 35,630
convert-round 8,870
controller 550

divider 124,500

Table 3. Area break-down for main blocks.

to that of [5]. The shifter of [5] (r10SHL) cannot be directly
used in our divider, because we need to shift up to 1017

while r10SHL can perform shifts 1 to 1015. Increasing the
shift amount to 17 would imply the use of an extra level of
carry-save adders and multiplexers. Because we felt that the
complexity of the resulting shifter would be similar to that
of the rectangular multiplier we use, we performed a rough
evaluation based on the results presented in [5]. The r10SHL
shifter is implemented in a different technology (110 nm).
Therefore, we need to apply technology scaling to have a
consistent comparison. Assuming a constant field technology
scaling2 [15] the scaling factor for delays is S = 110/90 =
1.22 and for area S2 = 1.5.

The delay of the rectangular multiplier is 1200 ps which
scales to approximately to 1500 ps in a 110 nm technology.
The fastest r10SHL reported in [5] has a delay of about
1800 ps and a corresponding area of about 147, 000 μm2

which scales to 98, 000 μm2 in a 90 nm technology. There-
fore, the fastest decimal shifter 1 − 1015 seems larger than
the rectangular multiplier we used (65, 500 μm2).

Summarizing, although the rectangular multiplier con-
tributes to about 50% of the total divider area this seems
the most convenient way of performing the normalization.

We compared the BID divider to the BCD divider of [9].
In [9] the operands are assumed already normalized and such
that w[0] < ρd. Also the quotient is normalized. Therefore,
we implemented a leading-non-zero-digit detector (LNZD)

2. In the LSI Logic Gflxp 0.11 µm CMOS library used in [5] the supply
voltage is VDD = 1.2 V , while in ours is VDD = 1.0 V . Because the
ratio of VDDs matches that of the channel lengths 110

90
� 1.2 the constant

field scaling applies.

6

Latency� AREA [µm2]
BCD BID BCD BID

normalization 2 4 12,500 79,500
recurrence+C&R 20 20 59,700 45,000
divider 22 24 72,200 124,500

� Both units have clock period 1.0 ns

Table 4. Comparison BCD vs. BID divider.

and a BCD barrel shifter to be able to compare between the
two implementations. In the BCD divider, when the quotient
is exact, it is still normalized because the quotient-digit
conversion is performed by starting in the most-significant
digit and by appending the digits at right. The conversion can
be easily modified at not additional cost (in BCD) by shifting
left and appending the converted digit in the least-significand
position. In this way, non-normalized exact quotients can be
obtained.

The synthesis of the LNZD and the BCD-shifter resulted
in area of 980 μm2 and 4, 800 μm2, respectively. By
considering an architecture for the BCD significand divider
similar to that of Figure 1, and in which we use one
LNZD and one BCD-shifter shared by Mx and Md, the
characteristics of the BCD and BID dividers are compared
in Table 4.

Although the area of the recurrence, plus conversion
and rounding, is larger for the BCD divider (+33%) the
normalization in BID makes the total area of the BID divider
71% larger than the BCD unit. The minimum clock period
is 1.0 ns for both units, but the latency is also affected by
the more expensive normalization in BID.

7. Conclusions

In this work we adapted the digit-recurrence algorithm to
the case of Binary Integer Decimal encoding, specified in the
IEEE Standard 754-2008, and implemented a BID division
unit in standard cells. We compared the BID divider with one
based on the BCD encoding. The results of the comparison
show that the latency of the division when the operands
are normalized is the same and that the implementation
of the recurrence in BID takes about 30% less area. The
results also show that operand normalization is an expensive
operation in BID. However, the impact of the normalization
in BID can be alleviated by sharing a BID normalization
unit among several other units, such as BID adders and BID
multipliers. On the other hand, the binary encodings of BID
make it compatible with units designed for binary (radix-2)
operations, so that the combination binary/decimal might be
easier.

References

[1] L. Eisen et al., “IBM POWER6 accelerators: VMX and
DFU,” IBM Journal of Research and Development, vol. 51,
no. 6, pp. 663–684, 2007.

[2] C. H. Webb, “IBM z10: The next-generation mainframe
microprocessor,” IEEE Micro, vol. 28, pp. 19–29, Mar./.Apr.
2008.

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Computer
Society Std. 754, 2008.

[4] M. F. Cowlishaw, “Densely packed decimal encodings,” IEE
Proceedings - Computers and Digital Techniques, vol. 149,
no. 3, pp. 102–104, May 2002.

[5] J. Hormigo, S. Gonzalez-Navarro, and M. Schulte, “Decimal
Left Shifters for Binary Numbers,” Proc. of 8th Conference
on Real Numbers and Computers (RNC 8), July 2008.

[6] M. Ercegovac and T. Lang, Division and Square Root:
Digit-Recurrence Algorithms and Implementations. Kluwer
Academic Publisher, 1994.

[7] L.-K. Wang and M. Schulte, “Decimal floating-point division
using Newton-Raphson iteration,” in Proc. of 15th Interna-
tional Conference on Application-Specific Systems, Architec-
tures and Processors, Sept. 2004, pp. 84–95.

[8] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal
floating-point division,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 9, pp. 951–
961, Sept. 2006.

[9] T. Lang and A. Nannarelli, “A Radix-10 Digit-Recurrence Di-
vision Unit: Algorithm and Architecture,” IEEE Transactions
on Computers, vol. 56, no. 6, pp. 727–739, June 2007.

[10] A. Vazquez, E. Antelo, and P. Montuschi, “A radix-10 SRT
divider based on alternative BCD codings,” Proc. of 25th
International Conference on Computer Design (ICCD), pp.
280–287, Oct. 2007.

[11] C. Tsen, S. Gonzalez-Navarro, and M. Schulte, “Hardware
Design of a Binary Integer Decimal-based Floating-point
Adder,” Proc. of 25th International Conference on Computer
Design (ICCD), pp. 288–295, Oct. 2007.

[12] S. Gonzalez-Navarro, C. Tsen, and M. Schulte, “A Binary
Integer Decimal-based Multiplier for Decimal Floating-Point
Arithmetic,” Proc. of 41st Asilomar Conference on Signals,
Systems, and Computers, pp. 353–357, Nov. 2007.

[13] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-
recurrence dividers with reduced logical depth,” IEEE Trans-
actions on Computers, vol. 54, pp. 837–851, July 2005.

[14] STMicroelectronics. 90nm CMOS090 Design Platform.
[Online]. Available: http://www.st.com/stonline/prodpres/
dedicate/soc/asic/90plat.htm

[15] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI
Design, 2nd ed. Addison-Wesley Publishing Company, 1993.

7

