
A Tool for Automatic Generation of RTL-Level VHDL Description
of RNS FIR Filters

A. Del Re, A. Nannarelli∗ and M. Re
Dept. of Electrical Engineering, Univ. of Rome ”Tor Vergata”, Italy

∗ Informatics & Mathematical Modeling, Technical University, Denmark

Abstract

Although digital filters based on the Residue Number
System (RNS) show high performance and low power dis-
sipation, RNS filters are not widely used in DSP systems,
because of the complexity of the algorithms involved. We
present a tool to design RNS FIR filters which hides the
RNS algorithms to the designer, and generates a synthesiz-
able VHDL description of the filter taking into account sev-
eral design constraints such as: delay, area and energy.

1. Introduction

A Residue Number System (RNS) is defined by a set
of relatively prime integers {m1,m2, . . . ,mP } . Its dynamic
range is given by the product M = m1 ·m2 · . . . ·mP . Any in-
teger X ∈ {0,1,2, . . .M−1} has a unique RNS representa-
tion given by:

X
RNS
→ ( 〈X〉m1 ,〈X〉m2 , . . . ,〈X〉mP )

where 〈X〉mi denotes the operation X mod mi [1]. Opera-
tions on different mi (moduli) are done in parallel

Z = X op Y
RNS
→















Zm1 = 〈Xm1 op Ym1〉m1

Zm2 = 〈Xm2 op Ym2〉m2

. . . . . . . . .

ZmP = 〈XmP op YmP〉mP

As a consequence, operations performed on large
wordlengths can be split into several modular opera-
tions executed in parallel and with reduced wordlength.

Although, previous work showed that the application of
RNS to FIR filters leads to faster designs and reduced power
dissipation with respect to the traditional filter implementa-
tion in the two’s complement system [2], the RNS is not
very popular because of the more complicated algorithms
involved for conversions and modular operations.

In this work, we introduce a tool that hides the RNS algo-
rithms and provides the designer with an interface in which

the usual filter parameters and design constraints (timing,
area, power) only appear.

The tool can design both programmable and constant co-
efficients FIR filters in transposed form. Moreover, the tool
chooses the set of RNS moduli which cover the given dy-
namic range and best fit the design constraints. The design
space exploration is based upon a characterization of the
blocks composing the filter, and it is done for the different
technologies supported: standard cells and FPGAs.

Differently from the tool for RNS design presented in
[3], we only target FIR filters but offer a wide range of de-
sign choices and an automatic selection of the set of moduli
which best fit the design constraints.

The tool is suitable for an IP oriented design of System-
on-Chips offering to the designer the performances of RNS,
but completely hiding its complexity.

2. Tool Description

The structure of the tool is shown in Figure 1. It is divided
into three main blocks:
A front-end which generates a list of parameters specify-
ing the filter characteristics such as: dynamic range (i.e.
wordlength), filter order, etc.. The front-end could be a com-
mercial tool, such as MATLAB.
Architecture Chooser (AC) chooses the filter architecture,
selected among a set of supported ones, that minimizes a
given cost function. The selection is done according to the
filter parameters passed by the front-end, the target technol-
ogy library specifications, and the design constraints. More-
over, AC generates a set of instructions describing the detail
of the selected architecture to be passed to the builder.
VHDL Builder (VB) generates the VHDL descriptions of
the elementary blocks (modular multipliers and adders, con-
verters, . . . ), and the top-level filter netlist. Moreover, it
builds a VHDL test bench file to verify the filter functional-
ity (e.g. to check if the VHDL simulations match the MAT-
LAB fixed point simulation results), and a synthesis script
for the synthesizer (only Synopsys Design Compiler is sup-
ported at this time).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/04 $20.00 (c) 2004 IEEE 



VHDL

RTL−level

specs

target
N taps
dyn. range
progr./const.
Tc
QRNS/RNS

delay

area

power

Library

VHDL

CHARACTERIZATION

Synthesis +

Estimation / Measurement

library views

Front−end

( MATLAB )

VHDL

Builder

Architecture

Chooser

arch descr.

Figure 1. Structure of the tool.

The Architecture Chooser (AC), according to the project
constraints and the library views (timing, area and power),
determines the set of RNS moduli to be used, the architec-
tures used in each RNS path, and the overall filter organi-
zation (RNS paths plus converters [2]). Currently, AC sup-
ports a number of optimization directives such as: filter with
minimum area or lower power dissipation for a given clock
period (TC), filter with minimum area or lower power dis-
sipation at any TC. Moreover, The AC instructs the VHDL
Builder, to place pipeline registers, if necessary.

3. Characterization

The characterization of the basic blocks composing the
filter is the key for an accurate estimate of the cost func-
tion. Therefore, the outcome of AC depends on an accu-
rate characterization. For each RNS modulus (currently we
consider a set of about 30) all basic blocks must be char-
acterized in terms of timing, area and power. Furthermore,
because we provide RTL-level descriptions to the synthe-
sizer, the area (and the power dissipation) largely depends
on timing constraints. As a consequence, the area and power
characterization of a block must be done for different clock
rates, increasing the complexity of the cost function to min-
imize. For the characterization of the power dissipation, we
assume random activity at the blocks input. To make the
tool as independent as possible of the library, as an option in
AC, we can use standard units for (delay, area, and power)1.

1 The delay of a NOT gate with fan-out=4, the area of a NAND2 gate,
and the power dissipated by a NOT with fan-out=1 at 100 MHz.

dyn N TC [ns] estimated actual est./act.
20 40 5.0 37208 41368 0.90
20 40 4.5 39511 42938 0.92
20 40 4.0 42250 44828 0.94
16 40 4.5 29861 32705 0.91
24 40 4.5 53419 58537 0.91
16 40 4.0 32103 34039 0.94
16 80 4.0 64206 69384 0.93
16 120 4.0 96309 104462 0.92

Table 1. Area estimation for generated filters.

In this way, when changing technology, the characterization
process is reduced to a few runs. We use the VHDL Builder
to generate all blocks to be characterized (Figure 1).

4. Examples and Results

To test the accuracy of the estimates and, consequently,
the soundness of the architectural choices made, we gener-
ated with the tool a number of FIR filters varying the dy-
namic range (dyn), the filter order (N), and the timing con-
straints (TC). The target technology is the STM 0.35 µm
standard cell library. In Table 1, we report the area esti-
mates (as NAND2 equiv.) and the corresponding actual val-
ues determined after synthesis performed by Synopsys De-
sign Compiler. From the last column of the table, the esti-
mate error is less than 10% on the average.

5. Conclusions and Future Work

In this work, we presented a tool which generates a syn-
thesizable VHDL description of RNS FIR filters completely
hiding the RNS algorithms and details to the filter designer.
The results of the synthesis of the automatically generated
RNS filters show differences of less than 10% with respect
to the initial estimation, making the tool suitable for design
exploration at an early stage of the project.

The tool is still under development and open to the in-
clusion of more architectural choices and optimization cri-
teria.

References

[1] M.A. Sodestrand et al., Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing, New York,
IEEE Press, 1986.

[2] A. Nannarelli, M. Re, and G. C. Cardarilli, “Tradeoffs be-
tween Residue Number System and Traditional FIR Filters,”
Proc. of IEEE International Symposium on Circuits and Sys-
tems, vol. II, pp. 305–308, May 2001.

[3] D. Soudris et al., “A methodology for implementing FIR fil-
ters and CAD tool development for designing RNS-based sys-
tems,” Proc. of IEEE Int.l Sym. on Circuits and Systems, vol.
V, pp. 129–132, May 2003.


	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index




