
Digit-Recurrence Dividers with
Reduced Logical Depth

Elisardo Antelo, Member, IEEE, Tomás Lang, Member, IEEE Computer Society,

Paolo Montuschi, Member, IEEE Computer Society, and

Alberto Nannarelli, Member, IEEE Computer Society

Abstract—In this paper, we propose a class of division algorithms with the aim of reducing the delay of the selection of the quotient

digit by introducing more concurrency and flexibility in its computation. From the proposed class of algorithms, we select one that

moves part of the selection function out of the critical path, with a corresponding reduction in the critical path compared with existing

alternatives. We present the algorithm and describe the architectures for radix 4 and for radix 16. For radix 16, we use the scheme of

overlapping two radix-4 stages. In both cases, radix 4 and radix 16, we show that our algorithms allow the design of units with well-

balanced critical paths with consequent decreases of the cycle times. Moreover, in the radix-16 case, we include some additional

speculation techniques. To estimate the speedup, we used a rough timing model based on logical effort. For both radices, we estimate

a speedup of about 25 percent with respect to previous implementations. In the radix-4 case, this is achieved by using roughly the

same area, while, in the radix-16 case, the area is increased by about 30 percent. We verified our estimations by performing a

synthesis of the radix-4 units.

Index Terms—Digit-by-digit division, algorithms and architectures for computer arithmetic, division radix 4, division radix 16.

�

1 INTRODUCTION

DIGIT-RECURRENCE division is an algorithm in which the
quotient is obtained one digit per iteration. This

algorithm has been extensively studied (for additional
references, see, for instance, [1] and [2], chapter 5) and
provides good trade-offs among latency, area, and power,
allows simple exact rounding, and does not introduce
overhead on the floating-point multiplier. Moreover, it fits
the particular characteristics of integer division where the
number of iterations is variable and, in many cases, a small
number of iterations is needed. It has been implemented in
many high-performance floating-point units for general-
purpose and application-specific processors, such as pro-
cessors for 3D graphic applications. It is also an SIP (Silicon
Intellectual Property) core offered by ASIC design services.
The current algorithms and implementations perform the
determination of the quotient digits through the use of the
quotient-digit selection function, implemented by the digit-
selection module, whose inputs are the truncated divisor
and the truncated residual (in carry-save or signed-digit

representation [1], [2]). The quotient-digit selection algo-
rithms used compare the truncated residual with truncated
multiples of the divisor or with selection constants, this
latter approach being more popular. In either case, the
implementation can be table-based or comparison-based
[3]. Because of the delay/complexity of this network, this
method is practical for relatively small radices, i.e., up to
radix 8. For radix 16, a successful scheme is to have two
overlapped radix-4 stages, while, for higher radices,
alternative techniques have been studied, such as multi-
stage algorithms and/or prescaling [1] [2]. Several high-
radix implementations are reported in [4]. Recent improve-
ments and variations of the algorithm and its implementa-
tion have been proposed in [3], [5], [6], [7], [8].

In this paper, we propose a class of division algorithms
with the aim of reducing the delay of the selection of the
quotient digit by introducing more concurrency and
flexibility in its computation. From the proposed class of
algorithms, we select one that moves part of the selection
function out of the critical path, with a corresponding
reduction in the critical path compared with existing
alternatives. We present the algorithm and describe the
architectures for radix 4 and for radix 16. We have also done
some designs and evaluations for the radix-8 case and have
concluded that the increase in area is too high for the
speedup obtained. For radix 16, we use the scheme of
overlapping two radix-4 stages. In both cases, radix 4 and
radix 16, we show that our algorithms allow the design of
units with well-balanced critical paths with consequent
decreases of the cycle times. Moreover, in the radix-16 case,
we include some additional speculation techniques.

We concentrate on serial architectures, where the
intermediate results are stored in registers and all the
iterations are performed reusing the same hardware. This is
the current practice for the division units in most of the
systems. However, the same techniques can be used in an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005 837

. E. Antelo is with the Departamento de Electrónica e Computación,
Universidade de Santiago de Campostela, 15706 Santiago de Compostela,
Spain. E-mail: elisardo@dec.usc.es.

. T. Lang is with the Department of Electrical Engineering and Computer
Science, Engineering Tower, Room 602, University of California at Irvine,
Irvine, CA 92697. E-mail: tlang@uci.edu.

. P. Montuschi is with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
E-mail: paolo.montuschi@polito.it.

. A. Nannarelli is with the Department of Informatics and Mathematical
Modeling, Technical University of Denmark, Richard Petersens Plads-
Building 321, DK-2800 Kongens Lyngby, Denmark.
E-mail: an@imm.dtu.dk.

Manuscript received 16 Apr. 2004; revised 13 Dec. 2004; accepted 3 Feb. 2005;
published online 16 May 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0131-0404.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

unfolded and pipelined architecture (which may be of
interest for high throughput applications such as high-
performance 3D graphics).

For the exploration of the new algorithm alternatives
(and the comparison with existing proposals), we needed a
high-level delay model precise enough to lead to actual
implementations with the expected speedup and a method
to optimize the position and reduce the number of flip-flops
of the architecture. For this purpose, we used a delay model
based on logical effort [9]. This model was recently used
with success to explore algorithmic high-level alternatives
in the design of fast and low-power adders [10]. Since the
delay model is rough and we are interested in the estimation
of delay ratios, we do not take into account estimations of
additional delay due to interconnections since the effect
should be similar for all the architectures compared.

For minimal number and optimal placement of flip-flops,
we use retiming and clock scheduling [11], [12] with the data
provided by the rough delay model.1 Retiming decreases the
critical path by optimizing the position of registers so that
the combinational paths are balanced. However, the
resultant position might not be convenient in terms of
number of flip-flops or the granularity of the modules.2

Clock scheduling increases the slack along combinational
critical paths by skewing the clock signal in the registers and
allows the minimum number of flip-flops for a given
granularity of the modules with the minimum delay.

For radix 4, we selected comparison with a standard
implementation with digit set -2 to +2, as described, for
instance, in [2] and [4], and with a recent implementation
with digit set -3 to +3 [8]. For radix 16, we compare with the
standard implementation using two overlapped radix-4
stages [2], [4], with the hybrid overlapped scheme, which
was reported in [4] to be their fastest static implementation,
and with the scheme proposed in [7].

The delay model allows us to estimate about a 25 percent
reduction in execution time for both radix 4 and radix 16 for
double-precision execution (for radix 16 and single-precision
execution using the double-precision datapath, we achieve a
30 percent reduction) with respect to the fastest implementa-
tions with which we compare. To verify our results, we have
synthesized all the compared implementations for radix 4
using standard cells and a synthesis tool and obtained very
similar delay ratios as those resulting from our estimation.
With respect to the hardware complexity, the radix-4
proposal has almost the same hardware complexity as the
compared implementations, whereas, for radix 16, there is an
increase of about 30 percent (with respect to the fastest
compared radix-16 design). The area estimates have been
obtained from the synthesis.

The paper is organized as follows: In Section 2, we briefly
describe the basics of the ”standard” digit-by-digit division
algorithm. Section 3 introduces a new class of division
algorithms for a generic radix. In Sections 4 and 5, we fully
develop the design details for a radix-4 algorithm with
minimally redundant digit set and a radix-16 algorithm
with two overlapped radix-4 stages, respectively. Section 6
presents estimates of the cycle time and area of the
proposed and of several previous implementations and
reports on the validation by synthesis. Finally, in Section 7,
we give our conclusions.

2 BASICS OF DIGIT-BY-DIGIT DIVISION

The “standard” digit-by-digit radix-r division algorithm
computes the final result by performing a suitable number
of iterations, each one consisting of the following phases
(for details, see, for instance, [1]):

1. Quotient-Digit Selection: Based on the value of the
current residual (denoted by w½j�) and of the divisor
(denoted by d), one digit of the quotient is produced.
If a redundant digit set is used for the quotient,
estimates3 of the shifted residual (denoted by crwrw½j�Þ
and of the divisor ðbddÞ) can be used, resulting in

qjþ1 ¼ SELðcrwrw½j�; bddÞ;
where qjþ1 2 f�a; . . . ; 0; . . . ; ag with a > ðr� 1Þ=2,
and SEL is the selection function.

Any function SEL should assure convergence,
that is, the next residual should be bounded by
jw½jþ 1�j � �d, with � ¼ a=ðr� 1Þ.

2. Residual Updating and Quotient Formation: Using
the digit selected at Step 1, the next residual and
quotient are produced, as follows:

w½jþ 1� ¼ rw½j� � qjþ1d

Q½jþ 1� ¼ Q½j� þ qjþ1r
�ðjþ1Þ:

To reduce the delay of an iteration, a redundant
adder (carry save or signed digit) is used for this
residual updating. In this work, we use a redundant
carry-save adder. Moreover, the conversion of the
quotient to conventional representation can be done
on-the-fly.

2.1 Selection Function

The design of the selection function involves the follow-
ing steps:

. Function specification: This corresponds to a high-
level (arithmetic) description of the particular func-
tion chosen to satisfy the bound jw½jþ 1�j � �d.

. Algorithm for implementation: This is an algorith-
mic decomposition of the function specification that
leads to a suitable implementation.

. Implementation at the logic level of the algorithmic
decomposition: This implementation can have sev-
eral levels, beginning with the interconnection of
arithmetic modules (such as adders and compara-
tors) and terminating at the logic gate level.

The following alternatives have been proposed for the
specification of the function:

1. Use multiples4 of bdd. That is,
qjþ1 ¼ k if Mk

bdd � crwrw½j� < Mkþ1
bdd

with k ¼ �a; . . . ; 0; . . . ;þa.
2. Use selection constants. In this case, the range of d is

divided into subranges and a set of comparison
constants (called selection constants) is determined

838 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

1. Since the delay model is rough, this register position and clock
scheduling should be refined in actual implementations with detailed
simulation.

2. The granularity at which the modules can be broken to introduce
registers.

3. In this section, estimates are generically designated by including ab,
that is, an estimate of x is designated by bxx. In later sections, we define
specific estimates.

4. These multiples can be fractional, such as ð3=2Þbdd.

for each subrange. That is, the selection function is
specified as

qjþ1 ¼ k if

d̂d is within subrange i and mi;k � crwrw½j� < mi;kþ1;

where mi;k is the selection constant at subrange i,

with k ¼ �a; . . . ; 0; . . . ;þa.
Alternatives 1 and 2 can be described by the

generalized expression

qjþ1 ¼ k if F ðd̂d; kÞ � crwrw½j� < F ðd̂d; kþ 1Þ;

where F ðd̂d; kÞ stands for Mkd̂d or mi;k.
3. Use the function

qjþ1 ¼ roundðcrwrw½j�Þ �M;

where M is an approximation of the reciprocal of d.

This function results from

qjþ1 ¼ integerðrw½j� � ð1=dÞÞ;

the use of the estimate and of the approximation are

possible because of the redundancy of the digit set

for qjþ1.
4. Prescaling the divisor (and the dividend) so that the

scaled divisor is close to 1 and the selection can be
done by rounding, that is,

qjþ1 ¼ roundðcrwrw½j�Þ:
Approaches 1 and 2 are practical only for relatively low

radices, such as 2, 4, and 8, because, for higher radices, the

resulting implementation has a large area and delay. On the

other hand, approach 3 has been used for very-high radices,

where the multiplication is justified. Approach 4 has been

used for radix 4, in which case, there is a trade-off between

the overhead in prescaling and the reduction in the

complexity of the selection function and, for very-high

radices, where the standard algorithm is not practical. For

intermediate radices, such as radix 16, multistage algo-

rithms have been used.

For approaches 1 and 2, two algorithms for implemen-

tation of the function have been used:

1. Function-table-based. From the specification of the

function, a description by a table is obtained which is

then implemented using any technique for the
realization of switching functions, such as networks

of gates, networks of standard cells, PLAs, or ROMs.

Although crwrw½j� can be used directly in redundant

form, in most implementations, it is first converted

to a conventional two’s complement representation

(see Fig. 1a).
2. Comparison-based. The comparisons of the specifi-

cation are performed by comparators and this is

followed by a coder to obtain the quotient digit.

When crwrw½j� is in redundant form, the comparison
can be implemented by a redundant subtraction

followed by a sign detection (SD) and coder, as

shown in Fig. 1b. Note that, in this implementation,

the comparison constants (selection constants or

divisor multiples) are computed outside of the

iteration.

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 839

Fig. 1. Algorithms for the selection function. (a) Function-table-based. (b) Comparison-based.

3 PROPOSED ALGORITHM

To reduce the cycle time of the division algorithm, we
propose the following:

1. To perform the quotient-digit selection using an
estimate of r2w½j� 1� and qj, that is, to compute the
estimateof rw½j�aspart of the selection function. Then,

qjþ1 ¼ SELðdr2wr2w½j� 1�; qj; brdrd; bddÞ:
This selection function, although, in principle more
complicated than the one discussed in the previous
section, provides more flexibility to reduce the cycle
time. Fig. 2 shows an iteration of the complete
division algorithm, including the proposed selection
function.

2. To use a comparison-based algorithm. The corre-
sponding specification is

qjþ1 ¼ k if F ðbdd; kÞ � dr2wr2w½j� 1� � qj brdrd < F ðbdd; kþ 1Þ:
ð1Þ

The functionF ðbdd; kÞ includes comparisonwithdivisor
multiples as well as with selection constants. This
specification allows the partitioning of the selection
function as a way of reducing the critical delay.

3. To perform transformations of the resulting algo-
rithm to reduce the critical paths.

4. To obtain a small cycle time by suitable register
placement and clock scheduling.

Items 1 to 3 above produce a class of algorithms and our

intent is to develop one of these algorithms that produces

an implementation with reduced cycle time and an

acceptable area. Several of the algorithms are described at

a high level in [15]; we have estimated the cycle time and

area of these and have selected the one described in detail in

the next section.

3.1 Detailed Description of the Selected Algorithm

We now develop the details of the selected algorithm. We
use the comparison-based scheme with selection constants.5

That is, (1) becomes

qjþ1 ¼ k if mi;k � dr2wr2w½j� 1� � qj brdrd < mi;kþ1:

We use the set of constants of the standard algorithm since
our transformations do not lead to a reduction in the
number of constants or its number of bits.

As commonly done, the estimate bdd corresponds to the

divisor truncated to � fractional bits and the estimate of

rw½j� results from truncating the carry-save representation

to t fractional bits. As a consequence, the selection constants

also have t fractional bits. For a specific value of bdd (that is, a

specific subrange), the corresponding set of selection

constants is generated. For simplicity of notation, in the

sequel, we call these constants mk.
Specifically, in the comparison-based approach of Fig. 1,

the quotient digit qjþ1 is determined from the sign detection

of the carry-save subtraction6 rw½j�b ct�mk for each value of

k. Since

w½j� ¼ rw½j� 1� � qjd;

we have

rw½j�b ct�mk ¼ r2w½j� 1� � rqjd
� �

t
�mk:

When using carry-save representation, the previous com-

putation is performed in two separate truncation steps with

one additional fractional bit:

rw½j�b ct�mk ¼ br2w½j� 1�ctþ1 þ b�rqjdctþ1

� �
t

� �
�mk;

that is, using the truncated r2w½j� 1� and the truncated

�rqjd. Moreover, since mk has t fractional bits, we may

perform the computation as follows:

rw½j�b ct�mk ¼ br2w½j� 1�ctþ1 �mk

� �
þ b�rqjdctþ1

� �
t

� �
:

ð2Þ

In this way, the computation of br2w½j� 1�ctþ1 �mk is

outside of the qj to qjþ1 path. Fig. 3 shows the detailed

architecture of the proposed quotient-digit selection.
The number of fractional bits of the various signals is as

described by (2). We now consider the number of integer

bits, which corresponds to the maximum value of

jbrw½j�ct �mkj. Since

m� ¼ mmaxðiÞ;�ða�1Þ � mi;k � mmaxðiÞ;a ¼ mþ

from (2), these maximum values are

maxðjbrw½j�ct �mkjÞ ¼
maxðbr�ct þ jm�j; jb�r�� 2�tct �mþjÞ:

ð3Þ

This results in log2ðrÞ þ 2 or log2ðrÞ þ 3 integer bits,

depending on the values of r, �, and t.

840 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 2. An iteration of the proposed class of algorithms.

5. The use of selection constants provides more flexibility than the case of
multiples of the divisor.

6. bxct means truncation of x to t fractional bits.

In the next section, we study the architecture for the

radix-4 case with a minimally redundant digit set and, in

Section 5, we present the details for the radix-16 architecture

using two overlapped radix-4 stages.

4 ARCHITECTURE FOR RADIX 4 WITH MINIMALLY

REDUNDANT DIGIT SET

We now consider the case for radix 4 and a ¼ 2. This is a
widely implemented algorithm since the multiples of the
divisor are easily generated. However, the same techniques
could be applied to other radix-4 cases (for instance, a ¼ 3).

As mentioned in the detailed analysis above, since we

obtain the same brw½j�ct as in the standard algorithm, we

can use the selection constants described in [1]. In this

case, � ¼ 4 and t ¼ 3. Table 1 shows the ranges for the

constants. The detailed view of this algorithm corre-

sponds to Fig. 3 with r ¼ 4, a ¼ 2, � ¼ 4, and t ¼ 3.

However, for radix 4, an optimization in the number of

bits is possible, as described now.

4.1 Reduction in the Number of Bits of brw½j�ct �mk

From (3), for r ¼ 4, � ¼ 2=3, and t ¼ 4, we get

� 43=16� 11=8 ¼ �65=16 � brw½j�ct �mk � 42=16þ 11=8
¼ 64=16:

Consequently, the number of bits of brw½j�ct �mk is of four
integer bits and four fractional bits, for a total of eight bits.

We have performed a more detailed analysis to reduce this

number to six. This reduction is based on the following

considerations:

1. As shown in Table 2, for some ranges of values of
brw½j�ct, some of the outputs of the SD modules are
not used in the determination of the quotient digit.
In the table, we denote by ½c; d� the interval of values

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 841

TABLE 1
Ranges of mk (Values Scaled by 16) for Radix 4 (a ¼ 2) [1]

Fig. 3. Architecture of the proposed digit selection.

of brw½j�ct, by L and H its minimum and maximum
values, and, by x, the don’t cares. Note that the
values of c, d, and mk depend on bdd.

2. Considering the most positive and most negative

values (not don’t cares), we determine the maximum

magnitudes of brw½j�ct �mk. The corresponding

values are given in the table, together with the

required number of integer bits.

With respect to the number of fractional bits, we observe

the following:

. For brw½j�ct �m2, four bits are required because m2

includes the value 15/16 (see Table 1).
. For brw½j�ct �m1, it might be possible to use three

bits because all m1 can be selected so that they are
multiples of 1/8. However, using three bits requires
that t ¼ 3, so it is necessary to determine whether
constants that are multiples of 1/8 are still possible
for t ¼ 3. We verified that this is not possible only forbdd ¼ 8=16 (i ¼ 0); however, this can be solved by
adding 1/16 to the corresponding rw½j� and this
addition can be achieved by augmenting the
constant m1 by 1/16 for that value of bdd.

. For brw½j�ct �m0, also, three fractional bits can be
used since all m0 can be selected so that they are
multiples of 1/8. Again, this requires the addition of
1/16 to the constant m0 for bdd ¼ 8=16.

. For brw½j�ct �m�1, four fractional bits are needed
because m�1 can take the value -15/16.

In summary, the last row of Table 2 gives the required

number of integer and fractional bits of brw½j�ct �mk. The

corresponding quotient-digit selection implementation is

shown in Fig. 4.

5 ARCHITECTURE FOR RADIX 16 WITH TWO

OVERLAPPED RADIX-4 STAGES

The architecture design technique described in Section 4 can

be implemented directly for radices higher than 4, say 8 or

16. However, these implementations have the following

drawbacks:

1. The number of replicated slices in the selection
function and the number of constants to be
“preloaded” increases. For instance, for radix 8, this
number would be between eight and 14, depending
on the quotient-digit set, and, for radix 16, between
16 and 30. This significantly increases the area of the
selection function.

2. The increase in the number of replicated slices
increases the load of cqjdqjd, increasing the delay of
the path qj to qjþ1.

3. To avoid the need for precomputation of multiples
of the divisor, the quotient digit is decomposed into
(two) components, each of which is restricted to the
range -2 to 2 (this results in a � 10 for radix-16). This
increases the delay of the addition in the recurrence.

We have done some designs and evaluations for the radix-8

case and have concluded that the increase in area is too high

for the speedup obtained. Consequently, we have explored

the radix 16 with two overlapped radix-4 stages [1], [2]. The

corresponding radix-16 iteration is of the form:

w½jþ 2� ¼ 4ð4w½j� � qjþ1dÞ � qjþ2d;

where qjþ1 and qjþ2 are two radix-4 digits with a ¼ 2.
For the radix-4 selection function, we use the algorithm

proposed in Section 4. However, in this case, we have to

obtain two quotient digits. Specifically, the selection

functions for each digit are of the following type:

qjþ1 ¼ SELðd42w42w½j� 1�; qj; c4d4d; bddÞ
and

qjþ2 ¼ SELðd43w43w½j� 1�; qj; qjþ1; c42d42d; c4d4d; bddÞ:
For the computation of qjþ1, we proceed as in the radix-4

algorithm by computing the sign of the carry-save

representation of

842 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 2
Reduction of Number of Bits of brw½j�ct �mk

ðb4w½j�ct �mkÞ ¼ 42w½j� 1� �mk

� �
tþ1

� 4qjd
� �

tþ1

� �j k
t
:

To determine qjþ2, we compute the sign of the carry-save

representation of ðb4w½jþ 1�ct �mkÞ. A direct implementa-

tion to obtain the carry-save representation is:

ðb4w½jþ 1�ct �mkÞ ¼ 43w½j� 1� �mk

� �
tþ2

� 42qjd
� �

tþ2

� �j

� 4qjþ1d
� �

tþ1

k
t
:

To have overlapping with the selection of qjþ1, the above

computation (as well as the sign detections) is performed

speculatively for all values of qjþ1. Finally, the correct value

is selected using a multiplexer. That is,

ðb4w½jþ 1�ct �mkÞu ¼ 43w½j� 1� �mk

� �
tþ2

� 42qjd
� �

tþ2

� �j
� 4udb ctþ1

�
t
;

for u ¼ f�2;�1; 0; 1; 2g and k ¼ f�1; 0; 1; 2g.
Fig. 5 shows the architecture. An analysis of the

components in the different paths shows that this imple-

mentation would result in a large cycle time, not producing

the desired speed-up with respect to the radix-4 case. We

now explore ways of reducing this cycle time.

5.1 Architecture for Reduced Cycle Time

To reduce and balance the critical paths, we perform the

following transformations:

1. For the path going from 42w½j� 1�
� �

to 42w½jþ 1�
� �

and 43w½jþ 1�
� �

(see Fig. 6):

a. Instead of using the wide multiplexer to
produce the most significant part of �qjþ1d, we
introduce an additional narrow multiplexer for
43qjþ1d
� �

. This reduces the load on qjþ1 in this
critical path.

b. We eliminate the half-adder delay to produce
42w½jþ 1�
� �

and 43w½jþ 1�
� �

by introducing a
narrow carry-propagate adder (cpa) to assim-
ilate the carry-save representation of 44w½j�

� �
.

c. We eliminate the carry-save adder to produce
42w½j� 1�
� �

�mk by generating 4ud�mkb c (in-
stead of �mk), with u ¼ f�2;�1; 0; 1; 2g, and
selecting the correct value with qj. This increases
the complexity of the generation of the con-
stants, but this is outside of the critical path.

2. For the path going from 43w½j� 1�
� �

to qjþ2, we
eliminate the first carry-save adder by generating
42ud�mk

� �
, with u ¼ f�2;�1; 0; 1; 2g and selecting

the correct value with qj (see Fig. 7). Note that,
because of the term with 42, these constants are
different than those of item 1.c.

3. For the path from qj to qjþ2, the addition of uð4dÞb c,
with u ¼ f�2;�1; 0; 1; 2g is advanced and performed
directly with 43w½j� 1�

� �
(see Fig. 7).

The complete resulting radix-16 architecture is shown in

Fig. 8. As seen in the figure, these transformations increase

the area required for the q-selection implementation. We

also include in the figure the critical path and the

positioning of registers; these aspects are discussed in

Section 6.

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 843

Fig. 4. Proposed radix-4 quotient-digit selection implementation.

5.2 Implementation of the Initial Constants

As is shown in Figs. 6 and 7, the algorithm relies on the

computation of the constants b4ud�mkc5 and b42ud�mkc5
in the initialization cycle. We consider now alternative

implementations. The most direct computation method

seems to be the implementation of a combinational network

(look-up table) having, as input, the required bits of d and, as

output, the constants. The area of this solutionmight be quite

large; based on our estimations, using a synthesis tool it

would correspond to more than 50 percent of the total area.

An alternative is to compute the subtraction using carry-

propagate adders. That is, a small network determines the

mk and then 32 adders are used to produce the output (for

u ¼ 0, no adders are needed). In our synthesis with

standard cells, the area contribution is now about 25 percent.

To reduce the area further, it is possible to use the

symmetry among pairs of mk, in particular, the fact that

m2 � �m�1 and m1 � �m0. In general, consider the

computation of G ¼ �4ld�mg and H ¼ �4ð�lÞd�mh for

l > 0 and mg ¼ �mh. Then,

H ¼ �4ð�lÞd�mh ¼ ð4ld�mhÞ ¼ 4ldþmg ¼ �G for l > 0:

Consequently, it is possible to compute either H or G and

obtain the other by a change of sign operation. This change

of sign is performed by a bit-invert operation followed by

the addition of one unit in the last position (ulp). However,

since the value is truncated, the ulp is neglected without

additional error and the change of sign is done by a bit-

invert operation. This can be done for both sets of constants

and replaces half of the adders by bit-invert operations.

Unfortunately, the corresponding mk pairs are not

exactly symmetrical. For instance, for m2 and m�1, we see

from the allowed intervals that it is possible to make m�1 ¼
�ðm2 þ 1=16Þ (see Table 1). Consequently, we get

� 4ld�m�1 ¼ �ð4ld� ðm2 þ 1=16ÞÞ ¼ �ð4ld�m2Þ þ 1=16:

That is, bit invert and add 1/16. Since the sign-detector (SD)

modules corresponding to the m�1 slice have four fractional

bits (see Section 4.1), the 1/16 can be added as a carry-in to

the sign-detector (SD) modules corresponding to m�1. For

the pair m1 and m0, it is possible to obtain symmetrical

values (see Table 1). However, this would require that these

constants have four fractional bits (see Table 2), instead of

the minimum three bits. Since these constants with three

fractional bits were used to achieve the width of six bits for

the SD modules, it might be preferable to use the same

approach as for the ðm2;m�1Þ pair, that is, add a carry-in to

the SD modules corresponding to m0 (this results in adding

1/8 to m1 to produce ¼ �m0). Our synthesis results with

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 5. Radix-16 iteration implementation.

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 845

Fig. 7. Detail of the radix-16 iteration after the improvements 2 and 3.

Fig. 6. Detail of the radix-16 iteration after improvement 1.

standard cells show that the area contribution is now about

15 precent.

6 ESTIMATION OF CYCLE TIME AND COMPARISONS

This section presents the cycle time estimation of the

proposed architectures and compares them with previous

implementations. As mentioned in the introduction to make

the delay estimations, we used a timing model based on

logical effort [9]. We provide the delays7 relative to the

delay of a minimum-sized inverter with a fanout of four

(FO4 delay). This is a common measure of delay that

remains almost constant over a wide variety of process

technologies, temperatures, and voltages. This delay model

guided us in the algorithmic design of the proposed

schemes. Moreover, it provides more insight at the

architecture level than the results obtained from a synthesis

tool. Later in this paper, we validate our evaluations, based

on this rough model, by performing an actual synthesis.
To estimate the cycle time, it is necessary to place the

registers and define the clock scheduling to achieve the

minimum critical path. For delay calculations, we analyzed

combinational loops; for cycle time estimation, we added a

constant register delay of 4.0 FO4.
We proceeded as follows: 1) We determined the

placement of registers to minimize cycle time with a single

clock. This solution might not be convenient in terms of the

partitioning of blocks and in terms of the number of flip-

flops. 2) We proposed a clock scheduling with two or three

clocks to simultaneously achieve the minimum cycle time

and number of flip-flops. Here, we summarize the main

results obtained. A very detailed analysis is reported in [15].

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 8. Proposed radix-16 architecture.

7. The delay equations of the modules used can be found in [15].

6.1 Cycle Time Estimation of Proposed
Architectures

Fig. 9 shows the proposed radix-4 implementation indicat-
ing the register placement and the critical path. From the
details given in [15], the estimated cycle time is

tprop�4 ¼ tsdð7:8Þ þ tbufð0:9Þ þ tmux4ð2:4Þ þ tbufð1:1Þ
þ thað2:1Þ þ tregð4Þ ¼ 18:3:

This register placement partitions the sign detector (see
Fig. 4). The figure also shows the register position that
minimizes both cycle time and number of flip-flops, using
two clocks (CLK1 and CLK2). The corresponding clock
scheduling is described in [15].

Fig. 8 shows the proposed radix-16 unit, including the
critical path and the position of registers (single clock and
three clocks). As described in [15], the cycle time for single
clock is

tprop�16 ¼ tbufð0:7Þ þ tcpað7:3Þ þ tbufð1:7Þ þ tfað4:8Þ þ thað2:3Þ
þ tbufð1:2Þ þ thað2:1Þ þ tregð4:0Þ ¼ 24:0:

In [15], we also show that, using three clocks, the cycle time
is reduced to 23:2 FO4.

6.2 Cycle Time Comparison with Previous
Proposals

We now compare with previous proposals.
For radix 4, we chose to compare with a standard

implementation with digit set -2 to +2, as described, for
instance, in [2] and [4], and with a recent implementation
with digit set -3 to +3 [8]. For radix 16, we compare with the
standard implementation using two overlapped radix-4
stages [2], [4], with the hybrid overlapped scheme, which

was reported in [4] to be their fastest static implementation,

and with the scheme proposed in [7].
Fig. 10 shows two implementations (function-table-based

and comparison-based) of the standard radix-4 architecture

with a ¼ 2. It indicates the register placement and the critical

path. This register placement achieves both the minimum

cycle time and number of flip-flops with a single clock.

Following [4], [14], we used a narrow path with lower

buffering for the part of the residual that inputs the selection

module. The delay of the corresponding selection functions

(tsel) is 14:4 and 13:6, respectively, and the cycle time is

tr4a2 ¼ tsel þ tbufð0:9Þ þ tmux4ð2:5Þ þ thað2:3Þ þ tregð4:0Þ;

resulting in cycle times of 24.1 FO4 (function-table-based)

and 23.3 FO4 (comparison- based).
A recent radix-4 implementation uses the rarely utilized

quotient-digit set from -3 to +3 [8]. This reduces the delay of

the quotient-digit selection, but increases the delay of the

addition since it implements the multiples �3d as �2d� d.

As shown in [15], the cycle time is

tr4a3 ¼ tselð11:3Þ þ tbufð0:9Þ þ tmux2ð2:0Þ þ tfað4:8Þ þ tregð4:0Þ
¼ 22:7:

The register placement achieves both the minimum cycle

time and number of flip-flops with a single clock.
Fig. 11 shows the standard radix-16 architecture with

critical path and register placement. The register position

achieves the minimum cycle time as well as the minimum

number of flip-flops with a single clock. As described in

[15], the cycle time is

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 847

Fig. 9. Proposed radix-4 architecture and timing.

tr16s ¼ tbufð1:1Þ þ tmux4ð2:5Þ þ thað2:3Þ þ tbufð1:5Þ þ tfað5:1Þ
þ tsel�4ð13:3Þ þ tmux5ð2:8Þ þ tregð4:0Þ ¼ 32:6:

The radix 16 with hybrid overlapped stages performs a

speculative calculation of both the next digit and the most

significant bits of the next residual [4]. As is shown in [15],

this implementation achieves the following cycle time:

tr16hyb ¼ tbufð1:4Þ þ tmux5ð2:8Þ þ tbufð1:4Þ þ tfað5:1Þ
þ tsel�4ð13:3Þ þ tmux5ð2:8Þ þ tregð4:0Þ ¼ 30:8:

In this case, two clocks are necessary to minimize the

number of flip-flops.
Finally, the implementation proposed in [7] corresponds

to two radix-4 stages (without overlap) inwhich prescaling is

performed so that the quotient-digit selection can be done by

rounding the estimate of the residual [16]. The degree of

prescaling is more than required for the selection by round-

ing, so that it ispossible todelay the computationofpart of the

recurrence to the next cycle. As described in [15], the cycle

time is

tr16sca ¼ tfað4:9Þ þ tfað4:8Þ þ tmux4ð2:7Þ þ tregð4:0Þ ¼ 17:0:

Note that, in this scheme, there is an overhead for the

prescaling (of 11 cycles).
Table 3 and Table 4 give a summary of the cycle times.

These tables also provide the total latency for double-

precision execution and the speedup with respect to the
corresponding standard implementation.

For single-precision execution using the same double-
precision datapath, the speedups for radix 4 are the same as
in the double-precision execution. For the radix-16 designs,
the only variation corresponds to the design reported in [7],
which achieves a speedup of about 0.8 (slower than the
reference design) due the large overhead of the prescaling.

6.3 Synthesis Validation and Delay-Area Graph

To validate the model used for the estimations, we report in
this section on a synthesis of the radix-4 division units
described in the previous sections. From this synthesis, we
also obtain an estimate of the area of the blocks to provide a
delay-area graph. For this synthesis, we have used the
0:35 �m STM standard-cells library with power supply of
3:3 V and Synopsys analysis and synthesis tools (Design
Analyzer). The prelayout estimation of delay and area was
carried out on the synthesized circuit (or gate-level netlist),
including an estimate of the interconnect capacitance. To
have results as independent as possible from the technol-
ogy, we report the delay using as unit the FO4 delay, which
is 0:15 ns at power supply of 3:3 V for the library used.
Table 5 shows the results of the synthesis.

We conclude that our delay estimations conform well
with the results of the synthesis, especially when consider-
ing the speedup. The difference in the absolute values in
FO4 units results from optimizations performed by the
synthesis tool, especially when combining several blocks.

848 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

Fig. 10. Standard radix-4 architecture and timing.

Table 6 gives the area and execution time values for the
units compared. We show all cases presented in the
previous section, using, for delay, the values reported in
Tables 3 and 4 and, for area, values computed from the
synthesized blocks. The execution time and hardware
complexity of the function-table based radix-4 implementa-
tion is taken as the reference. Fig. 12 presents the execution

time-area graph, further illustrating the values provided in
the table.

7 CONCLUSIONS

As we have illustrated in previous sections, the cycle time of
existing low-radix digit-recurrence division, such as radix 4,

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 849

Fig. 11. Standard radix-16 architecture and timing.

TABLE 3
Estimated Speedup (Double Precision) for Radix-4 Implementations

is determined by the path qj to qjþ1, which includes the
digit-selection function. As a way of reducing this cycle
time, we propose a class of algorithms for the selection
function that allows transformations to take out parts of this
function from the qj to qjþ1 path. Once this path is not
critical, it is possible to balance the paths by the placement
of the registers and/or by scheduling the clocks to the
various registers.

After describing the above-mentioned class of algo-
rithms, we have examined specific instances and selected
one that, for the radix-4 case, produces about a 25 percent

reduction in the cycle time without increasing the area. The
delay estimates have been done using a model based on the
logical-effort technique. To validate the estimate, we have
done a synthesis using CAD tools for standard cell libraries.
We have extended the use of the proposed class of
algorithms to the radix-16 case, where the selection of the
radix-16 digit is performed by the overlapping of two
radix-4 digits. In this case, to achieve the desired cycle time
reduction, additional transformations were required, in-
cluding extensive speculation. This results in a reduction of
about 25 percent in the execution time (for double-precision
division) with respect to the fastest of the compared
designs. For double precision, the diagram in Fig. 12 shows
that the proposed implementations are placed in attractive

850 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 4
Estimated Speedup (Double Precision) for Radix-16 Implementations

TABLE 5
Summary of Results for the Synthesized Radix-4 Units

TABLE 6
Speedup and Area Ratio for the Units Compared

Fig. 12. Diagram of speedup (execution time) and hardware complexity

for double precision.

positions in the speedup/area-ratio space. Moreover, with
the proposed implementations, it would be easy to also
incorporate square root, which is difficult for algorithms
based on prescaling.

ACKNOWLEDGMENTS

Elisardo Antelo was partially supported by Xunta de
Galicia under projects PGIDT-99XI20601A and
03TIC10502PR. Tomás Lang was partially supported by
UC MICRO Grant 01-047.

REFERENCES

[1] M. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[2] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[3] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT Square
Root and Divide Unit,” Proc. 35th Asilomar Conf. Signals, Systems,
and Computers, pp. 1646-1650, Nov. 2001.

[4] D. Harris, S. Oberman, and M. Horowitz, “SRT Division
Architectures and Implementations,” Proc. 13th IEEE Symp.
Computer Arithmetic, pp. 18-25, 1997.

[5] B. Parhami, “Tight Upper Bounds on the Minimum Precision
Required of the Divisor and the Partial Remainder in High-Radix
Division,” IEEE Trans. Computers, vol. 52, no. 11, pp. 1509-1514,
Nov. 2003.

[6] P. Kornerup, “Revisiting SRT Quotient Digit Selector,” Proc. 16th
IEEE Symp. Computer Arithmetic, pp. 38-45, 2003.

[7] E. Rice and R. Hughey, “A New Iterative Structure for Hardware
Division: The Parallel Paths Algorithm,” Proc. 16th IEEE Symp.
Computer Arithmetic, pp. 54-62, 2003.

[8] G. Gerwig, H. Wetter, E.M. Schwarz, and J. Haess, “High
Performance Floating-Point Unit with 116 Bit Wide Divider,”
Proc. 16th IEEE Symp. Computer Arithmetic, pp. 87-94, 2003.

[9] I.E. Sutherland, R.F. Sproull, and D. Harris, Logical Effort:
Designing Fast CMOS Circuits. Morgan Kaufmann, 1999.

[10] V.G. Oklobdzija et al., “Energy-Delay Estimation Technique for
High-Performance Microprocessor VLSI Adders,” Proc. 16th IEEE
Symp. Computer Arithmetic, pp. 272-279, 2003.

[11] J.P. Fishburn, “Clock Skew Optimization,” IEEE Trans. Computers,
vol. 39, no. 7, pp. 945-951, July 1990.

[12] X. Liu, M.C. Papaefthymiou, and E.G. Friedman, “Retiming and
Clock Scheduling for Digital Circuit Optimization,” IEEE Trans.
CAD of Integrated Circuits and Systems, vol. 21, no. 2, pp. 184-203,
2002.

[13] E. Antelo, T. Lang, M. Montuschi, and A. Nannarelli, “Fast Radix-
4 Retimed Division with Selection by Comparisons,” Proc. IEEE
Int’l Conf. Application-Specific Systems, Architectures, and Processors,
pp. 185-196, 2002.

[14] A. Nannarelli and T. Lang, “Low-Power Divider,” IEEE Trans.
Computers, vol. 48, no. 1, pp. 2-14, Jan. 1999.

[15] E. Antelo, T. Lang, M. Montuschi, and A. Nannarelli, Appendix to
“Digit-Recurrence Dividers with Reduced Logical Depth,” Ana-
lysis of the Register Position, Clock Scheduling, and Cycle Time,
supplemental material available at http://computer.org/tc/
archives/htm, 2005.

[16] M.D. Ercegovac, T. Lang, and P. Montuschi, “Very-High Radix
Division with Prescaling and Selection by Rounding,” IEEE Trans.
Computers, vol. 43, no 8, pp. 909-918, Aug. 1994.

Elisardo Antelo received the BS degree in
1991 and the PhD degree in 1995, both in
physics, from the Universidade de Santiago de
Compostela, Spain. In 1992, he joined the
Departamento de Electrónica e Computación
at the Universidade de Santiago de Compostela.
From 1992 to March 1996, he was an assistant
professor and, since March 1996, he has been
an associate professor in this department. His
research interests are in computer arithmetic

and processor engineering. He is a member of the IEEE.

Tomás Lang received the electrical engineering
degree from the Universidad de Chile in 1965,
the MS degree from the University of California,
Berkeley, in 1966, and the PhD degree from
Stanford University in 1974. He is a professor in
the Department of Electrical and Computer
Engineering at the University of California,
Irvine. Previously, he was a professor in the
Computer Architecture Department at the Poly-
technic University of Catalonia, Spain, and a

faculty member of the Computer Science Department at the University
of California, Los Angeles. His primary research and teaching interests
are in digital design and computer architecture with current emphasis on
high-speed and low-power numerical processors and multiprocessors.
He is the coauthor of two textbooks on digital systems, two research
monographs, one IEEE Tutorial, and the author or coauthor of research
contributions to scholarly publications and technical conferences. He is
a member of the IEEE Computer Society.

Paolo Montuschi graduated with a degree in
electronic engineering in 1984 and received the
PhD degree in computer engineering in 1989
from the Politecnico di Torino, Italy. Since
January 2000, he has been a full professor with
the Politecnico di Torino and, since 2003, he has
been the chair of the Department of Computer
Engineering , Politecnico di Torino. His research
interests cover several aspects of computer
arithmetic, with a special emphasis on algo-

rithms and architectures for fast elementary function evaluations, and
computer graphics, with particular regard to algorithms and architec-
tures for ray tracing and visualization. He is the coauthor of one textbook
on computer graphics and the author or coauthor of several papers
published in technical conferences and journals. He served on the
program committees for the 13th through 16th IEEE Symposia on
Computer Arithmetic and is program cochair of the 17th IEEE
Symposium on Computer Arithmetic. From 2000 to 2004, he served
as an associate editor of the IEEE Transactions on Computers. He is a
member of the IEEE Computer Society.

Alberto Nannarelli is an associate professor at
the Technical University of Denmark. He grad-
uated with a degree in electrical engineering
from the University of Roma “La Sapienza,” Italy,
in 1988 and received the MS and PhD degrees
in electrical and computer engineering from the
University of California at Irvine in 1995 and
1999, respectively. He worked for SGS-Thom-
son Microelectronics and for Ericsson Telecom
as a design engineer and for Rockwell Semi-

conductor Systems as a summer intern. From 1999 to 2003, he was with
the Department of Electrical Engineering, University of Roma “Tor
Vergata,” Italy, as a postdoctoral researcher. His research interests
include computer arithmetic, computer architecture, and VLSI design.
He is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ANTELO ET AL.: DIGIT-RECURRENCE DIVIDERS WITH REDUCED LOGICAL DEPTH 851

