
Radix-16 Combined Division and Square Root Unit

Alberto Nannarelli
Dept. Informatics and Mathematical Modelling

Technical University of Denmark
Kongens Lyngby, Denmark

Email: an@imm.dtu.dk

Abstract—Division and square root, based on the digit-
recurrence algorithm, can be implemented in a combined unit.
Several implementations of combined division/square root units
have been presented mostly for radices 2 and 4. Here, we
present a combined radix-16 unit obtained by overlapping
two radix-4 result digit selection functions, as it is normally
done for division only units. The latency of the unit is
reduced by retiming and low power methods are applied as
well. The proposed unit is compared to a radix-4 combined
division/square root unit, and to a radix-16 unit, obtained
by cascading two radix-4 stages, which is similar to the one
implemented in a state-of-the-art processor.

Keywords-Floating-point, division, square root, digit-
recurrence.

I. INTRODUCTION

Although division and square root are much less fre-
quent than addition and multiplication, most of multicore
and embedded system processors have the two operations
implemented in hardware.

In [1] it is reported that the consumers of division
results are multiplications and additions, and therefore, a
not efficient implementation of division will degrade overall
performance.

The division and square root algorithms can be im-
plemented for floating-point binary64 (formerly double-
precision) by two classes of iterative algorithms.

The digit-recurrence algorithms require a number of iter-
ations depending on the power-of-two radix chosen [2]. The
main advantages are that the necessary hardware (and con-
sequently, the power dissipated) is small and the rounding is
easy as the remainder is computed as part of the algorithm.

The multiplicative algorithms (e.g. Newton-Raphson) are
based on the computation of the reciprocal (or inverse square
root) and then the result of the operation is obtained by
multiplication [3]. With respect to the digit-recurrence algo-
rithm, this requires less iterations (convergence is quadratic),
but it requires a multiplier (larger than hardware necessary
for digit-recurrence) that normally is not the one used
for multiplication to not lose performance. Moreover, the
rounding is not straightforward as for digit-recurrence.

Division (square root) is implemented by the radix-4 digit-
recurrence algorithm, with some variants, in Intel Pentium
CPUs [4], in ARM processors [5], in IBM FPUs [6] and by
a radix-16 unit in the Intel Core2 processors [4].

On the other hand, division (square root) by iterative
multiplication it has been chosen in AMD processors [7],
NVIDIA GPUs [8], and in Intel Itanium CPUs [9].

In this paper, we focus on the digit-recurrence algorithm
by combining radix-16 division and square root (div/sqrt in
the following) in a single unit. This combination has been
done in the past for radix-8 in [10], for radix-4 in [11]
and recently in [5] and [12]. The Intel Core2 (code named
Penryn) div/sqrt unit is implementing radix-16 by cascading
two radix-4 stages similar to those of [5].

Here we propose the radix-16 combination of div/sqrt by
overlapping, instead of cascading, two radix-4 stages [2].
In this way, we obtain a reduced operation latency with
relatively small area and power dissipation overhead.

The results of the implementation are compared to a unit
similar to the one of the Penryn, to a radix-4 combined unit,
and to a radix-16 division only unit to see the overhead of
square root combination.

II. ALGORITHM

Because of the similarities in the digit-recurrence algo-
rithm, division and square root can be effectively imple-
mented in the same unit. By defining the two operations
as

division: q = x
d + rem

square root: s =
√

x

where x is the dividend/radicand, d the divisor, q/s is the
result (quotient/square root), and rem is the remainder, the
generic radix-r division and square root, described in detail
in [2], is implemented by the residual recurrence

w[j + 1] = rw[j] + F [j] j = 0, 1 . . .m (1)

in which w[j] is the residual at iteration j (initialized by x),

F [j] =
{ −qj+1d (division)

−(S[j]sj+1 + 1
2 r−(j+1)s2

j+1) (square root)
(2)

The result digit (qj+1 for division and sj+1 for square
root) are determined, at each iteration, by a selection func-
tion

qj+1 = SEL(d̂, ŷ) (division)
sj+1 = SEL(Ŝ[j], ŷ) (square root)

where d̂ and Ŝ[j] are respectively d and S[j] truncated after
the δ-th fractional bit, and ŷ is an estimate of rw[j].

2011 20th IEEE Symposium on Computer Arithmetic

1063-6889/11 $26.00 © 2011 IEEE

DOI 10.1109/ARITH.2011.30

169

A. Radix-16 Division Recurrence

For higher radices, to avoid using multipliers to form F [j]
the quotient/result digit is usually decomposed in two parts.
For example, for radix-16 division, a possible decomposition
is

qj = 4qHj + qLj (3)

with qHj ∈ {−2,−1, 0, 1, 2}, qLj ∈ {−2,−1, 0, 1, 2} and a
corresponding digit set qj ∈ [−10, 10].

With this decomposition, the retimed1 radix-16 division
recurrence is

v[j] = 16w[j − 1] − qHj(4d)
w[j] = v[j] − qLjd

(4)

with w[0] = x (eventually shifted to ensure convergence).
and the selection function is also split into two parts

qHj = SELH(r̂w, dδ)
qLj = SELL(v̂, dδ)

(5)

where y = r̂w and v̂ are truncated to a few MSBs (10
for division) and dδ are the 3 bits of d (0.5 ≤ d < 1.0)
of weight 2−2, 2−3, 2−4. However, because the two radix-4
stages are overlapped, qLj is computed speculatively for all
the possible outcomes of qHj and the right one is selected
once qHj is determined. That is

qHj = SELH(y, dδ)

qLj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SELL(y + 2̂d, dδ) if qHj = −2
SELL(y + d̂, dδ) if qHj = −1
SELL(y, dδ) if qHj = 0
SELL(y − d̂, dδ) if qHj = +1
SELL(y − 2̂d, dδ) if qHj = +2

(6)
The residual(s) w[j] (v[j]) are usually stored in carry-save

representation (wS , wC , . . .) to reduce the iteration time.
The recurrence of (4) is illustrated in Figure 1. The

iteration is delimited by a dashed horizontal line in the
figure, corresponding to the position of the registers in the
hardware implementation.

The division unit is completed by a on-the-fly convert-
and-round unit [2] which converts the radix-16 quotient-
digit from the signed-digit representation to unsigned binary
representation of the quotient q, and performs the rounding

B. Radix-16 Square Root Recurrence

The retimed radix-16 square root recurrence

w[j] = 16w[j − 1] − sj

(
S[j − 1] +

1
2
16−jsj

)
by introducing

P [j − 1] = S[j − 1] +
1
2
16−jsj

1In the hardware implementation the quotient-digit is computed at the
end of the cycle (iteration) [13].

L
q

q
H

Mux 2:1

−2d −d0d 2d

Mult/mux

vcvs

wcws

C S A

C S A

x

y
s c

y

q
HL

q

Selection Function

Mult/mux

0−8d 8d−2d 2d

10

10

s16w

c16w

s16w
c16w

nn

n

nn

d

10

Figure 1. Radix-16 division recurrence.

can be rewritten as

w[j] = 16w[j − 1] − sjP [j − 1]

which can be decomposed, by splitting the result digit
sj = 4sHj + sLj , into

v[j] = 16w[j − 1] − sHj(4P [j − 1])
w[j] = v[j] − sLjP [j − 1] (7)

The selection function is:

qHj = SELH(r̂w, Ŝ[j − 1])
qLj = SELL(v̂, Ŝ[j − 1])

(8)

However, differently from division, the result-digit sj and
the residual w[j] depend on the partial result S[j] which is
updated at each iteration by the on-the-fly conversion. This
issue is addressed in Section III.

C. Radix-16 Combined Division/Square Root Recurrence

The radix-16 recurrences (4) and (7) can be combined as
follows

v[j] = 16w[j − 1] + 4FH [j − 1]
w[j] = v[j] + FL[j − 1] (9)

where

FH [j − 1] =
{ −qHjd (division)

−sHjP [j − 1] (square root)

FL[j − 1] =
{ −qLjd (division)

−sLjP [j − 1] square root)
(10)

In the following, in the combined unit, we use qj to
refer to both the quotient and result digit. Moreover, in the

170

selection function we need to select among d and S[j − 1]
for the two operations.

D. Selection Function

With the decomposition of (3) each radix-4 quotient-digit
(result-digit) has a redundancy ρ = 2

3 and the selection
function of [2] for the radix-4 combined division and square
root can be used.

The bounds for division are

Uk[j] = d(k + ρ)
Lk[j] = d(k − ρ)

and for square root

Uk[j] = S[j](k + ρ) + 1
2 (k + ρ)24−(j+1)

Lk[j] = S[j](k − ρ) + 1
2 (k − ρ)24−(j+1)

The selection constants for the combined radix-4 from [2]
can be used.

The radix-4 result-digit qj+1 is determined by performing
a comparison [14] of the truncated residual y (carry-save)
with the four values (mk) representing the boundaries to
select the digit for the given d/S[j]. That is,

y ≥ m2 → qj+1 = 2
m1 ≤ y < m2 → qj+1 = 1
m0 ≤ y < m1 → qj+1 = 0
m−1 ≤ y < m0 → qj+1 = −1

y < m−1 → qj+1 = −2

(11)

With respect to the selection constants of [2], when imple-
menting selection by comparison, it is convenient to have
symmetrical selection constants mk’s with respect to the
positive/negative values of y. In this way, only one constant
is stored per d̂/Ŝ[j] interval, and the other is obtained by a
two’s complement

m−1 = −m2 and m0 = −m1

The modified constants mk’s are listed in Table I.
In the first row of Table I, m−1 = −m2 − 1 = −13

because otherwise the algorithm is not converging. However,
−13 is the one’s complement of 12 and this exception can
be easily overcome in the hardware implementation2.

III. ARCHITECTURE

In this section the architecture implementing the combined
div/sqrt for binary64 (double-precision) is presented.

We assume the operands x (dividend/radicand) and d
(divisor) normalized in [0.5, 1). To ensure convergence
(|w[j]| ≤ ρd), w[0] is initialized to x/4 for division. For
square root, the result is initialized to S[0] = 1.0 and
w[0] = x − 1.0. Moreover, if the biased exponent of x is
odd, the recurrence is initialized as w[0] = x

2 − 1.0.

2Normally, two’s complement is implemented in hardware by bit inver-
sion (one’s complement) and adding a ’1’ in the next available adder.

dδ/Ŝ[j] m2 m1 m0 m−1

0.1000 12 4 -4 -13
0.1001 14 4 -4 -14
0.1010 16 6 -6 -16
0.1011 17 6 -6 -17
0.1100 18 6 -6 -18
0.1101 20 8 -8 -20
0.1110 22 8 -8 -22
0.1111 23 8 -8 -23
Values on mk’s are multiplied by 16.

Table I
SELECTION CONSTANTS FOR RADIX-16 DIVISION

W−pathq−path

Convert&Round

A,B w

d x

y

qj

qj

Figure 2. Structure of radix-16 combined div/sqrt unit.

To simplify the description of the architecture implement-
ing the recurrence of (9) (10) and the selection function of
(5) (8), we split the recurrence into two paths:

� W-path is the wide path (58 bits for binary64) imple-
menting (9) and (10).

� q-path is the narrow path (max. 12 bits) implementing
the overlapped selection function and the necessary
speculation.

The on-the-fly conversion algorithm [2] produces the
quotient of division and S[j] to be used in the iterations.
To avoid the use of a carry-propagate adder, two variables
A and B are required. They are updated, in every iteration,
as follows:

A[j] = S[j] and B[j] = S[j] − 16−j

At the end of the iterations, A[m] contains the rounded
quotient of the division, or the square root.

The top-level unit (the computation of exponent and sign
is straightforward and not covered in the paper) is sketched
in Figure 2 and the detail of the implementation is given
next. The combined div/sqrt unit is completed by a controller
(not in the figure), containing a sequencer K keeping track
of the iterations used for sqrt, plus some other signals to set
multiplexers and enable registers. We assume that a signal
(1-bit) OP sets the operation to div or sqrt.

171

Mux 2:1

q
H

L
q

vcvs

wcws
y
s c

y

s16w

c16w

Mux 2:1 Initialize Mux

C S A

F−generate

C S A

F−generate

AB update & D Select

OP

A d B x

K

K>>1A B d
F <<2H

F
L

OP
init

HB

LB

A H

A L

to q−path

srw crw

−1.0

Figure 3. Radix-16 W-path.

A. Block W-path

The block W-path, shown in Figure 3, implements the
expressions (w and v are carry-save):

v[j] = 16w[j − 1] + 4FH [j − 1]
w[j] = v[j] + FL[j − 1]

In the figure, a thicker (blue) line indicates the position of
the registers. The datapath is 58 bits wide. The operations
performed in the blocks of Figure 3 are described below.

� Initialize Mux is used to initialize the recurrence as
follows:

OP = 0 (div) : rws = x/4 rwc = 0
OP = 1 (sqrt : rws = x rwc = −1

The multiplexer takes care of shifting x two (OP=0) or
one (OP=1 and odd exponent) positions to the right.

� The two multiplexers at the top-left of Figure 3 select
the inputs to block F-generate (FGEN) according to the
operation:

- division: divisor d;
- square root: partial result A[j] (and its diminished-

by-1 value B[j]).
� F-generate (FGEN) generates the signals FH [j] and

FL[j] as described in expression (10). For division, it
is straightforward as it works as a multiplexer selecting
−2d,−d, 0, d, 2d. For square root, the generation of F
is more complicated as the bits of A and B are loaded
in position (radix-4) according the sequencer K. More
detail on FGEN operation can be found in [2] and [11].

� The block AB update & D select is necessary to update
A and B according to the value of qH . Because the
conversion of A is delayed one cycle in the retimed

4

CSA 3:2 CSA 3:2 CSA 3:2 CSA 3:2

sign−det. sign−det. sign−det. sign−det.

coder

8 8

m2 m 1 m0 m−1

sy cy

q
H

a)

CSA CSA CSA CSA

M U X

10 10

−2d d−d 2d

q
H

q
L

4

4 4

sy cy

8 8

mks

QSELQSELQSELQSELQSEL QSEL

b)

Figure 4. a) Implementation of QSEL. b) Overlapped radix-16 quotient-
digit selection (division).

implementation, it is necessary to perform the radix-
4 update with qH to avoid errors in the residual. The
update is done by replacing B with A if qH > 1, or
vice-versa if qH < 1, and by appending the converted
qH digit in the position indicated by the sequencer K.
When division, d is selected.

B. Block q-path

Before describing the q-path, we recall how selection-by-
comparison [14] and radix-16 by overlapping two radix-4
stages are implemented in hardware for division.

The selection of (11) can be implemented with a unit
(QSEL) similar to that depicted in Figure 4.a where four 8-
bit comparators (sign-det.) are used to detect in which range
y lies. The coder then encodes qH in 1-out-of-4 code which
is suitable to drive multiplexers.

In parallel, all five possible outcomes of qL are computed
speculatively (Figure 4.b), and then one of them is selected
once qH is determined. Therefore, the computation of qL is
overlapped to that of qH , and qL is obtained with a small
additional delay.

Figure 5 (q-path) shows the additions to Figure 4.b
necessary to implement square root. There are two main
issues:

1) Ŝ[j] (or Â in the figure) is not constant, as it is d in
division, through the iterations.

172

y
s

OP
K

3 8

8

q
H L

q

M U X

4 x 14 x 1

4

m tablek

QSEL

CSA

QSEL

CSA

QSEL

CSA

QSELQSEL

CSA

QSEL

F−mux F−mux F−mux F−mux

NOT NOT

c
y

d̂B̂ A
^ d̂
uu

A
^d̂

4

OP
K

OP
K

OP
K

OP
K

mH

+
Lm

−1
Lm

−2
Lm

+2F̂ +1F̂ F̂−1 F̂−2

8 8

1111

Figure 5. Radix-16 q-path.

bits of Â comment
1 0 - first iteration (j = 0)
1 1 1 if (A<0> = 1) and (j > 0)

A<−2> A<−3> A<−4> if (A<0> = 0) and (j > 0)

A<−k> refers to bit in A with weight 2−k .

Table II
BITS OF Â USED TO ACCESS mk TABLE.

2) The computation of the speculative F̂ ’s is also depend-
ing on the iterations.

The main problem is that, although the few bits necessary
for the q-path (12 bits for Â and B̂) can be determined
in three radix-16 iterations, it might happen that if there is
a sequence of qj = 0, the update of A can occur at later
iterations. Therefore, to be able to handle these cases, a 12
bit replica of the on-the-fly conversion is necessary to update
Â (and B̂).

The solution for the changing Â has already been ad-
dressed in [2] for qH by implementing the selection of the
bits of Â according to Table II.

However, for the speculative computation of qL, we
might need to change the mk’s constants on-the-fly. This
is illustrated with the following example.

For square root, the first non-zero radix-4 digit is either
-1 or -2. If the first non-zero radix-4 digit is -2, then the
following non-zero digit is positive. Consequently,

qH [1] = {0,−1,−2}
and to select the constants of qL[1] we might have to update
Â to Âu (and B̂u) as follows (see Table I and Table II):

qH [1] Âu[1] mk

0 → 1.0000 → Table(111) : {23, 8,−8,−23}
−1 → 0.1100 → Table(100) : {18, 6,−6,−18}
−2 → 0.1000 → Table(000) : {12, 4,−4,−13}

This situation can occur at each iteration, if there is an initial
sequence of zero digits. By introducing a state (zero = 1)

A
^
u

+
Lm

K m tablek

M U XOP

zero

mH2
mH1

mL2 mL1

−1
Lm

−2
Lm

B̂u

K m tablek

M U XOP

zero

mL2 mL1

K m tablek

M U XOP

zero

mL2 mL1

B̂u

Update

A
^
u B̂u

A
^

B̂q j

Figure 6. mk’s tables for speculative computation.

iter.
1 F̂+2 = aa110000000

F̂+2 = aaa11100000

F̂+2 = bbb11100000

F̂+2 = bb110000000

2 F̂+2 = aaaaaa11000

F̂+2 = aaaaaaa1110

F̂+2 = bbbbbbb1110

F̂+2 = bbbbbb11000

3 F̂+2 = aaaaaaaaaa1

F̂+2 = aaaaaaaaaaa

F̂+2 = bbbbbbbbbbb

F̂+2 = bbbbbbbbbb1

>3 F̂+2 = aaaaaaaaaaa

F̂+2 = aaaaaaaaaaa

F̂+2 = bbbbbbbbbbb

F̂+2 = bbbbbbbbbbb
. . .

Figure 7. Operation in F-mux for square root (bits a are inverted).

which is reset when the first non-zero digit appears, and by
indicating with mk(a) the set of constants for the specific
Âu, the example below can be generalized by

if zero = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1
L : d.c.

q2
L : d.c.

q0
L : mk(7)

q−1
L : mk(7)

q−2
L : mk(7)

else

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1
L : mk(Âu)

q2
L : mk(Âu)

q0
L : mk(Âu)

q−1
L : mk(B̂u)

q−2
L : mk(B̂u)

From the example above, it is also clear that three separate
tables are necessary to fetch the mk’s for the qL selection:

1) set m+
L when qH ≥ 0;

2) set m−1
L when qH = −1;

3) set m−2
L when qH = −2;

When the operation is division, these three tables are by-
passed (mux) and the same set of mk’s is used throughout
the whole division (see Figure 6).

Finally, the blocks F-mux select the speculative values
to be added to y for the digit values qH = {−2,−1, 1, 2}.
This is realized with multiplexers selecting according to
the operation (div/sqrt) and the iterations as explained in
Figure 7.

173

conv
qj

m tablek

F−mux CSA QSELupdate

QSEL

MUX

m tablek MUX

q
H

L
q

yd̂

A
^
uA

mH

Lm

q
H

L
q

y

mH

d̂qj

A

MUX

F−gen.AB/D

CSA

MUX

F−gen. CSA

q H

qLq H

y

W

v

A

W

SZD

C&R

W

A

d

x

qj

Figure 8. Timing paths (left to right) and critical path (highlighted).

C. Timing Diagram and Latency

Figure 8 shows the timings paths of the radix-16 combined
div/sqrt unit. The numerical values obtained by implement-
ing the unit (see detail in Section V) for these paths are
reported in Table III. In the table, the delay in the paths from
the starting node (register) to the arriving node are presented.
The critical path (highlighted in Figure 8) is 1.083 ns and it
is between register qH and qL.

The unit can be retimed by moving the position of the
registers along the paths, or by moving the clock edges by
controlled skew, to try and reduce the delay of the critical
path.

However, no retiming will improve the delays in the paths
between the same register (diagonal in Table III). By looking
at the table, the longest delay on the diagonal is 1.082 ns
for qL → qL. This is basically the same value as the critical
path (the FO4 delay in the library used in 45 ps) making
any further retiming optimization useless.

On the other hand, due to the retimed implementation
of the recurrence, the slack across register w (actually two
registers for carry-save representation) is quite significant
(1083-606=447 ps) and it can be utilized to design a large
portion of the W-path (48 least-significant bits) for low
power by trading off delay and reduced power.

As for the number of cycles, for both operations, 16
cycles, including initialization and rounding, are needed.

IV. OTHER ARCHITECTURES FOR COMBINED DIV/SQRT

The div/sqrt unit implemented in the Intel Core2 (Penryn)
family is sketched in Figure 9 [4]. It implements IEEE

from / to qH qL w A
qH 1.032 1.083 0.552 0.472
qL 1.031 1.082 0.548 0.472
w 1.013 1.066 0.606 0.817
A 1.032 1.032 0.534 -

Table III
TIMING PATHS [ns].

binary32/binary64 compliant division and square root, plus
extended precision (64 bits) and integer division. The unit
consists of three main parts: the pre-processing stage nec-
essary to normalize integer operands to ensure convergence;
the recurrence stage; and the post-processing stage where
the rounding is performed.

The recurrence is composed of two cascaded radix-4
stages synchronized by a two-phase clock to form a radix-
16 stage (4 bits of quotient computed) over a whole clock
cycle.

Each radix-4 stage is realized with a scheme similar to
that of [5] shown in Figure 10. For each radix-4 stage the
result-digit is determined by performing a comparison of
the truncated residual y = 4̂w[j] (carry-save) with the four
values (mk) representing the boundaries to select the digit
for the given d (Ŝ[j]). In parallel, all partial remainders
wk[j +1] are computed speculatively, and then one of them
is selected once qj+1 is determined. The carry-save output
of the radix-4 stage is then hardwired to shift-left 2 bits
(multiplication by 4).

This scheme was selected because of the reduced logical
depth. However, the speculation on the whole w-word (68
bits for the Core2 format), is quite expensive in terms of
area and power dissipation.

174

Hybrid 68b
Adder

QSL

MUX

<<2Radix 4

Hybrid 68b
Adder

QSL

MUX

<<2Radix 4

quotient / remainder

Pre−processing

Post−processing

x d

Figure 9. Architecture of Penryn div/sqrt unit.

y
s

c
y

M U X 5 : 1

QSL

4
q
j+1

8 8

mks

s

cw [j] w [j]s

cw [j+1]w [j+1]

nn 2dd−d−2d

CSA 3:2CSA 3:2 CSA 3:2CSA 3:2

FGEN FGEN FGENFGEN

−2A −A B 2B

Figure 10. Single radix-4 div/sqrt stage.

V. IMPLEMENTATION AND COMPARISON

To evaluate the performance in terms of delay, area and
power dissipation of the proposed unit, we implemented for
binary64 the following alternatives.

• c16over is the radix-16 combined div/sqrt unit with
overlapped result-digit selection presented here.

• cPenryn is the combined unit similar to that of Fig-
ure 9 modified to handle binary64 only. That is, the
recurrence is composed by two cascaded radix-4 stages,
plus the same initialization and convert-and-round unit
as the c16over.

• d16over is the radix-16 division only unit with over-
lapped selection function. This is considered our refer-
ence design.

• dPenryn is the unit of Figure 9 supporting division
only.

• r4comb is a radix-4 combined div/sqrt unit similar to
the one presented in [5].

The units are synthesized by Synopsys’s Design Compiler
with a 90 nm CMOS standard cell library providing two
types of cells for each logic gate: a standard-Vt

3 cell and a
high-Vt cell to obtain reduced power dissipation to be used
in paths with a slack. For comparison purposes, the FO4
inverter delay is 45 ps and the area of the NAND2 gate is
4.4 μm2 in this library.

The units have been modeled in VHDL at RTL-level
and synthesized to obtain the maximum speed. Because
in our design flow we do not use two-phase clocks, for
the *Penryn implementations we cascaded the two radix-
4 stages of Figure 9 into a single clock cycle.

We used Synopsys’s Power Compiler to estimate the
power based on randomly generated input vectors by using
an instruction mix (division/square root) in a ratio 5:1
to keep into account the different frequencies of the two
operations. For all units, the average power dissipation was
estimated at a normalized frequency of 100 MHz.

We also estimated the average energy to complete a full
operation

Eop = Pave × latency .

The synthesis results are summarized in Table IV.
The fastest unit in terms of clock cycle is clearly the radix-

4 combined. In our implementation the delay is 19 FO4
which is quite close to the value reported in [5] (17 FO4).
However, the extra number of cycles makes its latency and
Eop larger than those of c16over.

The overhead of combining div/sqrt is about 10% for
c16over over d16over for delay/latency and higher for
power and area (24% and 64% respectively).

For the cPenryn the overhead over dPenryn in delay is
negligible, but the impact on area is quite large. As for the
power dissipation, it is likely that for the *Penryn it is over-
estimated because the original clocking scheme (two-phase)
prevents transitions generated in the upper radix-4 stage to
propagate in the lower one. However, the speculation in the
wide (w) path makes the unit dissipating more power than
the *16over approach where the speculation is in the narrow
path.

When comparing c16over and cPenryn, Table IV shows
that the proposed unit is superior in all the metrics.

In summary, the results show that the proposed radix-16
combined div/sqrt unit has a shorter latency when compared
to a unit similar to the one of Intel Core2 and consumes
significantly less power. On the other hand, the overhead
introduced by the square root is 11% for latency and 24%
for power dissipation with respect to a radix-16 division only
unit.

VI. CONCLUSIONS

In this work, we developed a radix-16 combined division
and square root unit based on the digit-recurrence algorithm

3Vt is devices’ threshold voltage.

175

Crit. Path Cycles Latency Area Pave Eop

Unit [ns] ratio [ns] NAND2 ratio [mW] ratio [pJ]
c16over 1.083 1.11 16 17.33 59,685 1.64 3.00 1.24 480
cPenryn 1.328 1.37 16 21.25 71,714 1.97 3.80 1.57 608
d16over 0.972 1.00 16 15.55 36,443 1.00 2.42 1.00 388
dPenryn 1.333 1.37 16 21.33 51,761 1.42 3.46 1.43 553
r4comb 0.857 0.88 28 24.00 42,911 1.18 2.10 0.87 588

Pave is average power measured at 100 MHz.

Table IV
RESULTS OF IMPLEMENTATIONS.

by overlapping two radix-4 stages for the implementation of
the selection function.

The main challenge is in updating the partial result of
square root (S[j]), necessary for speculation, by keeping the
latency low. To achieve this objective, the following design
choices were made:

• The two radix-4 selection functions are overlapped to
reduce the cycle time.

• As a consequence, we need to update the partial result
(Â and B̂) in the narrow path (q-path) to compute qL

correctly.
• Due to speculation in computing qL, different values

of mk’s might be required in the initial iteration. This
problem is solved by replicating the mk-tables (three
of them) for the selection of qL (Figure 6). Having
symmetrical values of mk makes the tables quite small
(52 NAND2 each).

• In the W-path, because FH [j] and FL[j] operate radix-
4 for sqrt, it is necessary to update the values of A and
B according to qH to compute the right FL[j]. This is
done by the block AB update & D select in Figure 3.

With respect to the Penryn-like unit, the advantages of
performing speculation on the narrow path, instead of the
wide path, are evident by looking at the results of Table IV.

Clearly, the combination of div/sqrt has an overhead over
the implementation of division only, but the increase in clock
cycle is limited (10%) and the increase in power dissipation
can be reduced by more aggressive design methods for low
power. This is going to be addressed in future work.

In conclusion, we have presented a radix-16 combined
division and square root unit for binary64 (significand com-
putation) that has the lowest latency among some recently
presented units of the same type (combined div/sqrt), includ-
ing a unit similar to the one of the Intel Core2 processor.

ACKNOWLEDGMENTS

The author wishes to thank Tomás Lang for his sugges-
tions and comments on the design of the unit.

REFERENCES

[1] S. Oberman and M. Flynn, “Design issues in division and
other floating-point operations,” IEEE Transactions on Com-
puters, pp. 154–161, February 1997.

[2] M. Ercegovac and T. Lang, Division and Square Root:
Digit-Recurrence Algorithms and Implementations. Kluwer
Academic Publisher, 1994.

[3] ——, Digital Arithmetic. Morgan Kaufmann Publishers,
2004.

[4] H. Baliga, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon,
J. Abel, and A. Valles, “Improvements in the Intel
Core2 Penryn Processor Family Architecture and Mi-
croarchitecture,” Intel Technology Journal, pp. 179–192,
Oct. 2008, http://www.intel.com/technology/itj/2008/v12i3/3-
paper/1-abstract.htm.

[5] N. Burgess and C. N. Hinds, “Design of the ARM VFP11
Divide and Square Root Synthesisable Macrocell,” Proc. of
18th IEEE Symposium on Computer Arithmetic, pp. 87–96,
July 2007.

[6] G. Gerwig, H. Wetter, E. M. Schwarz, and J. Haess, “High
performance floating-point unit with 116 bit wide divider,”
Proc. of 16th Symposium on Computer Arithmetic, pp. 87–
94, 2003.

[7] S. F. Oberman, “Floating-point division and square root algo-
rithms and implementation in the AMD-K7 microprocessor,”
Proc. of 14th Symposium on Computer Arithmetic, pp. 106–
115, 1999.

[8] NVIDIA. ”Fermi. NVIDIA’s Next Generation CUDA
Compute Architecture”. Whitepaper. [Online]. Available:
http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf

[9] H. Sharangpani and H. Arora, “Itanium processor microar-
chitecture,” IEEE Micro, vol. 20, no. 5, pp. 24–43, Sep/Oct
2000.

[10] J. Fandrianto, “Algorithm for high-speed shared radix-8 di-
vision and radix-8 square root,” Proc. of 9th Symposium on
Computer Arithmetic, pp. 68–75, Sept. 1989.

[11] A. Nannarelli and T. Lang, “Low-Power Radix-4 Combined
Division and Square Root,” Proc. of the International Con-
ference on Computer Design, pp. 236–242, Oct. 1999.

[12] N. Burgess, “Retiming the ARM VFP-11 Divide and Square
Root Macrocell,” Proc. of 41st Asilomar Conference on
Signals, Systems, and Computers, pp. 363–366, Nov. 2007.

[13] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-
recurrence dividers with reduced logical depth,” IEEE Trans-
actions on Computers, vol. 54, pp. 837–851, July 2005.

[14] N. Burgess and C. Hinds, “Design Issues in Radix-4 SRT
Square Root and Divide Unit,” Proc. 35th Asilomar Con-
ference on Signals, Systems and Computers, pp. 1646–1650,
2001.

176

