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Abstract—Sometimes reducing the precision of a numerical pro-
cessor, by introducing errors, can lead to significant performance
(delay, area and power dissipation) improvements without com-
promising the overall quality of the processing. In this work,
we show how to perform the two basic operations, addition and
multiplication, in an imprecise manner by simplifying the hard-
ware implementation. With the proposed ”sloppy” operations,
we obtain a reduction in delay, area and power dissipation, and
the error introduced is still acceptable for applications such as
image processing.

I. I NTRODUCTION

There are several fields of application of computer arithmetic
that can tolerate some imprecision. For example, in audio and
image processing or in wireless communication, it might be
desirable to get better performance (faster, smaller, lesspower-
hungry systems) at expenses of some quality degradation.
Recently, a few papers have addressed this issue of designing
imprecise hardware to save power [1], [2], [3], [4].
In this work, we introduce a systematic way of having
imprecise arithmetic operations for the two most common
operations: addition and multiplication. We liked the term
”sloppy” introduced in [5], and we will use this term in the
paper to refer to imprecise arithmetic operations.

II. SLOPPY ADDITION

Ignoring the least significant bits of an addition, by implement-
ing a truncated adder saves area and it is faster at expenses
of a truncation error. Instead of completely ignoring the least
significant bits, in the ”sloppy” approach we do not propagate
the carry in those bits.
Assuming that we are operating on positive integers, and
defining positionk as the bit of weight2k in a n-bit word,
we can ignore the carry up to positionk when implementing
the addition.
The bit-level algorithm to implement this sloppy adder is the
following:

c = 0 // carry
if (i < k) then

si = ai XOR bi

else
si = ai XOR bi XOR c

c = (ai AND bi) OR (ai AND c) OR (bi AND c)
end if

For example, the addition103 + 70 (n = 8, k = 4) is

sloppy precise
A : 0110 0111 + 0110 0111 +
B : 0100 0110 + 0100 0110 +
c : 100- ---- = 0100 110- =

-------------- --------------
S : 1010 0001 1010 1101

That is, the sloppy adder computes 161 (exact value is 173)
introducing an errorǫ = 12.
By looking at the bits of weight< 2k, we notice that the XOR
of two ones produces a zero sum bit (1⊕ 1 = 0). Because the
carry is not computed (or propagated), in positionk an error
2k+1 is generated. The error can be halved to2k by computing
the OR of the two bits in place of the XOR. For the example
above we have:

sloppy (OR-ing)
A : 0110 0111 +
B : 0100 0110 +
c : 100- ---- =

--------------
S : 1010 0111

and the error is reduced fromǫ = 12 to ǫ = 6 (halved).
By simulating all possible combinations of the operands for
the 8-bit addition (k = 4), we found that by obtaining the
sum by OR-ing thek least-significant bits the average error is
ǫmean = 3.75, while by XOR-ing, it isǫmean = 7.5.
We show in Fig. 1 the comparison of the hardware implemen-
tation of the sloppy adder used in the above example (n = 8,
k = 4) and an error-free 8-bit carry-propagate adder (CPA).
The data1 on delay, area and power dissipation are reported in
Table I.
In a rough evaluation, we considered lowering the supply
voltageVDD in the sloppy adder to match the delay of the
error-free adder (1.0 ns). In our library, whenVDD is lowered
from 1.0 V to 0.7 V the delay doubles. In the expression for
the power dissipated by a circuit containingN gates

P1.0V = V 2
DDf ·

N∑
aiCi ⇒ 20 µW = (1.0 V )2 · K

we assume that the switching capacitanceaiCi does not
change when scalingVDD. Therefore,K = 20 is constant:

P0.7V = (0.7)2 · 20 ≃ 10 µW

1The adders are synthesized with radix-4 carry-look-ahead iterative carry
network [6].
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Fig. 1. Implementation of 8-bit error-free (top) and sloppyk = 4 (bottom)
adders.

CPA 8-bit sloppy ratio
max. delay[ps] 999 495 2.00
Area [µm2] 191 112 1.70
Power [µW ] 42 20 2.10

TABLE I
SYNTHESIS DATA OF ADDERS INFIG. 1.

That is, with the sloppy adder the power is reduced to 1/4 at
same adder speed.
The natural competitor of the sloppy adder is the truncated
adder. We performed a comparison between our imprecise
adder and the truncated adder by implementing a 16-bit adder
with a Carry Look-Ahead (CLA) network to propagate the
carry for different sloppy/truncated configurations. The output
bits affected by errors are shown as◦ in Fig. 2 for truncation
t = 8 and sloppy bitsk = 8.
Gate-level netlists are generated, by a C program, for each
unit under test. The netlists are synthesized (unconstrained) to
optimize buffering and cells’ drive strength according to the
actual fan-out.
In the comparison, we are interested in relating the introduced
error to the power dissipation.
Fig. 3 shows the error introduced by the imprecise adders as
a function of the number of imprecise/truncated bits (4, 8 and
12 bits). In Fig. 4 we show the power dissipation of each
imprecise adder as function of the error. The sloppy adder
turned out to dissipate lower power than the truncated adder
for the same error level.

III. SLOPPY MULTIPLICATION

Parallel multiplicationp = x·y can be divided into three steps:

1) generation of Partial Products (PPs);
2) carry-free reduction fromn PPs to 2 operands;
3) carry-propagate two operands addition.

• • • • • • • • • • • • • • • • +
• • • • • • • • • • • • • • • • =
• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • +
• • • • • • • • • • • • • • • • =
• • • • • • • ◦ • • • • • • • •

• • • • • • • • • • • • • • • • +
• • • • • • • • • • • • • • • • =
• • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 2. Bit array and errors◦ for adders: precise 16-bit adder (top), truncated
t = 8 16-bit adder (middle), sloppyk = 8 16-bit adder (bottom).
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Imprecise Addition: Output Error vs Equivalent Number of Bits
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Fig. 3. Error of sloppy and truncated adders implementations for different
number of imprecise bits.
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Fig. 4. Power dissipation of sloppy and truncated adders as function of the
introduced error.

We use a sloppy approach for step 1 only, as step 2 is quite
delay-efficient (no carry propagation) and step 3 has been
addressed in the previous section.
We consider radix-4 multiplication because forn × n bit
operands the unit is smaller: onlyn

2
PPs are generated. In

radix-4 multiplication, the radix-4 digits of the multipliery are
recoded into signed-digit representation to avoid multiples of 3
and carry propagation as explained in [6]. The resulting archi-
tecture (for one digit) recoder plus PP generation (rec+PPgen)
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Fig. 5. Implementation of radix-4 rec+PPgen: (a) error-free, (b) whole row
sloppy, and (c) sloppy columns in rows.

is sketched in Fig. 5(a).
Similarly to what was done for the addition, we have a sloppy
rec+PPgen for the least-significant digits ofy. The recoding
is performed as shown in Table II.
The resulting hardware implementation is greatly simplified as
shown in Fig. 5(b). Fig. 6(b) shows how the sloppy bits◦ are
arranged in the array. As the average error for sloppy recoding
is zero (Table II), for patterns in which two adjacent digitsin
y are 1 = (01)2 and 3 = (11)2 the errors on two different
rows compensate in the internal columns of the array. This is
shown in the example of Table III for(0111)4 × (0231)4.
From Fig. 6(b) it is clear that the error due to sloppy rows can
propagate well into the most-significant digits of the product.
To limit this propagation, we opt for a hybrid row in which
only the least-significant digits of the row are computed sloppy
as shown in Fig. 5(c). With this scheme, called in the following
sloppy-columns, the propagation of the error can be limited to

radix-4 digit PPk error
y2k+1 y2k standard sloppy ǫk

0 0 0 0 0
0 1 x · 4k 2x · 4k x · 4k

1 0 2x · 4k 2x · 4k 0
1 1 3x · 4k 2x · 4k

−x · 4k

TABLE II
SLOPPY RADIX-4 RECODING.

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

(a) radix-4 bit array (error-free)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

• • • • • • • • •

• • • • • • • • •

(b) radix-4 bit array with 2 sloppy rows

• • • ◦ ◦ ◦ ◦ ◦ ◦

• • • • • ◦ ◦ ◦ ◦

• • • • • • • ◦ ◦

• • • • • • • • •

(c) radix-4 bit array with 6 sloppy columns

Sign extension and/or correction omitted.

Fig. 6. Bit array and sloppy bits◦ for radix-4 8×8 multipliers.

Example:(0111)4 × (0231)4 = (0032301)4

0 2 2 2 sloppy
0 2 2 2 sloppy

0 2 2 2 regular
0 0 0 0 regular
0 0 3 1 3 0 2

Errors (boldface) are in radix-4 columns 0 and 3.

TABLE III
EXAMPLE OF ERROR COMPENSATION IN INTERNAL COLUMNS.

a given column Fig. 6(c).
Again, a competitor of the sloppy scheme is the truncated
one. To compare performance and error introduced, we im-
plemented a12× 12-bit multiplier (two’s complement) in the
following schemes:

1) r2-mult a radix-2 standard multiplier;
2) r4-mult a radix-4 standard multiplier (with PPs gener-

ation as in Fig. 5(a));
3) r2-trunc a r2-mult with t truncated bits;
4) r4-trunc a r4-mult with t truncated bits;
5) sloppy-rowsa radix-4 multiplier with PPs generation as

in Fig. 5(b) fork multiplier radix-4 digits (rows).
6) sloppy-colsa radix-4 multiplier with PPs generation as

in Fig. 5(c) for t radix-2 columns (bits).

As done for the adder, we report the mean error as function
of the imprecise digits/bits in Fig. 7 and the power dissipation
as function of the error in Fig. 8. The power dissipation of
the precise multipliers isPr2 = 0.53 mW for the radix-2 and
Pr4 = 0.47 mW for the radix-4 multiplier. The power figures
do not include the final carry-propagate adder.
Fig. 8 shows that among the truncated schemes, radix-4 is by
far more power efficient than radix-2 because of the reduced
number of PPs. Moreover, from Fig. 8 we derive that the
sloppy row schemes withk = 1, 2, 3 have very similar
characteristics (error and power) to those of radix-4 truncated
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Fig. 7. Error of multiplier implementations for different imprecise schemes.
Error curves for radix-2 and radix-4 truncated schemes overlap.
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Fig. 8. Power dissipation for imprecise multipliers as function of the error.

to t = 4, 6, 8 bits, respectively.

IV. A PPLICATIONS IN IMAGE PROCESSING

To verify the figures found in the stand-alone characterization
of the imprecise operators, we implement some common im-
age processing algorithms in imprecise hardware and evaluate
the performance.
As sample pictures, we used the two grayscale (each pixel is
an unsigned 8-bit integer) images of Fig. 9 (upper part).

A. Image Filtering

We use the sloppy adder defined in Sec. II withk = 4 sloppy
bits to process two 256×256 grayscale images of Fig. 9 (top)
for the following bidimensional filters:

1) an averaging (low-pass) filter;
2) a sharpening filter;
3) an edge-detection unit.

These filters can be implemented in the the spatial domain by
addition and shift operations.
The error is evaluated by taking the absolute value of the
difference between the preciseIef and sloppyIsl value of

uma huse

original

sloppy decompressed

Fig. 9. Original pictures (top) and after decoding bysloppy-row-2 IDCT
(bottom).

smoothing sharpening edge det.
ǫmax ǫ ǫmax ǫ ǫmax ǫ

uma 26 7.2 60 18.9 64 9.0
huse 28 7.8 59 17.5 68 9.2

TABLE IV
ERROR IN 2D-FILTERED IMAGES.

intensity (luminosity) per pixel (i, j):

ǫi,j = |Ief
i,j − Isl

i,j |

The maximum errorǫmax and the average errorǫ =
P

ǫi,j

N2 are
reported in Table IV for the different types of filtering. The
results show that the degradation is independent of the image
(uma is a portrait, whilehuse has greater detail). Depending
on the filter mask, we can change the design of the sloppy
adder to obtain larger savings. For example, for edge-detection,
a sloppy adder withk = 6 has an average errorǫ = 28, but
visually, the degradation is not noticeable.

B. Inverse Discrete Cosine Transformation (IDCT)

Now we combine the imprecise multiplier schemes with
an error-free adder in a multiply-add (and accumulate) unit
(Fig. 10) which can be used for the trivial implementation of
the Inverse Discrete Cosine Transform (IDCT), which is part
of the JPEG decompression algorithm.
For the unit of Fig. 10 we opted for carry-save (error-free)
accumulation to keep separate the imprecision due to the
multiplier and to the adder. Based on the results of software
simulations, we decided not to use a sloppy adder as the extra



Unit delay area uma huse power
MULT [ps] [µm2] Pave [µW ] ǫ ǫmax Pave [µW ] ǫ ǫmax ratio
r4-mult 1398 7702 208 3.7 9 284 3.8 10 1.00
r4-trunc-6 1254 5778 163 5.1 22 224 8.1 24 0.78
r4-trunc-8 1244 5197 143 24.2 115 194 42.9 129 0.68
sloppy-row-2 1286 7003 189 4.2 40 255 5.1 47 0.90
sloppy-row-3 1286 6839 180 11.3 157 239 14.7 189 0.85

TABLE V
SUMMARY OF RESULT FORIDCT IMPLEMENTATION .

MULT

X Y

CSA 4:2

REG

ADD

S

12 bit

24 bit

24 bit

24 bit

Fig. 10. Scheme of multiply-accumulate used for IDCT.

error introduced was negligible2.
We implemented the multiply unit of Fig. 10 with several
variants of imprecise multipliers. Based on Fig. 8, we ex-
cluded from the IDCT evaluation radix-2 truncated multipliers
(more power hungry than all others) and the sloppy-columns
schemes (power dissipation savings are marginal when the
error increases). In summary, we implemented the following
multiply-accumulate units:

1) r4-mult : radix-4 12×12-bit multiplier and 24-bit adder;
2) r4-trunc-6 : r4-mult with t = 6 truncated bits and 18-bit

CSA 4:2, registers and adder;
3) r4-trunc-8 : r4-mult with t = 8 truncated bits and 16-bit

CSA 4:2, registers and adder;
4) sloppy-row-2: radix-4 multiplier with k = 2 sloppy

rows and 24-bit adder;
5) sloppy-row-3: radix-4 multiplier with k = 2 sloppy

rows and 24-bit adder;

The results in Table V are obtained by implementation in a
90 nm standard cells library (clock rate is 100 MHz). The
errors are computed with respect to a floating-point software
implementation (quantization error forr4-mult ).
The results show that the larger reduction in power is obtained
for radix-4 truncated multipliers. This is in large part justified

2In the IDCT trivial algorithm the carry-propagate addition(Fig. 10) is
executed every 8×8=64 imprecise multiplications.

by the smaller area required by the accumulate circuitry
(accumulate-path: CSA 4:2, two registers and final adder) that
for the truncated schemes are reduced up to 33% (16 vs. 24 bit
accumulate-path). For the multiplier itself, as shown in Fig. 8,
the smaller sloppy rows in the sloppy scheme compensate for
the larger tree when compared to the truncated multipliers.
The visual results obtained bysloppy-row-2 IDCT computa-
tion are shown in Fig. 9 (bottom). For thesloppy-row-3 and
the r4-trunc-8 schemes the image degradation is such that for
the IDCT these multipliers are probably not acceptable. The
complete visual results of the IDCT test are reported in an
electronic appendix [7].

V. CONCLUSIONS ANDFUTURE WORK

We have presented simple ways of performing addition and
multiplication in an imprecise manner with the aim to get
better performance (delay, area and power) at expenses of an
increased error which can be tolerated in some applications.
Different combinations of precise/truncated/sloppy operators
can be used depending on the specific implementation of the
algorithm.
In future work, we plan to characterize in term of error and
performance (delay, area, power dissipation) these imprecise
operators and find a systematic way of combining them to
meet the desired error/performance constraint for a given
application.
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