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Abstract—Sometimes reducing the precision of a numerical pro- For example, the addition03 + 70 (n = 8, k = 4) is
cessor, by introducing errors, can lead to significant perfamance

1oy LA RS ; sl oppy preci se
(delay, area and power dissipation) improvements without om- .
promising the overall quality of the processing. In this wok, A 0110 0111 + 0110 0111 +
we show how to perform the two basic operations, addition and B 0100 0110 + 0100 0110 +
multiplication, in an imprecise manner by simplifying the hard- c : 100- ---- = 0100 110- =
ware implementation. With the proposed "sloppy” operations, = - ____-_-_-_ L eeiaieeaa--
we obtain_a reductior_l in qlelay, area and power dis_,sipation, rad S - 1010 0001 1010 1101
the error introduced is still acceptable for applications sich as
image processing. That is, the sloppy adder computes 161 (exact value is 173)

introducing an erroe = 12.
By looking at the bits of weight 2, we notice that the XOR
|. INTRODUCTION of two ones produces a zero sum it 1 = 0). Because the

' L .. ___carry is not computed (or propagated), in positioan error
There are several fields of application of computer anthrmetQkHyiS generateg. The (erropr an Qlj)e ha)lved’lgday computing

Fhat can toIeratg some imprecision. For ex_ample, n aqchb 3he OR of the two bits in place of the XOR. For the example
image processing or in wireless communication, it might b

desirable to get better performance (faster, smallerdeggr- above we have: ]
hungry systems) at expenses of some quality degradation. _ sl oppy (OR-ing)

Recently, a few papers have addressed this issue of degigninA 0110 0111 +
imprecise hardware to save power [1], [2], [3], [4]. Cl)(l)go 0110 t
In this work, we introduce a systematic way of having ~ = =" T
imprecise arithmetic operations for the two most common 1010 0111

operations: addition and multiplication. We liked the term _
"sloppy” introduced in [5], and we will use this term in the@nd the error is reduced from= 12 to ¢ = 6 (halved).

paper to refer to imprecise arithmetic operations. By simulating all possible combinations of the operands for
the 8-bit addition £ = 4), we found that by obtaining the

sum by OR-ing the: least-significant bits the average error is
Emean = 3.75, While by XOR-ing, it iS€nean = 7.5.
Ignoring the least significant bits of an addition, by imptenty e show in Fig. 1 the comparison of the hardware implemen-

ing a truncated adder saves area and it is faster at expertgHign of the sloppy adder used in the above example- @,
of a truncation error. Instead of completely ignoring theste ¥ = 4) and an error-free 8-bit carry-propagate adder (CPA).

significant bits, in the "sloppy” approach we do not propagafrhe datd on delay, area and power dissipation are reported in
the carry in those bits. Table 1.

Assuming that we are operating on positive integers, at%l a rough gvaluation, we considered lowering the supply
defining positionk as the bit of weigh* in a n-bit word, voltage Vpp in the sloppy adder to match the delay of the

. » . . error-free adderl(0 . In our library, whenVpp is lowered
we can ignore the carry up to positidnwhen implementing from1.0 V to 0 7( Vﬁi])e delay doub)I/es In tthexpression for

Il. SLOPPY ADDITION

the addition. th dissipated b Uit tain ¢
The bit-level algorithm to implement this sloppy adder ie th e power dissipated by a circuit containing gates
following: N
g Pl_OV:V,%Df-ZaiCi = 20 /LW: (10 V)QIC
c=01// carry we assume that the switching capacitanc€’; does not
if (i <Fk) thnR ) change when scalingpp. Therefore X = 20 is constant:
Si = Q; i
else Porv = (0.7)%-20 ~ 10 uW
Si = Q4 XOR bi XOR C 1 . . . -
¢ = (a; AND b;) OR (a; AND ¢) OR (b; AND c¢) The adders are synthesized with radix-4 carry-look-ahéamtive carry

end if network [6].
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Fig. 2. Bit array and errors for adders: precise 16-bit adder (top), truncated
t = 8 16-bit adder (middle), sloppy = 8 16-bit adder (bottom).

Imprecise Addition: Output Error vs Equivalent Number of Bits
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Fig. 1. Implementation of 8-bit error-free (top) and sloppy= 4 (bottom) 5 e
adders. ol I
CPA 8-bit | sloppy | ratio Nt
max. delay[ps] 999 495 | 2.00 ¢
Area [um?] 191 112 | 1.70 2r
Power [uW] 42 20 | 2.10 '
YW s 6 7 8 9 10 u 1
TABLE | Eq. # of bits

SYNTHESIS DATA OF ADDERS INFIG. 1.

Fig. 3. Error of sloppy and truncated adders implementatifam different
number of imprecise bits.

Imprecise Addition: Power vs Output Error
0.0551

That is, with the sloppy adder the power is reduced to 1/4 at :

same adder speed. 0.0 .\\
The natural competitor of the sloppy adder is the truncated oods

adder. We performed a comparison between our imprecise

adder and the truncated adder by implementing a 16-bit adder %%

with a Carry Look-Ahead (CLA) network to propagate the Eo.ossf :

carry for different sloppy/truncated configurations. Theput g oosl \°\\

bits affected by errors are shown @sn Fig. 2 for truncation =

t = 8 and sloppy bitgk = 8. 00251
Gate-level netlists are generated, by a C program, for each  o.02r

unit under test. The netlists are synthesized (unconsilito 0015|
optimize buffering and cells’ drive strength according he t voL ‘ ‘ ‘ ‘ ‘ ‘ e
actual fan-out. 1 2 3 4 5 6 7 8 9

mean error (logarithmic)

In the comparison, we are interested in relating the intcedu
error to the power dissipation. Fig. 4. Power dissipation of sloppy and truncated addersiastibn of the
Fig. 3 shows the error introduced by the imprecise addersieigduced error.
a function of the number of imprecise/truncated bits (4, 8 an
12 bits). In Fig. 4 we show the power dissipation of each
imprecise adder as function of the error. The sloppy addéfe use a sloppy approach for step 1 only, as step 2 is quite
turned out to dissipate lower power than the truncated addkalay-efficient (no carry propagation) and step 3 has been
for the same error level. addressed in the previous section.
We consider radix-4 multiplication because farx n bit
operands the unit is smaller: only PPs are generated. |
Parallel multiplicatiorp = z-y can be divided into three stepsradix-4 multiplication, the radix-4 digits of the multigliy are

1) generation of Partial Products (PPs); recoded into signed-digit representation to avoid mudgpf 3

2) carry-free reduction from PPs to 2 operands; and carry propagation as explained in [6]. The resultingpiarc

3) carry-propagate two operands addition. tecture (for one digit) recoder plus PP generation (rec€RpPg

Il. SLOPPY MULTIPLICATION
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Fig. 6. Bit array and sloppy bits for radix-4 8x8 multipliers.
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{ | Example:(0111)4 x (0231)4 = (0032301)4
) > — s e (01114 (0231) = ( )
q | 0 2 2 2 sloppy
| } PP generation 0 2 2 2 Sloppy
| 0o 2 2 2 regular
—1—Z>ﬁ lopey | ‘ ‘ — 0 0 0 O regular
neg } REPEEREH logic 0 0 0 3 1 3 0 2
Yy
(C) ! PPK PR PR Errors (boldface) are in radix-4 columns 0 and 3.
Fig. 5. Implementation of radix-4 rec+PPgen: (a) erroefrgh) whole row TABLE Il
sloppy, and (c) sloppy columns in rows. EXAMPLE OF ERROR COMPENSATION IN INTERNAL COLUMNS

is sketched in Fig. 5(a).

Similarly to what was done for the addition, we have a slopggy 9iven column Fig. 6(c).

rec+PPgen for the least-significant digits xf The recoding Agdain, a competitor of the sloppy scheme is the truncated
is performed as shown in Table II. one. To compare performance and error introduced, we im-
The resulting hardware implementation is greatly simplitis Plemented a2 x 12-bit multiplier (two's complement) in the
shown in Fig. 5(b). Fig. 6(b) shows how the sloppy bitare following schemes:

arranged in the array. As the average error for sloppy recpdi 1) r2-mult a radix-2 standard multiplier;

is zero (Table 11), for patterns in which two adjacent digits ~ 2) r4-mult a radix-4 standard multiplier (with PPs gener-

y arel = (01); and3 = (11), the errors on two different ation as in Fig. 5(a));

rows compensate in the internal columns of the array. This is3) r2-trunc a r2-mult with¢ truncated bits;

shown in the example of Table 11l fq0111)4 x (0231)4. 4) rd-trunc a r4-mult with¢ truncated bits;

From Fig. 6(b) it is clear that the error due to sloppy rows can 5) sloppy-rowsa radix-4 multiplier with PPs generation as
propagate well into the most-significant digits of the pretdu in Fig. 5(b) for k& multiplier radix-4 digits (rows).

To limit this propagation, we opt for a hybrid row in which 6) sloppy-colsa radix-4 multiplier with PPs generation as
only the least-significant digits of the row are computegpio in Fig. 5(c) for¢ radix-2 columns (bits).

as shown in Fig. 5(c). With this scheme, called in the followi As done for the adder, we report the mean error as function
sloppy-columnsthe propagation of the error can be limited tQf the imprecise digits/bits in Fig. 7 and the power dissgrat
as function of the error in Fig. 8. The power dissipation of

radix-4 digit PP, arror the precise multipliers i€,.2 = 0.53 mW for the radix-2 and

Yoks1  yor | Standard| sloppy en P4 = 0.47 mW for the radix-4 multiplier. The power figures
0 0 0 i 0 . 0 . do not include the final carry-propagate adder.
0 Lo z-a® ) 2z-4n ) w4 Fig. 8 shows that among the truncated schemes, radix-4 is by
1 0 2x -4 2z -4 0 .. .
1 1 | 3z.4% | 2z.4% | —g.ak far more power efficient than radix-2 because of the reduced
TABLE Il number of PPs. Moreover, from Fig. 8 we derive that the
SLOPPY RADIX-4 RECODING. sloppy row schemes withk = 1,2,3 have very similar

characteristics (error and power) to those of radix-4 tated
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Fig. 7. Error of multiplier implementations for differemprecise schemes.
Error curves for radix-2 and radix-4 truncated schemeslaper

Imprecise Multiplication: Power vs Output Error
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. TABLE IV
035, ) 2 2 P P 10 12 14 ERROR IN2D-FILTERED IMAGES.

mean error (logarithmic)

Fig. 8. Power dissipation for imprecise multipliers as fimt of the error. | . . . . o
intensity (luminosity) per pixeli( 5):

. : € = |IP — It
to t = 4, 6,8 bits, respectively. iJ ij T i
IV. APPLICATIONS INIMAGE PROCESSING The maximum erroe,,.... and the average errar= % are

To verify the figures found in the stand-alone charactengat "€POrted in Table IV for the different types of filtering. The
of the imprecise operators, we implement some common ifgsults show that the degradation is independent of theemag

age processing algorithms in imprecise hardware and eealuM2 is @ portrait, whilehuse has greater detail). Depending
the performance. on the filter mask, we can change the design of the sloppy

As sample pictures, we used the two grayscale (each pixef"gderto obtain larger savings. For example, for edge-tietec

an unsigned 8-bit integer) images of Fig. 9 (upper part). & SIOPPy adder witl = 6 has an average errer= 28, but
visually, the degradation is not noticeable.

A. Image Filtering

We use the sloppy adder defined in Sec. Il witk- 4 sloppy B. Inverse Discrete Cosine Transformation (IDCT)

bits to process two 256256 gray_scale_ images of Fig. 9 (t0P}\ow we combine the imprecise multiplier schemes with
for the following bidimensional filters: an error-free adder in a multiply-add (and accumulate) unit

1) an averaging (low-pass) filter; (Fig. 10) which can be used for the trivial implementation of
2) a sharpening filter; the Inverse Discrete Cosine Transform (IDCT), which is part
3) an edge-detection unit. of the JPEG decompression algorithm.
These filters can be implemented in the the spatial domain Bgr the unit of Fig. 10 we opted for carry-save (error-free)
addition and shift operations. accumulation to keep separate the imprecision due to the

The error is evaluated by taking the absolute value of tmeultiplier and to the adder. Based on the results of software
difference between the precidé/ and sloppy/*' value of simulations, we decided not to use a sloppy adder as the extra



Unit delay area uma huse power
MULT [ps] | [um?] | Pave [uW] € €max | Pave [UW] € €maz | ratio
r4-mult 1398 | 7702 208 37 9 284 338 10| 1.00
r4-trunc-6 1254 | 5778 163 5.1 22 224 8.1 24| 0.78
r4-trunc-8 1244 | 5197 143 24.2 115 194 42.9 129| 0.68
sloppy-row-2 | 1286 | 7003 189 4.2 40 255 5.1 47| 0.90
sloppy-row-3 | 1286 6839 180 11.3 157 239 14.7 189| 0.85
TABLE V
SUMMARY OF RESULT FORIDCT IMPLEMENTATION.
by the smaller area required by the accumulate circuitry
X v (accumulate-path: CSA 4:2, two registers and final addex) th
/I/ /I/ 12 bit for the truncated schemes are reduced up to 33% (16 vs. 24 bit
accumulate-path). For the multiplier itself, as shown ig. H,
MULT the smaller sloppy rows in the sloppy scheme compensate for
] /', ,', 24 bit the larger tree when compared to the truncated multipliers.
The visual results obtained sloppy-row-2 IDCT computa-
CSA4:2 tion are shown in Fig. 9 (bottom). For trgoppy-row-3 and
| | ther4-trunc-8 schemes the image degradation is such that for
the IDCT these multipliers are probably not acceptable. The
P> REG complete visual results of the IDCT test are reported in an
=1 | 24abit electronic appendix [7].
V. CONCLUSIONS AND FUTURE WORK
ADD We have presented simple ways of performing addition and

,|/ 24 bit
S

Fig. 10. Scheme of multiply-accumulate used for IDCT.

error introduced was negligitile

multiplication in an imprecise manner with the aim to get
better performance (delay, area and power) at expenses of an
increased error which can be tolerated in some applications
Different combinations of precise/truncated/sloppy apens

can be used depending on the specific implementation of the
algorithm.

We implemented the multiply unit of Fig. 10 with severaln future work, we plan to characterize in term of error and
variants of imprecise multipliers. Based on Fig. 8, we exerformance (delay, area, power dissipation) these ing&ec

cluded from the IDCT evaluation radix-2 truncated multps

operators and find a systematic way of combining them to

(more power hungry than all others) and the sloppy-columnseet the desired error/performance constraint for a given
schemes (power dissipation savings are marginal when #ygplication.
error increases). In summary, we implemented the following

multiply-accumulate units:

1) r4-mult: radix-4 12x12-bit multiplier and 24-bit adder;

2) r4-trunc-6: r4-mult with ¢t = 6 truncated bits and 18-bit
CSA 4:2, registers and adder;

3) r4-trunc-8: r4-mult with ¢t = 8 truncated bits and 16-bit
CSA 4:2, registers and adder;

4) sloppy-row-2: radix-4 multiplier with & = 2 sloppy
rows and 24-bit adder;

5) sloppy-row-3: radix-4 multiplier with & = 2 sloppy

rows and 24-bit adder;

REFERENCES

[1] K. He, A. Gerstlauer, and M. Orshansky, “Controlled TirgiError
Acceptance for Low Energy IDCT DesignProc. of 2011 Design,
Automation and Test in Europe Conference (DATEar. 2011.

A. Lingamneni, J.-L. N. C. Enz, K. Palem, and C. Piguet,n&egy
Parsimonious Circuit Design through Probabilistic PrgginProc. of
2011 Design, Automation and Test in Europe Conference (PAVIEr.
2011.

P. Krause and |. Polian, “Adaptive Voltage Over-Scalifay Resilient
Applications,” Proc. of 2011 Design, Automation and Test in Europe
Conference (DATEMar. 2011.

D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, ‘Desof
\oltage-Scalable Meta Functions for Approximate CommytifProc. of
2011 Design, Automation and Test in Europe Conference (DAVIar.

[2]

(3]

(4]

The results in Table V are obtained by implementation in a
90 nm standard cells library (clock rate is 100 MHz). Thg]
errors are computed with respect to a floating-point sofwar
implementation (quantization error fo4-mult). 6]
The results show that the larger reduction in power is obthin

for radix-4 truncated multipliers. This is in large parttjtied ["]

2In the IDCT trivial algorithm the carry-propagate additi¢Rig. 10) is
executed every 88=64 imprecise multiplications.

2011.

L. Hardesty. "The surprising usefulness of sloppy am#tic”. MIT News
Office. [Onling]. Available: http://web.mit.edu/newsafi2010/fuzzy-
logic-0103.html

M. Ercegovac and T. LangDigital Arithmetic
Publishers, 2004.

Electronic  Appendix to. "Imprecise  Arithmetic
Power Image Processing”. Nov. 2012. [Online].
http://www.imm.dtu.dki-alna/projects/sloppy/

Morgan Kaufmann

for Low
Available:



