WISHART(1) Version 2 WISHART(1)

HIPS Manual

HIPS Manual

17 May 2000

NAME

wishart – test for equality in two complex polarimetric radar signals

SYNOPSIS

```
wishart -\mathbf{n} nlook [-\mathbf{M} maskfile [maskvalue]] [-\mathbf{a} \mid -\mathbf{d}] < \text{inbil} > \text{outbil}
```

DESCRIPTION

For each input pixel in two multilook, comlex, polarimetric radar sequences wishart finds the logarithm of the likelihood ratio Q to test for significant difference or change from one scene to the other. The input is formed as the outer product of the complex vector $[Shh \sqrt{2Shv Svv}]^T$. The likelihood ratio Q is independent of whether Shv is multiplied by $\sqrt{2}$ or not. The covariance matrix

is Hermitian and Wishart distributed.

The input can be either two times nine float frames (ShhShh*, Re{ShhShv*}, Im{ShhShv*}, Re{ShhSvv*}, Im{ShhSvv*}, Re{ShhSvv*}, Im{ShhSvv*}, SvvSvv*). In the azimuth symmetric target case ShhShv*, ShvSvv* and of course their complex conjugates are set to 0. Also two times three float frames (ShhShh*, ShvShv*, SvvSvv*) can be input in which case all off-diagonal elements are set to 0. Finally two times one float frame (ShhShh* or SvvSvv*) can be input. The input must consist of two concatenated scenes with the same number of frames (two times one, three, five or nine).

The input must be band-interleaved by line (BIL), output is BIL. The output consists of two float frames, one with ln(Q) and another with the significance level $(P\{-2 \rho ln(Q)\} \le \chi^2)$ for an associated test statistic, see Conradsen et al. (2003) mentioned below. A low value of the test statistic Q rejects the hypothesis of equal covariance matrices, i.e., the hypothesis of no difference or no change is rejected for low ln(Q).

OPTIONS

-n nlook (not optional)

nlook is the number of looks, i.e., the number of degrees of freedom for the covariance data calculated for each pixel

-M maskfile [maskvalue]

if *maskfile* (a file with format byte) has value *maskvalue* the output for the corresponding pixel is set to 0.0 for frame 0 and 1.0 for frame 1; if no *maskvalue* is specified all values greater than 0 are mask values

- **−a** assume azimuth symmetric target
- -d use data on diagonal of covariance matrix only

SEE ALSO

bil(1), cloude(1)

BUG

Pixels containing a mask value rather than a SAR data value may cause *wishart* to be unable to calculate ln(Q) which in turn may cause a strange error message from one of the routines used to calculate the significance for the test. After this *wishart* stops. To remedy use $-\mathbf{M}$ with an appropriate mask.

REFERENCES

T.W. Anderson (1984). An Introduction to Multivariate Statistical Analysis. Second Edition. John Wiley.

K. Conradsen (1984). En introduktion til statistik, 1A, 1B, 2A og 2B. In Danish.

- 1 - Formatted: January 27, 19104

Version 2 WISHART(1)
HIPS Manual

17 May 2

17 May 2000

- K. Conradsen, A.A. Nielsen, J. Schou and H. Skriver (2003). A Test Statistic in the Complex Wishart Distribution and Its Application to Change Detection in Polarimetric SAR Data. *IEEE Transactions on Geoscience and Remote Sensing* **41**(1), 4-19.
- J. Schou, H. Skriver, K. Conradsen and A.A. Nielsen (2003). CFAR Edge Detector for Polarimetric SAR Images. *IEEE Transactions on Geoscience and Remote Sensing* **41**(1), 20-32.
- H. Skriver, M.T. Svendsen and A.G. Thomsen (1999). Multitemporal C- and L-Band Polarimetric Signatures of Crops. *IEEE Transactions on Geoscience and Remote Sensing* **37**(5), 2413-2429.

AUTHOR

WISHART(1)

HIPS Manual

Allan Aasbjerg Nielsen, Ph.D., M.Sc. IMM, Informatics and Mathematical Modelling Technical University of Denmark, Building 321 E-mail aa@imm.dtu.dk, Internet www.imm.dtu.dk/~aa

- 2 - Formatted: January 27, 19104