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Abstract

This paper introduces a new orthogonal transformation, the multivariate alteration
detection (MAD) transformation, based on an established multivariate statistical tech-
nique canonical correlation analysis. The theory for canonical correlation analysis is
sketched and a result necessary for the definition of the MAD transformation is proven.
As opposed to traditional univariate change detection schemes our scheme transforms
two sets of multivariate observations (e.g. two multispectral satellite images covering
the same geographical area acquired at different points in time) into a difference be-
tween two linear combinations of the original variables explaining maximal change
(i.e. the difference explaining maximal variance) in all variables simultaneously. The
MAD transformation is invariant to linear scaling. The MAD transformation can be
used iteratively. First, it can be used to detect outliers (such as drop-outs) or noise
and in a second iteration, it can be used to perform the actual change detection after
appropriate action on outliers or noise. Also, if an analyst has additional information
such as geographical position of certain changes of interest that show up in certain
bands only, our method can be applied to any spatial and/or spectral subset of the
full data set to direct the analysis in any desired manner. In order to obtain a spa-
tially more coherent representation of the detected change as obtained from the MAD
analysis, post-processing by means of a minimum/maximum autocorrelation factor
(MAF) transformation of the MAD variates can be performed. Whereas the tradition-
ally used principal component (PC) transformation optimizes the data variance in each
new component the MAF transformation optimizes the autocorrelation represented
by each component. This post-processing introduces a new spatial element into our
change detection scheme which is highly relevant for image data. Two case studies
using multispectral SPOT HRV data from 5 February 1987 and 12 February 1989 cov-
ering coffee and pineapple plantations in central Kenya, and Landsat TM data from 6
June 1986 and 27 June 1988 covering a forested region in northern Sweden show the
usefulness of these new concepts. Because of their ability to detect change in many
channels simultaneously, the MAD transformation and the MAF post-processing are
expected to be even more useful when applied to image data with more bands.
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1 Introduction

When analyzing changes in panchromatic images taken at different points in time it is
customary to analyze the difference between two images, possibly after some normal-
ization. The idea is of course that areas with no or little changes come out with zero or
low absolute values and areas with large changes come out with large absolute values
in the difference image.

If we have two multivariate images written as vectors at a given pixel (without loss of
generality we assume EfXg = EfY g = 0)

X =

2
664
X1

...
Xk

3
775 resp. Y =

2
664
Y1
...
Yk

3
775 (1)

wherek is the number of spectral bands, then a simple change detection transformation
is

X � Y =

2
664
X1 � Y1

...
Xk � Yk

3
775 : (2)

If our image data have more than three channels it is difficult to visualize changes in all
channels simultaneously. To overcome this problem and to concentrate information on
change, linear transformations of the image data that optimize some design criterion
can be considered. A linear transformation that will maximize a measure of change
in the simple multispectral difference image is one that maximizes deviations from no
change, e.g. the variance

Varfv1(X1 � Y1) + � � �+ vk(Xk � Yk)g = VarfvT (X � Y )g: (3)

A multiplication of vectorv with a constantcwill multiply the variance withc2. There-
fore we must make a choice concerningv. A natural choice is to request thatv is a unit
vector,vTv = 1. This amounts to finding principal components of the simple differ-
ence images. Principal components analysis was developed by Hotelling (1933) based
on a technique described by Pearson in 1901. A disadvantage of this technique is that
principal components are sensitive to the scale at which the individual variables are
measured. Therefore they depend on for instance gain settings of a measuring device.
Other change detection schemes based on simple difference images include factor ana-
lysis, minimum/maximum autocorrelation factor analysis (Switzer and Green, 1984;
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Section 3) and decorrelation methods. Of course these methods can be applied to
simple ratio images also.

A more versatile measure of change that allows different coefficients forX andY
and different number of spectral bands in the two sets,p andq respectively, are linear
combinations

aTX = a1X1 + � � �+ apXp (4)

bTY = b1Y1 + � � �+ bqYq (5)

and the difference between them

aTX � bTY : (6)

This measure also accounts for situations where the spectral bands are not the same
but cover different spectral regions, for instance if one set of data comes from Land-
sat Thematic Mapper and the other set comes from SPOT High Resolution Visible.
In this case one must be more cautious when interpreting the multivariate difference
as multivariate change. In principle, any choice ofa andb will give a measure of
change. One could use principal components analysis onX to find an optimala and
onY to find an optimalb (independent ofa). An improvement of this technique is to
use principal components analysis onX andY considered asonevariable, cf. Fung
and LeDrew (1987). For (principal components analysis related) change detection
work pre-1987, cf. Fung and LeDrew (1987). Shettigara and McGilchrist (1989) use a
hybrid canonical correlation/principal components technique to enhance uncorrelated
parts of Landsat TM equivalents of ATM data in a gold exploration study. An interest-
ing study on NDVI change detection based on NOAA AVHRR decade (10 day) GAC
data from Sudan covering a period of nearly 7 years was presented as a video by Stern
(1989). Some later references on change detection work are Nicoloyanni (1990) on the
simultaneous change in brilliance and vegetation indices in Landsat MSS data, Cihlar
et al. (1992) on change detection with synthetic aperture radar (SAR), Thomson (1992)
on change detection with Landsat TM data, Viovy et al. (1992) on noise reduction in
NOAA GAC NDVI time-series, Gong et al. (1992) on registration-noise reduction in
Landsat TM difference images, Price et al. (1992) on (among other things) change de-
tection with Landsat MSS data, and Eidenshink (1992) on the availability of biweekly
NOAA-11 AVHRR NDVI 1-km data over the conterminous U.S. Gong (1993) applies
principal components analysis to simple difference images.
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The Fung and LeDrew (1987) approach does not guarantee an optimal separation ofX

andY . It definesa andb simultaneously but the method does not have a clear design
criterion. Also, bands are treated similarly whether or not they come from different
points in time. The Gong (1993) approach depends on the scale at which the individual
variables are measured (for instance it depends on gain settings of a measuring device).
Also, it forces the two sets of variables to have the same coefficients (with opposite
sign), and it does not allow for the case where the two sets of images have a different
number of channels. A potentially better approach is to define an optimal set ofa and
b simultaneously in the fashion described below. Again, let us maximize the variance,
this time VarfaTX � bTY g. A multiplication of a and b with a constantc will
multiply the variance withc2. Therefore we must make choices concerninga andb,
and natural choices in this case are requesting unit variance ofaTX andbTY .

The criterion then is

maximize VarfaTX � bTY g (7)

subject to the constraints

VarfaTXg = VarfbTY g = 1: (8)

Under these constraints we have

VarfaTX � bTY g = VarfaTXg+ VarfbTY g � 2CovfaTX ; bTY g (9)

= 2(1� CorrfaTX ; bTY g): (10)

As we are talking difference (or change) detection here, we shall request thataTX and
bTY are positively correlated, i.e. CorrfaTX; bTY g � 0. Therefore, determining
the difference between linear combinations with maximum variance corresponds to
determining linear combinations with minimum positive correlation.

In the sequel we shall assume thata andb are chosen so that the correlation between
aTX andbTY is positive. Positive correlation may simply be obtained by a change of
sign if necessary. Determining linear combinations with extreme correlations brings
the theory of canonical correlation analysis to mind. Canonical correlation analysis
investigates the relationship between two groups of variables. It finds two sets of lin-
ear combinations of the original variables, one for each group. The first two linear
combinations are the ones with the largest correlation. This correlation is called the
first canonical correlation and the two linear combinations are called the first canonical
variates. The second two linear combinations are the ones with the largest correlation
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subject to the condition that they are orthogonal to the first canonical variates. This cor-
relation is called the second canonical correlation and the two linear combinations are
called the second canonical variates. Higher order canonical correlations and canon-
ical variates are defined similarly. The technique was first described by Hotelling
(1936) and a treatment is given in most standard textbooks on multivariate statistics
(e.g. Cooley and Lohnes, 1971 and Anderson, 1984).

The main idea presented in this paper is that because corresponding pairs of canonical
variates are linear combinations of the original variables ordered by correlation or sim-
ilarity between pairs, it seems natural to base a change detection scheme on differences
between pairs of variates that show minimum similarity, i.e. the higher order canonical
variates.

The main mathematical idea is to modify the theory used in defining canonical vari-
ates. This could be viewed as a time analog to the introduction of minimum/maximum
autocorrelation factors (Switzer and Green, 1984; Section 3) in the spatial domain. In
Appendix A we summarize the theory of canonical correlations and we modify the
theorems so that they are more directly applicable in our context.

This type of multivariate change detection technique was first sketched in Conradsen
and Nielsen (1991a, 1991b). Multivariate change detection techniques are also de-
scribed in Hanaizumi and Fujimura (1992), Hanaizumi, Chino and Fujimura (1994)
who work with multiple regression and canonical correlation methods applied to spe-
cific change detection.

2 The Multivariate Alteration Detection (MAD) Trans-
formation

Having established the result in Appendix A we are able to define the multivariate
alteration detection (MAD) transformation as

"
X

Y

#
!

2
664
aTpX � bTpY

...
aT1X � bT1Y

3
775 ; (11)

whereai andbi are defined as in Appendix A, i.e.ai andbi are the defining coefficients
from a standard canonical correlation analysis. Without loss of generality we assume
EfXg = EfY g = 0. The MAD transformation has the very important property
that if we consider linear combinations of two sets ofp resp.q (p � q) variables
that are positively correlated then thep’th difference shows maximum variance among
such variables. The(p � j)’th difference shows maximum variance subject to the

6



constraint that this difference is uncorrelated with the previousj ones. In this way
we may sequentially extract uncorrelated difference images where each new image
shows maximum difference (change) under the constraint of being uncorrelated with
the previous ones.

If p < q then the projection ofY on the eigenvectors corresponding to the eigenvalues
0 will be independent ofX. That part may of course be considered the extreme case
of multivariate change detection.

As opposed to the principal components transformation the MAD transformation is
invariant to linear scaling, which means that it is not sensitive to e.g. gain settings of a
measuring device.

Another advantage of the MAD and canonical correlations procedures over methods
based on simple difference images is that they are more easily extended to truly multi-
temporal situations, i.e. situations where we have data from more than two points in
time (Nielsen, 1994).

As the MAD transformation is a general technique for obtaining multivariate differ-
ences it can be applied to other types of data where such a difference is of interest.
The method has been applied to differentiate between geogenic and anthropogenic in-
fluences in an environmental study based on soils geochemistry in eastern Germany
(Pälchen, Rank, Kluge, Nielsen and Ersbøll, 1995).

3 Minimum/Maximum Autocorrelation Factors

In order to obtain a spatially more coherent representation of the detected change as
obtained from the MAD analysis, a minimum/maximum autocorrelation factor (MAF)
transformation of the MAD variates can be performed. The MAF procedure was sug-
gested by Switzer and Green (1984). The application of MAFs in bi-temporal as well
as in truly multi-temporal change detection is suggested in Nielsen (1994).

As opposed to the principal components (PC) transformation the minimum/maximum
autocorrelation factor (MAF) transformation allows for the spatial nature of image
data. The MAF transformation maximizes the autocorrelation rather than maximizing
the data variance (PC). MAF one is the linear combination of the original bands that
contains maximum autocorrelation between neighboring pixels. A higher order MAF
is the linear combination of the original bands that contains maximum autocorrelation
subject to the constraint that it is orthogonal to lower order MAFs. The MAF procedure
thus constitutes a (conceptually) more satisfactory way of orthogonalizing image data
than PC analysis. An important property of the MAF procedure—a property shared by
the MAD procedure—is its invariance to linear transformations, a property not shared
by ordinary PC analysis. This means that it doesn’t matter whether the data have been
scaled e.g. to unit variance before the analysis is performed.
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PCs, MAFs and other orthogonal transformations are described in Ersbøll (1989), Con-
radsen and Ersbøll (1991) and Nielsen (1994). Also, MADs as well as MAFs of MADs
have been applied to differentiate between geogenic and anthropogenic influences in
an environmental study based on soils geochemistry in eastern Germany (P¨alchen,
Rank, Kluge, Nielsen and Ersbøll, 1995) mentioned above. MAF analysis is described
in more detail in Appendix B.

4 Case Studies

This section gives two case studies to illustrate the techniques presented. One case
uses SPOT High Resolution Visible data covering plantations in Kenya, another uses
Landsat Thematic Mapper data covering a forested region in northern Sweden. Both
case studies use raw data and are intended as illustrative examples on how calculations
are performed and how interpretations of the MAD and MAF of MAD variates can be
carried out. The case studies are not meant to carefully assess actual change on the
ground.

4.1 SPOT HRV Data, Kenya

Two 512�512 SPOT High Resolution Visible (HRV) multispectral (XS) sub-scenes
from 5 February 1987 and 12 February 1989 are used to test the procedure. The se-
lected study area contains economically important coffee and pineapple fields near
Thika, Kiambu District, Kenya. The analysis takes place on raw data (no atmospheric
correction).

This case study is intended as an illustrative example showing how calculations are
performed and how an interpretation of the canonical, MAD and MAF of MAD vari-
ates can be carried out. The case study is not meant as a careful assessment of the
actual change that occurred in the study area chosen.

As an example of how to do the calculations consider the following source code if the
software package Statistical Analysis System (SAS) is available:

data spot;
input xs1_87 xs2_87 xs3_87 xs1_89 xs2_89 xs3_89;
cards;
36 26 90 28 19 84
...
(more data lines)
...
;
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proc cancorr data=spot all out=ccout
vprefix=s87cv vname=’SPOT 1987’
wprefix=s89cv wname=’SPOT 1989’;

var xs1_87 xs2_87 xs3_87;
with xs1_89 xs2_89 xs3_89;
title ’SPOT HRV XS Data 1987 vs. 1989’;

data mad;
set ccout;
mad1=s89cv3-s87cv3;
mad2=s89cv2-s87cv2;
mad3=s89cv1-s87cv1;

4.1.1 Data and Univariate Change Detection

In Figure 1 top-left (5 Feb 1987) and top-right (12 Feb 1989) we show false color
composites of the multispectral SPOT HRV scenes,cCNES 1987 and 1989. The area
is dominated by large pineapple fields to the northeast and small coffee fields to the
northwest. To the south is the town of Thika. This is sketched in Figure 2 which also
shows the positions of fields with pineapple in different phenological stages. Pineapple
is a triennial crop and therefore we observe changes from one year to another.

In Figure 1 bottom-left we show the simple change detection image (differences be-
tween bands 3, bands 2 and bands 1 in red, green and blue). The major differences
are due to the changes primarily in the pineapple fields. Because the changes are
connected to change in vegetation, it seems natural to study the change using the nor-
malized difference vegetation index (to avoid division by zero one may use NIR+R+1
as denominator if necessary)

NDVI =
NIR–R
NIR+R

(12)

where NIR is the near-infrared channel (XS3) and R is the red channel (XS2). The
philosophy behind the NDVI is that healthy green matter reflects the near-infrared light
strongly and absorbs the red light. Therefore the NDVI will be large in vegetated areas
and small in non-vegetated areas. In Figure 1 bottom-right we show the 1989 NDVI
as red and 1987 NDVI as cyan (causing no change to be represented by a grey scale).
This image enhances the differences between fields in a much clearer way than the
simple change detection image. This enhancement is not necessarily due to changes
from 1987 to 1989 but may also be explained by differences between, say, crops with
no seasonal change at all.
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Figure 1: 5 Feb 1987 SPOT HRV (top-left), 12 Feb 1989 SPOT HRV (top-right),
Simple Change SPOT HRV (bottom-left), Change SPOT HRV NDVI (bottom-right)
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Figure 2: Sketch of areas of interest

4.1.2 Multivariate Change Detection

In Figure 3 top-left we show MAD 1, 2 and 3 as red, green and blue. In this image
high and low values of the MADs corresponding to saturated colors show areas of a
high degree of change. In Figure 3 top-right we show absolute values of MAD 1, 2 and
3 as red, green and blue with values below two standard deviations masked black and
with values above three standard deviations saturated. These limits for stretching and
masking are parameters that can be adjusted by the analyst. In this image only high
values of the MADs corresponding to saturated colors other than black show areas of
a high degree of change. Note that as with any technique based on eigenanalysis of
covariance structures the sign of the transformed variables is arbitrary. An inspection
of the MAD image (Figure 3 top-left) and a comparison with the simple change detec-
tion image (Figure 1 bottom-left) shows that there is a much better distinction between
different types of changes. In the simple change detection image red and cyan are
dominating but in the MAD image we see that a much better discrimination has been
achieved. The image showing absolute values of MADs outlines the areas where large
changes occurred and the color code in Figure 3 top says something about the nature
of the change (change e.g. from vegetated to bare soil or vice versa, and dominating
wavelength of change).

Below we give an interpretation of the numerical results from the computations of
the MADs and a brief discussion. We discuss (1) correlations between original vari-
ables, (2) canonical correlations which are measures of similarity between the linear
combinations found, (3) correlations between canonical variates and original variables
in order to facilitate interpretation of the canonical variates, (4) correlations between
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Figure 3: SPOT HRV MAD 1, 2 and 3 as RGB (top-left), SPOT HRV absolute values
of MAD1, 2 and 3 as RGB, values below two standard deviations masked (top-right),
SPOT HRV MAF 1, 2 and 3 of MADs as RGB (bottom-left), SPOT HRV absolute
values of MAF 1, 2 and 3 of MADs as RGB, values below two standard deviations
masked (bottom-right)
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1987 1989
Mean Std Dev Mean Std Dev

XS1 45.00 5.40 32.27 4.79
XS2 36.86 7.12 22.88 4.87
XS3 74.15 12.55 62.33 10.66

Table 1: Simple statistics for 1987 and 1989 SPOT HRV XS data

1987 1989
XS1 XS2 XS3 XS1 XS2 XS3

XS1 1.0000 0.9057 –0.3336 0.5116 0.3955 –0.0082
1987 XS2 0.9057 1.0000 –0.4196 0.4352 0.4140 –0.0381

XS3 –0.3336 –0.4196 1.0000–0.3477 –0.2644 0.2492
XS1 0.5116 0.4352 –0.3477 1.0000 0.8866 –0.2609

1989 XS2 0.3955 0.4140 –0.2644 0.8866 1.0000 –0.4191
XS3 –0.0082 –0.0381 0.2492–0.2609 –0.4191 1.0000

Table 2: Correlations among original variables

MAD variates and original variables in order to facilitate interpretation of the MAD
variates, (5) degrees of redundancy between the two sets of canonical variates, i.e.
how much variance in either original data set is explained by the canonical variates,
and (6) squared multiple correlations between one set of data and the canonical vari-
ates of the opposite set of data. Measures (5) and (6) assess other degrees of overlap or
redundancy between the two sets of data than the canonical correlations themselves.

Basic Statistics

In any interpretation of statistical analysis of multivariate data it is of course important
to look at the basic statistics such as means, standard deviations and correlations. The
means and standard deviations are shown in Table 1.

The values from 1989 are considerably lower than the values from 1987. Whether
this is due to calibration problems in the sensors or to actual changes in albedo is not
known.

The correlations among the original variables are shown in Table 2.

Despite the differences in means and standard deviations it is noted that the correlation
structure is remarkably similar in the two years considered. The crosscorrelations
between years are less similar and decreasing with increasing wavelength, in this case
indicating that changes in vegetation are the most important ones.
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Approx Squared
Canonical Standard Canonical

Correlation (
p
�) Error Correlation (�)

1 0.6505 0.0011 0.4232
2 0.4024 0.0016 0.1619
3 0.2403 0.0018 0.0577

Table 3: Canonical correlations

1987 1989
CAN1 CAN2 CAN3 CAN1 CAN2 CAN3

XS1 0.3487 –0.1272 0.2370 0.4269 –0.1702 0.0887
XS2 –0.2154 0.2374 –0.1323–0.3103 0.3669 –0.0909
XS3 –0.0473 0.0325 0.0672–0.0245 0.0603 0.0850

Table 4: Raw canonical coefficients

Canonical Correlation Analysis

The magnitude of the canonical correlation coefficients shown in Table 3 can be used
in assessing the degree of change in the bi-temporal imagery.

We see from the canonical correlations that only 6% of the variation in canonical vari-
ate 3 from one year may be explained by the variation in the other canonical variate
3. This indicates a considerable degree of change. For canonical variates 2 the num-
ber is 16%, still a rather small number. Finally, canonical variates 1 show a common
predictability of 42%.

The raw canonical coefficients are shown in Table 4.

Thus the canonical variates for the 1987 XS data are

2
64 CAN1

CAN2
CAN3

3
75 =

2
64 0:3487 �0:2154 �0:0473
�0:1272 0:2374 0:0325
0:2370 �0:1323 0:0672

3
75
2
64 XS1� 45:00

XS2� 36:86
XS3� 74:15

3
75 (13)

and the canonical variates for the 1989 XS data are

2
64

CAN1
CAN2
CAN3

3
75 =

2
64

0:4269 �0:3103 �0:0245
�0:1702 0:3669 0:0603
0:0887 �0:0909 0:0850

3
75
2
64

XS1� 32:27
XS2� 22:88
XS3� 62:33

3
75 : (14)
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1987 1989
CAN1 CAN2 CAN3 CAN1 CAN2 CAN3

XS1 0.6915 0.7078 0.1442 0.4499 0.2848 0.0347
1987 XS2 0.4206 0.8967 –0.1377 0.2736 0.3609 –0.0331

XS3 –0.5784 –0.0719 0.8126–0.3763 –0.0289 0.1952
XS1 0.5021 0.2423 –0.0491 0.7718 0.6021 –0.2045

1989 XS2 0.2667 0.3201 –0.1072 0.4099 0.7955 –0.4462
XS3 –0.1050 0.0429 0.2357–0.1613 0.1067 0.9811

Table 5: Correlations between original variables and canonical variables

The coefficients for computing the canonical variates are hard to interpret directly.
The correlations between the original variables and the canonical variates are better
for interpretation, cf. below.

Canonical Structure

The correlations between the original variables and the canonical variates may be used
in the interpretation of the canonical variates. These correlations are shown in Table 5.

In both years we see that canonical variate 2 is strongly correlated with the visible
channels, i.e. MAD2 measures changes in the visible part of the spectrum. In both
years canonical variate 3 is positively correlated with the near-infrared channel and
negatively correlated with or at least almost not correlated with the visible channels.
This conforms with a vegetation index. Therefore, in this case MAD1 measures vege-
tation changes. A similar pattern but with less emphasis on the near-infrared channel
is seen for canonical variates 1 and MAD3.

MAD Structure

In order to interpret the MADs we give the correlations between the original variables
and the MADs. These values will not be supplied by a canned canonical correlations
computer program. The values are computed by means of the expressions given in
Appendix A. It is easier—and more CPU time consuming—to use an ordinary cor-
relation program on the estimated MAD image. The correlations between original
variables and MADs are shown in Table 6.

The most dominant correlations are MAD1 with 1987 XS3 (–0.50) and with 1989 XS3
(0.60). Pixels showing extreme values of MAD1 will predominantly have high values
of 1987 XS3 and low values of 1989 XS3 or vice versa. Thus MAD1 basically de-
scribes changes in XS3, the photo-infrared channel, which again is strongly related
to vegetation. Areas showing extreme values in MAD1 will then most likely have
very different vegetation cover in 1987 and 1989. Changes orthogonal to (i.e. uncorre-
lated with) these changes are described by MAD2 and MAD3. Similar considerations
on magnitudes of correlations show that MAD2 and MAD3 describe changes in the
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MAD1 MAD2 MAD3
XS1 –0.0889 –0.3868 –0.2890

1987 XS2 0.0849 –0.4901 –0.1757
XS3 –0.5008 0.0393 0.2418
XS1 –0.1260 0.3292 0.3227

1989 XS2 –0.2750 0.4349 0.1714
XS3 0.6047 0.0583 –0.0674

Table 6: Correlations between original variables and MADs

Channel Red Green Blue
Area MAD1 MAD2 MAD3 MAD

1 High High High Light Gray
2 Low High High Cyan
3 High Low Low Red

Town Low High Low Green

Table 7: Levels of MADs in three pineapple areas and in the town

shorter wavelengths, MAD2 with the emphasis on XS2 and MAD3 with the emphasis
on XS1.

Correlations between original variables and MADs are quite low. Alternatively they
could be calculated only where the absolute values of MADs are high.

At this point it should be emphasized again that the interpretations presented are scene
dependent. In other scenes the interpretations of the MADs will very likely be dif-
ferent. Where a technique as the NDVI change detection “looks for” changes in
vegetation cover the present method detects general alterations in the scene no matter
what caused the alteration. Once established the MADs may be interpreted by means
of the correlations between the original and the transformed variables as presented
above.

To illustrate the concept further we shall examine the pineapple fields north of Thika
somewhat closer. In Figure 2 some pineapple fields are outlined along with the center
of Thika. In Table 7 we have indicated the relative level of the three MAD variables
mapped as red, green and blue in Figure 3 top-left.

First we consider area 2, bare soil in 1989 and healthy pineapple in 1987. This is
an area that shows extreme deviation between the two scenes. The area is strongly
outlined in all change schemes used, a.o. simple difference change detection, NDVI
change detection, decorrelated simple difference change detection (not shown), prin-
ciple components, rotated factors and MAFs of simple difference images (not shown),
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1987 Canonical Variables 1989 Canonical Variables
Cumulative Cumulative

Proportion Proportion � Proportion Proportion
CV1 0.3299 0.3299 0.4232 0.1396 0.1396
CV2 0.4368 0.7667 0.1619 0.0707 0.2103
CV3 0.2333 1.0000 0.0577 0.0135 0.2238

Table 8: Variance of 1987 XS explained by the individual canonical variates for 1987
and 1989

MAD and MAF of MAD. Area 3 shows the opposite pattern, pineapple in 1989 and
bare soil in 1987. The values related with these patterns are consistent with the general
interpretation of the MADs given before. Since pineapple is a triennial crop and the
time difference between the two scenes is two years area 1 must be pineapple in differ-
ent phenological stages. The alterations are strongly related to vegetation change and
are therefore clearly visible in the NDVI change image. In the NDVI change image we
see a totally black area in the vegetation free center of Thika. This is very consistent
with the notion of a vegetation index. In the same area the MAD change image reveals
a considerable alteration. No information is available to us on the probable causes for
these changes and we shall not speculate on their nature. Whatever the causes, the dif-
ferences described illustrate the fact that the MADs may be used in general detection
of alterations irrespective of the nature of the alterations.

As a concluding remark we therefore suggest the usage of the MAD transformation
in the analysis of multispectral, bi-temporal imagery. The MADs give an optimal
(in the sense of maximal variance with linear transformation invariance) detection of
alterations from one scene to the other. Also, it provides a statistical analysis and an
interpretation of the nature of the alterations.

Canonical Redundancy Analysis

A more detailed assessment of the degree of change may be obtained from a deeper
study of the correlations between the variates involved. The standardized variance of
1987 XS explained by the individual canonical variates for 1987 and 1989 are shown
in Table 8.

The standardized variance of 1989 XS explained by the individual canonical variates
for 1989 and 1987 are shown in Table 9.

The squared multiple correlations (R2) between 1987 XS and the firstM canonical
variates of 1989 XS, and squared multiple correlations (R2) between 1989 XS and the
firstM canonical variates of 1987 XS are shown in Table 10.

The canonical redundancy analysis confirms that we have considerable changes be-
tween the two years. The degrees of explanation of one set of original variables by the
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1989 Canonical Variables 1987 Canonical Variables
Cumulative Cumulative

Proportion Proportion � Proportion Proportion
CV1 0.2632 0.2632 0.4232 0.1114 0.1114
CV2 0.3356 0.5988 0.1619 0.0543 0.1658
CV3 0.4012 1.0000 0.0577 0.0232 0.1889

Table 9: Variance of 1989 XS explained by the individual canonical variates for 1989
and 1987

R2(1987 XS, 1989 CAN) R2(1989 XS, 1987 CAN)
M 1 2 3 1 2 3

XS1 0.2024 0.2835 0.28470.2521 0.3108 0.3132
XS2 0.0749 0.2051 0.20620.0711 0.1736 0.1851
XS3 0.1416 0.1424 0.18050.0110 0.0129 0.0684

Table 10: Squared multiple correlations (R2) between 1987 (1989) XS and the first
M canonical variates of 1989 (1987) XS

opposite canonical variates range from 1% to 14%, very low numbers that indicate this
change. Similarly, we see from the squared multiple correlations between the original
1987 variables and the firstM 1989 canonical variates and the squared multiple cor-
relations between the original 1989 variables and the firstM 1987 canonical variates
that the degree of explanation is poorest in the near-infrared band, again indicating that
vegetation changes are dominating.

4.1.3 Different Number of Bands

As a simulated example of an application where we don’t have the same number of
spectral bands at the two points in time we analyze what happens if we omit SPOT
HRV XS1 from the 1989 data but not from the 1987 data. This situation cannot be
dealt with by any technique based on simple difference images without dropping the
information from XS1 in 1987 also. The result from such analysis can be handled in
the same fashion as above. Here we shall confine ourselves to a visual inspection of
the absolute value of MAD1 with MAD1 from the analyses above with all three spec-
tral bands retained, Figure 4. Bright greytones represent areas of maximum change
in all bands simultaneously independent of what caused the change and independent
of direction of change. A comparison shows that basically the same areas emerge,
specifically the fields showing most change are the same.
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Figure 4: SPOT HRV MAD1, absolute values, three bands in 1987 and in 1989 (left),
three bands in 1987 and two bands in 1989 (right)

This is of course a somewhat constructed example but in historical change detection
studies comparisons between data from for instance Landsat MSS (four bands) and
Landsat TM (six or seven bands) or SPOT HRV (three bands) may be relevant.

4.1.4 Geometric Illustration of Canonical Variates

To hopefully give a better feel for what canonical variates are and to illustrate geomet-
rically the solution to the real, symmetric, generalized (RSG) eigenproblem involved
in finding them (cf. Appendix A), we have generated two sets of data both consisting
of two variables. The data consist of every 50’th row and every 50’th column of the
image data analyzed above. The first set of variables are bands 1 and 2 from the 1987
data and the second set of variables are bands 2 and 3 from the 1989 data. The 1987
(1989) data are estimated from the 1989 (1987) data by regression.

The two top plots in Figure 5 show scatterplots and ellipses corresponding to�20:95(2) =
5:991 contours for the 1987 and 1989 data. These contour ellipses are (top-left; see
Appendix A for a description of the mathematics illustrated here)aT �̂�1

11 a = 5:991
(for the data) andaT (�̂12�̂

�1
22 �̂21)

�1a = 5:991 (for the regressions), and (top-right)
bT �̂�1

22 b = 5:991 (for the data) andbT (�̂21�̂
�1
11 �̂12)

�1b = 5:991 (for the regressions).
The open circles symbolize observations and the crosses symbolize regressions made
from the opposite set of variables.

The two bottom plots show the solution to the eigenproblem. The ellipses shown are
contours foraTDa = 1, aTNa = 1, aTNa = �1, aTNa = �2, whereN means the
matrix in the numerator of the Rayleigh coefficient identifying the canonical correla-
tion problem andD means the matrix in the denominator. In this case�1 = 0:2730
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Figure 5: Canonical variates geometrically
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and�2 = 0:05147 corresponding to canonical correlations0:5199 and0:2269. In the
bottom-right plot the contour lines are identified.

In the two bottom plots the eigenvectors to the canonical correlation problem are vec-
tors with end points in the center of the ellipses and the points where the ellipses have
a common tangent (indicated with short lines). The square root of the eigenvalues (the
canonical correlations)

p
�i are the ratios of the the lengths of the major (or minor)

axes in the ellipses corresponding toaTNa = 1 andaTNa = �i. The major axes
of aTNa = 1 are indicated with long lines. The major and minor axes ofD corre-
sponds to the axes of projection for principal components. We see that the directions
of projection are different for the canonical variates.

4.1.5 MAFs of MADs

In order to obtain a spatially more coherent representation of the detected change as
obtained from the MAD analysis illustrated in Figure 3 top, post-processing by means
of a MAF transformation of the MAD variates was performed.

In Figure 3 bottom-left we show MAF 1, 2 and 3 of MADs as red, green and blue. In
this image high and low values of the MAFs corresponding to saturated colors show
areas of high spatial coherence in the change pattern. In Figure 3 bottom-right we
show absolute values of MAF 1, 2 and 3 of MADs as red, green and blue with values
below two standard deviations masked black and with values above three standard
deviations saturated. In this image only high values of the MAFs corresponding to
saturated colors other than black show areas of high spatial coherence in the change
pattern. This image outlines areas where large changes occurred and the color code
in Figure 3 bottom says something about the nature of the change (change e.g. from
vegetated to bare soil or vice versa; the dominating wavelength of change can be read
from the correlations between original spectral bands and the MAFs).

The largest visual difference between MADs (Figure 3 top) and MAFs of MADs (Fig-
ure 3 bottom) is the emergence of area 3 (Figure 2) and a general impression of better
spatial “togetherness”, especially in the masked absolute values (Figure 3 right). The
fact that area 3 emerges in the MAFs is assuring as the change in this field seems
significant from inspection of Figure 1 top.

In order to interpret the MAFs of MADs we give the correlations between the MADs
and the MAFs (Table 11), and the correlations between the original variables and the
MAFs (Table 12).

Table 11 shows that MAF1 concentrates information from MADs 2 and 3 vs. MAD1,
MAF2 concentrates information from MADs 1 and 2, and MAF3 is basically MAD3.

Table 12 shows that MAF1 for 1987 complies with a vegetation index and for 1989
with a negative vegetation index. MAF1 therefore basically contains information on
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MAF1 MAF2 MAF3
Autocorr. 0.9243 0.8738 0.5780

MAD1 –0.7053 0.6655 0.2444
MAD2 0.5812 0.7401 –0.3383
MAD3 0.4060 0.0965 0.9088

Table 11: Correlations between MADs and MAFs of MADs

MAF1 MAF2 MAF3
Autocorr. 0.9243 0.8738 0.5780

XS1 –0.2795 –0.3734 –0.1535
1987 XS2 –0.4161 –0.3233 0.0268

XS3 0.4742 –0.2809 0.0840
XS1 0.4111 0.1909 0.1510

1989 XS2 0.5162 0.1554 –0.0586
XS3 –0.4200 0.4391 0.0668

Table 12: Correlations between original variables and MAFs of MADs

vegetation changes. This is confirmed by inspection of the MAF1 image (red in Fig-
ure 3 bottom). MAF2 has medium negative correlations with all bands in 1987 and
low positive correlations with visual bands in 1989 and a relatively high positive cor-
relation with 1989 XS3. Inspection of the MAF2 image (green in Figure 3 bottom)
shows that change in lakes and in the town is picked up by MAF2. MAF3 is quite
noisy, it has low correlations with the original bands (highest with opposite signs for
the two XS1s perhaps indicating differences in atmosphere and water); inspection of
the MAF3 image (blue in Figure 3 bottom) reveals that it contains some information
on change in lakes and in the town.

Correlations between original variables and MAFs of MADs are quite low. Alterna-
tively they could be calculated only where the absolute values of MAFs of MADs are
high.

4.1.6 No Change Situation

As a simple simulation of a situation with no change in all bands we pad the two
512�512 scenes described above into the central part of 600�600 backgrounds with
values 20, 30 and 40 in bands 1, 2 and 3 in both years. Change between the two
600�600 scenes is estimated by means of

� simple differences, dif,
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Band/Component 1 2 3
dif 0 0 0
Ddif(cov) 0.86 0.87 0.59
Ddif(corr) 0.95 0.81 0.56
PCdif(cov) 0.86 1.05 0.08
PCdif(corr) 1.32 0.35 –0.04
Fdif 1.23 0.58 0.07
MAFdif 1.32 0.31 0.12
MAD 0.02 0.10 –0.10
MAF/MAD 0.09 –0.11 –0.00

Table 13: Change detected in no change region for SPOT HRV data, value should be
0

� decorrelation of simple differences (based on covariance matrix), Ddif(cov),

� decorrelation of simple differences (based on correlation matrix), Ddif(corr),

� principal components of simple differences (based on covariance matrix), PCdif(cov),

� principal components of simple differences (based on correlation matrix), PCdif(corr),

� varimax rotated factors of simple differences, Fdif,

� MAFs of simple differences, MAFdif,

� MADs, MAD, and

� MAFs of MADs, MAF/MAD.

Change detected in the region with no change (the 44 pixels broad edge around the
actual image data) as indicated by standardized values of the results from the above
change detection methods is given in Table 13.

The value in this region in the simple difference images is zero. Therefore the change
detected here is due to the subtraction of the mean value of the entire image before
calculating the relevant linear combinations of the original bands. This can easily be
identified in this very simple situation, but had the no-change pixels been scattered
as several fields inside the image this would not have been possible and the statistics
for calculating the MADs would have been exactly the same. Therefore the situation
simulated though very simple is indeed a realistic one.

It is obvious that MAD and MAF of MAD are the only multivariate techniques that
perform well in this situation. All other methods give change values much higher than
zero.
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4.2 Landsat TM Data, Sweden

As another application example of the MAD and the combined MAD/MAF technique
two 512�512 Landsat Thematic Mapper (TM) sub-scenes from 6 June 1986 and 27
June 1988 are used. The thermal TM band 6 is not included in the analysis. Resam-
pling to 20 meter pixels rectified to the Swedish national grid was performed by the
Swedish Space Corporation who also provided the data. The area covered is a small
forested area in northern Sweden near Umeaa. The study area and previous work
done is described in Olsson (1993, 1994, 1995). Though described in a less elaborate
fashion our aim here is the same as in the previous case study, namely to show the
application of the new techniques and to give ideas on how to interpret results, this
time with Landsat TM data. Again, we mean to illustrate the techniques presented, the
case study is not meant as a careful assessment of actual change on the ground.

The top two images in Figure 6 are TM bands 4, 5 and 3 as red, green, and blue in
1986 (left) and in 1988 (right).

Figure 7 shows all six MADs row-wise. Figure 8 shows all six MAFs of MADs row-
wise.

Correlations between the MADs and the original TM bands given in Table 14 are
generally quite low. However, the pattern revealed shows that MAD1 is associated
with TM1, i.e. probably differences in atmospheric conditions. MAD4 is positively
correlated with 1986 TM4 and negatively correlated with 1986 TM1, 2 and 3. The
opposite correlation structure is true for MAD4 and the 1988 data. Therefore MAD4
is a sort of vegetation index change detector. With reverse signs for the correlations
this is true for MAD5 also.

Correlations between the MADs and their MAFs are shown in Table 15. We see that
low order MAFs (signal) are associated with high order MADs, i.e. maximum similar-
ity canonical variates and vice versa.

Table 16 shows correlations between MAFs of MADs and the original TM bands.
MAF1 is positively correlated with 1986 TM4 (and slightly negatively correlated with
1986 TM1 and 3). The opposite correlation structure is true for MAF1 and the 1988
data. Therefore MAF1 is a sort of vegetation index change detector and it concentrates
the information from MADs 4 and 5. MAF2 is a change detector of the weighted mean
of all bands except TM4, i.e. a change detector of the non-vegetation related level.
MAF6 measures change in TM1 which is likely to represent changes in atmospheric
conditions. We see that the MAF analysis of the MADs has isolated the changes related
to TM1 (presumably atmospheric conditions) and changes related to TM4 (presumably
vegetation) in each end of the autocorrelation “spectrum”.

The bottom two images in Figure 6 are MAFs 1, 2 and 3 of MADs as red, green and
blue (left) and absolute values of MAFs 1, 2 and 3 of MADs as red, green and blue
with values below 2 standard deviations masked black and values above three standard
values saturated (right). These images beautifully depict locations and strength of
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Figure 6: 6 June 1986 Landsat TM bands 4, 5 and 3 as RGB (top-left), 27 June 1988
Landsat TM bands 4, 5 and 3 as RGB (top-right), Landsat TM MAF 1, 2 and 3 of
MADs as RGB (bottom-left), Landsat TM absolute values of MAF 1, 2 and 3 of
MADs as RGB, values below two standard deviations masked (bottom-right)
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Figure 7: Landsat TM MAD 1–6 row-wise
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Figure 8: Landsat TM MAF 1–6 of MADs row-wise
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MAD1 MAD2 MAD3 MAD4 MAD5 MAD6
Can.corr. 0.0464 0.0978 0.3199 0.5957 0.7255 0.8966
1986 TM1 0.2583 –0.0010 –0.0789 –0.0759 0.1078 0.1941
1986 TM2 –0.0389 0.1994 –0.1150 –0.0512 0.0313 0.2096
1986 TM3 –0.0280 0.0202 0.0634 –0.0896 0.1008 0.2123
1986 TM4 0.0061 0.0781 –0.0103 0.1105 –0.2109 0.1764
1986 TM5 –0.0167 0.0355 –0.0431 0.1380 0.1089 0.2047
1986 TM7 –0.0592 –0.0676 –0.1041 0.0638 0.1493 0.1993
1988 TM1 –0.1453 0.0239 0.0778 0.1197 –0.1621 –0.1867
1988 TM2 0.0986 –0.0480 0.0399 0.1069 –0.0978 –0.2089
1988 TM3 0.0068 0.0922 –0.0676 0.1583 –0.1567 –0.1854
1988 TM4 –0.0089 –0.0218 –0.0211 –0.1216 0.1930 –0.1838
1988 TM5 0.0122 0.0567 –0.0765 –0.0662 –0.1588 –0.1995
1988 TM7 0.0390 0.1630 0.0069 0.0072 –0.2069 –0.1798

Table 14: Correlations between MADs and original TM bands

MAF1 MAF2 MAF3 MAF4 MAF5 MAF6
Autocorr. 0.9130 0.8769 0.6822 0.5402 0.4770 0.4696
MAD1 0.0403 –0.0784 –0.1402 –0.1820 0.2033 0.9477
MAD2 0.2501 –0.1095 –0.2162 0.7958 0.4954 –0.0051
MAD3 0.0331 0.0074 –0.0456 0.4942 –0.8262 0.2646
MAD4 0.4769 0.1545 0.8523 0.0701 0.0540 0.1205
MAD5 –0.7485 0.4915 0.2780 0.2759 0.1661 0.1309
MAD6 0.3834 0.8464 –0.3576 –0.0913 –0.0162 –0.0133

Table 15: Correlations between MAFs of MADs and MADs
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MAF1 MAF2 MAF3 MAF4 MAF5 MAF6
Autocorr. 0.9130 0.8769 0.6822 0.5402 0.4770 0.4696
1986 TM1 –0.0349 0.1848 –0.1365 –0.0801 0.1278 0.2263
1986 TM2 0.0771 0.1653 –0.1423 0.0949 0.1849 –0.0731
1986 TM3 –0.0307 0.2159 –0.1276 0.0547 –0.0396 –0.0103
1986 TM4 0.2976 0.0536 –0.0448 –0.0105 0.0166 –0.0140
1986 TM5 0.0696 0.2452 0.0713 0.0310 0.0720 0.0007
1986 TM7 –0.0277 0.2632 0.0522 –0.0670 0.0655 –0.0587
1988 TM1 0.1095 –0.2099 0.1354 0.0646 –0.0994 –0.1215
1988 TM2 0.0374 –0.2105 0.1334 –0.0368 –0.0438 0.1071
1988 TM3 0.1428 –0.2206 0.1398 0.0236 0.0884 –0.0109
1988 TM4 –0.2794 –0.0765 0.0227 0.0353 0.0333 –0.0009
1988 TM5 0.0229 –0.2649 –0.0397 –0.0251 0.0671 –0.0351
1988 TM7 0.1319 –0.2737 –0.0281 0.0858 0.0519 0.0141

Table 16: Correlations between MAFs of MADs and original TM bands

change. Different types of change are indicated by different colors and they can be
interpreted from shift in mean values, dispersion matrices, and from correlations with
the original data as indicated above. Noise related change is isolated in the higher
order MAFs of MADs.

The simple simulation of a situation with no change in all bands performed for the
SPOT HRV data above is repeated with the Landsat TM data. Here we pad the two
512�512 scenes into the central part of 600�600 backgrounds with values 0 in all
bands in both years. Apart from the exclusion of the decorrelation methods change
between the two 600�600 scenes is estimated by means of the same methods as in the
SPOT HRV case above.

Change detected in the region with no change (the 44 pixels broad edge around the
actual image data) as indicated by standardized values of the results from the different
change detection methods is given in Table 17.

As in the previous case with SPOT HRV data it is obvious that MAD and MAF of
MAD are the only multivariate techniques that perform well in this situation. All other
methods give values much higher than zero.

5 Conclusions

Based on the established multivariate statistical technique canonical correlation ana-
lysis, we have developed a new tool for the analysis of multispectral, bi-temporal
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Band/Component 1 2 3 4 5 6/7
dif 0 0 0 0 0 0
PCdif(cov) –1.28 0.06 0.09 0.91 –0.03 0.26
PCdif(corr) –0.06 –1.53 0.19 0.40 0.03 –0.01
Fdif 0.37 1.01 –0.27 1.10 0.29 0.05
MAFdif –1.52 0.05 0.46 0.03 0.01 0.01
MAD 0.01 0.01 0.01 0.01 0.01 –0.03
MAF/MAD –0.00 0.01 0.02 0.00 –0.02 0.02

Table 17: Change detected in no change region for Landsat TM data, value should be
0

imagery. The multivariate alteration detection (MAD) transformation gives an opti-
mal (in the sense of maximal variance) detection of alterations (differences, changes)
from one scene to the other in all spectral channels simultaneously. As opposed to the
principal components transformation the MAD transformation is invariant to linear
scaling, which means that it is not sensitive to e.g. gain settings of a measuring device.
It also provides a statistical analysis and it offers an interpretation of the nature of
the alterations. The MAD transformation can be used iteratively (or in an exploratory
fashion, if you like). First, it can be used to detect outliers (such as drop-outs) or noise
and in a second iteration, it can be used to perform the actual change detection after
appropriate action on outliers or noise. Also, if an analyst has additional information
such as geographical position of certain changes of interest that show up in certain
bands only, our method can be applied to any spatial and/or spectral subset of the full
data set to direct the analysis in any desired manner. In classification-type methods the
spatial subset is referred to as training area(s) and the spectral subset is a simple form
of feature selection.

Irrespective of the application in question and the individual analyst’s favorite change
detection scheme, the absolute value of the MADs will always outline the areas with
the largest overall changes in all channels simultaneously. The correlations between
the original image channels and the MADs form a basis for interpretation of the MADs.
Based on the absolute values of the MADs and the interpretation, a more physically
oriented change study can be performed if so desired. The same is true for MADs
post-processed with the MAF transformation.

The data in the case studies are raw, not pre-processed (e.g. atmospherically corrected).
Analysis of corrected data would be interesting also. However, our purpose here is to
introduce a new change detection technique.

We conclude that the MADs and post-processing with MAFs of MADs with their
linear scaling invariance—which allows us to detect also subtle change and not just
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dominant over-all change—combined with the stretching and masking chosen consti-
tute very useful supplements to univariate and existing multivariate change detection
schemes. This is supported by the results reported in section 4.1.6 “No Change Situa-
tion” for the SPOT HRV case and similar results for the Landsat TM case.

The MAD and the MAF of MADs techniques are believed to be useful with multi- and
hyper-channel data in monitoring and surveillance in the fields of in environmental
studies, oceanography, agriculture, forestry, geobotany etc.
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A Canonical Correlation Analysis

We consider ap+q dimensional random variable(p � q) ideally following a Gaussian
distribution split into two groups of dimensionsp andq respectively

"
X

Y

#
2 N(�;�) = N(

"
0
0

#
;

"
�11 �12

�21 �22

#
) (15)

and we assume that�11 and�22 (and�) are non-singular.X andY are multivariate
images written as vectors at a given location

X =

2
664
X1

...
Xp

3
775 resp. Y =

2
664
Y1
...
Yq

3
775 : (16)

We consider the conjugate eigenvectorsa1; : : : ;ap (ai is p � 1) corresponding to the
eigenvalues�1 � � � � � �p of �12�

�1
22�21 with respect to�11, i.e.

(�12�
�1
22 �21 � �i�11)ai = 0: (17)

If we put

bi =
1p
�i
��1
22 �21ai (18)

(bi is q � 1) we have

�21�
�1
11�12bi =

1p
�i
�21�

�1
11�12�

�1
22 �21ai (19)

=
q
�i�21ai (20)

= �i�22bi (21)

i.e.bi is an eigenvector of�21�
�1
11�12 with respect to�22 corresponding to eigenvalue

�i. If p = q this will be all the eigenvalues and -vectors of�21�
�1
11�12: If q > p then

then last eigenvalue will be 0 with multiplicityq � p:
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Theorem. Letting�ij be the Kronecker delta (�ij = 1 for i = j, �ij = 0 otherwise) we
have

aTi �11aj = bTi �22bj = �ij (22)

aTi �12bj =
q
�i�ij: (23)

Proof. The result forai follows by definition. We then obtain

bTi �22bj =
1q
�i�j

aTi �12�
�1
22 �22�

�1
22 �21aj (24)

=

vuut�i

�j
aTi �11aj (25)

= �ij: (26)

Similarly we obtain

aTi �12bj =
1q
�j
aTi �12�

�1
22�21aj (27)

=
q
�j�ij: (28)

We are now able to introduce the canonical variates

Ui = aTi X; i = 1; : : : ; p (29)

Vi = bTi Y ; i = 1; : : : ; p (30)

and with an obvious choice of notation

U = ATX and V = BTY ; (31)
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where

A = [a1; : : : ;ap] is p� p (32)

B = [b1; : : : ; bp] is q � p: (33)

We then have

Theorem. We consider the random variableZ = U � V and have that the dispersion
matrix is

DfZg = DfU � V g = 2

2
664
1�p�1 � � � 0

...
...

...
0 � � � 1�

q
�p

3
775 = 2(I �� 1

2 ): (34)

Proof. Straightforward

DfU � V g = DfUg+ DfV g � 2CovfU ;V g (35)

= AT�11A+BT�22B � 2AT�12B (36)

= I + I � 2�
1

2 : (37)

The covariance between the original and the MAD transformed variables are

CovfX;ATX �BTY g = �11A��12B (38)

(39)

CovfY ;ATX �BTY g = �21A��22B: (40)

A.1 An Interpretation of Canonical Variates

Consider a regression̂X of X based onY respectivelyŶ of Y based onX
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X̂ = �12�
�1
22 Y (41)

Ŷ = �21�
�1
11X (42)

For the dispersions we get

DfX̂g = �12�
�1
22�21 (43)

DfŶ g = �21�
�1
11�12 (44)

Linear combinationsaTX̂ respectivelybT Ŷ that maximizeVarfaT ^Xg

VarfaTXg
respectively

VarfbT ^Y g

VarfbTY g
fulfill

aT�12�
�1
22�21a

aT��1
11 a

= � (45)

bT�21�
�1
11�12b

bT��1
22 b

= � (46)

As these so-called Rayleigh coefficients are identical to the defining equations above,
the canonical variates can be interpreted as being new variables that maximize the ratio
of the variances between linear combinations of predicted values of one set of variables
from the other set of variables and the same linear combinations of the actual values
of the one set of variables.

We also see that canonical correlation analysis can be considered as a type of regres-
sion analysis with several independent as well as dependent variables.
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A.2 A Minimizing Property of Canonical Variates

In this section we prove a property of the canonical variates. Normally the stepwise
definition of canonical variates starts at the set with maximal correlation as mentioned
in the introduction. From our point of view it will be more natural to start with the com-
ponent ofZ yielding the largest variance i.e. the canonical variates with the smallest
correlation.

We assume thatcTX is independent ofUj+1; : : : ; Up: We have

CovfcTX;aTkXg = cT�11ak = 0; k = j + 1; : : : ; p: (47)

Now, c may be written as1a1 + � � �+ pap and this implies

cT�11ak = k = 0; k = j + 1; : : : ; p (48)

i.e.cTX may be written as

cTX = (1a
T
1 + � � �+ ja

T
j )X = 1U1 + � � �+ jUj: (49)

Similarly, if dTY is independent ofVj+1; : : : ; Vp we may write

dTY = �1V1 + � � �+ �jVj: (50)

We now want to minimize the absolute value of the correlation betweencTX and
dTY i.e. minimize

cT�12d

cT�11d�22d
=

T
��

1

2

� ��q
T
� ��

T
� ��

(51)

or equivalently minimize

(1; : : : ; j)

2
664
p
�1 � � � 0
...

...
...

0 � � �
q
�j

3
775
2
664
�1
...
�j

3
775 = T

��
1

2

� �� (52)
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subject to the constraints

T
� � = 1 and �T

� �� = 1: (53)

We introduce the Lagrange expression

F = T
��

1

2

� �� � �

2
(T

� � � 1)� �

2
(�T

� �� � 1); (54)

and have at optimum

@F

@�
= �

1

2

� �� � �� = 0, �� = �
1

2

� �� (55)

@F

@��
= �

1

2

� � � ��� = 0, ��� = �
1

2

� �: (56)

We insert this in Equation 51 and obtain the expression

j�j
�

T
����q

T
� �

T
����

= sign(�)

vuutT
����
T
� �

: (57)

The square of this expression is

�1
2
1 + � � �+ �j

2
j

21 + � � �+ 2j
(58)

and this has a minimum for1 = � � � = j�1 = 0 andj = 1, which corresponds to
choosingcTX asUj. We have now proven the following

Theorem. The canonical variates have the property that thej’th canonical variate
shows minimal correlation amongst linear combinations independent of the previous
p � j least correlated canonical variates. In the caseq > p correlations between any
of theU ’s and the projection on the eigenvectors of�21�

�1
11 �12 with respect to�22

corresponding to the eigenvalue 0 are exactly equal to 0.
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A.3 Redundancy Analysis

Here we shall study some further ways of analyzing the degree of overlap between
the two sets of data. In order to clarify matters let us recall a fundamental property of
the correlation coefficient�, namely that the squared correlation between two variables
equals the fraction of the variation in one variableY that may be explained by an affine
expression in the other variableX. If we call this predicted valuêY we have

VarfŶ g = �2Y X VarfY g: (59)

If the correlation equals 1 we have the same variance of the predicted value as of the
original, i.e. we can make a perfect prediction ofY based onX. If on the other hand
the correlation equals 0 the predictorX contains no information onY .

If we havek predictorsX1; : : : ; Xk the expression is still valid if we replace the corre-
lation with the multiple correlation coefficient

VarfŶ g = �2Y jX1;:::;Xk
VarfY g: (60)

The squared multiple correlation coefficient is thus the degree of variation inY that
can be explained byX1; : : : ; Xk.

After these more general remarks we shall revert to investigate some properties of the
correlation structure of canonical variates. From the definitions we get

CovfX;Ug = CovfX;ATXg = �11A (61)

CovfX;V g = CovfX;BTY g = �12B (62)

CovfY ;V g = CovfY ;BTY g = �22B (63)

CovfY ;Ug = CovfY ;ATXg = �21A (64)

We shall for simplicity and without lack of generality assume that theX ’s an theY ’s
are standardized, i.e. they have variance 1. Then the above matrices are correlation
matrices.
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The expression

fj =
1

p

pX
i=1

[CorrfXi; Ujg]2 = 1

p
aTj �11�11aj (65)

equals the fraction of the (standardized) variance of the originalX variables that are
explained by canonical variateUj. It follows that

pX
j=1

fj =
pX

j=1

1

p
aTj �11�11aj =

1

p
tr (AT�11�11A); (66)

where tr denotes the trace of a matrix. FromAT�11A = I we obtainAT = A�1�11

and therefore

pX
j=1

fj =
1

p
tr (A�1�11A) =

1

p
tr (�11AA

�1) = 1: (67)

This corresponds to the fact that all of the variation in the original variablesX1; : : : ; Xp

may be explained by the whole set of canonical variatesU1; : : : ; Up.

If we multiply fj with thej’th squared canonical correlation�j we obtain the so called
redundancy factorRj. It may be instructive to note that

Rj = �jfj (68)

= �j
1

p
aTj �11�11aj (69)

=
1

�j

1

p
aTj �12�

�1
22�21�12�

�1
22 �21aj (70)

=
1

p
bTj �21�12bj (71)

=
1

p

pX
i=1

[CorrfXi; Vjg]2 (72)

Introducing the mnemotechnical expressionsCVXi for Ui andCV Yi for Vi and we
obtain
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Rj =
1

p
cancor2j

pX
i=1

[CorrfXi; CV Xjg]2 (73)

=
1

p

pX
i=1

[CorrfXi; CV Yjg]2: (74)

The squared canonical correlation is the shared variability between the two sets of
canonical variates. Consequently we have the following interpretation of the redun-
dancy factor of the first set of variables given the availability of the second set of
variables:Rj expresses the amount of variation in the original variables that is ex-
plained by thej’th canonical variate adjusted with the shared variation between the
j’th canonical variates. This equals the amount of variation of variation explained by
the oppositej’th canonical variate.

Related to these considerations are properties of multiple squared correlations between
the original variables and the set of opposite canonical variates. If�T

i denotes thei’th
row in�12 the squared multiple correlation betweenXi andCV Y1; : : : ; CV Yk is

�XijCV Y1;:::;CV Yk = �T
i [b1; � � � ; bk]

2
664
bT1
...
bTk

3
775�i (75)

=
kX

j=1

[�ibj]
2 (76)

=
kX

j=1

[CorrfXi; CV Yjg]2; (77)

a quantity that is also useful in assessing overlap between the two sets of variables.

B Min/Max Autocorrelation Factor Analysis

We consider the random variableZT = [Z1(x); : : : ; Zm(x)] and we assume that

EfZ(x)g = 0 (78)

DfZ(x)g = �: (79)

We denote a spatial shift by�T = [�x;�y]. The spatial covariance function is defined
by
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CovfZ(x);Z(x+�)g = �(�): (80)

� has the following properties

�(0) = � (81)

�(�)T = �(��): (82)

We are interested in the correlations between projections of the variables and the
shifted variables. Therefore we find

CovfaTZ(x);aTZ(x+�)g = aT�(�)a (83)

= (aT�(�)a)T

= aT�(�)Ta

= aT�(��)a

=
1

2
aT (�(�) + �(��))a:

Introducing

�� = DfZ(x)�Z(x+�)g (84)

= Ef[Z(x)�Z(x+�)][Z(x)�Z(x+�)]Tg;

(which considered as a function of� is a multivariate variogram) we have

�(�) + �(��) = 2���� (85)

and thus

CovfaTZ(x);aTZ(x+�)g = aT (�� 1

2
��)a (86)

wherefore

CorrfaTZ(x);aTZ(x+�)g = 1� 1

2

aT��a

aT�a
: (87)
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If we want to minimize that correlation we must maximize the Rayleigh coefficient

R(a) =
aT��a

aT�a
: (88)

Let �1 � � � � � �m be the eigenvalues anda1; : : : ;am corresponding conjugate eigen-
vectors of�� with respect to�. Then

Y i(x) = aTi Zi(x) (89)

is thei’th minimum/maximum autocorrelation factor or shortly thei’th MAF.

The minimum/maximum autocorrelation factors satisfy

i) CorrfY i(x);Y j(x)g = 0; i 6= j;

ii) CorrfY i(x);Y i(x+�)g = 1� 1

2
�i;

iii) CorrfY 1(x);Y 1(x+�)g = infa CorrfaTZ(x);aTZ(x+�)g;
CorrfY m(x);Y m(x+�)g = supa CorrfaTZ(x);aTZ(x+�)g;
CorrfY i(x);Y i(x+�)g = infa2Mi

CorrfaTZ(x);aTZ(x+�)g,
Mi = fa j CorrfaTZ(x);Y j(x)g = 0; j = 1; : : : ; i� 1g:

The reverse numbering of MAFs so that the signal MAF is referred to as the first MAF
or MAF1 is often used, also in this paper.

B.1 Linear Transformations of MAFs

We now consider the problem of transforming the original variables. If we set

U(x) = TZ(x) (90)

whereT is a transformation matrix, we have that the MAF solution forU is obtained
by investigating

R1(b) =
bTT��T

Tb

bTT�T Tb
: (91)

The equation for solving the eigenproblem is
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T��T
Tbi = �iT�T

Tbi , (92)

��(T
Tbi) = �i�(T Tbi)

i.e. the eigenvalues are unchanged andT Tbi = ai is an eigenvector for�� with
respect to�. We find that the MAFs in the transformed problem are

bTi U(x) = bTi TZ(x) (93)

= (T Tbi)
TZ(x)

= aTi Z(x)

= Y i(x):

Therefore the MAF solution is invariant to linear transformations, which can be useful
in computations. Let�1 � � � � � �m be the ordinary eigenvalues andp1; : : : ;pm
corresponding orthonormal eigenvectors of�. If we set (P = [p1 � � �pm])

T T = P�� 1

2 (94)

we have for the dispersion of the transformed variables

DfU(x)g = DfTZ(x)g = T�T T = �� 1

2P T�P�� 1

2 = I: (95)

With this transformation the original generalized eigenproblem is reduced to an ordi-
nary eigenproblem for

T��T
T = DfTZ(x)� TZ(x+�)g (96)

= DfU(x)�U(x+�)g

and the MAF solution can be obtained by solving two ordinary eigenproblems as fol-
lows

� calculate principal components from the usual dispersion matrix�,

� calculate dispersion matrix for shifted principal componentsP T��P ,

� calculate principal components for transformed data corresponding to
�� 1

2P T��P�
� 1

2 .
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The original generalized eigenproblem can be solved by means of Cholesky factoriza-
tion of� also.

As far as the practical computation of̂�� is concerned Switzer and Green (1984)
recommend the formation of two sets of difference images. The two sets areZ(x) �
Z(x +�h) andZ(x)� Z(x+�v) where�h is a unit horizontal shift and�v is a
unit vertical shift. Calculatê��h

and�̂�v
and pool them to obtain̂��.
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