Two novel extensions to traditional

canonical
correlation analysis applied to

change detection in earth observation image data

Two extensions to traditional canonical correlation analysis are described. One consists of an iterative scheme in which increasing weight is put on observations that show a high degree of similarity between the two sets of variables involved. The other extension is based on replacing correlation as the measure of association between the two sets by the information theory concept of mutual information which in turn is entropy based. Both extensions lead to more computer intensive algorithms than the traditional method. Also, both extensions are applied to detect change over time in bi-temporal, multispectral earth observation image data.