Introductory Programming
Object oriented programming I, sections 4.0-4.5

Anne Haxthausen?

IMM, DTU

(sections 4.2 (+ 4.4))
(sections 4.0-4.1 (+ 4.5))

1. Methods (declaration and invocation)

2. Classes and objects
o how to define a class
e how to create an object
e how variables of class types behave
e how to access the data and methods of an object

3. Encapsulation via visibility modifiers (public and private) (section 4.1)
4. Method overloading and overload resolution based on signatures (section 4.3)
5. Scope rules (sections 4.1, 4.2)
6. Summary

a. Parts of this material are inspired by/originate from a course at ITU developed by Niels Hallenberg and Peter Sestoft

on the basis of a course at KVL developed by Morten Larsen and Peter Sestoft.

Methods in Java

Methods in Java (and procedures/subroutine in other languages) are similar to functions in

mathematics: they can take arguments and they produce results.

A Java method squar e corresponding to the function mgcmqo@v = x - x can be declared in

this way:
stati c doubl e square(double x) {

return x * x;

The method takes an argument X of type double and returns a result of type double. The
result is X times X.

A method sevent i Mes that multiplies a number with seven can be declared in this way:
stati c doubl e seventinmes(double x) {

return x * 7.0;

The method takes an argument X of type double and returns a result of type double.
The result is seven times X.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-1

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-3

Functions

A (mathematical) function takes a number as argument and returns a number as result.

Example of a function: the function square takes a number x and returns x - x as result:

square(z) = x - @

Examples of applications of the function:

7 X 7 square(x) 7
1.2 1.44
4.4 19.36
3.0 9.00
43.0 1849.00

Methods (example: Methods1.java)

A method must be declared inside a class.
public class Methodsl {

public static void main(String[] args) {
doubl e res = square(3) + seventines(4);
System out. print("square(3) plus seventinmes(4) =");
Systemout.printin(res);
}
static doubl e square(double x) {
return x * x;
}
static doubl e seventinmes(double x) {
return x * 7.0;

A method invocation squar e(3) orseventi nes(4) is an expression. Hence, a

method invocation can be a subexpression of another expression.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-2

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-4

General format for method invocations:
method-name (arguments)
Execution of a program containing method invocations (Methods1.java) . .
arguments are a comma separated list of argument expressions (also called actual
parameters).
mai n 7
V
doubl e res = mn_ﬂmﬂ e(3) Effect:
v . i
square + seventimes(4); seventines First the argument expressions are evaluated and their values assigned to the formal
System out. print("square(3) plus seventimes(4) = "); parameter names (that behave as variables); then the statements and declarations of the
Systemout. println(res); method UOQ< are executed.
When the method executes a return statement (of the form return expression;), expression is
evaluated to some value v and the control of the program returns to the location where the
invocation was made; the resulting value of the method invocation is v.
(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-5 (©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-7
. Why use methods?
General format for method declarations: y
o A method encapsulates and gives hame to a collection of statements (and declarations).
modifier result-type method-name (parameters) {
) Iti ful when:
statements and declarations s uselutwhe
} e it constitutes a natural operation

e it can be used to decompose the body of a method that otherwise would have become

modifier can be static — you will learn about other possibilities later. longer than one page (40-50 lines).

. . . o (Read section 4.4 about method decomposition.)
result-type is the type of values in the return statements; void if nothing is returned.

. e it can be re-used, i.e. when (almost) the same piece of code can be used several places in
method-name is the name of the method.
the program.

parameters is a comma separated list of types and names of formal parameters. . .))
The alternative of programming with copy-and-paste gives un-readable and

statements and declarations make up the method body and are executed when the method is un-maintainable programs.

invoked.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-6 (©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-8

Classes and objects Definition of classes

Informally A class contains declarations of its members:
e A class represents a concept: time, appointment, car, cow, person, ... e data (constants and variables) (also called fields)
e methods
e An object represents a thing, an instance of a concept: a particular time, a particular car, a
particular cow, a particular person, ... A class declaration gives name to a class.
Example

e A class has a collection of methods: those operations (functions) that can be applied to its .
class Tinme {

objects. private int hours, mn; //hours and m nutes since m dnight
In Java public Time(int h, int m {hours = h; mn=m}
) public int getmin() { return mn; }
e A class corresponds to a type, like i nt , doubl e, bool ean, ... }

® An object corresponds to a value, like 17,18. 01, T al se, ... An object of class Ti e has fields hour s and M n representing a point in time, a

o A method corresponds to an operation, like +, —, ... constructor (method) Ti e that can be used for initializing these fields and a method
getm n.
(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-9 (©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-11

. . . Creations of objects
Three steps in using classes, objects and methods

An object is an instance of a particular class. It has fields and methods, as specified in the
1. Define a class (incl. its methods). class. The state of the object is the contents of its fields. The methods of the object can be

2. Create objects of the class. used for changing and reading its state.

3. Use the methods of the objects. In Java an object is created by applying the new operator. This invokes a constructor: a
method which has the same name as the class and which init

izes the object. A constructor

) has no result type.
Some classes (e.g. St r i ng) are already defined in a class library. In that case you can skip

step one.
Example
If a class (e.g. Keyboar d) has static methods, these can be used without step 2-3. new Ti me(12, 35)))
creates (a reference to) an object of class Ti me withhours == 12andm n == 35.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-10 (©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-12

Variables having class types

A variable contains either
e a primitive value, or
e a reference (henvisning) to an object.

Example
Time t1; /1A

tl = new Tinme(1l2, 35); //B

decl aration
initialization

A B

o

Thevariable tl isalocation in the memory
containing areference to the Time object

Declaration and initialization can be made in one step:
Tine t1 = new Tinme(12, 35);

Description of methods in an extended Time class

Assume given a Time object t1.

Ti me(h, n) creates anew Ti Me object representing the time by hour s and ni n.
t 1. get hour s() returns for t 1 the number of hours since midnight.

t 1. get mi n() returns for t 1 the number of minutes (over hours) since midnight.
t1.toString() returns the time in the form hours.min, e.g. 12. 27.

t 1. passtinme(n) increases the time of t 1 with mminutes.

t 1. pl us(m returns anew Ti Me object that is Mminutes ahead of t 1.
t1.to(t) returns the number of minutes fromt 1 tot .

t 1. before(t) returnstrueift 1 is earlier in the day than t .

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-15

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-13
Access to the data fields of an object
is made by the dot notation:
tl.min=(tl.mn+ 2) %60 //only legal, if mnis not private
Invocation of the methods of an object
is made by the dot notation:
t1.getmn()
(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-14

An implementation of the Time class

class Time {
private int hours, min; // hours and mnutes since m dnight

public Time(int h, int mM {hours = h; min=m}
public int gethours() {return hours ;}
public int getmn() { return mn; }

public String toString() { return hours + "." + mn; }

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-16

public void passtine(int m {
int totalmn = 60 * hours + min + m
hours = (totalmn / 60) %24; mn = totalmn % 60;

public Time plus(int m {
int totalmn = 60 * hours + mn + m
return new Time((totalmn / 60) %24, totalmn % 60);

public int to(Tine t)
{ return 60 * t.hours + t.mn - 60 * hours - mn; }

publi ¢ bool ean before(Tine t)
{ return (hours < t.hours) ||
(hours == t.hours && nmin <= t.mn);

Output from Test of Ti e

cl ockl shows 9.10
cl ock2 shows 10. 10
after 40 m nutes clockl shows 9.50

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-17

Example of a program that uses Ti e

public class Testof Time {
public static void main(String[] args) {
Time cl ockl, clock2;

cl ockl = new Tinme(9, 10);
Systemout.println("clockl shows " + clockl);

cl ock2 = cl ockl. pl us(60);
System out. println("clock2 shows " + clock2);

cl ockl. passti ne(40);
Systemout.printin("after 40 mnutes clockl shows " + clockl);

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-19

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-18

Encapsulation

By encapsulation of an object we mean that the user is only allowed to access the data of the
object through its methods.
Example ¢l ockl. m n oughtto be illegal, but cl ockl. get m n() is ok

The user should only know the interface of the associated class:
for each method: name, argument types, result type, and what happens when it is invoked.
By hiding the internal data representation and algorithms (method bodies) for the user, we can

change the implementation of this without problems.

Example

We could change the representation of time to number of minutes since midnight:
class Time {
private int min; //mnutes since nidnight
public Time(int h, int M {mn = (h* 60 + n) % 1440;}

}

without changing the invocations of the Ti mMe methods in the Test of Ti nme class.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-20

The visibility modifiers private and public

Encapsulation in Java is obtained by visibility modifiers in data and method declarations:
e private: for members that should only be directly used inside the class.

e public: for members that can also be directly referenced outside.

Recommendation:
e Declare variables private so that the state of the objects becomes encapsulated.
e Declare auxiliary methods private.
e Declare other methods (incl. constructors) public.

e Declare constants that should be known outside the class public (and static), otherwise

private.

@Imxﬁzmcmm: and Sestoft, IMM/DTU, 25. september 2002

Signatures of methods

The signature of a Java method consists of (i) the name of the method, and (ii) the list of
parameter types.

Examples

get hour s()
passtime(int)
max(int, int)

i s_.ok(bool ean)

02100+02115+02199+02312 Introductory Programming Side 4-21

Class libraries, packages and import

Has been explained in lecture 2.

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming

Side 4-23

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002

Basic concept: overloading

When two or more methods are declared with
o the same name, but
e different signatures

the name is said to be overloaded (overleest).

Example in Java:

The Ti e class could have had two constructors:
public Tinme(int h, int m) {hours = h; mn=m}

public Time(int h) {hours = h; mn =0;}

They have the same name, but different signatures:

Time(int, int) andTi me(int) resp.

02100+02115+02199+02312 Introductory Programming Side 4-22

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming

Side 4-24

Overload resolution

If an overloaded name is used in a method call, which declared method does it belong to?

By overload resolution we mean the decision of this.
In Java, it is decided by matching the types of the arguments with the types in the signature.

Other programming languages have other rules.

Examples in Java
Ti me(12, 10) belongs to the first declaration

Ti me(12) belongs to the second declaration

@Imxﬁzmcmm: and Sestoft, IMM/DTU, 25. september 2002

Visibility rules for variables and constants in Java

In Java we distinguish between:

e fields/instance data: variables and constants declared in a class
e |ocal data: variables and constants declared in a method
Rules:

e The scope of a field of a class is the whole class.

e The scope of local data goes from the point after its declaration until the end of that block
in which it is declared.

o Formal parameters of a method behave as if they were declared in the top of the method
body.

e The scope of variables declared in the header of a for loop is the remaining part of the loop.

e |tis illegal to declare a new local variable/constant inside the scope for another local
variable/constant with the same name.

e |tis legal to declare a local variable/constant inside the scope for a field with the same

name. In that case the local variable/constant make a shadow over the field which then

becomes invisible.

02100+02115+02199+02312 Introductory Programming Side 4-25

Basic concept: scope

Definition

The scope of a variable or constant is that part of the program in which it can be referred to

(i.e. read or assigned a new value).

@Imxﬁzmcmm: and Sestoft, IMM/DTU, 25. september 2002

02100+02115+02199+02312 Introductory Programming Side 4-27

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002

Scope: example 1

class Tine

{
public Tine(int h, int m { hours = h; mMin=m }
private int hours, nin; //hours and m nutes since m dnight
public Tinme plus(int m {
int totalmn = 60 * hours + min + m
return new Tinme((totalmn / 60) %24, totalnmn % 60);
}
}

02100+02115+02199+02312 Introductory Programming Side 4-26

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002

02100+02115+02199+02312 Introductory Programming Side 4-28

Scope for loop variable: example

public void Ioop(){

for (int n=1; /1 ninvisible
n<=10; /'l n visible
n=n+1) /1 n visible
Systemout.printin(n * n); // n visible

/'l ninvisible

Summary: Java program structure

Program

Classes
Fields

Constructors
Methods

Declarations

Statements

@Imxﬁzmcmm: and Sestoft, IMM/DTU, 25. september 2002

02100+02115+02199+02312 Introductory Programming

Side 4-29

Scope: examples of shadowing

class Tine

{

private int hours, mn; //mn #1

public Time plus(int min) { //mn #2
int totalmn = 60 * hours + getmn() + mn;
return new Tinme(..., totalmn % 60);

//mn #2 visible
//mn #2 visible

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002

02100+02115+02199+02312 Introductory Programming

Side 4-30

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-31
Summary: classes
Two goals of classes in Java
(1) as “containers” for related methods (e.g. Keyboar d contains r eadl nt etc.):
In this case all data and methods are static.
(2) as blueprints for objects (e.g. Ti e as skeleton for ¢l ock1 and ¢l ock?2):
In this case some data and methods are not static.
Fields in the object contains the state of the object.
Constructors initialize the object (by initializing the fields).
Methods in the object makes it possible to change the state or read the state.
Visibility of fields and methods is indicated by public and private.
(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-32

Summary: objects Summary: invocation of methods

L . . . General format for invocation of methods defined in the same class:
An object is a (often composite) value belonging to a particular class.

. . method-name(arguments
An object can be created by the new operator (that invokes a constructor from the class): (arg)

clockl = new Time(12, 35); Example (from Met hods1): sevent i mes(4)

or with a method that returns an object:
clockz = clockl. pl us(60); General format for invocation of static methods defined in another class:

You can access (read or change) a public (but not a private) field in an object via the dot class-name.method-name (arguments)

notation:

Example: Keyboar d. r eadl nt ()

System out . println(clockl. nmin);

clockl.mn = 13; /lonly legal, if minis not private) .)
General format for invocation of methods of an object

You can invoke a method of an object using the dot notation: .
object-name.method-name (arguments)

| ockl. ti 40); . .
cl ockl. passtime(40) Example (from Test of Ti ne): cl ockl. passti ne(40)

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-33 (©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-35

Summary: declaration of methods

A method is declared with a name, parameters, a result type, and a body.

Special methods: constructors (have same name as the class, no result type is stated)

(©Haxthausen and Sestoft, IMM/DTU, 25. september 2002 02100+02115+02199+02312 Introductory Programming Side 4-34

