
Short Advice for Documenting Java Programs
Paul Fischer, October 7, 2002

There are three parts of program documentation:

� The inline documentation usually in the form of comments in the pro-
gram code explaining the meaning of variables and subroutines (also
called methods, functions, or procedures depending on the program-
ming language).

� The programmer's manual in the form of a report or manual describing
the high level structure of the program, the design decisions made, the
interaction of the di�erent components, and also says what the program
does. It should also document the tests made.

� The user's manual in the form of a manual explains how to use the
program to those who apply it (end-users).

1 Why Program Documentation

During program development:

1. To avoid making unnecessary programming errors.

2. To �nd errors faster.

3. To make testing for correctness easier.

During program life cycle:

1. To make the program easier to maintain.

2. To explain to others how to use the program.

2 Inline Documentation

These are comments in the source code of the program. The di�erent points
below are not completely independent.

1. At the beginning of every program �le write the name of the author(s)
and what the program does.

2. Before every class and subroutine (method in JAVA) write a comment
explaining what it does.

1

3. Explain what the arguments of a constructor or a subroutine mean.

4. In lengthy code add a comment when an important part is over or
begins, like

// We finished the initialization of the variables.

// Now we start reading the data from the input file.

5. If you use a trick that is not standard give a short comment.

6. Use names for variables which explain their meaning or use a comment:
The names numberOfIntervals or inputFileName are good. If you use
short names like n or ifn instead you should add a comment when the
variable is declared:

int n; // n is the number of intervals

String ifn; // ifn is the name of the input file

7. Use indentation to help the reader to identify the beginning and end
of program structures such as loops and branching statements. For
Example:

1 for(int i = 0; i < n; i++)

2 {

3 for(int j = 0; j < n; j++)

4 {

5 if (distance[i][j] > 1.234)

6 {

7 System.out.println("Too far!!");

8 }

9 else

10 {

11 System.out.println("Near enough.");

12 }//ifelse

13 }//for j

14 }//for i

Remark: The Java environment o�ers a tool called javadoc which helps to
generate documentations. The tool is, however, a little diÆcult to use and
you should only consider to use it later in the course when the programs get
larger.

2

3 Programmer's Manual

The di�erent points are not completely independent.

1. Specify who wrote the program and what it is supposed to do.

2. Indicate why the program solves the problem it is supposed to solve.

3. Document the structure: What are the modules (classes) you de�ned.
Why did you design the program this way.

4. Describe what the modules do.

5. Describe the dependencies between the modules (the class dependency).

6. Describe the tests you used and document the results of test runs.

7. Use line numbering in listings so you can refer to a certain part of the
program.

4 User's Manual

1. Explain how to use the program. This includes to specify what a correct
input is and what the corresponding output is.

2. Explain the error messages of the program and tell the user what to do
if one appears.

3. The user's manual should not contain program listings and implemen-
tation details.

3

