
Text �les in Java

Peter Sestoft, Department of Mathematics and Physics

Royal Veterinary and Agricultural University, Denmark

English version 1.01, 1998-08-29

This note describes how to read and write text �les in Java.

Contents

1 Reading words and numbers from a text �le 1

2 Reading from the keyboard 6

3 Reading from a text string 6

4 Formatted text output 7

5 Output to a text �le 10

6 A complete example of text input and output 11

7 Exercises 12

1 Reading words and numbers from a text �le

A text �le is just a sequence of characters, such as 'A', 'B', '7', '9', '+', '=', ' ', and so on.

Note especially the last example: it is the space character, which prints as a blank. Newline is

also a character, written in Java as '\n'. In MS DOS and MS Windows a newline in fact consists

of two characters: '\n' and '\r', corresponding to newline and carriage return | a reminder of

the times when electrical typewriters were used for computer output. In any case, Java pretends

that a newline consists of a single character.

Thus the two-line text �le:

Ole 312.2

Ib 11117

consists of the the following characters:

O l e 3 1 2 . 2 \n I b 1 1 1 1 7 \n

When reading from a text �le, one usually does not want to handle the characters one by one,

but rather to collect them into numbers and words. For instance, the �ve characters '3' '1' '2'

'.' '2' should be considered together, as the number 312.2.

For this purpose one may use the Java library class StreamTokenizer. Numbers and words

in the input are called tokens, and a text �le can be considered a stream of tokens. Hence the

name StreamTokenizer: it turns a character stream into a token stream.

1

In the above text �le, two tokens are separated by whitespace: space (blank), tabulators,

newline, or form feed (which skips to a new page). The �le consists of the following tokens:

Ole 312.2 Ib 11117 TT_EOF

The nineteen characters in the text �le have been grouped to form four tokens, the whitespace

(spaces and newlines) has been thrown away, and a special �fth token TT_EOF marks the end of

the token stream. The letters eof in TT_EOF abbreviate `end of �le', and tt abbreviates `token

type'.

1.1 Reading numbers

Assume we have a text �le called "numbers.txt" with the following contents:

14.5 20 18

19.1

We want to read the contents of this �le as numerical tokens (followed by end of �le, TT_EOF):

14.5 20 18 19.1 TT_EOF

Assume we want to read the numbers from the �le and compute their sum. We may use the

following program fragment:

Reader inp = new FileReader("numbers.txt"); // 1

StreamTokenizer tstream = new StreamTokenizer(inp); // 2

tstream.parseNumbers(); // 3

double sum = 0; // 4

tstream.nextToken(); // 5

while (tstream.ttype != StreamTokenizer.TT_EOF) // 6

{

sum += tstream.nval; // 7

tstream.nextToken(); // 8

}

Explanation:

1 The text �le "numbers.txt" is opened and connected to a character stream (a reader)

called inp.

2 The character stream inp is converted into a token stream, called tstream.

3 Tokens that look like numbers (e.g. 14.5) should be read as numbers, not as strings (e.g.

"14.5").

4 So far the sum is 0: no numbers have been read yet.

5 Read the �rst token from tstream.

6 If the current token is not TT_EOF (end of �le) but a number, then execute the loop body in

lines 7 and 8. Otherwise, terminate the loop (at which point the variable sum will contain

the sum of all the numbers).

7 The number represented by the current token is obtained as tstream.nval, which is added

to the sum.

8 Try to read a new token from tstream, and continue at line 6.

2

1.2 Reading numbers line by line

If one wants to compute the sum of numbers line by line, then one needs two while loops. The

outer loop performs one iteration for each line of text, and the inner loop performs one iteration

for each number on the line.

For instance, one might want to compute the sum for each line in the text �le "numbers.txt",

storing all the sums in a single string sums.

To do this, the program needs to `see' where each line ends. Fortunately, newline can be

considered a separate token (rather than whitespace, as above):

14.5 20 18 TT_EOL 19.1 TT_EOL TT_EOF

Line A below tells the tokenizer that newline must be considered a token, not whitespace. The

lines B through I contains the nested while loops which read the �le:

String sums = "";

Reader inp = new FileReader("numbers.txt"); // 1

StreamTokenizer tstream = new StreamTokenizer(inp); // 2

tstream.parseNumbers(); // 3

tstream.eolIsSignificant(true); // A

tstream.nextToken(); // B

while (tstream.ttype != StreamTokenizer.TT_EOF) // C

{

double sum = 0; // D

while (tstream.ttype != StreamTokenizer.TT_EOL) // E

{

sum += tstream.nval; // F

tstream.nextToken(); // G

}

sums += sum + " "; // H

tstream.nextToken(); // I

}

Explanation:

A. A newline (eol = end of line) must be considered a token, not whitespace, in tstream.

B. Read the �rst token from tstream.

C. If the current token is not TT_EOF (end of �le), then execute the loop body in lines D{I.

Otherwise terminate the loop.

D. So far the line sum is 0: no number has been read yet.

E. If the current token is not TT_EOL (end of line), but a number, then execute the body of

the inner loop in lines F and G. Otherwise, terminate the inner loop and go to H.

F. The number represented by the current token, tstream.nval, is added to the line sum.

G. Try to read a new token from tstream, and continue the inner loop at line E.

H. When the inner loop terminates, line H is reached. Now sum is the sum for the current line,

and is appended (as a text) to the sums of previous lines.

I. Try to read a new token from tstream, and continue the outer loop at line C.

3

1.3 Reading entire lines of text

If one needs to read entire lines of text, regardless of spaces, then one must tell the tokenizer that

space ' ' must be considered part of a word, not whitespace. This is done by the method call

tstream.wordChars(' ', ' '). If one reads numbers.txt in this way, then every line becomes

one (large) token:

14.5 20 18 19.1 TT_EOF

If one want to consider newlines as tokens too, then one may specify eolIsSignificant(true)

as in the above example.

Reading the �le numbers.txt in this way is fairly useless. On the other hand, when reading

a text �le "addrlist.txt" containing a list of addresses, it makes good sense to read entire lines

at a time. In this example, we store the lines in an array arr of strings:

String[] arr = new String[100];

Reader inp = new FileReader("addrlist.txt");

StreamTokenizer tstream = new StreamTokenizer(inp);

tstream.wordChars(' ', ' ');

int n = 0;

tstream.nextToken();

while (n < arr.length && tstream.ttype != StreamTokenizer.TT_EOF)

{

arr[n] = tstream.sval; tstream.nextToken();

n++;

}

1.4 Declaring imports

When using StreamTokenizer, Reader, or FileReader, one must specify

import java.io.*;

at the beginning of the �le.

1.5 Declaring exceptions

When reading the input, a so-called exception may be thrown by the program, signalling that an

error occurred. For instance, an exception of class IOException may be thrown if one attempts

to read further tokens after TT_EOF. Also, an exception of class FileNotFoundException, which is

a subclass of IOException, may be thrown if one attempts to open a non-existing �le for reading.

A thrown exception may be caught by a catch statement. An exception escapes from a

method if it may be thrown without being caught during execution of the method. In Java,

every method must declare what exceptions can escape from it. Therefore a method that reads

from a �le should be declared as follows:

public static void main(String[] args)

throws IOException

{ ... }

The line throws IOException in the method head says that exceptions belonging to class IOEx-

ception (and its subclasses) may escape this method.

4

1.6 Bu�ered reading for faster input

The above recipes for reading input from text �les work, but may be slow. The problem is

that every request for a new token (using nextToken()) may lead to a request for a few more

characters from the character stream, which may lead to a request to the operating system for a

few more characters from the text �le. This is slow.

To speed up reading, turn the character reader into a bu�ered character reader, so that larger

chunks of text can be read from the �le at a time:

Reader inp = new FileReader("numbers.txt");

inp = new BufferedReader(inp);

StreamTokenizer tstream = new StreamTokenizer(inp);

For brevity, we do not use bu�ering in examples.

1.7 Summary of class StreamTokenizer

The following operations on a streamtokenizer t are used frequently:

Creating a streamtokenizer

t.parseNumbers() Let t parse numbers. A number token is a `word' beginning

with a digit (0{9) or a decimal point (.) or the minus sign

(�). Number tokens have type TT_NUMBER.

t.eolIsSignificant() Let t consider newline as a separate token TT_EOL, not as

whitespace.

t.whitespaceChars(c1, c2) Let t consider the characters in the interval c1{c2 (inclusive)

as whitespace also, that is, as token separators.

t.wordChars(c1, c2) Let t consider the characters in the interval c1{c2 (inclusive)

as parts of words also, not as whitespace.

Reading from a streamtokenizer

t.nextToken() Read the next (or �rst) token from t

t.nval The number value of the current token, as a double

t.sval The string value of the current token, as a String

t.ttype The type of the current token (see below)

Every token has a `type'. The four types of tokens are

TT_NUMBER number

TT_WORD word

TT_EOL newline

TT_EOF end of �le (no more tokens)

5

2 Reading from the keyboard

The streamtokenizer can be used to read from the keyboard too. This is particularly useful for

writing command line applications in Java. To read from the keyboard, one creates a character

stream inp from System.in, the standard input stream of the system:

Reader inp = new InputStreamReader(System.in);

This change a�ects only the �rst line of the examples above (Section 1.1, 1.2, and 1.3).

In MS DOS and MSWindows, the end of �le marker TT_EOF can be entered from the keyboard

as ctrl-Z followed by newline.

3 Reading from a text string

A streamtokenizer can read from a text string, too. This is particularly useful for when writing

Java applications with graphical user interfaces, or applets, since the contents of a TextField or

TextArea is given as a text string. To read from a string s, one creates a character stream inp

from the string:

Reader inp = new StringReader(s);

This change a�ects only the �rst line of the examples above (Section 1.1, 1.2, and 1.3).

6

4 Formatted text output

Unless one takes special care, the output from a program may be as ugly as this:

Odense 17.5

Assens 19.1

Slagelse 19.775000000000002

Longyearbyen 8.7

In this section, we shall see how to control the number of digits after the decimal point, and how

to align data in columns.

The Java libraries (version 1.1) include a package java.text which provides for formatted

output. Here we give only a brief description; there are many more advanced possibilities.

4.1 Format patterns for �xed-comma output of numbers

To format numbers with a speci�ed number of digits after the decimal point, one uses a format

pattern, such as "0.00" to create a DecimalFormat object fmt, then uses fmt to format the

number as a string:

DecimalFormat fmt = new DecimalFormat("0.00");

System.out.println(fmt.format(3.1415926));

The format pattern "0.00" requests that there should be two digits after the decimal point, and

at least one before it. Thus the output will be 3.14 in the above example.

More generally, the characters in a format pattern have the following meaning:

Character Meaning

any number of digits; zeroes are left blank

0 at least one one digit; zeroes are printed

. the decimal point symbol

, the thousands (digit grouping) symbol

The e�ect1 of some typical format patterns is illustrated by this table:

Format patterns

Number # #.# #.## 0.0 0.0# 0.00 000.0 #,##0.00

0.0 0 0.0 0.0 0.00 000.0 0.00

0.1 0 .1 .1 0.1 0.1 0.10 000.1 0.10

1.0 1 1 1 1.0 1.0 1.00 001.0 1.00

1.1 1 1.1 1.1 1.1 1.1 1.10 001.1 1.10

-1.1 -1 -1.1 -1.1 -1.1 -1.1 -1.10 -001.1 -1.10

330.8 331 330.8 330.8 330.8 330.8 330.80 330.8 330.80

1234.516 1235 1234.5 1234.52 1234.5 1234.52 1234.52 1234.5 1,234.52

1This output is from JDK 1.1.6 under Linux. Presumably, this is how the output should look, but it is not

what is produced by JDK 1.1.6 under MS Windows. Netscape Communicator appears to work correctly.

7

The same DecimalFormat object fmt may be used to format several numbers. For instance, this

program fragment would produce the last column above:

DecimalFormat fmt = new DecimalFormat("#,##0.00");

double[] arr = { 0, 0.1, 1.0, 1.1, -1.1, 330.8, 1234.516 };

for (int i=0; i < arr.length; i++)

System.out.println(fmt.format(arr[i]));

4.2 Danish number formats

Traditional Danish number formatting has the opposite conventions of English and American:

Danish uses the comma ',' as decimal separator and the point '.' as thousands separator.

The Java libraries attempt produce the proper `national' output, and so will normally use the

Danish conventions when run under e.g. a Danish version of MS Windows, or a Danish version

of Netscape Communicator or MS Internet Explorer.

If you want to make sure that the output is always produced using particular symbols, then

you may create a DecimalFormatSymbols object and use that when creating a DecimalFormat

object. The format pattern remains unchanged. To always produce Danish output, change the

above program as follows:

DecimalFormatSymbols decsyms = new DecimalFormatSymbols();

decsyms.setDecimalSeparator(',');

decsyms.setGroupingSeparator('.');

DecimalFormat fmt = new DecimalFormat("#,##0.00", decsyms);

double[] arr = { 0, 0.1, 1.0, 1.1, -1.1, 330.8, 1234.516 };

for (int i=0; i < arr.length; i++)

System.out.println(fmt.format(arr[i]));

The output will be a Danish version of the last column in the above table:

0,00

0,10

1,00

1,10

-1,10

330,80

1.234,52

4.3 Declaring imports

When using DecimalFormat, etc. one must specify

import java.text.*;

at the beginning of the �le.

8

4.4 Padding text on the left and right

As shown by the examples above, the DecimalFormat class does not align the formatted numbers

on the decimal point. A simple way to do this is to pad the numbers with su�ciently many

blanks on the left so that they align on the right, regardless whether they take up three or eight

characters when printed. Similarly, words may be padded with su�ciently many blanks on the

right, so that the next column aligns correctly.

For this to produce the desired visual e�ect, your output device must use a �xed-pitch font,

in which all characters have the same width. This is usually the case for the typewriter font

(often called Courier).

A Java method to pad a strings on the left can be de�ned as follows, using a string bu�er:

public static String padLeft(String s, int width) {

int filler = width - s.length();

if (filler > 0) // and therefore width > 0

{

StringBuffer res = new StringBuffer(width);

for (int i=0; i<filler; i++)

res.append(' ');

return res.append(s).toString();

}

else

return s;

}

If s has length width or more, then padLeft(s, width) just returns s. Otherwise, it returns a

new string which consists of s, padded with su�ciently many blanks on the left to have length

width.

Similarly, the method below pads s on the right:

public static String padRight(String s, int width) {

int filler = width - s.length();

if (filler > 0) // and therefore width > 0

{

StringBuffer res = new StringBuffer(width).insert(0, s);

for (int i=0; i<filler; i++)

res.append(' ');

return res.toString();

}

else

return s;

}

9

5 Output to a text �le

For output to a text �le, create a FileWriter from a given �le name, then create a PrintWriter

from the FileWriter:

Writer wri = new FileWriter("output.txt");

PrintWriter out = new PrintWriter(wri);

The PrintWriter object out behaves just the same as the well-known System.out. That is,

one may just replace System.out with out and execute out.println("This is a text"), or

out.print(12.3) and similar. After one has �nished printing to the �le, one must close the

PrintWriter by executing out.close(). Otherwise there is a risk that some or all of the output

may be missing from the text �le.

For example, the following program fragment prints the numbers 0 through 19 and their

squares and cubes on the text �le "output.txt":

Writer wri = new FileWriter("output.txt");

PrintWriter out = new PrintWriter(wri);

for (int i=0; i<20; i++)

out.println(i + " " + i*i + " " + i*i*i);

out.close();

5.1 Declaring imports

When using PrintWriter, Writer, or FileWriter, one must specify

import java.io.*;

at the beginning of the �le.

5.2 Declaring exceptions

When writing the output, an exception may be thrown by the program, signalling that an error

occurred (see Section 1.5).

Therefore a method that writes to a �le should include a throws clause:

public static void main(String[] args)

throws IOException

{ ... }

5.3 Bu�ered writing for faster output

As when reading from a �le (see Section 1.6), one may increase speed by turning the FileWriter

into a bu�ered writer before creating a PrintWriter:

Writer wri = new FileWriter("output.txt");

wri = new BufferedWriter(wri);

PrintWriter out = new PrintWriter(wri);

10

6 A complete example of text input and output

Assume there is a text �le "places.txt" in which each line contains the name of a town (in one

word), and a sequence of numbers, e.g. temperatures:

Odense 14.5 20 18

Assens 19.1

Slagelse 23.1 25.1 12.1 18.8

Longyearbyen 8.1 10.2 7.8

...

For each line we want to print the name and the average of the numbers. In the printout the

name must be to the left on the line, and the average should be printed with two digits after the

decimal point, to the right on the line. We may assume that no name is longer than 30 characters,

and that the average can be printed in a �eld 10 characters wide (including the decimal point).

public static void main(String[] args)

throws FileNotFoundException, IOException // 0

{

Reader inp = new FileReader("places.txt"); // 1

StreamTokenizer tstream = new StreamTokenizer(inp); // 2

tstream.parseNumbers(); // 3

tstream.eolIsSignificant(true); // 4

tstream.nextToken(); // 5

while (tstream.ttype != StreamTokenizer.TT_EOF) // 6

{

double sum = 0; // 7

int count = 0; // 8

String name = tstream.sval; // 9

tstream.nextToken(); // 10

while (tstream.ttype != StreamTokenizer.TT_EOL) // 11

{

sum += tstream.nval; // 12

count++; // 13

tstream.nextToken(); // 14

}

double avg = sum / count; // 15

DecimalFormat fmt = new DecimalFormat("0.00"); // 16

System.out.println(padRight(name, 30) // 17

+ padLeft(fmt.format(avg), 10)); // 18

tstream.nextToken(); // 19

}

}

Explanation:

0 Declare that the method may throw the exceptions FileNotFoundException and IOException,

as discussed in Section 1.5.

1{7 Correspond to line 1{D in Section 1.2.

8 At the beginning of the line we have not read any numbers yet, so count is 0.

9{10 The line's �rst token is the name (a string), which is read using sval.

11{14 Correspond to line E{G in Section 1.2, except that count must be incremented.

11

16 A formatter fmt is created for �xed-comma formatting with two digits after the decimal

point.

17 The name is padded on the right to make it 30 characters wide.

18 The average is formatted using the formatter fmt, and is padded on the left to make it 10

characters wide.

19 The next token is read.

The output of the above program will be a neat version of that shown at the beginning of

Section 4:

Odense 17.50

Assens 19.10

Slagelse 19.78

Longyearbyen 8.70

...

7 Exercises

1. Modify the program in Section 6 so that the name of a town may consist of more than one

word (e.g., `Los Angeles', or `Frankfurt an der Oder').

2. Write a program to print a neatly formatted table of accumulated savings. For instance, if

we set aside 1,000 dollars every year at 5 per cent annual interest, we should get:

year balance

1 1,050.00

2 2,152.50

3 3,310.13

4 4,525.63

...

12

