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Abstract

Addressing the image correspondence problem by fea-
ture matching is a central part of computer vision and 3D
inference from images. Consequently, there is a substantial
amount of work on evaluating feature detection and feature
description methodology. However, the performance of the
feature matching is an interplay of both detector and de-
scriptor methodology. Our main contribution is to evaluate
the performance of some of the most popular descriptor and
detector combinations on the DTU Robot dataset, which is a
very large dataset with massive amounts of systematic data
aimed at two view matching. The size of the dataset implies
that we can also reasonably make deductions about the sta-
tistical significance of our results. We conclude, that the
MSER and Difference of Gaussian (DoG) detectors with a
SIFT or DAISY descriptor are the top performers. This per-
formance is, however, not statistically significantly better
than some other methods. As a byproduct of this investiga-
tion, we have also tested various DAISY type descriptors,
and found that the difference among their performance is
statistically insignificant using this dataset. Furthermore,
we have not been able to produce results collaborating that
using affine invariant feature detectors carries a statistical
significant advantage on general scene types.

1. Introduction
The computational efficiency of a sparse image represen-

tation consisting of salient interest points, also referred to as
features, is a major motivation for feature based methods for
solving the image correspondence problem. Various detec-
tors and descriptors have been proposed, but the question
of how to optimally design an interest point characteriza-
tion still remains open. The success of feature-based meth-
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Figure 1. Example of data and setup. Two images of the same
scene with one close up (a) and one distant from the side (b), and
the reconstructed 3D points (c). Corresponding interest points can
be found using the geometric information of the scene with known
camera positions and 3D scene surface as schematically illustrated
in (d). Illustration from [1].

ods depends on the quality of the local characterization. In
general it is not an easy task to judge the performance of
such methods, because it is hard to validate if correspon-
dence exist. However given knowledge about the geometry
of the observed scene, it becomes easy to verify if two inter-
est points corresponding in feature space also corresponds
in the real scene. We therefore propose to use the DTU
Robot dataset with known surface geometry presented in
[1, 2] (see Sec. 2 for a brief description and Fig. 1). Based
on this dataset we are able to systematically analyze the de-
sign of feature methods and due to the large variation in
scene types we can judge the statistical significance of our
findings.

Finding correspondence between image pairs using in-
terest points is based on the assumption that common in-
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terest points will be detected in both images. For this to
be useful, corresponding interest points have to be local-
ized precisely on the same scene element, and the asso-
ciated region around each interest point should cover the
same part of the scene. Commonly, candidate points are
detected using an interest point detector and a description
of the local image structure – the so-called descriptors –
surrounding the interest points are extracted. Following the
extraction of descriptors, a comparison of these is made us-
ing a relevant similarity metric in order to determine cor-
respondence between interest points. The rationale is that
descriptors capture the essential visual appearance of the
scene region covered by the interest point, and as a conse-
quence the same scene point seen from different viewpoints
and/or with different lighting should have similar descrip-
tors. Therefore descriptors should preferably be invariant,
or approximately, with respect to changes in viewpoint and
lighting.

Early work on correspondence from local image features
was based on rotation and scale invariant features [13, 19],
and interest points from planer scenes was evaluated in [20].
Later the interest points have been adapted to affine trans-
formation, to obtain robust characterization to larger view-
point changes. These methods have been surveyed in [17],
but the performance has been evaluated on quite limited
datasets consisting of ten scenes each containing six images.
The suggested evaluation criteria have since been used in
numerous works together with this small dataset.

Different approaches have been taken when describing
the local visual appearance of interest points. A majority
of approaches extract some descriptive feature, such as his-
tograms of differential geometric image properties in each
pixel [13, 16, 19, 22], using integral images [5, 4], or the
responses of steerable filters [9], differential invariants or
local jets [3, 7, 12, 20]. The SIFT [13], GLOH [16], and
DAISY [22, 23, 25, 26] descriptors also includes a spatial
pooling step in order to agglomerate the descriptive feature
in an arrangement around the interest point. A selection of
descriptors have previously been evaluated in [16] on the
same dataset as used in [17]. Again the limitations of the
dataset restricts the ability to generalize the results from this
survey to a wider class of scene types and more natural vari-
ation in illumination.

The ground truth in the data from [17] was obtained
by an image homography. This limits the scene geometry
to planar surfaces or scenes viewed from a large distance
where a homography is a good approximation. Fraundor-
fer and Bishof [8] addressed this limitation by generating
ground truth and requiring that a matched feature should be
consistent with the camera geometry across three views. In
Winder et al. [26, 11, 25, 6] results from Photo Tourism [21]
were used as ground truth.

Moreels and Perona [18] evaluated feature descriptors

similar to [8] based on pure geometry by requiring three
view geometric consistency with the epipolar geometry. In
addition they used a depth constraint based on knowledge
about the position of their experimental setup. Hereby
they obtained unique correspondence between 500-1000
detected points from each object. The limitation of their ex-
periment is the use of relatively simple scenes with mostly
single objects resulting in little self-occlusion. However,
self-occlusions are very frequent in real world scenes and
many interest points are typically found near occluding
boundaries, limiting the applicability of their conclusions.

The aim of this work is to compare pairs of feature de-
tectors and descriptors, to find the best combination. To
keep the computational burden manageable the number of
candidates have to be limited, and we thus only use candi-
dates which have previously been reported to perform well.
As for the detectors we choose Harris, Harris Affine, Harris
Laplace, Hessian Laplace, Hessian Affine, MSER, and Dif-
ference of Gaussian (DoG), because they are popular and
reported to work well in the literature [1, 24].

As for the feature descriptors, the state of the art is cur-
rently the SIFT [13] and DAISY descriptors [22, 23, 25, 26]
which we choose to use and implement using the frame-
work of Winder and Brown [26]. We also include con-
ventional (normalized) cross correlation as a baseline, since
much work has been done using this descriptor. The DAISY
descriptors however cover a wide range of descriptors; as
such we choose to divide our analysis into two, where we
first identify the best DAISY descriptors on a subset of the
detectors. This is the subject of Sec. 3, where 21 differ-
ent variants of the DAISY descriptor are evaluated. Each
combination is evaluated using ROC-curves (Receiver Op-
erating Characteristics). Two representative descriptors are
carried on to the last part of the analysis, reported in Sec. 4,
where a matrix of the seven detectors and four descriptors
are evaluated. A discussion of our results and recommenda-
tions is found in Sec. 5.

2. Data and Evaluation

In this investigation we use the DTU Robot dataset
[1, 2]1 illustrated in Fig. 1. This dataset is constructed un-
der controlled settings using an industrial robot. The set
consists of 60 complex scenes, and Fig. 2 shows how each
scene is viewed from 119 positions with known camera ge-
ometry. The dataset also incorporates light variation, but in
this work we only focus on diffuse lighting. In addition the
60 scenes have been surface scanned using structured light.
Together with the camera geometry this allows us to accu-
rately determine the correct camera correspondences with-
out matching visual features. In real outdoor scenes, as pre-
sented in [25], there is no alternative to have ground truth

1http://roboimagedata.imm.dtu.dk/
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Figure 2. The central frame in the nearest arc is the key frame,
and the surface reconstruction is attempted to cover most of this
frame. The three arcs are located on circular paths with radii of
0.5 m, 0.65 m and 0.8 m, which also defines the range of the linear
path. Furthermore, Arc1 spans +/ − 40◦, Arc2 +/ − 25◦ and
Arc3 +/− 20◦. Illustration from [1].

based on feature matching, but this could likely bias the re-
sult.

2.1. Evaluation criteria

The evaluation framework used is similar to the one
reported in [1], which only includes an evaluation of the
matching performance of different detector methods on the
DTU Robot dataset. We want to determine if a pair of corre-
sponding features are correct or not, where correspondence
is found by the Euclidean distance between feature descrip-
tors. Fig. 2 illustrates how the features are matched between
one key frame and all other images. Fig. 3 shows the two
criteria that we use for determining correct correspondence.
Correct matches have to be within 2.5 pixels of the epipo-
lar line and the corresponding 3D point must be within a 5
pixel error margin corresponding to approximately 3 mm.

Given an image pair, where one image is the key frame,
a detector-descriptor pair is evaluated by

1. For each feature in the key frame find the distance to
the best δb and the second best δs matching feature in
the other image.

2. For each feature correspondence compute the ratio,
r = δb

δs
, between the match score of the second best

and the best correspondence. It is also determined if
the best match is correct or not.

3. Using this ratio, r, as a predictor for correct matches,
c.f. [13], the ROC (Receiver Operating Characteristic)

(a)

2.5 pix

(b)

2 x 5 pix

app. 2 x 3 mm

Figure 3. Matching criteria for interest points. This figure gives
a schematic illustration of a scene of a house and two images of
the scene from two viewpoints. (a) The consistency with epipo-
lar geometry, where corresponding descriptors should be within
2.5 pixels from the epipolar line. (b) Window of interest with a
radius of 5 pixels and corresponding descriptors should be within
this window, which is approximately 3 mm on the scene surface.
Ground truth is obtained from the surface geometry. Illustration
from [1].

curve, as a function of r, is constructed based on all
features in an image pair. We compare the area under
the ROC curve (AUC). The area is between zero and
one, where one indicates perfect performance of the
detector-descriptor pair.

4. The AUC is used as the performance measure of a
detector-descriptor combination on a pair of images.

These AUCs are the basis for our statistical analysis. The
AUC is chosen as a performance measure, in line with [25],
because it elegantly removes the need to balance between
many false positive or many false negatives. As a result it
strongly relates to the underlying discriminative power of
the method.

We compare different detector-descriptor methods by
computing the mean performance, i.e. the mean AUC over
the 60 sets for each position, c.f. Fig. 6, 7 and Tab. 2. Based
on the central limit theorem, we assume these means to be
normal distributed. We compare the means using students
t-test

µ1 − µ2

σ̂
, (1)

where µ1 and µ2 are the two means to be compared and σ̂
is an estimate of the standard deviation. When computing
an estimate of the variances, σ̂2, we perform an analysis
of variance, assuming that for a given method and a given
problem, performance is given by two factors

Performance = Problem Difficulty + Method + Noise .



Figure 4. Layout of the descriptors for spatial summation. The
circles mark the size of the sample points and the dark color shows
the Gaussian weighing. First row one ring with six samples – (1-
6) (a), two rings with eight samples in each – (1-8-8) (b), three
rings with four, eight and twelve samples – (1-4-8-12) (c). Second
row one ring with six samples – large footprint – (1-6 lf) (d), small
footprint – (1-6 sf) (e). One ring with six samples – large sample
area – (1-6 lg) (f), small sample area – (1-6 sg) (g).

Since we are interested in comparing the methods the vari-
ance due to the Problem Difficulty is factored out, which
reduces the overall variance, σ̂2, making it easier for a dif-
ference in means to be significant.

2.2. Implementation

All feature detectors are computed by implementations
provided by the authors of [13, 14, 15]2, whereas we im-
plemented our own interest point descriptors. They are esti-
mated on an affine warped image patch sampled according
to the parameters obtained from the interest point detection
and rotated to one dominant gradient direction. The image
patch is sampled with a radius of three times the scale of
the feature point and we discard points that exceed the im-
age borders. We found this to be a good tradeoff between
performance and number of discarded sample points. In
the experiments described in Sec. 3 we use a patch size of
66 × 66 pixels whereas the patches in the experiments in
Sec. 4 are 30 × 30. This is especially a consequence of the
pixel similarity estimates where we have feature vectors of
900 dimensions. Using the 66×66 pixel patches this would
be 4356 dimensions, which approximately slows the calcu-
lation down with a factor four. We only observed a minor
loss in precision, which is shown in Tab. 1 “spatial layout

2http://www.robots.ox.ac.uk/~vgg/research/
affine/

– 1-8-8” should be compared to “HesAff” and “HarAff” –
“DAISY-I” and “DAISY-II” in Tab. 2. It shows a perfor-
mance loss of 0.013 caused by reduction in patch size.

Our implementation of the DAISY descriptor closely fol-
lows the description of Winder et al. [25]3. To ensure that
the only difference between the DAISY and SIFT descrip-
tors were the sampling, we chose to implement our own
SIFT descriptor. To validate the performance we did a
small experiment to compare to the original implementa-
tion of Lowe [13]4, and we obtained similar performance
with patches of 66 × 66 pixels and about 5% fewer match-
ing descriptors with the 30 × 30 patches.

3. Comparing DAISY descriptors
Brown et al. [6] presents a framework for optimizing fea-

ture descriptors. They have chosen the DAISY-type descrip-
tor presented in Winder and Brown [26], because it is eas-
ily reconfigurable. The optimization is based on three out-
door scenes where ground truth is obtained from the bundler
software [21], which is based on the SIFT framework [13].
In this experiment we have performed a similar investiga-
tion to Brown et al., but based on the extended DTU Robot
dataset, where ground truth geometry is based on precise
calibration and structured light scanning. In order to keep
the computational burden manageable, we only did this ex-
periment on the Harris affine and Harris Laplace features.

The descriptors proposed by Brown et al. [6] are var-
ied in the spatial layout and differential-geometric response.
The spatial layout that we have tested are illustrated in
Fig. 4. We have varied the number of sample points, the
size of sample points and their relative distance. We em-
ploy three differential-geometric responses – the directional
binned gradients in four and eight directions (Type 1), av-
erage positive and negative gradients (Type 2) and steerable
filters (Type 3). The experimental result is summarized in
Tab. 1. This approach closely follows Winder et al. [25].

The results show that the effect of changing the
differential-geometric response is limited, so it is clearly an
advantage to select either Type 1 or 2, because the compu-
tational cost of these descriptors is much lower. There is
a small advantage in selecting a spatial layout where two
rings are sampled, but three ring sampling does not give an
improvement. Fig. 5 shows that this advantage is seen for all
positions. The dimensionality difference arise from number
of sample directions in Type 1, combinations of positive and
negative gradients in Type 2, and number of directions of
the steerable filters in Type 3. But there is almost no dif-
ference in selecting the large dimensionality over the small.
There is a clear difference in Scene type, where the AUC
is significantly higher for less specular objects like fabric

3http://cvlab.epfl.ch/~brown/patchdata/
patchdata.html

4http://www.cs.ubc.ca/~lowe/keypoints/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://cvlab.epfl.ch/~brown/patchdata/patchdata.html
http://cvlab.epfl.ch/~brown/patchdata/patchdata.html
http://www.cs.ubc.ca/~lowe/keypoints/
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Figure 5. Performance evaluation of the DAISY descriptor. Average AUCs for Type 2 descriptors are shown in (a - d). The vertical axis in
the graphs show the AUC, and the horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the
sample path shown in Fig. 2, with Arc 1 (a), Linear Path (b), Arc 2 (c) and Arc 3 (d). The labels relate to the descriptor design shown in
Fig. 4. In (e - f) probability density functions for different descriptor designs are shown for a 30◦ angle where (e) is affine interest points
and (f) is non-affine. This shows that with a sparse sampling the performance goes down for the non-affine, but the affine invariance can
be compensated by a dense sampling.

than for specular objects like beer cans. The difference be-
tween affine and non-affine feature detectors is surprisingly
small, which might be a result of complexity of the evalu-
ated scenes with many occluding boundaries. The findings
regarding affine detectors are confirmed by the experiments
presented in Sec. 4.

From this study, we choose the two-ring DAISY descrip-
tor with small (DAISY-I) and large dimensionality (DAISY-
II) for further analysis. This is done together with SIFT and
a vector of simple pixel intensities (normalized cross corre-
lation). These four descriptors are analyzed in combination
with seven feature detectors.

4. Comparing Detector-Descriptor Combina-
tions

In this section we present the evaluation of detector-
descriptor combinations with the aim of finding the best
performers. We compare a combination of the four fea-
ture descriptors (SIFT, DAISY-I, DAISY-II and cross cor-
relation) with seven feature detectors. These detectors are
Harris corner detector [10], Harris Laplace, Harris affine,
Hessian Laplace, Hessian affine [17], MSER [14], and Dif-

ference of Gaussians (DoG) [13]. The combined result is
summarized in Tab. 2 and Fig. 6

To evaluate the significance of the performance differ-
ence we have estimated the average standard deviation σ̂ of
(1). Overall we obtain σ̂ = 0.08, but if we exclude cross
correlation, which has a higher variance than all others,
then we obtain σ̂ = 0.05. To give an idea of significance
based on Student’s t-test from (1) we consider a difference
larger than 0.05 as significantly different on a 84% confi-
dence level and 0.1 as significant on a 98% level.

The performance is computed for all 28 combinations
on all 119 camera positions, where the distribution of the
performance was evaluated over all 60 scenes. Our central
evaluation criterion is the mean over these 60 scenes for a
given position and detector-descriptor combination. Due to
space limitations we are only able to present a summarized
evaluation as shown in Fig. 6 and Tab. 2 outlining our con-
clusions.

Fig. 6 shows a combination with the same detector but
different descriptors. Cross correlation is clearly outper-
formed by the other descriptors. SIFT and DAISY has al-
most identical performance, and Tab. 2 shows that their av-
erage difference is less than 0.015, which is statistically in-



Figure 6. Mean AUC for the MSER detector displayed for all four descriptors and for all positions. The vertical axis in the graphs show the
AUC, and the horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the sample path shown
in Fig. 2, with Arc 1 (a), Linear Path (b), Arc 2 (c) and Arc 3 (d). It is seen that the SIFT and the two DAISY descriptors have very similar
performance, compared to a σ̂ = 0.05, but outperform the correlation.

Comparison Type Performance
Descriptor type Type 1 0.781

Type 2 0.785
Type 3 0.791

Spatial layout 1-6 0.786
1-8-8 0.804
1-4-8-12 0.802
1-6 lf 0.784
1-6 sf 0.778
1-6 lg 0.784
1-6 sg 0.763

Descriptor dimensionality Small 0.783
Large 0.788

Scene types Houses 0.751
Books 0.791
Fabric 0.831
Greens 0.799
Beer cans 0.696

Affine vs. Laplace Laplacian 0.783
Affine 0.788

Table 1. Mean AUC for different groupings of the descriptor types.
The table shows mean value of all positions. In Fig. 4 the spatial
layout is shown.

Corr SIFT DAISY-I DAISY-II Avg.
Har 0.615 0.767 0.729 0.741 0.713
HarAff 0.629 0.818 0.791 0.798 0.759
HarLap 0.635 0.814 0.784 0.790 0.756
HesAff 0.636 0.795 0.773 0.779 0.746
HesLap 0.630 0.757 0.740 0.742 0.717
MSER 0.648 0.846 0.826 0.832 0.788
DOG 0.646 0.849 0.837 0.843 0.794
Avg. 0.634 0.807 0.783 0.789 0.753
Table 2. Mean AUC over all positions for the feature detector and
descriptor combinations. Top 3 performers highlighted with bold-
face (Har is Harris corners, HarAff is Harris affine, HarLap is
Harris Laplace, HesAff is Hessian affine and HesLap is Hessian
Laplace feature detectors respectively).

significant.
In Fig. 7 the SIFT descriptor is shown in combination

with the seven detectors. We chose to show SIFT, but very
similar results were obtained for the DAISY descriptors.
Here there is a difference in performance where MSER and
DOG detectors perform about one standard deviation bet-
ter than the Harris affine and Harris Laplace detectors, and
about two standard deviations better than the Harris based
detectors, which is statistically significant. Harris corner
detector with no scale adaption performs well when the
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Figure 7. Mean AUC for the SIFT descriptor displayed for all seven detectors and all positions. The vertical axis in the graphs show the
AUC, and the horizontal is the angle (a,c,d) and distance (b) relative to the key-frame. Each graph corresponds to the sample path shown
in Fig. 2, with Arc 1 (a), Linear Path (b), Arc 2 (c) and Arc 3 (d). Here it is seen that the MSER and DOG detectors are the top performers,
outperforming the Harris based detectors on a statistically borderline level, and significantly outperforming the hessian based descriptors.
The performance of the ’pure’ Harris corner detector is very scale dependent. Similar results are obtained for the two DAISY descriptors, as
indicated in Fig. 6. The validity of our findings is further cooperated by considered the probability distribution functions for each position,
in (e) the pdf is shown for 0.86◦ of Arc 2.

scale change is not to large.

So, our experiments suggest that the best choice is a
DOG or MSER detector with a SIFT or DAISY descriptor,
or a perhaps a Harris corner detector if the scale change is
low. The dataset used also has different categories of scene
types like ’fabric’, ’books’, ’model houses’, etc. and run-
ning the experiments on a specific scene type did not change
the overall picture. Compared to the results in [1], where the
recall rate of detectors was evaluated on the same dataset,
it is interesting to see that the best performers in a full fea-
ture tracking frame work are not identical to the ones with
the best recall rates. Again this implies that the discrimina-
tive power of the extracted features vary for different fea-
ture detectors. This last point is especially noteworthy for
the MSER detectors. Both the descriptor experiment pre-
sented in Sec. 3 and this combined experiment show that an
affine detector has an advantage, but this advantage is small
compared to variance making it statistically insignificant,
see Fig. 8.

5. Discussion

Based on the experiments reported in this paper the gen-
eral conclusion is that the best detector-descriptor combi-
nation is either the DOG or MSER detectors and SIFT or
DAISY descriptors. If the scale change is low a Harris cor-
ner detector would be superior and also faster and simpler to
run and implement. The experiments also show, that many
other performance differences exist, which confirm other
studies, but these differences are not statistically significant.
This demonstrates a need for considering statistical signif-
icance when performing these type of comparisons, neces-
sitating the use of large datasets to make meaningful esti-
mates of significance and variance, such as the dataset used
here [1].

Furthermore, it is interesting to note that the DOG detec-
tors perform much better than the Hessian type detectors,
although they are very similar, i.e. the DOG is basically a
well-engineered approximation of the Laplace filter, which
is equal to the trace of the Hessian. This indicates that per-
haps a better-engineered version of the Harris Laplace cor-
ner detector, inspired by the DOG detector, could be made.
This is especially interesting in the light that the Harris cor-



ners performed better than the Hessians.
A last point of curiosity is that we have not been able to

produce results collaborating that using affine invariant fea-
ture detectors carries a statistical significant advantage on
general scene types. However this type of invariance may
have merit in e.g. 3D reconstruction of urban type scenes or
other near-planar scenes.

Figure 8. Affine vs. non-affine (Lap). Affine performs slightly
better with large angles, but the improvement is not significant.
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