
Kriging Example

The main result in kriging is concerned with estimation of the value

Z(r0)

(also referred to asZ0) based on the observed values

{Z1, · · · , ZN} = ZT

We will considerlinear estimatorsonly

Ẑ0 =
N∑
i=1

wiZi = wTZ

We demand that the estimator isunbiasedand get

wT1 =
∑

wi = 1

The kriging estimate is obtained by choosingw so that the estimation variance

σ2
E = E{[Z0 − Ẑ0]2}

is minimised.

Let

D{Z} =


V {Z1} · · · C{Z1, ZN}
...

...
C{ZN , Z1} · · · V {ZN}



=


C11 · · · C1N
...

...
CN1 · · · CNN


= C

C{Z, Z0(r)} =


C{Z1, Z0(r)}
...
C{ZN , Z0(r)}

 =


C10
...
CN0


= D

Using this, the mean squared error expression can be written

σ2
E = E{(Z0(r)− Ẑ0(r))2}

= V {Z0(r)− Ẑ0(r)}
= C00 +wTCw − 2wTD



The problem is now to minimise

C00 +wTCw − 2wTD

with the constraint that
wT1 = 1

We introduce a Lagrange multiplier−2λ and minimise

F = C00 +wTCw − 2wTD + 2λ(wT1− 1)

without constraints.

By differentiation we get

∂F

∂w
= 2Cw − 2D + 2λ1 = 0

∂F

∂λ
= 2wT1− 2 = 0

or

[
C 1
1T 0

] [
w
λ

]
=

[
D
1

]
,

which is the so-calledordinary kriging system.

By direct solution we get

Cw + λ1 = D i.e. w + λC−11 = C−1D

i.e. 1Tw + λ1TC−11 = 1TC−1D

Since1Tw = 1 we have

λ = 1TC−1D−1
1TC−11

= DTC−11−1
1TC−11

If we insert this above we get
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w = C−1[D − λ1]

The weights can all be determined from the spatial lay-out and the semivariogram.

The matrix inversion includes the observations we want to krige from only and not the
point we want to krige to. This point is included via there covariancesD linearly inλ
and inw.

The minimal variance is the so-calledordinary kriging variance, which is

V {Z0 −wTZ} = C00 +wTCw− 2wTD

= C00 +wT [D − λ1]− 2wTD =

σ2
OK = C00 −wTD − λ

Some results on kriging weights

We consider the following situation

ZZ Z

3

Z 3021

-2 -1 0 1 2

Ẑ0 = wTZ = w1Z1 + w2Z2 + w3Z3

We want to krige a value forZ0 based on the observations{Z1, Z2, Z3}. We assume
that we have the semivariogram

γ̂(h) =


0 h = 0

C0 + C1

(
3
2
h
R
− 1

2
( h
R

)3
)

0 < h < R

C0 + C1 R ≤ h.

i.e. a spherical model with nugget effect.

We assume thatR = 6, and forC0 = 0 andC1 = 1 we get

3



h 0 1 2 3 4 5 6
γ(h) 0 .2477 .4815 .6875 .8519 .9606 1.0000

This gives the correlation function

h C(h)
0 C0 + C1

1 C1 0.7523
2 C1 0.5185
3 C1 0.3125
4 C1 0.1481
5 C1 0.0394
6 0

Therefore we have

D



Z0

Z1

Z2

Z3


 =


C0+ C1

C10.5185 C0+ C1

C10.7523 C10.7523 C0+ C1

C10.3125 C10.0394 C10.1481 C0 + C1



From this we have

C

Z0,

 Z1

Z2

Z3


 = D =

 0.5185
0.7523
0.3125

C1

D


 Z1

Z2

Z3


 = C = C0I + C1

 1
.7523 1
.0394 .1481 1



The solution to the kriging system is

λ = [DTC−11− 1]/[1TC−11]

w = C−1[D − λ1]

σ2
OK = C0 + C1 −wTD − λ
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These values have been determined for different values ofC0 andC1 and are shown in
the table below.

It is seen that we for a pure nugget effect, i.e.C1 = 0 have the weights1
3
, 1

3
, 1

3
, i.e. just

a smoothing. The kriging varianceV {Z0 −wTZ} = σ2 + σ2/3 = 4
3
σ2 is also seen.

For neglectable nugget effect we notice that the weights converge towards

-2 -1

0

0 1 2 3

-.04 .80 .25Z

If we have equal amounts of nugget effect og “dependent variance” we get the weights

-2 -1

.30

0 1 2 3

Z 0.27 .43

We also notice that the weights do not depend upon the scaling of the variances. The
dependence is only on the ratio between the variancesC0 andC1.
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C0 C1 w1 w2 w3 λ σ̂2
OK

0 1 –.0407 .7955 .2452 –.0489 .3949
0 2 –.0407 .7955 .2452 –.0978 .7898
0 3 –.0407 .7955 .2452 –.1467 1.1847
1 1 .2702 .4316 .2982 –.3584 1.8004
1 2 .2219 .4932 .2849 –.3933 2.2431
1 3 .1861 .5365 .2774 –.4325 2.6721
2 1 .3004 .3894 .3103 –.6878 3.1422
2 2 .2702 .4316 .2982 –.7168 3.6008
2 3 .2442 .4654 .2904 –.7502 4.0478
3 1 .3113 .3727 .3161 –1.0193 4.4788
3 2 .2899 .4046 .3055 –1.0452 4.9449
3 3 .2702 .4316 .2982 –1.0752 5.4013
1 0 .3333 .3333 .3333 –.3333 1.3333

0.1 1 .0746 .6658 .2596 –.0746 .5539
0.01 1 –.0250 .7780 .2470 –.0512 .4117

1 100 –.0250 .7780 .2470 –5.1238 41.1720
1 10000 –.0406 .7954 .2452 –489.3 3950.9
1 0.01 .3327 .3347 .3327 –.3335 1.3382
1 0.1 .3268 .3461 .3271 –.3349 1.3816
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