NAME

fuzzy - fuzzy c-means spectral and spatial segmentation

SYNOPSIS

fuzzy – **c** *nclust* [–**m** *m*] [–**b** *b n_size*] [–**g** *gam ext_file*] [–**r** *randomseed* | –u *membership_filename* | –S *means_filename*] [–**saveS** *means_filename* [–**lump** *lumpit eps*] [–**P** *potts_merge n_size p_a p_b1 p_b2*] [–**M** *transient*] [–**E** *max_rel_error*] [–**e** *max_error*] [–**i** *maxiter*] [–**v**] [–**O1** *map_thresh*] [–**G**]

DESCRIPTION

fuzzy performs unsupervised classification by fuzzy c-means spectral and spatial clustering into maximally *nclust* clusters. An external field can be included in the clustering by specifying -g.

If $-\mathbf{b}$ is specified (and $b \neq 0$) spatial weights are used. n_size specifies the order of the neighbourhood to be used (1, 2 or 3 corresponding to 4, 8 or 12 neighbours). n_size is pr. default 1. With $-\mathbf{P}$ the spatial characteristics are included by means of a MRF. *potts_merge* is a flag which indicates whether or not to merge the spatial memberships with the spectral after each iteration. n_size is the order of the MRF and can be either 1 or 2. $p_a p_b1 p_b2$ are parameters for the cliques in the MRF. Pr. default the spatial weight b is set to 1. But can be altered by means of $-\mathbf{b}$.

If **-g** is specified (and *gam* !=0) an external field is read from file *ext_file* and used.

Pr. default cluster means are assigned equidistant in the feature space. With **-r** cluster means are assigned randomly. With -S the cluster centres are read column-wise from *means_filename*. If **-u** is specified the cluster centres are calculated using the memberships in the *membership_filename* as weights on the spectral observations in the image. Using **-u** or **-S** will override the number of cluster centers *nclust*.

With **-lump** then, if the cluster centres after *lumpit* iterations are closer than *eps* in feature space, they are lumped together into one cluster.

If -M is specified the distance measure in feature space switches from Euclidean to Mahalanobis distance after **transient** iterations.

Cluster centres can be stored by using -saveS means_filename

Iterations are stopped if either stop criteron is met (-e, -E or -i).

The means file must be HIPS float format. Input must be in float format. Output containing cluster membership degrees is float. With **-O1** the last frame in the output is the actual cluster number with MAP estimate $> map_thresh$.

With -G gnuplot is used to plot the evolution of the cluster centres as the algorithm iterates.

OPTIONS

-c nclust

maximum number of clusters; must be specified

 $-\mathbf{m}$ m degree of spectral fuzziness which grows with m (m is power in distance measure, m = 3 corresponds to inverse distance); defaults to 2

-b *b n_size*

weight on spatial term; defaults to 0. *n_size* defaults to 1;

-g gam ext_file

weight on term from external field read from *ext_file*; defaults to 0 (no external field read)

-S means_filename

means in means_filename are specified column-wise

-saveS means_filename

means in means_filename are specified column-wise

-lump lumpit eps

eps is maximal distance between cluster centres, below this distance cluster centres are lumped together after *lumpit* iterations

-e max_change

is the maximal absolute change in the Frobenius norm of ... from iteration to iteration; defaults to 0.0

-E max_rel_change

is the maximal relative change in the Frobenius norm of \dots from iteration to iteration; defaults to 0.001

-i maxiter

is the maximal number of iterations; defaults to 50

-v verbose

SEE ALSO

disc, regcovmat, carth

REFERENCES

Rafael Wiemker. "Unsupervised fuzzy classification of multispectral imagery using spatial-spectral features". In I. Balderjahn, R. Mathar and M. Schader (Eds.) *Data Highways and Information Flooding, a Challenge for Classification and Data analysis,* Springer 1997.

J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.

CONTACT

Allan Aasbjerg Nielsen, M.Sc., Ph.D. IMM, Department of Mathematical Modelling Technical University of Denmark, Building 321 E-mail aa@imm.dtu.dk, Internet http://www.imm.dtu.dk/~aa

AUTHORS

Klaus Baggesen Hilger, M.Sc. IMM, Department of Mathematical Modelling Technical University of Denmark, Building 321 E-mail kbh@imm.dtu.dk, Internet http://www.imm.dtu.dk/~kbh

Dan Rasmussen, M.Sc., Ph.D. E-mail dan@ruc.dk