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ABSTRACT

The Maximum Noise Fractions (MNF) transformation is used as a restoration tool in a
512�512 subscene of a 63 channel spectral dataset recorded over the Pyrite Belt in Southern
Spain with the Geophysical Environmental Research Imaging Spectrometer (GERIS). The
data obtained from such a scanning device are very useful in e.g. mineral exploration and
environmental surveillance. Following the transformation from the original image space
into the MNF space, a Fourier transformation of the MNFs (which are ordered by signal-to-
noise ratio) will show more and more noise content. Also, the strong striping in primarily
the visual bands of the scanner will be very conspicuous in the Fourier domain of only a few
MNFs. We automatically detect the peaks in the Fourier spectra representing this striping,
and if so desired we replace them by an iterated local mean value. Transforming back into the
MNF space by the inverse Fourier transformation gives restored MNFs and transforming
back into the original image space gives restored original bands. If we want to remove
salt-and-pepper noise also, we can replace the noise-only MNFs by their mean value before
transforming back into the original image space. This noise removal is very important along
with atmospheric correction of the data before performing physically oriented analysis.

1.0 INTRODUCTION

Remote sensing imaging spectrometers measure the reflected/emitted energy in a number of discrete
wavelength intervals. This “repetition” of the measurement at different wavelengths induces a high degree of
redundancy in the data. This can be used for dimensionality reduction, noise reduction and data compression.

The exploitation of the spectral redundancy in the data is traditionally carried out by means of the
celebrated principal components (PC) transformation. This is a pixel-wise operation that does not take
the spatial structure of image data into account. Any permutation of the pixels in an image sequence will
produce the same principal components. This is conceptually unsatisfactory. A spatial element should enter
into our analysis. As opposed to the principal components that are new orthogonal variables with maximum
variance, the maximum noise fractions are orthogonal linear transforms of the original variables that have
the the highest signal-to-noise ratio. Also, PC analysis rarely produces components that show decreasing
image quality with increasing component number. It is perfectly imaginable that certain types of noise have
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higher variance than certain types of signal components.

The GERIS data analyzed here are corrupted by a heavy two and four line banding. Such a regular noise
pattern is well detected by Fourier methods. Also, the MNF transformation tends to isolate the striping in
only few factors as a type of signal. The idea of this paper is now to combine the MNF transformation and
well-known Fourier destriping techniques by first transforming from original spectral space into MNF space,
from MNF space into Fourier space of MNFs, clean hopefully only a few MNFs isolating the striping, and
then transforming via MNF space back into original spectral space again.

2.0 DATA DEPENDENT ORTHOGONAL TRANSFORMATIONS

First we will briefly consider the theory of principal components (see also Anderson, 1984). Second, two
procedures for transformation of multivariate data given a spatial grid (images) with the purpose of isolating
signal from noise and data compression are considered. These are the minimum/maximum autocorrelation
factors transformation, which was first described by Switzer and Green (1984) and the maximum noise
fractions transformation which was described by Green et al. (1988). An application of a version of the
MNF transformation called Noise-Adjusted Principal Components to GERIS data is given in Lee et al.
(1990). MAF and MNF analyses are also described in Conradsen et al. (1985, 1991) and Larsen (1991).

2.1 PRINCIPAL COMPONENTS

The principal components of a stochastic multivariate variable are linear transformations which produce
uncorrelated variables of decreasing importance (i.e. decreasing variance). Let us consider a multivariate
data set of p bands with grey levels Zi(x); i = 1; : : : ; p; where x denotes the coordinates of the sample,
and the dispersion is CovfZ(x)g = �; where ZT = [Z1; : : : ; Zp]. The principal components are linear
transforms

Yi(x) = a
T
i Z(x); i = 1; : : : ; p (1)

given by unit vectors ai, that have the property that the variance of Yi(x) is the highest among linear
transforms orthogonal to aj; j = 1; : : : ; i� 1. The variance of Yi(x) is the following Rayleigh coefficient

VarfaTi Zg = a
T
i �ai =

aTi �ai

aTi ai
: (2)

This shows that the vectors ai are eigenvectors of� and the variance of Yi(x) is equal to the i’th eigenvalue,
�i, of �. The first principal component is the linear transform of the original variables with the highest
variance. The i’th principal component is the linear transform of the original variables that has the highest
variance subject to the constraint that is uncorrelated with the first i � 1 principal components. If we seek
the i variables describing as much as possible of the total variance of the original variables the solution is
the first i principal components. The fraction of the total variance described by these is given by

�1 + � � �+ �i
�1 + � � �+ �i + � � �+ �p

: (3)

A drawback of principal components analysis is that its result depends on the unit of measurement of the
original variables. This problem can be eliminated by considering the standardized variables instead, i.e.
performing the PC analysis on the correlation matrix instead of on the dispersion matrix.
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2.2 MAXIMUM NOISE FRACTIONS

As we will show later by example, principal components do not always produce components of decreasing
image quality. Maximizing variance across bands is not an optimal approach for image data. Neither is it
an obvious one. Instead we will maximize a measure of image quality, namely a signal-to-noise ratio. This
should ensure the desired ordering in terms of image quality.

The MNF transformation can be defined in several ways. It can be shown that the same set of eigenvectors
is obtained by procedures that maximize the signal-to-noise ratio and the noise fraction. The procedure was
first introduced by Green et al. (1988) where the authors in continuation of an earlier work by Switzer
and Green (1984) choose the latter. Hence the name maximum noise fractions. First we will deduce the
maximum noise fractions transformation and then – with the purpose of eliminating noise – we will sketch
methods for estimating the covariance structure of the signal and the noise.

Let us as before consider a multivariate data set of p bands with grey levels Zi(x); i = 1; : : : ; p; where
x denotes the coordinates of the sample. We will assume an additive noise structure

Z(x) = S(x) +N (x); (4)

where ZT = [Z1; : : : ; Zp]. Also, we will assume that S(x) and N(x) are uncorrelated signal and noise
components. Thus

CovfZ(x)g = � = �S +�N ; (5)

where �S and �N are the covariance matrices for S(x) and N(x) respectively. Note that the techniques
described in this section can in principle be applied to multiplicative noise also by first taking logarithms of
the observations.

We define the signal-to-noise ratio (SNR) of the i’th band as

VarfSi(x)g
VarfNi(x)g

; (6)

the ratio of the signal variance and the noise variance. We define the maximum noise fractions transformation
as the linear transformations

Yi(x) = a
T
i Z(x); i = 1; : : : ; p (7)

such that the signal-to-noise ratio forYi(x) is maximum among all linear transforms orthogonal toYj(x); j =
1; : : : ; i� 1. Furthermore we shall assume that the vectors ai are normed so that

a
T
i �ai = 1; i = 1; : : : ; p: (8)

Maximization of the noise fraction leads to the opposite numbering, namely a numbering that gives increasing
image quality with increasing component number. The SNR for Yi(x) is

VarfaTi S(x)g
VarfaTi N(x)g

=
aTi �ai

aTi �Nai
� 1: (9)
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If we work on the noise fraction instead, we get

VarfaTi N (x)g

VarfaTi Z(x)g
=
a
T
i �Nai

aTi �ai
: (10)

In both cases we will, however, find the vectors ai as eigenvectors to the real, symmetric, generalized
eigenproblem

detf�N � ��g = 0: (11)

Thus the SNR for Yi(x) is given by 1=�i�1, where �i is the eigenvalue of�N with respect to�. Using the
ordering obtained from maximization of the SNR the first maximum noise fraction is the linear transform of
the original variables with the highest signal-to-noise ratio. The i’th maximum noise fraction is the linear
transform of the original variables that has the highest signal-to-noise ratio subject to the constraint that is
uncorrelated with the first i� 1 maximum noise fractions.

An important characteristic of the MNF transformation which is not shared by the PC transformation is
the invariability to linear scaling (the signal-to-noise ratio is maximized).

When calculating minimum/maximum autocorrelation factors we find the eigenvectors of �� with
respect to �, where �� is the covariance matrix of the difference between an image and the same image
shifted spatially by a displacement vector �.

2.2.1 Estimation of the Noise Covariance Matrix

The central problem in the calculation of the MNF transformation is the estimation of the noise with the
purpose of generating a covariance matrix that approximates �N . It is in this process we will make use of
the spatial characteristics of the image. We list four methods

� Simple differencing. The noise is estimated as the difference between the current and a neighboring
pixel. In this case we refer to �N as �� and we refer to the new factors as minimum/maximum
autocorrelation factors.

� Causal SAR. The noise is estimated as the residual in a simultaneous autoregressive (SAR) model
involving e.g. the neighboring pixels to the W, NW, N and NE of the current pixel.

� Differencing with the local mean. More pixels could be entered in to the estimation by differencing
between the current pixel and the local mean.

� Differencing with local median. Mean filters blur edges and other details. This could be avoided by
using the local median instead of the local mean.

2.2.2 Periodic Noise

As satellite images and images obtained from airborne scanners often are corrupted by striping we will
consider methods for eliminating this type of noise. As periodic noise such as striping often has a high
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degree of spatial correlation, it will often be considered as signal by the MAF and MNF transformations. It
should be noted that periodic noise can be very disturbing as the regular pattern catches the viewer’s eyes.

A “naı̈ve” bandwise Fourier filtering may corrupt significant parts of the relevant signal. Therefore
we shall minimize the amount of filtering by eliminating the noise by filtering out the relevant peaks in
the Fourier domain of the MNFs that isolate the striping and other types of noise. If we also filter or zero
noise-only MNFs we eliminate salt-and-pepper noise. In order not to create an inverse pattern by setting the
Fourier values to zero we keep the phase and fill the magnitude values by an iterative procedure that takes
means of neighboring values.

3.0 CASE STUDY – GERIS DATA FROM SOUTHERN SPAIN

The GER imaging spectrometer actually consists of three spectrometers, that view the ground through
the same aperture via an optoelectronic scanning device. The three spectrometers record a total of 63 bands
through the visible (31 bands), nearinfrared (4 bands) and shortwave-infrared (28 bands) wavelength range
between 0.47 and 2.45 �m. The spectral resolution in the visible region between 0.47 and 0.84 �m is 12.3
nm. In the nearinfrared (NIR) region from 1.40 nm to 1.90 nm it is much broader, around 120 nm. In
the shortwave-infrared (SWIR) region between 2.00 and 2.45 �m the spectral resolution is 16.2 nm. This
whiskbroom scanner uses a rotating mirror perpendicular to the flight direction to scan a line of 512 pixels
with a scan angle of 45� to either side of the flight track. A flight altitude of 3000 m and an aperture setting
of 2.5 mrad leads to a nominal pixel size of 7.5 m. The data are stored in 16 bit; the dynamic range is 12 bit.
After recording the data are corrected for aircraft roll by use of the roll data recorded by a gyroscope hard
mounted on the scanner optics. Because of the rotating mirror the GERIS data are corrupted by heavy two
and four line banding. This banding comes from differences in optical properties (among other things dirt
and oil) of the rotating mirror surfaces. The data used here are from a testsite in southern Spain. A 512�512
extract is analyzed.

3.1 TRANSFORMATIONS OF THE GERIS DATA

Transformations of the GERIS data were made using ordinary principal components and maximum noise
fractions transformations. In the MNF case the noise was estimated as residuals of SAR models involving
the W and N neighbors of the current pixel. Figure 1 shows principal components 1 through 6 (row-wise).
It is evident that the principal components transformation does not yield the desired component ordering
of image quality: clearly, PC5 contains more signal than PC4. Figure 2 shows maximum noise fractions 1
through 6 (row-wise). These give a much more satisfying ordering of image quality. One clearly sees an
increasing spatial frequency with component number. An inspection of all 62 PCs and MNFs (the original
band 28 is omitted) shows that this is true for higher order components also. Figure 3 shows correlations
between the 62 original bands (band 28 omitted) and the first 10 MNFs. The different behavior of the three
spectrometers is clearly seen. The number on the ordinate accompanying the MNF identification is the SNR.

3.2 FILTERING THE GERIS MNF IMAGES

We will now concern ourselves with the filtering of the components obtained by applying the MNF
transformation. The advantage of performing the clean-up in the MNF Fourier space rather than in the
original image band Fourier space is that individual bands that contribute only little to the noise are cleaned
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to a lesser extent and vice versa. Also, we only need to process signal components.

In Figure 4 the un-filtered and the filtered MNF4 are seen. As the human eye is very easily disturbed by
striping, the visual impression of this new component is much better.

The MNF transformation is a good tool for elimination of salt-and-pepper noise as it makes a decompo-
sition of spatial frequency. Assuming the components of high spatial frequency to be noise, we can set these
to their mean values before transforming back into the original image space, thus eliminating this noise. In
Figure 5 we show the original channel 1 and channel 1 obtained by calculating the MNFs, retaining the first
20 MNFs, performing the Fourier filtering by removing peaks in the magnitude of the Fourier transforms
corresponding to the two and four line banding individually, and transforming back into image space. This
procedure will remove not only salt-and-pepper noise but also other types of noise that might be isolated in
higher order MNFs (MNF21 and up).

4.0 CONCLUSIONS

Following the transformation from the original image space into the MNF space, a Fourier transfor-
mation of the MNFs (which are ordered by signal-to-noise ratio) shows more and more noise content. We
automatically detect the peaks in the MNF Fourier spectra representing the striping present in the data, and we
replace them by an iterated local mean value. Transforming back into the MNF space by the inverse Fourier
transformation gives restored MNFs and transforming back into the original image space gives restored
original bands. In order to remove salt-and-pepper noise also, we replace the noise-only MNFs (MNF21 to
MNF62) by their mean values before transforming back into the original image space. The results presented
show that when the taks is noise removal preprocessing, the combination of the MNF transformation and
Fourier techniques is a successful one. The two and four line banding, and the salt-and-pebber noise in the
original GERIS channels have been removed by the techniques presented.
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Figure 1: Principal Components 1 to 6
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Figure 2: Maximum Noise Fractions 1 to 6
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Figure 3: Correlations between Original Bands and MNFs
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Figure 4: Original and Filtered MNF4
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