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Abstract

This thesis presents a formal model of speech act based conversations between autonomous agents.
Our model is based on the basic ideas of speech act theory presented by John Searle. Speech act
theory describes the pragmatics (use) of communication between humans from a language/action
perspective and considers language is a tool for performing actions. Our approach is focused on the
social aspect of agents, where communication is considered as a public phenomenon shared among
a group of interacting agents in a social context. Our model considers speech acts on two di�erent
social levels. At the �rst level, we formalize communication in terms of the obligations created
by language actions in a given social context, e.g. a conversation. Obligations may be proposed,
accepted, retracted, cancelled and ful�lled due to speech acts. We also formalize some concrete
examples of speech act based conversations. At the social level two, our model is extended with the
notions of social role power relations and agent authority relations. One of our aims is to formalize
that the e�ect (semantics) of speech acts depends on the social context in which they are used. Our
formalization is based on a subset of the Z speci�cation language.
Keywords: autonomous agents, speech acts, language semantics, social obligations, conversations,
formal methods.
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Preface

This M.Sc. thesis project started in October 2001 after having completed a 3 month pre-thesis on
the on the subject of Agent Communication Languages (ACLs) [38] with Dines Bjørner and Jørgen
Fischer Nilsson as supervisors, at Informatics and Mathematical Modelling (IMM). In this pre-thesis
I made a literature study and investigation of some of the previous approaches for developing ACLs,
and outlined an approach to be taken in the succeeding M.Sc. thesis project.
From October 2001 to January 2002 I continued the investigation of agent architectures, multiagent
systems, communication languages and protocols. One of my main areas of focus was to understand
how speech acts theory could be used in the development of agent based systems. Another focus was
to investigate the di�erent approaches that could be used to formally specify and model such systems,
primarily RSL (RAISE Speci�cation Language), CSP (Communicating Sequential Processes) and
di�erent sorts of modal logics.
From January 2002 to May 2002 I went on a 3 month visit to the Chinese University of Hong
Kong (CUHK) to continue the work on my master thesis project with Professor Ho-fung Leung as
supervisor. Professor Leung and I decided that it could be interesting to investigate the use of the
Z and Object-Z speci�cation languages in the modelling of speech act based agent communication.
After using some weeks on getting familiar with the Z and Object-Z speci�cation languages, I
began the modelling, with the primary focus on speech acts and the notion of social obligations
(commitments).
During my stay at CUHK I also had the opportunity to visit the United Nations International Insti-
tute of Software Technology (UNU/IIST) together with Professor Leung and my CUHK coordinator
Professor Jimmy H.M. Lee. Here I held a seminar entitled �Agent Communication Languages and
Speech Acts�. I also had the opportunity to meet Zhou Chaochen, Chris George, Dang Van Hung and
Tomasz Janowski. I held the same seminar the the Computer Science and Engineering department
at CUHK. The seminar slides are available at my home page: www.student.dtu.dk/~c000335. My
pre-M.Sc. thesis are also available there.
From May until June 2002 I �nalized my thesis at IMM/DTU.

Hans Madsen Pedersen, IMM, June 21, 2002
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Chapter 1

INTRODUCTION

In order to understand how meaning is
shared, we must look at the social rather then

the mental dimension
�Understanding Computers and Cognition�, p. 60
Terry Winograd and Fernando Flores, 1986 [63].

1.1 Agent Communication Language Issues
In recent years the research in agent communication languages (ACLs) has become one of the main
sub-�elds in the research in autonomous agents and multiagent systems. One of the main basic
ideas of the research in ACLs is to view language in a high-level and abstract manner. In the �eld
of distributed computing, communication is usually viewed as message-passing entities (objects,
processes, agents, brokers, etc.) that coordinates their behavior through the use of communication
protocols [45, 4]. In the �eld of distributed arti�cial intelligence (now mostly referred to as multiagent
systems), the communicating agents are viewed as high-level, autonomous and heterogeneous entities
that engages in dialogues, conversations and negotiations with each other in order to coordinate their
behavior [62, 26, 18, 32]. The research in agents and multiagent systems is characterized by being
inherently multidisciplinary and combines the ideas of many traditional scienti�c �elds:

• Arti�cial intelligence � knowledge engineering, epistemic reasoning, planning, pro-activeness,
goal-directedness, intelligence, autonomy, ontologies, modal logic, etc.

• Distributed and real-time systems � protocol design, concurrency, parallelism, re-activeness,
timing, etc.

• Software engineering � formal methodologies, object oriented methodologies;
• Linguistics, philosophy and social sciences � semiotics, speech acts theory, conversational anal-

ysis, epistemology, negotiation and team work theory, etc.

Agents are designed to autonomously collaborate with others agents in order to satisfy both their
internal goals and the shared external demands set by a multiagent society � just like humans. Their
tasks may be of both collaborative (team work) or competitive nature. For a analysis of issues in
multiagent systems, we refer to appendix A. In this analysis we discuss what we �nd to be the
most important characteristics of multiagent systems: Accessibility (openness), scale, interactions,
dynamics, heterogeneity, communications and environments. Most of this discussion is informal,
but we also look at some of the abstract aspects using RSL. We (I) also refer to my pre-M.Sc. thesis
report [38].
The �eld of ACL research may be divided into three di�erent areas (they are, however, all three
connected with each other):
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1. The mentalistic and social approaches.
2. The relationship between speech acts and conversations.
3. The application domains.

The traditional approaches to de�ning the semantics of agent communication is based on a mental-
istic AI perspective, e.g. KQML [31], FIPA ACL [15], and Cohen/Levesque [6]. These approaches
are concentrated on the cognitive aspect of communication, i.e. the beliefs, desires and intentions
of the speakers and listeners. They all use (or claim to use) the ideas of speech act theory [43, 3]
in the de�nition of their ACL semantics. These approaches typically use some sort of modal log-
ics in order to specify the semantics of speech acts, e.g. epistemic logic [30, 36]. We also refer to
Appendix B for an introduction to modal logics (temporal and epistemic). One of the main motiva-
tions of the mentalistic approach is to understand the connection between agent architectures and
agent communication languages. Properly the most popular agent architecture is the so-called BDI
model, which de�nes the operation of agents in terms of their internal beliefs, desires and intentions
[39, 20, 62, 66, 27]. Much research has therefore been focused on combining the semantics of ACLs
with BDI-like agent architectures, e.g. [7, 5, 6, 31, 15]. We will review one mentalistic approach in
section 2.2.1.1: FIPA ACL [15].
The social approach views communication as a social (public) phenomenon that should not be
reduced to mentalistic notions such as beliefs and intentions [51]. Instead they suggest to use social
concepts such as obligations, commitments, norms, conventions, etc. [53, 12, 11, 9]. By social, they
mean that these concepts relate to the external relationships between agents (not just internally
in the mind of the agents). Obligations and norms are typically set by a group of autonomous
agents in order to coordinate their interactions and behaviors in a given social context. The social
approach is motivated by a number of factors, e.g. the use of agents in open and heterogeneous
environments like for example e-business and logistics [54] and speech act theory. In section 2.2.2
we discuss three social approaches: Singh's commitments, Colombetti's commitments and Dignum
et al.'s obligations. We also refer to [38] for a discussion of the concepts of mentalistic and social
agency.
Another central problem area in current ACL research, is to de�ne the relationship between speech
acts and conversations [21]. Most approaches recognize that speech act theory forms a good base
for the de�nition of ACLs for the following reasons:

• Speech act theory concerns the pragmatics of human language, i.e. how language actually is
used by humans is our daily life's. Since humans are also autonomous agents, and should be
able to communicate with arti�cial agents, it is reasonable to assume that arti�cial agents
communicate using the same basic principles as humans.

• Autonomous agents typically communicate in order to perform actions, e.g. by uttering a
request, the speaker is performing the (intentional) action of getting a reply message from the
receiving agent (or at least the speaking agent attempts to commit the speaker to reply).

Typically the semantics of speech acts based ACLs de�nes the individual ACL messages (illocu-
tionary acts) in isolation as atomic structures and meanings, e.g. KQML and FIPA ACL. On the
other hand, conversations (i.e. coherent sequences of speech acts) is de�ned in terms of protocols,
e.g. �nite state machines [15, 31], Petri Nets [10], CSP [38], etc. This has lead to a �missing link�
between the semantics of speech acts and the semantics of conversations. Is has been argued that
this approach actually discards the ACL and that the speech acts, in this case, can be replaced
with a arbitrary set of tokens as message types [53]. It has therefore been suggested that speech
act semantics should also specify how coherent (large scale) conversations should emerge (by com-
position) from individual speech acts, e.g. by making some kind of compositional semantics. In this
way, agents may �compose� all kinds of di�erent structured conversations using the same primitive
language, without needing a protocol to deal with each new type of conversation [18]. This kind
of semantics may provide greater �exibility (e.g. for exception handling) and autonomy, than the
traditional approach.
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The use of conversation policies instead of protocols has also been suggested [21]. Conversation
policies are de�ned as public principles that constrain the nature and exchange of semantically
coherent speech acts between agents. In [21] Greaves et al. de�nes conversation policies as �ne-
grained, i.e. the individual constraints are presumed to only address a single feature of a particular
conversation. This is di�erent from current conversation protocol description mechanisms, which
attempt to regulate every relevant property of a conversation within a single protocol, e.g. as
�nite state machines or Petri Nets. Greaves argues that these mechanisms should only be used to
implement particular conversation policies, but not for specifying them. Conversation policies can
have di�erent strengths as to how much they restrict the usage of the ACL, depending on the kind
of interaction the agent participates in.
It has also been suggested that social commitments (obligations) should be the basic notion in
the semantics of speech acts and conversations, i.e. conversations are constructed from basic acts by
agents committing to do future actions, e.g. the action of replying to a question [53, 9]. Commitment
are de�ned as the engagement to a course of action taken by an agent relative to another agent on
whose behalf the actions are done.
A �nal area of ACLs, is application domains. This problem area deals with the application domain
speci�c aspect ACLs. In general, the research in ACLs aim to design a language that may, at least
in theory, be applicable in a very wide range of application domains, e.g.: e-business, logistics,
robotics, human/computer interface design, etc.
In this thesis we will take the following view point:
In order to understand (and formalize) communication among arti�cial autonomous agents we

must understand (and formalize) communication among humans.
This thesis will therefore be mostly concerned with the formal speci�cation of speech acts. Our
approach will be concentrated on the social dimension, i.e. communication considered as a public
phenomenon shared among a group of interacting agents in a social context.

1.2 Thesis Structure
This thesis is divided into the following main parts:

Chapter 2 � Background
This chapter informally introduces the main concepts of speech act theory, with the primary focus
on the approach outlined by John Searle. This chapter also introduces some approaches to formalize
the semantics of speech act theory and agent communication languages: FIPA ACL, Munindar P.
Singh, Colombetti and Dignum.

Chapter 3 � Our Approach
This chapter presents a semi-formal description of our approach to formalize speech act based agent
communication. The main concept is that of social contextual obligations and the notions of role
power and authority relations.

Chapter 4 � Abstract Model: Social Level One
This chapter presents a formal model of the social level one, using the Z speci�cation language. Here
we formalize the notions of speech act syntax, actions, context, obligations, belief, agent architecture
and multiagent societies. We also formalize the concepts of speech act compilers, contextual traces
and give some concrete example of speech act based conversations. Finally, we sketch how to use
the Object-Z speci�cation language.
Chapter 5 � Abstract Model: Social Level Two
This chapter extends the formal model presented in chapter 4, by formalizing the notions of role
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power relations and agent authority relations. We also formalize the concept of declarative speech
acts.
Chapter 6 � Conclusion
This chapter presents the conclusion and some pointers to future work.
Appendix A � Multiagent Systems
This appendix gives an introduction to the the main issues of multiagent systems and it informally
summarizes the main characteristics and properties of multiagent systems and societies.

Appendix B � Modal Logics
This appendix gives an overview of modal logics (temporal and epistemic) and possible worlds se-
mantics.

Appendix C � Social Level One Speci�cation
This appendix presents the full Z speci�cation of chapter 4.

Appendix D � Social Level Two Speci�cation
This appendix presents the extended Z speci�cation of chapter 5.

Appendix E � Conversation Examples
This appendix provides a number of concrete examples of formalized speech act based conversations
and contextual traces.

1.3 Notation

This thesis is concerned with formal modelling and speci�cation using the Z speci�cation language
[65]. Due to the abstract nature of the subject at hand (speech acts), we only use a subset of Z:
Sets, sequences, maps, tuples, data-type de�nitions, axiomatic function de�nitions, etc. [24]. We do
not use the Z schema notation.
All the Z speci�cations, except the examples in section 4.9.3, has been type checked using the
Z/Object-Z Wizard type checker from The University of Queensland1.
In section 4.10 the Object-Z speci�cation language is used [55, 56].

1http://svrc.it.uq.edu.au/Object-Z/pages/Wizard.html
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Chapter 2

Background

2.1 Speech Act Theory
Traditionally linguistic theory is grouped into three subdivisions: syntax, semantics and pragmatics,
sometimes just referred to as semiotics1 [64, 41].
Syntax is concerned with the structures of the visible forms of language. Syntactic rules determines
the way in which linguistic elements (as letters, words, etc.) are put together to form constituents
(as phrases or clauses).
Semantics deals with the meaning of languages, both of the individual language elements, e.g. words,
and the meaning of composite language structures, e.g. sentences. Semantics is usually given by
mapping the syntactic constructs into some semantic domain, e.g. the meaning of propositional logic
is given by values of true and false.
Pragmatics is about the issues of language use. Pragmatics is perhaps the most di�cult aspect
of linguistics to de�ne precisely. Pragmatic aspects are also often di�cult to give a formal, i.e.
mathematical/logical based, de�nition and pragmatics is sometimes called the 'waste-basket' of
linguistics [35], i.e. all language phenomenons that can not be classi�ed as syntax or semantics are
pragmatics. The reason why pragmatics is hard to understand and formalize is that it deals with
language and its users in a social context :

Pragmatics studies the use of language
in human communication as determined by the

conditions of society [35].

Pragmatics must consider both cognitive (mentalistic), social and cultural aspects of communication.
Its has been debated weather pragmatics really represents a separate subdivision in addition to
syntax and semantics, or if it should rather be considered as a di�erent perspective.
Speech act theory is primarily concerned with the pragmatic issues of languages, i.e. people's use
of language rather then its form. This theory originates from John L. Austin and his collection of
lecture notes How To Do Things With Words (1962) [2], in which he suggest a new perspective on
language: The language/action perspective. This theory was later given more formal de�nitions
(and named Speech Acts) by the philosopher John Searle in his books Speech Acts (1969) [43] and
Foundations of Illocutionary Logic (1985) [44]. Other linguists and philosophers has also tried to
combine speech act theory with other branches of pragmatics, such as the Grician framework, e.g.
Bach and Harnish in Linguistic Communication and Speech Acts (1979) [3].

1Merriam-Webster about �Semiotics�: A general philosophical theory of signs and symbols that deals especially
with their function in both arti�cially constructed and natural languages and comprises syntactics, semantics, and
pragmatics.
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In this thesis we will primarily concentrate on Searle's original version of speech act theory (or rather
a small subset of it). Occasionally we will also refer to the speech act classi�cation (taxonomy) by
Bach and Harnish [3].
The basic idea behind speech act theory is to consider language as a tool for conveying actions,
language/speech actions. One often hear the following sentence:

�You most put actions behind your words.� (1)

In this sentence it is implied that words, by them self, just by uttering them, do not perform
any actions. This is of cause, in some situations, true, but speech act theory suggests that in most
situations our words actually perform actions just by being uttered. Lets consider a situation where
(1) would typically be used. If one agent a for example says to another agent b:

�I will come and help you build your new garage,� (2)

but actually never comes and helps, then b might rightfully say (1) to a. Or more precisely he
could say:

�You most put physical actions behind your words,� (3)

meaning that it is not enough to promise to help someone; there must also �put� physical ac-
tions �behind� them. What speech act theory suggests is, that this situation is actually created by
the performance of a speech act by a: The speech act of making a promise, and thereby creating
a social obligation (commitment) from the speaker, a, towards the listener, b. The speech act may
also convey other actions: a expresses its intention to help b, which may create a belief in b that a
truly intends (and is committed) to help b.
Let's now consider some intuitive examples where sentences may convey actions. If one agent a for
example says (under the right circumstances):

�I hereby declare the name of this ship to be Fulton�. (4)

Before a had made the declaration, the ship was (at least in principle) nameless, but after the
declaration the ship has a name. No physical action is performed by a. The sentence in itself
contains an action that is performed when the sentence is uttered under the right circumstances. A
boss says to his secretary:

�Please give me the Q2 statistics.� (5)

By making this request (or order), the boss attempts to make the secretary perform some ac-
tions on his behalf. This attempt may also be viewed as an action, a language action. Consider a
religious agent o that says to his multiagent society m:

�Destroy all agents and societies with another religion but yourself.� (6)

This speech act may also be viewed as an attempt to perform actions through other agents. In
fact most politicians, judges and teachers are primarily concerned with performing language ac-
tions. In these professions language is the main tool expressing ideas, conveying actions, asserting
facts, etc. Here another example from the �nancial world:

��Irrational exuberance and unduly escalating stock prices.� These seven simple words describing
the stock market in a speech by the Chairman of the Federal Reserve, Alan Greenspan, sent markets
around the world into a sharp downward spiral. (7) 2

2http://www.pbs.org/newshour/bb/economy/december96/greenspan 12-6.htm.
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This quote clearly shows the power words on a very large scale: The stock markets. Just one
single sentence uttered by the �right� agent, at the �right� place, at the �right� time, may perform
dramatic actions, here: Stock price �uctuations. Here is another important thing to notice about
speech acts: They may be performed on many scales in the society, from global speeches made my
politicians, businessmen, etc., to small conversations and chats between children. Speech act theory
is primarily concerned with the action made by language in our daily life situations: Shopping,
negotiations, arguments, formal events, etc.
As the above examples has illustrated people (agents) perform actions by using language. We have
also seen that language actions are di�erent from physical actions. What are language actions then
after all ? How may we formalize speech acts ? In [43, 44] John Searle suggest a new type of action:
Illocutionary actions.

2.1.1 Illocutionary Actions

As outlined in [38] John Searle [43, 44] consideres speech acts as complex structures that can be
decomposed into three main components (actions):

• The locution act : The physical utterance by the speaker.
• The illocutionary act : The intended meaning of the utterance by the speaker, i.e. the illocu-

tionary point.
• The perlocutionary act : The action that results from the locution (physical or cognitive).

We will demonstrate the components by a classical example. Consider an agent a saying to another
agent b:

�It's cold in here� (8).

The locution is simply the physical utterance (8). The illocution may be one of the following:

• A statement (assertion) that a simply �nds the current room temperature to be cold. In this
case we say that the illocutionary point, is a statement (assertive).

• An indirect request (or an order) that b should close the window because a is cold. In this
case we say that the illocutionary point either a request, order, etc.

This kind ambiguity often arises in human communication because the illocutionary point is not
always explicit the our speech acts. It can be avoided by making the point explicit like here3:

�I hereby assert to you that it's cold in here� (9).

or

�I hereby request you to close the window, because I �nd it cold in here� (10).

The perlocution may be one of the following depending on how b interprets the speech act (8):

• b responds: �Oh yes, me to!�,
• b turns on the radiator,
• b be does not respond, but thinks (believes) that a is wimp.

In the �rst case b thinks that a is just making a statement, and replies with another speech act. In
the second case b is recognizing (interpreting) a's intention as an request, and performs the request
(intended) physical action. In the third case b also interprets a's utterance as an assertion, but here

3Most people, however, �nd it rather strange to communicate in this way.
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b only reviews its beliefs about a. Most often the illocutionary point may be clear by knowing the
contextual circumstances, e.g. if b �nds that a is shaking, then b may interpret the illocutionary of
(8) to be as in (10).
Most research (informal and formal) in speech act theory is concerned with understanding the
illocutionary act aspect. Searle suggests that illocutionary acts may be further divided into the
following components [11, 35, 43, 44]:

• Illocutionary context,
• Propositional content,
• Illocutionary force.

The illocutionary context indicates the relevant knowledge about the social situation in which the
speech act is performed. This includes the following knowledge: Factual knowledge about the
environment: Location, time, etc., cognitive knowledge about the participants: beliefs, desires,
intentions, etc., social knowledge participants and context: obligations, norms, roles, etc. We will
introduce the context as a unspeci�ed sort type:

[Context ]

We also introduce some observer functions on the illocutionary context:

obs beliefs : Context → PBelief
obs desires : Context → PDesire
obs intentions : Context → P Intention
obs obligations : Context → PObligation
obs time : Context → T

From the context we can observe a sets of beliefs, desires, etc. (These types are introduced below).
These observer functions only represent a small subset of the knowledge that may be observed from
the context.
The propositional content of a illocutionary action is the part that expresses what the speech act is
about, e.g. the propositional content of �I hereby assert to you that it's cold in here� is �it's cold in
her�. We will introduce the propositional content as a unspeci�ed sort type:

[Prop]

The illocutionary force indicates the reasons and the goals (intentions) of the speech act. The
illocutionary force is further divided into seven elements. We will only consider four of these:

• Illocutionary point,
• Degree of strength of the illocutionary point,
• Propositional content condition,
• Sincerity conditions.

In the following we will informally explain these di�erent elements.

Illocutionary point Searle, and others, are usually considering the illocutionary point to be the
most important part of the illocutionary force. Most classi�cations (taxonomies) of speech acts, are
based on this aspect. Searle distinguish between �ve illocutionary points:

• Assertives,
• Directives,
• Commissives,
• Declaratives,
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• Expressives.

Assertives are statements of fact. They have a truth value and express the speakers belief about
the propositional content. Directives are for example commands, requests, etc. Directives are
attempts to get the listener to do something, and express the speakers wish, desire or intention
that hearer perform some action. Commissives are for example promises, o�ers, etc. They commit
the speaker to some future course of action. The speaker expresses the desire or intention that he
will do some action. Declaratives entail the coccurrence of an action in themselves, e.g.: �I name
this ship Titanic�. Declarations bring about a orrespondence between the propositional content and
the world. Expressives are expression of feelings and attitudes. Expressives express the speakers
attitude to a certain state of a�airs speci�ed (if at all) in the propositional content (e.g. the bold
portion of I apologize for stepping on your toe).
We will introduce the illocutionary point as a enumerated type, IP :

IP ::= ass | dir | com | dec | exp

Other philosophers have been proposing classi�cations based on di�erent sets of illocutionary points.
Figure 2.1 makes a comparison between the points used in the framework of Searle and the points
used by Bach and Harnish [3]. The �rst four of Searle's points are more or less equivalent with
Bach's and Harnish's points [1]. The last group, Decleratives, is not represented as a separate point
in Bach's and Harnish's framework.

Searle Bach and Harnish
Assertives Constatives
Directives Directives
Commissives Commissives
Expressives Acknowledgements
Declaratives

Figure 2.1: Comparison of two speech act classi�cations.

In the illocutionary taxonomy of [3], they have listed a large number of speci�c verbs under each
point. Here is a small set of examples:

• Constatives:
� Assertives: a�rm, assert, claim. declare, say, state, submit, etc.
� Predictives: forecast, predict, etc.
� Ascriptives: ascribe, attribute, etc.
� Descriptives: call, categorize, classify, describe, evaluate, identify, etc.
� Informatives: advise, announce, predicate, etc.
� Confermatives: certify, conclude, con�rm, judge, verify, testify, etc.
� Assentives: accept, agree, assent, etc.
� Suggestives: conjecture, guess, speculate, etc.
� etc.

• Directives:
� Requestives: ask, beg, insist, invite, request, tell, etc.
� Questions: ask, inquire, query, etc.
� Requirements: bid, charge, command, demand, direct, order, prescribe, require, etc.
� Prohibitives: forbid, prohibit, restrict, etc.
� Permissives: allow, authorize, dismiss, forgive, release, etc.
� Advisories: advise, propose, recommend, suggest, urge, etc.
� etc.

• Commissives:
� Promises: promise, swear, vow, contract, guarantee, etc.
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� O�er: o�er, propose, bid, volunteer, etc.
� etc.

• Acknowledgements:
� Apologize: no speci�c.
� Condole: commiserate, condole, etc.
� Greet: no speci�c.
� Reject: refuse, spurn, etc.
� etc.

In addition to this detailed classi�cation, Bach and Harnish, have given a strict, but informal,
de�nition of the meaning of each of the above specialized verbs. Hers an example of the meaning of
o�er :
s (speaker) o�ers a to l (listener) if s expresses:

1. the belief that s's utterance obligates him to a on condition that h indicates he wants s to a,
2. the intention to a on condition that h indicates he wants to a, and
3. the intention that h believe that s's utterance obligates s to a and that s intends to a, on the

condition that h indicates he wants s to a.

These de�nitions gives an intuitive meaning of the di�erent classes of illocutionary acts, but they
are fare from providing clear and formal de�nitions. One of the important aspect to notice about
the above descriptions, is the terms used in de�ning the meanings of illocutionary points (the precise
formulations may be less important). Some of the important terms are (from this and other acts):

• Belief,
• Want,
• Desire,
• Intention,
• Obligation,
• etc.

An agent may believe some proposition or state of a�airs to be true or false; it may want to
do something or that another agent should do something; it may desire to do something or that
another agent should do something; it may intend to do something or that another agent should do
something; it may be obligated to do something or that another agent should do something on its
behalf. The terms may also be used in combination, e.g.: After the utterance of some speech act
the listener believes that the speaker has the intention that the listener obligates himself to do some
action. The terms may also be nested as in: the speaker believe that the listener believe that the
speaker believe, etc, or the speaker desires that the listener desires that the speaker desires, etc.
In the frameworks of Searle [43] and Bach and Harnish [3], these notions are not given any formal
de�nitions, just natural languages description for their intuitive meanings. As we shall see later,
some philosophers and computer scientists has also attempted to give these terms more formal
de�nitions, e.g. in �rst order predicate logic and di�erent types of modal logics, e.g. temporal,
epistemic and deontic modal logics. The beliefs, wants, desires, intentions, obligations, etc., may be
viewed as the modalities of illocutionary acts, i.e. human language. See section 2.2. At this stage
we may formalize these modalities as unspeci�ed sort types:

[Belief ]
[Want ]
[Desire]
[Intention]
[Obligation]

Degree of strength of the illocutionary point We now turn to the second element of the
illocutionary force: The degree of strength of the illocutionary point. The �ve illocutions given by
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Searle, may have di�erent strengths, depending on how strongly the speaker �means� what he tries
to convey to the listener. The informal meaning of strengths is given by the following example. A
boss in a company says to his employee (a hard-working programmer):

�How about if you started working at about 9 AM� (11).

This may be meant as a directive speech act, in which the boss expresses a very �weak� desire
that the programmer should begin working at 9 AM. The directive is in this case similar to a
suggestion, under the Advisories group, as given by the speech act classi�cation above.
After some weeks (where the programmer is still not starting before 10 AM), the boss may increase
the strength of the illocutionary point to a request (under the group of Requestives):

�Could you please start working at 9 AM� (12).

Finally, after a few weeks were the programmer is still meeting late, the boss increase the strength
to the maximum, an order or command (under the group of Requirements):

�From now on, you start working at 9 AM� (13).

In each case the boss is using a directive speech act, but with di�erent illocutionary strengths
(in the last case the result may be fatal, if the intention or obligation conveyed by the speech act is
not followed or understood by the employee). We will introduce the strength as a unspeci�ed sort
type:

[Strength]

Propositional content condition Depending on the type of illocutionary point, IP , used in an
utterance, there may be di�erent conditions on the illocutionary content [11]. For example, one can
not make a promise (commissive) regarding the past (unless, of cause, the speaking agent has a time
machine available):

�I promise to start working at 9 AM in last week� (14).

The same applies to directives such as request and orders. We formalize this by the function,
wf Prop, which, given a the current time, a illocutionary point and a proposition, determines
weather it is well-formed (true or false).

wf Prop : T × IP × Prop → B

We will leave this function further unspeci�ed at this stage. Time is also left as a sort type, T :

[T ]

Sincerity conditions The last component of the illocutionary force that we will discuss, is the
sincerity conditions. The sincerity conditions concerns the correspondence between the expressed
psychological state and the actual state. For example, if an agent a asserts the following to b:

�My credit is very good� (15),

then a expresses the belief that its credit is good. The actual belief of a may, however, be the
opposite: �My credit is very bad�. In this case the agent is not sincere. Searle puts it as a condition
that agents only assert believed facts, in order for meaningful communication to take place.
We will now summarize the main ideas of speech act theory and illocutionary acts:
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• Humans perform (speech) actions by just using the language as a tool.
• The main part of speech acts is the illocutionary acts which is composed of illocutionary

context, force and content.
• The context indicates the relevant epistemic and social knowledge about the speaker and

listener and their environment.
• The force is composed of at least four elements: 1) illocutionary point, 2) degree of strength

of the illocutionary point, 3) propositional content conditions, 4) sincerity conditions.
• The main part of speech acts is the illocutionary point, p : IP .
• The semantics of illocutionary actions (points) can be de�ned in terms of mentalistic and

social attributes (modalities):
� Mentalistic: Beliefs, wants, desires, intentions, goals, etc.
� Social: Obligations, commitments, norms, conventions, etc.

• In the literature of pragmatics the semantics of speech acts is usually speci�ed informally in
terms of natural language descriptions.

• In the literature of philosophical logic and computer science the cognitive and social attributes
is usually formalized using di�erent kinds of predicate and multi-modal logics, in order to seek
more precise semantic de�nitions.

Based on the above informal descriptions, we propose a simple formal model for the abstract syntax
of speech acts as a type SAct ′:

SAct ′ ::= ass〈〈Strength ×AId ×AId × Prop × Context〉〉
| dir〈〈Strength ×AId ×AId × Prop × Context〉〉
| com〈〈Strength ×AId ×AId × Prop × Context〉〉
| dec〈〈Strength ×AId ×AId × Prop × Context〉〉
| exp〈〈Strength ×AId ×AId × Prop × Context〉〉

where AId is a sort type of distinct agent identi�ers:

[AId ]

In this simple model, speech acts (or illocutionary acts), are composed of �ve elements, e.g. ass(str , i , j , p, c)
is a speech act where

• the illocutionary point is an assertive,
• str is the strength of the illocutionary point,
• i is the speaker identi�er,
• j is the listener identi�er,
• p is the propositional content and
• c is the contextual knowledge.

We also de�ne a subtype SAct of wellformed speech acts:

SAct == {sa : SAct ′ | wf SAct(sa)}

where we leave the well-formed function, wf SAct , further unspeci�ed at this stage.
The semantics of the individual speech acts is then given by mapping them to a semantic language
SL.

[SL]

We will not specify a concrete semantic type at this stage, but only show that a number of language
modalities may be observed from this language.
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obs beliefs : SL→ PBelief
obs wants : SL→ PWant
obs desires : SL→ PDesire
obs intentions : SL→ P Intention
obs obligations : SL→ PObligation

Finally, we may specify the semantics of speech acts as a semantic function, M, from speech acts
a : SAct to their meanings in SL. The signature of M is given by:

M : SAct 7→ SL

We will leave M further unspeci�ed at this stage.

2.2 Formalizing Speech Act Semantics

There have been many attempts to give a formal semantics of speech acts. Its seems that none of
these attempts has yet been recognized as the (standard) way of formalizing speech act semantics.
There is still a lot of pragmatic issues to be solved.
One of the, in our view, interesting aspects of formalizing pragmatics is that the semantic/pragmatic
distinctions may become more clear. If we know precisely what both semantics and pragmatics is,
it may be easier to make a clear distinction. Some elements of pragmatics may even show to be
semantics (i.e. taken up of the 'vast-basket').
In order to use the ideas of speech act theory in the design of autonomous agents, we need to de�ne
a formal semantics [38].
Some of the main pragmatic issues to be solved include4:

1. Which perspective should be taken ?
2. Which kind of formalism should be used ?
3. Which illocutionary taxonomy should be used ?
4. What is the relationship between speech acts and other kinds of actions ?
5. What is the relationship between speech acts and conversations ?
6. What is the role of the context ?

In the following we will elaborate on these pragmatic issues and questions.

Which perspective should be taken ? Generally two perspectives may be taken: A private
and a public.
The private aspect concerns the mentalistic modalities of the participating agents, e.g. beliefs, de-
sires, goals, intentions, etc. This aspect is sometimes also called the internal, intentional or micro-
level view on communication.
The public aspect concerns the contextual matters concerning the social relations between the in-
teracting agents, e.g. commitments, obligations, norms, conventions, roles, authorities, institutions,
etc. This aspect is also calleds the external, normative or macro-level view on communication.
The private perspective may again be divided into two perspectives: the speaker perspective and
the listener perspective. The speaker perspective emphasize on the speaker intended meaning of
the performed speech act. The listener perspective emphasize on the listeners interpretation and
recognition (uptake) of the performed speech act.

4Some of the questions are mine, others from the literature, e.g. [53]
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What kind of formalism should be used ? In the de�nition of a formal speech act semantics
we most consider which appropriate formalisms should be used. Some of the formalisms include:

• First order logic:
� P. Johannesson and P. Wohed in [37].

• Modal and Multi-Modal (Temporal, Epistemic, Deontic, etc.) Logics:
� Philip R. Cohen and Hector J. Levesque in [6];
� Munindar P. Singh in [47, 48, 49, 61, 53];
� Frank Dignum et al. in [12, 11, 13];
� Colombetti in [9];
� FIPA ACL in [15].

• Petri-Nets:
� R. Scott Cost, Ye Chen et al. in [10].

• CSP, RSL, Z, Object-Z:
� Flores, R.A. and Kremer in [18, 19];
� K. Hindriks, M. d'Inverno and M. Luck in [25];
� Hans Madsen Pedersen in [38].

• Denotational or Operational Semantics:
� Guerin, F. and Pitt in [23, 22];
� F. S. de Boer, Wiebe van der Hoek et al. in [60].

Which illocutionary taxonomy should be used ? As indicated in section 2.1 speech acts
may be classi�ed into di�erent taxonomies. We have only studied the classi�cations of Searle [43]
and Bach and Harnish [3] which we found to be quite similar. However, this does not mean that
we should just accept these as complete speech act classi�cations. There may be (and in fact there
already exists) other taxonomies that suggests other sets of illocutionary acts. Some of the questions
that has to be addressed include:

• What are the main set of basic illocutionary acts ?
• How should speech act taxonomies be speci�ed, e.g. as lattice structures ?
• How much detail should they include, e.g. should they include more or less detail then the one

suggested by Bach and Harnish ?
• How much application domain/task speci�c details should be included in the taxonomies ?

What is the relationship between speech acts and other kinds of actions ? Speech act
theory suggests that language actions belongs to a special class of actions, di�erent from other types
of actions, e.g. physical actions. Speech acts may have di�erent sorts of e�ects on mental states,
social contexts, etc., but how do they relate to physical actions ? A theory of speech acts must
also formalize how speech actions are connected with other types of non-communicative actions,
e.g. should communicative and non-communicative actions be speci�ed using the same logic ? How
do communicative actions refer to non-communicative actions ?

What is the relationship between speech acts and conversations ? Speech act theory
[43, 3] is mainly focused on the basic core of human language: illocutionary (communicative) actions,
e.g. assertives, directives, etc. A formal semantics of speech acts must also address how these �atomic�
languages actions can be composed into coherent [18] (meaningful) conversations.
In the �eld of linguistics and pragmatics these issues are often discussed in Conversation Analysis
(CA). Their approach is usually informal, e.g. by examples of dialogue turn-making, contextual
meaning, etc.
In the �eld of philosophical logic (e.g. epistemic logic) and computer science, conversations are
typically formalized using di�erent kinds of protocol speci�cation mechanisms. A conversation is
then viewed as a sequence of transitions (conversational moves/acts) from a initial state to a �nal
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state, e.g. [15, 63]. It has also been suggested to use Petri Nets [10] and CSP/RSL [38] in order
to deal with the concurrent aspect of conversations. In [38] we addressed some of the problems
with using these kinds of formalisms in the de�nition of speech-act based conversations. See section
1.1 were we summarize these problems. New approaches suggests the use of commitments and
obligations in the speci�cation of conversations [51, 53, 9, 59].

What is the role of the context ? In the literature of language pragmatics the socal context5
is considered as playing a very central role in communication, e.g. [35, 57]:

I shall present a view of pragmatics as meaning in interaction,
since this takes into account of the di�erent contributions of both

the speaker and hearer as well as that of utterance and
context to the making of meaning [57].

As indicated in section 2.1, Searle suggested that one of the three components of an illocutionary act
is a illocutionary context, representing the epistemic, social and physical knowledge in the system
were the participating agent exchange speech acts. Contextual knowledge plays a key role for the
listeners interpretation (recognition [3]) of illocutionary actions. It also plays a key role in a speakers
selection of speech acts to perform in a given situation.
The question is what exactly the context means, how it should be formalized and how it should
relate to the semantics of speech acts. Intuitively, the concept of contextual knowledge is closely
related the concept of common knowledge, which as been analyzed using using epistemic logic, e.g.
in [30]6.
In the following sections, we will review some of the previous approaches and attempts to de�ne a
formal semantics for the acts, i.e. the mentalistic approach and the social approach.

2.2.1 The Mentalistic Approach

In this section we will shortly review one mentalistic approach to de�ne a formal semantics of speech
acts: FIPA ACL. FIPA ACL (and KQML) are a Agent Communication Languages based on speech
theory. For a more in-depth introduction FIPA ACL and KQML language, we (I) refer to my pre
M.Sc. thesis [38].
For a review of modal logics (temporal and epistemic) we refer to appendix B.

2.2.1.1 FIPA ACL

In the FIPA ACL framework [15] the semantics of speech acts is formalized using a semantics
language (SL). SL builds on a quanti�ed multi-modal-logic, which contains modal operators for
referring to the beliefs, desires, and uncertain beliefs of agents, as well as a simple dynamic logic-
style operator for referring to agent actions. Below is the informal meaning of a small subset of
these operators (we have given the operators slightly di�erent names then presented in [15]):

Bel(i , p) means that agent i believes that p is true;
Unc(i , p) means that agent i is uncertain about p but thinks that p more then ¬p;
Des(i , p) means that agent i desires that p currently holds;
Int(i , p) means that agent i intends that p currently holds;
Done(a) means that action a has just taken place.

5Merriam-Webster about context:
1: The parts of a discourse that surround a word or passage and can throw light on its meaning.
2: The interrelated conditions in which something exists or occurs. See ENVIRONMENT, SETTING.

6Perfect common knowledge is in theory not possible, but how can agent use it in their reasoning about speech
acts anyway ?
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We will not show the semantics of these operators, but just refer to [15]. These operators can then
be combined in di�erent ways, e.g.

Des(i , (Bel(j , (Int(i ,Done(a))))),

informally meaning that agent i desires that agent j believes that i intends that action a should be
done.
In FIPA ACL an important distinction is made between primitive acts and composite acts. The tree
primitive acts are inform, request and con�rm. All other speech acts are de�ned as compositions
of these three primitive acts. Speech acts are given a formal semantics in terms of pre- and post
conditions called feasibility preconditions (FP) and rational e�ect (RE), respectively.
The pre-conditions are those conditions that need to be true in order for an agent to (plan to)
execute a communicative act.
The post conditions, or rational e�ect, are the reasons for which the act is selected, i.e. the intention
that motivates the communicative act. The rational e�ect is an intended outcome, i.e. a speci�cation
of a goal for the sending agent, but it is not necessarily the actual outcome, i.e. a speci�cation of
a post-condition for the receiving agent. Weather or not the rational e�ect is the actual change in
the mental state of the receiving agent is therefore not a part of the formal semantics.
As an example we consider the semantics of one of the primitive acts: inform(i , j , p). Informally
this act means that the speaker i informs the hearer j that a given proposition p is true7. The pre
condition is:

• i believes p and
• i does not think that j already believes p or its negation, or that j is uncertain about p.

This is formalized by the following semantic speci�cation:

Bel(i , p) ∧ ¬Bel(i , (Bel(j , p) ∨Unc(j , p)))

The post condition is that j believes p, formally:

Bel(j , p)

The post condition is only the intended (rational e�ect) of the speech act. Agent j may actually
choose to believe the opposite, if he thinks i to be unsincere.
In [3] Bach and Harnish has de�ned the informal meaning of inform a slightly di�erently. By
uttering inform(i , j , p), i expresses

1. the belief that p, and
2. the intention that j form a belief that φ.

It should be noticed that this is not a pre-condition, like in FIPA ACL. This only de�nes the
expressed mental modalities, here: beliefs and intentions. An agent i may in fact inform agent j
something that is does not believe, in which case i is not sincere. Bach's and Harnish's de�nition
of inform may be formalized like this:

1. Bel(i , p)
2. Int(i ,Bel(j , p))

The FIPA framework does not include any modal operators for de�ning obligations or commitments.
This means that commissives (and some directives) in the frameworks of [43, 3] may actually not
be formalized. For example, by uttering a promise(i , j , a) speech act (commissive), the speaker i
expresses:

7The illocutionary point of this speech act is equivalent to a assertive in the classi�cation of Searle and a constative
in the classi�cation of Bach and Harnish.
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1. the belief that his utterance obligates him to do a,
2. the intention to do a, and
3. the intention that j believe that i 's utterance obligates him to a and that i intends to do a.

In order to formalize this, the semantic language SL need to incorporate an obligation (or commit-
ment) operator, Obl :

Obl(i , j , a) means that agent i is obligated (committed) towards agent j to do a;

where a is some action, e.g. to perform some other speech act, e.g.:

Obl(i , inform(i , j , p)),

meaning that agent i is obligated to inform p to agent j . The formal semantics of a promise(i , j , a)
speech act may then be de�ned as:

1. Bel(Obl(i , j , a))
2. Int(i , a)
3. Int(i ,Bel(j ,Obl(i , j , a))) ∧ Bel(j , (Int(i , j , a)))

The ability to formalize the commitment to future courses of action is essential in order to de�ne
the semantics of commissives and directives. Since obligations are also essential in the formalization
of conversations and coordination protocols, we most conclude that FIPA ACL has not succeeded
in de�ning a formal semantics of speech acts.

2.2.2 The Social Approach

In this section we review three social approaches for de�ning a formal semantics of speech acts:
Singh's commitments, Colombetti's commitments and Dignum's obligations.

2.2.2.1 Singh's Commitments

In a number of papers Munindar P. Singh has suggested a social approach to formalizing speech
acts and agent communication [50, 52, 51, 61, 61, 53]. The main concept in the social approach that
Singh suggests, is that of social commitment. Social commitment are described as a engagement to
a future course of action taken by an agent relative to another agent on whose behalf actions are
done.
To de�ne the semantics of speech acts, a semantic language, SL, is de�ned. This language builds
on branching time (CTL) temporal logics (See appendix B), expressing that systems may involve
in more then one particular way [62, 36]. Branching time temporal logics is often used to specify
the behavior of concurrent systems in the areas of distributed computing. SL includes a number of
temporal operators, e.g: F (q) (q will eventually hold), G(q) (q always holds), R(p) (select a real
path p) and RF (q) (q will hold on some selected real part).
The temporal language, SL, contains three other modal operators: one for belief and one for inten-
tion, Bel(i , p) and Int(i , p) and one for commitment, Cmt(i , j , c, p), which means that agent i is
committed towards agent j in the social context c to ful�ll p. We refer to [53] (A Social Semantics
for Agent Communication Languages, 2000), for the model-theoretical de�nitions of these modal
operators. A commitment involves three agents: the debtor, i , (the one who makes it), the creditor,
j , (to whom its made), and the context, c (the containing multiagent system in the scope of which
it is made). The social context c refers to the team in which the given agents participate and within
which they communicate; it too is threaded as an agent.
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Singh uses this semantic language to formalize the semantics of the common of illocutionary acts:
assertives, directives, commissives, and declaratives8. In order to formalize these speech acts, Singh
suggests the use of three validity claims:

• Objective, that the communication is true;
• Subjective, that the communication is sincere (the speaker believes or intends what is commu-

nicated);
• Practical, that the speaker is justi�ed in making the communication.

In the following we will only consider the two �rst aspects. The objective validity gives the social
(public) meaning of an illocution. The subjective validity gives the mentalistic (private) meaning of
an illocution. Lets consider the objective semantics of inform(i , j , p) (an assertive) in a context c:

Cmt(i , j , c, p),

meaning that i is committed towards j to the truth of p. The subjective meaning is given by:

Cmt(i , j , c,Bel(i , p)),

meaning that i is committed towards j to its belief in p. Objectively p may, however, be false. Lets
consider the promise(i , j , a) speech act, that could not be given a formal semantics within the FIPA
ACL framework. In mentalistic frameworks like KQML [31], FIPA ACL [15], promises are typically
de�ned in terms of the speakers intentions to perform some future action. In the social approach
the objective meaning is given by the following commitment:

Cmt(i , j , c,RF (p)),

meaning that i commits towards j that p will be ful�lled (become true), sometime in the future.
The subjective meaning is given by the following commitment:

Cmt(i , j , c, Int(F (p))),

meaning that i commits towards j that i intends that p should be ful�lled (become true), sometime
in the future. In the same way Singh formalizes the other three illocutionary acts. It should be
noted that the social aspect is not referring to any mentalistic attributes; the beliefs and intentions
of agents is a part of the subjective semantics.
In a number of other papers (A Conceptual Analysis of Commitments in Multiagent Systems [50],
An Ontology for Commitments in Multiagent Systems: Toward a Uni�cation of Normative Concepts
[52]) Singh has advocated for the use of commitments in the de�nition and speci�cation of speech act-
based multiagent systems. In [54] (Commitment Machines (2000)), a more concrete framework for
commitments is suggested; the so-called commitment machines. Here commitments are threaded as
abstract data-types on which a number of operations can be applied (create, discharge, cancel, etc.).
Social commitments are then used to specify autonomous, dynamic and �exible agent conversation
protocols. In [61] (Verifying Compliance with Commitment Protocols (1999)) it is shown how to use
and verify commitments-based protocols in open environments.
However, the connection between the social semantics of speech acts [53] as presented here, and the
concrete commitment machines and conversation protocols presented elsewhere is not very clear.

2.2.2.2 Colombetti's Commitments

In [9] (Commitment-Based Semantics for Agent Communication Languages (2000)) and [8] (A
Commitment-based Approach to Agent Speech Acts and Conversations (2000)) Marco Colombetti

8Singh actually includes two more basic illocutionary point: permissives (e.g. permit) and prohibitives (e.g. forbid).
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proposes a formal semantics of speech acts based on social commitment. Colombetti's framework
has some similarities with Singh's, e.g. they both use a branching time (CTL) temporal logics as
their bases, but also some conceptual di�erences. Colombetti's approach only addresses the social
aspects of speech acts, i.e. the objective part of Singh's semantics. Mentalistic modalities such as
beliefs and intentions are not considered. We will only sketch the main ideas of Colombetti, and
refer the reader to [9, 8] for the formal details of the framework.
The main concepts of the semantic language, SL, presented [9] is that of precommitment, PCmt ,
and commitment, Cmt (the meaning of precommitment will be explained below):

PCmt(i , j , p)
Cmt(i , j , p)

The syntactic components is the same as in Singh's framework, expect the context component, i.e.
debtor, i , creditor, j , and condition, p (a proposition). The informal di�erence between precommit-
ments and commitments is:

• A precommitment persists in time unless it is accepted, rejected, or canceled by its creditor.
• A commitment persists in time unless it is canceled by its creditor, ful�lled, or violated.

In order to formalize precommitments and commitments Colombetti introduces a number of expres-
sion operators in the semantic language, SL, for manipulating commitments:

• mp(i , j , p), make precommitment;
• mc(i , j , p), make commitment;
• cp(i , j , p), cancel precommitment;
• cc(i , j , p), cancel commitment;
• cc(i , j , p), accept commitment;
• rp(i , j , p), reject precommitment;
• etc.

We refer the reader to [9] for the formal semantics of these operators.
Colombetti uses SL in order to give the formal semantics of a number of illocutionary acts, e.g.
assertives (inform), commissives (promise), directives (request), accept precommitment, reject pre-
commitment, etc. The syntax of illocutionary acts is de�ned in the usual way (like FIPA ACL and
Singh). The semantics of inform(i,j,p) is de�ned as:

done(i , inform(i , j , p)) → Cmt(i , j , p),

meaning that when i has performed an inform act (i.e. done it) then i is committed towards j to the
truth of p. This de�nition is similar to Singh's objective de�nition of assertives. The semantics of
the promise act is also quite similar to Singh's. The semantics of the directive act, request(i , j , p/t),
is however quite di�erent in Colombetti's framework. In mentalistic frameworks like KQML [31],
FIPA ACL [15] and Cohen/Levesque [6], directives are typically de�ned in terms of the speakers
intentions that the speaker should perform some future action. In the social approach requests are
de�ned in terms of commitments:

done(i , request(i , j ,Done(p/t))) ∧ t > now → PCmt(j , i ,Done(p/t))

Here d > now means that the proposition p/t should refer to the future (i.e. one can not request
somebody to do something in the past). A request only creates a precommitment, PCmt , from the
debtor towards the creditor, to do the requested action. The reason why this is a precommitment,
and not a commitment, is due to the basic assumptions concerning agents in [9]:

• Agents are autonomous entities9 that can not be directed (requested, ordered, etc.) to the
performance of some future action, unless they themselves commit to do the action.

9Otherwise the agents would be assumed to act benevolently. Benevolent agents always does, or tries to do, what
asked by other agents or humans [62]
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This may be described in terms of commitments like this:

• An agent (the speaker) cannot make a commitment (where it is the creditor) whose debtor is
another agent: in general such a commitment can only be �proposed�, and such a �proposal�
can be accepted or rejected by the debtor (the listener).

We illustrate the problem by the following example. Suppose an agent a says to another autonomous
agent b:

�I request you to come and help me build my new garage.� (16)

This utterance is a directive, where a attempts to commit b to some future action, which we
call help. This request will only create a precommitment from b (the debtor) towards the creditor
a to do help (we have omitted the time):

done(a, request(a, b,Done(help))) → PCmt(b, a,Done(help))

This precommitment may is fact be interpreted as a proposal that b should do help, i.e.

�I propose you to come and help me build my new garage.� (17)

The assumption made in Colombetti's framework about the autonomy of agents, actually makes
it impossible to formalize social situations were directive (requests/orders) speech acts in fact create
�full� obligations. For example, consider a situation where agent a is an employee that has hired
(and paid) agent b (a construction worker) to build his garage. In this social context a request
like (16) would (properly) create a �full� obligation. This cannot be speci�ed inside this semantic
framework because the meaning of illocutionary acts is independent of the social roles between the
agents operating in context. In the next section 2.2.2.3 we will see how some other frameworks has
dealt with these issues.
A request (directives), accept and reject speech acts is informally de�ned like this:

• request(i , j , p): If i requests j to do p (where p is come future action), then j is precommitted
to p relative to i .

• accept(i , j , p): If i , addressing j , accepts p and i is precommitted to a relative to j , then i is
committed to p, relative to j .

• reject(i , j , p): If i , addressing j , rejects p and i is precommitted to a relative to j , then i is
no longer precommitted to p, relative to j .

If we continue the �garage� conversation, b may choose to either to accept or reject the precommit-
ment created by a. The semantics of these two illocutionary options is formalized like this:

done(i , accept(b, a,Done(help))) ∧ PCmt(b, a,Done(help)) → Cmt(b, a,Done(help))
done(i , reject(b, a,Done(help))) ∧ PCmt(b, a,Done(help)) → ¬PCmt(b, a,Done(help))

If b accepts the precommitment, he will be committed to help. If b rejects the precommitment,
he will be not be pre-committed to help anymore. If b chooses to accept the precommitment he
will have to ful�ll his commitment to do help, unless the commitment is cancelled by a. If the
commitment is not ful�lled it will �nally be violated (when the due time is over).

2.2.2.3 Dignum et al.'s Obligations

The last approach to de�ne a social semantics of speech acts, which we will review, is that of Frank
Dignum et al. In [12] (Modelling Social Agents: Communication as Action, 1996 ) Frank Dignum et
al. proposes a �all-embracing� formal system, that de�nes the following concepts: belief, knowledge,
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action, wish, goal, intention, commitment, obligation and communication. Their framework is based
on a dynamic logic of action extended with epistemic, temporal, and deontic logic. [12] suggest four
levels of abstraction:

• the informational level, that considers belief and knowledge;
• the action level, that considers dynamic and temporal notions;
• the motivational level, that considers wishes, goals and intentions; and �nally
• the social level, that considers commitments and obligations.

The �rst and third level corresponds to our concept of mentalistic agency and the last level to our
notion of social agency. In the following we will primarily consider the social level (which is also the
primary focus of Dignum et al. when it comes to de�ning speech act-based communication).
In [11] (Communication and Deontic Logic, 1995 ) Dignum et al. proposes a new language for de�ning
speech acts based on obligations. The concept of obligations is naturally closely related to Singh's
and Colombetti's concept of social commitment described in the two previous sections, 2.2.2.1 and
2.2.2.2. The formal approach suggested in [11] is, however, quite di�erent. Dignum's framework
builds on a extended type of dynamic deontic logic. We will only review the main concepts and
refer the reader to [11] for the formal details.
Dignum's framework includes two new concepts: Power and authority. In a given society (organi-
zation/context) there may exist a hierarchical ordering between agents. If an agent a is superior
to agent b, then a request (directive) of a will always lead to an obligation for b. However, in a
di�erent context, a and b may stand in a peer relationship, and in this case the request would not
lead to any obligation. In general a request (or order) may lead to an obligation on the part of b
for three fundamentally di�erent reasons:

• Charity
• Power
• Authorization

Charity means that b commits to answer a's request without being forced to do so. Power means
that a has the power over b, in which case a's request automatically leads to the creation of a
obligation, without b's commitment. Authority means that the request has been authorized by
some previous agreement. So, when b has authorized a a certain service, a request of a leads to an
obligation. The power and authority relation apply to certain roles between the agents in a given
society.
We will now sketch how Dignum et al. uses these concepts in the formalization of illocutionary acts.
The model builds on a basic language of actions Lact . This language includes atomic actions, e.g.
order(i,j,p), which means that agent i orders p from agent j . Atomic actions may be composed
using the parallel and choice operators, ∪ and ∨. The language Lact is used as a basis for de�ning
a dynamic deontic logic Ldd . This language includes the following main operators:

• [α]φ
• Bel(i , φ)
• Int(i , α)
• Obl(i , j , α)

The informal meaning of [α]φ is that after the execution of α, φ necessarily holds. The meaning of
Bel(i , φ) is that agent i believes proposition φ. The meaning of Int(i , α) is that agent i intends to
perform α. The deontic operator Obl is de�ned by the following abbreviation:

Obl(i , j , α) == ¬[α]Violation(i , j )

Where Violation is a special predicate indicating the violation of an agreement (obligation) between
i and j . The agent i is obligated to agent j to perform the action α if not doing α leads to a
violation. The language Ldd is now extended to include the power and authority relations that may
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exist between agents. The situation that agent i has power over j with respect to some action or
proposition p is written as:

j <p i

If i is authorized to do α then the following predicate holds:

auth(i , α)

Speech acts are de�ned using the following scheme:

φ → [α]ψ

Which means that if φ is true then ψ will hold after α has been performed, where α refers to the
performance of some speech act. The intended e�ects ψ are described by using the deontic and epis-
temic operators, while the preconditions (preparatory conditions) refer to either the authorization
relation or the power relation. Like Singh and Colombetti, Dignum uses the basic illocutionary acts
of Searle in his formalization, i.e. assertives, directives, commissives and declaratives (not expres-
sives). But unlike the previous approaches, this framework includes two new types of directives: A
directive by power, dirp , and a directive by authority dira . The directive by power, dirp(i , j , α), is
de�ned like this:

j <α i → ([dirp(i , j , α)] Obl(j , i , α))

If agent i has the power over agent j with respect to α, then a dirp leads to a obligation Obl(j , i , α).
The directive by authority, dira(i , j , α), is de�ned like this:

auth(i , dir(i , j , α)) → ([dira(i , j , α)] Obl(j , i , α))

If agent i has the authority to direct j to do α, then a dira leads to a obligation Obl(j , i , α). The
directive by charity, dirc(i , j , α), will �by default� not be able to produce any obligation. There may,
however, be some politeness rules stating that a message is always replied. For example a request
based on charity would always be replied by either a commissive or an assertion of the e�ect that
the agent does not commit himself:

[dirc(i , j , α)] Obl(j , i , (com(j , i , α)∨ ass(j , i ,¬Obl(j , i , α))))

The e�ect of commissives (e.g. promises), com(i , j , α), is formalized as follows:

[com(i , j , α)] Obl(i , j , α)

Commissives have no pre-conditions, and they always create an obligation from the speaker towards
the listener. If agent i commits (promise) to do α, then he will be obligated to perform α, otherwise
the obligation will be violated. This is similar to the de�nition of promises in Singh's and Colom-
betti's frameworks. In Dignum's framework, agents may also use decleratives, dec(i , j , φ), by power
and authorization:

j <φ i → ([decp(i , j , φ)] φ
auth(i , dec(i , j , φ)) → ([deca(i , j , φ)] φ

If i has the power over j with respect to φ then after a decp , φ holds. If i has the authority from j
to declare φ then after a deca , φ holds.
In [13] (Modelling Communication between Cooperative Systems, 1996 ), Dignum et al. demonstrates
how to use their framework to specify the ordering of products, i.e. the interactions between buyers



2.2 Formalizing Speech Act Semantics 23

and sellers. For example, a buyers request for a quotation may be formally speci�ed by the following
act:

[dirc(i , j , give quotation(j , i , g , p))] O(j , i , give quotation(j , i , g , p)∨ refuse(j ))

After a request for a quotation (i.e. a directive by charity) the buyer is obligated to give a quotation
or send a refusal. We refer to [13] for the full speci�cation of the buyer�seller interactions. The
example demonstrates the applicability of speech acts in domains such as the trading of goods.
The framework of Dignum et al. has, in our (my) view, added two important aspects to the formal
semantics of speech acts: That of social power and authority relations. It formalizes what social
relations between interacting agents means for communication based on speech acts and social
obligations. It is, however, also possible to model situations were agents are fully autonomous; that
is just a special society without any social power or authority relations. However, the interaction
between agents often involves some kind of (hierarchical) relationships, e.g. a employer�employee,
master�slave, client�server, parent�child, teacher�student, police�civilian, couch�player, etc.
In [37] (Modelling Agent Communication in a First Order Logic (1998)) Johannesson et al. demon-
strates how to transform some of Dignum's framework into a �rst order logic, and thereby avoiding
the paradoxes that comes with deontic logic. They provide a formal syntax and semantics of speech
acts, based on obligations, power and authority.
The use of obligations (instead of intentions) in the formal speci�cation of speech acts and dialogue
semantics has also been suggested by Traum in [59] (Discourse Obligations in Dialogue Processing
(1994)) and [58] (Speech acts for dialogue agents (1999))10.

10These papers are also concerned with speech acts in human/computer dialogue systems.
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Chapter 3

Our Approach

In this chapter we will introduce our conceptual approach to formalizing speech acts based agent
communication. Our approach is focused on the understanding of speech acts. We use the term
speech acts to denote both the whole concept of speech act theory and the particular concept of
illocutionary acts introduced in section 2.1. In our conceptual modelling of speech acts, our main
sources of inspiration has been the following:

• The fundamental ideas of speech act theory by Searle [43] which we presented in 2.1. In
particular Searle's concepts of illocutionary acts and points as well as the concepts of context
and strengths of illocutionary point. The speech act classi�cation by Bach and Harnish [3] is
also used to de�ne the informal meaning of di�erent speech act classes.

• The concepts of social commitment given by Singh [53] and Colombetti [9]. Especially
Colombeitti's notion of precommitment has helped us to understand the dynamic proper-
ties of commitment (and obligations) � and also the notion of directives, in systems composed
of autonomous agents.

• The notions of social obligations, roles, power relations and authority relations by Dignum et
al. [12, 11].

We will try to combine some of these ideas into a formal model of speech acts presented in this thesis.
Our approach is however not build on the notions of modal logic (such as temporal, epistemic and
deontic modal logic) like the frameworks above. Instead, we will try to specify these notions more
explicitly using the formal software speci�cation languages Z and Object-Z. Popular speaking, we
will try to make a more tangible formalization of speech acts, then the one's speci�ed using modal
logics. By using normal speci�cation languages like Z and Object-Z, we will loose the expressive
power of languages like deontic logics. On the good side we also avoid the problems of paradoxes
(in deontic logic) and of logical omni-science in epistemic logic. We also make it more easy for our
model of speech acts to be practically used, i.e. re�ned to some concrete implementations. In this
respect, our objective is the following:

• To understand and formalize the syntax, semantics and pragmatics of speech acts from a soft-
ware engineering perspective, i.e. by using known formal software speci�cation methodologies,
here: Z and Object-Z.

In this way we hope to bridge the gab that currently exists between:
1. Philosophical and linguistic (informal) theories of speech acts;
2. Computer scienti�c theories of speech acts using modal logics and
3. Software engineering models and speci�cations of speech acts using standard formal speci�ca-

tion languages.
In Figure 3.1 we attempt to illustrate the di�erent types of speech act theories. On the top level
we have the philosophical and linguistic sciences. It is from this level speech act theory originates.
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Below this level we have the logical and theoretical computing scienti�c theories of speech acts using
modal logics. On the last level we have the level presented in this thesis. The transitions between
the boxes attempts to illustrate the ��ow of knowledge�. Two of these transitions is shown as full.
These are the two transitions that this thesis tries to take. The dashed arrows illustrates the other
transitions which are (theoretically) possible, e.g. philosophers may actually also learn of the formal
models created in theoretical computing science and software engineering. Perhaps the �gure lacks
one more important box: Implementing and testing speech act theories. Probably there are also
much to learn from practical experiments with speech act based systems.

Formal Software Engineering

Philosophy / Linguistics

Informal Theories of Speech Acts

Speech Act Theories in Modal Logics

Logic and Computing Science

Specification of Speech Act Theories

Figure 3.1: The di�erent types of speech act theories and the possible transitions between them.

3.1 Perspectives on Communication
As introduced in section 2.1 and 2.2, communication between agents may be viewed from two
fundamentally di�erent perspectives: The social perspective and the mentalistic perspective. The
social perspective is concerned with the multiagent society macro-level view on communication, i.e.
the social interaction between agent. The mentalistic perspective is concerned with the single agent
micro-level view on communication. This distinction may seem to be a bit fuzzy, e.g. is obligations
a social or a mentalistic concept ? However, in this thesis we will make (de�ne) the following
distinction:

• The social perspective de�nes communication in terms of of obligations, commitments, roles,
power relationships and authority relations.

• The mentalistic perspective de�nes communication in terms of beliefs, desires (goals) and
intentions.

3.2 Obligations versus Commitments
Obligations and commitments are intuitively closely related concepts. As we saw in the formaliza-
tions made by Singh, Colombetti and Dignum, their informal meanings were quite similar (although
their formal framework were based on di�erent types of modal logic). They are also used in a similar
way, e.g. after making a promise an agent is either committed or obligated to ful�ll the promise. This
suggests that the two concepts are in fact equivalent. In Merriam-Websters (MW) online dictionary,
an obligation is de�ned like this:

Something (as a formal contract, a promise, or the demands of conscience or custom) that
obligates one to a course of action.



3.2 Obligations versus Commitments 27

Here an obligation is actually de�ned as a promise that obligates to a course of action. What does
obligates then mean ?:

1. To bind legally or morally : CONSTRAIN.
2. To commit (as funds) to meet an obligation.

MW gives two interpretations of obligates. The second interpretation actually de�nes an obligation
in terms of commit , i.e. a commitment. A commitment is de�ned as:

An agreement or pledge to do something in the future.

A pledge is de�ned as:

A binding promise or agreement to do something.

A commitment is also de�ned in terms of a promise (i.e. a commissive). This suggests that the
concepts of commitment and obligation closely related concepts, with the following di�erence: A
obligation is often regarded as a �stronger� type of binding, than a commitment, e.g. a legally binding
contract. Obligations may, however, also be used to denote the same kind of �less strong� binding
like a commitment. We therefore �nd that the concept of obligations are more general than the
concept of commitment. In this thesis, we will therefore only use the concept of obligation.

3.2.1 Conditional Obligations

The commitments and obligations in the frameworks of Singh, Colombetti and Dignum is considered
as being unconditional. What does conditional obligations mean ? Consider the following speech
acts:

1. If you deliver the computer that I have ordered, then I will pay for the delivery.
2. If you ask me about my age, then I will answer you.

In both these cases, the speaker is obligating himself (using a commissive) to some future action, on
the condition that some other action is performed �rst. These are examples of what we will de�ne
as conditional obligations. Directives may also lead to conditional obligations:

1. I request you to pay me, in the case that I receive a order from you.
2. I order you to give me your name, in the case that I ask you about it.

In order to model situations like these, we will include the possibility of having conditional obligations
in our model of speech acts. Our informal de�nition of an obligation, at this stage, will be like this:

A conditional and binding engagement to a course of action, at some time, taken by an agent
relative to another agent on whose behalf the actions are done.

From this de�nition we may observe the �ve main components of obligations:

• an agent that is obligated (committed) to a speci�c course of action; we call this the debtor
of the obligation;

• an agent that the action is being done with respect to; we call this the creditor of the obliga-
tion1;

• a condition;
• an action that has to be performed by the debtor agent in the case that the condition is

ful�lled.
• the time interval when the obligation has to be ful�lled.

1The notions of debtor and creditor are taken from Singh [53].
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We will introduce obligations as a sort type, Obl .

[Obl ]

From this type we may observe a debtor agent, a creditor agent, a condition, an action and a time
interval.

obs debtor : Obl → AId
obs creditor : Obl → AId
obs condition : Obl → Cond
obs action : Obl → Action
obs time : Obl → T × T

Here AId is a sort type of distinct agent identi�es, Cond is a unspeci�ed condition type, Action
some unspeci�ed action type and T a sort type denoting time.

[AId ]
[Action]
[Cond ]
[T ]

We may also de�ne a function, is violated , that takes a time t and determines weather an obligation
obl is violated with respect to that time.

is violated : T ×Obl → B

∀ t : T ; obl : Obl •
is violated(t , obl) ⇔

(let (t1, t2) == obs time(obl) • gt(t , t2))

If t is greater then t2 (the last time point in the time interval), it means that obl is violated (with
respect to t). Here we have assumed the following function for comparing times:

gt : T × T → B

We chose to model the time aspect explicitly in our model. This is di�erent from the approaches
of Singh, Colombetti and Dignum, where time were modelled implicitly by the use of temporal and
dynamic modal logics.

3.3 Obligations versus Desires and Intentions
Desires and intentions are usually used to model the motivations of agent. Generally, desires is a
set of goals that an agent wants to achieve. Some desires may be �pre-programmed� into an agent,
others may be deduced from its current beliefs and intentions. The intentions are the set of goals
(desires) that an agent is currently working on. These may lead to actions being performed [62].
Usually intentions (and desires) plays an important role in the de�nition of speech acts, see section
2.1, and the mentalistic semantics of speech acts, e.g. FIPA ACL, see section 2.2. For example, if an
agent promises (commissive) something, then this promise expresses the speakers intention to ful�ll
the promise. Or, if an agent requests (directive) an another agent to do something, then this request
expresses the speakers intend that the listener should perform the requested action. In the social
frameworks of Singh and Dignum the intention is also represented by a separate modality in addition
to commitments and obligations. Colombetti's framework, only consider social commitments. The
di�erence between being committed/obligated and having intentions (desires) may be explained by
the following example. If an agent i makes a promise to do some action a, then i may chose to
perform a for two fundamentally di�erent reasons:
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1. Because i has a social obligation (commitment) to do a.
2. Because i intends (desires) to do a.

Social approaches usually considers the �rst situation and the mentalistic approaches the second. In
this thesis, we will only consider the concept of social obligations. Obligations are, by themselves,
complex phenomenon, that need to be explored without the introduction of desires and intentions.
As mentioned in the introduction, we will focus on the social dimension of communication and
speech acts.
We will only consider one mentalistic concept: Beliefs. Beliefs represents the information that an
agent has about its environment. Beliefs may be represented in many ways, e.g. as �rst order
predicate logic, temporal logic, etc. The believes of agents are important in order to de�ne the
meaning of the class of illocutionary acts called assertives, e.g. inform, as we shall see later.
We will introduce a sort type representing the beliefs of agents, Bel .

[Bel ]

3.4 Social Relations

Since we are interested in understanding the social dimension of communication, we will also consider
the impact of di�erent kinds of social relationship on the social semantics of speech acts. We will
consider two types of social relationships: Power relations and authority relations, both as suggested
by Dignum et al. in [11]. Power relationships exists between di�erent agent roles in a given context.
Authorization exists between individual agents. In the following we will give an informal de�nition
of the concepts of role, power and authority:

Roles: The functional or social part which an agent, embedded in a multiagent environment, plays
in a (joint) process like for example the auctioneer in a auction. Typically roles include per-
missions and responsibilities (de�ned in terms of obligations), and are associated with speci�c
behavior patterns. Roles may be given a certain power (e.g. manager) within a hierarchical
organization.

Power Relations: Agents and roles may stand in di�erent power relationships to each other, e.g.
in given context a manager is more powerful then his employees. This allows the manager to
order his employees to do certain tasks.

Authority Relations: Agents may authorize each other to request them to do certain actions,
e.g. a bank may authorize a customer to withdraw 1000 Euro.

We will introduce three sort types: Role, Power and Auth.

[Role]
[Power ]
[Auth]

From these sort types, we may observe a number of things.

obs id : Role → RId
obs id : Role → PObls
obs agents : Rower → (RId × RId)
obs action : Rower → Action
obs agent : Auth → Aid
obs action : Auth → Action

From roles we may observe a role identi�er, RId , and a set of obligations associated with that role.
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[RId ]

From a power relation, we may observe two role identi�ers; the �rst role has the power over the
second with respect to some speci�c action; this action may be observed by the fourth observer
function2.
From a authority relation we may observe the identi�er of the agent that has been authorized to
perform some speci�c action; this action may be observed by the last observer function.

3.5 Social Context

One of the fundamental notions in pragmatics and speech act theory, is the notion of context [43].
The context represents the relevant knowledge about the environment in which communicating
participants operate. In Merriam-Webster's online dictionary the concept of context is described as:

1. The parts of a discourse that surround a word or passage and can throw light on its meaning.
2. The interrelated conditions in which something exists or occurs. See ENVIRONMENT, SET-

TING.

In our model, the concept of social context will be used is a combination of these two (related)
de�nitions:

1. The context represents the knowledge of a conversation that is used in order to determine the
meaning of speech acts, i.e. speech acts are context-sensitive.

2. The context represents the social knowledge of a conversation, i.e. the social environment.

The context captures the social state of a conversation.
We will not consider the context to be a direct part of speech act, but rather the representation
of the social knowledge used in determining the social semantics of speech acts. The speech acts
themselves may, however, contain some contextual knowledge (in their propositional content) that
may be used in the interpretation of the semantics of speech act. We will, however, not consider the
contextual knowledge used in this kind way. This is due to the basic assumption made in speech
act theory (that we adopt), that the semantics of illocutionary acts (assertives, directives, etc.) are
separated from the semantics of the propositional content. We are only considering the semantics of
illocutionary acts based on their illocutionary point and not on their propositional content. Some
known agent communication languages based on speech act theory (like KQML [31] and FIPA ACL
[15]), allows speech act messages to contain ontological and contextual knowledge, but they do not
consider this knowledge in the formal semantics of speech acts.
Generally, the social context may be viewed from two perspectives:

• From a global viewpoint, i.e. like an ideal observer that objectively observes a conversation �
we call this the global context.

• From a local viewpoint, i.e. from one of the agents participating in a conversation � we call
this the local context.

The global context contains all the contextual knowledge in a given system of agents. The local
context only contains a subset of this knowledge � the knowledge of one single agent.
The context may include the following social knowledge:

• Knowledge about the agents operating in the context.
• Knowledge about the social obligations created by the speech acts uttered in the context.

2We will only consider the power relationships that may exist between agent roles; not the power relationships
that may exist between two speci�c agents.
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• Knowledge about the beliefs of the agents in the context.
• Knowledge about the roles of the agents in the context.
• Knowledge about the power and authority relationships between agents in the context.

As indicated, the social context may also contain knowledge about the publicly expressed beliefs of
agents. We will introduce the context as a unspeci�ed sort type:

[Context ]

This type may be used to represent both local and global knowledge. We also introduce some
observer functions on the social context:

obs agents : Context → PAId
obs obligations : Context → PObl
obs beliefs : Context → PBelief
obs roles : Context → PRole
obs powers : Context → PPower
obs auths : Context → PAuths

These observer functions describes the types of social knowledge that may be observed from the
context.

3.6 Speech Acts
We will now introduce the concept of speech acts. A Speech act can be decomposed into four di�erent
actions. Consider a speaker that utters some speech act, act , to some hearer:

1. The speaker selects a speech act, act , to perform based on its current local contextual knowl-
edge, i.e. beliefs, obligations, etc.

2. By performing act , the speaker (may) publicly express a belief. The correspondence between
the expressed beliefs and the actual agent beliefs depends on the sincerity of the speaker.

3. By performing act , the speaker may e�ect local contextual state of the hearer and the global
contextual state, i.e. obligations, roles, authorities, etc. may be changed.

4. By performance of act , the hearer may update its current local contextual knowledge.

The two �rst actions corresponds to Searle's notion of illocutionary act. Last two actions corresponds
to his notion of perlocutionary act. In the KQML and FIPA ACL, the �rst two actions are speci�ed
by preconditions (feasibility preconditions) and the last two by actions by postconditions (intended
e�ects). The social frameworks of Singh [53] and Colombetti [9] are primarily concerned with the
third action, i.e. social e�ects (meanings) of uttering a speech act. The deontic framework of Dignum
et al. [11] concentrates on the the conditions for the �rst action, i.e. the preparatory conditions.
In this thesis we will concentrate on the third actions, i.e. the e�ects (meanings) of speech on the
social context. We consider this action to be the main aspect of the social semantics of speech acts.
We will, however, also consider the other aspects. The �rst and second actions are, in our view,
concerned with the mentalistic meaning of speech acts, i.e. how agent privately selects speech acts
and how agents privately updates is knowledge.
We will de�ne a speech act event to the occurrence of a speech act. A speech act event is a
composition of three major entities:

• A speaker that utters a speech act.
• A hearer that hears a speech act.
• A global context that represents the social environment in which the speech acts is performed,

e.g. an auction or some negotiation.
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The global context may be viewed as a neutral agent that objectively hears all utterances performed
by the agents operating inside its context3. Its should however be noticed, that the global context
is only an abstraction, that is (most likely) not present in real situations. We introduce the concept
of global context in order to be able to model (and talk about) the e�ects of speech act events, from
a global perspective.
We will introduce two new sort types: An agent type, Agent , and a speech act type, SAct .

[Agent ]
[SAct ]

The Agent type is used to represent the state of an agent. The SAct type represents the structure
of speech acts. We will, however, not give this speech act type an abstract syntax at this stage. We
will consider an agents to have an identi�er and and local contextual state. This is formalized by
the following observer functions:

obs id : Agent → AId
obs context : Agent → Context

Usually the three fundamental elements of a speech acts are considered to be the speaker, the hearer
and the propositional content. In section 2.1 about speech act theory, we formalized speech acts
(illocutionary acts) as the composition of the following elements:

• Illocutionary point, e.g. assertive
• The strength of the illocutionary point
• Speaker identi�er
• Hearer identi�er
• Propositional content
• Contextual knowledge

As introduced in section 3.5, we will not consider the contextual knowledge to be a direct part of
speech acts. We will therefore only introduce the following observer functions:

obs point : SAct → IP
obs strength : SAct → Strength
obs speaker : SAct → AId
obs hearer : SAct → AId
obs proposition : SAct → Prop

The illocutionary point, IP , strength, Strength and proposition, Prop, is formalized as sort types:

[IP ]
[Strength]
[Prop]

The propositional content should be able to convey both beliefs (e.g. inform) and actions (e.g.
promise). This is formalized by the following observer function:

obs content : Prop → (Bel | Action)

We will make the following fundamental assumption about speech acts: All speech acts have a
unique reference that makes them distinct. This enables us to model how the di�erent speech acts

3A bit like a supervisor sitting in the back of a class room observing the students � this agent just have some more
idealistic observing capabilities.
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performed during a conversation may refer (be addressed) to each other. We will formalize this by
the following observer function:

obs reference : SAct → Ref

This reference type, is the only element of our speech acts model, that does not directly originate
from the speech act theory introduced in section 2.1. The reference type, Ref , is modelled as a sort.

[Ref ]

Finally, we will introduce a function, CSActE (Contextual Speech Act Event), to model the e�ect
of a speech act event on the social context.

CSActE : T × SAct → Context → Context

A contextual speech act event, CSActE (t , sact)(cnt), is de�ned as a (possible) change of a context
cnt : Context due to the utterance of a speech act sact : SAct at some time t : T . We will consider
this function to model the social semantics of speech acts in our model.

3.6.1 Illocutionary Classi�cation

As introduced in section 2.1, speech acts are classi�ed by their illocutionary force (point). We also
saw that the classi�cations of Searle and Bach/Harnish were quite similar. The previous formaliza-
tion of speech act semantics, presented in section 2.2, are based on these. In this thesis, we will use
the classi�cation suggested by Searle [43], except the group of illocutionary points called expressives.
Our three main reasons for not including expressives in our classi�cation are the following:

• Our approach is focused on the social aspect of communication; expressives are primarily a
mentalistic concept, i.e. a means of expressing feelings and mental attitudes.

• Expressives are not very well explained and documented in the literature that we have read
about speech acts.

• The distinction between assertives and expressives is quite unclear.

Our model is therefore based on assertive, directive, commissive and declarative illocutionary points.
In the following we will give a informal description of the meanings of these points in our model:

• Assertives express the speakers belief in the propositional content.
• Directives (may) create a social obligation from the hearer towards the speaker to do some

future action, i.e. with the hearer as debtor and the speaker as creditor. The success of a
directive (i.e. if the speaker really achieves to create the intended obligation by uttering the
speech act), depends on the state of the social context, i.e. the social relationships between
the speaker and hearer.

• Commissives create a social obligation from the speaker towards the hearer to do some future
action, i.e. with the speaker as debtor and the hearer as creditor. The success of a commissive
(i.e. if the speaker really achieves to create the intended obligation by uttering the speech act),
depends on the state of the social context, i.e. the social relationships between the speaker
and hearer.

• Declaratives (may) create social power and authority relations. The success of a declarative
(i.e. if the speaker really achieves to create the intended power or authority relations by uttering
the speech act), depends on the state of the social context.

In order to de�ne the meaning of speech acts (illocutionary acts) and their dependence on the social
contextual state (as indicated above), we introduce the notion of social levels. See section 3.7.
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3.7 Social Levels
In this section we will introduce one of the fundamental notions in our thesis: Social Levels (The
concept may sound more sophisticated than it actually is). One of the main reasons for introducing
this notion, is to be able to classify the di�erent degrees of autonomy that may exist in di�erent
types of social contexts. Informally, we de�ne the following properties:

1. A high social level implies less autonomy.
2. A low social level implies more autonomy.

By social level, we mean the number of social relationships (i.e. regulations), e.g. obligations, powers
relations, authority relations, etc., that restrains the behavior of agents in a given social context.
We will de�ne three fundamentally di�erent social levels:

• Level Zero: The agents operating in the social context are fully autonomous4, i.e. there exists
no social obligations, power or authority relationships between the interacting agents.

• Level One: The agents operating in the social context are partially autonomous5, only re-
trained by the social obligations they, by themselves, commit to. There exists, however, no
social power or authority relations between the interacting agents, i.e. agents can not be forced
to do anything by the use of directives (e.g. orders and requests).

• Level Two: The agents operating in the social context are partially autonomous, but retrained
by three social factors: 1) the social obligations they commit to, 2) the social power relations,
and 3) social authority relations. In this level agents may be forced to do speci�c actions
by the use of directives (e.g. orders and requests), if the �right� power or authority relations
exists.

Level one is equivalent to the frameworks of Singh and Colombetti and level two is equivalent to
the framework of Dignum et al.. We refer to section 2.2. In this thesis, we will consider both level
one and two.
We will model these two levels of social sophistication as two di�erent levels of contextual knowledge.
In level one, we will therefore only consider the following contextual knowledge:

• Knowledge about the agents operating in the context.
• Knowledge about the social obligations created by the speech acts uttered in the context.
• Knowledge about the beliefs of the agents in the context.

In level two, we will consider the following additional contextual knowledge:

• Knowledge about the roles of the agents in the context.
• Knowledge about the power and authority relationships between agents in the context.

The social meaning of speech acts depends on the type and state of the social context, and thereby
also on the social level. The meaning of the same speech act is therefore not the same in social level
one as in social level two.
In the following sections we will introduce the two levels.

3.8 Social Level One
At the social level one we only consider one type of social contextual relationship between agents:
Obligations. In addition to this, the context contains knowledge about the identi�ers of the agents
operating in the context, and the beliefs expressed by the agents in the context. We may therefore
observe the following knowledge from the social context in level one:

4This is our own �home-made� expression, to indicate that there may exist di�erent degrees of autonomy.
5This is also our own �home-made� expression.



3.8 Social Level One 35

obs agents : Context → PAId
obs obligations : Context → PObl
obs beliefs : Context → PBelief

Agents may a�ect the contextual set of obligations using two types of speech acts: Directives and
commissives. The set of beliefs is a�ected by the agents expressing their beliefs by the use of
assertives. We will not consider the last type of illocutionary acts, declaratives, until the social level
two.
Directives and commissives have many of the same properties and characteristics. It has actually
been suggested to group directives and commissives into one group of illocutions: obligatives [35].
The obvious reason for this is that one of their main common properties is that they may both
create social contextual obligations between speakers and hearers. The only di�erence (with respect
to obligations) is their direction: Directives obligates hearers towards speakers and commissives
obligates speakers towards hearers. This property is, however, the fundamental reason why these
two illocutions should be kept separate. There is a very fundamental di�erence between obligating
another agent to do something and obligating oneself to do something.
In the social level one we have the following basic assumption about the autonomy of agents:

• Agents are autonomous entities that can not be obligated (by a request, order, etc.) to the
performance of some future action, unless they themselves commit to do the action.

In the following we will introduce the main concepts and ideas of the social level one. In chapter 4
we present a formal model of these concepts and ideas.
In the following discussions, we will be referring to speech acts, in a number of di�erent ways, e.g. :

• dir refers to a unconditional directive speech act;
• com(str , r) refers to a unconditional commissive speech act with strength str and reference r ;
• dir(str , r , c) refers to a conditional directive with strength str , reference r and condition c.
• dir(str , i , j , r , a) refers to a directive with strength str , reference r , regarding action a, with i

as speaker and j as hearer.

We will not introduce an abstract syntax of speech acts before chapter 4.

3.8.1 Directives

The above assumption about the autonomy of agents may seem to make directives pointless: If
agents can not create obligations by requesting other agents to do something, then what is the
point of having directives ? To solve this problem, we introduce the notions of partial and complete
obligations. Informally theses notions corresponds to Colomcetti's notions of precommitment and
commitment, see section 2.2.2.2. A partial obligations is similar to a precommitment and a complete
obligation is similar to a commitment. Using directives, agents are only able to create partial
obligations, not complete obligations. A partial obligation may be considered as a proposal from
one agent to another to do some action. In this sense, an obligation may be viewed as being in
di�erent states as shown on �gure 3.2. This �gure attempts to illustrate two states of an obligation.
A complete obligation is created in two steps:

1. The �rst transition corresponds to a directive (dir) speech act creating a partial obligation.
2. The second transition corresponds to the debtor of this partial obligation (i.e. the hearer of

the dir) that completes the partial complication by using a commissive (com), i.e. he accepts
the proposal from the creditor (the speaker of the dir).

This suggests the view of obligations as a kind state machine, where the transitions corresponds to
speech act messages being uttered by agents in a conversation.
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dir com

partial complete

Figure 3.2: Partial and complete obligation states.

The fundamental di�erence between a partial and complete obligations is that partial obligation can
not be violated like a complete obligation � they may, however, expire. The di�erence is described
in the following:

• Partial obligations are not binding, as completes obligation are. Figure 3.3 illustrates what
can happen to a partial obligation:
1. The debtor may chose to complete the obligation.
2. The debtor may chose to cancel the obligation.
3. The debtor may chose not to respond at all. In this case the partial obligation may expire

due to a timeout.
4. The creditor may chose to retract the obligation.

• Complete obligations are binding. When the debtor of a complete obligation has chosen to
complete a obligation, as illustrated on Figure 3.4, the following may happen:
1. The debtor may chose to ful�ll the obligation by performing the action speci�ed in the

obligation (�some act�).
2. The debtor may chose not to ful�ll the obligation, in which case the obligation (may)

eventually end up being violated (due to a timeout).

cancelled retracted expired

dir com

cancel

retract
timeout

partial complete

Figure 3.3: Partial, cancelled, retracted, expired and complete obligation states. Black states are
�nal states.

dir com

violated

fulfilled

"some act"

timeout

partial

complete

Figure 3.4: Complete, ful�lled and violated obligation states. Black states are �nal states.

Obligations may be changed due to two di�erent types of events:
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• Time events, i.e. the timeout of a partial obligation (to an expired obligation) and the timeout
of a complete obligation (to a violated obligation).

• Speech act events, i.e. the performance of a speech act.

A time event are modelled by the following (Obligation T ime Event):

OTmE : T ×Obl → Obl

Due to time events, obligations may expire and be violated. Above, we have called this a �timeout�.
A time event may be formalized like this:

OTmE : T ×Obl → Obl
∀ t : T ; obl : Obl •
OTmE (t , obl) =

partial(obl) ⇒ (
(is expired(t , obl) ⇒ mark expired(obl) ∨
(¬ is expired(t , obl) ⇒ obl)) ∨

complete(obl) ⇒ (
(is violated(t , obl) ⇒ mark violated(obl) ∨
(¬ is violated(t , obl) ⇒ obl)) ∨

�nal(obl) ⇒ obl

This function �matches� three cases:

1. If the obligation is partial, we check if it is expired; if it is, the obligation is marked as expired;
otherwise the obligation is not a�ected by the time event;

2. If the obligation is complete, we check if it is violated; if it is, the obligation is marked as
violated; otherwise the obligation is left unchanged;

3. If the obligation is already in one of the �nal states (i.e. expired, cancelled, retracted, violated
or ful�lled), the obligation is not sensitive to time events.

In the above function, we have assumed a number of auxiliary functions. The following three
functions checks if an obligation is in the partial, complete or �nal state:

partial : Obl → B
complete : Obl → B
�nal : Obl → B

The following two functions checks if obligations are expired or violated. They are both de�ned in
the same way as the is violated function in section 3.2.

is expired : T ×Obl → B
is violated : T ×Obl → B

The following two functions changes the states of obligations to expired or violated.

mark expired : Obl → Obl
mark violated : Obl → Obl

Speech acts events are more complex then time events. Speech act events can be divided into the
following issues:

• Due to a speech act events complete obligations may be ful�lled ; this corresponds to the �some
act� transition at Figure 3.4;

• Due to a speech act event
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� partial obligations may be created,
� partial obligations may be cancelled,
� partial obligations may be retracted and
� partial obligations may be completed.

This suggests the following informal de�nition of a contexual obligation speech act event :

• An contexual obligation speech act event is a (possible) change of a collection of obligations
obls : PObl in a given context c : Context due to the utterance of some speech act a : SAct at
some time t : T .

A contextual obligation speech act event is modelled by the following function:

COSActE : (T × SAct) 7→ Context 7→ Context

We will not consider how this function is speci�ed at this stage.

3.8.2 Commissives

Until now, we have been concerned with the issues of directives and obligations. Contrary to
directives, commissives may directly create complete obligations. This is due to our basic assumption
about autonomous agents in level one:

• Agents are autonomous entities that may commit (obligate) themselves to do actions on behalf
of other agents.

In other words: Agents do not have to propose a partial obligation to do a speci�c future action;
they just commit to it by creating a complete obligation. On Figure we 3.5 have attempted to
illustrate how commissives may �bypass� the partial state and directly create a complete obligation.

dir com

violated

fulfilled

"some act"

timeout

com

complete

partial

Figure 3.5: Commissives.

This model clearly creates a asymmetry between directives and commissives. Should agents not be
able to create partial obligations using commissives ? This would be similar to making a proposal
to do some action on behalf of another agent. Our answer to this question is yes. The di�erence
between making a partial and a complete obligation may be viewed as a di�erence in the degree of
strength of the illocutionary point of commissives and directives6. We will discuss this in section
3.8.3.

6This is our own interpretation of the concept of degree of strength of illocutionary point as suggested by Searle,
see section 2.1
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3.8.3 Soft and Hard Speech Acts

The concept of degree of strength of speech acts (illocutionary points) is modelled as a very simple
type. Directives and commissives may be have two strengths: soft or hard (these notions are our
own).

Strength ::= soft | hard

Informally, these notions means the following:

• A soft speech act shows a lower (i.e. weaker, softer, etc.) degree of commitment and therefore
creates a non-binding (partial) obligation between the speaker and hearer.

• A hard speech act shows a high (i.e. stronger, harder, etc.) degree of commitment and therefore
attempts to create a binding (complete) obligation between the speaker and hearer.

The distinction between soft and hard speech acts is quite simple:

• Soft directives and commissives create partial obligations;
• Hard directives and commissives (attempts) to create complete obligations.

Before we explain the meaning of soft and hard speech acts in more detail, we need to introduce
another concept: Speech act references. Speech act references are introduced in order to explicitly
model how speech act utterances in a given social context (e.g. a conversation between a number
of autonomous agents) may refer to each other. Figure 3.6 attempts to visualize the concept of
speech act references. This �gure illustrates a sequence of speech acts (i.e. a conversation), where
the speech act com2 refers to dir1 and dir2 refers to com1.

.... ........ ........ ....dir1 com1 com2 dir2

Figure 3.6: Speech act reference.

Generally, speech acts may be used in the following two ways:

1. Speech acts may be without any reference to speech acts previously uttered in a given context
� this type of speech act we call a initial speech act.

2. Speech acts may refer to speech acts previously uttered in a given context � this type of speech
act we call a reference speech act.

Initial speech acts �carry� a new unique reference identi�er. Reference speech acts, on the other
hand, carry an old reference identi�er. We have the following important di�erence between initial
and reference speech acts: Initial speech acts (may) create social obligations, contrary to reference
speech acts, which may only change previously created obligations (from being partial to being
complete, cancelled or retracted).
When an initial speech act creates an obligation in a context, the reference carried in this speech
act is used as identi�er of the obligation that it creates. These obligation identi�ers are then used
by reference speech acts to refer to previously uttered speech acts, e.g. as in the following:

1. An agent utters an initial speech act act1 with a new reference r1 in a context cnt .
2. This speech act happens to create a social obligation obl1 in context cnt , also with reference

r1.
3. Another agent refers to act1 that created obl1 in cnt , by uttering a reference speech act, act2,

that refers to the old reference r1.
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Speech act references may therefore also be viewed as obligation identi�ers. We introduce reference
identi�ers as a sort type RefId .

[RefId ]

From each obligation we may observe a reference identi�er:

obs referenceid : Obl → RefId

We put the following constraint on the social contextual state: No two obligations in a given context
may have the same reference identi�er. This is formalized by the following axiom:

∀ cnt : Context ; o1, o2 : Obl | o1 6= o2 •
(o1 ∈ obs obligations(cnt) ∧ o2 ∈ obs obligations(cnt)) ⇒

obs referenceid(o1) 6= obs referenceid(o2)

To be able to distinguish initial speech acts from reference speech acts, we introduce a reference
type, Ref .

Ref ::= old〈〈RefId〉〉 | new〈〈RefId〉〉

The informal meaning of this type is the following:

• A new(r) reference identi�es an initial speech act with a new reference identi�er r : RefId .
• A old(r) reference identi�es a reference speech act with an old reference identi�er r : RefId .

From a speech act, we may therefore observe a reference identi�er:

obs reference : SAct → Ref

In the following we will discuss our notions of hard and soft speech acts.

Soft Directives Soft directives works in the same way as we explained in the previous section,
i.e. we were in fact talking about soft directives. Soft directives are used to create creditor partial
obligations, i.e. they are proposals from the speaker (as creditor) towards the hearer (as debtor)
to do some action. These proposals have no reference to previous speech acts. They are therefore
initial speech acts used to create partial (i.e. soft) obligations; not complete obligations. For this
reason, soft directives may only be used in combination with a new reference, i.e. they cannot refer
to a previous speech act. Figure 3.7 illustrates the proposal of a partial obligation by using a soft
directive with a new reference identi�er r1, i.e. dir(soft ,new(r1)). The state of the obligation after
the proposal, is called creditor partial (and not just partial as before), because we need to distinguish
between partial obligations proposed by creditors and partial obligations proposed by debtors:

• A creditor partial obligation means that the obligation has been proposed by the creditor of
the obligation, i.e. by a dir(soft ,new(r)), where r is some new reference identi�er.

• A debtor partial obligation means that the obligated has been proposed by the debtor of the
obligation, i.e. by a com(soft ,new(r)), where r is a new reference identi�er (see the paragraph
about soft commissives).
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complete

dir(hard,new(r2))

creditor partial

dir(soft,new(r1)) com(hard,old(r1))

Figure 3.7: A soft directive creates a creditor partial obligation with reference r1. A hard commissive
completes this obligation. The third transition, i.e. a hard initial directive, is not considered as
meaningful at the social level one.

complete

com(soft,new(r1))

debtor partial

dir(hard,old(r1))

com(hard,new(r2))

Figure 3.8: A soft commissive creates as debtor partial obligation with reference r1. A hard directive
completes this obligation. A hard initial commitment is considered as meaningful in level one.

Hard Directives In the social level one, hard directives may only be used as an reference speech
acts which completes obligations, that have been proposed previously by a soft commissive. This
type hard directive is illustrated at Figure 3.8. At this �gure the hard directive, dir(hard , old(r1)),
refers the previously soft commitment, com(soft ,new(r1)), i.e. by using the old reference identi�er
r1.
In social level one, a hard initial directive, e.g. dir(hard ,new(r2)), is not allowed. This is due to
our basic assumption about the autonomy of agents in level one, see section 3.7. We will therefore
not consider this as a meaningful transition (i.e. speech act) in level one.
To summarize, soft and hard directives may be used as follows:

• An agent i may make a proposal to another agent j , that j should perform some action, i.e.
with i as creditor and j as debtor (e.g. dir(soft ,new(1)) on Figure 3.7.

• An agent i may accept a proposal from another agent j , that j should perform some action,
i.e. with i as creditor and j as debtor (e.g. dir(hard , old(1)) on Figure 3.8).

Together with the cancel and retract actions these are the two basic actions available to a creditor
in its negotiations with a debtor.

Soft Commissives Soft commissives works similarly to soft directives, in the sense, that they
both are used to propose partial obligations. The direction of the proposed obligation is, however,
opposite: The speaker is the debtor. Soft commissives may also be used as initial speech acts as
shown in Figure 3.8. At this �gure the soft commissive, com(soft ,new(r2)), creates a complete
obligation with a new reference identi�er r2.

Hard Commissives Hard commissives may be used both as reference speech acts and as initial
speech acts:

• As a reference speech act which completes obligations that have proposed previously by a soft
directive. This type hard commissive is illustrated at Figure 3.7. At this �gure the hard
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commissive, com(hard , old(r1)), refers to the previously soft directive, dir(soft ,new(r1)), i.e.
by using the old reference identi�er r1.

• As an initial speech act which directly creates a complete obligation, i.e. it �bypasses� the
debtor partial state. At Figure 3.8 the hard commissive, com(hard ,new(r2)), is an initial act,
i.e. its reference identi�er r2 is new and does not refer to any previous speech acts.

To summarize, soft and hard commissives may be used as follows:

• An agent i may make a proposal to another agent j , that i should perform some action, i.e.
with i as debtor and j as creditor (e.g. com(soft ,new(r1)) on Figure 3.8).

• An agent i may accept a proposal from another agent j , that i should perform some action,
i.e. with i as debtor and j as creditor (e.g. com(hard , old(r1)) on Figure 3.7).

• An agent i my commit (without any previous proposal) towards another agent j to perform
some action, i.e. with i as debtor and j as creditor (e.g. com(hard ,new(r2)) on Figure 3.8);

Together with the cancel and retract actions these are the two basic actions available to a debtor in
its negotiations with a creditor.
The introduction of hard and soft speech acts have solved the problem of having an assymmetri
between directives and commissives. Now commissives, in the same way as directives, may be used
to make proposals, i.e. soft commissives.

3.8.4 Conditional Speech Acts

Until now, we have only been considering unconditional speech acts and obligations. As introduced
in section 3.2 obligations may also be conditional. In section 3.2 the concept of condition, were left
as a unspeci�ed type, Cond. We will now de�ne a condition more precisely:

• A condition is an action that has to be performed, in order for an obligation to be complete.

We will de�ne a condition as an action type.

Cond == Action

In section 3.8.3 we introduced a model for proposing and accepting partial unconditional obligations
using hard and soft commissives and directives. This model may easily be extended to handle the
notion of conditional obligations. This just requires that conditional obligations may be proposed
and accepted in exactly the same way as unconditional obligations. A conditional creditor partial
obligation may be proposed conditional soft directive as shown on Figure 3.9. In the partial state,
one of the following two events may take place:

• The obligation may expire (time event).
• The debtor may accept the proposal and thereby the obligation becomes conditional (speech

act event).

In the conditional state, one of the following two events may take place:

• The obligation may expire.
• The condition c be performed (i.e. ful�lled), in which case the obligation becomes complete

(after which the obligated may either be violated or ful�lled as described earlier).

A conditional debtor partial obligation may be proposed and accepted in a similar way. Conditional
obligations expires because of a timeout of the conditional action. Unlike a partial obligation,
a conditional obligation may not be retracted or cancelled � this makes a conditional obligation
binding in the same sense as complete obligations.
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completeconditional

timeout timeout

expired

c

cond creditor partial

com(hard,old(r1),c)dir(soft,new(r1,),c)

Figure 3.9: Conditional obligations. We have omitted the cancellation and retraction transitions
from the partial state.

3.9 Social Level Two
At the social level one we only considered one type of social relationship between agents: Obligations.
At the social level two, we will also consider the social concepts of role power relations (e.g. employer�
employee), and agent authority relations (e.g. bank�customer). Like the level one context, the level
two context also contains knowledge about the identi�ers of the agents operating in the context,
and the beliefs expressed by the agents in the context. We may therefore observe the following
knowledge from the social context in level two:

obs agents : Context → PAId
obs obligations : Context → PObl
obs beliefs : Context → PBelief
obs roles : Context → PRId
obs rolemapping : Context → (AId 7→ RId)
obs powers : Context → PPower
obs auths : Context → PAuths

Contrary to the social level one, at this level agents may be forced (by directives) to do speci�c
actions by the use of directives (e.g. orders and requests), if the �right� power or authority relations
exists.
In the following we will introduce the main concepts and ideas of the social level two. In section 5.1
we present a formal model of these concepts and ideas.

3.9.1 Power Relations

In section 3.4 we introduced the concepts of role power relations. We considered that one agent role
(e.g. a manager) could be superior to another agent role (e.g. a construction worker), we respect
to certain actions (e.g. �build the house�). In this thesis, we will only consider a very simple type
of social role power relation: master-slave relations. In such simple relations, the slave is in fact
obligated to obey all orders (directives) from the master. This kind of relationship is of cause not
very common, but here it is a simpli�cation. Our model may then later be extended to include more
complex notions of role power relations.
In section 3.4 our notion of roles, that agents are assigned to in a given social context (e.g. a
company), were associated with a number of obligations. An agent assigned to a given role, is then
obligated to ful�ll the obligations that is associated with that role. In this thesis we will, however,
only consider the meaning of roles with respect to role power relations. Our concept of roles may
therefore be represented by a simple role identi�er, RId , that places roles in a hierarchical power
relation within a given social context.
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By introducing the notion of roles and role power relations, agent may now issue a directive by
power. Consider a social context cnt : Context where agent a : AId is assigned to role r1 : RId and
agent b : AId is assigned to role r2 : RId , and r1 is superior to r2, formally:

(a, r1) ∈ obs rolemapping(cnt) ∧
(b, r2) ∈ obs rolemapping(cnt) ∧
(r1, r2) ∈ obs powers(cnt)

A directive by power from a to b to do act , creates a complete obligation with b as debtor, a as
creditor and act as action. This applies both to unconditional and conditional obligations. In our
model of speech acts, a directive by power is a hard initial directive, i.e. dir(hard , a, b,new(r), act)
from a to b to do act (in this case with a new reference r) as shown on Figure 3.10. This applies
both to unconditional and conditional obligations.

completedebtor partial

dir(hard,a,b,new(r),act)

Figure 3.10: Directives by power in social level two.

The success of a directive by power therefore depends of the state of the social context. Consider a
situation where the roles of a and b is reversed, formally:

(a, r2) ∈ obs rolemapping(cnt) ∧
(b, r1) ∈ obs rolemapping(cnt) ∧
(r1, r2) ∈ obs powers(cnt)

In this situation, a directive by power, dir(hard , a, b,new(r), act), from a to b to do act will not
succeed. In this case, only a directive by power, dir(hard , b, a,new(r), act), from b to a to do act
will succeed. This is illustrated on Figure 3.11.

completedebtor partial

dir(hard,b,a,new(r),act)

Figure 3.11: Directives by power in social level two.

3.9.2 Authority Relations

The concept of authority relations were introduced in section 3.4. The informal meaning of au-
thorities in social level two is explained in the following. In a given context cnt , an agent a may
authorize another agent b to direct a by authority to do some action act , formally:

(b, act) ∈ obs auths(cnt)
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In this case, a directive from b to a to do act , will create a complete (i.e. binding) obligation with
a as debtor and b as creditor (in context cnt). This applies both to unconditional and condi-
tional obligations. Like a directive by power, a directive by authority is a hard initial directive,
dir(hard , b, a,new(r), act) from b to a to do act (in this case with new reference r) as shown on
Figure 3.11. This directive by authority would however not succeed in creating a complete obligation
if a had not previously authorized b to act in context cnt , formally:

(b, act) 6∈ obs auths(cnt)

3.9.3 Declaratives
In section 3.9.1 and 3.9.2 the existence of contextual power and authority relations were just assumed.
We will now consider how these social relations are actually created (and cancelled). As we have
previously seen, social obligations are created and changed using di�erent types of directives and
commissives. From a technical perspective, directives and commissives may therefore be viewed
as �operators� on obligation types. In this section we will introduce a speech act �operator� on
authority and power relations: declaratives. Searle [43] considers declaratives as a special kind of
speech act, that entail the occurrence of an action in themselves, e.g.: �I name this ship Titanic�, i.e.
they bring about a correspondence between the propositional content and the world. In our model
of speech acts declaratives change the world (i.e. social context) by creating and cancelling power
and authority relations. By declaring a new role power or authority relation, an agent (may) change
the contextual state (the world in Searls's terms). In our model we will only consider the following
four simple declarations:

• A new role power relationship may be created by a successfull declarative.
• An existing role power relationship may be cancelled by a successfull declarative.
• A new authority relationship may be created by a successfull declarative.
• An existing authority relationship may be cancelled by a successfull declarative.

This success of power declarations depends of the state of the social context in which it is uttered.
In our model, an agent a can declare a new or cancel a old role power relation regarding role r1 and
role r2 in a context cnt , if one of the following social properties hold in cnt :

• Agent a have the role power over r1 and r2, or
• a has got the authority to make the power relation declaration.

An agent a may authorize another agent b to some action act if the action act is regarding agent a
and agent b. These properties are formalized in section 5.1.

3.9.4 Obligations with Penalty
One of the issues by giving speech acts a social semantics based on obligations, is the meaning of
violating obligations [37]. After all, what does it actually mean to violate an obligation? In our
speech act model discussed so far, it just means that the obligation is ended up in a (�nal) violated
state. Usually the violation of an obligation means that the debtor, who is regarded as responsible
for the violation, has to pay for the violation by getting some kind of penalty. Penalty actions may
also be considered as a compensation (less hard) or a punishment (more hard). For example the
compensation for violating the obligation to pay for some received goods, may be to pay a �ne of
5 times the amount of the received goods. In social level two, we will model penalty as an action
that has to be performed by a debtor, in the case that he violates one of his obligations.

Penalty == Action

obs penalty : Obl → Penalty

Figure 3.12 illustrates the states that our new type of obligation may reach:
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• penalty : Timeout (violation) of a complete obligation. In this state the obligation is �waiting�
for the penalty action to be performed.

• violated : The penalty is performed.
• exception: The penalty is not performed.

The exception state is used to model situations where agents are violating both their obligations
and the penalties they get. We will not specify any further, what happens in this (exceptional)
situation.

fulfilled

exception

penalty

timeout

timeout

complete
"some act"

violated

"some act"

Figure 3.12: Penalties for violating obligations.
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Chapter 4

Abstract Model: Social Level One

4.1 Introduction
In this chapter, we will formalize the social level one, as proposed in chapter 3 section 3.8.

4.2 Time
To represent time explicitly in our system, we introduce the following sort type:

[T ]

We do not want to specify how time, t : T , is actually represented. One possible way of specifying
time could be as a tuple consisting of 6 elements: year (Y ), e.g. '2002', month (Mo), e.g. '03', day
(D), e.g. '12', hour (H ), e.g. '14', minute (Mi), e.g. '30', second (S ), e.g. '00', i.e. the concrete time
representation would be: Y ×Mo ×D ×H ×Mi × S . How to represent the individual components
in this tuple, is again a di�erent question. They could be represented as strings, e.g. �2002�, �03�,
etc., or natural numbers, e.g. 2002, 03, etc. We do not wish to address these questions, since we
consider these to be design (implementation) questions.
We introduce the following two global time values:

zero : T ;
now : T ;
inf : T
lt(zero, inf ) ∧ geq(now , zero) ∧ leq(now , inf )

Here zero is the smallest time that may be represented by T , now denotes the current time value
and inf the maximum time which can be represented by the time type T. Time values, t : T , should
be comparable and it should be possible to add and subtract times. The following time comparison,
addition and subtraction functions are therefore introduced:

gt : T × T → B;
geq : T × T → B;
lt : T × T → B;
leq : T × T → B;
plus : T × T → T ;
minus : T × T → T
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Since we have not speci�ed any concrete time type, we will only describe the meaning of these
functions informally (their meaning should be quite intuitive). In the following, assume two times
t1, t2 of type T . gt(t1, t2) is true if and only if (i�) t1 is greater then t2; otherwise it is false.
geq(t1, t2) is true i� t1 is greater then or equal to t2. lt(t1, t2) is true i� t1 is less then t2.
leq(t1, t2) is true i� t1 is less then or equal to t2. plus(t1, t2) adds the value of t2 to the value of
t1. minus(t1, t2) subtracts the value of t2 from the value of t1.
We wish to model that obligations must be ful�lled within a given period (interval) of time. To
represent time periods, we introduce the following type:

TP ′ ::= null | interval〈〈T × T 〉〉

The value null is used to represent an unspeci�ed time period; we call this a null time. The type
constructor, interval , can be used to construct values of type TP ′, e.g. the interval(t1, t2) represents
a time interval from t1 to t2. Since we are only interested in intervals where t2 is greater than or
equal to t1, we introduce the following subtype, TP , of well-formed (wf) time periods:

TP == {tp : TP ′ | wf TP(tp)}

The function, wf TP , is de�ned below:

wf TP : TP ′ → B

∀ t1, t2 : T •
wf TP(null) ⇔ true ∨
wf TP(interval(t1, t2)) = leq(t1, t2)

This function evaluates to true only in the cases where t1 is less then or equal to t2; in all other cases
it evaluates to false. The subtype TP therefore only contains time intervals where the constraint,
t1 ≤ t2, hold.
Example
Using the time period type, tp : TP , it is possible to represent the following �ve di�erent time
speci�cations:

1. A null time as in �Please send a quotation�. In this case there is no timely constraints for the
performance of the action.

2. A starting time as in �Please send me a quotation after 2 PM today.�
3. A end time as in �Please send me a quotation before 2 PM today.�
4. A exact time as in �Please send me a quotation at 2 PM today.�
5. A time interval as in �Please send me a quotation between 2 PM today and 2 PM tomorrow.�

Figure 4.1 attempts to illustrate the �ve time representations. Let ts:T denote some starting time
such that now ≤ ts ≤ inf and te:T some end time time such that now ≤ te ≤ inf . We assume that
ts ≤ te. In the following please refer to �gure 4.1.

1. A null time is represented by null.
2. A start time is represented by an interval from ts to inf, i.e. interval(ts, inf ).
3. An end time is represented by an interval from now to te, i.e. interval(now , te).
4. An exact time is represented by an interval from ts to te, i.e. interval(ts, te), with the addi-

tional restriction that ts = te.
5. A interval time is represented by an interval from ts to te, i.e. interval(ts, te).

These notions are not essential to our model of speech acts, so we will leave them further unspeci�ed.
End Example
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Figure 4.1: The �ve time representations. The dashed lines represent the time intervals (periods)
for the �ve di�erent time representations.

4.3 Abstract Syntax of Speech Acts
In the following a formal abstract syntax for speech acts will be proposed. In social level one
we will only consider �ve types of speech acts: assertive, directives, commissives, retractions and
cancellations. We will distinguish between two types of speech acts:

• Speech acts where the propositional content concern actions, i.e. directives, commissives, re-
tractions and cancellations.

• Speech acts where the propositional content do not concern actions, but rather propositions
in some propositional language, here a language called Bel , i.e. assertives.

The abstract syntax of speech acts is given by the type SAct ′.

SAct ′ ::= ass〈〈AId ×AId × Bel × Ref 〉〉
| dir〈〈Strength ×AId ×AId × Cond ×Action × Ref 〉〉
| com〈〈Strength ×AId ×AId × Cond ×Action × Ref 〉〉
| retract〈〈AId ×AId × Cond ×Action × Ref 〉〉
| cancel〈〈AId ×AId × Cond ×Action × Ref 〉〉

We introduce some well-formed conditions for speech acts in later in this section. We assume a set
of all possible agent identi�ers, AId .

[AId ]

The language for representing asserted beliefs, Bel , is introduced in section 4.7 and the action type,
Action, is introduced in section 4.4. The condition type, Cond , is de�ned in the same way as actions:

Cond == Action

The strength of speech acts, Strength, can be either hard or soft.

Strength ::= soft | hard
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Speech acts are associated with a reference.

[RefId ]

Ref ::= old〈〈RefId〉〉 | new〈〈RefId〉〉

RefId is the set of all possible reference identi�ers. new(r1) indicates an initial speech act with a
new reference identi�er r1 : RId and a old(r1) indicates an reference speech acts with a existing
(old) reference identi�er r1 : RId , as described in section 3.8.
In the following we present the general informal meaning of these illocutionary acts:
ass(i , j , p, r) The speaker i expresses its belief in p to the hearer j .
dir(str , i , j , c, a, r) Using strength str , the speaker i attempts to obligate the

hearer j to do action a if condition c is ful�lled.
com(str , i , j , c, a, r) Using strength str , the speaker i commits (obligates) himself

towards the hearer j to do action a if condition c is ful�lled.
retract(i , j , c, a, r) The speaker i retracts a proposal that the hearer j should

do a if condition c is ful�lled.
cancel(i , j , c, a, r) The speaker i cancels a proposal that i should do a if

condition c is ful�lled.
The meaning (and possible e�ect) of these illocutionary acts depends on their strength, str , condi-
tion, c, and reference, r . Each speech act may be used in di�erent ways by combining the strength,
reference and condition values di�erently. Commissives and directives may each be used in eight
di�erent ways as shown in Table 4.1. An unconditional illocution is indicated by a noact conditional
value, e.g. :

1. dir(soft , i , j ,noact , a,new(r))
2. dir(soft , i , j , c, a,new(r))

The �rst directive is unconditional and the second is conditional. Table 4.1 gives the informal
meaning of each of these specialized speech acts.
Some combinations of strength, str : Strength, and reference, r : Ref , are not applicable as indicated
by the 'n.a' in Table 4.1. Not applicable means that these speech acts are not meaningful in the
social level one or generally in our model, as described in section 3.8. In the following we explain
why:

• dir(soft , i , j , c, a, old(r)) and com(soft , i , j , c, a, old(r)) has no meaning in our model, because
an agent is not allowed to make a proposal that refers previous speech act, i.e. they may only
make new proposals using soft directives and commissives. This also applies to social level
two.

• dir(hard , i , j , c, a,new(r)) is not meaningful in level one, because of our basic assumption
about the autonomy of agents in this level. In social level two, agents may use this speech act
to make directives by power or by authorization.

• retract(i , j , c, a,new(r)) and cancel(i , j , c, a,new(r)) are generally not meaningful in our model,
because agents can not retract or cancel proposals that has not yet been proposed, i.e. they
can only be used as reference speech acts in order to retract or cancel proposals (with old
reference id's).

Well-formed Speech Acts We will introduce a subtype SAct of well-formed speech acts.

SAct == {sa : SAct ′ | wf SAct(sa)}

For directives, commissives, retractions and cancellations, we require the predicate future ref holds
for the conditional and propositional actions. The function future ref is speci�ed in section 4.4. In
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Assertives
ass(i , j , p,new(r)) i expresses its belief in p to j with a new reference r , i.e.

without any reference to previous speech act
ass(i , j , p, old(r)) i expresses its belief in p to j with a reference to

a previous speech act reference r
Directives
dir(soft , i , j ,noact , a,new(r)) i proposes to j that j do a with a new reference r
dir(soft , i , j , c, a,new(r)) i proposes to j that j do a on condition c with a new reference r
dir(soft , i , j , c, a, old(r)) n.a.
dir(soft , i , j ,noact , a, old(r)) n.a.
dir(hard , i , j , c, a,new(r)) n.a.
dir(hard , i , j ,noact , a,new(r)) n.a.
dir(hard , i , j ,noact , a, old(r)) i accepts a proposal from j that j do a with a old

reference r (and thereby obligates j to do a)
dir(hard , i , j , c, a, old(r)) i accepts a proposal from j that j do a on condition c with a old

reference r (and thereby obligates j to do a on condition c)
Commissives
com(soft , i , j ,noact , a,new(r)) i proposes to j that i do a with a new reference r
com(soft , i , j , c, a,new(r)) i proposes to j that i do a on condition c with a new reference r
com(soft , i , j ,noact , a, old(r)) n.a.
com(soft , i , j , c, a, old(r)) n.a.
com(hard , i , j ,noact , a,new(r)) i obligates himself towards j to do a with a new

reference r
com(hard , i , j , c, a,new(r)) i obligates himself towards j to do a on condition c with a new

reference r
com(hard , i , j ,noact , a, old(r)) i accepts a proposal from j that i do a with a

old reference r (and thereby obligates i to do a)
com(hard , i , j , c, a, old(r)) i accepts a proposal from j that i do a on condition c with a

old reference r (and thereby obligates i to do a on condition c)
Retractions
retract(i , j ,noact , a,new(r)) n.a.
retract(i , j , c, a,new(r)) n.a.
retract(i , j ,noact , a, old(r)) the speaker i retracts a proposal that the hearer j should do a
retract(i , j , c, a, old(r)) the speaker i retracts a proposal that the hearer j should do a

if condition c is ful�lled
Cancellations
cancel(i , j ,noact , a,new(r)) n.a.
cancel(i , j , c, a,new(r)) n.a.
cancel(i , j ,noact , a, old(r)) the speaker i retracts a proposal that the hearer j should

do a
cancel(i , j , c, a, old(r)) the speaker i retracts a proposal that the hearer j should

do a if condition c is ful�lled

Table 4.1: The informal meaning of unconditional and conditional speech acts with di�erent
strengths and references. 'n.a.' means not applicable.
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addition to this, directives, dir(s, i , j , c, a, r), are well-formed if the action a concerns the hearer,
j , i.e. a speaker i only directs a hearer to perform actions that the hearer actually can perform,
and commissives, com(s, i , j , c, a, r), are well-formed if the action a concerns the speaker, i , i.e. a
speaker only commit towards hearers to perform actions that the speaker actually can perform. The
same applies to retractions and cancellations. This is formalized by the function, wf SAct :

wf SAct : SAct ′ → B

∀ i , j : AId ; p : Bel ; r : Ref ; s : Strength; c : Cond ; a : Action •
wf SAct(ass(i , j , p, r)) ⇔ true ∨
wf SAct(dir(s, i , j , c, a, r)) = concern(j , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(com(s, i , j , c, a, r)) = concern(i , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(retract(i , j , c, a, r)) = concern(j , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(cancel(i , j , c, a, r)) = concern(i , a) ∧ future ref (c) ∧ future ref (a)

We refer to Appendix C.2 for the speci�cation of the function concern.

concern : AId ×Action 7→ B

4.4 Actions
The propositional content of directives, commissives, retractions and cancellations are actions, i.e.
agent directs other agents to do certain actions, commits do to certain actions, etc. In the following
an action type, Action, is therefore introduced.

Action ::= noact
| act〈〈SAct ′ × TP〉〉
| or〈〈Action ×Action〉〉
| and〈〈Action ×Action〉〉

In the following we will give the informal meaning of each of these constructor:
noact This action stands for no-action, i.e. no action

has to be performed. This value is used to represent actions
that have already have been performed.

act(sa,tp) This constructor takes two arguments: a speech act, sa : SAct ′,
and a time period, tp : TP . The informal meaning of this
construct is that sa has to be performed within the
time period tp.

or(a1,a2) This action is recursive, i.e. the two arguments,
a1, a2 : Action refer to the action type Action itself.
The informal meaning of this construct is that either
a1 or a2 has to be performed.

and(a1,a2) This constructor is similar to the or constructor, just
with the informal meaning that both a1 and a2 has
to be performed.

An action type, Action, is like a and-or binary three structure. The leaves are either noact or
act(sa, tp), where sa : Act refers to a assertive (which does not refer to any actions � only beliefs).
The nodes are formed by either or , and or act(sa, tp) constructors, where sa : SAct refers to
directives or commissives (which also refers to actions). This means that recursive functions can be
used to traverse action three expressions.
One important thing should be noticed about the action type, Action, that we have introduced. In
our model, we only consider speech actions, i.e. agent only promise or request other agents to perform
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speech acts. The action type, Action, can easily be extended to represent non-communicative
actions, e.g. physical actions, as in for the framework of Dignum [11]. This could be accomplished
by including an extra action construction to our action type, e.g.

ExtAction ::=
...

nact〈〈NAct × TP〉〉 |
...

where nact(na, tp) means that the non-communicative action, na : NAct , should be performed
within the time period, tp : TP . NAct is a new type of all non-communicative actions. In our model
we will however not consider this extended action type. Physical actions can be modelled by our
action type, Action, by letting speech acts represent non-communicative actions, e.g. after an agent
has asserted some speci�c facts, e.g. deliver, it means that the a speci�c physical action has been
performed; in this case a physical delivery.
Example
Using the above constructors, di�erent composite actions may be de�ned. In the following, some
examples are presented. The examples refer to Figure 4.2. In this example we assume that the act
constructors only contain assertives (i.e. they do not refer to any other actions).

(2)

and or

or

act(a2,tp2) act(a1,tp3) act(a3,tp4)act(a1,tp1)

or

or

act(a1,tp3) act(a3,tp4)

act(a1,tp1)

(3)

act(a1,tp1) noact

act(a1,interval(t1,t2))

(1)

(4) (5)

Figure 4.2: Action and-or binary trees.

• Perform speech act a1 : SAct between t1 : T and t2 : T :

act(a1, interval(t1, t2))

See the action tree at Figure 4.2(1).
• Perform speech act a1 in the time interval tp1 and a2 in the time interval tp2 or perform

speech act a1 in time interval tp3 or a3 in tp4:

or(and(act(a1, tp1), act(a2, tp2)), or(act(a1, tp3), act(a3, tp4)))

See the action tree at Figure 4.2(2).
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• Maybe an agent has already performed some of the actions in the above action expression,
e.g. a2. This may be represented by the following action expression:

or(and(act(a1, tp1),noact), or(act(a1, tp3), act(a3, tp4)))

The only modi�cation is that act(a2, tp2) has been replaced with noact , indicating that the
action has been performed. This action expression may actually be reduced to the following:

or(act(a1, tp1), or(act(a1, tp3), act(a3, tp4)))

See the reduced action tree at Figure 4.2(3). What happens if a3 is performed ? First we
replace a3 with noact :

or(act(a1, tp1), or(act(act1, tp3),noact))

This action expression can actually be reduced to the following action expression:

act(a1, tp1)

See the reduced action tree at Figure 4.2(4). If a1 is performed, we end up with the following
action: noact , indicating that all actions in the expression has been performed. See the �nal
action tree at Figure 4.2(5).

End Example

We formalize the concept of action reduction in section 4.6.4 which deals with obligation ful�llment.

Future Time Reference In the following we will discuss some of the constraints on the propo-
sitional content of directives and commissives.
If an agent directs another agent to perform some action, which includes a number of other nested
actions, then the �rst action must be before the later actions. Lets take an example:

dir(soft , a, b, act(dir(b, c, act(ass(c, a, p), interval(t3, t4))), interval(t1, t2)), old(r))

This speech act expression reads: agent a directs agent b to direct, within the time interval from
t1 to t2, agent c to assert, within the time interval from t3 to t4, p to a. Here we will require that
that t3 ≥ t2 + dt , where dt is some unspeci�ed delta time, that denotes the minimum time, that
may be between two actions.

dt : T
gt(dt , zero)

The function, future ref , checks if an action speci�ed in a directive, commissive, retraction, or
cancellation have a future time reference.
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future ref : Action → B

∀ i , j : AId ; p : Bel ; r : Ref ; s : Strength; c : Cond ;
a, a1, a2 : Action; t1, t2 : T •

future ref (noact) ⇔ true ∨
future ref (act(ass(i , j , p, r), interval(t1, t2))) ⇔ true ∨
future ref (act(dir(s, i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(com(s, i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(cancel(i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(retract(i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (or(a1, a2)) = future ref (a1) ∧ future ref (a2) ∨
future ref (and(a1, a2)) = future ref (a1) ∧ future ref (a2)

For example, a directive action is well-formed only if both the conditional action c : Action and the
obligation action action a : Action has future time reference:

future act(t2, dt , c) ∧ future act(t2, dt , a)

The future act(t , dt , action) takes has input a time reference (the �basis time�), t , a delta time, dt ,
and a action expression, action, that has to be checked.

future act : T × T ×Action → B

∀ i , j : AId ; p : Bel ; r : Ref ; str : Strength; c : Cond ;
a, a1, a2 : Action; t , t1, t2, dt : T •

future act(t , dt ,noact) ⇔ true ∨
future act(t , dt , act(ass(i , j , p, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(dir(str , i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(com(str , i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(cancel(i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(retract(i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , or(a1, a2)) ⇔ (future act(t , dt , a1) ∧ future act(t , dt , a2)) ∨
future act(t , dt , and(a1, a2)) ⇔ (future act(t , dt , a1) ∧ future act(t , dt , a2))

The function, future act , speci�cation is divided into eight cases of actions:

• noact actions contains no time reference, so it always evaluates to true.
• assertive, commissive, directive, cancellation and retraction evaluates to true if t1 is greater or

equal to the reference time t + dt .
• in the case of composite or and and actions two recursive evaluations is made with each of

the two composite actions.

4.5 Context
The social context models the knowledge of social environment in which an agent conversation
(exchange of speech acts) takes place, as described in chapter 3 section 3.5 and section 3.8. The
social level one context is formalized as a 3-tuple:

Context ′ ::= context〈〈CId × PObl × BM 〉〉

where the elements of context(cid , obls, bm) is
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• a context identi�er cid ,
• a set of obligations, obls, and
• an agent to beliefs mapping, bm.

The agent to belief mapping is formalized as a type BM that maps agent identi�ers to sets of beliefs.
BM == AId 7→ PBel

We assume some unspeci�ed set of unique context identi�ers.
[CId ]

Example
A context with context id cid : CId contains two agents, a1, a2 : AId . These agents have created
three social obligations, o1, o2, o3 : Obl . Agent a1 have currently expressed two beliefs, b1 : Bel
and b2 : Bel . Agent a1 has only expressed one belief, b3 : Bel . This social contextual knowledge is
formally represented like this:

context(cid , {o1, o2, o3}, {a1 7→ {b1, b2}, a1 7→ {b3}})

End Example

We introduce a function, CSActE (Contextual Speech Act Event), for updating the contextual
knowledge in the case of a speech act event.

CSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cnt : Context •
CSActE (t , sact)(cnt) =

(let cnt ′ == COSActE (t , sact)(cnt) •
(let cnt ′′ == CBSActE (sact)(cnt ′) •
cnt ′′))

The function, COSActE (Contextual Obligation Speech Act Event), updates the contextual obli-
gations, and the function, CBSActE (Contextual Belief Speech Act Event), updates the contextual
beliefs. The two functions are speci�ed in section 4.6 and section 4.7.

Well-formed Context The above de�nition of context, Context ′, allows context con�gurations,
that are not well-formed. In the following, a subtype, Context , of well-formed contexts is introduced.

Context == {cnt : Context ′ | wf C (cnt)}

The sub-type, Context , is constrained in the following way:
1. All obligations created in a context must concern agents operating in the context.
2. No two obligations in a given context may have the same reference identi�er.

These two constrains are formalized by the function, wf C .
wf C : Context ′ → B

∀ i , j : AId ; o, o1, o2 : Obl ; as : PAId ; obls : PObl ;
cid : CId ; bm : BM | o1 6= o2 •
wf C (context(cid , obls, bm)) ⇔

(o ∈ obls ∧ i = getdebtor(o) ∧ j = getcreditor(o) ⇒ [1]
i ∈ dom bm ∧
j ∈ dom bm) ∧

(o1 ∈ obls ∧ o2 ∈ obls) ⇒ [2]
getreferenceid(o1) 6= getreferenceid(o2)
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The numbers to the right in the Z speci�cation are comments. They show where the two requirements
are speci�ed. The auxiliary functions getdebtor , getcreditor and getreferenceid are speci�ed at
Appendix C.5.4.

4.6 Obligation

As described in chapter 3 section 3.8, obligations are the main semantic object of speech acts in
social level one. Based on the descriptions in section 3.8 we formally specify an obligation as an
8-tuple, Obl :

Obl ′ ::= obl〈〈AId ×AId × Cond × Cond ×Action ×Action ×OS × RefId〉〉

where the elements of an obl(i , j , c, cc, a, ac, os, ref ) are:

• an identi�er of the agent that has to ful�ll the obligation, i : AId ; we call this agent the debtor
of the obligation;

• an identi�er of the agent towards which the obligation is made, j : AId ; we call this agent
creditor;

• a conditional action that has to be performed before the obligation is completed, c : Action;
• a copy of c : Action that stays unchanged during the whole history of obligations, cc : Action;
• an action that has to be performed by the debtor of the obligation, a : Action;
• a copy of a : Action that stays unchanged during the whole history of obligations, ac : Action;
• the obligation state indicator, os : OS ;
• a unique obligation reference, ref : RefId .

Our de�nition of obligations contains two elements that were not described in 3.8: The copy of
the condition and obligation actions, cc and ac. We only introduce these for technical reasons
as described in the following. When obligations are created they will be e�ected by speech act
events. The actions c and a may be composed of a number of primitive actions by the or and and
constructors. Each time a speech act event occurs, c or a may be reduced to some more simple
actions. In the end they will be reduced to a noact action, which either means that the condition
has been ful�lled (if c is equal to noact) or the obligation itself has been ful�lled (if a is equal to
noact). The obligation therefore contains no �memory� of the original values of c and a. In order
to keep a memory of these original values, we therefore keep the original values una�ected (during
the whole lifetime of obligations) as cc and ac.
As introduced in section 3.8 obligations are modelled as state transition machines, that may be
e�ected by time and speech act events. We introduce an obligation state indicator, OS , that keeps
track of the current state of obligations. The obligation state indicator OS may take the following
values:

OS ::= debtor partial | debtor cond partial | creditor partial |
creditor cond partial | complete | ful�lled | violated |
expired | retracted | cancelled | conditional

In the following we will very generally describe each of these states:
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debtor partial A debtor has proposed to commit to some unconditional obligations.
debtor cond partial A debtor has proposed to commit to some conditional obligation.
creditor partial A creditor has proposed that the debtor should commit to some

unconditional obligation.
creditor cond partial A creditor has proposed that the debtor should commit to

some conditional obligation.
conditional A binding obligation is waiting for the conditional action to be performed.
complete A binding obligation is waiting to be ful�lled by the debtor.
ful�lled A binding obligation has been successfully ful�lled by the debtor.
violated A binding obligation has been violated by the debtor.
expired A partial or conditional obligation has expired.
retracted A partial obligation has been retracted by creditor.
cancelled A partial obligation has been retracted by debtor.

In section 4.6.1, we will formalize the dynamic properties of obligations.

Well-formed Obligations In the following, a subtype, Obl , of well-formed obligations is intro-
duced.

Obl == {o : Obl ′ | wf Obl(o)}

In order for an obligations to be well-formed, we require the following:

1. The obligation action a : Action must concern the debtor agent i : AId ;
2. c must be reducible from cc, and
3. a must be reducible from ac.

These three constraints are formalized by the function, wf Obl .

wf Obl : Obl ′ → B

∀ i , j : AId ; r : RefId ; c, cc : Cond ; a, ac : Action; os : OS •
wf Obl(obl(i , j , c, cc, a, ac, os, r)) ⇔

concern(i , a) ∧ [1]
reducible(c, cc) ∧ reducible(a, ac) [2 and 3]

The function concern were introduced in section 4.3. The following function, reducible(a, ac), checks
if an action ac : Action can be reduced to another action a.

reducible : Action ×Action 7→ B

∀ a, ac : Action • ∃ s : seq(T × SAct) •
reducible(a, ac) ⇔ a = reduce(s, ac)

reduce : seq(T × SAct)×Action 7→ Action
∀ a, ac : Action; t : T ; sact : SAct ; s : seq(T × SAct) •
reduce(〈〉, ac) = ac ∨
reduce(〈(t , sact)〉a s, ac) =

(let ac′ == reduce act(t , sact , ac) •
reduce(s, ac′))

The function, reduce, uses another function reduce act , that is introduced in section 4.6.4. The
signature is given by:

reduce act : T × SAct ×Action 7→ Action
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No. IP Strength Ref Conditional State
1 com hard new no complete
2 com hard new yes conditional
3 com soft new no deptor partial
4 com soft new yes deptor cond partial
5 dir soft new yes creditor cond partial
6 dir soft new no creditor partial

Table 4.2: Initial speech act events. IP stands for illocutionary point.

4.6.1 Obligation Dynamics

We will now discuss the dynamic properties of obligations, i.e. obligation creation, retraction, can-
cellation, violation, etc., as described in section 3.8. Obligations may be created and changed due
to two kinds of events: speech act events and time events. In the following we will explain the
dynamics of the obligation state transition machine.
We will distinguish between three types of events:

• Initial speech act events, see Table 4.2 and Figure 4.3.
• Reference speech act events, see Table 4.3 and Figure 4.4.
• Time events, see Table 4.4 and Figure 4.5.

4.6.1.1 Initial Speech Act Events

Initial speech acts are distinguished by having a new reference identi�er, i.e. new(r), where r : RedId
is some new reference identi�er. Figure 4.3 illustrates the 6 initial transitions that can be taken by
initial speech acts. Dashed lines indicates either reference events or time events. The numbers of
the transitions correspond to the row numbers in Table 4.2. This table contains the parameters of
the initial speech acts that correspond to these transitions. In this table abstracted away from the
actual agent identi�ers, actions and reference identi�ers, e.g. the �rst two rows corresponds to the
following speech acts:

• com(hard , i , j ,noact , a,new(r))
• com(hard , i , j , c, a,new(r))

where i : AId is the speaker, j : AId is the hearer, c : Action is a conditional action, a : Action is a
action, and r : RefId is a new reference identi�er. The informal meanings of these speech acts are
presented in Table 4.1 in section 4.3.

4.6.1.2 Reference Speech Act Events

As described in chapter 3 reference acts are distinguished by having an old reference identi�er, i.e.
old(r), where r : RefId is some old, i.e. already existing, reference identi�er. Figure 4.4 illustrates
the 14 reference transitions that can be taken by reference speech acts. Dashed lines indicates either
initial events or time events. The numbers of the transitions correspond to the row numbers in
Table 4.3.
At transition 13 and 14 we have written �some� by the IP (illocutionary point) and strength and �?�
by the condition. These speech acts depends of the actual obligation that is created. They may in
fact be all other kinds of speech acts.
The informal meaning of these speech acts is presented in Table 4.1 in section 4.3.
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4.6.1.3 Time Events

After a time event, some obligations may expire and others may be violated. Figure 4.5 illustrates
the 6 transitions that be can be taken due to time events. Dashed lines indicates either initial
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No. IP Strength Ref Conditional From To
1 cancel n.a. old no deptor partial cancelled
2 cancel n.a. old no creditor partial cancelled
3 cancel n.a. old yes deptor cond partial cancelled
4 cancel n.a. old yes creditor cond partial cancelled
5 retract n.a. old no deptor partial retracted
6 retract n.a. old no creditor partial retracted
7 retract n.a. old yes deptor cond partial retracted
8 retract n.a. old yes creditor cond partial retracted
9 dir hard old no deptor partial complete
10 com hard old no creditor partial complete
11 dir hard old yes deptor cond partial conditional
12 com hard old yes creditor cond partial conditional
13 �some� �some� old ? conditional complete
14 �some� �some� old ? complete ful�lled

Table 4.3: Reference speech act events. IP stands for illocutionary point.

No. Action From To
1 a deptor partial expired
2 a creditor partial expired
3 c deptor cond partial expired
4 c creditor cond partial expired
5 c conditional expired
6 a complete violated

Table 4.4: Time events (timeout).

events or reference events. The numbers of the transitions correspond to the row numbers in Table
4.4. The column named �Action� indicates which of the two obligation actions that is expired or
violated if the particular transition is taken: The condition action c : Action or the obligation action
a : Action.
Example
Consider, for example, the following partial obligation (we have omitted the action copies):

obl(i , j , c, a, debtor cond partial , old(r1))

which means that i is partially obligated towards j to perform a on condition c. The condition, c,
may be that the following action is performed:

or(act(ass(j , i , p, old(r1)), interval(t1, t2)),
act(ass(j , i , q , old(r1)), interval(t3, t4))),

which means that agent j should assert p to i sometime in the interval from t1 to t2 or assert q
to i sometime in the interval from t3 to t4. We assume that t2 < t3. This conditional action,
c, is expired when the current time, now : T , is greater then t4, i.e. now > t4. This time event
corresponds to transition 4 in Table 4.4.
End Example

4.6.2 Time Events

We will start by informally de�ning what is meant by expired and violated obligations:



62 Chapter 4. Abstract Model: Social Level One

violated

fulfilled

conditional

expiredretractedcancelled

debtor_cond_partial

debtor_partial

creditor_cond_partial

creditor_partial

completeInit

1

2

3

4

5

6

Figure 4.5: Time events (timeout).

1. Consider some conditional obligation, o, given by obl(i , j , c, cc, a, ac, os, r), where i , j : AId
are distinct agent identi�ers, c, cc : Action is a conditional action that has to be performed in
the time interval interval(t1,t2), and a, ac : Action is an action that is to be performed in the
time interval interval(t3,t4).
• If os ∈ {creditor cond partial , debtor cond partial , conditional} at some time t : T then
o is expired at t if t > t2;

• If os = complete at some time t : T then o is violated at time t if t > t4.
2. Consider some unconditional obligation, o, given by obl(i , j ,noact ,noact , a, ac, os, r), where

i , j : AId are distinct agent identi�ers and a, ac : Action is an action that is to be performed
in the time interval interval(t1,t2).
• If os ∈ {creditor partial , partial , debtor partiall} at some time t : T then o is expired at
t if t > t2;

• If os = complete at some time t : T then o is violated at time t if t > t2.
The timeout of obligations is formalized by the function timeout . Since it is the action-part of an
obligation that determines if an obligation is expired or violated (the time-period is speci�ed inside
the action expression), the function checks if actions are expired or violated, and not obligations.
The function timeout(act , t) takes as input an action act and a time t and evaluates to true if act
is timed out at t .

timeout : Action × T 7→ B

∀ t , t1, t2 : T ; sa : SAct ; a1, a2 : Action •
timeout((noact), t) ⇔ false ∨
timeout(act(sa, interval(t1, t2)), t) ⇔ gt(t , t2) ∨
timeout(or(a1, a2), t) ⇔ timeout(a1, t) ∧ timeout(a2, t) ∨
timeout(and(a1, a2), t) ⇔ timeout(a1, t) ∨ timeout(a2, t)

Actions may be composed by using the and and or constructors. All composite actions in an action
expression must be checked by the timeout function. This is handled by recursively traversing
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through the action three expression. The function matches the four action constructors: noact , act ,
or , and . Since the noact actions does not contain any time, it just gives false. In the case of an act
action we check for a timeout, i.e. t > t2. Actions composed by or is timed out only in the case
that both of the composed actions are timed out. Actions composed by and are timed out if only
one of the composed actions is timed out, e.g. for the action and(a1, a2), we require that none of
the actions a1, a2 is timed out (because the whole and action would then be expired or violated).
The function, OTmE , formally speci�es what an obligation time event is:

OTmE : T ×Obl 7→ Obl
∀ i , j : AId ; t : T ; ref : RefId ; c, cc : Cond ; a, ac : Action; os : OS ; oout : Obl •
OTmE (t , obl(i , j , c, cc, a, ac, os, ref )) = oout ⇔

is partial(os) ⇒ ( [1,2 � Time]
(timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, expired , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref ))) ∨

(is cond partial(os) ∨ is conditional(os)) ⇒ ( [3,4,5 � Time]
(timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, expired , ref )) ∨
(¬ timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref ))) ∨

is complete(os) ⇒ ( [6 � Time]
(timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, violated , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, complete, ref ))) ∨

is �nal(os) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref )

The numbers to the right in the speci�cation refers to the transition numbers in the time event
Table 4.4 and the state transition machine in Figure 4.5. The functions for matching the state
of obligations, is partial , is cond partial , is complete, is conditional and is �nal , are found at
Appendix C.5.4.
A function, COTmE (t)(cnt), for updating the contextual set of obligations in the case of a time
event, is introduced. This function1 takes as input a time t : T and a context c : Context which
contains a collection of obligations obls : PObl , and evaluates OTmE (t , o) for each o ∈ obls.

COTmE : T 7→ Context 7→ Context
∀ t : T ; obls : PObl ; cid : CId ; bm : BM •
COTmE (t)(context(cid , obls, bm)) =

(let obls ′ == {o : obls • OTmE (t , o)} •
context(cid , obls ′, bm))

4.6.3 Speech Act Events

We start by giving an informal de�nition of what we consider to be a contextual obligation speech
act event:

• An contextual obligation speech act event is a (possible) change of a collection of obligations
obls : PObl in a given context c : Context due to the utterance of some speech act a : SAct at
some time t : T .

The following function, COSActE , formally speci�es such a speech act event:
1A Z note: In Z we write {x : s • e} to denote the set of all expressions e such that x is drawn from s. The

expression e will usually involve one or more free occurrences of x [65].
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COSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sa : SAct ; cnt : Context •
COSActE (t , sa)(cnt) =

(let cnt ′ == COTmE (t)(cnt) •
(let cnt ′′ == complete obl(t , sa)(cnt ′) •
(let cnt ′′′ == ful�lled obl(t , sa)(cnt ′′) •
(let cnt ′′′′ == sact event(sa)(cnt ′′′) • cnt ′′′′))))

This function is decomposed into four other functions, each of specifying di�erent parts (transitions)
of the speech act event:

• COTmE : For each speech act event, a time events occurs. After a time event, some obligations
may be expired and others may be violated. This function speci�es the 6 time events in Table
4.4.

• complete obl : Due to a speech act events, conditional obligations may be changed to be
complete. This function speci�es the transition 13 in Table 4.3 and Figure 4.4.

• ful�lled obl : Due to a speech act event, complete obligations may be ful�lled. This function
speci�es the transition 14 in Table 4.3 and Figure 4.4.

• sact event : Speech act events may create partial obligations, create complete obligations,
change the state of partial obligations to complete obligations, retract of partial obligations,
retract of complete obligations, etc. This function speci�es all initial and reference speech act
events in Table 4.2 and 4.3 except transition 13 and 14.

In the following, a formal speci�cation of these functions is given. The COTmE function has already
been introduced.
The function complete obl(t , sact)(cnt) checks if any of the conditional obligations o ∈ obls in a
given context cnt is complete due to the speech act sact at time t .

complete obl : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
complete obl(t , sact)(context(cid , obls, bm)) =

(let obls ′ == {o : obls • cmpl(t , sact , o)} • context(cid , obls ′, bm))

This function uses the function cmpl(t , sact , o) to check each single obligation o ∈ obls.

cmpl : T × SAct ×Obl 7→ Obl
∀ i , j : AId ; t : T ; sact : SAct ; ref : RefId ; c′, c, cc : Cond ;
a, ac : Action; os : OS ; oout : Obl •
cmpl(t , sact , obl(i , j , c, cc, a, ac, os, ref )) = oout ⇔

is conditional(os) ⇒ (
(let c′ == reduce act(t , sact , c) •
(no act(c′) ⇒ oout = obl(i , j ,noact , cc, a, ac, complete, ref )) ∨
(¬ no act(c′) ⇒ oout = obl(i , j , c′, cc, a, ac, os, ref )))) ∨

¬ is conditional(os) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref )

If the obligation is conditional, i.e. is conditional(os), we check if the speech act, sact , ful�lls the
condition c. This check is done by the function reduce act, which is described and formalized in
section 4.6.4. If the condition is reduced to noact , i.e. no act(c′), it means that the obligation is
complete. Otherwise the obligation is still conditional. The help function no act is de�ned like this:

no act : Action → B

∀ a : Action • no act(a) ⇔ (a = noact)
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The function ful�lled obl(t , sact)(cnt) checks if any of the complete obligations o ∈ obls in a given
context cnt are ful�lled by the speech act sact at time t .

ful�lled obl : (T × SAct) 7→ Context 7→ Context

This function is very similar to the function complete introduced before. The main di�erence is that
the action being reduced by reduce act is a : Action and not the conditional action c : Action as
before. We refer to Appendix C.5.2 for the speci�cation of this function.
The function sact event is responsible for creating new obligations and changing already created
obligations in a given context, due to speech act events.

sact event : SAct 7→ Context 7→ Context
∀ sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
sact event(sact)(context(cid , obls, bm)) =

(let obls ′ == event(sact)(obls) • context(cid , obls ′, bm))

This function uses the another function, event(sa)(obls), to update a set of obligations obls : PObl
due to a speech act event sa : SAct . The speci�cation of event is shown in Figure 4.6.
The function event matches the two types of speech acts: 1) initial speech acts as shown in Table
4.2, 2) reference speech acts as shown in Table 4.3, except transition 13 and 14. The numbers in
the speci�cation refers to these two tables, e.g. [5,6 � Init] refers to the initial speech acts 5 and 6 in
Table 4.2 and [10,12 � Ref] refers to the reference speech acts 10 and 12 in table 4.3.
In the speci�cation of the function event we have introduced a help function is cond that is used to
check if speech acts are conditional, i.e. if c = noact . We refer to Appendix C.5.2 for the speci�cation
of this function.
Initial speech act (may) create new obligations. A new obligation is created by the function create.

create : Obl × PObl → PObl
∀ o : Obl ; obls, obls ′ : PObl •
create(o, obls) = obls ′ ⇔

(o ∈ obls ⇒ obls ′ = obls) ∨
(o 6∈ obls ⇒ obls ′ = ({o} ∪ obls))

Reference speech acts (may) change the state of old (existing) obligations. The state of an existing
obligation is changed by the function change state.

change state : OS ×Obl × PObl 7→ PObl
∀ i , j : AId ; t : T ; ref : RefId ; c, cc : Cond ; a, ac : Action; os ′, os : OS ;
obls, obls ′ : PObl •
change state(os ′, obl(i , j , c, cc, a, ac, os, ref ), obls) = obls ′ ⇔

(is partial(os) ∨ is cond partial(os)) ⇒ (
(obl(i , j , c, cc, a, ac, os, ref ) ∈ obls) ⇒ (

obls ′ = (obls \ {obl(i , j , c, cc, a, ac, os, ref )})
∪{obl(i , j , c, cc, a, ac, os ′, ref )}) ∨

¬ (obl(i , j , c, cc, a, ac, os, ref ) 6∈ obls) ⇒ obls ′ = obls) ∨
¬ (is partial(os) ∨ is cond partial(os)) ⇒ obls ′ = obls

Obligations can only be changed due to a reference speech act, if they are either partial, is partial(os)
or conditional partial, is cond partial(os). These functions were introduced in section 4.6.2. If a
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event : SAct 7→ PObl 7→ PObl
∀ i , j : AId ; p : Bel ; obls : PObl ; t : T ; ref : Ref ; r : RefId ; c, cc :
Cond ; a, ac : Action; obls ′ : PObl •
event(ass(i , j , p, ref ))(obls) = obls ′ ⇔ obls ′ = obls ∨
event(dir(soft , i , j , c, a,new(r)))(obls) = obls ∨ [5,6 � Init]
(¬ is cond(c) ⇒ obls ′ =
create(obl(j , i ,noact ,noact , a, a, creditor partial , r), obls)) ∨
(is cond(c) ⇒ obls ′ =
create(obl(j , i , c, c, a, a, creditor cond partial , r), obls)) ∨
event(dir(soft , i , j , c, a, old(r)))(obls) = obls ∨ [n.a.]
event(dir(hard , i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(dir(hard , i , j , c, a, old(r)))(obls) = obls ′ ⇔ [9,11 � Ref]
(¬ is cond(c) ⇒
obls ′ = change state(complete, obl(j , i ,noact ,noact , a, a, debtor partial , r), obls)) ∨
(is cond(c) ⇒
obls ′ = change state(conditional , obl(j , i , c, c, a, ac, debtor cond partial , r), obls)) ∨
event(com(soft , i , j , c, a,new(r)))(obls) = obls ′ ⇔ [3,4 � Init]
(¬ is cond(c) ⇒ obls ′ = create(obl(i , j ,noact ,noact , a, a, debtor partial , r), obls)) ∨
(is cond(c) ⇒ obls ′ = create(obl(i , j , c, c, a, a, debtor cond partial , r), obls)) ∨
event(com(soft , i , j , c, a, old(r)))(obls) = obls ∨ [n.a.]
event(com(hard , i , j , c, a,new(r)))(obls) = obls ′ ⇔ [1,2 � Init]
(¬ is cond(c) ⇒ obls ′ = create(obl(i , j ,noact ,noact , a, a, complete, r), obls)) ∨
(is cond(c) ⇒ obls ′ = create(obl(i , j , c, c, a, a, conditional , r), obls)) ∨
event(com(hard , i , j , c, a, old(r)))(obls) = obls ′ ⇔ [10,12 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(complete, obl(j , i ,noact ,noact , a, a, creditor partial , r), obls) •
(let obls2 == change state(complete, obl(j , i ,noact ,noact , a, a, debtor partial , r), obls1) •
obls ′ = obls2))) ∨ (is cond(c) ⇒
(let obls1 == change state(conditional , obl(j , i , c, c, a, a, creditor cond partial , r), obls) •
(let obls2 == change state(conditional , obl(j , i , c, c, a, a, debtor cond partial , r), obls1) •
obls ′ = obls2))) ∨
event(retract(i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(retract(i , j , c, a, old(r)))(obls) = obls ′ ⇔ [5,6,7,8 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(retracted , obl(j , i ,noact ,noact , a, a, creditor partial , r), obls) •
obls ′ = obls1)) ∨ (is cond(c) ⇒
(let obls1 == change state(retracted , obl(j , i , c, c, a, a, creditor cond partial , r), obls) •
obls ′ = obls1)) ∨
event(cancel(i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(cancel(i , j , c, a, old(r)))(obls) = obls ′ ⇔ [1,2,3,4 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(cancelled , obl(j , i ,noact ,noact , a, a, debtor partial , r), obls) •
obls ′ = obls1)) ∨ (is cond(c) ⇒
(let obls1 == change state(cancelled , obl(j , i , c, c, a, a, debtor cond partial , r), obls) •
obls ′ = obls1))

Figure 4.6: The e�ects of initial and reference speech act events on a collection obligations. 'n.a.'
stands for 'not applicable'. These speech acts are not meaningful at the social level one. We refer
to section 4.3.

reference speech act refers to an existing obligation, the state of that obligation is changed appro-
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priately. If a reference speech act does not refer to an existing obligation, then the set of obligations
is left una�ected.
Example
Consider a soft commissive speech act, with i as speaker and j as hearer:

com(soft , i , j ,noact , a,new(r))

This is a proposal from i to j that i do action a (on no condition). An initial speech act like this,
creates a debtor partial partial obligation with i as debtor and j as creditor and reference r , i.e.

obl(i , j ,noact ,noact , a, a, debtor partial , r)

This new obligation is then added to an existing collection of obligations obls : PObl , by the create
function:

create(obl(i , j ,noact ,noact , a, a, debtor partial , r), obls)

We now consider the following reference speech act:

dir(hard , j , i ,noact , a, old(r))

This is an acceptance from j to i that i do a : Action (on no condition). If the proposal

obl(i , j ,noact ,noact , a, a, debtor partial , r),

from i to j is in the previous set of obligations, obls, then this proposal is changed to a complete
obligation:

obl(i , j ,noact ,noact , a, a, complete, r)

The function change state checks if the proposal already exists, and if it does, the obligation is
changed to complete, i.e.

change state(complete, obl(i , j ,noact ,noact , a, a, debtor partial , r), obls)

End Example

4.6.4 Ful�lling Obligations

Given an obligation, o : Obl , to do an action, a : Action, that should be performed in the time
period interval(t1, t2), we say that o is ful�lled if a is performed in the period interval(t1, t2). For
simple actions (i.e. actions that are not composed of more then one single action) it is easy to check
weather it has been performed at the correct time, and in this case simply change the state of the
obligation to ful�lled. For example consider the following obligation:

obl(i , j , act(ass(i , k , p), interval(t1, t2)), complete)

This obligation is ful�lled if agent i asserts p to agent k between time t1 and t2 (both times in-
clusive). However, obligations may concern composite action expressions, in which case we can not
simply mark the obligations as ful�lled if one of the composite actions is performed in the cor-
rect time period. In this case, we have to perform action-reduction (my own �home-made� word).
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Action-reduction simply means to remove ful�lled actions from composite action expressions. The
reductions may create partially ful�lled obligations (not to be confused with partial obligations).

Example
Let's consider an example (In the following assume that a1, a2, a3, a4 and a5 are simple act : Action
actions, i.e. they do not refer to any other action expressions):

obl(i , j , and(and(or(a1, a2), a3), and(a4, a5)), complete, r)

Here we have omitted the action copies. This obligation can be ful�lled if the following sequence of
actions are performed in the correct time periods: a1, a3, a5, a4 (this is just one possible sequence
of actions that will ful�ll the obligation). In the following we show how the obligation action is
reduced each time an action is performed (assuming that the actions are performed in the correct
time periods):

- �rst a1 is performed: obl(and(a3, and(a4, a5), complete, r),
- secondly a3 is performed: obl(and(a4, a5), complete, r),
- thirdly a5 is performed: obl(a4, complete, r),
- �nally a4 is performed: obl(noact , ful�lled , r).

Another possible sequence of actions could be:
- �rst a4 is performed: obl(and(and(or(a1, a2), a3), a5), complete, r),
- secondly a5 is performed: obl(and(or(a1, a2), a3), complete, r),
- thirdly a2 is performed: obl(a3, complete, r),
- �nally a3 is performed: obl(noact , ful�lled , r).

End Example

To perform the action-reductions demonstrated above, a function reduce act(t , sact , , a) is intro-
duced. This function takes as input the current time, t : T , a performed speech act expression,
sact : SAct and the action expression that has to be reduced, a : Action. As output, it gives the
reduced action.

reduce act : T × SAct ×Action 7→ Action
∀ t : T ; tp : TP ; sact , sact ′ : SAct ; a1, a2, a1′, a2′, aout : Action •
reduce act(t , sact ,noact) = noact ∨
reduce act(t , sact , act(sact ′, tp)) = aout ⇔

(((compare acts(sact , sact ′) ∧ check time(tp, t)) ⇒ aout = noact) ∨
((¬ compare acts(sact , sact ′) ∨ ¬ check time(tp, t)) ⇒ aout = act(sact ′, tp))) ∨

reduce act(t , sact , or(a1, a2)) = aout ⇔
(let a1′ == reduce act(t , sact , a1) •
(let a2′ == reduce act(t , sact , a2) •
((no act(a1′) ∨ no act(a2′) ⇒ aout = noact) ∨
((¬ no act(a1′) ∧ ¬ no act(a2′)) ⇒ aout = or(a1′, a2′))))) ∨

reduce act(t , sact , and(a1, a2)) = aout ⇔
(let a1′ == reduce act(t , sact , a1) •
(let a2′ == reduce act(t , sact , a2) •
(no act(a1′) ⇒ (

(no act(a2′) ⇒ aout = noact) ∨
(¬ no act(a2′) ⇒ aout = a2′))) ∨

(¬ no act(a1′) ⇒ (
(no act(a2′) ⇒ aout = a1′ ∨
¬ no act(a2′) ⇒ aout = and(a1′, a2′))))))

The function matches each of the four di�erent actions: noact , act , or and and :
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1. In the case of a noact action, it means that the action is fully reduced, and hence the function
gives noact

2. In the case of an act(sact ′, ts) action, a check is made, to see if the performed speech act
sact : SAct is equal to the speech act that the agent is obligated to perform, sact ′ : Act and if
it has been performed at the correct time period, tp : TP . If this is the case, it means that the
action can be reduced to noact , indicating that the action has been successfully performed.
If this is not the case (either the two speech act are not equal or the time is not correct) the
action can not be reduced. The functions compare acts and check time is introduced below.

3. In the case of an composite or : Action action the two composite actions a1 and a2 are
(possible) reduced by a recursive evaluations using reduce act . Then a check is made to see
if a1′ or a2′ have been reduced to noact . If this is the case, it means that the or(a1, a2)
action as been successfully performed, and hence it is reduced to noact . If it is not the case
(i.e. neither a1 or a2 has been reduced to noact), the function just gives the partially reduced
or(a1′, a2′) action.

4. Composite and : Action actions are handled in a similar way as or actions. Here we just
require that both of the composite actions are reduced be noact , before the function give a
fully reduced action expression noact .

To check if the action has been performed in the correct time period, the function check time(tp, t)
is introduced. This function takes as input a time period, tp, and a time, t : T . If t ≥ t1 and t ≤ t2
then the function gives true; otherwise it gives false.

check time : TP × T 7→ B

∀ t , t1, t2 : T •
check time(null , t) ⇔ true ∨
check time(interval(t1, t2), t) ⇔ (geq(t , t1) ∧ leq(t , t2))

The function, compare acts, checks if two speech acts are equal.

compare acts : SAct × SAct → B

∀ act1, act2 : SAct •
compare acts(act1, act2) ⇔

(compare ip(act1, act2) ⇒ cmp(act1, act2)) ∨
(¬ compare ip(act1, act2) ⇒ cmp(act1, act2))

The function, campare ip, checks if the illocutionary point of two speech acts are equal. We will
leave this (trivial) function further unspeci�ed.

compare ip : SAct × SAct → B

The function cmp checks if the parameters of two speech acts are similar. We refer to Appendix
C.5.3 for the speci�cation of this function. Here we will only show its signature.

cmp : SAct × SAct 7→ B

4.7 Belief
In this section we introduce a language, Bel , for representing believed facts, inspired by a belief
language presented in [25]. This language is a very simple version of �rst order predicate logic. We
start by introducing sets of constants, �rst order variables and function symbols.

[Const ,Var ,FuncSyn]
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A �rst order term, FOTerm, are either a constant, a variable or a function symbol with a sequence
of terms as a parameter.

FOTerm ::= const〈〈Const〉〉
| var〈〈Var〉〉
| functor〈〈FuncSym × seqFOTerm〉〉

The set of all predicate symbols, PredSym is given by a sort type.

[PredSym]

A belief atom is then a predicate symbol followed by a sequence of terms as its argument.

Atom ::= atom〈〈PredSym × seqFOTerm〉〉

The recursively de�ned belief language, Bel , is either an atom, the negation of an atom, the con-
junction of two beliefs, the implication of one belief by some other belief, true or false.

Bel ::= pos〈〈Atom〉〉
| not〈〈Atom〉〉
| and〈〈Bel × Bel〉〉
| imply〈〈Bel × Bel〉〉
| false
| true

Using this simple belief language it is not possible to represent nested beliefs as in modal logics, see
[38]. We will, however, not go into the issues of representing nested beliefs in �rst order logic in this
thesis.

4.7.1 Speech Act Events

In section 4.5 we introduced a function, CSActE , for updating the contextual knowledge in the
case of a speech act event. Updating the contextual knowledge in the social level one, consists of
updating the knowledge about the contextual obligations, COSActE , and updating the expressed
beliefs, CBSActE .
In section 4.5 the contextual beliefs were modelled as a mapping from agent identi�ers to sets of
beliefs, i.e.

AId 7→ PBel

The contextual set of beliefs represent the minimum set of beliefs that each agent in the context is
assumed to have. This set of beliefs is builds up during the conversation between agents. In our
model, the contextual beliefs models two aspects:

• Each time a speech act event occurs, the speaker and hearer adds one fact to their set of
beliefs: a belief atom representing the uttered speech acts, i.e. speakers remembers what they
have said, and hearers remember what they have heard.

• Assertives is assumed to represent the speakers belief in the propositional content.

The function, BSActE , updates the contextual beliefs in the case of a speech act event is shown on
Figure 4.7.
This function matches each of the �ve illocutionary actions. We assume a help function for converting
a speech act into a belief atom.
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BSActE : SAct 7→ BM 7→ BM
∀ i , j : AId ; p : Bel ; r : Ref ; str : Strength; c : Cond ; a : Action; bm, bmo : BM •
BSActE (ass(i , j , p, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(ass(i , j , p, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(ass(i , j , p, r))), bm ′(j )))) •
(let bm ′′′ == †(bm ′′, belmap(i , brf (p, bm ′′(i)))) • bm ′′′))) ∨
BSActE (dir(str , i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(dir(str , i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(dir(str , i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (com(str , i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(com(str , i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(com(str , i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (retract(i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(retract(i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(retract(i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (cancel(i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(cancel(i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(cancel(i , j , c, a, r))), bm ′(j )))) • bm ′′))

Figure 4.7: Updating beliefs of agents due to speech act events.

toatom : SAct → Atom

We also assume a belief revision function, brf , for adding new belief to a previous set of beliefs.

brf : Bel × PBel → PBel

Since we will not go into the issues of belief revision in this thesis, we will leave this function further
unspeci�ed. After a set of beliefs, belonging to a particular agent, has been updated, the belief
mapping is updated by the map overwrite operator †.

† : BM × BM → BM

The function, belmap, is used for transforming a agent identi�er and a set of beliefs into a agent to
belief map, BM .

belmap : AId × PBel → BM

We also specify a function CBSActE (sact)(cnt). This function takes a speech act sact : SAct and a
context cnt : Context which contains an agent to belief mapping, bm, and evaluates BSActE (sact)(bm).

CBSActE : SAct 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
CBSActE (sact)(context(cid , obls, bm)) =

(let bm ′ == BSActE (sact)(bm) •
context(cid , obls, bm ′))

4.8 Agent Architecture
In this section we will start by giving some general de�nitions of speech act based agents. In
subsection 4.8.1 we suggest an architecture for a simple agent.
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At an abstract level, an agent may be formalized as a tuple.

Agent ::= agent〈〈AId × Context〉〉

where the elements of agent(i , c) is

• a unique agent identi�er i ;
• a local state, c.

As described in chapter 3 section 3.6 an agent may participate in the following two external speech
act events:

• speaking event � an agent utters some speech act to some hearer;
• hearing event � an agent hears some speech act from some speaker.

These two external events are modelled as two functions: speak and hear . The function speak(t , agt)
models the speech acts that is performed by an agent agt at time t . The function hear(sact , t)(agt)
models an agent agt that hears a speech act, sact , at time t .

speak : (T ×Agent) 7→ (seqSAct ×Agent)
hear : (T × SAct) 7→ Agent 7→ Agent

In subsection 4.8.1 we suggest a very simple speci�cation of these functions.
The internal operation of a speech act based agent is modelled by two operations:

• action selection � based on its current local state, an agent selects the next action to perform;
• update local state � after a speech act event, the speaker and hearer may update their current

local state.

These two internal operations are modelled as two functions: select sacts and update state. The
function select sacts(t , agt) gives the sequence of speech acts performed by an agent at a given time
t and a given local state, agt . The function update state(t , sact)(agt) updates the local state, agt ,
of an agent based on a sequence of speech acts uttered at time t .

select sacts : T ×Agent 7→ seqSAct
update state : (T × seqSAct) 7→ Agent 7→ Agent

In subsection 4.8.1 we suggest a very simple speci�cation of these functions.

4.8.1 An Example

In this simple example we formalize the agent state as a social context � a local context. We refer
to section 3.5 for an introduction to the concepts of local and global contexts.
The function speak(t , agt) models the speech acts that is performed by an agent agt at time t . The
function gives a sequence of speech acts and a changed speaker state.

speak : (T ×Agent) 7→ (seqSAct ×Agent)
∀ t : T ; i : AId ; cnt : Context ; sacts ′ : seqSAct ; agt ′ : Agent •
speak(t , agent(i , cnt)) = (sacts ′, agt ′) ⇔

(let sacts == select sacts(t , agent(i , cnt)) •
(sacts = 〈 〉 ⇒ (sacts ′ = 〈 〉 ∧ agt ′ = agent(i , cnt))) ∨
(sacts 6= 〈 〉 ⇒

(let agt == update context(t , sacts)(agent(i , cnt)) •
sacts ′ = sacts ∧ agt ′ = agt)))
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The function select sacts give a sequence of speech acts performed by an agent at a given time and
a given local contextual state.

select sacts : T ×Agent 7→ seqSAct

In section 4.8.1.1 we will give a simple example of how an obligation based agent may select the
speech acts to perform. If the function select sacts gives an empty sequence of speech acts, it means
that the agent does not say anything at time t . If the function select sacts gives a non-empty
sequence of speech acts, the current local contextual state of the speaker is updated based on the
speakers own utterances, using the function update context . The function update context evaluates
CSActE (context speech act event) for each of the speech acts in the uttered sequence of speech
acts, i.e. the speakers obligations and believes may be changed due to its own utterances.

update context : (T × seqSAct) 7→ Agent 7→ Agent
∀ t : T ; sacts : seqSAct ; i : AId ; cnt : Context ; agt ′ : Agent •
update context(t , sacts)(agent(i , cnt)) = agt ′ ⇔

(sacts = 〈 〉 ⇒ agt ′ = agent(i , cnt)) ∨
(sacts 6= 〈 〉 ⇒

(let cnt ′ == CSActE (t , head sacts)(cnt) •
agt ′ = update context(t , tail sacts)(agent(i , cnt ′))))

The function hear(sact , t)(agt) models an agent agt that hears a speech act, sact , at time t . The
function gives a updated hearer state.

hear : (T × SAct) 7→ Agent 7→ Agent
∀ t : T ; sact : SAct ; i : AId ; cnt : Context ; agt ′ : Agent •
hear(t , sact)(agent(i , cnt)) = agt ′ ⇔

(let cnt ′ == CSActE (t , sact)(cnt) • agt ′ = agent(i , cnt ′))

4.8.1.1 Action Selection � An Example

We now show how a very polite agent may select the actions to perform at a given time and local
state. In fact, this is also an algorithmic type of agent, that is just programmed after one simple
principle: To execute all its social obligations at the right time. First the agent selects all the
obligations from its local contextual state with the following two properties: 1) the agent itself is
the debtor and 2) the obligation is complete. From this set of obligations, the agent selects all the
obligations that should be performed at the current moment of time.

select sacts : T ×Agent 7→ seqSAct
∀ t : T ; i : AId ; cid : CId ; obls : PObl ; bm : BM ; sacts : seqSAct •
select sacts(t , agent(i , context(cid , obls, bm))) = sacts ⇔

(let obls ′ == {o : Obl | o ∈ obls ∧
getdebtor(o) = i ∧ getstate(o) = complete} • sacts = select(t , obls ′, 〈 〉))

The function select simply evaluates the function traverse on each of the selected obligations. It
gives a (possible empty) sequence of speech acts, that lead to the ful�llment of obligations.

select : T × PObl × seqSAct 7→ seqSAct
∀ t : T ; o : Obl ; obls, obls ′ : PObl ; sacts, sacts ′ : seqSAct •
select(t , obls, sacts) = sacts ′ ⇔

(obls = {} ⇒ sacts ′ = sacts) ∨
(obls 6= {} ⇒

obls ′ = obls \ {o} ∧ o ∈ obls ∧
sacts ′ = select(t , obls ′, sacts a traverse(t , getaction(o))(〈 〉)))
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The function traverse traverses an action expression and checks if any of the composed speech acts
are due (expected) to be performed. It gives as output a (possible empty) sequence of speech acts
that should be performed.

traverse : T ×Action 7→ seqSAct 7→ seqSAct
∀ i , j : AId ; t : T ; sact : SAct ; tp : TP ; a1, a2 : Action; sacts, sacts ′ : seqSAct •
traverse(t ,noact)(sacts) = sacts ′ ⇔ sacts ′ = sacts ∨
traverse(t , act(sact , tp))(sacts) = sacts ′ ⇔

(check time(tp, t) ⇒ sacts ′ = sacts a 〈sact〉) ∨
(¬ check time(tp, t) ⇒ sacts ′ = sacts) ∨

traverse(t , or(a1, a2))(sacts) = sacts ′ ⇔
sacts ′ = traverse(t , a1)(sacts) a traverse(t , a2)(sacts) ∨

traverse(t , and(a1, a2))(sacts) = sacts ′ ⇔
sacts ′ = traverse(t , a1)(sacts) a traverse(t , a2)(sacts)

4.8.2 Societies � An Example

In this section we will suggest a simple model of a speech act based multiagent society based on
the agent architecture suggested in section 4.8.1. A multiagent society is modelled abstractly as a
simple tuple consisting of set of agents and a global context.

Society ′ ::= society〈〈PAgent × Context〉〉

We refer to section 3.5 for an introduction to the concepts of local and global contexts. A subtype,
Society , of well-formed societies is introduced.

Society == {s : Society ′ | wf Society(s)}

A society type is well-formed if the following holds:

• The identi�ers of the set of agents most be equal to range of the agent to belief mapping of
the global context.

• All agents in the society have di�erent agent identi�ers.

These two constraints are formalized by the following function:

wf Society : Society ′ → B

∀ a1, a2 : Agent ; cid : CId ; obls : PObl ; bm : BM ; agts : PAgent | a1 6= a2 •
wf Society(society(agts, context(cid , obls, bm))) ⇔

{a : agts • id(a)} = dom bm ∧
((a1 ∈ agts ∧ a2 ∈ agts) ⇒ id(a1) 6= id(a2))

The function id gives the identi�er of a given agent.

id : Agent → AId
∀ i : AId ; cnt : Context • id(agent(i , cnt)) = i

Since autonomous agents are assumed to have control of their own states, we will not introduce
any constraints on their local states. The function society event models a speech act event on the
society level.
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society event : T × Society 7→ Society
∀ t : T ; agts : PAgent ; cnt : Context ; soc : Society •
society event(t , society(agts, cnt)) = soc ⇔

(let spk == speaking(t , agts, 〈 〉, {}) •
(let agts ′′ == hearing(t , get soc sacts(spk), get soc agts(spk)) •
(let cnt ′ == update society context(t , get soc sacts(spk))(cnt) •
(soc = society(agts ′′, cnt ′)))))

Here we use the following extraction functions:

get soc sacts : seqSAct × PAgent → seqSAct ;
get soc agts : seqSAct × PAgent → PAgent

The function update society context is very similar to the function update context . We refer to
appendix C.7. The function speaking gives all the speech act utterances, sacts : seqSAct from the
agents, agts : Agent , in the society at time t : T . The function also gives the updated speaker
states, agts ′ : PAgent . The function simply evaluates speak recursively for each of the agents in the
society and builds up a list with all the utterances and their updated states.

speaking : (T × PAgent × seqSAct × PAgent) 7→ (seqSAct × PAgent)
∀ t : T ; agt : Agent ; agts, agts ′ : PAgent ; sacts : seqSAct ;
out : (seqSAct × PAgent) •
speaking(t , agts, sacts, agts ′) = out ⇔

(agts = {} ⇒ out = (sacts, agts ′)) ∨
(agts 6= {} ⇒

agt ∈ agts ∧
(let spk == speak(t , agt) •
(let sacts ′ == get sacts(spk) •
(let agt ′ == get agt(spk) •
(out = speaking(t , agts \ {agt}, sacts a sacts ′, agts ′ ∪ {agt ′}))))))

Here we use the following extraction functions:

get sacts : seqSAct ×Agent → seqSAct ;
get agt : seqSAct ×Agent → Agent

The function hearing then takes the list of utterances, sacts : seqSAct , at time t and evaluates
hear for each of the appropriate agents (i.e. the agents that receives (hears) the utterance given by
speak). The function give the updated states of all the hearers.

hearing : (T × seqSAct × PAgent) 7→ PAgent
∀ t : T ; agt : Agent ; agts, agts ′ : PAgent ; sacts : seqSAct ; out : PAgent •
hearing(t , sacts, agts) = out ⇔

(sacts = 〈 〉 ⇒ out = agts) ∨
(sacts 6= 〈 〉 ⇒

(let sact == head sacts •
agt ∈ agts ∧ id(agt) = gethearer(sact) ∧
(let agt ′ == hear(t , sact)(agt) •
out = hearing(t , tail sacts, (agts \ {agt}) ∪ {agt ′}))))

Finally, the function society event updates the global context, based on the sequence of speech acts
uttered at time t .
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4.9 Conversation Examples

In my pre-M.Sc. thesis [38] a conversation was de�ned like this:

An exchange of a sequence of messages between interacting agents, following some con-
versation protocol or policy.

We also showed how to specify agent conversation protocols using CSP (Communicating Sequential
Processes). In this section we will suggest a di�erent type of conversation speci�cation: Obligation-
based conversation protocols/policies. The term conversation policy may in fact be the most correct
term for the reason outlined in the paper [21] (�What Is a Conversation Policy ?�). Obligation based
conversation policies may be viewed as �ne-grained. They do not attempt to regulate the entire
conversation. They only regulate one simple feature: Obligations that may the proposed, accepted,
retracted, cancelled, expired, violated and ful�lled. We argue that speech acts and obligations may
be used as the basic building blocks in the speci�cation of conversation models. To some extend
obligation based conversations provide the following:

• Context sensitivity : The meaning (e�ect) of speech acts depends of the social context in which
they are uttered.

• Compositional semantics: Conversations are composed by building up a trace of social obli-
gations that restrains the autonomy of agents.

• Abstraction level: Obligations provide some level of abstraction.
• Support of autonomy : The �exibility provided by obligations may support the autonomous

behavior of agents, e.g. obligations may be violated.

4.9.1 Contextual Traces

In our model, we will formalize a conversation, Conv , as a simple sequence of a Cartesian products
of time and uttered speech acts. For the conversation to be well-formed we require an ordered list
of increasing times.

Conv ′ == seq(T × SAct)

wf Conv : Conv ′ → B

∀ idx : N; cnv : Conv ′ •
wf Conv(cnv) ⇔

idx ∈ inds(tail(rev(cnv))) ⇒
lt(cstime({idx} » cnv), cstime({idx + 1} » cnv))

Conv == {cnv : Conv ′ | wf Conv(cnv)}

In the above function, wf Conv , we use a number of auxiliary functions. The function inds(s) gives
the set of indices in a given list. rev(s) gives the reversed list. tail(s) gives the tail of a list. The
operator x » s gives the sequence s restricted to just those elements which have the indexes in the
set x . The function cstime extracts the time from the head element of a conversation sequence.

cstime : seq(T × SAct) → T
∀ t : T ; sact : SAct ; s : seq(T × SAct) •
cstime(〈(t , sact)〉a s) = t

We will also de�ne a new type, Trace, which is a sequence of contextual states.
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Trace == seqContext

Given a conversation, Conv , we may build a contextual trace of that conversation. This is done by
the function trace.

trace : Conv → Trace
∀ conv : Conv ; cid : CId •

trace(conv) = build trace(conv , 〈context(cid , {}, {})〉)

To simplify matters, we will only consider the contextual trace of of obligations � not beliefs.
The function trace uses another recursive function build trace that builds up a trace from a given
conversation, conv : Conv , and an initial contextual state, cnt : Context . The initial contextual
state is just a context identi�er, an empty set of obligations and an empty agent to belief mapping
(which is not considered).

build trace : Conv × Trace → Trace
∀ conv : Conv ; trace, out : Trace •
build trace(conv , trace) = out ⇔

(conv = 〈 〉 ⇒ out = trace) ∨
(conv 6= 〈 〉 ⇒

(let h == head(conv) •
(let cnt old == head(rev(trace)) •
(let cnt new == COSActE (ctime(h), cact(h))(cnt old) •
out = build trace(tail(conv), trace a 〈cnt new〉)))))

The function build trace uses the function COSActE (contextual obligation speech act event, see
section 4.6), to create the new contextual state from a speech act in the conversation and the
previous trace (history) of obligations. In the above function, we assume the following extraction
functions:

ctime : (T × SAct) → T
∀ t : T ; sact : SAct • ctime(t , sact) = t

cact : (T × SAct) → SAct
∀ t : T ; sact : SAct • cact(t , sact) = sact

In the next sections, we will show some examples of how these traces of obligations are build in
concrete conversations.

4.9.2 Speech Act Compilers

Until now, we have only been considering conversations as utterances of speech acts. In �real life�,
speech acts may be composed into sequences of more domain speci�c messages. We call this type
of messages a domain act.

[DAct ]

At the purely syntactic level we will distinguish between two types of conversations:

• Domain act conversations, DAC ,
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• Speech act conversations, SAC .

The structure of such conversations are given by:

DAC == seqDAct ;
SAC == seqSAct

We may then de�ne a domain act conversation, dc : DAC , to speech act conversation, sa : SAC ,
compiler CC like this:

CC : DAC × (DAct → seqSAct) → SAC
∀ conv : DAC ; f : (DAct → seqSAct) •
CC (conv , f ) = f (head(conv)) a CC (tail(conv), f )

The conversation compiler, CC , actually takes as input another compiler: A domain act to speech
act sequence compiler, f . The signature of this type of compiler is given by:

f : DAct → seqSAct

In the following we will show some examples of speech act based conversations and the use of domain
act to speech act compilers, f .

4.9.3 Ask The Wizard I

In this section we will show some concrete conversation examples. These examples involves three
agents: A boy, a girl and a wizard. In the �Ask TheWizard I� examples we have made the following
simpli�cations: We do not consider the time aspect. In �Ask The Wizard II� we will consider some
simple examples that also include the time.
The domain acts is given by the following type, DAct .

DAct ::= Ask〈〈AId ×AId × Bel × Ref 〉〉
| PromiseReply〈〈AId ×AId × Bel × Ref 〉〉
| Request1〈〈AId ×AId × Bel × Bel × Ref × Ref 〉〉
| Request2〈〈AId ×AId × Bel × Bel × Ref 〉〉
| Thanks〈〈AId ×AId × Bel × Ref 〉〉
| Yes〈〈AId ×AId × Bel × Ref 〉〉
| No〈〈AId ×AId × Bel × Ref 〉〉
| O�er〈〈AId ×AId × Bel × Ref 〉〉
| O�erBroker〈〈AId ×AId ×AId × Bel × Ref × Ref × Ref 〉〉
| RequestBroker〈〈AId ×AId ×AId × Bel × Ref × Ref 〉〉
| RetractQuestion〈〈AId ×AId × Bel × Ref 〉〉
| CancelQuestion〈〈AId ×AId × Bel × Ref 〉〉

The informal meaning of these domain acts is given by:

• Ask(i , j , p, r) : An agent i asks if another agent j believe some proposition p or not.
• PromiseReply(i , j , p, r) : An agent i promises that he will reply j with a yes or a no answer.
• Request1(i , j , p, r1, r2) : An agent i orders another agent j to say if he believe in some propo-

sition p or not, on the condition that i replies with a 'thanks' when j replies to i 's order.
• Request2(i , j , p, r1) : An agent i orders another agent j to say if he believe some proposition
p or not, on no condition.

• Thanks(i , j , r) : Agent i says 'thanks' to agent j .
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• Yes(i , j , p, r) : Agent i says to agent j that he believes in p.
• No(i , j , p, r) : Agent i says to agent j that he does not believe in p.
• O�er(i , j , p, r) : Agent i o�ers to reply with a 'yes' or a 'no' answer if agent i asks him if he

believes in some proposition p.
• O�erBroker(i , j , k , p, r1, r2, r3, r4) : Agent i o�ers to act as a broker between agent j and

agent k . If j request i to request a 'yes' or 'no' answer from k , then i will make that request
and when k replies, i will pass k 's reply to j .

• RequestBroker(i , j , k , p, r1, r2) : Agent i requests agent j to act as a broker between agent j
and agent k .

• RetractQuestion(i , j , p, r) : Agent i retracts one of its questions to agent j .
• CancelQuestion(i , j , p, r) : Agent i cancels a question from agent j .

Some of the domain actions creates several obligations, so they need more than one reference iden-
ti�er as parameter. We assume that 'yes' and 'no' answers are performed by assertives where the
propositional content is given by imply(p, true) and imply(p, false), respectively, where p is some
believed proposition.
The domain action to speech act sequence compiler for �Ask The Wizard I� is given by the function
CW :

CW : DAct → seqSAct
∀ i , j : AId ; m : Bel ; r , r1, r2, r3, r4 : Ref •
CW(Ask(i , j ,m, r)) =

〈dir(soft , i , j ,noact , or(A(CW(Yes(j , i ,m, r)),null),A(CW(No(j , i ,m, r)),null)), r)〉
CW(PromiseReply(i , j ,m, r)) =

〈com(hard , i , j ,noact , or(A(CW(Yes(i , j ,m, r)),null),A(CW(No(i , j ,m, r)),null)), r)〉
CW(Request1(i , j ,m, r1, r2)) =

〈dir(hard , i , j ,noact , or(A(CW(Yes(j , i ,m, r1)),null),A(CW(No(j , i ,m, r1)),null)), r1),
com(hard , i , j ,A(CW(Yes(j , i ,m, r1)),null),A(CW(Thanks(i , j , r2)),null), r2)〉

CW(Request2(i , j ,m, r1)) =
〈dir(hard , i , j ,noact , or(A(CW(Yes(j , i ,m, r1)),null),A(CW(No(j , i ,m, r1)),null)), r1)

CW(Thanks(i , j , r)) = 〈ass(i , j , true, r)〉
CW(Yes(i , j ,m, r)) = 〈ass(i , j , imply(m, true), r)〉
CW(No(i , j ,m, r)) = 〈ass(i , j , imply(m, false), r)〉
CW(O�er(i , j ,m, r)) =

〈com(soft , i , j ,noact , or(A(CW(Yes(i , j ,m, r)),null),A(CW(No(i , j ,m, r)),null)), r)〉
CW(O�erBroker(i , j , k ,m, r1, r2, r3, r4)) =

〈com(soft , i , j ,noact ,A(CW(Request2(i , k ,m, r1)),null), r2),
com(hard , i , j ,A(CW(Yes(k , i ,m, r1)),null),A(CW(Yes(i , j ,m, r1)),null), r3),
com(hard , i , j ,A(CW(No(k , i ,m, r1)),null),A(CW(No(i , j ,m, r1)),null), r4)〉

CW(RequestBroker(i , j , k ,m, r1, r2)) =
〈dir(hard , i , j ,noact , dir(hard , i , k ,noact , or(A(CW(Yes(k , i ,m, r1)),null),

A(CW(No(k , i ,m, r1)),null)), r1), r2)〉
CW(RetractQuestion(i , j ,m, r)) =

〈retract(i , j ,noact , or(A(CW(Yes(j , i ,m, r)),null),A(CW(No(j , i ,m, r)),null)), r)〉
CW(CancelQuestion(i , j ,m, r)) =

〈cancel(i , j ,noact , or(A(CW(Yes(i , j ,m, r)),null),A(CW(No(i , j ,m, r)),null)), r)〉

Some domain actions are compiled to one speech acts, e.g. Ask , and others are compiled to a number
of speech acts in some sequence, e.g. O�erBroker . Since our action type Action, do not support
a sequence of actions, we use the and constructor instead. The function A converts a sequence of
speech acts to a composite and action expression.
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A : seqSAct × TP → Action
∀ sacts : seqSAct ; tp : TP •
A(sacts, tp) =

(sacts = 〈 〉 ⇒ noact) ∨
(sacts 6= 〈 〉 ⇒

(let action == and(act(head sacts, tp), act(A(tail sacts), tp)) • action))

Given a domain action conversation dac : DAC we simply evaluate the conversation compiler
CC (dac,CW) in order to get the speech act-level conversation, sac : SAC .
In Appendix E.1 we show 4 examples of di�erent conversations using these domain actions. Due to
space limitations we will only show one conversation example in the following.

Example Conversation Only two agents participate in this small conversation: a boy and a
wizard . The boy wants to know if the wizard believes in some proposition q . The conversation is
given by the following three domain actions, dact : DAct :

[1] Ask(boy ,wizard , q ,new(r1)),
[2] PromiseReply(wizard , boy , q , old(r1)),
[3] Yes(wizard , boy , q , old(r1))

Formally, this may be represented by the following domain act conversation, dac : DAC :

〈Ask(boy ,wizard , q ,new(r1)),PromiseReply(wizard , boy , q , old(r1)),
Yes(wizard , boy , q , old(r1))〉

This conversation is then compiled to the following speech act conversation, sac : SAC , by evaluating
CC (dac,CW):

〈dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

com(hard ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1)),

ass(wizard , boy , imply(q , true), old(r1))〉

This conversation may be written more readable like this:

[1] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

[2] com(hard ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1)),

[3] ass(wizard , boy , imply(q , true), old(r1))

The numbers correspond to the domain actions above. Each step in the conversation (may) create
a number of social obligations. The contextual trace of obligations in this conversation is shown
in Figure 4.8. The trace is, in this case, very simple: Only one obligation is created by the �rst
utterance by the boy . This is a partial obligation where that boy proposes that the wizard should
say to the boy , if he believe in some proposition or not (by a yes or no reply). The obligation may
be performed at any time and will never expire or be violated, since we do not consider the time
aspect. After the wizard has promised the boy to answer, the obligation is changed to a complete
obligation. In the last step of the conversation, the obligation is ful�lled by the wizards yes reply
to the boy .
In the conversation examples we will not show the action copies in the obligations.
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Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),

act(ass(wizard , boy , imply(q , false), r1),null)), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),

act(ass(wizard , boy , imply(q , false), r1),null)), complete, r1)
[3] 1. obl(wizard , boy ,noact ,noact , ful�lled , r1)

Figure 4.8: Contextual Trace

4.9.4 Ask The Wizard II

In this example we extend �Ask The Wizard I� by also considering the time aspect. This adds some
complexity to the examples. We will therefore only consider a very small domain language, where
the time is allowed to be explicitly speci�ed as an extra message parameter. We will consider the
following domain actions.

DAct ::= Ask〈〈AId ×AId × Bel × Ref × TP〉〉
| PromiseReply〈〈AId ×AId × Bel × Ref × TP〉〉
| Yes〈〈AId ×AId × Bel × Ref 〉〉
| No〈〈AId ×AId × Bel × Ref 〉〉

The informal meaning of these domain acts is given by:

• Ask(i , j , p, r , tp) : An agent i asks another agent j to tell i , within the time period tp, if j
believe some proposition p or not.

• PromiseReply(i , j , p, r , tp) : An agent i promises that he will reply j with a yes or a no answer,
within the time period tp.

• Yes(i , j , p, r) : Agent i says to agent j that he believes in p.
• No(i , j , p, r) : Agent i says to agent j that he does not believe in p.

The domain action to speech act compiler CWT is given by:

CWT : DAct → seqSAct
∀ i , j : AId ; m : Bel ; r : Ref ; tp : TP •
CWT (Ask(i , j ,m, r , tp)) =

〈dir(soft , i , j ,noact , or(A(CWT (Yes(j , i ,m, r)), tp),A(CWT (No(j , i ,m, r)), tp)), r)〉
CWT (PromiseReply(i , j ,m, r , tp)) =

〈com(hard , i , j ,noact , or(A(CWT (Yes(i , j ,m, r)), tp),A(CWT (No(i , j ,m, r)), tp)), r)〉
CWT (Yes(i , j ,m, r)) = 〈ass(i , j , imply(m, true), r)〉
CWT (No(i , j ,m, r)) = 〈ass(i , j , imply(m, false), r)〉

At Appendix E.2 we show 2 examples of di�erent conversations using these domain actions. Due to
space limitations we will in the following only show two conversation examples.

Example One Conversation Only two agents participate in this small conversation: a boy and
a wizard . The conversation is given by the following three domain actions, dact : DAct :

[1] Ask(boy ,wizard , q ,new(r1), interval(t1, t2)),
[2] PromiseReply(wizard , boy , q , old(r1), interval(t1, t2)),
[3] Yes(wizard , boy , q , old(r1))

We assume that the three domain actions are uttered at times tm1, tm2, tm3 : T , respectively. We
assume the following conditions for these time values:
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[1] lt(tm1, t1)
[2] lt(tm2, t2)
[3] ge(tm3, t1) ∧ le(t3, t2)

The compiled speech act conversation is given by:

[1] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),
act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), r1),

[2] com(hard ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),
act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), r1),

[3] ass(wizard , boy , imply(q , true), r1)

The contexual trace is shown in Figure 4.9. The wizard replies the boy within the correct time
period, tp : TP , and therefore the obligation is ful�lled by the 'yes' reply.

Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), complete, r1)
[3] 1. obl(wizard , boy ,noact ,noact , ful�lled , r1)

Figure 4.9: Contextual Trace

Example Two Conversation Here we consider the same two agents: a boy and a wizard . The
conversation is given by the following three domain actions, dact : DAct :

[1] Ask(boy ,wizard , q ,new(r1), interval(t1, t2))
[2]

In step 2 the conversation has ended, i.e. there is no reply from the wizard . We assume the following
times for the two conversation steps: tm1, tm2 : T , respectively. We assume the following conditions
for these time values:

[1] lt(tm1, t1) ∧ lt(t1, t2)
[2] gt(tm2, t2)

The contextual trace is shown in Figure 4.9. The wizard never promises to reply the boy, so the
partial obligation expires.

Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), expired , r1)

Figure 4.10: Contextual Trace

4.9.5 The Market

The �nal example that we will show, is a simple Buyer�Seller scenario � The Market. In my
pre-M.Sc. [38] thesis I informally analyzed how the messages described in a simple market model
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[33, 40] could be mapped to Searle's speech acts. In the following we show how the speech act model
proposed in this thesis may be used to formally compile these marked domain messages to speech
acts (and obligations). We will, however, only consider a very simpli�ed version of The Market
with a minimum of domain messages. We have also made the following simpli�cations:

• We only consider the speech acts and obligations between the buyer and seller agents.
• We will not consider the time aspect.
• The delivery and payment actions are represented by assertive speech acts, i.e. a seller delivers

some goods to a buyer by asserting that a delivery has been done, and a buyer pays a seller
by asserting that a payment has taken place. Payments and deliveries are therefore expressed
in the belief language, Bel . We will assume the following domain speci�c predicates in Bel :

pos(atom(Delc, 〈 〉))
pos(atom(Del , 〈 〉))
pos(atom(Pay , 〈 〉))

In the following these three belief predicates will be denoted decline, deliver and pay .
• We only consider merchandise, m : M , and price, p : P . These aspects are expressed in the

propositional language Bel . We will leave the domain speci�c details further unspeci�ed.

M ,P == Bel
Info ::= info〈〈M × P〉〉

Info is the type of the propositional content of the domain acts.

We will consider the following to be the domain language actions of The Market:

DAct ::= Quote〈〈AId ×AId × Info × Ref × Ref 〉〉
| O�er〈〈AId ×AId × Info × Ref × Ref 〉〉
| Order〈〈AId ×AId × Info × Ref × Ref 〉〉
| Propose〈〈AId ×AId × Info × Ref × Ref 〉〉
| Decline〈〈AId ×AId × Ref 〉〉
| Deliver〈〈AId ×AId × Bel × Ref 〉〉
| Pay〈〈AId ×AId × Bel × Ref 〉〉
| Commit〈〈AId ×AId ×DAct × Ref 〉〉
| Cancel〈〈AId ×AId ×DAct × Ref 〉〉
| Retract〈〈AId ×AId ×DAct × Ref 〉〉

The informal meaning of these domain acts is given by:

• Quote(i , j , info(m, p), r1, r2): A buyer, i , commits to deliver m at price p or to decline, on
the condition that i receives an order from j .

• O�er(i , j , info(m, p), r1, r2): A buyer, i , proposes to deliver m at price p or decline, on the
condition that j receives an order from j .

• Order(i , j , info(m, p), r1, r2): A buyer, i , commits to pay, p, to the seller, j , on the condition
that the seller, j , delivers the goods m to i .

• Propose(i , j , info(m, p), r1, r2): A buyer, i , proposes to pay, p, to the seller, j , on the condition
that the seller, j , delivers the goods m to i .

• Decline(i , j , r1): A seller j declines an order from a buyer j .
• Deliver(i , j ,m, r1): A seller j delivers m to a buyer j .
• Pay(i , j , p, r1): A buyer j pays p to a seller j .

We propose the following market domain act to speech act compiler CM:
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CM : DAct → seqSAct
∀ i , j : AId ; r1, r2 : Ref ; m : M : p : P •
CM(Quote(i , j , info(m, p), r1, r2)) =

〈com(hard , i , j ,A(CM(Order(j , i , info(m, p), r2))),
or(A(CM(Deliver(i , j ,m, r1))),A(CM(Decline(i , j , r1)))), r1)〉

CM(O�er(i , j , info(m, p), r1, r2)) =
〈com(soft , i , j ,A(CM(Order(j , i , info(m, p), r2))),

or(A(CM(Deliver(i , j ,m, r1))),A(CM(Decline(i , j , r1)))), r1)〉
CM(Order(i , j , info(m, p), r1, r2)) =

〈com(hard , i , j ,A(CM(Deliver(j , i ,m, r1))),A(CM(Pay(i , j , p, r1))), r2)〉
CM(Propose(i , j , info(m, p), r1, r2)) =

〈com(soft , i , j ,A(CM(Deliver(j , i ,m, r1))),A(CM(Pay(i , j , p, r1))), r2)〉
CM(Decline(i , j , r1)) = 〈ass(i , j , decline, r1))〉
CM(Deliver(i , j ,m, r1)) = 〈ass(i , j , and(deliver ,m), r1)〉
CM(Pay(i , j , p, r1)) = 〈ass(i , j , and(pay , p), r1)〉

The function A is slightly di�erent from the one presented in �Ask The Wizard I� section 4.9.3.
Here all time intervals are by default set to null.

A : seqSAct → Action
∀ sacts : seqSAct •
A(sacts) =

(sacts = 〈 〉 ⇒ noact) ∨
(sacts 6= 〈 〉 ⇒

(let action == and(act(head sacts,null), act(A(tail sacts),null)) • action))

In the following we will show a simple conversation between a buyer and a seller . The conversation
is given by the following three domain actions, dact : DAct :

[1] Qoute(seller , buyer , info(g , c),new(r1),new(r2))
[2] Order(buyer , seller , info(g , v), old(r1), old(r2))
[3] Deliver(seller , buyer , g , old(r1))
[4] Pay(buyer , seller , c, old(r1))

This conversation is then compiled to the following speech act conversation, sac : SAC , by evaluating
CC (dac,CM):

[1] com(hard , seller , buyer , act(com(hard , seller , buyer ,
act(ass(seller , buyer , and(deliver , g),new(r1)),null),
act(ass(seller , buyer , and(pay , c),new(r1)),null),new(r2)),null),
or(act(ass(seller , buyer , and(deliver , g),new(r1)),null),

act(ass(seller , buyer , decline,new(r1)),null)),new(r1))
[2] com(hard , buyer , seller , act(ass(seller , buyer , and(deliver , g), old(r1)),null),

act(ass(buyer , seller , and(pay , c), old(r1)),null), old(r2))
[3] ass(seller , buyer , and(deliver , g), old(r1))
[4] ass(buyer , seller , and(pay , c), old(r1))

Figure 4.11 shows the contexual trace of this conversation. The quote creates a conditional obligation
from the seller towards the buyer to do one of the following things, if the buyer orders: Deliver or
decline. The order by the buyer in step two makes this conditional obligation complete and it also
creates a new conditional obligation: The buyer has to pay for the goods, if the seller delivers it. In
step three the seller ful�lls his obligation to deliver the ordered goods to the buyer. The delivery
also obligates the buyer to pay. In the last conversation step, the buyer ful�lls his obligation to pay
the seller. In the end both the created obligations are ful�lled.
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Step Contextual Trace
[1] 1. obl(seller , buyer , act(com(hard , buyer , seller , act(ass(seller , buyer , and(deliver , g), r1),null),

act(ass(buyer , seller , and(pay , c), r1),null), r2),null),
or(act(ass(seller , buyer , and(deliver , g), r1),null),
act(ass(seller , buyer , decline, r1),null)), conditional , r1)

[2] 1. obl(seller , buyer ,noact , or(act(ass(seller , buyer , and(deliver , g), r1),null),
act(ass(seller , buyer , decline, r1),null)), complete, r1)

2. obl(buyer , seller , act(ass(seller , buyer , and(deliver , g), r1),null),
act(ass(buyer , seller , and(pay , c), r1),null), conditional , r2)

[3] 1. obl(seller , buyer ,noact ,noact , ful�lled , r1)
2. obl(buyer , seller ,noact , act(ass(buyer , seller , and(pay , c), r1),null), complete, r2)

[4] 1. obl(seller , buyer ,noact ,noact , ful�lled , r1)
2. obl(buyer , seller ,noact ,noact , ful�lled , r2)

Figure 4.11: Contextual Trace

4.10 Concrete Model: An Experiment

In this section we will make an �experiment�: We will try to show how obligations may be speci�ed
using the extended version of the Z speci�cation language: Object-Z [55]. Object-Z extends Z by
introducing Object-Oriented notions such as classes, objects, inheritance, polymorphism, mutual
references, etc. Object-Z (OZ) may also be combined with CSP as suggested in [56]. We argue
that OZ could be a good basis for developing a concrete Object-Oriented model of speech act based
multiagent systems � especially combined with CSP. In this way, we could combine three major
paradigms, which are all strongly related to agents, communication and protocols:

• Formal software engineering,
• Object-Oriented methods and
• Distributed (concurrent and parallel) systems.

In this thesis we will not consider all the aspects of combining these paradigms. We consider this
to be a project on its own. In this section we will only demonstrate some very basic class (object)
speci�cations. These classes should not be viewed as a re�nement of our abstract speci�cations
� only as an experiment in OZ. Our aim is also to explore some of OZ's facilities for specifying
concurrent systems:

• The parallel composition operator, ‖, to model among communication between concurrently
running object operations.

• The sequential composition operator, o
9, to model the sequential execution of two operations.

• The non-deterministic choice, [] , between two operations.
• The conjunction operator, ∧, to model the simultaneous occurrence of two operations.

To limit the speci�cation, we will only consider the following concepts:

• Time,
• Obligation,
• Context,
• Agent,
• Society.

Time We assume a basic sort type T . The function inc time(t1, t2) increase the time t1 with the
(delta) time t2:

inc time : T × T → T
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The system clock is represented as a class Clock . The clock only has one function: To send out
a series of periodic time tick value. We assume that each tick represents the time since the most
recent tick. The class Clock has one visible operation Tick . Visible operations are explicitly de�ned
in the visibility list in the top of the class, i.e. ¹(Tick). We will not consider how the operation Tick
is implemented.

Clock
¹(Tick)

Tick
t ! : T

The global time is represented by another class Time. This class has two interface operations:

1. An operating Tick for communicating with the Clock object (process/agent). This operation
takes as input a tick value, t? : T , and then it increases the time variable time : T . ∆(time)
indicates that the value of time is changed by the operation.

2. An operation TimeEvent that may be used by other objects (processes/agents) in order to
read the current value of the time variable time : T . It models time events.

Time
¹(Tick ,GetTime)

time : T

Tick
∆(time)
t? : T
time ′ = inc time(time, t?)

TimeEvent
t ! : T
t ! = time

[56] shows how OZ classes may be speci�ed as CSP processes. This paper integrates the OZ and
CSP at the semantic level, i.e. the concrete syntax of OZ and CSP are preserved. We consider the
classes Clock and Time as communicating processes running in parallel. A CSP/OZ time process,
TimeProcCSP , is then speci�ed as:

TimeProcCSP = Clock ‖CSP Time

The only requirement is, that the Tick operation in Clock outputs a time value, t ! : T , and that the
Tick operation in Time takes a time value as input, t? : T . In this way, operations may be viewed
as the OZ version of synchronized channels as in CSP and RSL.

Obligation We now consider an obligation model as a kind of state transition machine. A set of
all possible obligation state identi�ers, SId , are assumed.

[SId ]

A transition is modelled as a basis class Transition. Transitions have two class variables: A variable
to : SId that indicates which state the transition is connected to. A boolean variable enabled that
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indicates weather the transition is enabled. Initially the transition is disabled. The transition class
only has one visible operation: ToState. This operation simply outputs the current value of to : SId .

Transition
¹(to, enabled ,ToState)

to : SId
enabled : B

INIT
enabled = false

ToState
toState! : SId
toState = to

Speech act transitions are modelled as a specialized class ActionTransition that is inherited from the
basis class Transition. There is added one more class variable to this class: atrigger . This variable
represents the speech actions that has to be performed in order for the transition to be taken, i.e.
triggered. The type ATrig is introduced below. Initially the atrigger is not set. An action transition
has two operations (operations are by default visible if no visibility list is speci�ed):

1. An operation Set used for initializing the action trigger to some value, set(act?).
2. An operation SActEvent used for updating the action trigger in the case of a speech act event,

act?, at some time, t?. The functions, update action trigger and enabled , are introduced
below.

ActionTransition
Transition

atrigger : ATrig

INIT
atrigger = notset

Set
∆(atrigger)
act? : ATrig
atrigger ′ = set(act?)

SActEvent
∆(atrigger , enabled)
act? : SAct
t? : Time
atrigger ′ = update action triggers(t?, act?)(atrigger)
enabled ′ = enabled(atrigger ′)

Time (-out) transitions are also modelled as a specialized class TimeTransition that is inherited from
the basis class Transition. This class is very similar to ActionTransition, so we will not provide any
explanation of its speci�cation.
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TimeTransition
Transition

ttrigger : TTrig

INIT
ttrigger = noact

Set
∆(ttrigger)
act? : Trig
ttrigger ′ = set(act?)

TimeEvent
∆(enabled)
t? : Time
enabled ′ = enabled(t?, ttrigger)

OZ may also be combined with normal Z speci�cations. Everything does not have to be classes and
objects.
An action trigger, ATrig , may either be a noset or set to some action, Action. This action type is
assumed to be speci�ed as in section 4.4.

ATrig ::= notset | set〈〈Action〉〉

The function update action trigger evaluates reduce act on the action trigger. reduce act is de-
scribed in section 4.6.4.

update action trigger : T × SAct 7→ ATrig 7→ ATrig
∀ t : T ; sact : SAct ; a : Action •
update action triggers(t , sact)(set(a)) = reduce act(t , sact)(a)
update action triggers(t , sact)(notset) = notset

The function enabled checks if an action transition has been reduced to noact , in which case the
transition is enabled.

enabled : ATrig → B

∀ a : Action •
enabled(set(a)) ⇔ (a = noact)
enabled(notset) ⇔ false

The time trigger, TTrig , may either be notset or set to some action. A time transition is enabled
when the action is timed out.

TTrig ::= notset | set〈〈Action〉〉;
enabled : Time × TTrig → B

∀ t : T ; sact : SAct ; a : Action •
enabled(t , set(a)) ⇔ timeout(a, t)
enabled(t ,notset) ⇔ false
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Obligation

debtor : AId
creditor : AId
actionTrans : ActionTrans
timeTrans : TimeTrans
currentState : SId

SetCurrentState
∆(currentState)
newState? : SId
currentState ′ = newState?

TransitionSActEvent =̂∧ tr : action trans(currentState) • tr .SActEvent
TransitionTimeEvent =̂∧ tr : time trans(currentState) • tr .TimeEvent
SActEvent =̂ TransitionSActEvent o

9 NextState
TimeEvent =̂ TransitionTimeEvent o

9 NextState
NextState =̂

( [] at : actionTrans(currentState) | at .enabled • (at .ToState ‖ self .SetCurrentState)
[]

( [] tt : timeTrans(currentState) | tt .enabled • (tt .ToState ‖ self .SetCurrentState)

Figure 4.12: An Obligation class de�nition.

The set of all possible action transitions is speci�ed as a type ActionTrans. This is a simple mapping
from state identi�er to an action transition class. The set of all possible time transitions is speci�ed
as a type TimeTrans.

ActionTrans == SId 7→ PActionTransition;
TimeTrans == SId 7→ PTimeTransition

A general obligation state transition machine is modelled as a class Obligation. The class de�nition
is shown at Figure 4.12. This class has �ve state variables:

• A debtor agent identi�er.
• A creditor agent identi�er.
• A set of action transitions, actionTrans.
• A set of time transitions, timeTrans.
• An indicator of the current obligation state, currentState.

The obligation class has the following operations:

• A class operation SetCurrentState that sets the current state of an obligation, currentState,
to some new value, newState?.

• A promoted operation TransitionSActEvent that uses the conjunction operator∧ to �execute�
the function SActEvent for all the action transition elements of the current state. Here ∧ is
used as a distribution operator to run a set of functions in parallel.

• A promoted operation TransitionTimeEvent that works in a similar way as TransitionSActEvent .
• A promoted operation SActEvent which is a sequential composition of TransitionSActEvent

and NextState. It models a speech act event.
• A promoted operation TimeEvent which is a sequential composition of TransitionTimeEvent

and NextState. It models a speech act event.
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Context
¹(id , INIT ,Hear ,TimeEvent)
id : CId

obligations : PObligation
beliefs : AId 7→ PBel

INIT
obligations = ∅
beliefs = ∅

Hear
act? : SAct

TimeEvent
t? : T

Figure 4.13: A Context class de�nition.

• A promoted operation NextState which models a non-deterministic choice ( [] ) between all
the transitions that may (possibly) be enabled by the time or speech act event. The �lucky�
transition, at or tt , is set as the current state of the obligation. The parallel composition
operator ‖ is used to send the to : SId value from the chosen transition object to the obligation
object. The value self is a reference to the current obligation object.

The class Obligation models a wide range of obligation state transition machines. It may therefore
be viewed as generic obligation base class, that can be specialized into more speci�c obligation types,
SpecialObligation. We will not demonstrate any such specializations.

SpecialObligation
Obligation
...

Context The context is modelled as a class Context with a constant identi�er id : CId . The class
de�nition is shown at Figure 4.13. The class has two state variables:

• A set of obligations.
• An agent to belief mapping, beliefs. We assume the beliefs to be formalized as in section 4.7.

Initially obligations and beliefs are empty sets. The context class has two operations, that models
the two communication events that it may participate in:

• Hear models a speech act event where the context receives a speech act from a speaking agent
object (process). It takes as input a speech act, act? : SAct . We assume speech acts to be
de�ned as in section 4.3. We will not specify this operation any further.

• TimeEvent models an event where the context receives the current time from a time object
(process). We will not specify this operation any further.

Agent An agent is de�ned as a class Agent . The class de�nition is shown in Figure 4.14. The
agent class has one constant: The agent identi�er, id . It only consist of one state variable: A local
contextual state, context . Initially the context is empty, i.e. it contains no obligations or beliefs.
The agent class has the following operations:
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• An operation Send for sending speech act messages.
• An operation Listen for processing received speech acts that it wants to hear.
• An operation Ignore used for ignoring (returning) a speech act message.
• TimeEvent models an event where the agent receives the current time from a time object

(process).
• An externally visible promoted operation Hear that models a speech act event where an

agent receives a speech act from a speaking agent object (process). An agent may non-
deterministically ( [] ) choose between listening to a speech act and ignoring a speech act.

• An externally visible promoted operation Speak that models an event were the object (process)
sends a speech act message to another object (process).

Agent
¹(id , INIT ,Hear ,Speak ,TimeEvent)
id : AId

context : Context

INIT
context .INIT

Send
∆(context)
act ! : SAct

Listen
∆(context)
act? : SAct

Ignore
act? : SAct
act ! : SAct
act ! = act?

TimeEvent
t? : T

Hear =̂ Listen [] Ignore
Speak =̂ Send

Figure 4.14: An Agent class de�nition.

Society The �nal class that we will de�ne, is a society class, Society . The class de�nition is shown
in Figure 4.15. The class has two state variables: A set of agents, agents, and a global contextual
state, context . Initially there is no agents in the society and the context is initialized (empty).
Agents may be added to the society using the operation AddAgent and removed from the society
using the operation RemoveAgent . The class also has two promoted operations:

1. The operation SActEvent models a speech act event as a speaking agent object s.Speak in
parallel composition (‖) with a hearing agent object l .Hear running concurrently (∧) with
the global context object context .Hear .

2. The operation Broadcast models a broadcast speech act event as one speaking agent object
in parallel composition with a set of concurrently running hearer agent objects and the global
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Society
id : SocId

agents : PAgent
context : Context

INIT
agents = ∅
context .INIT

AddAgent
∆(agents)
agt? : Agent
agt? 6∈ agents
agents ′ = agents ∪ {agt?}

RemoveAgent
∆(agents)
agt? : Agent
agt? ∈ agents
agents ′ = agents \ {agt?}

SActEvent =̂ [ s : agents, l : agents | s 6= l ] •
(s.Speak ‖ (l .Hear ∧ context .Hear))

Broadcast =̂ [ s : agents ] •
(s.Speak ‖ ((∧ l : agents \ {s} • l .Hear) ∧ context .Hear))

Figure 4.15: A Society class de�nition.

context.
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Chapter 5

Abstract Model: Social Level Two

5.1 Introduction
In this chapter, we will formalize the social level one, as proposed in chapter 3 section 3.9. The
formal model presented in this chapter is an extension of the model presented in 4. We will therefore
assume the reader to be familiar with the concepts presented in 4. Only concepts that are new in
this chapter will be explained.
On this level we will not consider the formalization of agents and multiagent societies.

5.2 Abstract Syntax of Speech Acts
In this section an abstract syntax for level two speech acts is introduced. The abstract syntax is
an extension of the abstract speech act syntax in level one, section 4.3. The new abstract syntax is
de�ned as follows:

SAct ::= ass〈〈AId ×AId × Bel〉〉
| dir〈〈Strength ×AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| com〈〈Strength ×AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| retract〈〈AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| cancel〈〈AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| dec〈〈AId × Relation〉〉

The penalty type, Penalty , is de�ned as an action:

Penalty == Action

The last speech act dec, declarative, takes as argument a new relation type, which is de�ned like
this:

Relation ::= create power〈〈Power〉〉
| retract power〈〈Power〉〉
| create auth〈〈Auth〉〉
| retract auth〈〈Auth〉〉

The power and authority relation types, Power and Authority , are introduced in section 5.4 and
5.5. The other types are de�ned as in level one.
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Most of the speech acts have the same informal meaning as presented in Table 4.1. However, two
of the directives (directive by power and by authorization) that were not meaningful at the social
level one, are considered as meaning at the social level two. This level allows four new declarative
speech acts. Below we give the informal meaning of each of these specialized speech acts.
dir(hard , i , j ,noact , a,new(r)) i orders (by power or authority) j to do a

with a new reference r (and thereby obligates j to do a).
dir(hard , i , j , c, a,new(r)) i orders (by power or authority) j to do a on condition c

with a new reference r (and thereby obligates j to do a).
dec(i , create power(p)) i declares the creation of a power relation p.
dec(i , retract power(p)) i declares the retraction of a power relation p.
dec(i , create auth(a)) i declares the creation of a authority relation a.
dec(i , retract auth(a)) i declares the retraction of a authority relation a.

It should be noticed that declaratives have no hearer agent. After being uttered in a given social
contextual state, the decleration may hold. Agents may then afterwards be informed about such a
decleration.

5.3 Context

At the social level two the contextual knowledge is extended to include a number of other social
aspects as described in chapter 3, section 3.5 and section 3.9. The social level two context is
formalized as a 7-tuple:

Context ′ ::= context〈〈CId × PObl × PRId × RM × PPower × PAuth × BM 〉〉

where the elements of context(cid , obls, rs, rm, ps, as, bm) is

• a context identi�er, cid ;
• a set of obligations, obls;
• a set of role identi�ers, rs;
• an agent to role mapping (role assignment), rm;
• a set of role power relations, ps;
• a set of agent authority relations, as;
• an agent to belief mapping, bm.

Here we use a new type, RM , for mapping agent identi�ers to role identi�ers.

RM == AId 7→ RId

We introduce a function, CSActE , for updating the contextual knowledge in the case of a speech
act event.

CSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cnt : Context •
CSActE (t , sact)(cnt) =

(let cnt ′ == COSActE (t , sact)(cnt) •
(let cnt ′′ == CBSActE (sact)(cnt ′) •
cnt ′′))

The function, COSActE , updates the contextual obligations, and the function, CBSActE , updates
the contextual beliefs. The function, COSActE , is speci�ed di�erently in this level, than in level
one. We refer to in section 5.6. The function, CBSActE , is speci�ed in the same way as in level one
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section 4.7. The function was however speci�ed to take a context type of level one as input. We
provide an extended version of this function:

CBSActE : SAct 7→ Context 7→ Context
∀ sact : SAct ; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM •
CBSActE (sact)(context(cid , obls, rs, rm, ps, as, bm)) =

(let bm ′ == BSActE (sact)(bm) • context(cid , obls, rs, rm, ps, as, bm ′))

The function BSActE (sact)(bm) is speci�ed in section 4.7.
We also introduce a sub-type, Context , of well-formed context types.

Context == {cnt : Context ′ | wf C (cnt)}

The sub-type, Context , is constrained in the following way:

1. All obligations created in a context must concern agents operating in the context.
2. No two obligations in a given context may have the same reference identi�er.
3. All agent are assigned to a role.
4. All power relations created in a context must concern roles in the context.
5. All authority relations created in a context must concern agents operating in the context.

These two constrains are formalized by the function, wf C .

wf C : Context ′ → B

∀ i , j : AId ; o, o1, o2 : Obl ; as : PAuth; obls : PObl ; rs : PRId ;
cid : CId ; bm : BM ; rm : RM ; p : Power ; ps : PPower ; a : Auth | o1 6= o2 •
wf C (context(cid , obls, rs, rm, ps, as, bm)) ⇔

o ∈ obls ∧ i = getdebtor(o) ∧ j = getcreditor(o) ⇒
i ∈ dom bm ∧
j ∈ dom bm ∧

(o1 ∈ obls ∧ o2 ∈ obls) ⇒
getreferenceid(o1) 6= getreferenceid(o2)

∧ dom bm = dom rm ∧
(p ∈ ps ⇒ superordinate(p) ∈ rs ∧ subordinate(p) ∈ rs)
∧ (a ∈ as ⇒ auth aid(a) ∈ dom bm)

The following functions are used to extract the role identi�er and agent identi�er components of
power and authority relations.

superordinate : Power → RId
∀ i : AId ; r1, r2 : RId ; act : Action •
superordinate(power(r1, r2)) = r1

subordinate : Power → RId
∀ i : AId ; r1, r2 : RId ; act : Action •
subordinate(power(r1, r2)) = r2

auth aid : Auth → AId
∀ i : AId ; r1, r2 : RId ; act : Action •
auth aid(auth(i , act)) = i
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The function role gives the role that a speci�c agent is assigned to in a given context.

role : AId × Context → RId
∀ r : RId ; i : AId ; cid : CId ; obls : PObl ; rs : PRId ; rm : RM ;
ps : PPower ; as : PAuth; bm : BM •
role(i , context(cid , obls, rs, rm, ps, as, bm)) = r ⇔ r = rm(i)

We introduce a number of extraction functions on context types:

getroles : Context → PRId ;
getagents : Context → PAId ;
getpowers : Context → PPower ;
getauths : Context → PAuth;
getobls : Context → PObl

5.4 Roles and Power Relations
Each agent plays some social role in a context. As presented in 3.9 our notion of roles are very
simple. We only consider the meaning of roles in a given social hierarchy of power relations. We
do not consider the obligations that may be associated with a given role. Our notion of roles is
therefore formalized as a simple role identi�er, RId .

[RId ]

A power relation is formalized as a simple type consisting of two role identi�ers:

Power ′ ::= power〈〈RId × RId〉〉

The informal meaning of a power relation power(r1, r2) is that an agent, a, having role r1 my direct
(order) another agent, b, having role r2 to do some action by power. All orders from a to b leads to
the creation of a social obligation from b toward a to perform the ordered action.
A subtype, Power , of well-formed power relations is de�ned. We require that power relations always
concern two di�erent roles.

Power == {p : Power ′ | wf Power(p)}

wf Power : Power ′ → B

∀ r1, r2 : RId •
wf Power(power(r1, r2)) ⇔ (r1 6= r2)

In the following we introduce an auxiliary function, have power(r1, r2, ps). Given two role identi-
�ers, r1, r2 : RId , and a set of role power relations, ps : PPower , this function evaluates to true if
ps contains a relation where r1 is superior to r2; otherwise it evaluates to false.

have power : RId × RId × PPower → B

∀ r1, r2 : RId ; ps : PPower •
have power(r1, r2, ps) ⇔ power(r1, r2) ∈ ps

Declaratives are used to create and retract power relations from a given context. We introduce
two functions for creating and retracting power relations that (may) exist in a given set of power
relations.
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createp : Power × PPower → PPower
∀ p : Power ; ps, ps ′ : PPower •
createp(p, ps) = ps ′ ⇔

(p ∈ ps ⇒ ps ′ = ps) ∨ (p 6∈ ps ⇒ ps ′ = {p} ∪ ps)

retractp : Power × PPower 7→ PPower
∀ p : Power ; ps, ps ′ : PPower •
retractp(p, ps) = ps ′ ⇔

(p 6∈ ps ⇒ ps ′ = ps) ∨ (p ∈ ps ⇒ ps ′ = ps \ {p})

In chapter 3, section 3.9 we introduced two conditions that should hold in a given context, before
an agent a can declare the creation or retraction of a new role power regarding role r1 and r2:

• Agent a have the role power over r1 and r2, or
• a has got the authority to make the power relation declaration.

These two conditions are formalized by the function can declare power(i , p, cnt). It evaluates to
true only in the case that an agent i : AId has the power or authority to declare the creation or
retraction of power p : Power in context cnt : Context .

can declare power : AId × Relation × Context → B

∀ i : AId ; r1, r2 : RId ; cnt : Context •
can declare power(i , create power(power(r1, r2)), cnt) ⇔

(have power(role(i , cnt), r1, getpowers(cnt)) ∧ have power(role(i , cnt), r2, getpowers(cnt))) ∨
have auth(i , act(dec(i , create power(power(r1, r2))),null), getauths(cnt)) ∨

can declare power(i , retract power(power(r1, r2)), cnt) ⇔
(have power(role(i , cnt), r1, getpowers(cnt)) ∧ have power(role(i , cnt), r2, getpowers(cnt))) ∨

have auth(i , act(dec(i , retract power(power(r1, r2))),null), getauths(cnt))

The function matches the two power declarations create power and retract power . The speci�cation
of the two cases are almost similar, with the exception of the authorization that should exist in the
context.
The creation and retraction of powers using declaratives are considered as speech act event like
directives and commissives. The handling of declarative speech acts is speci�ed in the function
event on Appendix D.5 (in the below part of the speci�cation of event). In the following we show
the part of event that handles the declaration of a power creation.

...
event(dec(i , create power(power(r1, r2))))(cnt) = cnto ⇔

(can declare power(i , create power(power(r1, r2)), cnt) ⇒ cnto = create p(power(r1, r2), cnt)) ∨
(¬ can declare power(i , create power(power(r1, r2)), cnt) ⇒ cnto = cnt) ∨

...

If agent i : AId can declare a power relation between r1 : RId and r2 : RId in cnt : Context then
this power is created using create p; otherwise the contextual state is left unchanged. The function
create p is speci�ed like this:

create p : Power × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
create p(p, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , obls, rs, rm, createp(p, ps), as, bm)

The function createp is speci�ed above.



98 Chapter 5. Abstract Model: Social Level Two

5.5 Authority Relations
Agents may authorize other agents to request (order) them to do certain actions as described in 3.9.
An authorization is formalized as a 2-tuple:

Auth ′ ::= auth〈〈AId ×Action〉〉

where the elements of a authorization auth(i , act) is

• the identi�er of the agent that has received the authorization, i ;
• an action that i is authorized to perform as long as the authorization exists, act .

A subtype, Auth, of well-formed authority relations is de�ned. In our model the following conditions
most hold:

• Agents may only be authorized to perform simple (non-composite) actions, i.e. on the act
form.

• The time interval should be null, i.e. the authorization is valid until it is retracted.

Auth == {a : Auth ′ | wf Auth(a)}

wf Auth : Auth ′ → B

∀ i : AId ; a : SAct ; tp : TP ; action : Action •
wf Auth(auth(i ,noact)) ⇔ false ∨
wf Auth(auth(i , act(a, tp))) ⇔ (tp = null) ∨
wf Auth(auth(i , or(action, action))) ⇔ false ∨
wf Auth(auth(i , aand(action, action))) ⇔ false

In the following we introduce a function, auth(i , a, auths). Given an agent identi�er, i : AId , an
action a : Action and a set of authorities auths : PAuth, this function determines if i is authorized
to perform action a in auths.

have auth : AId ×Action × PAuth 7→ B

∀ i : AId ; a : Action; auths : PAuth •
have auth(i , a, auths) ⇔ auth(i , a) ∈ auths

Declaratives are used to create and retract authority relations from a given context. The following
auxiliary functions are used to add (create) and delete (retract) authorizations.

createa : Auth × PAuth → PAuth
∀ a : Auth; as, as ′ : PAuth •
createa(a, as) = as ′ ⇔

(a ∈ as ⇒ as ′ = as) ∨ (a 6∈ as ⇒ as ′ = {a} ∪ as)

retracta : Auth × PAuth 7→ PAuth
∀ a : Auth; as, as ′ : PAuth •
retracta(a, as) = as ′ ⇔

(a 6∈ as ⇒ as ′ = as) ∨ (a ∈ as ⇒ as ′ = as \ {a})

In chapter 3 section 3.9 our assumption was that an agent a may authorize another agent b to some
action act if the action act is regarding agent a and agent b. This condition is formalized by the
function can declare authority .
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can declare authority : AId ×AId × SAct → B

∀ i , j : AId ; sact : SAct •
can declare authority(i , j , sact) ⇔ (i = gethearer(sact) ∧ j = getspeaker(sact))

In the same way as role power declarations (see section 5.4), the handling of authority declarations
is speci�ed in the function event on Appendix D.5 (in the below part of the speci�cation of event).
In the following we show the part of event that handles the declaration of an authority creation.

...
event(dec(i , create auth(auth(j , act(sact , tp)))))(cnt) = cnto ⇔
(can declare authority(i , j , sact) ⇒ cnto = create a(auth(j , act(sact , tp)), cnt)) ∨
(¬ can declare authority(i , j , sact) ⇒ cnto = cnt) ∨
...

If agent i : AId can declare an authority relation regarding action sact in cnt : Context , then this
authority relation is created using create a; otherwise the contextual state is left unchanged. The
function create a is speci�ed like this:

create a : Auth × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
create a(a, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , obls, rs, rm, ps, createa(a, as), bm)

The function createa is the one speci�ed above.

5.6 Obligations with Penalty

In this section we extend the notion of obligations introduced in level one, section 4.6, to include
the notion of penalty actions. A penalty-action has to be performed by the debtor of an obligation,
in the case that it has been violated. The new extended speci�cation of obligations is de�ned like
this:

Obl ′ ::= obl〈〈AId ×AId × Cond × Cond ×Action ×Action × Penalty
×Penalty ×OS × RefId〉〉

where the elements of an obligation obl(i , j , c, cc, a, ac, p, pc, os, r) is

• an identi�er of the agent that has to ful�ll the obligation, i : AId ; we call this agent the debtor
of the obligation;

• an identi�er of the agent towards which the obligation is made, j : AId ; we call this agent
creditor;

• a conditional action that has to be performed before the obligation is completed, c : Action;
• a copy of c : Action that stays unchanged during the whole history of obligations, cc : Action;
• an action that has to be performed by the debtor of the obligation, a : Action;
• a copy of a : Action that stays unchanged during the whole history of obligations, ac : Action;
• a penalty action that has to be performed by the debtor of the obligation in the case that it

is violated, p : Action;
• a copy of p : Action that stays unchanged during the whole history of obligations, pc : Action;
• the obligation state indicator, os : OS ;
• a unique obligation reference, ref : RefId .
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No. IP Strength Conditional State
7 dir hard yes conditional
8 dir hard no complete

Figure 5.1: The two additional initial speech act events in social level two.

In the following, a subtype, Obl , of well-formed obligations is introduced.

Obl == {o : Obl ′ | wf Obl(o)}

wf Obl : Obl ′ → B

∀ i , j : AId ; r : RefId ; c, cc : Cond ; a, ac : Action; p, pc : Penalty ; os : OS •
wf Obl(obl(i , j , c, cc, a, ac, p, pc, os, r)) ⇔

concern(i , a) ∧ reducible(c, cc) ∧ reducible(a, ac) ∧ reducible(p, pc)

The function reducible was introduced in section 4.6. The obligation state indicator, OS , is extended
to include two more states:

OS ::=
debtor partial | debtor cond partial | creditor partial |
creditor cond partial | complete | ful�lled | violated |
expired | retracted | cancelled | conditional |
penalty | exception

The two new states are: penalty , exception:

• The state penalty indicates that an obligation has been violated and that the penalty action
has to be performed by the debtor in some time period.

• The state exception indicates the exception that arises in a context where agents do not ful�ll
there penalty actions.

5.6.1 Obligation Dynamics

Most of the dynamic properties of obligations in level two are similar to level one. To avoid repetition,
we will only focus on the new properties introduced in level two. We have extended obligation state
transition machines to include the new types of speech act events that may take place.

5.6.2 New Initial Speech Act Events

Figure 5.2 illustrates the 8 initial transitions that may be taken in level two. In Table 5.1 the two
new initial speech act types, 7 and 8, are speci�ed. The informal meaning of these new speech acts
were given in section 5.2. It should noted that the two new transitions makes the initial transitions
�symmetric� between speakers and hearers. This is due to the fact that speakers are now allowed to
obligate hearers under the right conditions, i.e. power and authority.
To handle these two new events, we have extended the function event .

event : SAct 7→ Context 7→ Context

We refer to Appendix D.5 for the extended speci�cation of the function event . We will only show
the part of the speci�cation that handles the new speech acts:
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conditional

expiredretractedcancelled

debtor_cond_partial

debtor_partial

creditor_cond_partial

creditor_partial
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Init

fulfilled
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violatedcomplete
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2
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Figure 5.2: Init speech acts.

No. IP Strength Conditional From To
15 �some� �some� ? penalty violated

Figure 5.3: The additional reference speech act event in social level two.

...
event(dir(hard , i , j , c, a, p,new(r)))(cnt) = cnto ⇔
((have power(role(i , cnt), role(j , cnt), getpowers(cnt)) ∨ have auth(i , a, getauths(cnt))) ⇒ (
(¬ is cond(c) ⇒ cnto = create obl(obl(j , i ,noact ,noact , a, a, p, p, complete, r), cnt)) ∨
(is cond(c) ⇒ cnto = create obl(obl(j , i , c, c, a, a, p, p, conditional , r), cnt)))) ∨
(¬ (have power(role(i , cnt), role(j , cnt), getpowers(cnt)) ∨ have auth(i , a, getauths(cnt)))
⇒ cnto = cnt) ∨
...

This speech act will only create an obligation if one of the following two properties hold in the
context cnt :

• If the speaker i have the role power over the hearer j . To check this, the function have power
is used. We refer to section 5.4.

• If the speaker i is authorized to do a. To check this, the function have auth is used. We refer
to section 5.5.

If is cond(c) is true, a conditional obligation is created; otherwise an unconditional obligation is
created. If none one of the above contextual properties hold, the contextual state is left unchanged.

5.6.3 New Reference Speech Act Events

Figure 5.4 shows the 15 reference transitions that may be taken in level two. In Table 5.3 the new
reference speech act, 15, are speci�ed. Like transition 13 and 14 we have written �some� by the
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Figure 5.4: Reference speech acts.

IP (illocutionary point) and strength and �?� by the condition. These speech acts depends of the
actual obligation that is created.
To handle this new speech act transition, we have extended the function, OSActE (obligation speech
act event), with the function penalty � . This function simple checks if the penalty action has been
ful�lled.

COSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sa : SAct ; cnt : Context •
COSActE (t , sa)(cnt) =

(let cnt ′ == COTmE (t)(cnt) •
(let cnt ′′ == complete obl(t , sa)(cnt ′) •
(let cnt ′′′ == ful�lled obl(t , sa)(cnt ′′) •
(let cnt ′′′′ == penalty � (t , sa)(cnt ′′′) •
(let cnt ′′′′′ == event(sa)(cnt ′′′′) • cnt ′′′′′)))))

The speci�cations of the functions complete obl , ful�lled obl are the same as in level one, with
the exception that they as argument take the new obligation type. We refer to appendix D.5.
penalty � is speci�ed in the same way as ful�lled obl with the only di�erence, that the penalty
action is checked.

complete obl : (T × SAct) 7→ Context 7→ Context ;
ful�lled obl : (T × SAct) 7→ Context 7→ Context ;
penalty � : (T × SAct) 7→ Context 7→ Context

The function for taking care of contexual obligation time events, COTmE , is extended like this:
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No. Action From To
6 a complete penalty
7 a complete violated
8 p penalty exception

Figure 5.5: Time three additional time events in social level two.
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Figure 5.6: Time outs.

COTmE : T 7→ Context 7→ Context
∀ t : T ; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM •
COTmE (t)(context(cid , obls, rs, rm, ps, as, bm)) =

(let obls ′ == {o : obls • OTmE (t , o)} •
context(cid , obls ′, rs, rm, ps, as, bm))

We refer to Appendix D.5 for the extended speci�cation of OTmE .

5.6.4 New Time Events

At Figure 5.6 the 8 timeout transitions that may be taken in level two are illustrated. In Table 5.5
the new time events, 6, 7 and 8, are speci�ed. In order to handle these new time events, we have
extended the function OTmE (obligation time event).

OTmE : T ×Obl 7→ Obl

If a timeout occurs in the complete state, the obligation will either take a transition to violated
or penalty. This depends on the penalty action speci�ed in the obligation. If the penalty action,
p : Penalty , is noact , i.e. no act(p) is true, it means that there is no penalty for violating the
obligation. If, on the other hand, the penalty action, p : Penalty , is di�erent from noact , i.e.
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¬no act(p) is true, the obligation takes the transition to penalty. If an obligation is timed out in
the penalty state, the obligation takes the transition to the exception state. We refer to appendix
D.5 for the full speci�cation of the extended OTmE function.

5.7 Conversation Examples

In this section we will extend the wizard conversation examples from 4.9.3 and 4.9.4: �The Wizard
III�. We will demonstrate two very simple examples: One with an authority declaration and one
with a role power declaration. To simplify the examples we will not assume any timing in the speech
acts.
The domain acts in �The Wizard III� is given by:

DAct ::= Request〈〈AId ×AId × Bel × Info × Ref 〉〉
| Yes〈〈AId ×AId × Bel × Ref 〉〉
| No〈〈AId ×AId × Bel × Ref 〉〉
| Declare〈〈AId × Relation〉〉

The informal meaning of these domain acts is given by:

• Request(i , j , p, r1) : An agent i orders another agent j to say if he believe some proposition p
or not, on no condition.

• Yes(i , j , p, r) : Agent i says to agent j that he believes in p.
• No(i , j , p, r) : Agent i says to agent j that he does not believe in p.
• Declare(i , rel) : Agent i attempts to declare a relation, rel : Relation (power or authority).

The domain action to speech act sequence compiler for �Ask TheWizard III� is given by the function
CWD:

CWD : DAct → seqSAct
∀ i , j : AId ; m : Bel ; r : Ref ; rel : Relation •
CWD(Request(i , j ,m, r)) =

〈dir(hard , i , j ,noact , or(A(CWD(Yes(j , i ,m, r1)),null),A(CWD(No(j , i ,m, r1)),null)), r1),
CWD(Yes(i , j ,m, r)) = 〈ass(i , j , imply(m, true), r)〉
CWD(No(i , j ,m, r)) = 〈ass(i , j , imply(m, false), r)〉
CWD(Declare(i , rel)) = 〈dec(i , rel)〉

Authority Declaration Two agents participate in this small conversation: a boy : AId and a
wizard : AId . The boy is assigned to a role identi�ed as student : RId and the wizard is assigned to
a role identi�ed as teacher : RId . The initial state of the social context, wizard3 : CId , in which the
two agents are operating is assumed to be:

context(wizard3,
{},
{student , teacher},
{boy 7→ student ,wizard 7→ teacher},
{},
{},
{boy 7→ {},wizard 7→ {}})

There is no obligations, there exist two roles, student and teacher , the boy is student and the wizard
is teacher , there is no power or authority relations and the agents has not expressed any believes.



5.7 Conversation Examples 105

In these examples we will not consider the sets of expressed believes. Only the social relations. The
conversation is given by the following �ve domain actions, dact : DAct :

[1] Request(boy ,wizard , q ,new(r1)),
[2] Declare(wizard , create auth(auth(boy ,A(CWD(Request(boy ,wizard , q ,new(r2))))))),
[3] Request(boy ,wizard , q ,new(r2)),
[4] Yes(wizard , boy , q , old(r2)),
[5] Declare(wizard , retract auth(auth(boy ,A(CWD(Request(boy ,wizard , q ,new(r2)))))))

Domain actions compiled to basic speech acts:

[1] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),mew(r1)),

[2] dec(wizard , create auth(auth(boy , act(dir(hard , boy ,wizard ,noact ,
or(act(ass(wizard , boy , imply(q , true),new(r2)),null),
act(ass(wizard , boy , imply(q , false),new(r2)),null)),new(r2)),null))),new(r2)),

[3] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r2)),null),
act(ass(wizard , boy , imply(q , false),new(r2)),null)),new(r2)),

[4] ass(wizard , boy , imply(m, true), old(r2))
[5] dec(wizard , retract auth(auth(boy , act(dir(hard , boy ,wizard ,noact ,

or(act(ass(wizard , boy , imply(q , true),new(r2)),null),
act(ass(wizard , boy , imply(q , false),new(r2)),null)),new(r2)),null))),new(r2)),

On Figure 5.7 we have illustrated the contextual trace of authorizations and obligations. The �rst
order (request) from the boy do not create obligations because the boy neither have power nor
authorization to make such an order. In step two the wizard authorizes the boy to order (request)
the wizard to reply to the boys question. In step three the boy makes a request by authorization,
and thereby he creates an obligation. In step four the wizard ful�lls its obligation, by answering the
the boy . Finally, the wizard retracts his authorization.

Step Contextual Trace
[1]
[2] 1. auth(boy , act(dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), r2),null))
[3] 1. auth(boy , act(dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), r2),null))
2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), complete, r2)
[4] 1. auth(boy , act(dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), r2),null))
2. obl(wizard , boy ,noact ,noact , ful�lled , r2)

[5] 1. retracted
2. no change

Figure 5.7: Contextual Trace

Power Declaration In this conversation we have three agents, boy , wizard and rector , and three
roles, student , teacher and o�cer . We assume the following initial contextual state:
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context(wizard3,
{},
{student , teacher , o�cer},
{boy 7→ student ,wizard 7→ teacher , rector 7→ o�cer},
{power(o�cer , student), power(o�cer , teacher)},
{},
{boy 7→ {},wizard 7→ {}, rector 7→ {}})

The conversation is given by the following �ve domain actions, dact : DAct :

[1] Request(boy ,wizard , q ,new(r1)),
[2] Declare(rector , create power(power(student , teacher))),
[3] Request(boy ,wizard , q ,new(r2)),
[4] Yes(wizard , boy , q , old(r2)),
[5] Declare(rector , retract power(power(student , teacher))),

Domain actions compiled to basic speech acts:

[1] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

[2] dec(rector , create power(power(student , teacher))),
[3] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r2)),null),

act(ass(wizard , boy , imply(q , false),new(r2)),null)),new(r2)),
[4] ass(wizard , boy , imply(m, true), old(r2))
[5] dec(rector , retract power(power(student , teacher))),

On Figure 5.8 we have illustrated the contextual trace of power relations and obligations.

Step Contextual Trace
[1] 1. power(o�cer , student)

2. power(o�cer , teacher)
[2] 1. no change

2. no change
3. power(student , teacher)

[3] 1. no change
2. no change
3. no change
4. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), complete, r2)
[4] 1. no change

2. no change
3. no change
4. obl(wizard , boy ,noact ,noact , ful�lled , r2)

[5] 1. no change
2. no change
3. retracted
4. no change

Figure 5.8: Contextual Trace
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Chapter 6

CONCLUSION

6.1 Summary

The main aim of this thesis ways to investigate the meaning (semantics) of speech acts and agents
along two dimensions:

• A social perspective on agent communication.
• Bridging the gab between

1. philosophical and linguistic (informal) theories of speech acts;
2. computer scienti�c theories of speech acts using modal logics and
3. software engineering models and speci�cations of speech acts using standard formal spec-

i�cation languages.

Based on a literature study and our own informal descriptions, we have proposed a formal model of
obligations as a kind of state transition machine. Our aim has been both to capture the intuitive
meaning of the concepts of obligations and to transform the speci�cations in modal logics (deontic
and temporal) into a �more� computable and tangible formal model. We have formalized how
autonomous agents may use speech acts in order to propose, accept, retract and cancel contextual
obligations, in order to advance the state of their social interactions. We have introduced the notions
of hard and soft speech acts and speech act references. By considering these concepts, we are able
to formalize how directives and commissives may be used in a number of di�erent ways, e.g. both as
an acceptance of a proposal and as an order. By considering the time aspect explicitly, our model
also considers how obligations may expire, be violated and ful�lled.
Our model captures the social meaning (semantics/pragmatics) of speech acts as their e�ects on a
given social contextual state and type. We have proposed the notion of social levels, in order to
understand and formalize how language and communication is dependent on the social context in
which it is used. Our model formally speci�es how language (actions) are context sensitive, i.e. the
e�ects (meanings) of the utterances made by agents depends on the state and type of the social
context. For example, the meaning of a directive is di�erent in social level one and social level two.
We have accomplished this, by considering the social (conversational) context as an abstract entity
representing the social state of a conversation between a number of agents. At level one, the social
context represents a set of social obligations and a set of expressed beliefs created by the performance
of speech acts. Each time a speech act is performed, the state of a social context may be changed �
obligations may be created, cancelled, violated, ful�lled, etc. In social level two we have formalized
how contextual role power relations and authority relations relates to the meaning of speech acts.
By introducing the notion of social role power relations, we are able to formalize conversations in
which (partially) autonomous agents are organized in di�erent hierarchical orderings. The concept
of authorization enables us to formalize situations in which agents gives away some degree of control



108 Chapter 6. CONCLUSION

to other agents. We have also suggested and formalized how declarative speech acts may be used in
order to create and cancel power and authority relations in a given social context.
We have proposed and formalized the concept of contextual traces of speech act based conversations.
Contextual traces formalizes how collections of obligations (and beliefs) are build up during the
exchange of speech acts, i.e. they may be viewed as the history of a given conversation.
We have also suggested the use of domain act to speech act compilers. This type of compiler
translates domain speci�c language actions (messages) into sequences of basic speech acts (in the
same way as a programming language compilers translates high-level code into low-level machine
instructions). Domain acts may be compiled into a number of di�erent sequences of basic speech acts,
depending on the exact e�ect that an agent wishes to obtain by the performance of the language
action. Our model of domain act to speech act translators also formalizes the idea that human
communication can be reduced to the performance of a number of primitive (atomic) speech acts:
Assertives, commissives, directives, etc.
Finally, we have proposed how our notions of obligations and contextual states can be used in the
of formalization agent architectures and multiagent societies.
Our model satis�es, to some extend, some of the goals that we had from the beginning:

• Our model has helped us to understand the social meaning of speech acts.
• Our Z formalization is based on both informal descriptions of speech acts in linguistics and

philosophy and formal modal logic theories of speech acts in computing science.

However, it is important to observe, that the proposed model only addresses a very limited number
of the fundamental pragmatic issues of formalizing speech acts and agent communication, as pointed
out in section 2.2. Our model only formalizes a limited subset of the ideas expressed in the speech
act theories by Austin, Searle, Bach, Harnish, etc. Crudely speaking, our model is just an attempt
to clarify, from a formal software speci�cation viewpoint, some of the most basic issues regarding
communication between autonomous agents (human as well as arti�cial). It should also be noted,
that the presented model is not an attempt to design a new communication language for autonomous
agents. However, our thesis has hopefully made it more clear how some of the ideas of speech
act theory can be transformed into a concrete agent communication language design. Its is our
viewpoint, that it is necessary to get a better understanding of communication between humans
(the domain) in order to design autonomous agents (requirements and design).

6.2 Future Work

Our model also raises a number of new questions and issues that have to be further addressed. Some
of these issues include:

• We have only demonstrated some very primitive examples of conversations between autonomous
agents. Its should be further investigated, how our model of speech acts and obligations may
be used to specify more complex agent conversations. This may include the following more
technical aspects:
� Our model of speech acts and obligations may be applied to some known conversation

protocols, e.g. contract net or auction.
� Our model of obligations suggests that they may be formalized as timed automata. In

this way, we may use automated tools, e.g. UPPAAL, to check some of the properties of
obligation based protocols, e.g. termination, deadlock, etc.

� Our abstract model of speech act based obligations may also be speci�ed in a language
used for modelling concurrent systems, e.g. CSP. This may also enable us to specify and
verify the dynamic properties of speech acts and obligations.
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� Our concept of domain act to speech act compilers may be further explored. This may
also lead to the development of automated tools for testing our model in more complex
situations. As we have seen, even very primitive conversations may lead to a large
sequences of basic speech acts.

� The notion of contextual traces should also be further analyzed and formalized. On a
practical level, contextual traces may be used to verify if a group of communicating agents
complies with a given obligation based protocol, i.e. some agents may violate all their
obligations and others agents may ful�ll all obligations.

• We have only suggested some very primitive models of agents and multiagent societies based
on the concepts of speech acts and contextual obligations. Its should be further investigated
how the notion of obligations may be used in the local deliberation process of autonomous
agents. Some of the issues include:
� How should obligations be represented in an agent architecture. In our simple model, the

obligations of an agent is just modelled as a simple collection of obligation state machines.
Obligations may also be represented as propositions in the beliefs of agents.

� The relationship between obligations, desires and intentions should be further investi-
gated. In our model we has not addressed these issues.

� Its should be further investigated how our model may be used to specify societies (sys-
tems) of interacting agents. Our model could for example be applied to concrete appli-
cation domains such as electronic business or logistics.

• At the social level two, we considered the notions of power and authority relations. However,
our formalization of these notions were very primitive. It should be further investigated how
these notions may be modelled and formalized. The relationship between roles and obligations
should also be further formalized. There may also be other social relationships that should be
considered at the social level two.

• We have not addressed the issues of norms and conventions in our model. Its should be further
investigated how these concepts relate to our model of speech acts and obligations. Typically
norms are speci�ed on deontic logics.

• We have not addressed the issue of representing non-communicative actions, e.g. physical ac-
tions, in our model. This problem should be further explored. Generally, the notion of actions
should be further investigated. Action expressions could be extended to include quanti�ers
and program-like structures (if, while, etc.).

• The relationship between the notion of social context and that of (common) knowledge should
be further investigated.

• The use of formal methods, e.g. Object-Z and RSL, in the development of a concrete model
of speech acts and obligations should be further investigated. In order to understand and
explore the applicability of the ideas presented in this thesis, the issues of re�ning our model
to a concrete implementation must also be addressed. Such experiments may also give rise to
new ideas and insight.
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Appendix A

Multiagent Systems

A.1 Multiagent Systems and Societies

Agents (human as well as arti�cial) do (usually) not operate in isolation. They typically operate
in the context of Multiagent Systems. Multiagent systems can be seen as computational societies
composed of several interacting agents following some rules and regulations speci�ed by the society.
Examples of Multiagent societies1 may be E-Business/Commerce and/or Logistics societies.

A.2 MAS Characteristics

MAS may be characterized in di�erent ways. In the following I will discuss some of the (in our
view) most important characteristics of MAS. The characteristics are: Accessibility (Openness),
scale, interactions, dynamics, heterogeneity, communications and environments.

Accessibility (Openness): We will distinguish between three degrees of accessibility: closed,
semi-open and open MAS.
Closed MAS: A society of agents is closed if it has been designed and engineered only to
work within a single context. This could for example be a team of software developers that has
implemented their own private MAS to solve some speci�c tasks within a speci�c organization,
e.g. a distributed meeting planner system or an internal resource allocation system. Closed
systems are not accessible by external agents. This can be due to many reasons. Maybe the
company don't want other agents (interest) to interfear in their internal matters (e.g. meeting
planning). Maybe the systems is closed due to the lack of compatibility with other agent
systems. Maybe the security risk of opening their systems are too great (due to the lack of
international MAS standards). In closed MAS it is possible to precisely engineer the society,
i.e. to specify the exact behavior of each interacting agent, both internally and externally. For
example, the agents may be restricted to have a BDI-architecture, be �xed to be sincere and
benevolent, i.e. contain behavioral patterns may be hard-coded into the MAS. An analogy to
closed MAS is intra-nets, i.e. networks of computers that are con�gured to work only inside a
given organization. Again this may be due to several reasons: Security, incompatibility, etc.
Open MAS: A society of agents is open if it consists of agents from many di�erent sources
(universities, companies, private persons, etc.), designed independently. It is fully accessible
to anyone who wants to enter into the society. A open MAS is build on open standards and
norms that allows agents from di�erent sources to be (technically) compatible. This makes
them heterogeneous. Open societies are not constraining the internal architecture of their

1We will use the two notions Multiagent System and Multiagent Society interchangeable.
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member, i.e. if an agent should be implemented using a BDI architecture or some other search-
algorithmic model. Only the externally visible interfaces are constrained. An analogy to open
MAS is the Internet, which is build on the International Standard Organization's (ISO) Open
System Interconnect (OSI) network model speci�cation (TCP/IP). A MAS may therefore be
build on top of the Internet, to be more speci�c: On layer 7, the application layer (which
provides access to end-users and other applications and agents). The OSI model provides
the basic technical infrastructure to facilitate open MAS2: Band-with, security, standards,
naming, etc. It is however important to note that the Internet is only one way enabling open
MAS. Other systems may also provide the same open characteristics as the Internet. In some
literature it seems like the Internet is regarded as the only way of implementing MAS. We
consider MAS as an abstract phenomenon, i.e. it can be implemented in many di�erent ways;
the Internet is only one way.
Semi-open MAS: The third degree of accessibility (openness) is semi-open societies. Semi-
open MAS is accessible to external agents, i.e. agents from di�erent sources (universities,
companies, private persons, etc.), designed independently, i.e. like open MAS. However, semi-
open societies are regulated by di�erent institutions which has speci�ed norms, i.e. rules and
regulations, that restricts the autonomous agent behavior by only allowing certain types of
interaction. One typical feature of such systems would be that agents may have to explicitly
register its interest to enter a society. This request may then either be accepted to rejected by
the institution. If a request to enter a society is accepted, the entering agent is then typically
given a speci�c role that it must �act as� during its visit to the society (possibly the agent
may also be given many di�erent roles during its visit). A role may be speci�ed by a set of
obligations and commitments towards the other agents and the institutions in the society. As
an example an agent may be given the role as bidder in an Internet auction. As long as the
agent has the role as bidder, to may only be allowed to buy goods, i.e. to make bids and
pay for goods. Acting as auctioneer by starting is own auction would be a violation of the
rules that govern the society (and consequently the criminal agent may be excluded from the
the society). Compared to open MAS, semi-open MAS imposes some social abilities to its
members, i.e. the ability to take on di�erent social roles and engage in social obligations,
commitments and contracts. Compared to closed MAS, semi-open MAS seems to us to be a
more interesting challenge.
Figure A.1 tries to illustrate the collection of closed, open and semi-open MAS. Overlapping
rectangles means that the societies are connected, e.g. agents from S1 may enter S4. Agent
from S4 may possible access S5, depending on the institutions that regulates S5. Societies
may also be fully embedded (nested) inside each other, e.g. S3 inside S1. If agent in S5 wants
to access the open society S3 is should be permitted by the S1 institutions to enter S1 �rst.
The entire system MAS may itself be considered as be an open society, S0.

Scale: The scale (size) of the MAS is another important characteristics of MAS. The larger scale
the larger the complexity gets, i.e. a society composed of two agents is less complex to predict
and regulate, then a MAS consisting of hundreds of agents. When dealing with large scale
systems of interacting agents, the need to enforce social regulations is increased. This is a well-
known fact from the human society. Two interacting humans do not need social structures
such as roles, institutions, lows, etc., in order to ensure social stability; a small community
does. In the development of large MAS the institutions of human society may therefore, when
necessary, be used as a model3. Some concepts taken from human society has already proven
to be useful, e.g. abstractions such as auction, negotiation, commitment, obligation, role, etc.
This is actually equivalent to the use of intentional notions in mentalistic agency, e.g. belief,
desire, intention, goal, etc. They can be called abstraction tools when developing complex
software systems.

Dynamics: This characteristic is concerned with the static and dynamic behavior of MAS. The
dynamic behavior of MAS is determined by a number of parameters:

2In fact even in closed multiagent systems the OSI model may used.
3This does not mean that every aspect in the human society is applicable in the development of MAS, e.g. laws

for unemployed agents may not be applicable!
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S7
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Figure A.1: Illustration of the topological structure of Multiagent Societies. The �gure illustrates
seven societies, S1 to S7. Dashed rectangles indicates semi-open societies, S1, S2, S5 and S7. Dotted
rectangles indicates open societies, S0, S3 and S4. Lined rectangles indicates closed societies, S6.
In section A.3 we will show how to represent this structure as a simple graph structure.

• Is the number of agents �xed or can it be changed dynamically ?
• The the role of the participating agent �xed, e.g. being a bidder or an auctioneer, or can

they take di�erent roles in the society ?
• Can new societies be added dynamically, e.g. a new auction house ?
• Etc.

Closed societies typically characterized by being inherently static and semi-open societies are
more dynamic.

Heterogeneity: The characteristic is concerned with how much the MAS restricts the internal
design, con�guration and construction of their member agents. A MAS with low heterogeneity
is composed of agents with identical architecture, e.g. a special kind of BDI architecture.
Typically they have also been implemented using the same programming language, e.g. Java.
A MAS with high heterogeneity is composed of agents with dissimilar and diverse (unique)
architectures, e.g. Agent0 -based [46], MetateM -based [16, 34, 17], Multi-Context-based [42],
Java-based, etc. Heterogeneous MAS do not restrict the internal architecture of their member
agents � only their externally visible interfaces, i.e. their communication language.
The OSI reference model is an example of a heterogeneous system. The Internet consists of a
larger number of interacting programs implemented using a wide range of di�erent program
paradigms and architectures.
It is quite obvious that the degree of heterogeneity in MAS is closely related to the accessibility
(openness) of the system. Closed MAS is typically characterized by being homogeneous, i.e.
with a low degree of heterogeneity. Open and semi-open MAS is by de�nition heterogeneous.

Interactions: This characteristic is concerned with the kind of interactions that takes place in the
MAS. Interactions can be characterized in many ways: Simple or complex, competitive or
cooperative, autonomous or benevolent. The type of interaction depends on problem-domain
of the MAS:
• In simple interactions, only one type of interaction is needed, e.g. a simple request-reply

interaction protocol. This kind of interaction is typical in closed, small-scaled, static and
homogeneous MAS, e.g. a simple information retrieval agent

• Complex interactions are needed when the domain requires the use of multiple interaction
protocols and mechanisms, e.g. auction, negotiation, contract-net protocols, etc. This
kind of interaction is typical in open/semi-open, large-scaled, dynamic and heterogeneous
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MAS, e.g. in E-Commerce and/or Logistics societies.
• Competitive interactions are typically employed in marked/business-oriented application

domains, e.g. in E-Commerce, composed of self-interested agents, i.e. agents representing
di�erent parties (e.g. buyers and sellers that do not share any interests). These interac-
tions may include auction and negotiation, i.e. di�erent kinds of bargaining with the aim
of optimizing personal desires (without necessaryly considering the global consequences
and interests). This kind of interaction is typical in open/semi-open and heterogeneous
MAS.

• Cooperative interactions is employed in domains where agents share a set of interests
and work cooperatively towards some goal, e.g. in distributed problem solving4. This
kind of interaction may both be applicable in closed and open/semi-open MAS, e.g.
in a E-Commerce domain, a set of seller agents may be working cooperatively towards
maximizing the total sale of the company they represent.

• The autonomous aspect of interaction is concerned with degree of autonomous behavior
that the interacting agents have. It is obvious that the higher degree of autonomous
behavior (freedom), the more non-deterministic the interactions (and the system) gets.
The autonomous aspect is usually regarded has the most important characteristic of
agents, i.e. the characteristic that distinguish agents from traditional programs. The
degree of autonomous behavior depends of the domain of MAS. In some domains a
high degree of autonomous behavior is applicable, e.g. in some E-Commerce trading
scenarios. In other domains a more deterministic (predictable) behavior is expected,
e.g. in a power plant control system or a freight transport logistics system. In some
domains any autonomous behavior may not be applicable at all, due to security issues,
e.g. in aircraft control systems (Naturally such system already inhabit some degree of
autonomous behavior: The human pilots, the (software controlled) auto pilots (agents),
etc.).
The degree of interaction autonomy is closely related to some of the other characteristics
of MAS. Open MAS is obviously characterized by a high degree of autonomy. In semi-
open MAS the degree of autonomy is constrained by the institutional rules of regulations,
i.e. roles, norms, obligations, etc. In closed MAS the degree of autonomy depends on
the application domain, but typically the degree of autonomy is lower then in open and
semi-open MAS.

• Benevolent interaction is characterized by a low degree of autonomy. A benevolent agent
always does, or tries to do, what it is asked, i.e. the behavioral patterns of interaction
is deterministic. Benevolent is a typically property of traditional programs, e.g. a co�ee
auto-mat usually do not prohibit certain users from getting co�ee (if they are willing to
pay the correct amount of money). In open MAS no degree of benevolent behavior can
be expected. In semi-open MAS some degree of benevolent is ensured by institutional
rules and regulations. In closed MAS the degree of benevolent depends of the application
domain.

Communications: This characteristic is concerned with the type of communication used in MAS.
The type of communication has several aspects:
• Physical Medium: The aspect concerns the kind of underlying communication medium

which is used. The medium most provide some basic facilities for transporting �commu-
nication signals� between the interacting agents. These signals must then be correctly
interpreted by the communicating agents. A wide range of mediums can be imagined to
support communication in MAS, e.g.:
� Electromagnetic signals (photons): This kind of medium includes both wire-carried

signals and air-carried light-signal (perceived optically by eyes or video cameras).
� Sound: These kind of signals are transferred by air pressure.
� Physical collisions: This kind of signal is based on physical movements, i.e. the

4This was originally one of the main applications areas for DAI systems. Later much focus has been put one
competitive interactions, partly because of the employment of MAS in marked-oriented domains such as E-Commerce.
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physics of Newton.
The Internet is an example of a wire-carried communication medium. Humans use both
wire-carried, air-carried and sound-carried signals for communication. It is however im-
portant to note the MAS do not necessarily need to use all of the above communication
mediums. A MAS may be based entirely on wire-carried mediums, e.g. the Internet.
Other MAS may be based entirely on a sound-carried medium, e.g. a system of collabo-
rating physical robots.

• Cardinality: This aspect concerns the sender-addressee link [14]. The link may be point-
to-point, multiple-by-role, broadcast, etc.

• Communication Model: The communication model aspect is concerned with the pragmat-
ics of communication, i.e. why and when do communication take place ? Most previous
scienti�c research in communication has been concerned with the �technical� issues of
communication (physics, statistics, etc.), i.e. the methods for ensuring bandwidth, speed,
security, etc. The pragmatic issue of why and when to communicate has been studied by
the human and social (�soft�) sciences, i.e. linguistics, philosophy, sociology, and psychol-
ogy. Speech act theory, developed by Austin and Searle, is a pragmatic model of human
communication that considers speech as action. Speech act theory is often used as basis
for de�ning agent communication language (ACLs), e.g. KQML [31] and FIPA ACL [15].
These ACLs has only been applied to small-scaled and closed MAS. In recent research it
has been argued that these languages are not applicable in open/semi-open, autonomous
and heterogeneous MAS, especially Singh et al. in [51, 53, 61] and Colombetti in [9] 5.
The problem with the KQML and FIPA ACL standards is that their semantics is based
mentalistic (private) model of agency. This mean that these ACL standards constrains the
internal architecture of agents. As described above, open/semi-open and heterogeneous
MAS is based on standards that only addresses the external observable (and veri�able)
interfaces of agents (like the OSI reference model for the Internet). An ACL standard for
open MAS should therefore provide a normative speci�cation in terms of social attributes
and abilities, i.e. roles, obligations, commitments, norms, rules, conventions, etc. The
standard may also include some informative speci�cations of internal agent architectures
that conform with normative speci�cations. One such model may be a BDI architecture
with a corresponding mentalistic ACL semantics. The informative speci�cations should
only be suggestions for architectures, i.e. many di�erent agent architectures may be
developed to comply with the same normative ACL standard.

Environments: This characteristic is concerned with the environment in which the MAS is situ-
ated. Often environments are categorized in two major groups: physical or computational.
Physical environments are typically considered in the case of robotic-like MAS, i.e. agents em-
bedded in some physical environment that is can sense from and react to, through a number
of transducers (sensors) and �reactors�. An example of such a MAS may be a tra�c-controller
system. A number of agents may be measuring the number of cars passing certain bridges
on a number highways near a large city. In the case of tra�c �overload� (jams), these agent
may inform agent located other places about the situation, and these agents may then control
the tra�c di�erently, e.g. by using light-signals di�erently and by changing the speed limit
signs. MAS situated in a physical environment may perceive and control their environment in
several di�erent ways, e.g. by using light, sound, collisions, etc.
Computational environments are typically considered in the case of software agents, i.e. agents
embedded in a software environment like a operating system, e.g. a desktop computer, or a
distributed computer network, e.g. the Internet. An example of such a (imaginative) MAS may
be an electronic auction house system. This system is composed of a number of auctioneers
and bidders. Auctioneer agents represents their legal owners, e.g. �Amazon.com�, �Bol.com
�, �BN.com�, etc., and bidder agents represents their legal owners, i.e. potential customers
wanting to buy particular books. In this kind of environment agent may only perceive their
environment �electronically�, i.e. by receiving and sending messages.

5However, these languages may be applicable in small/medium-scaled and closed MAS.
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Another way of characterizing MAS environments is by considering their attributes, either
�physical� or �computational� [62]:
• Open or closed.
• Deterministic or in-deterministic.
• Discrete or continuous.
• Static or dynamic.
• Etc.

A.3 RSL Formalization
Based on the descriptions in section A.1 we will now try to formalize the concept of MAS. Our aim
is to make an abstract model of MAS that captures the central aspects of MAS. We will not try
to capture every single detail of such systems in the following model � only the essential (basic)
components that make up a proper MAS. The model can then be extended in order to capture more
detail.

A.3.1 A Static State Model

In the following we will give an informal, but rigorous, description of the static components of an
abstract MAS:

• A MAS is composed of a set of societies;
• a society is either open, semi-open, or closed;
• societies has a legal owner;
• societies are connected to a (possible empty) set of other societies;
• a society contains a set of roles (at least one), and
• a (possible empty) set of institutions, and
• a (possible empty) set of agents each assigned to a role;
• a society has a an agent communication language, and
• a (possible empty) set of ontologies;
• each agent belongs to some society and is assigned to a role during its visit in a society;
• each role is associated with a (possible empty) set of commitments (obligations);
• each role is associated with an authority over a (possible empty) set of other roles;
• each institution is associated with a set of norms (conventions) and
• a (possible empty) set of agents.

In the following we formalize the concept of an abstract MAS in RSL. We start by introducing
unique identi�ers6 for the societies, agents, roles, owners and institutions, Sid, Aid, Rid, Oid, and
Iid :

type
Sid, Aid, Rid, Oid, Iid

We de�ne a minimal agent model, a:Agt, just composed of a personal identi�er and an owner
identi�er:

type
Agt = Aid × Oid

A role, Role, is composed of a unique identi�er and a set of commitments, c:Cmt :

type
Role = Rid × Cmt-set
6These identi�ers may correspond to Internet IP addresses, social security numbers, etc.
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Role authority (power) relationship, RAuth:
type

RAuth′ = Rid →m Rid-set,
RAuth = {a:RAuth • is tree(a)}

value
is tree: RAuth′ → Bool

For example, consider the following authority hierarchy:
[police1 7→ {autioneer1,bidder1,bidder2}, auctioneer 7→ {},
bidder1 7→ {...}, bidder2 7→ {} ]

This means that role 'police1' has the authority (power) over the role 'auctioneer1', 'bidder1' and
'bidder2', etc.. Figure A.2 tries to illustrate the hierarchical authority levels in an abstract society
of agents.

Police1

Bidder2Bidder1

Increasing P
ow

er

... ... ...

Auctioneer

Figure A.2: The role authority (power) hierarchical levels. The role names are just examples; many
other role hierarchies exists.

Commitments, c:Cmt, is modeled as a simple tuple consisting of three elements: Creditor a:Aid,
debtor b:Aid and action act:Action, meaning that agent a is committed (obligated) towards agent
b to do the (future) action act.
type

Action,
Cmt = Aid × Aid × Action

An institution, i:Inst, is composed of a unique identi�er, a set of norms, n:Norm and a set of agent
identi�ers.
type

Norm,
Inst = Iid × Norm-set × Aid-set

Institutional authority (power) relationship, IAuth:
type

IAuth′ = Rid →m Rid-set,
IAuth = {a:Auth • is tree(a)}

We will leave the concept of norm as an unspeci�ed sort type for now.

A society, s:Soc, is composed of 8 elements: a system identi�er, a owner identi�er, a set of roles, a
set of institutions, i:Inst, a set of agents, an agent to role mapping, m:M, an access type, Acc, a a
agent communication language, ACL, and a set of ontologies, o:Ont :
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Inst1
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Figure A.3: The institutional authority (power) hierarchical levels.

type
Agt = Aid × Oid,
Role = Rid × Cmt-set,
Inst = Iid × Norm-set × Aid-set,
M = Aid →m Rid,
Acc = Open | SemiOpen | Closed,
Soc = Sid × Oid × Role-set × Inst-set × Agt-set × M × Acc ×

ACL × Ont-set

An abstract MAS, m:aMAS, is de�ned as a set of societies with some topological order, Top:

type
Top = Sid →m Sid-set,
aMAS = Soc-set × Top

The topological order a MAS is modelled as an undirected graf-structure, i.e. as a mapping from
society identi�er to society identi�er. The MAS structure illustrated in Figure A.1 can be represented
by the graph structure as shown in Figure A.4. The formal map representation for the society looks
like this:

[ S0 7→ {S1,S4,S6}, S2 7→ {S1,S3}, S3 7→ {S1,S2},
S4 7→ {S1,S5}, S5 7→ {S4}, S6 7→ {S7}, S7 7→ {S6} ]

S1

S0

S4

S2 S3 S5

S6

S7

Figure A.4: The structure of a MAS from Figure A.1 represented as a undirected graph structure.
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Appendix B

Modal Logics

The following review of propositional, predicate and modal logics (temporal and epistemic) are based
on the following literature: [30], [28], [62], [14], [36] and [29].

Basic Concepts of Logic

The three aspects of a logic language:

1. Well-formed formulas: The correct statements that can be made in a given logic.
2. Proof-theory : The axioms and rules of inference, which state relationships among well-formed

formulas of a given logic. The language and proof-theory are called the syntax.
3. Model-theory: Gives that formal meaning of the well-formed formulas. The model-theory is

also called the semantics of a language. The purpose of the semantics of to relate formulas
to some simpli�ed representation of the reality that interests us. This simpli�ed version of
reality corresponds to the term model. This model is closely related to the formal language
that underlies a given logic. Logic can only handle one kind of meaning: The truth or falsity
of a given formula. Since models are often quite large, we often need to specify a suitable
component of a model with respect to which the truth or falsity of a formula is given. The
term index refers to any such component, e.g.: A piece of the �world�, a spatial location, a
moment or period of time, a potential course of events, etc.
A formula is satis�ed at a model and some index, i� it is given the meaning true there. For a
model M , index i , and formula p, this is written as (M , i) |= p. A formula is valid in a model
M i� it is satis�ed at all indices in the model; this is written as M |= p.

B.1 Propositional Logic

Syntax of the propositional language LProp . A set of atomic propositions Φ is given.

1 Definition Syntax of LProp :
1. φ ∈ Φ implies that φ ∈ LProp
2. p, q ∈ LProp implies that p ∧ q ,¬p ∈ LProp

Semantics of propositional logic. Let M0 =def 〈L〉 be a formal model for LProp , where

• L ⊆ Φ is an interpretation, that identi�es the set of of atomic propositions that are true.
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The meaning of the base case, i.e. atomic propositions, is de�ned in below; the meanings of the
non-atomic propositions formulas are recursively de�ned below.

2 Definition Semantics of LProp :
1. M0 |= φ i� φ ∈ L, where φ ∈ Φ
2. M0 |= p ∧ q i� M0 |= p and M0 |= q
3. M0 |= ¬p i� M0 6|= p

We have the following standard abbreviations, for any p, q ∈ Φ: false ≡ (p ∧ ¬p), true ≡ ¬false,
p ∨ q =def ¬(¬p ∧ ¬q), p ⇒ q =def ¬p ∨ q .

B.2 Predicate Logic

Syntax of the a predicate logic language LPred . First we de�ne the syntax of Terms. In the following
let T be a set of terms over a given alphabet ∆.

3 Definition Syntax of LPred Terms:
1. any constant in ∆ is in T
2. any variable in ∆ is in T
3. if f is an n-ary functor in ∆ and t1, ...tn ∈ T then f (t1, ...tn) ∈ T

The syntax of LPred Formulas:

4 Definition Syntax of LPred :
1. if p is a n-ary predicate symbol ∈ T and t1, ...tn ∈ T then p(t1, ...tn) ∈ LPred
2. F ,G ∈ LPred implies that F ∧G ,¬F ∈ LPred
3. if F ∈ LPred and X is a variable then ∀XF , ∃XF ∈ LPred

B.3 Modal Logic and Possible Worlds Semantics

Syntax of the modal language LM . In modal logic, classical propositional logic LProp is extended
with two modal operators: 3 for possibility and 2 for necessity.

5 Definition Syntax of LM :
1. The rules of LProp
2. p ∈ LM implies that 3p, 2p ∈ LM

Semantics of LM . Let M1 =def 〈W ,L,R〉 be a formal Kripke model for LM , where

• W is a set of possible worlds (or possible states of the world),
• L : W → 2Φ gives the set of formulas true in a world, and
• R ⊆W ×W is an accessibility relation.

In the following we give a small example of a simple possible worlds (Kripke) structure.

Example B.3.1 Figure B.1 shows an example of a Kripke structure. In this example we only have
one atomic proposition, i.e. Φ = {p}. The model M1 =def 〈W ,L,R〉 has three possible worlds:
W = {s, t , u}. Each world is represented by a node (state) in the graph structure. In state s and u
the proposition p is true and in state t it is false, i.e. L(s) = {p},L(t) = {¬p} and L(u) = {p}. The
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propositions are the labels of the graph structure, hence the function name L(abel). The topology of
the graph is created by the accessibility relation, R = {(s, s), (s, t), (s, t), (t , t), (t , s), (t , u), (u, u), (u, s)}.
For each par, e.g. (s, t), the graph contains a edge, e.g. from s to t . The graph also contains self-
loops, e.g. (s, s). As we can see the topology of the graph depends on the algebraic properties of
the accessibility relation R. For example is we assume that R is re�exive, then each node contains
a self-loop. In the following we will look at the di�erent properties of R. End Example

t

s

u

{−p}

{p}

{p}

(t,s),(s,t) (s,u),{u,s}

(s,s)

(u,u)(t,t)
(t,u)

Figure B.1: Example of simple Kripke structure with three possible worlds, s, t and u.

This abstract Kripke structure can be used to represent many di�erent things depending of the
domain of interest. In a temporal (time) interpretation, the worlds in the Kripke model, represent
di�erent states (situation or moments) of time and the accessibility R constrains the graph structure
to be either a sequence of moments (in linear temporal logic) of a branching three of moments (in
branching temporal logic � CTL/CTL∗). We will return to these interpretations in section B.4 and
B.5. The Kripke models may also be used to represent notions such as knowledge, beliefs, desires
and intentions, see section B.6.
The semantics is then de�ned below. The semantics of formulas is given relative to a world
(state/index) w in a model M1. (M1,w) |= φ informally means that a formula is satis�ed in
model M1 in world w , i.e. the formula is true there.

6 Definition Semantics of LM :
1. (M1,w) |= φ i� φ ∈ L(w), where φ ∈ Φ
2. (M1,w) |= p ∧ q i� (M1,w) |= p and (M1,w) |= q
3. (M1,w) |= ¬p i� (M1,w) 6|= p
4. (M1,w) |= 3p i� (∃w ′ : R(w ,w ′) and (M1,w ′) |= p)
5. (M1,w) |= 2p i� (∀w ′ : R(w ,w ′) implies that (M1,w ′) |= p)

First the basic care (M1,w) |= φ for atomic formulas φ ∈ Φ is de�ned, and then the meaning of the
non-atomic formulas is de�ned recursively (like LProp). In the following we will give some concrete
examples of how the semantics should be interpreted.

Example B.3.2 In the following we will refer to the Kripke model in Figure B.1. An atomic
proposition φ is satis�ed in model M2, world w if and only if φ is in L(φ). We therefore have that
(M1, s) |= p and (M1, u) |= p is satis�ed, but (M1, t) |= p is not satis�ed. On the other hand we
have that (M1, t) |= ¬p is satis�ed. We also have that (M1,w) |= p ∨ ¬p for w ∈ {s, t , u}, i.e.
M1 |= p ∨ ¬p. We will now explain the satisfaction of the two modal operators: 3 and 2. 3p is
satis�ed in a model M1 at index w if and only if there exists some world w ′, accessible from w (i.e.
R(w ,w ′)) and p is satis�ed at w ′, i.e. (M1,w ′) |= p. In model M1 of at Figure B.1 we have that
(M1,w) |= 3p is satis�ed in all worlds w ∈ {s, t , u}, since p is true in some world accessible from
these worlds, i.e. M1 |= 3p. 2p is satis�ed in model M1 at world w if and only if for all worlds w ′
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accessible form w (i.e. R(w ,w ′)), p is satis�ed in these worlds. In model M1 of at Figure B.1 we
have that 2p is only satis�ed in world u, i.e. (M1, u) |= 2p, i.e. p is true in all the worlds accessible
from u (which is state s and u).
Let p stand for the assertion �Computer Science is all about Logic�. In world s and u this assertion
is true, but in t it is false. We let 3p be read as �it is possible that p� and 2p as �it is necessary
that p�. In all the worlds it is possible that Computer Science is all about Logic. Only in world t it
is necessary that Computer Science is all about Logic. The intuitive idea is that an agent in world
s or u has access to worlds in which both p and ¬p is possible, and therefore it can not distinguish
whether the actual world is s or u, hence p is only possible true. In t Computer Science is all about
Logic in all worlds, so the agent can consider the fact as necessary true. End Example

As mentioned before the structure of the Kripke model depends on the algebraic properties of the
accessibility relation R. R can have the following properties:

• R is re�exive i� (∀w : (w ,w) ∈ R)
• R is serial i� (∀w : (∃w ′ : (w ,w ′) ∈ R))
• R is transitive i� (∀w1,w2,w3 : (w1,w2) ∈ R and

(w2,w3) ∈ R implies that (w1,w3) ∈ R)
• R is symmetric i� (∀w1,w2 : (w1,w2) ∈ R implies that (w2,w1) ∈ R)
• R is euclidean i� (∀w1,w2,w3 : (w1,w2) ∈ R and

(w1,w3) ∈ R implies that (w2,w3) ∈ R)

From the above properties of R a number of axioms can be derived. This means that the axioms of
the modal logic LM depends on the proporties we decide to inforce on R.

7 Definition Axioms for LM depending on R:
1. 2p ⇒ p (R is refexive)
2. 2p ⇒ 3p (R is serial)
3. 2φ ⇒ 22φ (R is transitive)
4. 3p ⇒ 23p (R is euclidean)

The following axioms are typically named T, D, 4 and 5, respectively. In the following we will
explain how these axioms can be derived from the proporties of R:

1. Consider Figure B.2(a). The structure on this �gure is re�exive, indicated by the self-loops at
each of the nodes. If (M1, s) |= 2p then it follows that (M1, s) |= p and (M1, t) |= p. Hence
(M1, s) |= 2p ⇒ p.

2. It should be quite obvious that if a proposition p is true in all accessible worlds from a
world w (i.e. (M1,w)2p), then there exists a world accessesible from w where p is true (i.e.
(M1,w) |= 3p). This is given when R is serial.

3. Consider Figure B.2(b). The structure on this �gure transitive. This follows from the fact
that {(s, t)} ∈ R and {(t , u), (t , v)} ∈ R implies that {(s, u), (s, v)} ∈ R. If (M1, s) |= 2p
it follows that (M1,w) |= p for w ∈ {t , u, v}. From this it follows that (M1, t) |= 2p, and
therefore we have that (M1, s) |= 22p.

4. Consider Figure B.2(b). Assume that the state v does not exist. The structure on this �gure
is euclidean. If (M1, s) |= 3p we have that (M1, t) |= p or (M1, u) |= p. From this follows that
(M1, s) |= 23p.

Two other properties is forced on us by the possible-worlds approach: The Distribution Axiom and
the Epistemic Necessitation Rule. Rule:

8 Definition Fundamental properties of LM :
1. (2p ∧2(p ⇒ q)) ⇒ 2q
2. if M1 |= p then M1 |= 2p
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Figure B.2: Example of a Kripke structures with di�erent properties: (a) is with refexive and
symmetric, and (b) is transitive and euclidean.

B.4 Linear Temporal Logic

Syntax of a linear-time temporal logic language LL.

9 Definition Syntax of LL:
1. The rules of LProp
2. p, q ∈ LL implies that pUq , Xp, Pp ∈ LL

The operators are called until (U), next (X) and past (P). These temporal operators has the following
(informal) meaning:

• pUq is true at a moment t i� q holds at a future moment on the given path and p holds on
all moments between t and the selected occurance of q .

• Xp means that p holds in the next moment of time.
• Pp means that p held in a past moment of time.

We have the following abbreviations:

• Fp means that p holds sometimes in the future on the given path and abbreviates trueUp.
• Gp means that p always holds in the future on the given path; it abbreviates ¬F¬p.

Formal semantics of LL. The semantics is given with respect to a model M2 =def 〈S ,L,R〉, where
• S is a non-empty denumerable set of states (worlds),
• L : S → 2Φ is a function, assigning to each state s ∈ S the atomic propositions L(s) that are

valid (true) in is s,
• R : S → S is a function, assigning to each state s ∈ S its unique successor state R(s).

For each state s ∈ S , the function R(s) is the unique next state of s. The important characteristic
of the function R is that it acts as a generator function for in�nite sequences of states such as
〈s,R(s),R(R(s)),R(R(R(s))), ...〉. The function L indicates which propositions are valid for any
state in M2. If for a state s we have L(s) = ∅, it means that no propositions is valid in s. The state
for which the propositions p is valid, i.e. p ∈ L(s), is sometimes called the p-state. In the following
we have that R0(s) = s and Rn+1(s) = R(R(s)), for any n ≥ 0..

10 Definition Semantics of LL:
1. (M2, s) |= φ i� φ ∈ L(s)
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2. (M2, s) |= ¬p i� (M2, s) 6|= p
3. (M2, s) |= p ∧ q i� (M2, s) |= p and (M2, s) |= q
4. (M2, s) |= Xp i� (M2,R(s)) |= p
5. (M2, s) |= pUq i� ∃ j : j ≥ 0 and (M2,Rj (s)) |= q and (∀ k : 0 ≤ k < j and (M2,Rk (s)) |= p)
6. (M2, s) |= Fp i� ∃ j : (M2,Rj (s)) |= p
7. (M2, s) |= Gp i� ∀ j : (M2,Rj (s)) |= p

Example B.4.1 Figure B.3 shows an example of how temporal formulas should be interpreted. In
the �rst row the model M2 =def 〈S ,L,R〉 for the example is shown. The model is con�gured as fol-
lows. The model consists of �ve states: S = {s0, s1, s2, s3, s4}. The propositions is assigned to each
state like this: L(s0) = ∅,L(s1) = {q},L(s2) = {q},L(s3) = {p, q},L(s4) = ∅. The propositions are
the labels (L) of the sequence structure. Each state is also assigned to a unique successor state like
this: R(s0) = s1,R(s1) = s2,R(s2) = s3,R(s3) = s4,R(s4) = s4. The function R is denoted by the
arrows of the sequence, i.e. there is an arrow from s to s ′ i� R(s) = s ′. Since R is a total function,
each state has precisely one outgoing edge. In the lower rows the vality of �ve formulas is shown, for
all states in model M2. A moment is colored black if the formula is valid in that state, and colored
white otherwise. The formula pUq is valid in state two, three and four. The formula Xp is valid in
the �rst three states. Etc. Note that p, q ∈ Φ. End Example

{p} {p} {p,q} ØØ

pUq

Xp

Pp

Fp

Gp

1 3Model 0 1 2 3 4

Figure B.3: Example of interpretation of linear temporal formulas.

B.5 Branching Temporal Logic

Syntax of a branching-time temporal logic language LB , based on computation three logic (CTL).

11 Definition Syntax of LB :
1. The rules of LProp
2. p, q ∈ LB implies that EXp,E[pUq ],A[pUq ] ∈ LB

The temporal operators are pronounced for some path next (EX), for some path (E), until (U). The
operators X and U are the linear temporal operators from LL that express a property over a single
path, whereas E expresses a property over some path, and A expresses a property over all paths.
The existential and universal operators E and A can be used in combination with either X or U. We
have the following abbreviations:

• EFp ≡ E[trueUp] ≡ E[Fp], pronounced p holds potentially, i.e. there exists some future state(s)
where p hold sometime;
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• AFp ≡ A[trueUp] ≡ A[Fp], pronounced p is inevitable, i.e. in all (for all) future paths p hold
sometime;

• EGp ≡ ¬AF¬p, pronounced potentially always p, i.e. there exists a future path where p always
hold in the future;

• AGp ≡ ¬EF¬p, pronounced invariantly p, i.e. in all (for all) future paths p always holds in
the future;

• AXp ≡ ¬EX¬p, pronounced for all paths next, i.e. in all (for all) future paths, p will hold that
the next moment of time.

Formal semantics of LB . The semantics is given with respect to a model M3 =def 〈S ,L,R〉, where
• S is a non-empty set of states (worlds),
• L : S → 2Φ is a function, assigning to each state s ∈ S the atomic propositions L(s) that are

valid (true) in is s,
• R ⊆ S × S is a total binary relation on S, which relates to s ∈ S its possible successor state.

M3 is also known as a Kripke structure as introduced in B.3, since Kripke used similar structures
to provide a semantics of modal logic.
The only di�erence between the model M2 for liner temporal logic and the model M3 for branching
time temporal logic is that R is now a total relation rather then a total function. A relation R ⊆ S×S
is total i� it relates to each state s ∈ S at least one successor state, formally: (∀ s : s ∈ S ⇒ (∃ s ′ :
s ′ ∈ S ∧ (s, s ′) ∈ R)).

Example B.5.1 In Figure B.4 an example of a branching temporal logic CTL model, M3 =def
〈S ,L,R〉, is illustrated. Let Φ = {p, q} be a set of atomic propositions, S = {s0, s1, s2, s3}, a set of
states with labelling L(s0) = ∅,L(s1) = {q},L(s2) = {p, q},L(s3) = {p}, and a transition relation
R given by

R = {(s0, s1), (s1, s2), (s1, s3), (s2, s3), (s3, s3), (s3, s2)}.

In Figure B.4 the states s ∈ S are indicated by the nodes of the graph, and the relation R is denoted
by the edges, i.e. there is an edge from s to s ′ i� (s, s ′) ∈ R. The labelling L(s) is indicated beside
the state s. End Example

s0 s1

s2

{Ø}

{p}

{q}

{p,q}

s3

Figure B.4: Example of a branching time temporal model.

Before we give the formal semantic of LB we will �rst de�ne of concepts.

12 Definition Path:
A path is the �nite sequence of state 〈s0, s1, s2, ...〉 such that (si , si+1) ∈ R for all i ≥ 0. In Figure
B.4 we have the following paths: 〈s0, s1, s3, s2...〉, 〈s3, s2, s3, s3, ...〉, etc.
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Let σ ∈ Sω denote a path of states. For any i ≥ 0 we use σ[i ] to denote the (i + 1)-th element of
σ, i.e. σ = 〈s0, s1, s2, ...〉 then σ[i ] = si , where si is a state.

13 Definition Set of paths starting in a state:
The set of paths starting in state s ∈ S of model M3 is de�ned by

PM (s) = {σ ∈ Sω | σ[0] = s}

In Figure B.4 we have the following in�nite set of paths starting at s3 :
P(s3) = {〈s3, s2, s3, ...〉, 〈s3, s3, s3, ...〉, ...}. The graph structure in Figure B.4 can be rewritten into
a in�nite tree structure as shown in Figure B.5. This �gure illustrates all the paths starting of the
root of the tree s0.

s0

s1

s3s2

s3 s2 s2 s3

Figure B.5: The graph in Figure B.4 rewritten into a in�nite three structure.

14 Definition Semantics of LB :

1. (M3, s) |= φ i� φ ∈ L(s)
2. (M3, s) |= ¬p i� (M3, s) 6|= p
3. (M3, s) |= p ∧ q i� (M3, s) |= p and (M2, s) |= q
4. (M3, s) |= EXp i� ∃σ ∈ PM3(s) : (M3, σ[1]) |= p
5. (M3, s) |= E[pUq ] i� ∃σ ∈ PM3(s) : (∃ j : j ≥ 0 ⇒ ((M3, σ[j ]) |= q and

(∀ k : 0 ≤ k < j ⇒ (M3, σ[k ]) |= p)))
6. (M3, s) |= A[pUq ] i� ∀σ ∈ PM3(s) : (∃ j : j ≥ 0 ⇒ ((M3, σ[j ]) |= q and

(∀ k : 0 ≤ k < j ⇒ (M3, σ[k ]) |= p)))

Example B.5.2 The CTL-model of this example is shown at the top of Figure B.6. The model,
M3 =def 〈S ,L,R〉, consists of four states, S = {s0, s1, s2, s3}, each state is assigned to some valid
logic formulas p, q ∈ Φ like this: L(s0) = {p},L(s1) = {p, q},L(s2) = {q},L(s3) = {p}, the states
are connected by the total transition relation R like this:

R = {(s0, s1), (s0, s2), (s1, s0), (s1, s3), (s2, s1), (s3, s3)}

Below the model a number the vality of a number of CTL formulas is shown. If a formula is valid
in a given state, this is indicated by a black colored state, otherwise the state is white.

• EXp is valid in all states, since all states have some direct successor state that satis�es p.
• E[pUq] is valid in state s0, s1, s2, but not s3. In state s3 no paths exists where q is valid.
• A[pUq] is valid state s0, s1, s2, but not s3.
• EFp is valid in all states, since all states has some future path where p sometimes holds.
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• AFp is valid in all states (not shown), i.e. in all states there at all future path p is valid
sometime. AFq is not valid in s3 (not shown).

• EGp is valid in state s0, s1, s3 but not s2 (not shown).
• AGp is only valid in state s3 (not shown).
• AXp is valid in state s1, s2, s3 but not s0 (not shown).

End Example

s2

{q}

{p} {p,q} {p}

s0 s1 s3

Model, M = <S, R, L>

E[pUq]EXp

A[pUq] EFp

Figure B.6: Interpretation of CTL-formulas.

B.6 Epistemic Logic

Syntax of a epistemic language LE . Let A be a set of agent symbols.

15 Definition Syntax of LE :
1. The rules of LProp
2. p ∈ LE and i ∈ A implies that Kip ∈ LE

The semantics of LE is given with respect to a Kripke model for n agents M4 =def 〈S ,L,R1, ...,Rn〉,
where

• S is a non-empty set of states (worlds),
• L : S → 2Φ is a function, assigning to each state s ∈ S the atomic propositions L(s) that are

valid (true) in is s,
• Ri ⊆ S ×S is a total binary relation for agent agent i on S, which relates to s ∈ S its possible

successor states.

Below the formal semantics of LE is de�ned.

16 Definition Semantics of LE :
1. (M4,w) |= φ i� φ ∈ L(w), where φ ∈ Φ
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2. (M4,w) |= p ∧ q i� (M4,w) |= p and (M4,w) |= q
3. (M4,w) |= ¬p i� (M4,w) 6|= p
4. (M4,w) |= Kip i� (∀w ′ : Ri(w ,w ′) implies that (M4,w ′) |= p)

To de�ne the epistemic properties of knowledge a number of axioms (A1 to A5) and inference rules
(R1 and R2) can be de�ned:

17 Definition Knowledge Axioms and Rules
For all formulas φ, ψ ∈ Φ, all structures M , and all agents i = 1, ...,n,
A1. the tautologies of proposition calculus
A2. |= (Kiφ ∧Ki(φ ⇒ ψ)) ⇒ Kiψ 1 (Distribution Axiom)
A3. |= Kiφ ⇒ φ (Knowledge Axiom)
A4. |= Kiφ ⇒ KiKiφ (Positive Introspection Axiom)
A5. |= ¬Kiφ ⇒ Ki¬Kiφ (Negative Introspection Axiom)
R1. if |= φ and |= φ ⇒ ψ then |= ψ (Modus Ponens)
R2. if |= φ then |= Kiφ (Knowledge Generalization)

In modal logic, LM , the axiom A2 is called K, A3 is called T, A4 is called 4 and A5 is called
5. Historically these axioms and rules has been combined by philosophers and logicians in many
di�erent ways, to de�ne a systems that captures the properties knowledge in the most precise and
correct way. The three most popular (sound and complete) knowledge axiom systems is shown in
the below table.

System Name Axioms and Rules
K A1, A2, R1, R1
KD45 A1, A2, A4, A5, R1, R1
S5 A1, A2, A3, A4, A5, R1, R1

We will now discuss these properties in more detail.
The axiom A2 is called the Distribution Axiom since it allows us to distribute the Ki operator over
implication. This axioms means that each agent know all the logical consequences of his knowledge.
It seems to suggest that agents are quite powerful reasoners.
The axiom A3 is called the Knowledge Axiom or the Truth Axiom, means that if an agent knows a
fact, then the fact is true. This property is often taken to be the major one distinguishing knowledge
from beliefs. This property follows because the actual world is always one of the worlds that an
agent considers possible. If Kiφ holds at a particular world (state) (M , s), then φ is true in all
worlds that agent i considers possible (has access to), so φ is true at (M , s).
The axiom A4 and A5 suggests that an agent can perform Positive- and Negative Introspection. If
an agent knows something, then it knows that it knows it. If there is something that an agent does
not know, then the agent knows that it does not know it.
The inference rule R2 is called the Knowledge Generalization Rule. If φ is true at all possible worlds
of structure M , then φ must be true at all the worlds that an agent considers possible in any given
world in M , so it must be the case that Kiφ is true all all possible worlds of M . From this we can
deduce that if φ is valid (M |= φ) then so is Kiφ (M |= Kiφ).
In the below table we show the correspondence between the axioms A3, A4 and A5 and the properties
of the accessibly relation.

Axiom Property of Ri
A3 (Knowledge Axiom) Re�exive
A4 (Positive Introspection Axiom) Transitive
A5 (Negative Introspection Axiom) Euclidean

1(Or Ki (φ ⇒ ψ) ⇒ (Kiφ ⇒ ψ))
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Two of the properties is forced on us by the possible-worlds approach itself: The Distribution
Axiom (A1) and the Knowledge Generalization Rule (R2). All the other properties can be avoided
by changing the algebraic properties of the accessibility relation Ri appropriately. No matter how we
change the properties of Ri A1 and R2 hold. These two rules implies that agents are very powerful
reasoners, since they know all consequences of their knowledge. This means that agents are perfect
reasoners, i.e. agents are described as logically omniscient. Informally speaking it means that if an
agent knows certain facts and if certain conditions holds, then the agent must also know some other
facts. For resource-bounded agents this property may not be realistic.

Example B.6.1 In this example ([30]) we have a set of primitive propositions Φ = {p}, two agents,
i.e. n = 2, a model M4 = 〈S ,L,R1,R2〉, where S = {s, t , u}, p is true in state s and u but false in
t , i.e. L(s) = p,L(t) = ¬p,L(u) = p, and the accessibility relation for the two agents is de�ned like
this:

R1 = {(s, t), (t , s)},
R2 = {(s, u), (u, s)}.

The model is illustrated in Figure B.7. We assume a S5 axiom system.

t

s

u

{−p}

{p}

{p}

1 2

Figure B.7: A Kripke Model.
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Appendix C

Social Level One Speci�cation

C.1 Time

[T ]

zero : T ;
now : T ;
inf : T
lt(zero, inf ) ∧ geq(now , zero) ∧ leq(now , inf )

gt : T × T → B;
geq : T × T → B;
lt : T × T → B;
leq : T × T → B;
plus : T × T → T ;
minus : T × T → T

TP ′ ::= null | interval〈〈T × T 〉〉

TP == {tp : TP ′ | wf TP(tp)}

wf TP : TP ′ → B

∀ t1, t2 : T ; b : B •
wf TP(null) ⇔ true ∨
wf TP(interval(t1, t2)) = leq(t1, t2)

C.2 Abstract Syntax of Speech Acts

SAct ′ ::= ass〈〈AId ×AId × Bel × Ref 〉〉
| dir〈〈Strength ×AId ×AId × Cond ×Action × Ref 〉〉
| com〈〈Strength ×AId ×AId × Cond ×Action × Ref 〉〉
| retract〈〈AId ×AId × Cond ×Action × Ref 〉〉
| cancel〈〈AId ×AId × Cond ×Action × Ref 〉〉
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[AId ]

Cond == Action

Strength ::= soft | hard

[RefId ]

Ref ::= old〈〈RefId〉〉 | new〈〈RefId〉〉

SAct == {sa : SAct ′ | wf SAct(sa)}

wf SAct : SAct ′ → B

∀ i , j : AId ; p : Bel ; r : Ref ; s : Strength; c : Cond ; a : Action •
wf SAct(ass(i , j , p, r)) ⇔ true ∨
wf SAct(dir(s, i , j , c, a, r)) = concern(j , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(com(s, i , j , c, a, r)) = concern(i , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(retract(i , j , c, a, r)) = concern(j , a) ∧ future ref (c) ∧ future ref (a) ∨
wf SAct(cancel(i , j , c, a, r)) = concern(i , a) ∧ future ref (c) ∧ future ref (a)

concern : AId ×Action 7→ B

∀ aid , i , j : AId ; p : Bel ; ref : Ref ; str : Strength; c : Cond ;
a, a1, a2 : Action; t1, t2 : T ; tp : TP •

concern(aid , act(dir(str , i , j , c, a, ref ), tp)) ⇔ (aid = i) ∨
concern(aid , act(com(str , i , j , c, a, ref ), tp)) ⇔ (aid = i) ∨
concern(aid , act(retract(i , j , c, a, ref ), tp)) ⇔ (aid = i) ∨
concern(aid , act(cancel(i , j , c, a, ref ), tp)) ⇔ (aid = i) ∨
concern(aid , or(a1, a2)) = concern(aid , a1) ∧ concern(aid , a2) ∨
concern(aid , and(a1, a2)) = concern(aid , a1) ∧ concern(aid , a2)

C.2.1 Auxiliary Functions

strength : SAct → Strength;
speaker : SAct → AId ;
hearer : SAct → AId ;
condition : SAct → Cond ;
proposition : SAct → Bel ;
action : SAct → Action;
ref : SAct → Ref ;
time : SAct → T

C.3 Actions

Action ::= noact
| act〈〈SAct ′ × TP〉〉
| or〈〈Action ×Action〉〉
| and〈〈Action ×Action〉〉
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dt : T
gt(dt , zero)

Action == {a : Action ′ | wf Action(a)}

future act : T × T ×Action → B

∀ i , j : AId ; p : Bel ; r : Ref ; str : Strength; c : Cond ;
a, a1, a2 : Action; t , t1, t2, dt : T •

future act(t , dt ,noact) ⇔ true ∨
future act(t , dt , act(ass(i , j , p, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(dir(str , i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(com(str , i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(cancel(i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , act(retract(i , j , c, a, r), interval(t1, t2))) = geq(t1, plus(t , dt)) ∨
future act(t , dt , or(a1, a2)) ⇔ (future act(t , dt , a1) ∧ future act(t , dt , a2)) ∨
future act(t , dt , and(a1, a2)) ⇔ (future act(t , dt , a1) ∧ future act(t , dt , a2))

future ref : Action → B

∀ i , j : AId ; p : Bel ; r : Ref ; s : Strength; c : Cond ;
a, a1, a2 : Action; t1, t2 : T •

future ref (noact) ⇔ true ∨
future ref (act(ass(i , j , p, r), interval(t1, t2))) ⇔ true ∨
future ref (act(dir(s, i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(com(s, i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(cancel(i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (act(retract(i , j , c, a, r), interval(t1, t2))) =

future act(t2, dt , c) ∧ future act(t2, dt , a) ∨
future ref (or(a1, a2)) = future ref (a1) ∧ future ref (a2) ∨
future ref (and(a1, a2)) = future ref (a1) ∧ future ref (a2)

C.4 Context

Context ′ ::= context〈〈CId × PObl × BM 〉〉

BM == AId 7→ PBel

[CId ]

CSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cnt : Context •
CSActE (t , sact)(cnt) =

(let cnt ′ == COSActE (t , sact)(cnt) •
(let cnt ′′ == CBSActE (sact)(cnt ′) •
cnt ′′))
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Context == {cnt : Context ′ | wf C (cnt)}

wf C : Context ′ → B

∀ i , j : AId ; o, o1, o2 : Obl ; as : PAId ; obls : PObl ;
cid : CId ; bm : BM | o1 6= o2 •
wf C (context(cid , obls, bm)) ⇔

(o ∈ obls ∧ i = getdebtor(o) ∧ j = getcreditor(o) ⇒ [1]
i ∈ dom bm ∧
j ∈ dom bm) ∧

(o1 ∈ obls ∧ o2 ∈ obls) ⇒ [2]
getreferenceid(o1) 6= getreferenceid(o2)

C.5 Obligation

Obl ′ ::= obl〈〈AId ×AId × Cond × Cond ×Action ×Action ×OS × RefId〉〉

OS ::= debtor partial | debtor cond partial | creditor partial |
creditor cond partial | complete | ful�lled | violated |
expired | retracted | cancelled | conditional

Obl == {o : Obl ′ | wf Obl(o)}

wf Obl : Obl ′ → B

∀ i , j : AId ; r : RefId ; c, cc : Cond ; a, ac : Action; os : OS •
wf Obl(obl(i , j , c, cc, a, ac, os, r)) ⇔
concern(i , a) ∧ [1]
reducible(c, cc) ∧ reducible(a, ac) [2 and 3]

reduce : seq(T × SAct)×Action 7→ Action
∀ a, ac : Action; t : T ; sact : SAct ; s : seq(T × SAct) •
reduce(〈〉, ac) = ac ∨
reduce(〈(t , sact)〉a s, ac) =

(let ac′ == reduce act(t , sact , ac) •
reduce(s, ac′))

C.5.1 Time Events

timeout : Action × T 7→ B

∀ t , t1, t2 : T ; sa : SAct ; a1, a2 : Action •
timeout((noact), t) ⇔ false ∨
timeout(act(sa, interval(t1, t2)), t) ⇔ gt(t , t2) ∨
timeout(or(a1, a2), t) ⇔ timeout(a1, t) ∧ timeout(a2, t) ∨
timeout(and(a1, a2), t) ⇔ timeout(a1, t) ∨ timeout(a2, t)
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OTmE : T ×Obl 7→ Obl
∀ i , j : AId ; t : T ; ref : RefId ; c, cc : Cond ; a, ac : Action; os : OS ; oout : Obl •
OTmE (t , obl(i , j , c, cc, a, ac, os, ref )) = oout ⇔

is partial(os) ⇒ ( [1,2 � Time]
(timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, expired , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref ))) ∨

(is cond partial(os) ∨ is conditional(os)) ⇒ ( [3,4,5 � Time]
(timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, expired , ref )) ∨
(¬ timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref ))) ∨

is complete(os) ⇒ ( [6 � Time]
(timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, violated , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, complete, ref ))) ∨

is �nal(os) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref )

COTmE : T 7→ Context 7→ Context
∀ t : T ; obls : PObl ; cid : CId ; bm : BM •
COTmE (t)(context(cid , obls, bm)) =

(let obls ′ == {o : obls • OTmE (t , o)} •
context(cid , obls ′, bm))

C.5.2 Speech Act Events

COSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sa : SAct ; cnt : Context •
COSActE (t , sa)(cnt) =

(let cnt ′ == COTmE (t)(cnt) •
(let cnt ′′ == complete obl(t , sa)(cnt ′) •
(let cnt ′′′ == ful�lled obl(t , sa)(cnt ′′) •
(let cnt ′′′′ == sact event(sa)(cnt ′′′) • cnt ′′′′))))

cmpl : T × SAct ×Obl 7→ Obl
∀ i , j : AId ; t : T ; sact : SAct ; ref : RefId ; c′, c, cc : Cond ;
a, ac : Action; os : OS ; oout : Obl •
cmpl(t , sact , obl(i , j , c, cc, a, ac, os, ref )) = oout ⇔

is conditional(os) ⇒ (
(let c′ == reduce act(t , sact , c) •
(no act(c′) ⇒ oout = obl(i , j ,noact , cc, a, ac, complete, ref )) ∨
(¬ no act(c′) ⇒ oout = obl(i , j , c′, cc, a, ac, os, ref )))) ∨

¬ is conditional(os) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref )

complete obl : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
complete obl(t , sact)(context(cid , obls, bm)) =

(let obls ′ == {o : obls • cmpl(t , sact , o)} • context(cid , obls ′, bm))

no act : Action → B

∀ a : Action • no act(a) ⇔ (a = noact)
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� : (T × SAct ×Obl) 7→ Obl
∀ i , j : AId ; t : T ; sact : SAct ; ref : RefId ; c, cc : Cond ;
a ′, a, ac : Action; os : OS ; oout : Obl •
� (t , sact , obl(i , j , c, cc, a, ac, os, ref )) = oout ⇔

is complete(os) ⇒ (
(let a ′ == reduce act(t , sact , a) •
(no act(a ′) ⇒ oout = obl(i , j ,noact , cc,noact , ac, ful�lled , ref )) ∨
(¬ no act(a ′) ⇒ oout = obl(i , j ,noact , cc, a ′, ac, os, ref )))) ∨

¬ is complete(os) ⇒ oout = obl(i , j , c, cc, a, ac, os, ref )

ful�lled obl : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
ful�lled obl(t , sact)(context(cid , obls, bm)) =

(let obls ′ == {o : obls • � (t , sact , o)} • context(cid , obls ′, bm))

sact event : SAct 7→ Context 7→ Context
∀ sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
sact event(sact)(context(cid , obls, bm)) =

(let obls ′ == event(sact)(obls) • context(cid , obls ′, bm))
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event : SAct 7→ PObl 7→ PObl
∀ i , j : AId ; p : Bel ; obls : PObl ; t : T ; ref : Ref ; r : RefId ; c, cc :
Cond ; a, ac : Action; obls ′ : PObl •
event(ass(i , j , p, ref ))(obls) = obls ′ ⇔ obls ′ = obls ∨
event(dir(soft , i , j , c, a,new(r)))(obls) = obls ∨ [5,6 � Init]
(¬ is cond(c) ⇒ obls ′ =
create(obl(j , i ,noact ,noact , a, a, creditor partial , r), obls)) ∨
(is cond(c) ⇒ obls ′ =
create(obl(j , i , c, c, a, a, creditor cond partial , r), obls)) ∨
event(dir(soft , i , j , c, a, old(r)))(obls) = obls ∨ [n.a.]
event(dir(hard , i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(dir(hard , i , j , c, a, old(r)))(obls) = obls ′ ⇔ [9,11 � Ref]
(¬ is cond(c) ⇒
obls ′ = change state(complete, obl(j , i ,noact ,noact , a, a, debtor partial , r), obls)) ∨
(is cond(c) ⇒
obls ′ = change state(conditional , obl(j , i , c, c, a, ac, debtor cond partial , r), obls)) ∨
event(com(soft , i , j , c, a,new(r)))(obls) = obls ′ ⇔ [3,4 � Init]
(¬ is cond(c) ⇒ obls ′ = create(obl(i , j ,noact ,noact , a, a, debtor partial , r), obls)) ∨
(is cond(c) ⇒ obls ′ = create(obl(i , j , c, c, a, a, debtor cond partial , r), obls)) ∨
event(com(soft , i , j , c, a, old(r)))(obls) = obls ∨ [n.a.]
event(com(hard , i , j , c, a,new(r)))(obls) = obls ′ ⇔ [1,2 � Init]
(¬ is cond(c) ⇒ obls ′ = create(obl(i , j ,noact ,noact , a, a, complete, r), obls)) ∨
(is cond(c) ⇒ obls ′ = create(obl(i , j , c, c, a, a, conditional , r), obls)) ∨
event(com(hard , i , j , c, a, old(r)))(obls) = obls ′ ⇔ [10,12 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(complete, obl(j , i ,noact ,noact , a, a, creditor partial , r), obls) •
(let obls2 == change state(complete, obl(j , i ,noact ,noact , a, a, debtor partial , r), obls1) •
obls ′ = obls2))) ∨ (is cond(c) ⇒
(let obls1 == change state(conditional , obl(j , i , c, c, a, a, creditor cond partial , r), obls) •
(let obls2 == change state(conditional , obl(j , i , c, c, a, a, debtor cond partial , r), obls1) •
obls ′ = obls2))) ∨
event(retract(i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(retract(i , j , c, a, old(r)))(obls) = obls ′ ⇔ [5,6,7,8 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(retracted , obl(j , i ,noact ,noact , a, a, creditor partial , r), obls) •
obls ′ = obls1)) ∨ (is cond(c) ⇒
(let obls1 == change state(retracted , obl(j , i , c, c, a, a, creditor cond partial , r), obls) •
obls ′ = obls1)) ∨
event(cancel(i , j , c, a,new(r)))(obls) = obls ∨ [n.a.]
event(cancel(i , j , c, a, old(r)))(obls) = obls ′ ⇔ [1,2,3,4 � Ref]
(¬ is cond(c) ⇒
(let obls1 == change state(cancelled , obl(j , i ,noact ,noact , a, a, debtor partial , r), obls) •
obls ′ = obls1)) ∨ (is cond(c) ⇒
(let obls1 == change state(cancelled , obl(j , i , c, c, a, a, debtor cond partial , r), obls) •
obls ′ = obls1))

is cond : Cond → B

∀ c : Cond • is cond(c) ⇔ c 6= noact
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create : Obl × PObl → PObl
∀ o : Obl ; obls, obls ′ : PObl •
create(o, obls) = obls ′ ⇔

(o ∈ obls ⇒ obls ′ = obls) ∨
(o 6∈ obls ⇒ obls ′ = ({o} ∪ obls))

change state : OS ×Obl × PObl 7→ PObl
∀ i , j : AId ; t : T ; ref : RefId ; c, cc : Cond ; a, ac : Action; os ′, os : OS ;
obls, obls ′ : PObl •
change state(os ′, obl(i , j , c, cc, a, ac, os, ref ), obls) = obls ′ ⇔

(is partial(os) ∨ is cond partial(os)) ⇒ (
(obl(i , j , c, cc, a, ac, os, ref ) ∈ obls) ⇒ (

obls ′ = (obls \ {obl(i , j , c, cc, a, ac, os, ref )})
∪{obl(i , j , c, cc, a, ac, os ′, ref )}) ∨

¬ (obl(i , j , c, cc, a, ac, os, ref ) 6∈ obls) ⇒ obls ′ = obls) ∨
¬ (is partial(os) ∨ is cond partial(os)) ⇒ obls ′ = obls

C.5.3 Ful�lling Obligations

reduce act : T × SAct ×Action 7→ Action
∀ t : T ; tp : TP ; sact , sact ′ : SAct ; a1, a2, a1′, a2′, aout : Action •
reduce act(t , sact ,noact) = noact ∨
reduce act(t , sact , act(sact ′, tp)) = aout ⇔

(((compare acts(sact , sact ′) ∧ check time(tp, t)) ⇒ aout = noact) ∨
((¬ compare acts(sact , sact ′) ∨ ¬ check time(tp, t)) ⇒ aout = act(sact ′, tp))) ∨

reduce act(t , sact , or(a1, a2)) = aout ⇔
(let a1′ == reduce act(t , sact , a1) •
(let a2′ == reduce act(t , sact , a2) •
((no act(a1′) ∨ no act(a2′) ⇒ aout = noact) ∨
((¬ no act(a1′) ∧ ¬ no act(a2′)) ⇒ aout = or(a1′, a2′))))) ∨

reduce act(t , sact , and(a1, a2)) = aout ⇔
(let a1′ == reduce act(t , sact , a1) •
(let a2′ == reduce act(t , sact , a2) •
(no act(a1′) ⇒ (

(no act(a2′) ⇒ aout = noact) ∨
(¬ no act(a2′) ⇒ aout = a2′))) ∨

(¬ no act(a1′) ⇒ (
(no act(a2′) ⇒ aout = a1′ ∨
¬ no act(a2′) ⇒ aout = and(a1′, a2′))))))

check time : TP × T 7→ B

∀ t , t1, t2 : T •
check time(null , t) ⇔ true ∨
check time(interval(t1, t2), t) ⇔ (geq(t , t1) ∧ leq(t , t2))

compare ip : SAct × SAct → B
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compare acts : SAct × SAct → B

∀ act1, act2 : SAct •
compare acts(act1, act2) ⇔

(compare ip(act1, act2) ⇒ cmp(act1, act2)) ∨
(¬ compare ip(act1, act2) ⇒ cmp(act1, act2))

cmp : SAct × SAct 7→ B

∀ i , i ′, j ′, j : AId ; p, p′ : Bel ; r , r ′ : Ref ; str , str ′ : Strength;
c, c′ : Cond ; a, a ′ : Action •

cmp(ass(i , j , p, r), ass(i ′, j ′, p′, r ′)) ⇔
(i ′ = i ∧ j ′ = j ∧ p′ = p ∧ r ′ = r) ∨

cmp(dir(str , i , j , c, a, r), dir(str ′, i ′, j ′, c′, a ′, r ′)) ⇔
(str ′ = str ∧ i ′ = i ∧ j ′ = j ∧ c′ = c ∧ a ′ = a ∧ r ′ = r) ∨

cmp(com(str , i , j , c, a, r), com(str ′, i ′, j ′, c′, a ′, r ′)) ⇔
(str ′ = str ∧ i ′ = i ∧ j ′ = j ∧ c′ = c ∧ a ′ = a ∧ r ′ = r) ∨

cmp(retract(i , j , c, a, r), retract(i ′, j ′, c′, a ′, r ′)) ⇔
(i ′ = i ∧ j ′ = j ∧ c′ = c ∧ a ′ = a ∧ r ′ = r) ∨

cmp(cancel(i , j , c, a, r), cancel(i ′, j ′, c′, a ′, r ′)) ⇔
(i ′ = i ∧ j ′ = j ∧ c′ = c ∧ a ′ = a ∧ r ′ = r)

C.5.4 Auxiliary Functions

getdebtor : Obl → AId ;
getcreditor : Obl → AId ;
getcondition : Obl → Cond ;
getaction : Obl → Action;
getstate : Obl → OS ;
getreferenceid : Obl → Ref

is cond partial : OS → B;
is partial : OS → B;
is complete : OS → B;
is conditional : OS → B;
is �nal : OS → B

∀ os : OS •
is cond partial(os) ⇔ os ∈ {creditor cond partial , debtor cond partial} ∨
is partial(os) ⇔ os ∈ {creditor partial , debtor partial} ∨
is complete(os) ⇔ os = complete ∨
is conditional(os) ⇔ os = conditional ∨
is �nal(os) ⇔ os ∈ {expired , retracted , cancelled , ful�lled , violated}

C.6 Belief

[Const ,Var ,FuncSyn]

FOTerm ::= const〈〈Const〉〉
| var〈〈Var〉〉
| functor〈〈FuncSym × seqFOTerm〉〉
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[PredSym]

Atom ::= atom〈〈PredSym × seqFOTerm〉〉

Bel ::= pos〈〈Atom〉〉
| not〈〈Atom〉〉
| and〈〈Bel × Bel〉〉
| imply〈〈Bel × Bel〉〉
| false
| true

BSActE : SAct 7→ BM 7→ BM
∀ i , j : AId ; p : Bel ; r : Ref ; str : Strength; c : Cond ; a : Action; bm, bmo : BM •
BSActE (ass(i , j , p, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(ass(i , j , p, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(ass(i , j , p, r))), bm ′(j )))) •
(let bm ′′′ == †(bm ′′, belmap(i , brf (p, bm ′′(i)))) • bm ′′′))) ∨
BSActE (dir(str , i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(dir(str , i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(dir(str , i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (com(str , i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(com(str , i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(com(str , i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (retract(i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(retract(i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(retract(i , j , c, a, r))), bm ′(j )))) • bm ′′)) ∨
BSActE (cancel(i , j , c, a, r))(bm) =
(let bm ′ == †(bm, belmap(i , brf (pos(toatom(cancel(i , j , c, a, r))), bm(i)))) •
(let bm ′′ == †(bm ′, belmap(j , brf (pos(toatom(cancel(i , j , c, a, r))), bm ′(j )))) • bm ′′))

toatom : SAct → Atom

brf : Bel × PBel → PBel

† : BM × BM → BM

belmap : AId × PBel → BM

CBSActE : SAct 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; bm : BM •
CBSActE (sact)(context(cid , obls, bm)) =

(let bm ′ == BSActE (sact)(bm) •
context(cid , obls, bm ′))

C.7 Agent Architecture
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speak : (T ×Agent) 7→ (seqSAct ×Agent)
∀ t : T ; i : AId ; cnt : Context ; sacts ′ : seqSAct ; agt ′ : Agent •
speak(t , agent(i , cnt)) = (sacts ′, agt ′) ⇔

(let sacts == select sacts(t , agent(i , cnt)) •
(sacts = 〈 〉 ⇒ (sacts ′ = 〈 〉 ∧ agt ′ = agent(i , cnt))) ∨
(sacts 6= 〈 〉 ⇒

(let agt == update context(t , sacts)(agent(i , cnt)) •
sacts ′ = sacts ∧ agt ′ = agt)))

update context : (T × seqSAct) 7→ Agent 7→ Agent
∀ t : T ; sacts : seqSAct ; i : AId ; cnt : Context ; agt ′ : Agent •
update context(t , sacts)(agent(i , cnt)) = agt ′ ⇔

(sacts = 〈 〉 ⇒ agt ′ = agent(i , cnt)) ∨
(sacts 6= 〈 〉 ⇒

(let cnt ′ == CSActE (t , head sacts)(cnt) •
agt ′ = update context(t , tail sacts)(agent(i , cnt ′))))

hear : (T × SAct) 7→ Agent 7→ Agent
∀ t : T ; sact : SAct ; i : AId ; cnt : Context ; agt ′ : Agent •
hear(t , sact)(agent(i , cnt)) = agt ′ ⇔

(let cnt ′ == CSActE (t , sact)(cnt) • agt ′ = agent(i , cnt ′))

C.7.0.1 Action Selection � An Example

select sacts : T ×Agent 7→ seqSAct
∀ t : T ; i : AId ; cid : CId ; obls : PObl ; bm : BM ; sacts : seqSAct •
select sacts(t , agent(i , context(cid , obls, bm))) = sacts ⇔

(let obls ′ == {o : Obl | o ∈ obls ∧
getdebtor(o) = i ∧ getstate(o) = complete} • sacts = select(t , obls ′, 〈 〉))

select : T × PObl × seqSAct 7→ seqSAct
∀ t : T ; o : Obl ; obls, obls ′ : PObl ; sacts, sacts ′ : seqSAct •
select(t , obls, sacts) = sacts ′ ⇔

(obls = {} ⇒ sacts ′ = sacts) ∨
(obls 6= {} ⇒

obls ′ = obls \ {o} ∧ o ∈ obls ∧
sacts ′ = select(t , obls ′, sacts a traverse(t , getaction(o))(〈 〉)))

traverse : T ×Action 7→ seqSAct 7→ seqSAct
∀ i , j : AId ; t : T ; sact : SAct ; tp : TP ; a1, a2 : Action; sacts, sacts ′ : seqSAct •
traverse(t ,noact)(sacts) = sacts ′ ⇔ sacts ′ = sacts ∨
traverse(t , act(sact , tp))(sacts) = sacts ′ ⇔

(check time(tp, t) ⇒ sacts ′ = sacts a 〈sact〉) ∨
(¬ check time(tp, t) ⇒ sacts ′ = sacts) ∨

traverse(t , or(a1, a2))(sacts) = sacts ′ ⇔
sacts ′ = traverse(t , a1)(sacts) a traverse(t , a2)(sacts) ∨

traverse(t , and(a1, a2))(sacts) = sacts ′ ⇔
sacts ′ = traverse(t , a1)(sacts) a traverse(t , a2)(sacts)
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C.7.1 Societies � An Example

Society ′ ::= society〈〈PAgent × Context〉〉

Society == {s : Society ′ | wf Society(s)}

wf Society : Society ′ → B

∀ a1, a2 : Agent ; cid : CId ; obls : PObl ; bm : BM ; agts : PAgent | a1 6= a2 •
wf Society(society(agts, context(cid , obls, bm))) ⇔

{a : agts • id(a)} = dom bm ∧
((a1 ∈ agts ∧ a2 ∈ agts) ⇒ id(a1) 6= id(a2))

id : Agent → AId
∀ i : AId ; cnt : Context • id(agent(i , cnt)) = i

society event : T × Society 7→ Society
∀ t : T ; agts : PAgent ; cnt : Context ; soc : Society •
society event(t , society(agts, cnt)) = soc ⇔

(let spk == speaking(t , agts, 〈 〉, {}) •
(let agts ′′ == hearing(t , get soc sacts(spk), get soc agts(spk)) •
(let cnt ′ == update society context(t , get soc sacts(spk))(cnt) •
(soc = society(agts ′′, cnt ′)))))

speaking : (T × PAgent × seqSAct × PAgent) 7→ (seqSAct × PAgent)
∀ t : T ; agt : Agent ; agts, agts ′ : PAgent ; sacts : seqSAct ;
out : (seqSAct × PAgent) •
speaking(t , agts, sacts, agts ′) = out ⇔

(agts = {} ⇒ out = (sacts, agts ′)) ∨
(agts 6= {} ⇒

agt ∈ agts ∧
(let spk == speak(t , agt) •
(let sacts ′ == get sacts(spk) •
(let agt ′ == get agt(spk) •
(out = speaking(t , agts \ {agt}, sacts a sacts ′, agts ′ ∪ {agt ′}))))))

get sacts : seqSAct ×Agent → seqSAct ;
get agt : seqSAct ×Agent → Agent

hearing : (T × seqSAct × PAgent) 7→ PAgent
∀ t : T ; agt : Agent ; agts, agts ′ : PAgent ; sacts : seqSAct ; out : PAgent •
hearing(t , sacts, agts) = out ⇔

(sacts = 〈 〉 ⇒ out = agts) ∨
(sacts 6= 〈 〉 ⇒

(let sact == head sacts •
agt ∈ agts ∧ id(agt) = gethearer(sact) ∧
(let agt ′ == hear(t , sact)(agt) •
out = hearing(t , tail sacts, (agts \ {agt}) ∪ {agt ′}))))
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update society context : (T × seqSAct) 7→ Context 7→ Context
∀ t : T ; sacts : seqSAct ; i : AId ; cnt : Context ; cnto : Context •
update society context(t , sacts)(cnt) = cnto ⇔

(sacts = 〈 〉 ⇒ cnto = cnt) ∨
(sacts 6= 〈 〉 ⇒

(let cnt ′ == CSActE (t , head sacts)(cnt) •
cnto = update society context(t , tail sacts)(cnt ′)))

C.8 Conversation Examples

C.8.1 Contextual Traces

Conv ′ == seq(T × SAct)

wf Conv : Conv ′ → B

∀ idx : N; cnv : Conv ′ •
wf Conv(cnv) ⇔

idx ∈ inds(tail(rev(cnv))) ⇒
lt(cstime({idx} » cnv), cstime({idx + 1} » cnv))

Conv == {cnv : Conv ′ | wf Conv(cnv)}

cstime : seq(T × SAct) → T
∀ t : T ; sact : SAct ; s : seq(T × SAct) •
cstime(〈(t , sact)〉a s) = t

Trace == seqContext

trace : Conv → Trace
∀ conv : Conv ; cid : CId •

trace(conv) = build trace(conv , 〈context(cid , {}, {})〉)

build trace : Conv × Trace → Trace
∀ conv : Conv ; trace, out : Trace •
build trace(conv , trace) = out ⇔

(conv = 〈 〉 ⇒ out = trace) ∨
(conv 6= 〈 〉 ⇒

(let h == head(conv) •
(let cnt old == head(rev(trace)) •
(let cnt new == COSActE (ctime(h), cact(h))(cnt old) •
out = build trace(tail(conv), trace a 〈cnt new〉)))))

ctime : (T × SAct) → T
∀ t : T ; sact : SAct • ctime(t , sact) = t

cact : (T × SAct) → SAct
∀ t : T ; sact : SAct • cact(t , sact) = sact
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C.8.2 Speech Act Compilers

[DAct ]

DAC == seqDAct ;
SAC == seqSAct

CC : DAC × (DAct → seqSAct) → SAC
∀ conv : DAC ; f : (DAct → seqSAct) •
CC (conv , f ) = f (head(conv)) a CC (tail(conv), f )

C.8.3 Ask The Wizard I

A : seqSAct × TP → Action
∀ sacts : seqSAct ; tp : TP •
A(sacts, tp) =

(sacts = 〈 〉 ⇒ noact) ∨
(sacts 6= 〈 〉 ⇒

(let action == and(act(head sacts, tp), act(A(tail sacts), tp)) • action))

C.8.4 The Market

A : seqSAct → Action
∀ sacts : seqSAct •
A(sacts) =

(sacts = 〈 〉 ⇒ noact) ∨
(sacts 6= 〈 〉 ⇒

(let action == and(act(head sacts,null), act(A(tail sacts),null)) • action))
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Appendix D

Social Level Two Speci�cation

D.1 Abstract Syntax of Speech Acts

SAct ::= ass〈〈AId ×AId × Bel〉〉
| dir〈〈Strength ×AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| com〈〈Strength ×AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| retract〈〈AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| cancel〈〈AId ×AId × Cond ×Action × Penalty × Ref 〉〉
| dec〈〈AId × Relation〉〉

Penalty == Action

Relation ::= create power〈〈Power〉〉
| retract power〈〈Power〉〉
| create auth〈〈Auth〉〉
| retract auth〈〈Auth〉〉

D.2 Context

Context ′ ::= context〈〈CId × PObl × PRId × RM × PPower × PAuth × BM 〉〉

RM == AId 7→ RId

CSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cnt : Context •
CSActE (t , sact)(cnt) =

(let cnt ′ == COSActE (t , sact)(cnt) •
(let cnt ′′ == CBSActE (sact)(cnt ′) •
cnt ′′))

CBSActE : SAct 7→ Context 7→ Context
∀ sact : SAct ; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM •
CBSActE (sact)(context(cid , obls, rs, rm, ps, as, bm)) =

(let bm ′ == BSActE (sact)(bm) • context(cid , obls, rs, rm, ps, as, bm ′))
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Context == {cnt : Context ′ | wf C (cnt)}

wf C : Context ′ → B

∀ i , j : AId ; o, o1, o2 : Obl ; as : PAuth; obls : PObl ; rs : PRId ;
cid : CId ; bm : BM ; rm : RM ; p : Power ; ps : PPower ; a : Auth | o1 6= o2 •
wf C (context(cid , obls, rs, rm, ps, as, bm)) ⇔

o ∈ obls ∧ i = getdebtor(o) ∧ j = getcreditor(o) ⇒
i ∈ dom bm ∧
j ∈ dom bm ∧

(o1 ∈ obls ∧ o2 ∈ obls) ⇒
getreferenceid(o1) 6= getreferenceid(o2)

∧ dom bm = dom rm ∧
(p ∈ ps ⇒ superordinate(p) ∈ rs ∧ subordinate(p) ∈ rs)
∧ (a ∈ as ⇒ auth aid(a) ∈ dom bm)

superordinate : Power → RId
∀ i : AId ; r1, r2 : RId ; act : Action •
superordinate(power(r1, r2)) = r1

subordinate : Power → RId
∀ i : AId ; r1, r2 : RId ; act : Action •
subordinate(power(r1, r2)) = r2

auth aid : Auth → AId
∀ i : AId ; r1, r2 : RId ; act : Action •
auth aid(auth(i , act)) = i

role : AId × Context → RId
∀ r : RId ; i : AId ; cid : CId ; obls : PObl ; rs : PRId ; rm : RM ;
ps : PPower ; as : PAuth; bm : BM •
role(i , context(cid , obls, rs, rm, ps, as, bm)) = r ⇔ r = rm(i)

getroles : Context → PRId ;
getagents : Context → PAId ;
getpowers : Context → PPower ;
getauths : Context → PAuth;
getobls : Context → PObl

D.3 Roles and Power Relations

[RId ]

Power ′ ::= power〈〈RId × RId〉〉

Power == {p : Power ′ | wf Power(p)}
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wf Power : Power ′ → B

∀ r1, r2 : RId •
wf Power(power(r1, r2)) ⇔ (r1 6= r2)

have power : RId × RId × PPower → B

∀ r1, r2 : RId ; ps : PPower •
have power(r1, r2, ps) ⇔ power(r1, r2) ∈ ps

createp : Power × PPower → PPower
∀ p : Power ; ps, ps ′ : PPower •
createp(p, ps) = ps ′ ⇔ (p ∈ ps ⇒ ps ′ = ps) ∨ (p 6∈ ps ⇒ ps ′ = {p} ∪ ps)

retractp : Power × PPower 7→ PPower
∀ p : Power ; ps, ps ′ : PPower •
retractp(p, ps) = ps ′ ⇔ (p 6∈ ps ⇒ ps ′ = ps) ∨ (p ∈ ps ⇒ ps ′ = ps \ {p})

can declare power : AId × Relation × Context → B

∀ i : AId ; r1, r2 : RId ; cnt : Context •
can declare power(i , create power(power(r1, r2)), cnt) ⇔

(have power(role(i , cnt), r1, getpowers(cnt)) ∧ have power(role(i , cnt), r2, getpowers(cnt))) ∨
have auth(i , act(dec(i , create power(power(r1, r2))),null), getauths(cnt)) ∨

can declare power(i , retract power(power(r1, r2)), cnt) ⇔
(have power(role(i , cnt), r1, getpowers(cnt)) ∧ have power(role(i , cnt), r2, getpowers(cnt))) ∨

have auth(i , act(dec(i , retract power(power(r1, r2))),null), getauths(cnt))

create p : Power × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
create p(p, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , obls, rs, rm, createp(p, ps), as, bm)

D.4 Authority Relations

Auth ′ ::= auth〈〈AId ×Action〉〉

Auth == {a : Auth ′ | wf Auth(a)}

wf Auth : Auth ′ → B

∀ i : AId ; a : SAct ; tp : TP ; action : Action •
wf Auth(auth(i ,noact)) ⇔ false ∨
wf Auth(auth(i , act(a, tp))) ⇔ (tp = null) ∨
wf Auth(auth(i , or(action, action))) ⇔ false ∨
wf Auth(auth(i , aand(action, action))) ⇔ false
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have auth : AId ×Action × PAuth 7→ B

∀ i : AId ; a : Action; auths : PAuth •
have auth(i , a, auths) ⇔ auth(i , a) ∈ auths

createa : Auth × PAuth → PAuth
∀ a : Auth; as, as ′ : PAuth •
createa(a, as) = as ′ ⇔ (a ∈ as ⇒ as ′ = as) ∨ (a 6∈ as ⇒ as ′ = {a} ∪ as)

retracta : Auth × PAuth 7→ PAuth
∀ a : Auth; as, as ′ : PAuth •
retracta(a, as) = as ′ ⇔ (a 6∈ as ⇒ as ′ = as) ∨ (a ∈ as ⇒ as ′ = as \ {a})

can declare authority : AId ×AId × SAct → B

∀ i , j : AId ; sact : SAct •
can declare authority(i , j , sact) ⇔ (i = gethearer(sact) ∧ j = getspeaker(sact))

create a : Auth × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
create a(a, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , obls, rs, rm, ps, createa(a, as), bm)

D.5 Obligations with Penalty

Obl ′ ::= obl〈〈AId ×AId × Cond × Cond ×Action ×Action × Penalty
×Penalty ×OS × RefId〉〉

Obl == {o : Obl ′ | wf Obl(o)}

wf Obl : Obl ′ → B

∀ i , j : AId ; r : RefId ; c, cc : Cond ; a, ac : Action; p, pc : Penalty ; os : OS •
wf Obl(obl(i , j , c, cc, a, ac, p, pc, os, r)) ⇔

concern(i , a) ∧ reducible(c, cc) ∧ reducible(a, ac) ∧ reducible(p, pc)

OS ::=
debtor partial | debtor cond partial | creditor partial |
creditor cond partial | complete | ful�lled | violated |
expired | retracted | cancelled | conditional |
penalty | exception
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is cond partial : OS → B;
is partial : OS → B;
is complete : OS → B;
is conditional : OS → B;
is penalty : OS → B;
is �nal : OS → B

∀ os : OS •
is cond partial(os) ⇔ os ∈ {creditor cond partial , debtor cond partial} ∨
is partial(os) ⇔ os ∈ {creditor partial , debtor partial} ∨
is complete(os) ⇔ os = complete ∨
is conditional(os) ⇔ os = conditional ∨
is penalty(os) ⇔ os = penalty ∨
is �nal(os) ⇔ os ∈ {expired , retracted , cancelled , ful�lled , violated , exception}

OTmE : T ×Obl 7→ Obl
∀ i , j : AId ; t : T ; ref : RefId ; c, cc : Cond ; a, ac : Action; p, pc : Penalty ; os : OS ; oout : Obl •
OTmE (t , obl(i , j , c, cc, a, ac, p, pc, os, ref )) = oout ⇔

is partial(os) ⇒ ( [1,2 � Time]
(timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, expired , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, os, ref ))) ∨

(is cond partial(os) ∨ is conditional(os)) ⇒ ( [3,4,5 � Time]
(timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, expired , ref )) ∨
(¬ timeout(c, t) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, os, ref ))) ∨

is complete(os) ⇒ ( [6,7 � Time]
(no act(p) ⇒

(timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, violated , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, os, ref ))) ∨

(¬ no act(p) ⇒ (
(timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, penalty , ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, os, ref ))))) ∨

is penalty(os) ⇒ ( [8 � Time]
(timeout(p, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, exception, ref )) ∨
(¬ timeout(a, t) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, os, ref ))) ∨

is �nal(os) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, os, ref )

COTmE : T 7→ Context 7→ Context
∀ t : T ; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM •
COTmE (t)(context(cid , obls, rs, rm, ps, as, bm)) =

(let obls ′ == {o : obls • OTmE (t , o)} •
context(cid , obls ′, rs, rm, ps, as, bm))

COSActE : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sa : SAct ; cnt : Context •
COSActE (t , sa)(cnt) =

(let cnt ′ == COTmE (t)(cnt) •
(let cnt ′′ == complete obl(t , sa)(cnt ′) •
(let cnt ′′′ == ful�lled obl(t , sa)(cnt ′′) •
(let cnt ′′′′ == penalty � (t , sa)(cnt ′′′) •
(let cnt ′′′′′ == event(sa)(cnt ′′′′) • cnt ′′′′′)))))
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cmpl : T × SAct ×Obl 7→ Obl
∀ i , j : AId ; t : T ; sact : SAct ; ref : RefId ; c′, c, cc : Cond ;
a, ac : Action; p, pc : Penalty ; os : OS ; oout : Obl •
cmpl(t , sact , obl(i , j , c, cc, a, ac, p, pc, os, ref )) = oout ⇔

is conditional(os) ⇒ (
(let c′ == reduce act(t , sact , c) •
(no act(c′) ⇒ oout = obl(i , j ,noact , cc, a, ac, p, pc, complete, ref )) ∨
(¬ no act(c′) ⇒ oout = obl(i , j , c′, cc, a, ac, p, pc, os, ref )))) ∨

¬ is conditional(os) ⇒ oout = obl(i , j , c, cc, a, ac, p, pc, os, ref )

complete obl : (T × SAct) 7→ Context 7→ Context
∀ t : T ; sact : SAct ; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM •
complete obl(t , sact)(context(cid , obls, rs, rm, ps, as, bm)) =

(let obls ′ == {o : obls • cmpl(t , sact , o)}
• context(cid , obls ′, rs, rm, ps, as, bm))

ful�lled obl : (T × SAct) 7→ Context 7→ Context

penalty � : (T × SAct) 7→ Context 7→ Context
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event : SAct 7→ Context 7→ Context
∀ i , j : AId ; obls : PObl ; t : T ; ref : Ref ; r : RefId ; c, cc : Cond ;
a, ac : Action; p, pc : Penalty ; cnt , cnto : Context ; tp : TP ; r1, r2 : RId ; sact : SAct •
event(dir(soft , i , j , c, a, p,new(r)))(cnt) = cnto ⇔ [5,6 � Init (as level 1)]
(¬ is cond(c) ⇒ cnto = create obl(obl(j , i ,noact ,noact , a, a, p, p, creditor partial , r), cnt)) ∨
(is cond(c) ⇒ cnto = create obl(obl(j , i , c, c, a, a, p, p, creditor cond partial , r), cnt)) ∨
event(dir(soft , i , j , c, a, p, old(r)))(cnt) = cnto ⇔ cnto = cnt ∨ [n.a.]
event(dir(hard , i , j , c, a, p,new(r)))(cnt) = cnto ⇔ [7,8 � Init (new in level 2)]
((have power(role(i , cnt), role(j , cnt), getpowers(cnt)) ∨ have auth(i , a, getauths(cnt))) ⇒ (
(¬ is cond(c) ⇒ cnto = create obl(obl(j , i ,noact ,noact , a, a, p, p, complete, r), cnt)) ∨
(is cond(c) ⇒ cnto = create obl(obl(j , i , c, c, a, a, p, p, conditional , r), cnt)))) ∨
(¬ (have power(role(i , cnt), role(j , cnt), getpowers(cnt))

∨ have auth(i , a, getauths(cnt))) ⇒ cnto = cnt) ∨
event(dir(hard , i , j , c, a, p, old(r)))(cnt) = cnto ⇔ [9,11 � Ref (as level 1)]
(¬ is cond(c) ⇒ cnto =

change st(complete, obl(j , i ,noact ,noact , a, a, p, p, debtor partial , r), cnt)) ∨
(is cond(c) ⇒ cnto = change st(conditional , obl(j , i , c, c, a, a, p, p, debtor cond partial , r), cnt)) ∨
event(com(soft , i , j , c, a, p,new(r)))(cnt) = cnto ⇔ [3,4 � Init (as level 1)]
(¬ is cond(c) ⇒ cnto = create obl(obl(i , j ,noact ,noact , a, a, p, p, debtor partial , r), cnt)) ∨
(is cond(c) ⇒ cnto = create obl(obl(i , j , c, c, a, a, p, p, debtor cond partial , r), cnt)) ∨
event(com(soft , i , j , c, a, p, old(r)))(cnt) = cnt ∨ [n.a.]
event(com(hard , i , j , c, a, p,new(r)))(cnt) = cnto ⇔ [1,2 � Init (same as level 1)]
(¬ is cond(c) ⇒ cnto = create obl(obl(i , j ,noact ,noact , a, a, p, p, complete, r), cnt)) ∨
(is cond(c) ⇒ cnto = create obl(obl(i , j , c, c, a, a, p, p, conditional , r), cnt)) ∨
event(com(hard , i , j , c, a, p, old(r)))(cnt) = cnto ⇔ [10,12 � Ref (same as level 1)]
(¬ is cond(c) ⇒
(let cnt ′ == change st(complete, obl(j , i ,noact ,noact , a, a, p, p, creditor partial , r), cnt) •
(let cnt ′′ == change st(complete, obl(j , i ,noact ,noact , a, a, p, p, debtor partial , r), cnt ′) •

cnto = cnt ′′))) ∨
(is cond(c) ⇒
(let cnt ′ == change st(conditional , obl(j , i , c, c, a, a, p, p, creditor cond partial , r), cnt) •
(let cnt ′′ == change st(conditional , obl(j , i , c, c, a, a, p, p, debtor cond partial , r), cnt ′) •

cnto = cnt ′′))) ∨
event(retract(i , j , c, a, p,new(r)))(cnt) = cnt ∨ [n.a.]
event(retract(i , j , c, a, p, old(r)))(cnt) = cnto ⇔ [5,6,7,8 � Ref]
(¬ is cond(c) ⇒
(let cnt ′ == change st(retracted , obl(j , i ,noact ,noact , a, a, p, p, creditor partial , r), cnt) •
(let cnt ′′ == change st(retracted , obl(i , j ,noact ,noact , a, a, p, p, debtor partial , r), cnt ′) •

cnto = cnt ′′))) ∨
(is cond(c) ⇒
(let cnt ′ == change st(retracted , obl(j , i , c, c, a, a, p, p, creditor cond partial , r), cnt) •
(let cnt ′′ == change st(retracted , obl(i , j , c, c, a, a, p, p, debtor cond partial , r), cnt ′) •

cnto = cnt ′′))) ∨
event(cancel(i , j , c, a, p,new(r)))(cnt) = cnt ∨ [n.a.]
event(cancel(i , j , c, a, p, old(r)))(cnt) = cnto ⇔ [1,2,3,4 � Ref]
(¬ is cond(c) ⇒
(let cnt ′ == change st(cancelled , obl(i , j ,noact ,noact , a, a, p, p, creditor partial , r), cnt) •
(let cnt ′′ == change st(cancelled , obl(j , i ,noact ,noact , a, a, p, p, debtor partial , r), cnt ′) •

cnto = cnt ′′))) ∨
(is cond(c) ⇒
(let cnt ′ == change st(cancelled , obl(i , j , c, c, a, a, p, p, creditor cond partial , r), cnt) •
(let cnt ′′ == change st(cancelled , obl(j , i , c, c, a, a, p, p, debtor cond partial , r), cnt ′) •

cnto = cnt ′′))) ∨
[continued on the next page]
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[continued from last page]
event(dec(i , create power(power(r1, r2))))(cnt) = cnto ⇔
(can declare power(i , create power(power(r1, r2)), cnt) ⇒ cnto = create p(power(r1, r2), cnt)) ∨
(¬ can declare power(i , create power(power(r1, r2)), cnt) ⇒ cnto = cnt) ∨
event(dec(i , retract power(power(r1, r2))))(cnt) = cnto ⇔
(can declare power(i , retract power(power(r1, r2)), cnt) ⇒ cnto = retract p(power(r1, r2), cnt)) ∨
(¬ can declare power(i , retract power(power(r1, r2)), cnt) ⇒ cnto = cnt) ∨
event(dec(i , create auth(auth(j , act(sact , tp)))))(cnt) = cnto ⇔
(can declare authority(i , j , sact) ⇒ cnto = create a(auth(j , act(sact , tp)), cnt)) ∨
(¬ can declare authority(i , j , sact) ⇒ cnto = cnt) ∨
event(dec(i , retract auth(auth(j , act(sact , tp)))))(cnt) = cnto ⇔
(can declare authority(i , j , sact) ⇒ cnto = retract a(auth(j , act(sact , tp)), cnt)) ∨
(¬ can declare authority(i , j , sact) ⇒ cnto = cnt)

create obl : Obl × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
create obl(o, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , createo(o, obls), rs, rm, ps, as, bm)

change st : OS ×Obl × Context 7→ Context
∀ o : Obl ; s : OS ; p : Power ; a : Auth; cid : CId ; obls : PObl ; rs : PRId ;
rm : RM ; ps : PPower ; as : PAuth; bm : BM ; cnt : Context •
change st(s, o, context(cid , obls, rs, rm, ps, as, bm)) =

context(cid , change state(s, o, obls), rs, rm, ps, as, bm)
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Appendix E

Conversation Examples

E.1 Ask The Wizard I
Example One conversation. Two agents: boy ,wizard .
Domain actions:

[1] Ask(boy ,wizard , q1,new(r1)),
[2] Ask(boy ,wizard , q2,new(r2)),
[3] PromiseReply(wizard , boy , q2, old(r2)),
[4] No(wizard , boy , q2, old(r2)),
[5] PromiseReply(wizard , boy , q1, old(r1)),
[6] Yes(wizard , boy , q1, old(r2)), (comment : error reference)
[7] Yes(wizard , boy , q1, old(r1)) (comment : ok reference)

Domain actions compiled to basic speech acts:

[1] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q1, true),new(r1)),null),
act(ass(wizard , boy , imply(q1, false),new(r1)),null)),new(r1)),

[2] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q2, true),new(r2)),null),
act(ass(wizard , boy , imply(q2, false),new(r2)),null)),new(r2)),

[3] com(hard ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q2, true), old(r2)),null),
act(ass(wizard , boy , imply(q2, false), old(r2)),null)), old(r2)),

[4] ass(wizard , boy , imply(q2, false), old(r2)),
[5] com(hard ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q1, true), old(r1)),null),

act(ass(wizard , boy , imply(q1, false), old(r1)),null)), old(r1)),
[6] ass(wizard , boy , imply(q1, true), old(r2)),
[7] ass(wizard , boy , imply(q1, true), old(r1))

Contextual Trace:

Example Two conversation. Two agents: boy ,wizard .
Domain actions:

[1] Ask(boy ,wizard , q ,new(r1)),
[2] CancelQuestion(wizard , boy ,A(CW(Reply(wizard , boy , q , old(r1))),null), old(r1)),
[3] Ask(boy ,wizard , q ,new(r2)),
[4] RetractQustion(boy ,wizard ,A(CW(Reply(wizard , boy , q , old(r2))),null), old(r2))
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Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q1, true), r1),null),

act(ass(wizard , boy , imply(q1, false), r1),null)), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q1, true), r1),null),

act(ass(wizard , boy , imply(q1, false), r1),null)), creditor partial , r1)
2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q2, true), r2),null),

act(ass(wizard , boy , imply(q2, false), r2),null)), creditor partial , r2)
[3] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(boy ,wizard , imply(q2, false), r2),null)), complete, r2)
2. no change

[4] 1. obl(wizard , boy ,noact ,noact , ful�lled , r1)
2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q2, true), r2),null),

act(ass(wizard , boy , imply(q2, false), r2),null)), creditor partial , r2)
[5] 1. ful�lled

2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q2, true), r2),null),
act(ass(wizard , boy , imply(q2, false), r2),null)), complete, r2)

[6] 1. ful�lled
2. no change

[7] 1. ful�lled
2. obl(wizard , boy ,noact ,noact , ful�lled , r2)

Figure E.1: Contextual Trace.

Domain actions compiled to basic speech acts:

[1] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

[2] cancel(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1)),

[3] dir(soft , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r2)),null),
act(ass(wizard , boy , imply(q , false),new(r2)),null)),new(r2)),

[4] retract(boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), old(r2)),null),
act(ass(wizard , boy , imply(q , false), old(r2),null)), old(r2))

Contextual Trace:

Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),

act(ass(wizard , boy , imply(q , false), r1),null)), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),

act(ass(wizard , boy , imply(q , false), r1),null)), cancelled , r1)
[3] 1. no change

2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),
act(ass(wizard , boy , imply(q , false), r2),null)), creditor partial , r2)

[4] 1. no change
2. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r2),null),

act(ass(wizard , boy , imply(q , false), r2),null)), retracted , r2)

Figure E.2: Contextual Trace.

Example three conversation. Two agents: boy ,wizard .
Domain actions:
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[1] Request1(boy ,wizard , q ,new(r1),new(r2)),
[2] O�er(wizard , boy , q ,new(r3)),
[3] Request1(boy ,wizard , q , old(r3),new(r4)),
[4] Yes(wizard , boy , q , old(r3)),
[5] Thanks(boy ,wizard , old(r4))

Domain actions compiled to basic speech acts:

[1] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

com(hard , boy ,wizard , act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(boy ,wizard , true,new(r2)),null),new(r2)),

[2] com(soft ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true),new(r3)),null),
act(ass(wizard , boy , imply(q , false),new(r3)),null)),new(r3)),

[3] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), old(r3)),null),
act(ass(wizard , boy , imply(q , false), old(r3)),null)), old(r3)),

com(hard , boy ,wizard , act(ass(wizard , boy , imply(q , true), old(r3)),null),
act(ass(boy ,wizard , true,new(r4)),null),new(r4)),

[4] ass(wizard , boy , imply(m, true), old(r3)),
[5] ass(boy ,wizard , true, old(r4))

Contextual Trace:

Step Contextual Trace
[1]
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r3),null),

act(ass(wizard , boy , imply(q , false), r3),null)), creditor partial , r3)
[3] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r3),null),

act(ass(wizard , boy , imply(q , false), r3),null)), complete, r3)
2. obl(boy ,wizard , act(ass(wizard , boy , imply(q , true), r3),null),

act(ass(boy ,wizard , true, r4),null), conditional , r4)
[4] 1. obl(wizard , boy ,noact ,noact , ful�lled , r3)

2. obl(boy ,wizard ,noact , act(ass(boy ,wizard , true, r4),null), complete, r4)
[5] 1. no change

2. obl(boy ,wizard ,noact ,noact , ful�lled , r4)

Figure E.3: Contextual Trace.

Example four conversation Three agents: boy , girl ,wizard . The boy works as broker.
Domain actions:

[1] O�er(wizard , boy , q ,new(r1)),
[2] O�erBroker(boy , girl ,wizard , q , old(r1),new(r2),new(r3),new(r4)),
[3] RequestBroker(girl , boy ,wizard , q , old(r1), old(r2)),
[4] Request2(boy ,wizard , q , old(r1)),
[5] Yes(wizard , boy , q , old(r1)),
[6] Yes(boy , girl , q , old(r1))

Domain actions compiled to basic speech acts:
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[1] com(soft ,wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true),new(r1)),null),
act(ass(wizard , boy , imply(q , false),new(r1)),null)),new(r1)),

[2] com(soft , boy , girl ,noact , act(dir(hard , boy ,wizard ,noact ,
or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1)),null),new(r2)),

com(hard , boy , girl , act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(boy , girl , imply(q , true), old(r1)),null),new(r3)),

com(hard , boy , girl , act(ass(wizard , boy , imply(q , false), old(r1)),null),
act(ass(boy , girl , imply(q , false), old(r1)),null),new(r4)),

[3] dir(hard , girl , boy ,noact , act(dir(soft , boy ,wizard ,noact ,
or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1)),null), old(r2)),

[4] dir(hard , boy ,wizard ,noact , or(act(ass(wizard , boy , imply(q , true), old(r1)),null),
act(ass(wizard , boy , imply(q , false), old(r1)),null)), old(r1))

[5] ass(wizard , boy , imply(q , true), old(r1)),
[6] ass(boy , girl , imply(q , true), old(r1))

Contextual Trace:

Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),

act(ass(wizard , boy , imply(q , false), r1),null)), creditor partial , r1)
[2] 1. no change

2. obl(boy , girl ,noact , act(dir(hard , boy ,wizard ,noact ,
or(act(ass(wizard , boy , imply(q , true), r1),null),
act(ass(wizard , boy , imply(q , false), r1),null)), r1),null), deptor partial , r2),

3. obl(boy , girl , act(ass(wizard , boy , imply(q , true), r1),null),
act(ass(boy , girl , imply(q , true), r1),null), conditional , r3),

4. obl(boy , girl , act(ass(wizard , boy , imply(q , false), r1),null),
act(ass(boy , girl , imply(q , false), r1),null), conditional , r4)

[3] 1. no change
2. obl(boy , girl ,noact , act(dir(hard , boy ,wizard ,noact ,

or(act(ass(wizard , boy , imply(q , true), r1),null),
act(ass(wizard , boy , imply(q , false), r1),null)), r1),null), complete, r2),

3. no change
4. no change

[4] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1),null),
act(ass(wizard , boy , imply(q , false), r1),null)), complete, r1)

2. obl(boy , girl ,noact ,noact , ful�lled , r2),
3. no change
4. no change

[5] 1. obl(wizard , boy ,noact ,noact , ful�lled , r1)
2. no change
3. obl(boy , girl ,noact , act(ass(boy , girl , imply(q , true), r1),null), complete, r3),
4. no change

[6] 1. no change
2. no change
3. obl(boy , girl ,noact ,noact , ful�lled , r3),
4. no change

Figure E.4: Contextual Trace.
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E.2 Ask The Wizard II

Example One conversation. Two agents: boy ,wizard .
Domain actions:

[1] Ask(boy ,wizard , q ,new(r1), interval(t1, t2)),
[2] PromiseReply(wizard , boy , q , old(r1), interval(t1, t2)),
[3] End

Timing assumptions:

[1] lt(tm1, t1) ∧ lt(t1, t2)
[2] lt(tm2, t2)
[3] gt(tm3, t2)

Contextual Trace:

Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), complete, r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), violated , r1)

Figure E.5: Contextual Trace.

Example 2 conversation. Two agents: boy ,wizard .
Domain actions:

[1] Ask(boy ,wizard , q ,new(r1), interval(t1, t2)),
[2] PromiseReply(wizard , boy , q , old(r1), interval(t1, t2)),
[3] Yes(wizard , boy , q , old(r1))
[4] Yes(wizard , boy , q , old(r1))

Timing assumptions:

[1] lt(tm1, t1) ∧ lt(t1, t2)
[2] lt(tm2, t2)
[3] lt(tm3, t1)
[4] gt(tm4, t2)

Contextual Trace:
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Step Contextual Trace
[1] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), creditor partial , r1)
[2] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), complete, r1)
[3] 1. no change
[4] 1. obl(wizard , boy ,noact , or(act(ass(wizard , boy , imply(q , true), r1), interval(t1, t2)),

act(ass(wizard , boy , imply(q , false), r1), interval(t1, t2))), violated , r1)

Figure E.6: Contextual Trace.
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