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Abstract

We use a Bayesian framework to detect periodic components in fMRI data. The

resulting detector is sensitive to periodic components with a 
exible number of

harmonics and with arbitrary amplitude and phases of the harmonics. It is possible

to detect the correct number of harmonics in periodic signals even if the fundamental

frequency is beyond the Nyquist frequency. We apply the signal detector to locate

regions that are highly a�ected by periodic physiological artifacts, such as cardiac

pulsation.
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1 Introduction

In fMRI experiments we may want to local detect periodic components in the local hemo-

dynamic activity. Much attention has been devoted to estimate the confounding signals

generated by pulsatory activity at the cardiac frequency. The approaches range from sim-

ple digital �lters [1] to sophisticated adaptive techniques based on the complex k-space

MR signal [6], both methods are based on external monitoring of the cardiac activity.

Dagli et al. concluded that regions near vessels have reduced sensitivity for detection of

activation because of the signal variance induced by cardiac pulsation [2]. The typical

acquisition frequencies (TR � 3 � 4 sec) in whole brain data sets preclude direct spec-

tral �ltering. Even for rapid acquisition single slice data sets the cardiac signal will have

higher harmonics at frequencies beyond the Nyquist limit.

The quest for periodic components can be formulated as a local test for the presence

of a periodic signal with 
exible number of harmonics and basic frequency against a null-

hypothesis under which the signal is white noise. We will review a Bayesian framework

below that allows calculation of relative probabilities of such competing hypotheses; this

framework was �rst applied in the context of fMRI data analysis in [5].

The Bayesian framework is of interest in this context because it gives a more complete

picture of the interplay between the null hypothesis and relevant alternatives and the

framework has an embedded quantitative statement of the a priori knowledge that enters

the formulation of hypotheses. Our approach is a Bayesian generalization of the so-called

general linear model used frequently in fMRI analysis, see e.g., [4]; the main generalization

is that we can eliminate the unknown amplitudes and phases of the harmonics as well

as the noise variance, which in turn allows us to operate the general linear model as an

explorative tool.

Frank et al. [3] recently reviewed a Bayesian framework for signal detection in fMRI

data. Here we expand on the application of the Bayesian framework based on so-called

conjugate priors in the context of periodic component detection.
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2 Bayes' Theory

We will be focus on models of the local hemodynamic activity in a region or as in this

exposition, a single pixel. Let y be a fMRI signal measured at times t = 1; :::; T , and

represented as a T � 1 vector with components y(t). The signal is modeled as a sum of

harmonic components of the form,

by(t) = KX
k=1

xk(t)bk (1)

where xk(t) is a set of periodic \basis functions". b is a set of K linear coeÆcients

quantifying the content of signal of the given periodicity in the local hemodynamic activity.

Introducing the T �K matrix with components X(t; k) � xk(t) the linear model can be

written in matrix form

by = Xb (2)

In an fMRI experiment we expect that the actual measurement deviates from the \ideal"

model output by various noise contributions that we will represent by a random white

noise process so that y(t) = by(t) + n(t) where n(t) is assumed zero mean normal with

unknown variance (�2).

The basis functions will be chosen as x2k�1(t) = sin(kw0t);x2k(t) = cos(kw0t); k =

1; :::; K, where w0 is the fundamental frequency of the signal. By including a linear

combination of both sines and cosines, we can generate harmonics with arbitrary phase

relations. Note that a model with � frequencies has K = 2� basis functions, hence a 2�

dimensional coeÆcient vector b.

A fundamental problem posed by Eq. (2) and the de�nitions above is that the model

order K, the fundamental frequency w0, and the noise variance �2 are unknown. Here

we will develop a Bayesian scheme that we allow us to make inferences about these

parameters, independent of the amplitude and phase of the harmonics and independent

of the noise variance. This is achieved by invoking a simple, yet 
exible prior distribution
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of these parameters so that we may eliminate these parameters by explicit integration.

In particular we will aim at estimating the probability P (w0; Kjy) of the \hypothesis"

speci�ed by w0; K, using Bayes' theorem,

P (w0; Kjy) =
P (yjw0; K)P (w0; K)

P (y)
; (3)

where P (yjw0; K) is the likelihood function, P (w0; K) is the prior probability, whereas

P (y) is a normalization constant.

For a �xed set of parameters b; �2 we can use Eq. (2) to establish the likelihood

function, i.e., the probability density of the observations given the parameters,

P (yj�2;b;X; K) =
�

1

2��2

�T=2
exp

�
�

1

2�2
(y �Xb)2

�
: (4)

Since, however, b; �2 are unknown too we need to eliminate them using a prior distri-

bution P (b; �2) which quanti�es the general knowledge we have on the domain and which

potentially depends on the given basis set and model order,

P (yjw0; K) =
Z
d�2

Z
dbP (b; �2)P (yj�2;b;X; K)

=
Z
d�2

Z
dbP (b; �2)

�
1

2��2

�T=2
exp

 
�
(y �Xb)2

2�2

!
: (5)

We will use the principle of congugate priors to establish a convenient prior P (b; �2).

The subsequent analysis is described comprehensively in most textbooks on Bayesian

data analysis, see e.g. [7] for a particularly clear treatment. The idea is to employ a prior

density so that the posterior (proportional to the product of the prior and the likelihood,

c.f., eq. (3)) is of the same form as the prior but with \updated", i.e., data dependent,

parameters. The conjugate prior for the above linear model with additive gaussian noise

is the so-called normal-inverse-gamma or NIG(a; d;m;V), distribution,
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P (b; �2ja; d;K;m;V) =
(a=2)d=2(�2)�(d+K+2)=2

(2�)K=2jVj1=2�(d=2)
exp

�
�(b�m)0(2�2V)�1(b�m)�

a

2�2

�
:

(6)

The new (hyper-) parameters d; a;m;V have the following meaning. The marginal

prior distribution of b,

P (bja; d;K;m;V) =
Z
d�2P ((b; �2jm;K)

=
(a=2)�K=2�((d+K)=2)

(2�)K=2jVj1=2�(d=2)

�
1 + (b�m)0(aV)�1(b�m)

�
�(d+K+2)=2

(7)

is a multivariate t-distribution with meanm and covariance determined by (a=(d� 2))V.

This distribution is unimodally centered at m, with heavier \tails" than a normal distri-

bution, see �gure 1. The marginal prior distribution of �2 is given by

P (�2ja; d) =
(a=2)�d=2(�2)�(d+2)=2

�(d=2)
exp

�
�a=(2�2)

�
: (8)

Hence an inverse gamma distribution1 of mean a=(d� 2); d > 2.

The next step of the inference is then to set the parameters of the prior. In general

we prefer to give the parameters values so that they have minimal in
uence on results. In

particular, we should check that for long time series their e�ects should vanish completely.

The prior mean of the noise variance can, e.g., be set to the observed signal variance,

a=(d� 2) = �2
y � y0y=T , meaning that we do not expect a noise variance larger than the

total observed variance. Further we will let d = 3 leading to a prior as shown in �gure 1,

this choice of d is the smallest integer for which the prior noise variance is �nite, hence,

a \weak" prior. We will not express any prior knowledge about the mean amplitude of

the periodic components, hence, m = 0. The form of the prior covariance structure is

chosen for simplicity to be V = v1, where 1 is a unit matrix. The parameter v will be

1i.e., 1=�2 is gamma distributed

6



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15
NOISE VARIANCE PRIOR

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2
HEMODYNAMIC RESPONSE PRIOR

Figure 1: Visualization of the prior distribution of the noise variance and the the hemodynamic

impulse response. The upper panel shows the inverse gamma distribution of the noise vari-

ance parameter, while the lower panel shows the prior distribution of a hemodynamic impulse

response parameter. The distribution is wider than a Gaussian of the same variance. These

priors were �rst used for analyzing fMRI hemodynamics in [5]

determined essentially by data by the following argument. The prior variance of the �tted

signal by, is given by

hby0byiprior=T = Tr[XX0hbb0iprior=T ] = (va=(d� 2))Tr[XX0]=T (9)

As above, for the noise variance hyperparameter selection, we can let variance be equal

to the variance of the measured signal, i.e., let v = 1=Tr[XX0]=T .

Comparing Eqs. (4) and (6) we see that by conjugacy they are of the same exponential

form, so when we multiply them together, the integrand in Eq. (5) is again an NIG
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distribution, hence the integral is simply the NIG normalization integral, thus we �nd

P (yjw0; K) =

 
jVPja

d

jVj(aP )dP�T

!1=2
�(dP=2)

�(d=2)
; (10)

with the following de�nitions

V�1
P = V�1 +X0X; (11)

mP = VP (V
�1m+X0y); (12)

aP = a +m0V�1m+ y0y�m0

PV
�1
P mP ; (13)

dP = d+ T: (14)

Using our speci�cations of the prior parameters we obtain the simpli�cation

V�1
P = v1+X0X; (15)

mP = VPX
0y; (16)

aP = (T + 1)�2y � y0XVPX
0y; (17)

dP = 3 + T: (18)

We can see explicitly that the in
uence of the prior choice of a and d is weak for

T � 1, because the prior contributions are of order one relative to T in Eqs. (17) and

(18) respectively.

Testing the above linear system hypotheses, a natural null-hypothesis is that the signal

is gaussian noise of unknown variance. The corresponding probability density P (yj0) is

given by the X = 0 limit of the above expressions.

The probabilities of the set of complete set of hypotheses (parameterized by w0 and

K) including the null-hypothesis are then given by
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P (w0; Kjy) =
P (yjw0; K)

P (yj0) +
P

w0;K P (yjw0; K)

P (0jy) =
P (yj0)

P (yj0) +
P

w0;K P (yjw0; K)
(19)

3 Evaluation on simulated and real fMRI data

3.1 Simulation experiments

In order to illustrate the viability of the Bayesian approach for exploring time series for

periodic components we have set up a simulation experiment. A signal was created by

mixing a periodic signal (two harmonics) and gaussian white noise signal of the same

standard deviation. In Figure 2 we show the true and the noisy signals, in the case the

fundamental frequency is lower than the Nyquist frequency. The middle panel shows

the signal reconstructed from the maximum a posteriori parameters (mP ). In the lower

panel of Figure 2 we show the Bayesian probabilities for hypotheses with � = 1; :::; 10

frequencies, which is strongly focused at the true value of � = 2, even in the presence of

sizable noise contamination. In Figure 3 we show a similar setup as in Figure 2, except

now the fundamental frequency is beyond the Nyquist. In this case the periodic signal

is aliased to appear as a low-frequency signal, but importantly we may still detect its

presence, and can still correctly detect that it consists of two harmonics.

3.2 fMRI experiment

A single fMRI slice holding 128 � 128 pixels and cutting through primary visual cortex

was acquired with a time interval between successive scans of TR = 333 msec. A window

of M = 82 � 68 pixels covering all of the brain of the particular slice was extracted for

this analysis. This sampling frequency is high enough to allow faithful representation

of the heart signal. Visual stimulation in the form of a 
ashing annular checkerboard
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Figure 2: Simulation experiment created to illustrate the ability of the Bayesian approach for

picking up the correct model order. The upper panel shows the true periodic signal (heavy

dashed line) composed by the fundamental and the second harmonic (of relative amplitude

0:6). The noisy signal is obtained by adding gaussian noise of the same standard deviation as

the \signal". The middle panel shows the true signal (heavy dashed line) and the maximum a

posteriori reconstructed signal. The lower panel shows the probability of having � = 1; :::; 10

harmonics. As expected, this probability is strongly peaked at the true value � = 2.

pattern was interleaved with periods of �xation. A run consisting of 30 scans of �xation,

31 scans of stimulation, and 60 scans of post-stimulus �xation was repeated 10 times. The

data set was acquired by Dr. Egill Rostrup at the Danish Center for Magnetic Resonance

Research.

In each voxel we test the hypotheses: The white noise nul hypothesis, and a set of

hypotheses parameterized by fundamental frequencies and number of components. Fig-

ure 4 shows the distribution of the pixel-wise most probable number of frequencies (�).
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Figure 3: Simulation experiment created to show the ability of the Bayesian approach for

picking up the correct model order even when the fundamental frequency is undersampled. The

upper panel shows the true periodic signal (heavy dashed line) composed by the fundamental

and the second harmonic (of relative magnitude 0:6). The angular frequency is wtrue
0 = 6:4,

this signal is aliased to appear low-frequency. The noisy signal is obtained by adding noise

of the same standard deviation as the signal. The middle panel shows the true signal (heavy

dashed line) and the maximum a posteriori reconstructed signal. The lower panel shows the

probability of having � = 1 � 10 harmonics. As expected, this probability is strongly peaked

at the true value � = 2.

Black pixels are assigned to the null-hypothesis, whereas the brightest pixels have four

harmonics. Two locations are singled out for further analysis. The \vessel" pixel has four

harmonics and is dominated by a high-frequency component corresponding to the cardiac

frequency. The \primary visual" pixel has only one low-frequency component. In Figure

5 we show the analysis of the primary visual area hemodynamic activity. This region has
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a strong positive stimulus response corresponding to a very low-frequency component. In

Figure 6 we show the analysis of the vessel pixel. This region is dominated by cardiac

pulsation and is well approximated by the reconstructed MAP high-frequency signal.

4 Conclusion

We have outlined a Bayesian framework for signal detection in noisy linear systems. We

used weak conjugate priors and as a result we obtain closed form expressions for the

relative probabilities over competing hypotheses. Formulating a model based on periodic

signals with a variable number of harmonics, we obtain a periodic component detector,

this detector can detect periodic signals with arbitrary amplitude and phase relations

between the harmonics, and was shown able to detect the correct number of harmonics

even if the fundamental frequency is beyond the Nyquist frequency.
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Captions

1. Visualization of the prior distribution of the noise variance and the the hemody-

namic impulse response. The upper panel shows the inverse gamma distribution

of the noise variance parameter, while the lower panel shows the prior distribution

of a hemodynamic impulse response parameter. The distribution is wider than a

Gaussian of the same variance. These priors were �rst used for analyzing fMRI

hemodynamics in [5]

2. Simulation experiment created to illustrate the ability of the Bayesian approach

for picking up the correct model order. The upper panel shows the true periodic

signal (heavy dashed line) composed by the fundamental and the second harmonic

(of relative amplitude 0:6). The noisy signal is obtained by adding gaussian noise

of the same standard deviation as the \signal". The middle panel shows the true

signal (heavy dashed line) and the maximum a posteriori reconstructed signal. The

lower panel shows the probability of having � = 1; :::; 10 harmonics. As expected,

this probability is strongly peaked at the true value � = 2.

3. Simulation experiment created to show the ability of the Bayesian approach for

picking up the correct model order even when the fundamental frequency is un-

dersampled. The upper panel shows the true periodic signal (heavy dashed line)

composed by the fundamental and the second harmonic (of relative magnitude 0:6).

The angular frequency is wtrue
0 = 6:4, this signal is aliased to appear low-frequency.

The noisy signal is obtained by adding noise of the same standard deviation as the

signal. The middle panel shows the true signal (heavy dashed line) and the max-

imum a posteriori reconstructed signal. The lower panel shows the probability of

having � = 1 � 10 harmonics. As expected, this probability is strongly peaked at

the true value � = 2.

4. A single slice holding 128 � 128 pixels and cutting through primary visual cortex
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was acquired with a time interval between successive scans of TR = 333 msec. A

window of M = 82 � 68 pixel covering all of the brain of the particular slice was

extracted for this analysis. The sampling frequency of this acquisition mode is high

enough to allow faithful representation of the heart signal. Visual stimulation in

the form of a 
ashing checkerboard pattern was interleaved with periods of �xation.

A run consisting of 30 scans of �xation, 30 scans of stimulation, and 60 scans of

post-stimulus �xation was repeated 10 times, here we analyze a single run. The

�gure shows the distribution of pixel-wise most probable model order (�). Black

pixels are assigned to the null-hypothesis, while the brighter pixels have up to four

harmonics. Two locations are singled out for further analysis. The \vessel" pixel and

the \primary visual" pixel. The most probable frequency is high corresponding to

cardiac pulsation in the former and low, corresponding to the presentation frequency

of the stimulus in the latter region.

5. Analysis of the \primary visual" pixel of Figure 4. This region has a strong positive

activation trace and the optimal fundamental frequency is � 0:03 Hz. The measured

signal is represented by the thin line, the MAP reconstructed signal is rendered with

the heavy line.

6. Analysis of the \vessel" pixel of Figure 4. This region consists mainly of a high-

frequency cardiac pulsation signal, well described by the periodic signal model with

four harmonics.
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Figure 4: A single slice holding 128 � 128 pixels and cutting through primary visual cortex

was acquired with a time interval between successive scans of TR = 333 msec. A window

of M = 82 � 68 pixel covering all of the brain of the particular slice was extracted for this

analysis. The sampling frequency of this acquisition mode is high enough to allow faithful

representation of the heart signal. Visual stimulation in the form of a 
ashing checkerboard

pattern was interleaved with periods of �xation. A run consisting of 30 scans of �xation, 30

scans of stimulation, and 60 scans of post-stimulus �xation was repeated 10 times, here we

analyze a single run. The �gure shows the distribution of pixel-wise most probable model

order (�). Black pixels are assigned to the null-hypothesis, while the brighter pixels have up to

four harmonics. Two locations are singled out for further analysis. The \vessel" pixel and the

\primary visual" pixel. The most probable frequency is high corresponding to cardiac pulsation

in the former and low, corresponding to the presentation frequency of the stimulus in the latter

region.
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Figure 5: Analysis of the \primary visual" pixel of Figure 4. This region has a strong positive

activation trace and the optimal fundamental frequency is � 0:03 Hz. The measured signal is

represented by the thin line, the MAP reconstructed signal is rendered with the heavy line.

.
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Figure 6: Analysis of the \vessel" pixel of Figure 4. This region consists mainly of a high-

frequency cardiac pulsation signal, well described by the periodic signal model with four har-

monics.
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