
OCP COMPLIANT

ADAPTER FOR

NETWORK-ON-CHIP

Juliana Pei Zhou

LYNGBY 2004

EKSAMENSPROJEKT

NR. 72

IMM

Printed by IMM, DTU

Preface

This master’s thesis was conducted at the Computer Science and Engineer-
ing division of Informatics and Mathematical Modelling Department at the
Technical University of Denmark from March to September 2004. The thesis
was a part of the Systems-On-Chip design work at this department. It is
defined with the help of Jens Sparsø, who acted as my supervisor, Tobias
Bjerregaard, and Shankar Mahadevan, who are PhD students working on
related issue of the System-On-Chip design.

I would like to thank Tobias Bjerregaard and Shankar Mahadevan for
providing me with ideas and guidelines for this project. I would also like to
thank Jens Sparsø for his support and instructions. Finally, I would like to
thank Martin Hans and Jacob Gregers Hansen, who shared the same office
with me and had made my final few months at DTU a very memorable
experience.

Juliana Pei Zhou, Copenhagen Denmark

September 17, 2004

1

Abstract

This thesis is part of a greater effort at The Technical University of Denmark
to investigate on-chip networks. In particular, it describes the design and
implementation of a network adapter which by the means of an OCP inter-
face connects an IP core to the network. The features of the network adapter
include providing the IP core with differentiated services in the form of guar-
anteed and best-effort services and translating between the message based
format at the OCP interface and the packet based format at the network
interface.

KEYWORDS: SoC, NoC, OCP compliant, network interface, network adapter,
guaranteed service, best-effort service, On-Chip Network.

Resumé

Dette eksamensprojekt er del af den forskning på Danmarks Tekniske Univer-
sitet der har til formål at undersøge on-chip networks. Projektet omhandler
design og implementering af et netværksinterface som forbinder en IP-core
til netværket. Interfacet understøtter differentierede services i form af guar-
anteed services og best-effort services og oversætter mellem OCP-interfacets
message-baserede og netværkssidens pakkebaserede format.

KEYWORDS: SoC, NoC, OCP-konform, netværksinterface, guaranteed ser-
vice, best-effort service, On-Chip Network.

2

Contents

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 System-On-Chip and its applications 11
1.2 Design challenges for implementing SoC 12
1.3 Network-On-Chip as a proposed solution for SoC interconnect

/ communication design . 13
1.3.1 Quality of Service guarantee in NoC 15

1.4 Project Motivation . 15
1.5 Project Scope . 15
1.6 Thesis Organization . 16

2 Brief Overview of the DTU Network-On-Chip Architecture 19
2.1 The DTU Network-On-Chip and its characteristics 20

2.1.1 Message Passing . 20
2.1.2 Asynchronous . 22
2.1.3 Network-On-Chip with Distributed-Shared Memory . . 22
2.1.4 Guaranteed Services - Centralized management of con-

nection setup and teardown 23
2.1.5 OCP Protocol - Core Centric Communication 23

2.2 MANGO Architecture . 23
2.2.1 Network Controller . 24
2.2.2 Network Adapter . 25
2.2.3 Routing Node and Node Controller 25
2.2.4 Interconnect - Virtual Channels 25
2.2.5 Synchronizer . 25

2.3 MANGO Communication Infrastructure 26

3 The OCP Protocol 27
3.1 OCP Overview . 27

3.1.1 Signals . 29
3.1.2 Protocol Phases and Ordering 32

3

4 Contents

3.2 DTU OCP Specification . 32
3.2.1 Signal meaning for GS traffic 33
3.2.2 Signal subset . 33
3.2.3 Protocol Transaction and timing 35

4 Network Adapter Conceptual Design and Methodologies 37
4.1 Types of Network Adapter . 38

4.1.1 Slave Network Adapter 38
4.1.2 Master Network Adapter 38
4.1.3 Duplex Network Adapter 38

4.2 End-to-End Flow Control and Managing Guaranteed Service
Connections . 39
4.2.1 Message segmentation and reassembly 39
4.2.2 Multiple Connection Management 40
4.2.3 Connection Setup . 40
4.2.4 Connection Teardown 41

4.3 Network Adapter Component Overview 41
4.4 Packet Format . 43

4.4.1 Defining the Packet Types and GS Connection Types 44
4.4.2 Best Effort Packet Format 45
4.4.3 Guaranteed Service Packet Format 51

4.5 Design issues at the Network Interface 52
4.5.1 NA Input Port at the Network Interface 52
4.5.2 NA Output Port at the Network Interface 56

5 Implementation of Network Adapter 59
5.1 Architecture . 59
5.2 Module Design and Programming 61

5.2.1 Decapsulation Unit . 61
5.2.2 Request End-to-End Flow Control Unit 70
5.2.3 Connection ID Table 74
5.2.4 Route Lookup Table 75
5.2.5 Encapsulation Unit . 75
5.2.6 Output Queue Control 78
5.2.7 Output Queues . 80

5.3 Concluding Remarks . 81

6 Test of the Slave Network Adapter 83
6.1 Test Method . 83
6.2 Test Cases . 86

6.2.1 Priority Scheduler Testing 86
6.2.2 Decapsulation Testing 86
6.2.3 Receive Request Testing 87
6.2.4 Encapsulation Testing 87

Contents 5

6.3 Test Results . 87

7 Results Discussion and Performance Estimate 89
7.1 Performance . 89
7.2 Cost Estimate . 91

7.2.1 Area Usage . 91
7.2.2 Power Consumption 92

7.3 Suggestions for optimization 94

8 Future Work 97
8.1 Master NA Design . 97

8.1.1 Response End-to-End Flow Control Unit 98
8.2 Duplex NA Design . 101

8.2.1 Component Added - Master/Slave Controller 101
8.2.2 Components Modified 103

8.3 Burst Extension . 104

9 Conclusion 105

A DTU GS-OCP Specification 107

B Programmer’s Model for DTU NoC 121

C DTU NoC Network Interface Specification 129
C.1 Introduction . 129
C.2 The Network . 129

C.2.1 NoC primitives and components 130
C.2.2 BE . 130
C.2.3 GS . 133
C.2.4 The Network Interface (NI) 136
C.2.5 Network Architecture 136
C.2.6 Node Architecture . 136
C.2.7 Link Architecture . 137

D Slave Network Adapter Source Code 139

Bibliography 141

6 Contents

List of Figures

2.1 Encapsulation of OCP commands at each abstraction layer. . 21
2.2 Mapping of DTU NoC protocol stack to the OSI protocol

reference stack. 22
2.3 DTU NoC Topology . 24

3.1 System On Chip communication showing Network Adapter
and OCP instances . 28

3.2 OCP signal classification . 29
3.3 Timing Diagram for an OCP read request handshake and sep-

arate response. 35

4.1 Block diagram for the slave network adapter. 42
4.2 Best Effort packet header . 45
4.3 GS Setup Request packet payload. 46
4.4 GS Setup Response packet payload 48
4.5 GS Teardown Request packet payload 49
4.6 GS Teardown Response packet payload 50
4.7 BE Request packet payload 50
4.8 BE Response packet payload 50
4.9 Guaranteed Service Request Packet 51
4.10 Guaranteed Service Response Packet 52
4.11 Network interface between the routing node and the network

adapter. Virtual channels going through the Sync component
are for both ingoing and outgoing directions. 53

4.12 Communication protocol for one virtual channel at the net-
work interface input port. 54

4.13 Communication protocol for one virtual channel at the net-
work interface output port. 57

5.1 Block diagram of processes and signals within the Decapsula-
tion Unit. 62

5.2 Flow chart diagram for Select Channel Process shown in Fig-
ure 5.1 . 65

7

8 List of Figures

5.3 First In First Out Queues. Take_tag marks all the channels
that have already been taken out of the queue by the Finite
State Machine. Only when a channel has been taken out of
the queue can it be overwritten with a new channel. 67

5.4 Priority scheduler finite state machine for incoming virtual
channels. 68

5.5 Block diagram of processes and signals within the ReqE2E Unit. 71
5.6 Finite State Machine for receiving requests 72
5.7 Finite State Machine for receiving responses 73
5.8 Encapsulation Unit Finite State Machine for sending out pack-

ets to the output queues. 77
5.9 Output Queue Control Unit Finite State Machine for loading

packets to the output queues. 79

6.1 Testing procedure for Slave NA design. 84
6.2 Testing hierarchy. 85

7.1 Slave NA critical path generated by Synopsys. 95

8.1 Block Diagram of a master network adapter. 99
8.2 An example state diagram for Response End-to-End Flow

Control Unit. 100
8.3 Block Diagram of a duplex network adapter. 102

C.1 The format of a network packet. 132
C.2 A set of virtual channels create a virtual circuit, for use as

a GS path. At each node, the input VC is mapped to one
particular output VC. The VCs are used only by that par-
ticular GS path, and traffic along the path is thus logically
independent of other traffic in the network. 135

C.3 Node architecture. 137

List of Tables

3.1 Basic OCP Signals. 30
3.2 OCP protocol phases . 32
3.3 DTU NoC OCP Signal Set . 34

4.1 MAddr assignment for GS setup and teardown requests . . . 47
4.2 Destination Address assignment for BE response packet . . . 51

5.1 Only when the channel contains a flit (contain_flit = 1) and
has not been tagged before (tag = 1) do we want to get flit
from this channel. Temp_untagged marks all the channels of
the same priority that has not been selected before. 67

5.2 Packet Type Encoding for DTU NoC 69
5.3 MReqInfo and MCmd Signal Encoding for different request

types . 74

7.1 Estimate of an area breakdown of the slave network adapter
using 0.18 µm cell library. 92

7.2 Power Estimate for Slave NA when performing READ operation. 93

C.1 Virtual Channel (VC) Assignment 133
C.2 GS Routing Schemes . 135

9

10 List of Tables

Chapter 1

Introduction

Contents

1.1 System-On-Chip and its applications 11

1.2 Design challenges for implementing SoC 12

1.3 Network-On-Chip as a proposed solution for SoC
interconnect / communication design 13

1.3.1 Quality of Service guarantee in NoC 15

1.4 Project Motivation 15

1.5 Project Scope . 15

1.6 Thesis Organization 16

The focus of this chapter is to describe to the reader the motivation for
this thesis, the scope of the thesis work, and how the thesis is organized. To
do this, the reader will first gain some background understanding of System-
On-Chip (SoC), their usages and benefits, and some of the current challenges
faced by SoC designers in terms of on-chip communication and interconnect.
Network-On-Chip (NoC) will be introduced as a possible solution to SoC
communication problems, which will then lead us to the discussion for the
motivation of this thesis project.

1.1 System-On-Chip and its applications

In today’s dynamic world of computer technology, we are witnessing the
convergence of multiple traditionally unrelated applications such as compu-
tation, communication (videophone, networking), and multimedia (audio,
video, photography) in an embedded environment. This convergence leads
to increased demands on the functionality of embedded devices and expands

11

12 Chapter 1. Introduction

their heterogeneity. Embedded systems become much more dynamic and un-
predictable as new algorithms shift to higher semantic levels. In addition to
providing multifaceted functionalities, the users of embedded systems expect
a predictable behavior in its performance. For example, a consumer elec-
tronic device must deliver correct information within a reasonable amount
of time, and should not crash or be unresponsive. This notion of quality of
service (QoS) is in place to ensure that developers of electronic devices will
aim to offer a predictable system behavior to the users while meeting the
users’ functional needs. The important question now is : How can designers
create such an embedded system that will incorporate the dynamic function-
alities of many unrelated tasks of unpredictable nature while guaranteeing
a certain acceptable level of services to the users. System-On-Chip (SoC)
designers attempt to answer this question in the most cost effective manner.

According to Moore’s Law, the number of transistors that can be inte-
grated in an IC will grow exponentially over time. It predicts that chips in
2010 will count over 4 billion transistors, operating in the multi-GHz range
[1]. It is this unprecedented computational power that gives rise to the pos-
sibility of having System-On-Chip in which multiple resources (cores) such
as processing cores, storage devices, FPGAs and other kinds of Intellectual
Property (IP) cores, reside on one silicon chip in an embedded environment.
These multiple resources will then interact with each other, working together
to fulfill the requirements and needs of the users.

1.2 Design challenges for implementing SoC

Although Moore’s Law fuels the convergence of resources on a single chip,
in actual fact, it is only a prediction. When it comes to implementing SoC,
designers face the following challenges:

• Synchronization and wire delay - For SoCs that occupy a large area
and requires that wires be stretched over long distances, a increasing
ratio of the delay of long wires with respect to the transistor gate de-
lay results. Long wire delay makes global distribution of fast clocks
difficult resulting in clock skew which creates timing closure and syn-
chronization problems among the different components.

• Power delivery and dissipation - As the number of transistors increase
exponentially on a single die, the overall static power increases due
to the individual static power dissipation of each transistor. Dynamic
power dissipation increase as well because components on the chip
are required to perform a lot of computations. In a embedded SoC
environment, where power supply is limited, this increase in both static
and dynamic power dissipation poses a problem for maintaining battery
life and removing heat on a small die.

1.3. Network-On-Chip as a proposed solution for SoC interconnect /
communication design 13

• Predictability and performance - IP cores operating together need to
meet an expected level of performance and its behavior must be pre-
dictable. The dependence of the propagation delay on the interconnect
architecture and chip topology is making predictability of the system
increasingly difficult because an unreliable interconnect architecture
will not be able to meet the stringent performance requirements such
as throughput and latency.

• Flexibility and time-to-market pressure - With the requirements of the
over functionality of SoC ever changing and unpredictable depending
on consumer needs, flexibility in changing custom-made IP cores within
a system without having to reprogram ever time an interconnect struc-
ture changes can save a lot of design reiteration time and hence cost.
Time-to-market pressures forces SoC designers to quickly adapt new
IP cores to an SoC system, meaning that IP cores should be able to
be reused in a different SoC environment without having to spend too
much time to reprogram. This is also referred to as design reuse.

It can be shown that the above mentioned challenges are global in nature,
are strongly dependant on how the interconnect technology is implemented,
and can therefore be classified as interconnect problems. An illustrating
example is component synchronization. When meeting timing constraints
for IP cores, it is not possible to verify the timing for IP cores independently
because they are interconnected. Meeting the timing constraints for one
IP core may violate those of another, resulting in a global timing closure
problem. The manner in which the interconnect is implemented can greatly
affect the SoC’s timing performance.

Due to the exponential complexity property of global design methods,
there is an increasing need to divide the global problem into localized and
decoupled subproblems where solutions are scalable and can be found locally.

In the following section the reader will be introduced to the concept
of Network-On-Chip (NoC) and how researchers today propose it as the
solution to SoC design challenges discussed in this section.

1.3 Network-On-Chip as a proposed solution for

SoC interconnect / communication design

From our discussion in the previous section, we have seen that intercon-
nect technology is a limiting factor for achieving SoC’s operational goals.
Network-On-Chip (NoC), a hardware architecture for interconnect with a
protocol model, has received considerable attention in the recent years as a
promising solution to solving SoC interconnect problems for the following
reasons.

14 Chapter 1. Introduction

Firstly, today’s dominant interconnect for SoC is the conventional shared-
bus architecture. However, because of its inherent non-scalable nature, buses
can no longer support the communication demands of complex SoCs where
tens or hundreds of IP cores need to be synchronized and communicate in
parallel [2]. The bandwidth of a bus is shared by all attached devices and
it has serious scalability limitations when the number of IP cores increases.
Shared-bus architecture is also energy inefficient because every data transfer
is a broadcast, meaning that data must reach every possible receiver wasting
lots of unnecessary energy cost. Hence, on-chip packet-switched network is
exploited as it is a technology which originates from parallel computing and is
well suited for heterogeneous communication among IP cores. NoC is based
on the idea of packet-switching and using routers and links as communication
framework between components.

Secondly, as introduced in the previous section, complex SoC design re-
quires a modular, component-based approach to both hardware and software
design where global problems or quality-of-service requirements such as relia-
bility, performance, and power bounds are subdivided into smaller and more
manageable tasks. NoC achieves this by partitioning the communication be-
tween IP cores into abstraction layers (protocol stacks) and reconfigurable
micronetworks, which utilize the methods and tools for general computer
networks [3]. Implementing the protocol stack allows a standardized com-
munication protocol across components and opens possibility for specializa-
tion and optimization for the target application domain, therefore achieving
efficient communication in SoCs .

Thirdly, in regards to power consumption minimization, network traffic
control and monitoring for NoC can help better manage the power that
networked computational resources consume. For example, the clock speed
and end node voltages can vary according to available network bandwidth
[4].

Lastly, NoC will also be able to address time-to-market pressure for SoC
design. NoC offers flexible scalability and network reconfigurability, which is
absolutely critical when it comes to reuse of already designed components or
IP cores. The goal is to decouple computation from communication through
a well defined interface between the IP cores and the underlying NoC network
infrastructure. This decoupling allows flexible reconfiguration and program-
ming of the SoC in a plug-and-play manner without having to go through
tedious reprogramming and readjustments every time IP cores are changed
or replaced. In addition, decoupling permits IP cores to be bought or pre-
made. Using them and making them to work with other IP cores in a SoC
is a simple matter of plugging it into the NoC’s standardized interface, also
known as the network adapter (NA), which will be the focus of this thesis.
The NA allows this plug-and-play feature of the NoC that will enable SoC
designers to save a significant amount of design overhead time and therefore
cost when SoCs are reconfigured with different IP cores [5].

1.4. Project Motivation 15

1.3.1 Quality of Service guarantee in NoC

The reduction of cost of system design through reuse of application and ar-
chitecture is the aim of platform-based design. With increasing demands
on functionality for SoCs and increasing diversity and dynamics of resource
usages, SoC must provide differentiated services to maintain predictability
and reliability of system performance. NoC designers use the NoC’s pro-
tocol stack as a layered approach to offering differentiated services between
different client IP cores based on a common network [6]. Guaranteed ser-
vices in addition to best-effort services is a requirement for NoC hardware
architecture. One of the main tasks for the network adapter apart from de-
coupling computation from communication is to ensure that the NoC will
be able to offer a set of guaranteed services on top of which different kinds
of communication can be implemented.

1.4 Project Motivation

Currently, the System-On-Chip group at IMM, Technical University of Den-
mark, is designing a NoC for research purposes. From the introduction to
NoC, we have seen that in order to reduce the cost of system design in terms
of reducing time-to-market and allowing component reuse in a plug-and-play
fashion, a network adapter with a standardized and well-defined interface to
the IP cores is required. Furthermore, the network adapter is also respon-
sible for providing differentiated services to the attached IP cores because
an expected level of quality-of-service is expected for a well performing SoC
design.

The objective of this thesis is to investigate the design of a network
adaptor (NA) for the DTU NoC using the Open Core Protocol (OCP) [7] as
the standardized communication protocols for the attached IP cores.

1.5 Project Scope

The design of the NA for DTU NoC involves the following design tasks and
responsibilities:

• Determining the possible types of NA and how they differ in terms of
implementation.

• Design conceptually all types of NA and determine their internal mod-
ules and what they each do.

• Defining and specifying two interfaces on the NA: the OCP interface to
the IP cores and the network interface to the underlying interconnects.

16 Chapter 1. Introduction

• Determining all supported forms of communication in the NoC and how
the NA will handle the management of these communication types.

• Defining the packet formats for different communication traffics in the
network.

• Define how the NA packetizes requests from the initiating core and
sends it to the packet-switched routing network.

• Determine how the NA handles congestion problem into the network.

• Define how the NA depacketizes the responses and presents it to the
connected IP core while complying to the OCP protocol.

• Define how the NA sets priority for different traffic types and how to
schedule them accordingly.

• Determine how different types guaranteed services will be handled in
the NoC, including connection setup and teardown.

• Determine how the NA differentiates between different traffic types in
the NoC and handle the payload in accordance to its packet type.

After the completion of the above design tasks, a behavioral implementa-
tion of the NA is completed in Very high speed integrated circuit Hardware
Description Language (VHDL). The design and implementation are verified
and tested followed by a performance and cost estimate. All of these will be
described in later chapters in this thesis.

1.6 Thesis Organization

In Chapter 2, a brief introduction will be given about the DTU NoC. The
reader will learn about the different design issues involved, the different com-
ponents in the DTU NoC, the types of services the NoC provides, the types of
communication the NoC handles, and how memory and addressing is defined.

Chapter 3 gives a brief overview to the OCP protocol, a discussion of the
DTU OCP specification and how it is related to the full OCP protocol suite.

Chapter 4 discusses the conceptual design of the network adapter. For
those readers only interested in gaining a general sense of what the network
adapter is about, reading this chapter should be sufficient.

Chapter 5 examines the implementation details of the network adapter in-
cluding all its components and how they are interfaced together to achieve

1.6. Thesis Organization 17

the overall performance requirements.

Chapter 6 describes the testing of the network adapter in terms of the type
of testing performed and how the testing validated the correct operation of
the network adapters in accordance to the design defined in chapters 4 and 5.

Chapter 7 discusses the implementation results and gives a performance
and cost estimate of the network adapter.

Chapter 8 points out directions for future work for those interested in fur-
ther developing the network adapter.

Chapter 9 summarizes and concludes the thesis.

Following the chapters will be the appendices. The reader will find a
copy of of the DTU OCP spec and the DTU programmer’s model appended
for convenience because these two documents are critical to the design and
the implementation of this network adapter.

18 Chapter 1. Introduction

Chapter 2

Brief Overview of the DTU

Network-On-Chip Architecture

Contents

2.1 The DTU Network-On-Chip and its characteristics 20

2.1.1 Message Passing 20

2.1.2 Asynchronous . 22

2.1.3 Network-On-Chip with Distributed-Shared Memory 22

2.1.4 Guaranteed Services - Centralized management of
connection setup and teardown 23

2.1.5 OCP Protocol - Core Centric Communication . . . 23

2.2 MANGO Architecture 23

2.2.1 Network Controller 24

2.2.2 Network Adapter 25

2.2.3 Routing Node and Node Controller 25

2.2.4 Interconnect - Virtual Channels 25

2.2.5 Synchronizer . 25

2.3 MANGO Communication Infrastructure 26

Before entering into the design details of the DTU network adapter, the
reader needs an overall picture of the NoC in which this network adapter is
a part of. This chapter first introduces the DTU NoC by the acronym name
MANGO, and describes how MANGO addresses its characteristics. After-
wards, the components of the MANGO and their functions will be discussed.
Finally, this chapter presents possible types of communication that can take
place in MANGO. By the end of this chapter, the reader will have gained a
basic understanding of DTU NoC and how the network adapter fits into the
overall NoC design.

19

20 Chapter 2. Brief Overview of the DTU Network-On-Chip Architecture

2.1 The DTU Network-On-Chip and its character-

istics

In this section, we will consider five main design aspects of the DTU NoC,
also known by the acronym name MANGO.

Message Passing – By partitioning the communication into abstrac-
tion layers and using packet-switching, process-
ing cores operating in parallel can send discrete
messages to one another.

Asynchronous – The DTU NoC applies the globally asyn-
chronous and locally synchronous (GALS)
paradigm.

Network-On-Chip – The DTU NoC is realized by an on-chip net-
work with a distributed-shared memory address-
ing scheme.

Guaranteed sevices – The DTU NoC provides differentiated services
such as guaranteed service connections and best-
effort connections. The configuration of these
connection setups and teardowns in the network
adapter is performed in a centralized manner via
the Network Controller.

OCP interfaces – The DTU NoC implementing a core-centric com-
munication interface by using the OCP protocol
as the standardized protocol between IP cores
and the network adapter.

In the following sections, we will take a more in-depth discussion of
MANGO and its design implications.

2.1.1 Message Passing

As introduced in the previous chapter, a NoC is based on the idea of a
packet-switched network. Processes on IP cores perform message passing
in parallel using a transaction-based protocol. Although packet-switching
introduces some overhead costs such as packetization, routing, and buffer-
ing, it is essential for IP reuse strategy because it enables compositional and
scalable integration of the IPs. Packet-switching is based on the idea of ab-
straction layers and protocol stacks as each component within the network
implements a stack layer and packets are created, routed, and unpacked at
various layers across the protocol stack. Protocol stacks are used in networks
to implement communication services and are necessary to manage the net-
work complexity and to offer differentiated services. To better understand
the communication among IPs in MANGO, we first look at the MANGO
abstraction layers and its relation to the OSI reference stack.

The MANGO architecture is designed with three abstraction layers, as

2.1. The DTU Network-On-Chip and its characteristics 21

OCP Request / Response

PayloadNA
Header

PayloadNetwork Packet
Header

Header
contains

Routing Path

Header
contains

Destination
address,

Packet Type,
and Source

Address

Core Layer

NA Layer

Network
Layer

Figure 2.1: Encapsulation of OCP commands at each abstraction layer.

shown in Figure 2.1: the IP Core resides on the top Core Layer, the network
adapter resides on the middle NA Layer, and the NoC resides on the bottom
Network Layer. A data unit at any particular layer is always encapsulated
in the layer below as payload.

Encapsulation allows each layer to fully rely on the services provided
by the level below. In Chapter 4, details of the packet contents at each
abstraction level will be discussed. Figure 2.2 shows the mapping of the
three MANGO abstraction layers to the OSI reference stack model.

Since NoCs are small networks on a single chip, the responsibilities of each
abstraction level need not be as complicated as the corresponding reference
stacks in the OSI. It is not necessary to implement all of the OSI stack layers
to provide high-level functionality. The OSI stack model can be modified to
match the needs of the system components. Below we briefly discuss the
responsibilities of each of these three MANGO abstraction layers.
Core Layer: This is where the IP core of the NoC resides. Application
of the IP cores relies on the services provided by the NA layer below to
communicate messages to applications running on other cores.
NA Layer: The network adapter is responsible for covering the tasks at the
NA layer. The NA layer establishes and maintains end-to-end connection.
It manages flow control, performs packet segmentation and reassembly, con-
trols congestion to the network, carries out scheduling over multiple virtual
channel, and hides the topology of the network and the implementation of
the links from the applications at the core layer.
Network Layer: The interconnecting links and routers are at the network
layer. The network layer is responsible for transferring data over the physical
links, it does packet routing, and performs multiplexing and arbitration.

22 Chapter 2. Brief Overview of the DTU Network-On-Chip Architecture

Application

Presentation

Session

Transport

Network

Data Link

Physical

Core

NA

NoC
Interconnect

OSI Reference
Stack

MANGO
Abstraction

Layers

Figure 2.2: Mapping of DTU NoC protocol stack to the OSI protocol refer-
ence stack.

2.1.2 Asynchronous

Last chapter, we learned that synchronizing the various components on a SoC
in a global sense can lead to difficult timing closure problems as the number
of components on chip increases. Distributing the single clock source with
negligible skew is extremely difficult. To eliminate the clocking problem and
to modularize components in the SoC by partitioning the global problems
into local ones, MANGO implements the globally asynchronous and locally
synchronous (GALS) paradigm, which involves synchronous IP cores running
at different speeds communicating across an asynchronous NoC interconnect.
Thus, IP cores will initiate data transfers autonomously according to their
needs. The asynchronous interconnect architecture provides the communi-
cation infrastructure for the IP cores.

2.1.3 Network-On-Chip with Distributed-Shared Memory

The addressing scheme on MANGO is chosen such that the address space is
distributed evenly among all IP cores and the components of the NoC includ-
ing the network adapter, the routing nodes, and the links. When addressing
to a particular address, an IP core sees a continuous addressing space and is
not aware of the underlying routing network. This addressing scheme facili-
tates the decoupling of computation from communication because it enables
communication between IP cores to be independent of the network imple-
mentation. Any configuration of MANGO components, such as setting GS
connection information in the NA and setting routing information in the

2.2. MANGO Architecture 23

routing nodes, can be done using direct read and write commands to the
addresses which those components are mapped to. For readers interested in
the details of memory space mapping for MANGO components, please see
[8].

2.1.4 Guaranteed Services - Centralized management of con-
nection setup and teardown

To ensure performance predictability for the SoC, MANGO offers quality-of-
service to provide better service to particular flow of data that needs some
amount of service guarantee. The guaranteed services can be of several pos-
sible types: throughput, latency, and jitter, etc. MANGO provides both
the guaranteed service (GS) connections as well as the best-effort (BE) ser-
vice. The default service is the BE service with an unspecified finite latency
bound. BE packets, which use worm-hole source routing, do not require
previous connection setup or connection termination after use. The routing
nodes simply forwards the BE packets in the best possible manner given re-
source availability, and does not guarantee any QoS parameters. Guaranteed
Service (GS) packets, on the other hand, can provide guarantees in terms of
latency, throughput, and jitter. GS connections require reliable communica-
tion and therefore needs connection setups and teardowns, which are created
and removed by sending special purpose BE request packets to the Network
Controller (NC). The NC manages all connection setups and teardowns in a
centralized fashion by establishing a guaranteed path through the network
subject to resource availability. Details of how BE and GS communications
are implemented in MANGO are further discussed in Chapter 4.

2.1.5 OCP Protocol - Core Centric Communication

As another effort to realize decoupling of computation and communication
and allowing high portability of SoC cores, a core-centric communication
protocol is used. This means that the cores and the interfaces to the network
adapter are equipped with a general purpose interface; therefore, making
the network adapter as a bridge between the communication network. The
protocol chosen for MANGO is the general and standardized Open Core
Protocol (OCP). It is specified in detail in [7]. OCP will also be briefly
introduced later in Chapter 3.

2.2 MANGO Architecture

MANGO, depicted in Figure 2.3, is comprised of resources (IP cores) and net-
work infrastructure. The network consists of routers, interconnecting links,
network adapters (NA), synchronizer, and a network controller. It has a sim-
ple grid topology with routers located at the cross-sections of the network

24 Chapter 2. Brief Overview of the DTU Network-On-Chip Architecture

grid. NAs act as interfaces between the IP cores and the routers. Each IP
core is connected to the network through a layer of abstraction via the NA.
This concept is analogous to a microcomputer that uses a modem/ethernet
card to connect to the public network. The physical network underneath is
hidden from the microcomputer by the network adapter.

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

NC

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

IP

R

NA

Syn
c

Figure 2.3: A sample 4 X 4 example of MANGO with 16 IP Cores, Network
Adapters, Synchronizers and Routers. The NoC comprises of synchronous
IP cores and asynchronous interconnects (GALS).

Cores communicate with each other by sending messages via the NA and
network underneath. Routers are connected to four neighboring routers via
interconnecting links which implement input and output virtual channels.
The following sections will briefly describe the function of the components
in MANGO shown in 2.3.

2.2.1 Network Controller

The Network Controller (NC) is a special core in MANGO which is respon-
sible for setting up and tearing down guaranteed connections requested by
master IP cores. The NC keeps track of all the connections in the network
and manages them. The NC allows a centralized control of the connections
in the NoC. Having a centralized control can possibly speed up network con-
figuration for small NoCs. However for large networks centralized control
can introduce bottleneck [5].

2.2. MANGO Architecture 25

2.2.2 Network Adapter

The NA is designed to provide a standard interface to the IP cores such that
an IP can enjoy the plug-and-play feature discussed in chapter one. The
OCP protocol allows the NA to standardize such a point-to-point interface
between two communicating entities - one acting as a master and the other
acting as a slave. Only the master entity is capable of initiating commands.
The slave entity is responsible for responding to that command. In order for
one IP core to communicate with another IP core in a peer-to-peer fashion,
where the network hardware architecture is transparent, there needs to be
two instances of OCP interface such that one instance acts as a master on
one IP and the other acts as a slave on the other IP. The IP itself is not aware
of the underlying communication network. It only understands the global
memory address space where it can perform read and write operations on.
The NAs, which the IPs are attached to, are responsible for handling the
correct packaging of the messages between the communicating IP cores such
that the packets are network compatible. The NA should fully comply to
the OCP specification described in [7].

2.2.3 Routing Node and Node Controller

The routing nodes are used to route packets in and out of virtual channels
in all north, south, east, and west directions. The routing schemes and
scheduling performed by the routing nodes are configured and controlled by
the Node Controller. The Node Controller controls the nodes by offering a
memory mapped view of the setup registers in each node [9]. Guaranteed
service connections can be setup and torn down by simply writing to these
registers.

2.2.4 Interconnect - Virtual Channels

The interconnect is implemented such that between two adjacent routing
nodes, a link implements a number of virtual channels by time-multiplexing
data flits from them. Virtual channels are located at each end of links leading
into and out of the routing nodes. They share the same physical channel but
are logically independent from each other.

2.2.5 Synchronizer

The Synchronizer component (Sync) which resides between the NA and the
routing node shown in Figure 2.3 is used to synchronize between the syn-
chronous IP packet to the asynchronous NoC interconnect. At the input
and out ports to the NA, there are two virtual channel controllers in the
Synchronizer, one for each port. These two controllers are used to provide
handshaking mechanism with the virtual channel controllers inside the NA.

26 Chapter 2. Brief Overview of the DTU Network-On-Chip Architecture

See Figure 4.11. Handshaking is needed in order to pass packet segments or
flits to and from the NA and the NoC. After receiving a packet from the NA,
the Synchronizer must this packet asynchronously to the NoC and vice versa.
The synchronizer allows the IP cores to be running at different speeds. It
alleviate the problem of having to synchronize the single clock single across
all cores in the NoC.

2.3 MANGO Communication Infrastructure

Taking into account guaranteed service connections and best-effort service,
there could exist four different possibilities of communication between a mas-
ter (initiating) IP core and a slave (target) IP core in MANGO.

• Best-effort service in both the forward and reverse directions between
a master and a slave.

• Best-effort service in the forward direction, but guaranteed service in
the reverse direction.

• Guaranteed service in the forward direction, but best-effort service in
the reverse direction.

• Guaranteed service in both forward and reverse directions.

The master core can request any one of the above four types of com-
munication by sending a connection setup request best-effort packet to the
NC. The NC sets up the connections accordingly and responds to the master
and slave core to indicate whether the connection was set up successfully.
When connection is no longer desired, the master core can send a teardown
request best-effort packet to the NC, and the NC responds accordingly. For
clearer explanation of how connection setup and teardown is done please
read Chapter 4, Sections 4.2.3 and 4.2.4.

In this chapter, we have introduced the characteristics and the DTU
NoC or MANGO architecture. We have learned about how the components
of MANGO are organized and about their functions. Lastly, we have learned
the different possible types of communication that can occur between two
IP cores.

Chapter 3

The OCP Protocol

Contents

3.1 OCP Overview . 27

3.1.1 Signals . 29

3.1.2 Protocol Phases and Ordering 32

3.2 DTU OCP Specification 32

3.2.1 Signal meaning for GS traffic 33

3.2.2 Signal subset . 33

3.2.3 Protocol Transaction and timing 35

MANGO uses the Open Core Protocol (OCP) as the core-centric protocol
that comprehensively describes the system level communication for Intellec-
tual Property (IP) cores. Therefore, the network adapter, which is the focus
of this thesis, must support the OCP protocol at its interface to its attached IP
cores. However, the OCP protocol is very elaborate and flexible, and MANGO
only needs a subset of the OCP protocol suite, the MANGO OCP suite. In
this chapter, an overview of the general OCP protocol will be given followed
by a highlight explanation of the MANGO OCP suite along with its signal
meanings for handling GS service in regards to the network adapter. Under-
standing this chapter is important in understanding the network adapter core
interface.

3.1 OCP Overview

This section gives a very general introduction to the Open Core ProtocolTM(OCP).
The description is very brief and most of the details of the complete OCP
suite are left out. For a complete description of OCP, please refer to the
OCP Specification [7].

27

28 Chapter 3. The OCP Protocol

IP Core A IP Core B

Network Adapter

Master Slave

Master Slave

Network Adapter

Master

Synchronizer

P
a

ck
e

t

P
a

ck
e

t

Slave

Router Router

OCP Core
Interface

DTU
Network

RequestResponse

Initiator / Target Target

IP Core C

Master

Network Adapter

Slave

Synchronizer

Request

P
a

ck
e

t

Initiator

Router

Synchronizer

Figure 3.1: System On Chip communication showing Network Adapter and
OCP instances

The OCP defines a high-performance, bus-independent interface between
IP cores that reduces design time, design risk, and manufacturing cost for
SoC designs [7]. Figure 3.1 shows an example of a simple system containing
three NAs and three cores communicating with each other using OCP. Fig-
ure 3.1 shows that OCP is based on master/slave communication. A core
can either be an initiator, containing an instance of an OCP master, or a
target, containing an instance of an OCP slave, or both, depending on the
core’s characteristics and functions. Since the NA acts as a standard inter-
face to the IP cores, it must provide complementary OCP instances to the
connected cores as can be seen on Figure 3.1. However, from the core’s per-
spective for example, a master core only sees the slave slave core entity while
communicating. The NA’s master/slave OCP instances are transparent to
the core’s master/slave OCP instances. This means that IP interfaces should
able to function as if one IP master was directly connected to another IP
slave with no communication architecture in between. In practice, the NoC
architecture adds some delay to the communication interface. We will look
at some performance parameters for the NA such as latency in Chapter 6.

A typical communication interaction between initiator IP core A and
target IP core B performs as follows:

1. Core A master presents a command, control, and possibly data (de-

3.1. OCP Overview 29

pending on whether the command is read or write) to its complemen-
tary slave OCP instance on ched NA.

2. The NA slave converts this OCP request into a NoC packet and sends
this packet to the receiving NA master of the target core B. The NA
for core A is responsible for preparing the header of the packet which
also includes the routing path across the NoC. We opt for source based
routing to reduce the complexity of routers in the NoC.

3. The receiving NA master converts the received packet to valid OCP
command and presents this command to Core B’s OCP slave.

4. Core B’s OCP slave receives the command and performs the requested
action and possibly returns a response to Core A to acknowledge trans-
action execution, depending on the type of service Core A requests.

3.1.1 Signals

OCP interface signals fall into three categories: dataflow, sideband, and test
signals. The dataflow signals are divided into basic signal, simple extensions,
burst extensions, and thread extensions.

The OCP is a synchronous protocol with a single clock signal. All OCP
signals are driven and sampled at the rising edge of the OCP clk. OCP
signals are point-to-point and unidirectional with exception of the clock sig-
nal. Except for a few mandatory signals in the basic signal group, all other
OCP signals are optional and can be configured to support additional core
communication.

The classification of the OCP signal group is shown in Figure 3.2. We
will review briefly the usage of each of these signal groups in this section.

OCP Signals

Dataflow Signals

Sideband Signals

Test Signals

Basic Signals

Simple Extension

Burst Extension

Thread Extension

Figure 3.2: OCP signal classification

30 Chapter 3. The OCP Protocol

Dataflow Signals

Basic Signals are the most fundamental set of OCP signals. Table 3.1 lists
all the signals in the basic signal set.

Signal Name Description

Clk Clock.

MCmd Command signal from Master to Slave.

MAddr Address signal from Master to Slave.

MData Data from Master to Slave.

MDataValid Indicates that the data on the MData field is valid.

MRespAccept Ackowledge signal from Master to Slave indicating that the
slave response has been accepted.

SCmdAccept Ackowledge signal from Slave to Master indicating that the
master command has been accepted.

SResp Response signal from Slave to Master

SData Data from Slave to Master.

SDataAccept Acknowledge signal from Slave to Master indicating that the
slave has accepted the pipelined write data from master.

Table 3.1: Basic OCP Signals.

Of the ten signals in this group, only Clk and MCmd signals are manda-
tory. All others are optional. The Master can issue 8 different com-
mands using MCmd:

• (IDLE) - Idle.

• (WR) - Write.

• (RD) - Read.

• (RDEX) - ReadEX

• (RDL) - ReadLinked

• (WRNP) - WriteNonPost

• (WRC) - WriteConditional

• (BCST) - Broadcast

The detailed meaning for these commands can be found in [7]. The
Slave can post one of the following 4 responds to MCmd:

• NULL - No Response.

• DVA - Data Valid/Accept.

• FAIL - Request Failed.

• ERR - Response Error.

3.1. OCP Overview 31

Simple Extension provides additional support for master and slave cores
with more complex communication requirements. Simple extension
includes byte enable, multiple address spaces , and the addition of in-
band socket-specific information to any of the three OCP phases. See
Section 3.1.2 for more information on the protocol phases.

Burst Extension provides support for linking multiple otherwise indepen-
dent OCP transfers in a chain. It optimizes data transfers by cutting
down overlaps in control overheads such that related data transfers
can be done all at once instead of individually. OCP offers different
sequence types for bursting. Here we mention the main ones:

• INCR : increments the address by the specified OCP word size
every clock cycle for regular memory type accesses.

• STRM : streams data to or from a target where address stays
constant during a burst.

• DFLT1 : User-specified address sequence where maximum pack-
ing is required.

• DFLT2 : User-specified address sequence where packing is not
allow.

• WRAP : Like INCR, but the address wraps at OCP word size
indicated by the signal MBurstLength.

Thread Extension enables communication concurrency. Without it, strict
transfer phase ordering must be enforced: each transfer request must
be completed by the slave in the same order as they are presented by
the master. The transfers in each thread must remain in-order with
respect to each other, but the order between threads can be altered
between request and response.

Sideband Signals

The sideband signals are outside of the formal transaction phases as are the
dataflow signals. System designers can choose to use sideband signals to
add a few more control features to the OCP interface such as global reset,
interrupts, errors, and flags.

Test Signals

Designers can also add testing features to the interface. These signals are
used for scanning of the interface to an IP core, clock control during scan
operation, and JTAG (IEEE 1149.1) debug and test interface for the OCP.

32 Chapter 3. The OCP Protocol

3.1.2 Protocol Phases and Ordering

The semantics of OCP define signal groups, phases, transfers, and transac-
tions. Signals are assigned to signal groups which are activated in accordance
to protocol phases. There are three signal groups and phases: request, re-
sponse, and datahandshake. Table 3.2 shows the three OCP protocol phases
indicating the beginning and end of each phase. Request phase always

begins when ends when

Request Phase
Master drives Master samples
MCmd 6= IDLE SCmdAccept = true

Datahandshake Phase
Master drives Master samples
MDataValid = true SDataAccept = true

Response Phase
Slave drives Slave samples
SResp 6= NULL MRespAccept = true

Table 3.2: OCP protocol phases

precedes the response phase. This means that if the slave has not responded
to the master by raising SCmdAccept, then the master must not post a new
request until the previous request has been accepted by the slave. This is an
effective way to avoid adding registers for temporary storage, and can espe-
cially be useful for the implementation of the NA. We shall see in Chapter
5, Implementation of the Network Adapter, how this feature of the OCP is
used to save area on the NA. If datahandshake phase implemented, it should
always be between the request phase and the response phase. For more pre-
cise definition of phase ordering within a transfer, please refer to Chapter 4
of [7].

While communicating, signals from the same signal group must all be
valid and held steady at the same time from the beginning of the protocol
phase until the end of that phase. Every transfer has a request phase. Read-
type requests always have a response phase. For write-type requests, the
OCP can be configured with or without responses or datahandshake. A
write-type request without a response completes the communication transfer
upon completion of the request phase.

3.2 DTU OCP Specification

MANGO has its special set of OCP signals and definitions. The DTU OCP
signals is a small subset of the full OCP signals suite and is configured for the

3.2. DTU OCP Specification 33

purpose of supporting MANGO components described in Chapter 2. All IP
cores on MANGO should comply to the DTU NoC Specification [10], which
is implemented by the NA. This section discusses some of the main aspects
of the DTU OCP Specification focusing on the parts which are of special
interest to the design of the NA.

3.2.1 Signal meaning for GS traffic

One of the main purposes of having the DTU OCP is to specify a set of
OCP signals such that they can communicate special meanings for handling
guaranteed service setup and teardown in MANGO. The DTU OCP subset
assigns its own interpretation for some of the standard OCP signals. The
NA must interpret these signals and handle the different types of requests
and responses accordingly both at the OCP interface to the core and the
network interface to MANGO.

Packet Type Recognition Signals

MANGO uses four signals to specify the type and the amount of GS ser-
vice to the NA. (The meaning of the type and amount is clarified in [10].)
These signals are: MCmd, MReqInfo, MFlag, and MData. Using MCmd and
MReqInfo, the NA can determine the type of request the master core is pre-
senting, either GS setup, GS use, GS teardown, or BE use, depending on the
value of the two signals. For the signal encoding of MCmd and MReqInfo,
please see the DTU GS-OCP Specification [10]. For connection setup, MFlag
and MData encodes the service type and the type amount for request and
response paths respectively.

3.2.2 Signal subset

The basic DTU OCP signal subset includes the signals shown in Table 3.3.
Some of these signals are not assigned a signal bit-width in the DTU OCP
Spececification [10]. In order to use these signals for implementation purpose,
the signal bit-widths are assigned as shown in the table.

The reason that MDataValid and SDataAccept are eliminated in the NA
implementation is because these two signals are datahandshake phase signals.
Datahandshake phase of the OCP protocol is not necessary for MANGO at
this point in time because it is typically only useful for master and slave
devices that require the throughput advantage available through transfer
pipelining. Transfer pipelining is not supported at this moment, but may be
considered for future MANGO development. We can completely eliminate
the datahandshake phase because the datahandshake phase is completely
independent of the request and response phases. It allows the decoupling of
a write address from write data which is not of interest at this moment.

34 Chapter 3. The OCP Protocol

Signal Name Bit-Width Driver Meaning

clk 1 varies OCP clock signal.
MCmd 3 Master Transfer command.
MAddr 32 Master Transfer address.
MData 32 Master Write data.
MFlag 32 Master Transfer connection identifier.

Specifies GS type and amount
in the forward direction dur-
ing GS setup phase.

MReqInfo 2 Master Transfer GS service command.
MRespAccept 1 Master Master accepts response.
MDataValid 1 Master Write data valid. (Not imple-

mented)
MDataInfo 8 Master Transfer master core’s address

to slave core. (Added to the
signal subset)

SCmdAccept 1 Slave Acknowledge signal for
MCmd.

SData 32 Slave Read data and GS connection
identifier (connection ID).

SResp 2 Slave Transfer response signal.
SDataAccept 1 Slave Slave accepts write data. (Not

implemented)
SDataInfo 32 Slave Identifying Slave core for con-

nection setup. (Added to the
signal subset)

Table 3.3: DTU NoC OCP Signal Set

3.2. DTU OCP Specification 35

Signals added to the DTU OCP Signal Set

Two extra signals, MDataInfo and SDataInfo, are added to the DTU OCP
interface. MDataInfo, 8 bits wide, driven by the NA OCP master, is used
to indicate the source address of the packet to the slave core. For further
clarification on its usage please see Chapter 4 Section 4.4. SDataInfo, 32 bits
wide, driven by the slave, is used to indicate the address of the slave core to
identify a connection along with the connection ID to the master core when
connection set up was successful.

3.2.3 Protocol Transaction and timing

The DTU OCP follows the phasing order and timing defined in the OCP
Specification [7]. The following timing diagram describes a valid OCP trans-
fer. It shows a typical request and response phase transaction at the OCP
interface between the a master OCP entity on the core and a slave OCP
entity on the NA.

Figure 3.3: Timing Diagram for an OCP read request handshake and sepa-
rate response.

At point A, the NA slave raises SCmdAccept, which means it has packe-
tized the master’s request. If the there is a congestion to send the packet at
the network interface end, the NA will not raise SCmdAccept until the conges-
tion is eliminated. At point B, a response to the read request was presented
to the master. The number of clock cycles from the request to the command
accept is referred to as request-accept-latency. The number of clock cycles
from the master posting a request to the slave responding to that request is

36 Chapter 3. The OCP Protocol

referred to as request-to-response-latency. For the transaction in Figure 3.3,
the request-accept-latency is 2 and the request-to-response-latency is 5.

In this Chapter, the OCP protocol was briefly introduced. In particular,
the DTU OCP signal subset was presented and the signal meanings were
described. These signals will be referred and used in the following chapters.

Chapter 4

Network Adapter Conceptual

Design and Methodologies

Contents

4.1 Types of Network Adapter 38

4.1.1 Slave Network Adapter 38

4.1.2 Master Network Adapter 38

4.1.3 Duplex Network Adapter 38

4.2 End-to-End Flow Control and Managing Guar-
anteed Service Connections 39

4.2.1 Message segmentation and reassembly 39

4.2.2 Multiple Connection Management 40

4.2.3 Connection Setup 40

4.2.4 Connection Teardown 41

4.3 Network Adapter Component Overview 41

4.4 Packet Format . 43

4.4.1 Defining the Packet Types and GS Connection
Types . 44

4.4.2 Best Effort Packet Format 45

4.4.3 Guaranteed Service Packet Format 51

4.5 Design issues at the Network Interface 52

4.5.1 NA Input Port at the Network Interface 52

4.5.2 NA Output Port at the Network Interface 56

This chapter is intended to give the reader a conceptual understanding of
the design issues involved in the making of the DTU NoC network adapter.

37

38 Chapter 4. Network Adapter Conceptual Design and Methodologies

The chapter introduces the reader to the main design challenges at a concep-
tual level without diving into the details. However, it is strongly advised that
the reader should read the DTU GS-OCP Specification (Appendix Aand the
Programmer’s Model for DTU NoC (Appendix B) before reading this chapter
in order to understand the terms referenced. We begin by first talking about
the possible types of the network adapter, what their differences are, and
how they operate in the NoC. Secondly, we discuss how the network adapter
handles end-to-end flow control in terms of connection setup and connection
teardown. Thirdly, we briefly describe all the components of the network
adapter in a schematic diagram and give a general view of their workings.
Fourthly, we present the design of the packet format for all traffic types in the
DTU NoC. Finally, we look into some design issues involving the network
interface to the NoC in terms of scheduling over multiple virtual channels
and congestion avoidance.

4.1 Types of Network Adapter

Referring to Figure 3.1 on page 28, it was shown that there can be three
different instantiations of the NA. An instantiation can have a slave OCP
module to correspond to a master core, a master OCP module to correspond
to a slave core, and a combined master/slave module to correspond to a core
with both master and slave functionalities.

4.1.1 Slave Network Adapter

The OCP interface of a slave NA can only receive OCP master signals and
respond with OCP slave signals. (See Table 3.3 for signal reference.) The
slave NA contains an OCP slave control unit which controls the signal tim-
ing and communication phase ordering at the OCP interface. A slave NA
only recognizes response type packets and output request type packets at its
network interface.

4.1.2 Master Network Adapter

Likewise, for a master NA, the OCP interface can only receive OCP slave
signals and present OCP master signals. A master OCP control unit manages
the OCP signals at the OCP interface to the slave core. The master NA
outputs response type packets and recognizes request type packets at its
network interface.

4.1.3 Duplex Network Adapter

The duplex NA has both a master and a slave OCP module. It handles
all type of network traffic for both the input and output directions, and

4.2. End-to-End Flow Control and Managing Guaranteed Service
Connections 39

can present both master and slave OCP signals at its OCP interface to the
attached core.

This thesis work includes the design for all three types of NAs. However,
only the slave NA was implemented and tested due to timing limitations.
For readers interested in further developing the NA and implementing the
other NA types, please see Chapter 8, Future Work, for design ideas and
directions.

An important job for the NA is to manage guaranteed service connection
setup and teardown services and end-to-end flow control. The following
sections discuss these topics and present a solution for this design.

4.2 End-to-End Flow Control and Managing Guar-

anteed Service Connections

From Chapter 2 we have discussed that the communication in MANGO is
partitioned to abstraction layers. The IP core in the NoC resides on the
Core Layer (Figure 2.2 on page 22), relies on the end-to-end communication
service provided by the NA Layer beneath. This means that IP cores can
communicate on a source-to-destination basis without having to know how
the actually communication is carried across to its destination. Therefore,
one of the major task for the NA is to provide this end-to-end service to the IP
cores. In the following sections we will discuss how the NA manage this task
of isolating the IP cores from the details of the underlying communication
hardware.

4.2.1 Message segmentation and reassembly

The first thing the NA does when presented with a request or response by the
IP core is to recognize what type of packet this message will be packetized
into. It does this by looking at the encoding of the master signals: MCmd
and MReqInfo, as mentioned in Section 3.2.1. The different packet types will
be discussed later in Section 4.4 of this chapter. Once the packet type has
been determined, the NA can segment the message into smaller units or flits
to be transported to the network. At the virtual channel input port of the
NA, flits are collected and assembled to form a complete message. The NA is
then responsible for recognizing the type of packet, and manage the content
of the packet accordingly. It does so by either presenting the payload to
the core if this is a normal communication packet, or write to certain tables
or delete certain entries in the NA if the packet is a connection setup or
teardown packet.

40 Chapter 4. Network Adapter Conceptual Design and Methodologies

4.2.2 Multiple Connection Management

Some IP cores are multi-programmed and will need to address multiple cores
at the same time. This implies that multiple (GS) connections will be en-
tering and leaving each IP core. There needs to be some way to tell which
message belongs to which connection. This requires some kind of naming
mechanism, so that a process on the IP core has a way of specifying with
whom it wishes to converse. The NA does this by providing a connection
ID to each GS communication path the master core requests and it keeps
track of these connections by using a connection ID table which maps each
connection ID to the actual virtual channel which this connection was set
up to.

In addition to handling connections, there must also be a mechanism
for regulating the flow of information, so that a fast process on the IP core
cannot overrun a slow one. The NA handles this problem by not asserting the
SCmdAccept until the current request message is packetized. Not asserting
SCmdAccept forces the master core to hold its request phase signals constant
until SCmdAccept is asserted. This avoids the problem of accepting a new
command before the first command has been taken care of.

The following two sections discuss how a GS connection is setup and torn
down and what the NA does in each of these situations.

4.2.3 Connection Setup

To establish a GS connection to a slave core, the master core first presents
the connection setup request to the slave NA. The NA recognizes the request
and packetizes a connection setup request packet to be sent to the Network
Controller (NC). As mentioned in Section 2.2.1, the NC is a special core in
the NoC that is responsible for all connection setups and teardowns. When
the NC receives the setup request, it tries to carry out the command and to
establish the connection. The NC will then respond to the master core by
sending a GS connection setup response packet to the master core’s NA. The
NA depacketizes it and if the connection setup was successful, it will store
the virtual channel number (also called the injection ID) of this connection
in the Connection ID table. There are several outgoing and incoming virtual
channels at the Network Interface of a NA. Some of these virtual channels
are used only for best-effort traffic while others are reserved for different GS
connections. After the new entry is recorded in the connection ID table, the
NA will respond to the master core by presenting a connection ID for the
newly setup communication path as well as the address of the destination
core to which this connection was setup to. This is done so that the master
core can distinguish between different connections if it had requested for
several connections to be setup to multiple cores within the NoC.

4.3. Network Adapter Component Overview 41

4.2.4 Connection Teardown

To delete a GS connection to a slave core, the master core presents a connec-
tion teardown request to its attached slave NA. The NA then packetizes this
request and send a teardown request packet to the NC. After receiving this
request, the NC will teardown the requested connection path and send a GS
connection teardown response packet to the master core. The NA receives
the teardown response packet. If the connection teardown was sucessful,
the NA will delete the connection entry of this communication path in its
connection ID table and indicate to the master core that the connection was
successfully deleted. If the connection teardown was unsuccessful, the NA
will not delete the connection ID table entry and an error message will be
sent to the master core.

4.3 Network Adapter Component Overview

In Section 4.1, we introduced three types of the network adapter: a slave
NA, a master NA, and a duplex NA. In this section, we will present the slave
NA block diagram and give an introduction to the workings of the modules
within the slave NA. The implementation details of the slave NA will be
given in Chapter 5. For readers interested in developing the master NA and
the duplex NA please see Chapter 8 for design proposals.

The slave NA consists of 7 components. They are shown in Figure 4.1.

ReqE2E, also known as the Request End-to-End Flow Control Unit, is
mainly responsible for the following tasks:

• receiving requests from the master core and responding to them
in compliance to the OCP protocol.

• recognizing the request type and determining which signals to
pass on to the Encap unit for packaging.

• receiving responses from the Decap unit and presenting them to
the master core in accordance to the OCP protocol.

• setting the input signals to both the Connection ID table and the
Route Lookup Table.

Connection ID Table is memory mapped to the global memory address
space specified in [8]. It is used to store injection channel IDs or virtual
channel numbers for incoming and outgoing ports when a guaranteed
connection is set up. The Network Controller can write to the Connec-
tion ID Tables using the GS Response Setup/Teardown packets, which
will be described in Section 4.4.

Route Lookup Table contains all the routing information from this par-
ticular NA to all other cores on the DTU NoC. The route paths, which

42
C

h
ap

te
r

4.
N

et
w

or
k

A
d
ap

te
r

C
on

ce
p
tu

al
D

es
ig

n
an

d
M

et
h
o
d
ol

og
ie

s

Master
Core

MCmd (2 downto 0)

MReqInfo (1 downto 0)

MAddr (31 downto 0)

MData (31 downto 0)

MFlag (31 downto 0)

Route Lookup
Table

Encap

Decap

Req E2E

SCmdAccept

MRespAccept

SData (31 downto 0)

SResp (1 downto 0)

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

S
Y
N
C
H
R
O
N
I
Z
E
R

Input Port
Control

Output Port
Control

get (7 downto 0)

empty (7 downto 0)

inChSel (2 downto 0)

inFlit
(16 downto 0)

re s e t

M
 a s te r_ S

 B
 A

c lk

OCP Slave
Control

Connection ID
Table

packet_encode_i (2 downto 0)

MAddr_Out_i (31 downto 0)

MCmd_Out_i (2 downto 0)

MFlag_Out_i (31 downto 0)

write_address
(31 downto 0)

write_data
(31 downto 0)

connIDTable_write_
en

connIDTable_read_
en

Dest_SBA_i
(7 downto 0)

routepath_out_i
(15 downto 0)

InjID_i
(31 downto 0)

MData_Out_i (31 downto 0)

MDataInfo_Out_i (31 downto 0)

packet_sent_i

Response_arrived_i

packet_decode_i (2 downto 0)

MCmd_i (2 downto 0)

MAddr_i (31 downto 0)

SDataInfo_i (31 downto 0)

SResp_i (1 downto 0)

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

outChSel_i (2 downto 0)

packet_i

SDataInfo (31 downto 0)

MDataInfo (7 downto 0)

re s e t

c lk

re s e t

c lk

re s e t

SData_i (31 downto 0)

Queue
Control

load
(7 downto 0)

put (7 downto 0)

full (7 downto 0)

Ready
(7 downto 0)

hold_i

re s e t

c lk

Priority Scheduler

Scheduler
packet_sent_i

request_phase_i

read_address
(31 downto 0)

Figure 4.1: Block diagram for the slave network adapter.

4.4. Packet Format 43

are stored in this table are configured into the table at NA instantiation
time. The route path will be a part of the packet header for best-effort
packets.

Encap, called the Encapsulation Unit, is responsible for receiving messages
from ReqE2E, Connection ID Table, and Route Lookup table, seg-
menting the input message and packetizing them into packet flits to be
sent to the network. The Encapsulation Unit also communicates with
the Queue Control because it injects packets into the output queues.
If the queue is full, the Encapsulation Unit will be informed so that
it will not send the packet until the output queue is available again.
When this happens, the Encapsulation Unit also send a signal back to
the ReqE2E Unit so as to stop it from receiving new requests from the
master IP core.

Queue Control monitors the status of all eight output queues and asserts
the enable signal for the output queues if the Encapsulation Unit decide
to inject a packet to a queue and the queue is ready to receive a new
packet. If the queue is not ready to receive a new packet, the Queue
Control will inform the Encapsulation Unit to stop from receiving new
commands.

Output Queues are used as storage space for each outgoing virtual chan-
nels so that if one virtual channel is blocked, the Encapsulation Unit
can choose to inject into another available virtual channel.

Decap, also called the Decapsulation Unit, is responsible for choosing pack-
ets among all 8 input virtual channels according to their priorities and
order, depacketize the packet, and presenting the contents to ReqE2E
Unit when the packet decoding is done. The Decapsulation Unit con-
tains the priority scheduler which communicates with the input port
control unit on the Sync component.

4.4 Packet Format

An important and crucial part for the design of the NA is to decide on
the different types of traffic in the NoC, to define what needs to be in the
headers of each abstraction layer, and to decide on a fixed packet format for
all packet types. These tasks are important because it is the responsibility of
the NA to make packets to be send to the network and it is its responsibility
to recognize all traffic types in order to handle the packet contents properly.

This section describes the packet format for MANGO. The names of
the fields in the packet formats are signals defined in the DTU GS-OCP
Specification [10].

44 Chapter 4. Network Adapter Conceptual Design and Methodologies

4.4.1 Defining the Packet Types and GS Connection Types

There are six types of Best Effort packets.

1. GS Setup Request

2. GS Setup Response

3. GS Teardown Request

4. GS Teardown Response

5. BE Request

6. BE Response

The first four packets are used for the setting up and tearing down of guaran-
teed service connections, and are used to configure the NA accordingly. The
last two are simply general use best effort packets. All best effort packets
have the same headers.
There are two types of Guaranteed Service packets.

1. GS Request

2. GS Response

Both of these two GS packet types are simply for message passing between
IP cores and are not used for any network configuration purposes. The
GS packets do not require any routing information because these packets
are sent through a guaranteed connection channel across the network. The
guaranteed connection channels can be seen as a pipe linking one IP to
another IP. Whatever goes in at one end of the pipe will show up in order
at the other end. The guaranteed service connection has previously been
setup by the Network Controller after receiveing a connection setup request
from the master core via a best effort GS Setup Request Packet. After the
guaranteed connection is setup, the Network Controller responds with a best
effort GS Setup Response Packet to either the master core or the slave core
or to both, depending on the type of guaranteed service connection that was
requested.
There are three types of GS connections:

1. Forward GS, return GS (Requires both outgoing and incoming injection
ID, therefore a GS Setup Response packet is sent to both the master
and the slave.)

2. Forward GS, return BE (Requires outgoing injection ID, therefore a
GS Setup Response packet is sent to the master)

3. Forward BE, return GS (Requires incoming injection ID, therefore a
GS Setup Response packet is sent to the slave)

4.4. Packet Format 45

The guaranteed service connection is torn down when the master core sends
a best effort GS Teardown Request packet. After the Network Controller
tears down the connection, it responds to the master and/or slave core using
a GS Teardown Response packet, depending on which one of the above GS
connection types was setup.

In the following sections, we will describe each of eight packet types
mentioned above in detail beginning with the best-effort packets and followed
by the guaranteed service packets. Packets are composed of a number of flits.
Each flit in MANGO is 17 bits: 1 bit for control and 16 bits for content. The
flit control bit is 1 if the flit is the last flit of the packet, otherwise it is 0.

4.4.2 Best Effort Packet Format

Packet
Control

Bit

Flit Content

16 15 12 11 3 0

0 Route Path

0 Destination Address (1 of 2) (bytes 1 and 0)

0 MCmd T/S Response Type Source Core Reserved

0 Destination Address (2 of 2) (bytes 3 and 2)

Figure 4.2: Best Effort packet header

The BE packet header consists of four flits. The format of the header is
shown in Figure 4.2 and payload flits will follow. The packet is transmitted
in the flit order shown from top to bottom.

The description of each field in the basic header is as follows.

Route Path: The route path contains the route directions to the desti-
nation core. 16 bits in the route path field allow a maximum of 8 hops, as
each hop occupies 2 bits of direction encoding. This limits the size of the
network to maximum 5 by 5 mesh grid.

The direction encoding is as follows:

• N : 00

• E : 01

• S : 10

• W : 11

Destination Address: Destination Address specifies the memory location

46 Chapter 4. Network Adapter Conceptual Design and Methodologies

that this packet is addressing. As mentioned in [8], byte 1 of the address
field distinguishes the different components within one destination core: 00

to FC for IP core addressing, FD for NA control, FE for Routing Node control,
and FF is reserved. The specific meaning of Destination Address for different
BE packets will be detailed in later sections.
MCmd: MCmd has different meanings depending on whether this packet is
a BE packet used for GS setup and teardown or a BE packet for general use.
For all response BE packets, MCmd will always be 000. Therefore, MCmd
is used to determine whether a packet is a request or a response packet.
The details of the different MCmd encoding for different BE packets will be
further clarified in later sections and is described in [10].
T/S Response Type: The T/S Response Type field is only relevant when
the packet is a teardown or setup response packet with MCmd equals to 000

and byte 1 of MAddr is FD. This field differentiates between a GS teardown
response BE packet and a GS setup response BE packet: 1 for setup and 0

for teardown.
Source Core Address: The Source Core Address contains the system base
address (SBA) of the source core. For more about SBA, see [8]. The specific
meanings of Source Core Address for different BE packets will be detailed in
later sections.

GS Setup Request Packet

A GS Setup Request packet is sent by a master core to the Network Con-
troller when the master core wishes to request a guaranteed service connec-
tion to a slave core. The payload of a GS Setup Request packet is shown in
Figure 4.3.

Packet
Control

Bit

Flit Content

16 15 0

0 MData (bytes 1 and 0)

0 MData (bytes 3 and 2)

0 MFlag (bytes 1 and 0)

1 MFlag (bytes 3 and 2)

Figure 4.3: GS Setup Request packet payload.

Destination Address: Destination Address in the header field is mapped to
master core’s MAddr signal, which tells the Network Controller which slave
core to establish the guaranteed connection to. MAddr should be assigned
as shown in Table 4.1.

4.4. Packet Format 47

3rd byte SBA of the slave core

2nd byte FF

1st byte FD

0th byte Don’t care

Table 4.1: MAddr assignment for GS setup and teardown requests

MCmd: MCmd in the header field will be assigned to RD.
Source Core Address: Source Core Address in the header field contains
the SBA of the master core. The Network Controller needs the master core’s
SBA to set up a guaranteed service connection between the master core and
the slave core, and to know which IP core’s Connection ID table to write to
after the connection is set up. The NA will map the Source Core Address to
MDataInfo as a part of the master signal group to the Network Controller’s
OCP slave.
MData: MData contains the type of GS connection and the amount of
service required in the return direction, from the slave to the master.
MFlag: MFlag contains the type of GS connection and the amount of service
required in the forward direction, from the master to the slave.

GS Setup Response Packet

A GS Setup Response packet is sent by the Network Controller to the master
core or the slave core or both after a guaranteed connection is set up. For
GS connection setup for both the forward and return directions, the Network
Controller will assign the same connection ID to both the master core and
the slave core, meaning that both cores receive a GS Setup Response packet.
In order to devise an easy and unique way to generate connection IDs for the
IP cores, it was decided that the lower 3 bytes of the addresses mapped for
Connection ID Tables can be used as Connection IDs. The 4th byte or the
most significant byte of the connection ID Table address is the SBA of the
IP core which is attached to that particular NA. Therefore, when the same
connection ID is assigned to both the master and the slave core, data will
be written to the same address locations of the two Connection ID tables.
The payload of a GS Setup Response packet is shown in Figure 4.4.
Destination Address: Destination Address in the header field contains a
Connection ID Table address. Therefore, the Network Controller will directly
write SData to the Connection Table in the NA after the connection is setup.
This Connection ID Table address will then be used as the connection ID
for this GS setup as mentioned earlier. This ensures that all the connection
IDs in the whole network are unique, since no two addresses in the address
space are the same.
MCmd: MCmd is 000.

48 Chapter 4. Network Adapter Conceptual Design and Methodologies

Source Core Address: The Source Core Address contains the SBA of the
Network Controller.
SResp: SResp specifies whether the GS connection requested was successful
or not: 1 for success and 0 for failure.
SDataInfo: SDataInfo contains the address of the destination core which
this connection was set up to. SDataInfo and the Connection ID will be sent
to the master core. This allows the master core to match this GS connection
response to its GS connection request.
SData: SData contains the outgoing and incoming injection channel IDs for
this GS connection. Since currently the priorities of the incoming and out-
going virtual channels are statically assigned, the incoming injection ID does
not have any actual effect on the operation of the NA. However, for future
modifications with incoming virtual channel priorities being dynamically as-
signed, all incoming and outgoing channels will have its priority dynamically
changing. The different priority assignments of these injection channels will
affect the priority scheduler, which selects the flits from the incoming virtual
channels for depacking.

GS Teardown Request Packet

A GS Teardown Request packet is sent by the master core to the Network
Controller when the master core finishes communicating with the slave core
and wishes to tear down the communication channel. The payload of a GS
Teardown Request packet is shown in Figure 4.5.
Destination Address: Destination Address in the header field has the
value of the master core’s MAddr signal, which tells the Network Controller
which slave core the guaranteed connection was set up to. MAddr assignment
is the same as for GS Setup request and is shown in Table 4.1.
MCmd: MCmd in the header field will be assigned to WR.
Source Core Address: The Source Core Address contains the SBA of the
master core.

Packet
Control

Bit

Flit Content

16 15 13 0

0 SResp Reserved

0 SDataInfo (bytes 1 and 0)

0 SDataInfo (bytes 3 and 2)

0 SData (bytes 1 and 0)

1 SData (bytes 3 and 2)

Figure 4.4: GS Setup Response packet payload

4.4. Packet Format 49

MFlag: MFlag contains the connection ID or the Connection ID Table ad-
dress for the connection to be torn down. This will inform the Network
Controller, so this connection ID can be reused for future connections.

GS Teardown Response Packet

A GS Teardown Response packet is sent by the Network Controller to the
master core or the slave core or both after a guaranteed connection is torn
down. The payload of a GS Teardown Response packet is shown in Figure
4.6.
Destination Address: Destination Address in the header field contains the
ID of the GS connection that was torn down. Since the Connection ID is
also the Connection ID Table address, the Network Controller can directly
inform the receiving NA to change the data in the specified Connection ID
Table entry to an injection channel with BE-low as its priority. Therefore,
resetting the Connection ID Table entry. The destination address is also
mapped to SData and sent to the master core, so that the core will know the
which connection ID this connection teardown is associated with.
MCmd: MCmd is 000.
Source Core Address: The Source Core Address contains the SBA of the
Network Controller.
SResp: SResp indicates whether the teardown was successful or not: 1 for
success and 0 for fail.

BE Request Packet

A BE Request packet is sent by a master core to a slave core when guaranteed
service is not required. The payload of a BE Request packet is shown in
Figure 4.7.
Destination Address: Destination Address contains the IP core address
of the destination core to which the master core wants to read from or write
to.
MCmd: MCmd meaning is specified in [7].
Source Core Address: The Source Core Address contains the SBA of the
master core. It will be used to generate the return route path from the slave

Packet
Control

Bit

Flit Content

16 15 0

0 MFlag (bytes 1 and 0)

1 MFlag (bytes 3 and 2)

Figure 4.5: GS Teardown Request packet payload

50 Chapter 4. Network Adapter Conceptual Design and Methodologies

Packet
Control

Bit

Flit Content

16 15 13 0

1 SResp Reserved

Figure 4.6: GS Teardown Response packet payload

Packet
Control

Bit

Flit Content

16 15 0

0 MData (bytes 1 and 0)

1 MData (bytes 3 and 2)

Figure 4.7: BE Request packet payload

core back to the master core.
MData: This field is only present when MCmd is WR. MData contains
the data to be written to the destination core specified by the address in
Destination Address.

BE Response Packet

A BE Response packet can be sent by a slave core to a master core in response
to a BE request packet. The payload of a BE Response packet is shown in
Figure 4.8.

Packet
Control

Bit

Flit Content

16 15 13 12 0

0 SResp R/W Reserved

0 SData (bytes 3 and 2)

1 SData (bytes 3 and 2)

Figure 4.8: BE Response packet payload

Destination Address: Destination Address contains the addressing infor-
mation for the master core’s NA. The field should be encoded as shown in
Table 4.2.
MCmd: MCmd is 000.
Source Core Address: The Source Core Address contains the SBA of the
slave core.
SResp: SResp meaning is specified in [7].

4.4. Packet Format 51

3rd byte SBA of the master core.

2nd byte
any address from 0000 to FFFC

1st byte

0th byte Don’t Care

Table 4.2: Destination Address assignment for BE response packet

R/W: R/W indicates whether this response packet is a response to a RD
command or response to a WR command.
SData: Contains the requested data for a read request.

4.4.3 Guaranteed Service Packet Format

GS Request Packet

The GS Request packet is sent by a master core to a slave core after a
guaranteed connection has been established between them. When sending
GS packets, the master core must provide the connection ID using the MFlag
signal. The connection ID tells the Network Adapter which injection channel
has been setup for this communication path. The GS Request packet is
shown in Figure 4.9.

Packet
Control

Bit

Flit Content

16 15 12 4 0

0 MCmd MFlag (byte 0) Reserved

0 MAddr (1 of 2) (bytes 1 and 0)

0 MAddr (1 of 2) (bytes 3 and 2)

0 MData (1 of 2) (bytes 1 and 0)

1 MData (1 of 2) (bytes 3 and 2)

Figure 4.9: Guaranteed Service Request Packet

MCmd: The meaning of MCmd is specified in [7].
MFlag: MFlag contains the Connection ID Table index. Based on this field
the NA for the slave core can find the correct outgoing injection channel
when responding to this request.
MAddr: MAddr specifies the memory location that this packet is addressing.
This address will only be in the range from 0000 to FFFC for bytes 1 and 2
because GS packets are used solely for communication between the master
and the slave and not for connection setup or teardown as are BE packets.
MData: This field is only present when MCmd is WR. MData contains
the data to be written to the destination core specified by the address in
Destination Address.

52 Chapter 4. Network Adapter Conceptual Design and Methodologies

GS Response Packet

The GS Response packet is sent by a slave core to a master core in response
to a GS Request packet. The GS Response packet is shown in Figure 4.10.

Packet
Control

Bit

Flit Content

16 15 12 10 9 0

0 MCmd SResp R/W Reserved

0 SData (bytes 1 and 0)

1 SData (bytes 3 and 2)

Figure 4.10: Guaranteed Service Response Packet

MCmd: MCmd is 000.
SResp: SResp meaning is specified in [7].
R/W: R/W indicates whether this response packet is a response to a RD
command or response to a WR command.
SData: Contains the requested data for a read request.

4.5 Design issues at the Network Interface

The network interface (NI) is the interface between the NA and the NoC
interconnect. As seen in Figure 2.3 on page 24 between the routing node and
the NA a Sync component is found, which interfaces between the synchronous
IP core and the asynchronous routing node. Figure 4.11 illustrates a routing
node, virtual channels, links, and an interface to an attached NA. On the
NA side of the Sync component the virtual channels are synchronous to the
NA clock signal, while on the other side they are asynchronous. Currently,
MANGO implements eight virtual channels on two NA virtual channel ports:
the input virtual channel port and the output virtual channel port, which
we will discuss separately in this section.

4.5.1 NA Input Port at the Network Interface

The input virtual channel port is where the NA receives packets in flits from
the network interconnect. As mentioned in Section 4.4, each flit consists
of 17 bits. At the rising edge of the clock, if a flit arrives at a virtual
channel the input port control unit on the Sync will inform the NA by using
the Empty signal. The NA will then respond by using the Get signal. This
communication protocol is illustrated in Figure 4.12. When the Empty signal
is high, the NA recognizes that the channel is empty, so there is no flit present
and the Get signal is low. The NA is allowed to assert the Get signal as long
as the Empty signal is low.

4.5. Design issues at the Network Interface 53

X-bar

ROUTING
NODE

Sy
nc

hr
on

iz
at

io
n

Syn
c

Virtual Channels

Link

Net
wor

k
Ada

pt
er

NA

In
put P

ort

Outp
ut P

ort

In
pu

t P
or

t

Con
tro

l

Out
pu

t P
or

t

Con
tro

l

SYNC

Full (7 downto 0)

Empty (7 downto 0)

Get (7 downto 0)

Put (7 downto 0)

Figure 4.11: Network interface between the routing node and the network
adapter. Virtual channels going through the Sync component are for both
ingoing and outgoing directions.

54 Chapter 4. Network Adapter Conceptual Design and Methodologies

Clock

Empty

Get

1st

flit
taken

2nd

flit arrive

3rd 4th 5th

6th

flit is taken
and the

packet is
received

Figure 4.12: Communication protocol for one virtual channel at the network
interface input port.

4.5. Design issues at the Network Interface 55

The above protocol holds for all 8 input virtual channels. Therefore both
the Empty and Get has 8 bits.

Static vs. Dynamic Virtual Channel Priority Assignment

As mentioned previously, each virtual channel is assigned a particular prior-
ity. Currently, the NA implements four priority levels. The priority assign-
ment for each priority level is as follows:

• Priority Level 3 - Guaranteed throughput (highest priority)

• Priority Level 2 - Guaranteed power

• Priority Level 1 - Guaranteed jitter

• Priority Level 0 - Best-effort low (lowest priority)

For implementation purposes, the actual names for each priority level are
irrelevant and maybe subject for change.

The priority levels of the virtual channels are important for the NA when
it comes to selecting which virtual channel to send a packet on and deciding
which virtual channel to select next when receiving a packet. Priority level
assignment for different traffic classes directly affects how a certain class of
traffic can maintain a certain level of guaranteed service. For example, if
a virtual channel has been set up to provide guaranteed throughput, the
designer must ensure that when traffic arrives at that virtual channel, it
will take priority over other less urgent traffic in order to assume a specified
amount of guaranteed throughput is achieved. Therefore, the NA priority
scheduler should choose the higher priority virtual channel for packet pro-
cessing over lower priority channels. Once a channel is chosen for packet
processing the NA priority scheduler will keep on choosing that channel un-
til all the flits of that packet have been received in full. This mechanism
ensures that one packet is processed at a time.

There are two possible ways of assigning priorities to virtual channels:
static and dynamic. Static assignment means that the priority is set and
fixed at NA instantiation time. The NA scheduler will always pick the vir-
tual channels in a fixed manner. In this case, when a GS connection is setup
by the network controller, there need not be any information to write to the
scheduler. Traffic can directly arrive at the specified virtual channel and the
NA will choose the channels according to the fixed priority assignment. Dy-
namic assignment, on the other hand, is done such that when GS connection
is set up, the network controller must use a GS response packet to configure
the NA scheduler such that the virtual channel to which the GS connection
was set up to can be assigned a new priority and the scheduler will pick
the channels accordingly. When a GS connection is deleted, the NA priority

56 Chapter 4. Network Adapter Conceptual Design and Methodologies

scheduler will need to reset its entry for that connection back to the lowest
priority state.

Currently, the priority assignment for each input virtual channel to the
NA is static. This was determined by the DTU SoC group so as to reduce
the complexity of the scheduling interface at this beginning stage of DTU
NoC development.

4.5.2 NA Output Port at the Network Interface

The output virtual channel port is the place the NA injects flits into the
network. The communication protocol is described in Figure 4.13. At the
rising edge of each clock the NA output scheduler checks if the virtual channel
to which it wishes to inject a flit into is full or not. If the Full signal is high,
that means the channel is blocked and no flits should be injected. The NA
will then withhold the flit until the channel becomes unblocked again. This
ensures that the network will not be congested and packets being blocked up.
This is also an effective way to reduce buffer space and therefore area and
power. The output port control unit on the Sync provides the Full signal
to the NA and the NA responds with the Put signal. If the Full signal is
asserted at the rising edge of the clock, the Put signal will not be asserted.

The NA has a certain amount of output queue buffer space for holding
out going flits. If a channel becomes blocked the flits will be stored up in the
queue. If however, the channel becomes blocked for a long time and there is
no room in the output queues, the NA will stop accepting new commands
from the IP core by not asserting the SCmdAccept OCP signal.

For more information about the network interface, please refer to The
Network Interface Specification [9].

4.5. Design issues at the Network Interface 57

Clock

Full

Put

1st

Flit
injected

2nd

Flit send

3rd 4th 5th 6th

Flit Injected
and the

Packet is
Sent

Figure 4.13: Communication protocol for one virtual channel at the network
interface output port.

58 Chapter 4. Network Adapter Conceptual Design and Methodologies

Chapter 5

Implementation of Network

Adapter

Contents

5.1 Architecture . 59

5.2 Module Design and Programming 61

5.2.1 Decapsulation Unit 61

5.2.2 Request End-to-End Flow Control Unit 70

5.2.3 Connection ID Table 74

5.2.4 Route Lookup Table 75

5.2.5 Encapsulation Unit 75

5.2.6 Output Queue Control 78

5.2.7 Output Queues . 80

5.3 Concluding Remarks 81

In the last chapter, we introduced the network adapter in a conceptual
perspective by examining some of the main tasks that the network adapter
must perform. We also presented the packet format for the DTU NoC and
gave a general introduction to each of the components on the slave network
adapter. This chapter, we continue with a more in-depth analysis of the
slave network adapter and discuss issues of its implementation according to
the packet format presented in Section 4.4.

5.1 Architecture

Computer architecture design entails several levels of abstraction. These ab-
straction levels can be categorized from high level to low level in the following
order [11].

59

60 Chapter 5. Implementation of Network Adapter

Algorithm level is the highest level of abstraction that deals with things
such as data structures, sorting algorithms etc.

Architecture level implements the algorithms by means of building blocks
such as CPUs, memories and communication infrastructure at the sys-
tem level and multipliers, muxes and controllers at the register-transfer
level (RTL).

Synthesis level translates the architectural level design into netlists of logic
gates.

Circuit level describes individual logic gates created by connecting transis-
tors.

Technology level consists of basic building blocks such as transistors (NMOS
and PMOS) and wires.

We can see that the lower the level, the closer we get to the physical
implementation of the electronic device. The NA is designed at both the
algorithm level and architectural level and is implemented in VHDL (Very
high-speed integrated circuit Hardware Description Language). VHDL gives
freedom to describe an electronic design at various levels of abstraction.
However, it is designed to describe hardware, hence it supports many lower
level coding styles. There are two main style of coding in VHDL. They
are behavioral modelling and structural modelling. Behavioral modelling is
adopted when presenting an abstract description of a system’s function. Such
an architectural body includes only process statements, which are collection
of actions to be executed in sequence. Structural modelling, on the other
hand, is expressed in terms of subsystems interconnected by signals (wires).
Each subsystems may in turn be composed of an interconnection of sub-
subsystems and so on until the most primitive component is reached where
processes can describe its behavior. This recursive or hierarchical structure
of modelling is very useful when the designer wishes to describe the design
in a more concrete and specific way.

Structural modelling of a design, in most cases, is more suitable for syn-
thesizing to an actual netlist of logic gates because the style of coding is
typically less abstract and ambiguous. The slave NA is coded in the behav-
ioral modelling style because it is more important at this point to model the
behavior of the NA and solidify its specifications and design than it is to
realize the design in hardware. However, some performance estimates such
as the NA’s area, power consumption, and latency will be given in Chapter
7, as a general guideline for future developments of the NA.

5.2. Module Design and Programming 61

5.2 Module Design and Programming

In this section, we will begin a detailed analysis of the design of each of the
components within the slave NA. We will start with the network interface
input port and work our way around towards the network interface output
port. Please refer to Figure 4.1 on page 42 for details of interconnections
between the NA components.

5.2.1 Decapsulation Unit

We have already introduced the challenges of the NA input port at the
network interface in Chapter 4 Section 4.5.1. In addition to addressing the
flow of traffic at the input port by performing priority scheduling and data
handshaking, the Decapsulation Unit is also responsible for reassembling the
incoming packet from its segments, recognizing which type of packet it is,
extracting the contents and presenting the contents to either the ReqE2E
unit for response packet, or the RespE2E unit for request packet. We will
address each of these responsibilities in the following sections in the order
presented.

Figure 5.1 details the design of the Decapsulation Unit (Decap). On the
righthand side of Decap is the interface to the NA input port. We have
3 control signals, empty, get, and inChSel and 1 data signal inFlit. Empty
and get are handshake control signals for the 8 incoming virtual channels.
The communication protocol was presented in Figure 4.12. InChSel is the
control signal for the 8-input multiplexer at the input port. See Figure 4.1
on page 42. InFlit carries the actual flit coming in from the incoming vir-
tual channels. On the lefthand side of Decap is the interface to other NA
components: ReqE2E and RespE2E. Two signals of special importance are:
response_arrived and request_arrived. These two signals are strobe signals
to ReqE2E and RespE2E units respectively. They are used to inform the
other two components that valid response signals has arrived. Although the
NA implemented in this project is just a slave NA that can only receive re-
sponse packets, the Decapsulation Unit implemented however was originally
intended for a Duplex NA that can handle all packet types. Due to a limited
time in this project, the Duplex NA was not feasible to finish and the De-
capsulation Unit was left as it is for handling all packet types. For Duplex
NA design suggestions, please see Chapter 8, Future Work.

Priority Scheduler

The most complex part of the design of the Decapsulation Unit is the Priority
Scheduler. The purpose of the Priority Scheduler is to select among the 8
incoming virtual channels one that is going to be chosen to receive a packet
next. The choice of channel selection is based on the priority of that virtual

62
C

h
ap

te
r

5.
Im

p
le

m
en

ta
ti
on

of
N

et
w

or
k

A
d
ap

te
r

Incoming
Virtual

Channel
Priority Table

Select
Channel

Incoming
Virtual

Channel
Priority Mask

Priority
Scheduler

Finite State
MachineGet

FIFO

Packet
Assemble

Packet Decode

regs
(7 downto 0)

mask_array
(3 downto 0)

intermediateGet
(7 downto 0)

intermediateSel
(2 downto 0)

intermediatePri

C
 lk

R
 e s e t

Sel
FIFO

finalGet
(7 downto 0)

inChSel
(2 downto 0)

get_queue

sel_queue

intermediateGet
(7 downto 0)

C
 lk

R
 e s e t

g e t_ c h e c k
fin a lG

 e t
(7 d o w

 n to 0)
C

 lk

R
 e s e t

in_flit_array

inChPri

OR

p a c k e t_ re c e iv e d

Signal
Validation

empty (7 downto 0)

Priority Scheduler

inFlit
(16 downto 0)

C
 lk

R
 e s e t

response_valid

request_valid

response_arrived

request_arrived

intermediateSel
(2 downto 0)

SResp_i(1 downto 0)

SData_i(31 downto 0)

MCmd_i(2 downto 0)

MAddr_i(31 downto 0)

SDataInfo_i(31 downto 0)

packet_decode(2 downto 0)

MDataInfo(7 downto 0)
MData_i(31 downto 0)
MFlag_i(31 downto 0)
routepath_in_i(15 downto 0)

get (7 downto 0)

Decapsulation Unit

Figure 5.1: Block diagram of processes and signals within the Decapsulation Unit.

5.2. Module Design and Programming 63

channel, which is provided by the Priority Table, and on whether there is
a flit of the packet waiting at that channel, which is provided by the empty
signal. Each bit of the empty signal represents a virtual channel. Once
the decision to choose a virtual channel is made, the Priority Scheduler
asserts the get signal for the selected channel and picks that channel using
the inChSel signal. The Priority Scheduler can be viewed in three separate
groups.

Group One includes the Priority Table, the Priority Mask and the Select
Channel processes. This group is responsible for selecting the channels
at the time the bits of the empty signal changes, meaning that flits
from different channels arrive at random times and the decision of
which channel to choose next is dependant on the time order in which
the flits arrive and on the priority of the channels.

Group Two includes the Get FIFO and the Sel FIFO. These FIFOs store
the get and inChSel signals from group one. Since the packets arrive
at the incoming virtual channels at unpredictable times, the priority
scheduler must remember the order the packet arrive and selects the
channels accordingly. The FIFOs preserve the order of the channel
selections and keep these values until they are used.

Group Three is just the Finite State Machine (FSM). It is there to assert
the get and the inChSel signals. The FSM makes sure that when a
channel is selected, that channel will be kept on selected for consecutive
clock cycles until all flits of the packet from that channel have been
received. We know from Section 4.4 that different packet types have
different lengths and hence consist of different number of flits. When
the FSM is ready to choose the next virtual channel, it gets the next
decision from the front end of the FIFOs which stores the decisions in
order.

Now we discuss each of these three groups in more detail.
Priority Table, Priority Mask, and Select Channel

The Select Channel process uses the Priority Table and Priority Mask
to make incoming channel selection decisions. The Select Channel process is
quite complex due to the following reasons.

1. It must always choose channels of higher priority over channels of lower
priority.

2. Since there can be more than one channel of the same priority, it must
for each priority level note all the channels that have a packet waiting
to be received and select one of those channels.

64 Chapter 5. Implementation of Network Adapter

3. To be fair in choosing channels of the same priority, if there are flits
waiting in two channels of the same priority and one channel has just
been chosen in the previous turn and the other has not, then the Select
Channel process will choose the channel that has not been serviced yet.
It does this by marking channels that have been serviced before and
choosing the ones that have not been marked.

4. Since there is a possibility of having more than 1 channel of the same
priority that has not been chosen before, the Select Channel process
must keep track of those channels so they may not be missed out.

To perform the above tasks, the Select Channel process uses the Priority
Table, which tells it the priority assignment of each incoming virtual channel,
and the Priority Mask, which tells it the positions of the channels that are
of the same priority. The Priority Mask is used when the Select Channel
process needs to clear old tag values for marking selected channels. The
masks are there so that old tags of the same priority can be cleared without
touching tags for other priority levels. To explain the Select Channel process
better we look at a flow chart diagram of the process in Figure 5.2. The task
boxes have been numbered for easier reference later.

All four tasks and internal variables apply one priority level at a time.
We will first define those variable names for clarification.

channel_selected : Keeps track of the number of channels of the same priority
that have a flit waiting for processing.

tag : For fair channel selection, tag is used to mark channels that have been
serviced. If after servicing a channel and another packet arrives at the same
channel, this channel will not be pick for processing over another channel of
the same priority that has not been serviced yet.

temp_untagged : Keeps track of all the channels of the same priority that
have not been selected for service before. As the channels are being serviced
one by one the marked bit in temp_untagged will be cleared correspondingly.

contain_flit : Indicates which channel currently has flits waiting to be re-
ceived.

mask_array : This array contains the priority masks for each priority level.
Mask_array(3) for priority level 3, mask_array(2) for priority level 2 and so
on.

intermediateGet : This is the get value that has not yet been used and will
enter the Get FIFO. The FSM will eventually assign intermediateGet to get
when it is ready to take them out of the FIFO.

5.2. Module Design and Programming 65

channel_selected = 0

1. Using contain_flit(7 downto 0),
mark all channels of this priority

level that have a flit.
channel_selected keeps track of
the number of marked channels.

channel_selected = 1

2. Tag all the channels that have
been selected by apply the mask for
this priority level to the old tag value
to clear away previous tags and then
apply new tags. Select this channel

by assigning intermediateGet,
intermediateSel and intermediatePri

for this selected channel.

3. Using temp_untagged vector, mark all
the channels of this priority level that has

not been selected before.
Select the lowest channel marked by the

temp_untagged vector by assigning
intermediateGet, intermediateSel and

intermediatePri . Unmark this channel in
the temp_untagged vector and tag it as

been selected in tag(7 downto 0).
YES

NO

Yes

Temp_untagged = 0

YES

4. There are some channels in the
previous iteration that still have not been

selected. Select the lowest channel
marked by temp_untagged. Unmark this
channel in temp_untagged and tag it as

being selected in tag(7 downto 0).

NO

Initialization:
Channel_selected = 0

temp_untagged(7 downto 0) = 0
tag(7 downto 0) = 0

Loop Start
for (Priority Level from 3 down to 0)

Loop End

Pritority level = 0

YES

NO

contain_flit(7 downto 0) = 0

Channel_selected = 0
intermediateGet = 0
intermediateSel = 0

Select Channel Process
Terminate

YES

NO

Mask for this
priority level

Priority Table

channel_selected = 0

NO

Empty(7downto 0)

Mask for this
priority level

tag(7 downto 0)

tag(7 downto 0)
contain_flit(7 downto 0)

Priority Table

Priority Table

Priority Table

YES

NO

Figure 5.2: Flow chart diagram for Select Channel Process shown in Figure
5.1

66 Chapter 5. Implementation of Network Adapter

intermediateSel : This is the corresponding inChSel signal and will enter the
Sel FIFO.

intermediatePri : This is the associated priority of the channel indicated by

intermediateSel. This signal will eventually be used for packet decoding in
the Packet Decode process shown in Figure 5.1.

We start the process by first initializing channel_selected, tag, and temp_untagged.
For each priority level, we perform the series of tasks as illustrated in Figure
5.2. We will now simply clarify the numbered task boxes in the flow chart.

1. For this priority level, given the empty signal and the priority table,
first mark in contain_flit all channels that have a flit, and at the end
use channel_selected to keep track of the number of channels marked.

2. If there is one channel that has been marked in this priority level, we
simply select this channel by assigning intermediateGet, intermediate-
Sel and intermediatePri, and tag it as being selected. However, before
tagging the channel, we must clear old tags of this priority and not
touch tags for other priority levels. To do so, we apply the mask for
this priority level to the old tag vector by logically ANDing the old tag
with the negate of mask_array(pri), where pri is the current priority
level. We then tag the channel currently selected by logically ORing
the previous ANDing result with contain_flit, which only has the one
bit set since there is only one channel selected.

3. If there are more than one channel that have been marked in this
priority level, we must first make sure that we select a marked channel
that contains data but has not been serviced before. To do so we
logically AND contain_flit with the negate of tag and store the result
in temp_untagged as shown in Table 5.1. Then, we choose a channel
marked in temp_untagged from the lower number end and select it as
the next channel to service. We also have to remember to unmark
this channel in temp_untagged and tag it as serviced using the same
procedure as described above with the priority mask.

4. It is possible that there are more channels marked in temp_untagged
that has not been serviced. Therefore, we choose another channel
marked in the temp_untagged vector from the lower end, unmark it,
and tag it as serviced the same way as described above.

Get FIFO and Sel FIFO
The Get FIFO,get_queue, stores the get signals and the Sel FIFO, sel_queue,

stores the corresponding inChSel signals. The FIFOs are implemented in a
circular fashion. When a new decision arrives, it is stored in the lower end of

5.2. Module Design and Programming 67

contain_flit tag tag temp_untagged

0 0 1 0
0 1 0 0

1 0 1 1

1 1 0 0

Table 5.1: Only when the channel contains a flit (contain_flit = 1) and has
not been tagged before (tag = 1) do we want to get flit from this channel.
Temp_untagged marks all the channels of the same priority that has not
been selected before.

the queue and work its way upwards, as shown in Figure5.3. Since there are
only 8 virtual channels, there will never be more than 8 different channels
to pick and hence the depth of these queues need only to be 8. When the
insert counter has reached the end of the queue, it will wrap around and
start inserting in the beginning of the queue. However, it will only override
the old channel in the beginning of the queue when the channels has been
taking out of the queue and serviced, which is indicated by take_tag.

0 1 2 3 4 5 6 7

FIFO

insert_counter

take_counter

take_tag
(7 downto 0)

0 1 2 3 4 5 6 7

1 1 1 1 10 01

Figure 5.3: First In First Out Queues. Take_tag marks all the channels that
have already been taken out of the queue by the Finite State Machine. Only
when a channel has been taken out of the queue can it be overwritten with
a new channel.

Priority Scheduler Finite State Machine
The Finite State Machine is to control the selecting of the channels such

that a complete packet can be received before another channel is picked.
Figure 5.4 shows the state diagram for the Priority Scheduler Finite State
Machine.

68 Chapter 5. Implementation of Network Adapter

INIT

KEEP CHANGE

While not getting any
flits from any virtual

channels

If a full packet has
been received or a new
flit has arrived after all

channels has been
empty

If get the first flit of a packet

While the packet
has not been

received in full or
all incoming virtual
channels are emply

reset

Figure 5.4: Priority scheduler finite state machine for incoming virtual chan-
nels.

At reset, the Priority Scheduler FSM enters the INIT state. If no packet
has arrived yet, intermediateGet will be zero. If this is the case, we remain at
INIT state and we don’t assert the get signal. If intermediateGet is not zero,
then we have got our first channel chosen after reset. Since this is the first
channel to choose after reset, there is no need to put this no need to insert
this channel into the FIFO, we simply select this channel directly. After this
channel has been selected, we enter into the KEEP state in the next clock
cycle.

At the KEEP state, we want to keep selecting the same channel until the
full packet has been received. Therefore, while packet has not been received,
packet_received equals 0, we remain in the KEEP state where we do not
touch the previously assigned get and inChSel signals. Packet_received is
asserted by the Packet Assemble process discussed later in section 5.2.1. If
packet_received equals 1, we wish to select a new channel and we enter the
CHANGE state in the next clock cycle. If when during operation no channel
has a flit, we will remain in the KEEP state. When a flit arrives at a channel,
we will then enter the CHANGE state.

At the CHANGE state, we take the an interediateGet signal from the
front of the Get FIFO and an intermediateSel signal from the front of the
Sel FIFO and assign them to get and inChSel respectively. When the take
counter reaches the end of the FIFO, we wrap around to the beginning of the
FIFO again. After the get and inChSel signals has been assigned, we return

5.2. Module Design and Programming 69

Packet Type Bit Encoding
1 Setup Request 000
2 Setup Response 001
3 Teardown Request 010
4 Teardown Response 011
5 BE Request 100
6 BE Response 101
7 GS Request 110
8 GS Response 111

Table 5.2: Packet Type Encoding for DTU NoC

to the KEEP state in the next clock cycle.

Flit Collection and Packet Reassembly

Before decoding the packet, we must first receive all the flits of the packet
and reassemble them into the original message. The Packet Assemble process
does this job. Every clock cycle, it stores the inFlit into a packet array and
checks if it is the last flit. InFlit(16) is a control bit- 1 indicates the last flit of
the packet and 0 indicates all other in between flits. When the last flit has
been received, Packet Assemble process will assert packet_received signal to
let the FSM know that it is allowed to switch to another channel.

Recognizing Packet Types and Content Extraction

After a full packet has been assembled the Packet Decode process, given
the priority of the channel that this packet came from, knows whether this
packet is a BE packet or GS packet. It uses this information to determine
which type of BE packet or GS packet it is by checking MCmd, and various
bits in the packet header. The exact information has been presented in
Section 4.4. The Packet Decode process encodes this packet according to
the packet type encoding presented in Table 5.2 and assigns the packet type
to packet_decode. Aside from recognizing and encoding the packet type,
the Packet Decode process also assigns the correct values for all other OCP
signals to be sent to the ReqE2E unit or RespE2E unit.

Strobing signals to ReqE2E or RespE2E

The Signal Validation process is responsible for sending the strobe signals
response_arrived and request_arrived to the RespE2E unit and the RespE2E
unit when a response packet or a request packet arrives respectively. It only
asserts these strobe signals for one clock cycle as it is required for the OCP
slave control in the end-to-end flow control units.

70 Chapter 5. Implementation of Network Adapter

5.2.2 Request End-to-End Flow Control Unit

The Request End-to-End Flow Control Unit (ReqE2E) contains an OCP
slave controller, which is comprised of two finite state machines: one for
receiving requests from the master core and the other for responding to the
requests. The ReqE2E is also responsible for recognizing the request type,
sending out the correct set of signals to the Encapsulation Unit corresponding
to each packet type, and asserting the control signals for both the Connection
ID Table and the Route Lookup Table. A block diagram of the ReqE2E Unit
is shown in Figure 5.5. We will begin our discussion of the ReqE2E Unit
by starting with the OCP slave control and then packet recognition and
encoding.

OCP Slave Control Unit

The OCP Slave Control Unit is implemented using two separate finite state
machines: a request OCP controller for receiving requests and a response
OCP controller for receiving responses to the requests. The reason this is so
is that the latency of the network is unknown and the master core cannot
be required to wait for the response packet to return before it can issue a
second command. If done so, it would severely inhibit the speed at which
the core can perform its task.

Having two separate controllers allows the master core to continue issuing
commands as soon as the commands are packetized and sent to the output
queues. The responses do not necessarily arrive in the order that the requests
are sent. It is for the master core to rearrange the responses after they have
been received. The NA will provide the master core with the Slave core’s
address so that the responses can be paired to its origin. An example of
OCP communication timing diagram implemented by the slave NA is shown
in Figure 3.3 on page 35. At point A the request OCP controller raises the
SCmdAccept signal because at that point the request has been packetized and
sent to the output queue. At point B, a few clock cycles later, the response
packet has arrived and the response OCP controller presents the response to
the OCP interface.

Request OCP Controller
Figure 5.6 shows the state diagram for the request OCP controller.
On reset, the request OCP FSM enters the IDLE state, at which both

the SCmdAccept signal and the request_phase signal are de-asserted. Assert-
ing the SCmdAccept signal tells the master core that the request has been
accepted and allows the master core to issue a new request. Asserting the re-
quest_phase signal tells the Encapsulation Unit that a valid request message
is ready to be packetized.

5.2. Module Design and Programming 71

Response Finite State
Machine

Request Type

To Encap

p a c k e t_ d e c o d e _ i (2 d o w
 n to 0)

re s p o n s e _ a rriv e d _ i

M
 C

 m
 d _ i(2 d o w

 n to 0)

M
 A

 d d r_ i(3 1 d o w
 n to 0)

S
 D

 a ta _ i(3 1 d o w
 n to 0)

S
 R

 e s p _ i(1 d o w
 n to 0)

S
 D

 a ta In fo _ i(3 1 d o w
 n to 0)

SResp(1 downto 0)

SData(31 downto 0)

SDataInfo(31 downto 0)

write_address
(31 downto 0)

write_data
(31 downto 0)

MemWrite

read_address
(31 downto 0)

MemRead

re
q

u
e

s
t_

e
n

c
o

d
e

(2
 d

o
w

n
to

 0
)

MReqInfo (1 downto 0)

MCmd (2 downto 0)

request_encode
(2 downto 0)

Request Finite State
Machine

MCmd (2 downto 0) packet_sent_i

SCmdAccept request_phase_i

req_write_adress
(31 downto 0)

MDataInfo_Out_i (7 downto 0)

MCmd_Out_i (2 downto 0)

MAddr (31 downto 0)

MAddr_Out_i (31 downto 0)

MData (31 downto 0)

MData_Out_i (31 downto 0)

MFlag (31 downto 0)

MFlag_Out_i (31 downto 0)

Dest_SBA_i (7 downto 0)

MDataInfo(7 downto 0)

req_read_address
 (31 downto 0)

req_write_data
 (31 downto 0)

connIDTable_read_en

connIDTable_write_en

Request End-to-End Flow
Control Unit

Figure 5.5: Block diagram of processes and signals within the ReqE2E Unit.

72 Chapter 5. Implementation of Network Adapter

IDLE

REQUEST
RECEIVED

PACKAGED

MCmd = IDLE

Packet_sent = 0

MCmd /= IDLE

Packet_sent = 1

reset

Figure 5.6: Finite State Machine for receiving requests

In the IDLE state, if MCmd is any thing other than IDLE or "000" then
a request has arrived and OCP FSM enters the REQUEST RECEIVED
state. Otherwise, a request has not been received and OCP FSM remains in
the IDLE state.

It the REQUEST RECEIVED state, the request_phase signal is asserted,
telling the Encapsulation Unit to packetize the request. The SCmdAccept sig-
nal is kept de-asserted. The OCP FSM stays at the REQUEST RECEIVED
state until an acknowledge signal, packet_sent_i, from the Encapsulation
Unit has been received, indicating that the request has been packetized and
sent off to one of the output queues. When packet_sent_i has been detected
to be asserted, OCP FSM enters the PACKAGED state in the next clock
cycle.

At the PACKAGED state, the SCmdAccept signal is asserted, allowing
the master core to issue a new request. The request_phase signal is then
de-asserted to acknowledge to the Encapsulation Unit that a new request is
no longer valid. At the rising edge of the next clock cycle the OCP FSM
returns to the IDLE state.
Response OCP Controller

Figure 5.7 shows the state diagram for the response OCP controller.
On reset, the response OCP controller enters the IDLE state, where all

the slave signals to the master core SResp, SData, and SDataInfo are in-
valid. If the response_arrived_i signal is asserted, then the RESPONSE
RECEIVED state is entered in the next clock cycle. Otherwise, the OCP
controller remains in the IDLE state. The response_arrived_i signal is the

5.2. Module Design and Programming 73

RESPONSE
RECEIVED

Response_arrived = 1

IDLE
reset

Figure 5.7: Finite State Machine for receiving responses

strobe signal from the Decapsulation Unit, informing the response OCP con-
troller that a valid response packet has just arrived.

In the RESPONSE RECEIVED state, the OCP controller decides what
to do with the received response depending on the type of response it is,
which is given by the packet_decode_i signal from the Decapsulation Unit.
The encoding of the response packets is shown in Table 5.2.

• If the response is a Setup Response packet and the setup was successful,
the injection channel IDs for outgoing and incoming virtual channels is
written to the Connection ID Table at the address given by MAddr_In,
and the core know is made know of the response result by assigning
SResp_i to SResp and giving the master core a connection ID using the
SData signal which is assigned to MAddr_In. If the setup has failed,
nothing is written to the Connection ID Table and the core is informed
of the setup failure through SResp. The core can distinguish this setup
response to other responses by the value of SDataInfo, which contains
the address of the slave core which this connection was set up to.

• If the response is a Teardown Response packet and the teardown was
successful, then the Connection ID Table entry given by MAddr_In is
reset, and the core will know the successful teardown using SResp and
the connection ID that was torn down using SData. If the teardown
was unsuccessful, nothing will change in the Connection ID Table and
the core will know the teardown failure using SResp and SData.

• If the response is a BE response, the result will be passed to the master
core using SResp and SData if the response is to a read and just using
SResp if the response is to a write.

• If the response is a GS response, the same is done as for a BE response.

At the rising edge of the next clock cycle the OCP controller returns back
to the IDLE state. Therefore, the response phase is always one clock cycle.

74 Chapter 5. Implementation of Network Adapter

Packet Recognition and Encoding

The Request Type process on Figure 5.5 is used for determine which type of
request the master is presenting by using the MReqInfo signal and the MCmd
signal. The encoding is shown in Table 5.3.

MCmd
010 001

00 BE request BE request
MReqInfo 01 GS setup request Not Used

10 GS request GS request
11 Not Used GS teardown request

Table 5.3: MReqInfo and MCmd Signal Encoding for different request types

Using the MReqInfo signal and the MCmd signal, the Request Type pro-
cess assigns the packet_encode_i signal according to the Packet Type en-
coding shown in Table 5.2.

The To_Encap process, given the packet_encode_i signal, sends ac-
cording the type of request packet the correct values for MCmd_Out_i,
MAddr_Out_i, MData_Out_i, MFlag_Out_i, MDataInfo_Out_i and Dest_SBA_i
to the Encapsulation Unit for packaging.

5.2.3 Connection ID Table

The Connection ID Table is simply a local memory in the NA which is
globally mapped to the DTU NoC memory space as specified in [8]. It is
used to store incoming and outgoing injection IDs for guaranteed service
setup. When the network controller responds to a connection setup, it sends
a GS setup response packet to the master and/or slave core’s NA and directly
writes the incoming and outgoing virtual channels that has been setup for
this particular guaranteed connection into the Connection ID Table. When
the connection has been torn down, the network controller will then send a
GS teardown response packet to the NA and directly resets the Connection
ID Table for that particular connection.

An advantage of having the Connection ID Table globally memory mapped
is that the network controller can directly control the contents of the table
and the configuration of GS connections is made writable globally. This
makes the management of GS connections much more flexible and manage-
able centrally by the network controller.

The design of the Connection ID Table is very straight forward. Since
a GS response packet from the network controller can arrive at the same
time as GS request from the master core, the Connection ID table needs
to be able to handle both read and write at the same time. At reset, all
data in the memory is cleared to zero. At the rising edge of the clock, if

5.2. Module Design and Programming 75

connIDTable_read_en is high, the Connection ID table will take the lower
4 bits of the req_read_address as the addressing index to the table. The
stored data, InjID_i, will be then read out. The data length of the memory
is 32 bits: bits 4 to 7 indicates the outgoing virtual channel, and bits 0 to 3
indicates the incoming virtual channel. The reason that only the lower 4 bits
of the address are used is that the Connection ID Table has only 16 entries in
total. If connIDTable_write_en is high at the rising edge of the clock, then
the lower 4 bits of the req_write_address will be used as addressing index
and req_write_data will be written to the table.

5.2.4 Route Lookup Table

The Route Lookup Table is another local memory in the NA. It stores the
route paths to other cores in the NoC. This route path is needed as part of
the BE packet header, since all packets are source-base routed. This means
that all the routing information is stored in the routepath which indicates to
the routing nodes where to route the packet at each hop. The Route Lookup
Table is not globally memory mapped and can not be addressed by other
cores. The table is configured and the entries are set at NA instantiation
time.

[8] does not specify that the Route Lookup Table should be globally
memory mapped. However, it would be beneficial to do so because the
network traffic congestion is dynamic. When a particular link or path is
overly congested, it may be beneficial to route paths to other paths. This
requires that the route path be changed. Not having the Route Lookup Table
globally memory mapped removes the possibility of changing the route path
from one core to another. Thus, makes the traffic routes static. On the other
hand, since MANGO implements virtual channels, the congestion problem
may be alleviated and it would not serve too beneficial to have the route
path assignment dynamic.

The Route Lookup Table simply outputs the routepath given an IP core
System Base Address (SBA).

5.2.5 Encapsulation Unit

The responsibilities of the Encapsulation Unit are as follows.

• Receive requests from the Request End-to-End Flow Control Unit
(ReqE2E), as well as inputs from the Connection ID Table and Route
Lookup Table.

• Given the packet type through the packet_encode_i signal, packetize
the request according to the packet format introduced in Section 4.4
and separate the packet into flits, each of 17 bits in length.

76 Chapter 5. Implementation of Network Adapter

• Decide which one of the output virtual channel queues to send the pack-
etized data. If the packet type was a GS request or response packet,
the output virtual channel number will be given from the Connection
ID Table. If the packet type is a BE packet, the Encapsulation Unit
must select one of the output virtual channels assigned to BE priority.

• Send the packet to the selected channel queue by communicating with
the Queue Control Unit.

Figure 5.8 shows the state diagram for the operation of the Encapsulation
Unit.

Ot reset, the FSM enters the INIT state, where outChSel signal is initial-
ized to "000", packet_sent_i signal is de-asserted, and the outgoing packet
is empty. At the rising edge of the next clock cycle the FSM directly enters
the IDLE state. INIT state initializes all control signals and internal signals
and will not be returned unless reset is asserted.

In IDLE state, the packet_sent_i signal is de-asserted because a new
request message has not arrived. The FSM checks if a request has arrived
from the Request End-to-End Flow Control Unit (ReqE2E) by seeing if re-
quest_phase signal is asserted or not. If it is asserted, a new request has
arrived and the FSM changes to the PACKETIZE state at the rising edge
of the next clock cycle. Otherwise, a new request message has not been
received and the FSM remains at the IDLE state.

It PACKETIZE state, the packet_sent_i signal is kept de-asserted. The
FSM checks which type of request packet this message is via the packet_encode_i
signal in order to decide how to packetize and segment this request message.
There are four different possible types of request messages: GS setup request,
GS teardown request, BE request, and GS request. The FSM packetizes the
message and arrange its contents exactly as it is presented in Section 4.4.
After the request message is packetized, the FSM determines which one of
the output queues to send the packet. If the packet is a GS request packet,
the FSM will be given the output queue number from the Connection ID
Table via the InjID signal. Otherwise, the packet is a BE packet and the En-
capsulation Unit must select from one of the available BE virtual channels by
checking and marking all the BE channels output queues with its hold signal
de-asserted. Like the Decapsulation Unit, there is also a priority table for
the outgoing virtual channels. This table is also statically assigned, and from
it the Encapsulation Unit knows the priority of the outgoing virtual chan-
nels. An BE priority outgoing virtual channel will be chosen to send the BE
packet based on whether the channel output queue is available or not. This
is done by first marking all the BE channels that are available, then selecting
from the marked channels one channel starting from lower number virtual
channel to higher number. For both GS packet and BE packet, if the hold
signal for the selected channel is asserted, the FSM enter the AWAIT state

5.2. Module Design and Programming 77

INIT

IDLE

SEND PACKETIZE

AWAIT

reset

request_phase = 0
while new request has not
arrived to be packetized

request_phase = 1
if a new request arrives

hold(ch_selected) = 0
if the queue at the selected
virtual channel is not full we

send the packet

hold(ch_selected) = 1
if the queue at the selected

virtual channel is full we wait

hold(ch_selected) = 1
while the queue at the selected
virtual channel is full keep on

waiting

hold(ch_selected) = 0
if the queue at the selected

virtual channel becomes empty
we send the packet

Figure 5.8: Encapsulation Unit Finite State Machine for sending out packets
to the output queues.

78 Chapter 5. Implementation of Network Adapter

in the next clock cycle. Otherwise, the selected output queue is available,
and the FSM enters the SEND state in the next clock cycle.

In SEND state, the FSM sets outChSel signal from the chosen channel
in the PACKETIZE state, asserts packet_sent_i signal, and sends the pack-
etized data via packet_i signal. At the rising edge of next clock cycle, the
FSM returns back to the IDLE state.

In AWAIT state, the FSM continuously checks if the hold signal for the
selected channel is de-asserted or not. If it is, the channel output queue has
become available and the FSM can enter the SEND state in the next clock
cycle. Otherwise, the selected channel output queue is still busy and the FSM
remains in the AWAIT state. While at the AWAIT state the packet_sent_i
signal is kept de-asserted.

5.2.6 Output Queue Control

The Queue Control is intended to interface between the 8 output queues and
the Encapsulation Unit. For example, the Encapsulation Unit sets outChSel
signal to bits "101" telling the Queue Control that it wants to send the out-
going packet to output queue number 5. The Queue Control checks whether
output queue number 5 is ready to receive a new packet or not by checking
the signal ready at position 5. If ready(5) is not asserted or not ready to
receive a new packet, then the Queue Control will inform the Encapsulation
Unit to hold the new packet by asserting the hold(5) to 1. Otherwise, if
queue number 5 is ready to receive a new packet, the Queue Control will as-
sert load(5) to 1 ; hence enabling the queue and storing the new packet into
queue number 5. Figure 5.9 shows the state diagram for the Queue Control.

On reset, the FSM enters the INIT state, where hold signal for all 8
channels and load signal for all 8 queues are de-asserted. The INIT state is
there to initialize the output signals at reset. At the rising edge of the next
clock cycle, the FSM enters the IDLE state.

In the IDLE state, the packet_sent_i request signal from the Encapsu-
lation Unit is checked for assertion. The load signal for all 8 queues are
de-asserted. However, if any one of the ready signal from the 8 output
queues are asserted, meaning that the queue has become ready to receive a
new packet again, then the hold signal for that queue will be de-asserted. If
packet_sent_i is asserted and the ready signal at the position given by outCh-
Sel is also asserted, then the queue which the Encapsulation Unit wants to
send the new packet to is available, and the FSM enters the LOAD QUEUE
state at the rising edge of the next clock cycle. Otherwise, if packet_sent_i
is asserted but the ready signal at the position given by outChSel is not as-
serted, then there is a new packet that needs to be send to a queue which
is not yet available. If this is so, the FSM enters the AWAIT state at the
rising edge of the next clock cycle. If neither of these cases are true, then
packet_sent is not asserted, which indicates no new packet is ready to be

5.2. Module Design and Programming 79

INIT

IDLE

AWAIT
LOAD

QUEUE

reset

packet_sent = 1 &
ready(outChSel) = 1

if packet_sent request
signal has been received

from Encap and the
selected output queue is

ready to receive new
packet then load the

selected queue.

packet_sent = 1 &
ready(outChSel) = 0

if packet_sent request
signal has been received

from Encap but the
selected output queue is
not ready to receive new

packet then wait for queue
to be ready.

ready(outChSel) = 1
if the selected output

queue becomes ready to
receive new packet then
load the selected queue.

ready(outChSel) = 0
while the selected queue is
not ready, keep on waiting

packet_sent = 0
while there is new packet to

send and no packet_sent
request signal has been

received, we keep on
waiting

Figure 5.9: Output Queue Control Unit Finite State Machine for loading
packets to the output queues.

80 Chapter 5. Implementation of Network Adapter

send. In this case, the FSM stays at the IDLE state and keep on waiting for
the assertion of the packet_sent_i request signal.

In the LOAD QUEUE state, the FSM enable the output queue indicated
by outChSel by asserting the load signal for that queue. At the same time it
sets the hold signal for the queue that just have been loaded because once it’s
loaded it will not become available again for a new packet until the current
packet has been sent. The FSM also checks if any one of the 8 queues has
become available again and de-asserts the hold signals for those queues if so.
At the rising edge of the next clock, the FSM returns to the IDLE state.

In the AWAIT state, the FSM continues to check if the ready signal for
the selected queue is asserted or not. If so, it go to the LOAD QUEUE state.
If not, it stay at the AWAIT state. Here it also checks if any one of the 8
queues has become available again and de-asserts the hold signals for those
queues if so.

5.2.7 Output Queues

There are 8 instantiations of the output queue: one for each outgoing virtual
channel. The output queues are used to hold packets which are intended to
be sent to the queue’s corresponding virtual channel. The queues commu-
nicate with the Output Port control Unit on the SYNC component (see Fig
4.11) complying to the communication protocol show in Figure 4.13 until all
the flits of the packet have been sent. There is an output queue for each
outgoing virtual channel because in order to guarantee the full use of all vir-
tual channels, a packet intended for one channel should not block a packet
intended for another channel. Having a queue for each virtual channel allow
the full potential of utilizing all 8 virtual channels at once.

For each output queue, there are three input: the load bit, the queue
enable bit, the flit_array signal for the incoming packet, and a full bit coming
from the SYNC component’s Output Port Control Unit. The queue outputs
an outgoing flit, outFlit, to the outgoing virtual channel, a ready bit to the
Queue Control Unit, and a put bit to the SYNC component’s Output Port
Control Unit.

At the rising edge of each clock if the load bit is asserted, the queue
are loaded. Otherwise, the queues have already been loaded and the queue
checks if its corresponding virtual channel is full or not. If not full, the queue
checks if the flit to be sent is the last flit of the packet. It sends off the flit
and asserts the put bit. When the last flit of the packet has been sent, it
asserts the ready bit, indicating that the queue is available again to receive
a new packet. Otherwise if the channel is full, it waits by de-asserting the
put bit and the ready bit.

5.3. Concluding Remarks 81

5.3 Concluding Remarks

We have now concluded our discussion of the implementation details of the
network adapter. There is much more that could be done to add more
functionality to the NA. We will present some of these additions in Chapter
8 and discuss some of their design issues.

82 Chapter 5. Implementation of Network Adapter

Chapter 6

Test of the Slave Network

Adapter

Contents

6.1 Test Method . 83

6.2 Test Cases . 86

6.2.1 Priority Scheduler Testing 86

6.2.2 Decapsulation Testing 86

6.2.3 Receive Request Testing 87

6.2.4 Encapsulation Testing 87

6.3 Test Results . 87

Testing of the slave NA’s implementation is essential for validating its
correctness. The NA should comply to the OCP specification [7], the DTU
OCP Specification [10], and the Network Interface Specification [9]. The tests
are designed to show that the behavior of the slave NA follows the description
in Chapter 4 and that it is able to perform all of its required functions. This
chapter first discusses how the testing of the of slave NA was conducted.
Second, the chapter will list the major test cases and what they test. Last,
the test results will be discussed.

6.1 Test Method

There are altogether seven components on the slave NA and some compo-
nents consists of several modules. A bottom-up testing approach was used
to debug and verify each component. Figure 6.1 shows a flow chart diagram
of the testing procedure that was used for each component. After designing
the component and its interfaces, the component was implemented in VHDL.

83

84 Chapter 6. Test of the Slave Network Adapter

Module
Design

Implement

Test Case (i)

Behavior
Correct?

Debug and
modify code

NO

Start

End

YES

Last Test
Case?

i = i + 1

NO

YES

Testing
Procedure

Figure 6.1: Testing procedure for Slave NA design.

Test cases were designed for the component of interest. The test began by
applying the first test case to the test bench. If the behavior of the compo-
nent was as expected, the next test case was applied and added to the test
bench. If the behavior of the component was not as expected, there existed
some bug and debugging commenced until the component passed this test
case. This iteration of testing continued until all test cases were used and
the component’s behavior satisfied all cases, at that point the testing was
complete.

After testing each component individually, components are grouped to-
gether for testing as shown in Figure 6.2. The figures shows the components
in hierarchical levels. Those of the same level are in the same colors. There
are 6 test groups in total. They are circled and labelled in the figure. Each
group test goes through the same test procedure as the tests for individual
components, as shown in figure 6.1. The final slave NA, or test group 6, in-
corporates all components and verifies the proper operation of the complete
slave network adapter.

6.1.
T
est

M
eth

o
d

85

1. Decapsulation
Unit

Priority
Scheduler

Decapsulation
Environment

Input virtual
channel port
multiplexer

2. Request End-
to-End Flow
Control Unit

3. Route
Lookup Table

4. Connection
ID Table

Receive
Request

Environment

5. Encapsulation
Unit 6. Output

Queue

Queue
Control

Encapsultation
Environment

Receive
Packet

Environment

Slave NA

Test
group 1

Test
group 2

Test
group 3

Test
group 4

Test
group 5

Test
group 6

Figure 6.2: Testing hierarchy.

86 Chapter 6. Test of the Slave Network Adapter

In the next section, we will examine four major test cases and see what
each test case test.

6.2 Test Cases

Figure 6.2 lists 6 test groups and 8 individual component tests, totalling 14
test benches. It is not interesting to go into details about all these 14 test
benches. Therefore, we will select four important cases for closer examina-
tion.

6.2.1 Priority Scheduler Testing

The priority scheduler test checks for the following cases:

• When two packet arrive at the same time, one packet has a higher
priority than the other, the higher priority packet will be selected first.

• When a lower priority channel packet arrives before a higher priority
packet, the lower priority channel will be selected first.

• If a high priority packet arrives while a low priority channel is in the
process of transmitting flits, the scheduler will wait until the low prior-
ity channel finishes transmitting before selects the high priority chan-
nel.

• When two packet of the same priority arrive at the same time and one
of the channel has just been selected, then the packet on the other
unselected channel will be chosen.

6.2.2 Decapsulation Testing

The decapsulation testing (test group 2) tests the following cases:

• After the priority scheduler has selected a channel, the flits from that
channel are stored and assembled correctly.

• The received packet is decoded correctly, and all 8 types of packets in
the NoC can be recognized.

• The content of the packets is extracted and assigned to the correct
internal signals on the other end of the Decapsulation Unit interface
to other NA internal components.

6.3. Test Results 87

6.2.3 Receive Request Testing

The receive request testing (test group 3) tests the following cases:

• All types of requests are interpreted and encoded correctly and the
correct payload for each type of request is sent to the Encapsulation
Unit.

• When a GS response packet arrives, the Connection ID Table is enabled
and the correct address and data value is sent.

• The request and response phases comply to the OCP specification.

6.2.4 Encapsulation Testing

The Encapsulation Testing (test group 5) tests the following cases:

• The request message from the ReqE2E unit is packetized correctly
depending on the packet type.

• For GS request packets, the packet is sent to the virtual channel spec-
ified in the Connection ID Table.

• For BE packets, the packet is sent to one of the available BE output
queues. If no output queue is available, the packet_sent signal to the
ReqE2E unit will be de-asserted.

• If one the output virtual channel is congested the hold signal for that
channel will be high and no more packets will be injected into that
channel until the congestion is resolved.

6.3 Test Results

The 14 test benches exercised all specified functionalities of the slave network
adapter. The result of the testing showed that the current implementation
of the slave NA has passed all tests in each of the 14 test benches. The slave
NA is performing as expected.

88 Chapter 6. Test of the Slave Network Adapter

Chapter 7

Results Discussion and

Performance Estimate

Contents

7.1 Performance . 89

7.2 Cost Estimate . 91

7.2.1 Area Usage . 91

7.2.2 Power Consumption 92

7.3 Suggestions for optimization 94

How the network adapter performs in term of its clock frequency, area,
power usage, throughput, and latency is very important to the overall design
of MANGO and to the feasibility of using this network adapter. The perfor-
mance of the network adapter is evaluated in terms of its clock frequency,
throughput, and latency. The cost is evaluated in terms of its area usage
and power consumption. We begin this chapter by first discussing the results
achieved in this project in terms of its performance and cost estimate. Then
some suggestions will be provided for possible cost saving strategies for future
NA designs.

7.1 Performance

In order to provide a good and useful performance and cost estimate for the
slave NA, the behavioral VHDL model of the slave NA was slightly mod-
ified to allow synthesis and was synthesized in Synopsys Design compiler
using a 0.18 µm cell library [12]. The resulting synthesized VHDL code is
not a working VHDL description of the slave NA because the modifications

89

90 Chapter 7. Results Discussion and Performance Estimate

that was made for synthesis have introduced some errors in the NA’s behav-
ior. Nevertheless, it is a reliable source for performance analysis and cost
estimate.

Speed

The synthesis was done optimizing for high speed. The result achieved was
that the slave NA can run at 741 MHz with a clock period of 1.35 ns. The
area estimate generated in Section 7.2.1 is based on the high speed synthesis
result.

Throughput

The NA is a bridge between the core and the NoC. Therefore, throughput
for the NA can be in two directions: the forward direction, from the core to
the NoC, and the reverse direction, from the Noc to the core. Throughput
for the slave NA is defined to be:

throughput =
n

c

where n is the number of requests that the slave NA receives from the
master core and c is the number of cycles. The VHDL behavioral simulation
of the slave NA shows that the throughput for the current implementation
in the forward direction is:

throughput_fw =
1

4
= 0.25 requests/cycle

Therefore, if no congestion occurs at the output virtual channels, the
slave NA can receives 1 request every 4 cycles. The throughput in the reverse
direction is directly related to the length of the packet being received. Since
the NA can (in the absence of congestion) receive packets as fast as they
arrive, the only thing that limits the throughput is the link speed. Therefore
the throughput in the reverse direction can be characterized as:

throughput_rv =
1

m

where m is the number of flits within the packet.
The purpose of the output queues is to increase the throughput of the NA.

When a packet is sent to an output queue, the slave NA is free to receive the
next request from the master core. Therefore, if the queue depth increases,
the throughput would increase. However, this is done at the expense in area.
Naturally, the bigger the storage space in the output queues, the more space
it will use up in the NA.

The network adapter receives and sends one flit per cycle at 741MHz,
and each flit is 17 bits. Therefore, the bandwidth that the network adapter
supports is 1.57 GBytes/s.

7.2. Cost Estimate 91

Latency

Latency in the forward direction is defined as the time from when the request
is presented at the OCP interface to the time when the last flit of the packet
is set out of the NA. Latency in the reverse direction is defined as the time
when the first flit of the packet enters the NA until the result is presented
to the core at the OCP interface. The simulation results shows that in the
absence of network congestion the latency for the forward is:

latency_fw = m + 2 cycles

and the latency for the reverse direction is:

latency_rv = m + 1 cycles

where m is the number of flits within the packet.
From the latency equation above, the latency is linearly dependent on

the length of the packet. Without network congestion the slave NA is able to
packetize a request and send the packet to the network adding an additional
2 cycles. It adds only 1 cycle in the reverse direction.

7.2 Cost Estimate

7.2.1 Area Usage

The size of the NA on a chip is important in analyzing how much overhead
space the NA will occupy in comparison to both the size of the IP cores
and in comparison to the complete NoC. If the size of the NA is too big
compared to the IP cores, then it may be too expensive to implement all the
functions of the NA, and may be more reasonable to cut down its features
in order to decrease its area. Table 7.1 presents an area estimate of the
slave NA implemented in this project using the µm technology. In future
networks, smaller cell libraries will be used for synthesis. National Technol-
ogy Roadmap for Semiconductors estimates that 0.05 µm technology will be
attainable for future SoCs [13].

The area estimate shows that the top three modules that occupy the
greatest amount of space are: the output queues, followed by the Connection
ID Table, followed by the Decapsulation Unit.

The number of output queues is dependent upon the number of virtual
channels supported. The current implementation implements eight output
and input virtual channels. Each output queue occupies approximately 5.8%
of the total area. Therefore a tradeoff exists between the size of the NA and
the number of channels it supports.

The Connection ID Table implemented complies to the MANGO memory
mapping specified in [8], which maps 16 entries to the table. However, since

92 Chapter 7. Results Discussion and Performance Estimate

Component Computation Storage Total Area Cell % of area
Name (µm2) (µm2) (µm2) Count
8 Output Queues 68226 87520 155752 3965 46.31%
Conn ID Table 40755 31457 72212 1916 21.47%
Decap 43335 26075 69410 2507 20.64%
Encap 8544 11767 20312 821 6.04%
Queue Control 2310 2138 4448 161 1.32%
ReqE2E 6008 2433 8441 403 2.51%
RouteLookupTable 839 0 839 53 0.25%
InputPortMux 4902 1 4903 291 1.46%

Slave NA 174919 161391 336314 10117 100%

Table 7.1: Estimate of an area breakdown of the slave network adapter using
0.18 µm cell library.

there are only 8 output virtual channels and hence only 8 possible connection
setups, we only need to use half of the storage space in the Connection ID
Table. Therefore, the size of the Connection ID Table shown here could be
cut down by half.

The Decapsulation Unit takes up 20.64% of the overall area. Computa-
tion area is about twice the storage area. This is due to the complicated
computation work done by the priority scheduler within the Decapsulation
Unit. The storage area is mainly used for storing the incoming flits for
packet reassembly and for storing control information used by the Priority
Scheduler. The written code is not optimal for synthesis. Changing this may
possibly result in area savings.

The Encapsulation Unit occupies about 6.04% in area. Most of its area
usage is used for packet construction and segmentation, which is its main
task. Therefore, there is not much room here for area reduction.

The total area of the slave NA is approximately 10K gates. According
to [14], future designs should be composed of cores ranging approximately
from 50K-100K gates. With modules of these sizes wire delays will still be
manageable. In comparison to such core sizes, the slave NA adds about 10%
to 20% of overhead in term of area. MIPS32 R© 4KTM Family processing cores
synthesized using 0.18 µm process occupies area ranging between 1400000
µm2 to 2500000 µm2 [15]. So the slave NA occupies about 13% to 24% of
the MIPS core.

This may seem quite large, but whether or not this area overhead is
affordable depends on the situation at hand.

7.2.2 Power Consumption

In order to generate some power consumption figures using Synopsys, a
switching activity estimate for all the input and output signals was con-
ducted. Normally, using a VHDL simulator and an appropriate test bench, a

7.2. Cost Estimate 93

detailed switching activity summary can be generated for all signals through-
out the design. Hence, a good estimate of power consumption can be ob-
tained. However, due to limited time, the switching activity estimate was
only approximated by hand for the signals at the interfaces of the slave NA.
Therefore the results shown in this section can only be used as a rough guide-
line. Table 7.2 shows a power breakdown for the slave NA using the method
described when estimating the switching activity for a READ command.
Power results for other commands consume approximate the same amounts
of power, therefore will not be included.

Component Name Total Dynamic Cell Leakage mW / MHz
Power (mW) Power (µW)

8 Output Queues 145.40 7.20 0.19

Conn ID Table 51.87 3.39 0.07

Decap 32.63 2.94 0.04

Encap 5.86 0.70 0.01

Queue Control 1.01 0.17 0.00

ReqE2E 7.33 0.37 0.01

RouteLookupTable 0.33 3.54 e-02 0.00

Slave NA 525.96 14.98 0.71

Table 7.2: Power Estimate for Slave NA when performing READ operation.

The ordering of the power consumption from the most power hungry
module to the least is the same as for area usage. The output queues again
are at the top of the list and consume the most power. As discussed in the
previous section, the number of output virtual channels determines the num-
ber of output queues implemented. Hence power can be reduced if we reduce
the number of output virtual channels. Nonetheless, doing so will mean that
a smaller number of guaranteed connections will be supported and the func-
tionality of the NA will be less desirable. The MIPS32 R© 4KTM Family MIPS
cores running at clock frequency of 90 to 167 MHz consume about 1.3 to 2.2
mW/MHz of power. The slave NA consumes approximately 46% to 68% less
power than the MIPS core. This seems quite high for slave NA power con-
sumption. However, the MIPS cores are optimized for power consumption
and the power estimate presented here is not precise.

The columns of table 7.2 do not add up. The reason is dependent upon
where among the components of the NA Synopsys adds the power consump-
tion calculation for the clock signal. The clock signal, which is distributed
across all components in the network adapter, consumes much of the over-
all power. Synopsys adds the clock signal power consumption only to the
top level of the slave NA, not to the sub-components. Therefore, table 7.1
shows a dramatic increase in total dynamic power at the Slave NA level.
The results shown here suggest that the clock signal consumes a fair amount

94 Chapter 7. Results Discussion and Performance Estimate

of the overall power. One obvious way to reduce power consumption is to
apply clock gating to components that are idle. It would be beneficial to
add a controller at the top level of the NA that would monitor the interface
activities of the modules within the NA. This can be done because the NA
is modularized and can be partitioned fairly easily. If no event occurs at the
module interfaces, the module would be idle and wasting power. In cases as
such, it would save power to stop the clock to that module until an event
occurs at the modules interface and the clock is re-enabled to that module.

Therefore, optimizing the slave NA VHDL code for synthesis and ap-
plying clock gating will improve the power performance of the slave NA.
A better estimate of the power consumption can be achieved using a more
accurate switching activity estimate method.

7.3 Suggestions for optimization

As suggested earlier, the throughput can be increased by increasing the depth
of the output queues. However, doing so would increase both the area and
power consumption of the NA. It is desirable to find an optimal number
of virtual channels to implement such that the cost in terms of area and
power consumption can be kept reasonably low while still maintaining an
acceptable level of service.

From Tables 7.1 and 7.2, the output queues and the Connection ID Table
occupies the most space and consumes the most power. Therefore, it would
be beneficial to find alternative ways to implement them for synthesis. The
Decapsulation Unit also is at the top of both lists. The difficult part for
optimization lies in the implementation of the Priority Scheduler. Figure
7.1 also shows that the critical path lies in the Priority Scheduler within the
Decapsulation Unit. It starts from when the empty signal changes to when
the input channel is selected and marked as being selected using the tag
signal. Therefore, to reduce area, power and speed, efforts should be made
in the NA design to improve the efficiency of the Priority Scheduler.

7.3. Suggestions for optimization 95

Point Incr Path

input external delay 0.00 0.00 r

empty[6] (in) 0.00 0.00 r

Decapsulation/empty[6] (Decap) 0.00 0.00 r

Decapsulation/U12560/Z (M_ND3HSX3) 0.05 0.05 f

Decapsulation/U10867/Z (ND2HSX4) 0.07 0.12 r

Decapsulation/U12603/Z (F_IVHSX8) 0.05 0.17 f

Decapsulation/U10864/Z (ND2HSX4) 0.04 0.20 r

Decapsulation/U12604/Z (IVHSX8) 0.05 0.25 f

Decapsulation/U12598/Z (ND2HSX3) 0.05 0.30 r

Decapsulation/U12625/Z (AO7HSX4) 0.08 0.38 f

Decapsulation/U12718/Z (AO7CHSX4) 0.08 0.46 r

Decapsulation/U10862/Z (ND2HSX4) 0.07 0.53 f

Decapsulation/U10835/Z (F_IVHSX8) 0.04 0.58 r

Decapsulation/U12722/Z (F_ND2HSX6) 0.04 0.62 f

Decapsulation/U12610/Z (IVHSX8) 0.03 0.65 r

Decapsulation/U12597/Z (F_ND2HSX6) 0.04 0.69 f

Decapsulation/U12687/Z (F_NR3AHSP) 0.08 0.76 r

Decapsulation/U12642/Z (F_AO7HSP) 0.07 0.83 f

Decapsulation/U12666/Z (ND3HSX3) 0.07 0.90 r

Decapsulation/U12686/Z (F_IVHSX8) 0.06 0.96 f

Decapsulation/U12685/Z (NR2HSX3) 0.06 1.01 r

Decapsulation/U12613/Z (ND2HSX4) 0.06 1.07 f

Decapsulation/U12628/Z (F_ND2AHSX3) 0.05 1.12 r

Decapsulation/U10859/Z (F_IVHSX8) 0.04 1.17 f

Decapsulation/U12699/Z (F_ND2AHSX3) 0.03 1.20 r

Decapsulation/U12698/Z (AO3HSP) 0.05 1.26 f

Decapsulation/tag_reg[0]/D (FD2HS) 0.00 1.26 f

data arrival time 1.26

max_delay 1.35 1.35

library setup time -0.09 1.26

data required time 1.26

data required time 1.26

data arrival time -1.26

slack (MET) 0.00

Figure 7.1: Slave NA critical path generated by Synopsys.

96 Chapter 7. Results Discussion and Performance Estimate

Chapter 8

Future Work

Contents

8.1 Master NA Design 97

8.1.1 Response End-to-End Flow Control Unit 98

8.2 Duplex NA Design 101

8.2.1 Component Added - Master/Slave Controller . . . 101

8.2.2 Components Modified 103

8.3 Burst Extension 104

The work presented in this project lays the ground work for a NoC network
adapter. Many additional features can be built on top of this foundation.
For readers interested in further developing the DTU network adapter, this
chapter will present two possible designs for the master NA and the duplex
NA introduced earlier in sections 4.1.2 and 4.1.3 respectively. However, the
designs introduced in this chapter are preliminary drafts, are incomplete and
need further development. In addition to this, we will also present some
suggestions for changes in the NA when support for bursts is provided.

8.1 Master NA Design

The master NA compliments a slave IP core. This means that it is only
fit to receive slave OCP signals and to present master OCP signals. At the
network interface end, except for GS setup and teardown response packets
which are used to configure the master NA for GS connection setups and
teardowns, the master NA can only recognize request packets and send re-
sponse packets. In this section, we intend to give a general idea of the major
internal components in a master NA. The design is very similar to that of

97

98 Chapter 8. Future Work

the slave NA implemented in this project but with some slight variations.
First we look at a block diagram of the master NA in Figure 8.1.

From Figure 8.1, we can see that the only major difference between the
master NA and the slave NA is the replacement of the Request End-to-End
Flow Control Unit (ReqE2E) with the Response End-to-End Flow Control
Unit (RespE2E), which we will examine in more detail in Section 8.1.1. The
implementation of the Connection ID Table, the Route Lookup Table, the
Queue Control, and the Output Queues remains the same. However, the
Encapsulation Unit should, instead of packetizing request packets, packetize
response packets; and the Decapsulation Unit, instead of recognizing and
depacketizing response packets, should recognize and depacketize request
packets. In order to do so, both the Encapsulation Unit and the Decapsula-
tion Unit need to use the packet format presented in Section 4.4.

8.1.1 Response End-to-End Flow Control Unit

The RespE2E unit communicates with the slave NA. Therefore, it needs an
OCP Master Control unit which will control the communication at the OCP
interface according to the OCP timing specification discussed in Chapter
3. When the RespE2E unit presents the master OCP signals to the slave
core, the slave core can choose to either respond to the request in the same
clock cycle as it accepts the request, or respond to the request several clock
cycles later. The slave core accepts the request by raising the SCmdAccept
signal. However, if SCmdAccept is not raised, the RespE2E unit must hold
all its master request signals until SCmdAccept is asserted. Hence, while the
request is not accepted, the RespE2E unit must not accept any new request
packet from the network. The hold_i signal is used to tell the Decapsulation
unit to refrain from accepting more packet from the network until the request
has been accepted. Figure 8.2 shows a possible implementation of the OCP
Master Control finite state machine (FSM).

At reset, the FSM enters the IDLE state, where all master OCP signals
to the slave core are invalid and the hold_i signal is de-asserted. While a
new request message has not arrived, the FSM remains at the IDLE state. If
a new request message arrives, resquest_arrived_i is raised, the PRESENT
REQUEST state is entered at the rising edge of the next clock cycle.

At the PRESENT REQUEST state, the controller first checks the type
of packet that has been received. If it is a BS or GS request packet, the FSM
presents the master OCP signals for this particular request message and
hold these signals while SCmdAccept is not asserted. If it is a GS setup or
teardown packet, the master NA will enable write to the Connection ID table
for NA configuration and also do a write to the slave core presenting it the
connection ID for the reverse direction GS connection setup or teardown.
The FSM also asserts the hold_i signal while at this state. It remains in
PRESENT REQUEST state until SCmdAccept is asserted. If SCmdAccept

8.1.
M

aster
N

A
D

esign
99

Route Lookup
Table

Encap

Decap

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

S
Y
N
C
H
R
O
N
I
Z
E
R

Input Port
Control

Output Port
Control

get (7 downto 0)

empty (7 downto 0)

inChSel (2 downto 0)

inFlit
(16 downto 0)

re s e t

M
 a s te r

_ S
 B

 A

c lk

Connection ID
Table

connIDTable_read_ en

Dest_SBA_i
(7 downto 0)

routepath_out_i
(15 downto 0)

InjID_i
(31 downto 0)

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

outChSel_i (2 downto 0)

packet_i

re s e t

c lk

re s e t

Queue
Control

load
(7 downto 0)

put (7 downto 0)

full (7 downto 0)

Ready
(7 downto 0)

hold_i

re s e t

c lk

Priority Scheduler

Scheduler
packet_sent_i

RespE2EaSlave
Core

OCP Master
Control

MCmd (2 downto 0)

MAddr (31 downto 0)

MData (31 downto 0)

MDataInfo (31 downto 0)

SCmdAccept

MRespAccept

SData (31 downto 0)

SResp (1 downto 0)

SDataInfo (31 downto 0)

re s e t

c lk

routepath_in_i (15 downto 0)

MData_i (31 downto 0)

MDataInfo_i (7 downto 0)

Request_arrived_i

response_phase_i

SDataInfo_i (31 downto 0)

SData_i (31 downto 0)

SResp (1 downto 0)

packet_sent_i

resp_packet_encode_i (2 downto 0)

connIDTable_write_en

packet_decode_i(2 downto 0)

hold_i

SResp_GS_i(1 downto 0)

SDataInfo_GS_i(31 downto 0)

SData_GS_i(31 downto 0)

MAddr_i(31 downto 0)

MCmd_i(2 downto 0)

MFlag_i(31 downto 0)

MFlag(31 downto 0)

MReqInfo(1 downto 0)

write_address
(31 downto 0)

write_data
(31 downto 0)

read_address
(31 downto 0)

Figure 8.1: Block Diagram of a master network adapter.

100 Chapter 8. Future Work

IDLE

PRESENT
REQUEST

SEND
RESPONSE

reset

Request_arrived_i = 1
if a new request message

arrives.

Request_arrive_i = 0
while request message has not

arrived

SCmdAccept = 0
while the slave core has

not accepted the
request, hold the master
request phase signals.

SCmdAccept = 1
SResp = NULL

the slave core accepts
the request but does not

respond in the same clock
cycle

SResp = NULL
while slave core has not

responded yet to the request.

SCmdAccept = 1
SResp /= NULL

the slave core accepts the request
and responds in the same clock

cycle.

WAIT
RESPONSESResp /= NULL

the slave core
responds

Resp_packet_sent_i = 0
while the Master/Slave

controller has not
accepted the response

message and the
message has not been
sent. MRespAccept = 0

Resp_packet_sent_i = 1
the Master/Slave

controller accepts the
response and the

response packet has
been sent to the

selected Output Queue.

Figure 8.2: An example state diagram for Response End-to-End Flow Con-
trol Unit.

8.2. Duplex NA Design 101

is asserted and SResp is NULL then the FSM waits for response and enter
the WAIT RESPONSE state in the next clock cycle. If SCmdAccept is high
and SResp is not NULL then SEND RESPONSE state is entered in the next
clock cycle.

At the SEND RESPONSE state, the FSM determines the type of re-
sponse this is by using the packet_decode signal and encode the response
packet using resp_packet_encode_i correspondingly. For example if the re-
quest message is a BE request, then the response packet will be a BE response
packet. MDataInfo_i is mapped to the sources address of the received packet
4.4. Therefore, MDataInfo_i can be used as input to the Route Lookup Ta-
ble, DEST_SBA_i, to generate the route path back to the master core. The
OCP response signals are passed on to the Encapsulation Unit for pack-
aging and the hold_i signal to the Decapsulation unit is de-asserted. If the
packet_sent_i signal is not asserted then all response signals is held constant
and the FSM remains in SEND RESPONSE state. When packet_sent_i sig-
nal is detected asserted, the FSM returns to the IDLE state in the next clock
cycle.

At the WAIT RESPONSE state, we continue to assert the hold_i signal
and remain at this state until SResp is not NULL. If SResp is not NULL we
enter the SEND RESPONSE state at the next clock cycle.

8.2 Duplex NA Design

The duplex NA combines the master and slave NA in one. The Encapsulation
Unit and the Decapsulation Unit packetizes and depacketizes both request
and response packets. The Connection ID Table and the Route Loookup
Table are shared among the master and slave End-to-End Flow Control
Units. Therefore, a Master/Slave Controller is needed to coordinate the
master and the slave for accesses to the tables as well as the Encapsulation
Unit, since it can only packetize one packet at a time. Figure 8.3 presents
a block diagram for the duplex NA, which combined both the slave NA and
the master NA with an additional Master/Slave controller. In the following
section, we will discuss the additions to and changes to the network adapter
in the duplex version.

8.2.1 Component Added - Master/Slave Controller

The Master/Slave controller needs to arbitrate between sending a request
packet from the master OCP instance and sending a response packet from
the slave OCP instance. It controls the enable signals to the Connection
ID Table and selects which unit, either ReqE2E or RespE2E, is allowed to
access the Connection ID Table and Route Lookup Table. Furthermore,
it tells the Encapsulation Unit which type of message to packetize, either

10
2

C
h
ap

te
r

8.
F
u
tu

re
W

or
k

Master
Core

MCmd (2 downto 0)

MReqInfo (1 downto 0)

MAddr (31 downto 0)

MData (31 downto 0)

MFlag (31 downto 0)

Route Lookup
Table

Encap

Decap

Req E2E

SCmdAccept

MRespAccept

SData (31 downto 0)

SResp (1 downto 0)

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

S
Y
N
C
H
R
O
N
I
Z
E
R

Input Port
Control

Output Port
Control

get (7 downto 0)

empty (7 downto 0)

inChSel (2 downto 0)

inFlit
(16 downto 0)

re s e t

M
 a s te r

_ S
 B

 A

c lk

OCP Slave
Control

Connection ID
Table

req_packet_encode_i (2 downto 0)

MAddr_Out_i (31 downto 0)

MCmd_Out_i (2 downto 0)

MFlag_Out_i (31 downto 0)

c
o

n
n

ID
T

a
b

le
_

w
r

it
e

_
e

n

c
o

n
n

ID
T

a
b

le
_

re
a

d
_

 e
n

Dest_SBA_i
(7 downto 0)

routepath_out_i
(15 downto 0)

InjID_i
(31 downto 0)

MData_Out_i (31 downto 0)

MDataInfo_Out_i (31 downto 0)

req_packet_sent_i

Response_arrived_i

packet_decode_i (2 downto 0)

MCmd_i (2 downto 0)

MAddr_i (31 downto 0)

SDataInfo_i (31 downto 0)

SResp_i (1 downto 0)

Inj Ch 0

Inj Ch 1

Inj Ch 2

Inj Ch 3

Inj Ch 4

Inj Ch 5

Inj Ch 6

Inj Ch 7

outChSel_i (2 downto 0)

packet_i

SDataInfo (31 downto 0)

MDataInfo (7 downto 0)

re s e t

c lk

re s e t

c lk

re
s

e
t

SData_i (31 downto 0)

Queue
Control

load
(7 downto 0)

put (7 downto 0)

full (7 downto 0)

Ready
(7 downto 0)

hold_i

re s e t

c lk

Priority Scheduler

Scheduler
packet_sent_i

request_phase_i

RespE2E
Slave
Core

OCP Master
Control

MCmd (2 downto 0)

MReqInfo (1 downto 0)

MAddr (31 downto 0)

MData (31 downto 0)

MFlag (31 downto 0)

MDataInfo (31 downto 0)

SCmdAccept

MRespAccept

SData (31 downto 0)

SResp (1 downto 0)

SDataInfo (31 downto 0)

re s e t

c lk

routepath_in_i (15 downto 0)

MFlag_i (31 downto 0)

MData_i (31 downto 0)

MDataInfo_i (7 downto 0)

Request_arrived_i

response_phase_i

SDataInfo_i (31 downto 0)

SData_i (31 downto 0)

SResp (1 downto 0)

resp_packet_sent_i

resp_packet_encode_i (2 downto 0)

req_read_addr
(31 downto 0)

Master/Slave
Controller

0

0

0

1

1

1

ConnID_Sel

Route_Sel

Req_connID_rdwr

Resp_connID_rdwr
Req_resp

hold_i

Req_use

Resp_use

write_address
(31 downto 0)

write_data
(31 downto 0)

read_address
(31 downto 0)resp_read_addr

(31 downto 0)

0

1

Resp_Dest_SBA_i
(7 downto 0)

R
e

s
p

_
D

e
s

t_
S

B
A

_
i

(7
 d

o
w

n
to

 0
)

req_wr_addr
(31 downto 0)
resp_wr_addr
(31 downto 0)

req_write_data
(31 downto 0)

re
s

p
_

w
r

it
e

_
d

a
ta

(3

1
 d

o
w

n
to

 0
)

Figure 8.3: Block Diagram of a duplex network adapter.

8.2. Duplex NA Design 103

a request message from the ReqE2E unit or a response message from the
RespE2E unit.

The Master/Slave Controller takes in four inputs and five outputs. In-
puts Req_connID_rdwr and Req_use are asserted when the ReqE2E unit
needs to either use the Connection ID Table or send a request packet; and
inputs Resp_connID_rdwr and Resp_use are asserted when the ResqE2E
unit wishes to access the Connection ID Table or send a response packet.
It is possible that both the Req_connID_rdwr and the Req_use signals are
asserted the same time, and likewise for the Resp_connID_rdwr and the
Resp_use signals. This means that the Connection ID Table should be able
to accept a read and a write the same time. When the Master/Slave con-
troller chooses to service the ReqE2E unit when it requests a read or write to
the Connection ID Table, the Master/Slave controller will assert ConnID_Sel
to choose inputs from the ReqE2E unit. Likewise, if RespE2E unit is cho-
sen, the ConnID_Sel will be de-asserted. When the Master/Slave controller
chooses to service a request packet to be packetized, it will assert Req_resp
signal. If it chooses to service a response packet it will de-assert the Req_resp
signal.

The Master/Slave unit needs to be further developed, as its arbitration
algorithm has not been specified, only its behavior at its interfaces.

8.2.2 Components Modified

Response End-to-End Flow Control Unit

There needs to be two additional signals asserted in the PACKET SENT
state of the RespE2E FSM. If the packet received is a GS setup or teardown
response packet, the RespE2E must configure the NA for GS connection in
the reverse direction. Hence it needs to write to the Connection ID Table.
The Resp_connID_rdwr signal is used to inform the Master/Slave Controller
in such cases. The Resp_connID_rdwr signal is asserted when writing to the
Connection ID Table and de-asserted when reading from the Connection ID
table. The second signal added is the Resp_use signal, which is asserted
every time the RespE2E unit wants to send a packet to be packetized.

Request End-to-End Flow Control Unit

Likewise, two additional signals must also be added to the ReqE2E unit.
A Req_connID_rdwr signal is asserted for reading and writing to the Con-
nection ID Table for GS connection usage in the RESPONSE RECEIVED
state of the Response OCP controller, which is presented in Section 5.2.2,
Figure 5.7. A Req_use signal is used when the ReqE2E unit wishes to send
a request packet to be packetized. This signal is asserted in the REQUEST
RECEIVED state of the Request OCP controller presented in Figure 5.6.

104 Chapter 8. Future Work

Encapsulation Unit

The Encapsulation Unit will now receive a Req_resp signal from the Mas-
ter/Slave Controller. When Req_resp is 1, the Encapsulation Unit will re-
ceive a request message from the ReqE2E unit to packetize. When Req_resp
is 0, it will packetize a response packet from the RespE2E unit. The En-
capsulation Unit will now be able packetize all six types of the DTU NoC
packets according to the packet format in Section 4.4.

Decapsulation Unit

The Decapsulation Unit for the duplex NA has already been implemented.
However, there needs to be one more mechanism added, which is the hold_i
signal from the RespE2E unit. The Decapsulation Unit needs to stop select-
ing another channel when hold_i is asserted.

8.3 Burst Extension

Providing support for burst extensions on the NA means that the following
issues must be addressed:

• A burst packet must be added to the packet type encoding in Figure
5.2.

• The packet format must then include new formats for carrying OCP
burst extension signals.

• The RespE2E unit after receiving the base address for the burst packet
and the burst length must keep track of the burst address increments
and present the next consecutive burst read request to the slave core.
After the slave core accepts each burst read request, it will respond
with the burst data. The RespE2E unit then must send the correct
response packet information for the Encapsulation Unit.

In this chapter, some design issue for developing a master NA and a
duplex NA was discussed. The design details made here should only be used
a guide for future master and duplex NA development.

Chapter 9

Conclusion

As mentioned in the introduction, the goal of this thesis project was to inves-
tigate the design of an OCP compliant network adapter for DTU Network-
On-Chip (MANGO). Specifications at both the OCP interface and the net-
work interface were provided by other members of the MANGO group to set
the bounds for this design work.

During this project, several lessons were learned.
Firstly, the functionality and the design of the network adapter are closely

tied to the design of the packet formats for the NoC. The more elaborate the
packet formats is, the more work the network adapter must do to provide
the services specified in the packet format.

Secondly, there is a definite tradeoff between the functionality of the
network adapter and the cost of implementing it. The more functionality
required, the more complex the network adapter, and therefore the more
costly it is in terms of power and area. For example, in order to provide dif-
ferentiated services, the network adapter must implement priority scheduling
and output queues for the virtual channels. However, implementing priority
scheduling is quite complex and therefore the computation complexity of the
network adapter increases. The virtual channels provide means for differen-
tiated services. An output queue is required for each virtual channel. The
higher the number of virtual channels, the more queues and therefore the
more area the queues will occupy.

Finally, in order for the network adapter to work properly and to be
made more compatible to the rest of the NoC, the network adapter designer
must have a clear and complete understanding of how the overall NoC works.
The specifications at the OCP interface and the network interface need to
be more clearly detailed.

The behavioral simulation results of the slave network adapter imple-
mentation showed throughput of 1 request every 4 cycles and a latency of

105

106 Chapter 9. Conclusion

the length of the packet plus 2.
An estimate based on a 0.18 µm cell library shows that the slave network

adapter can approximately run at 741MHz and occupies roughly 336,000
µm2 in area. A rough power estimate showed that the network adapter
uses around 525 mW of power for every request it services. The performance
estimates demonstrated that the area of slave NA implemented in comparison
to future NoC core sizes adds about 10% to 20% of area overhead. The
power consumption of the slave NA in comparison to MIPS32 R©4KTMFamily
processing cores is that the slave NA consumes about 46% to 68% less in
power.

The network adapter developed in this thesis project has paved the foun-
dation for future network adapter developments. Several areas of the design
still need to be further explored for functionality and efficiency. The crucial
part is finding the correct balance between the amount of functionality that
the network adapter supports and the cost of implementing them. This thesis
has provided understanding for many design issues involved in the network
adapter development as well as useful performance and cost estimates which
will provide valuable insight to future designs.

107

108 Appendix A. DTU GS-OCP Specification

Appendix A

DTU GS-OCP Specification

109

110 Appendix A. DTU GS-OCP Specification

111

112 Appendix A. DTU GS-OCP Specification

113

114 Appendix A. DTU GS-OCP Specification

115

116 Appendix A. DTU GS-OCP Specification

117

118 Appendix A. DTU GS-OCP Specification

119

120 Appendix A. DTU GS-OCP Specification

121

122 Appendix B. Programmer’s Model for DTU NoC

Appendix B

Programmer’s Model for DTU

NoC

���������	��
�
���������������������� �"!"#%$&�('

)+*�,.-./�0�132546187�9	:<;>=�?.25@	;�AB7C)6DE13FHG�G
I /�JK9	4	:<JMLONQP�4	:<RO/�?.,.:<-3*S2OT�UV/�4	0WLO?.X

Y *�4	Z5[*>]O^5_5_6A	UV/�4	0WLO?.X

` JbaC]O_5_Oc

d /�?.,.:<254fe5ghe5ABiO@	4	/j]5k�Al]O_5_Oc

123

m�n	o�pKq�rBo

s�tvuxwjybzb{8|v}(~H���j�v��zK�Muxyb~.w���tv~��v��z�������}(}(~H�.� w��bu ~H����z��j��s�����~8����z�������z��b���Bt�u �
� �QzM���3�bs�tv~���~.��yv~H�Buxw���w�w�|v}(~.y(��z��O~Q�h��}(u ux������u ��t¡��t�~E¢b£bw���~8}(��z��b����tvu ��{3z��v{8~.�b��w
����y�}�|v ��u tvz����Qzb�¤{8z���{8~H�b��wH�¦¥Q��yV�� w�zC§¨¢���©¨�Bª«ybzb{H|v}(~H���.�
¬Bybu ��~.y��M£5 ¢Mt����v�®���Q¯°��t���yb~H�®���

±�u {3t�����y�ª	~8��~H��w�~H��w�ªl x��ybw
�Es����³²�|vu yvu �v�C´Mµ�µ
�E¶E��µ�·�¸�¸�¶���wH�	¹+£M�v���M£
��~H�v}C�����
¬l}C��u <lw�}�º�u }(}�� yb��|+� yb�
s�~H <� »E¼M½�¼M½�µ�½�´M¾�½K¼

124 Appendix B. Programmer’s Model for DTU NoC

¿ À5Á�Â+Ã¦ÄCÅ�ÆVÇlÂ	È3Ä�Á
É�ÊbË¡Ì�Í�Î�Ï�Í�Ð�Ñ�Ò ÓEÔbÕ ËHÖØ×MË.Ó�Ù8Í�ÕxÚ�Ë®Ó�Û�ÊvË�Ï�ÜxÎ�Ú�Ð�ÜlÐ�×v×vÍ�Ë®Ó�Ó¨Ó�Ì�Ð�Ù8ËCÎ�Ý�Û�Ê�Ë¡ÞEÉ�ßáàQÎMâEã�äjË
ÑCÐKå�Ë�Û�ÊvË¡Ð�Ó�Ó�æ�Ñ�ÌvÛ�Õ Î�çèÛ�Ê�Ð�Û¨Ð�×v×bÍ�ËHÓ�Ó¨Ó�Ì�Ð�Ù8Ë(ÕéÓ¨×bÕ Ó�Û�Í�ÕxÚvæMÛ�Ë.×èË.êMævÐ�Ü Ü ëèÚ�ËHÛ�ÖBË.Ë8çìÐ�ÜxÜ¦í³î
Ù8Î�Í�Ë®Ó8ïbÕxçvÙHÜ æ�×vÕ çvÏ(Û�ÊvË¨àQÎbâEãvÉ�ÊvË�à�ÎMâ¤Õ ÓQÙHÎ�Ñ(Ì5Î�Ó�ËH×VÎ�Ý6Û�ÊvÍ�ËHË�ÙHÎ�Ñ(ÌOÎ�çvËHç�Û�ÓHð¦çvËHÛ³Ö�Î�Í�å
Ð�×�Ð�ÌbÛ�ËHÍ�Ó¡ñhàEò�ó8ï¦Í�Î�æbÛ�ÕxçbÏèç�ÎM×vËHÓ(ÐKç�×�Ü ÕxçvåbÓ8ã�É�ÊvË�àQò&Ð�ç�×ôÛ�ÊvËVÍ�Î�æbÛ�Õ çvÏèç�ÎM×vËHÓ�Ð�Í�Ë
Ð�×�×bÍ�Ë®Ó�Ó�Ð�Ú�Ü Ë�ã�í³Û�Õ Ó�Ð�Ó�Ó�ævÑ(ËH×CÛ�ÊvÐKÛ�õ�ö�Úbë�Û�Ë.ÓBÐ�Í�Ë�Ð®ÔKÐ�Õ ÜéÐKÚvÜ ËQÝ�Î�Í�Ð�×v×bÍ�ËHÓ�Ó�Õ çvÏ�Ð�çv×¡õ�ö<ÚMëMÛ�Ë.Ó
Ð�Í�Ë¨Ð®ÔKÐ�Õ Ü Ð�ÚvÜ Ë�ÝéÎ�ÍQ×vÐKÛ�Ð�ñ�Ð�Í�Í3Ð®ëCÎ�Ý	ÖBÎ�Í�×vÓ�ó3ïbË.Ð�Ù�Ê�÷�øKö<ÚvÕ ÛQÐ�×v×bÍ�Ë.Ó�Ó�ÌOÎ�Õ çMÛ�ÕxçbÏCÛ�Î¡ÐCÓ�Õ ç�Ï�ÜxË
÷�øKö<Ú�Õ Û(×vÐKÛ�Ð°Ö�Î�Í�×\ã°í³çWÎ�Í3×bË8Í�Û�ÎèÑCÐ�å�Ë�ËHù¡Ù3ÕxË8çMÛ�æ�Ó�Ë�Î�Ý�Ó�Ë8Í�Ô�ÕxÙ8Ë.Ó�Ð®ÔKÐ�Õ ÜxÐ�ÚvÜ Ë¡ÔMÕxÐ°Û�ÊvË
à�ò�Ð�ç�×CçbÎb×bË®Ó8ïbÐ�ÌvÍ�Î�Ï�Í�Ð�Ñ(ÑCË8Í®Ò ÓlÑ�Îb×bË.Ü5Õ Ó�Í�ËHêMæbÕxÍ�Ë®×\ã6É�Ê�Õ Ó�×bÎbÙ8æ�Ñ�ËHçMÛ�ËHúMÌ�Ü Ð�Õ ç�ÓlÛ�Ê�Õ Ó
Ñ(Îb×bË8Ü�ã

û¦ü�û ýÿþ��������	��
������
������
���
� ÝQÛ�ÊvË�õKö³ÚMë�Û�ËVÎ�ÝEÐ�×b×bÍ�ËHÓ�Ó��OË8Üé×\ïlÛ�ÊbË�ÑCÎ�Ó�Û¡Ó�ÕxÏ�çvÕ ��Ù.ÐKçMÛ�ÚMë�Û�Ë�ÕxÓ(æ�Ó�ËH×�Û�ÎìÍ�ËHÌvÍ�ËHÓ�Ë8çMÛ
Û�Ê�Ë¨Ï�Ü Î�ÚvÐ�Ü ÜxëCævçbÕéê�ævË¨×bË8ÔMÕéÙ3Ë¨Ð�×v×vÍ�Ë®Ó�Ó�Ð�ÜxÓ�Î(ÙHÐ�ÜxÜ Ë.×�Ó�ëbÓ³Û�Ë8ÑáÚ�Ð�Ó�Ë¨Ð�×v×bÍ�ËHÓ�Ó�ñ�����òEó8ïbÛ�ÊMæ�Ó
æbÌbÛ�Îjø�� ��í³îfÙHÎ�Í�ËHÓ�Ù.Ð�çìÚ5Ë¡Í�Ë8ÌvÍ�ËHÓ�Ë8çMÛ�Ë.×\ã"!vÎ�Ü ÜxÎKÖ�Õ ç�Ï�Û�Ð�ÚbÜ Ë�Ó�ÊvÎKÖQÓ�Û�ÊvË�Ñ�Ë.Ð�çvÕ çvÏ°Î�Ý
ËHÐ�Ù�Ê�ÚMëMÛ�Ë�ã¦É�ÊvË¨ÚMë�Û�ËHÓ�Ð�Í�Ë¨Ó�ÊvÎKÖ�ç�Õ ç�Ü Õ Û�Û�Ü Ë�Ë.çv×bÕxÐ�ç�Î�Í�×bËHÍ.ã

#%$ &(')*',+.- /10
÷�Í�× ����ò�ïvæbÌbÛ�Î¡ø��2��×bË.Ô�ÕxÙ8Ë.Ó
ø�çv×�Ð�çv×43HÓ�Û âBÎ�Ñ�ÚvÕxçbË.×VÐ�Í�Ë¨ævÓ�ËH×�Û�Î¡×bÕxÓ�Û�Õ ç�Ï�ævÕxÓ�Ê�×bÕ 5OËHÍ�ËHçMÛQÙ8Î�Ñ(ÌOÎ�çvËHçMÛ�Ó

��ë�Û�Ë�ÑCËHÐ�çvÕ ç�Ïvð
6�626�6 Û�Î.!7!7!	â98 ò6ÔKÐKÕxÜ Ð�ÚvÜ ËEÛ�ÎCÜ ÎbÙHÐ�Ü\í³î«Ù8Î�Í�Ë
!7!7!¦Þ�8>Ý�Î�Í�à�ò ÙHÎ�çMÛ�Í�Î�Ü
!7!7!7:;8�ÝéÎ�Í%<QÎ�æbÛ�Õ çvÏCà�ÎM×vË�Ù3Î�ç�Û�Í�Î�Ü
!7!7!=!>8?<�ËHÓ�Ë8Í�Ô�Ë®×

6 Û�Ê @�ÎMÙHÐ�Ü\Î�55Ó�Ë3Û
É�Ð�ÚvÜ ËA3�ð=�bëMÓ�Û�Ë.Ñ ò�×v×vÍ�Ë®Ó�Ó%�MÌOÐ�Ù8Ë�í³çMÛ�ËHÍ�Ì�Í�ËHÛ�ÐKÛ�Õ Î�ç+ã

�MÕxçvÙ8ËEËHÐ�Ù�Ê¡í³î�ÙHÎ�Í�ËQÊvÐ�Ó�Ð�çVÐ�Ó�Ó�ÎbÙ8ÕxÐKÛ�ËH×CÐ�çvÎb×bËQÕxçCÛ�ÊbËEç�Ë3Û�Ö�Î�Í�åOï�Û�ÊvË�à�ò>Ð�ç�×CÛ�ÊvË
Ü ÎMÙ.ÐKÜ\çbÎb×bË¨ÙHÐ�ç�Ú5Ë¨Ð�×v×vÍ�Ë®Ó�Ó�ËH×CÖ�Õ Û�ÊVÛ�ÊvË�Ñ�Î�Ó�Û�ö�Ó�ÕxÏ�çvÕ ��ÙHÐ�çMÛ�ö³Ú�ë�Û�Ë�ïCB�ævÓ�Û�Ð�Ó�Û�ÊvË�í³îSÙ8Î�Í�Ë�ã
àQÎ�Û�Ë�ï�ÝéÎ�Í�çbÎb×bË®ÓQÖ�Õ Û�ÊvÎ�æbÛEÐ�Û�Û3Ð�Ù�ÊvË®×�í³î¤Ù8Î�Í�Ë®Ó8ï�Û�ÊvË(Ð�×v×bÍ�Ë.Ó�Ó�Õ çvÏ¡Ó�Ù�ÊvË.Ñ�Ë�çbËHË.×�çvÎ�ÛEÚOË
×bÕ 5OË.Í�Ë.ç�Û.ã�É�ÊvÕ Ó�ÑCÐ®ëèÚOË¡Õ ç�Ë8ùCÙ8ÕxË8çMÛ�æ�Ó�ËCÎ�ÝQÐ�×b×bÍ�ËHÓ�Ó¨Ó�Ì�Ð�Ù8Ë�ï�ÚvævÛ�æ�Ó�Ë3Ý�ævÜBÝ�Î�Í�Í�Î�æbÛ�Õ ç�Ï
Û�ÎVÛ�ÊOÐKÛ�ÜxÎbÙ8Ð�Û�Õ Î�ç\ã¨É�ÊbË(çbË8úMÛEÛ�ÖBÎVÚ�ë�Û�ËVñ<øKç�×jÐKç�×D3.Ó�Û3ó�Ð�Í�Ë�ævÓ�Ë.×�Û�Î�×bÕxÓ�Û�Õ ç�Ï�ævÕxÓ�ÊèÛ�ÊvË
Û�Ð�Í�Ï�Ë8ÛCÙ3Î�Ñ�Ì5Î�ç�ËHç�ÛHã«É�ÊbË�ÔKÐKÜxævËHÓ(ÕxçôÛ�ÊbË�Ü ÎKÖ�ËHÍ(õ�ö<ÚvÕ Û�Ó�Õ çSÛ�ÊvÕxÓ(çvÕxÚbÚvÜxËVÕx×bË.ç�Û�Õ Ý�ë�Û�ÊvË
Û�Ð�Í�Ï�Ë8ÛBÙHÎ�ÑCÌOÎ�çbË.ç�Û�Õhã Ë�ã¦àEò¤Î�ÍlçvÎb×bË�ã	É�Ê�Ë�ÜxÐ�Ó�ÛBÚMëMÛ�ËEÎ�Ý5Û�Ê�Ë�Ð�×v×bÍ�Ë.Ó�Ó��vËHÜx×¡ÕxÓ�ævÓ�Ë.×(Ý�Î�Í
Ü ÎMÙ.ÐKÜ\Î�Ì�Ë.Í�Ð�Û�Õ Î�çvÓ�ÕxçVÛ�ÊbË�Ó�Ì�Ë.Ù8Õ ��Ù¨Ù8Î�Ñ(Ì�Î�çvË8çMÛHã�É�Ê�æOÓ�Ý�Í�Î�ÑØÛ�Ê�Ë¨õKö³Ú�ë�Û�Ë�Ð�×v×bÍ�Ë.Ó�ÓE�vËHÜx×\ï
Ý�Î�ÍQÓ�ëbÓ³Û�Ë8ÑáÚOÐ�Ó�Ë�Ð�×b×bÍ�ËHÓ�Ó�ÎKÝ 6 ú 6�6 ð

• F2G�FHFHF�F�FHFHFHFJI�K;F�G�FHF�LHL�L�M�L�L Ð�Í�Ë¨Ð®ÔKÐ�ÕxÜ Ð�ÚbÜxËQÝ�Î�Í�í³îSÙ8Î�Í�Ë.Ó

• F2G�FHF�LHL�LHN�FHFJI�K;F�G�FHF�LHL�LHNHL�L Ð�Í�Ë¨Ð®ÔKÐ�ÕxÜ Ð�ÚbÜxËQÝ�Î�Í�à�ò Ù8Î�çMÛ�Í�Î�Ü¦ñ<ø��2��Ö�Î�Í�×vÓ�ó

• F2G�FHF�LHL�LHO�FHFJI�K;F�G�FHF�LHL�LHOHL�L Ð�Í�Ë¨Ð®ÔKÐ�ÕxÜ Ð�ÚbÜxËQÝ�Î�Í�çbÎb×bË¨Ù8Î�ç�Û�Í�Î�Ü¦ñ<ø��2��Ö�Î�Í�×vÓ�ó

• F2G�FHF�LHL�LHL�FHFJI�K;F�G�FHF�LHL�LHLHL�L Ð�Í�Ë�Í�ËHÓ�Ë8Í�Ô�Ë.×
É�ÊbËEÑ�Ë.Ñ(Î�Í�ë(Ó�ÌvÐ�Ù8ËQÕxÓ�×bÕéÓ³Û�Í�ÕxÚbæbÛ�ËH×¡Õ ç�ÐKç¡ævç�Ë8Ô�Ë.çCÝ�Î�Í�ÑCÐKÛ�Û�Î�Î�ÌbÛ�Õ Ñ(Õ PHËEÕ Û�Ó�æ�Ó�Ð�Ï�Ë�ã

ñhÉ�Ê�ËèÙ8Î�Í�ËèÕ ÓVË8úbÌOËHÙ3Û�ËH×SÛ�Î�ÑCÐ�å�Ë°ævÓ�Ë°Î�Ý�Ñ(ÎMÓ³Û�Î�Ý�Û�ÊvËìÐ®ÔKÐ�Õ ÜxÐ�ÚvÜxË�Ñ�ËHÑCÎ�Í�ë�Õ ç Ð�çMë
Ó�ëMÓ�Û�Ë.Ñ�ã ó

125

Q=RTS U9VWVJX*X%Y�Z\[�[^]E_%`=abZdc�e1[�fHYgeih�j%f�eik�l
m\n2o�p qsrut�qwv�x�qCy�z1{�q�|AqCn2x�} x�~��2��p ���wn�p��2�byqwz���} z1{�} x�z1{�q*���9n�t�t���q�y�y=y1��n2��q�n xgtAz{�q
|AqCn2x�} x�~��2��t�n z�n.� n2p ��q�����x�z1n�} x�qCt�} x�} zC�%�"��yz*y} ~�x�} vg��n xHz%oH��z1q��2������}�y�z1{�q�p����wn2p
��� ��� n2p ��q��
�����A b �¡C¢�£ £ ¤7¥�¦¨§g©�ª�«�£2¢H¬ ®¢�¯D§�¡�° ±"§²¬§�³(´�µw¶�·�¬�¢�£w¸
³,¹�¡¨ º¬1¥�»�£2¬¼¶�·g¬1¢�¸ ³1½²¬i¾²µw¶�·�¬�¢C¸
� �����*¿7¿7¿7À ��� Á�qCyiqC���q�t Á%qCyq��1��q�t
� �����*¿7¿7¿7À ��Â � z�n z1��y ��Ãdx��2zÄÅ���gq��1n2z1} ��x�n�p

Â®Ãd���gq���n z}��2xgn2p
� �����*¿7¿7¿7À ��r�z1�.��Æ ¿�����} x�z1q��1�����z Á%qCyq��1��q�t��Ç�����*�dn ziz,n2��{�q¨t.z��.|.n2yz1qw��t�qC�H} ��q

��È®z1�.�2¿ {�n�x�t�p } x�~ Á%qCyq��1��q�t��Ç�����*�dn ziz,n2��{�q¨t.z���yip�n �2qst�qC��}��wq
� �����*¿7¿7¿7À ÂC�®z1� É���x�x�q��wz1} ��x�ÊiÀ Á%qwz���1x�yEv��1yz�q�x�z���

ÂC¿ z�n2o�p qsq�x�z1�1} q¨y Á%qwz���1x�yEpËn2yz�q�x�z���
� �����*¿7¿7¿7À r2�®z1� Ê(x ÌiqC�,z1} ��x�ÊiÀ Á%qwz���1x�yEv��1yz�q�x�z���

r2¿ z�n2o�p qsq�x�z1�1} q¨y Á%qwz���1x�yEpËn2yz�q�x�z���
� �����*¿7¿7¿7À Í��®z1�.¿7¿ Á�qCyiqC���q�t m\�Ao�q�t�qwv�x�q¨t

m\n2o�p q�r�Î=���d��t�t��1q�y�yEÊ(x�z1q��1����qwz�n z1} ��x��

mE{�qu���d} x�z1q��1�1����zEzi�H�gqCy%n2�1q�Î7qw�Hz1q��1x�n2pb} x�zqC�������zuÏÇ�Ç�1��|	�2z1{�qw� � p n ��q*Ê(ÐÒÑwÓ�p����wn2p
o����²q��E�Ç��p p�Ó²Ô � x��2z%n¨� n2} p�n2o�p q�Ó�z1��n2x�y1n��,z1} ��xÕx��2z%n�p p�� ��qCt"ÏTo�����yizwÖCz{��1qCn�t�z1��n2x�y�n2�wz1} ��x
��} z{�����z®Ô � Ñ,Óbqwz��2�¼mE{�qA} x�z1q��1�1����zs{�n�x�t�p } x�~��������wqCt����1q®}�ysqw����p�n2} x�q�t×p n2z1qw�s}�x � q��,Ä
z1} ��x�r��

Q=RTØ U;kEX�Zdc�ei[�f�Y�e(hsj�f�e(k�l
m\n2o�p qAÍ�t�q�v�x�q�y*z1{�qAp ���wn�p7�2�byqwzs��} z1{�} x×z1{�q¼�����z}�x�~�x���t�qAn�t�t���q�y�y*y��n��wqAn x�t�z{�q
|AqCn2x�} x�~®�2��t�n z1n®� n2p ��q*�w��x�z�n2} x�qCt.} xÕ} zC�=mE{�q*x���t�q�} x�z1qw���1����zÒz(���gq�yEn2�1q�Î\Ù�É>}ËÖ �.z�
}ÇÖ¨�Ax��2z�n2p p � ��qCtbÓ2Ù�ÉDzi�H�gq�|A}�y|.n z���{�Ï���n2x�x��2z=��q�y1qw���2q¨t �EÚ Ù�É�Ñ,Ó Ù*ÉJx��2zÒn¨�¨n�} p�n2o�p q�Ó
qwz��2�

Û Ü²Ý®Þ\ßEà\à\á�âÕÞäãæå®ÝÕç�èwé,Ý�ê

Ê(x�z1q��1�1����zu{�n2x�t�p } x�~�}�ys��x�}�ë���q.} x4|®��p z1} ÄÅ|.n�yiz1q��*|¼��p z1} ÄÅy1p n¨��q®qCxH��}��1��x�|AqwxHzC�®Ê(x4z{�} y
yqC�,z1} ��xì��q�qw����p�n2} xì} x�z1q��1�1����zÕ{�n2x�t�p } x�~J�Ç���Õ�%�®��mE{�q×ígîCïHð�ñ�òHò�óHô�ðìÏ(Âõo�} z�ÑAvgq�p�t
}�y®n¨� n2} p�n2o�p q.} x>öuÉ�Ð=ÄÅÊ(Ð��Ç����z1{�q � p�n¨��q.Ê(Ð?�w���1qAz1��} x��Ç�2��|÷z1{�q���n2yz1q���Ê(Ð��w���q.���
} x�z1q��1�1����z������w����n2x��wq���mE{�q � p�n¨��q.Ê(Ð��w���1q.n2y�yiqC�z�y � Ê(x�zqC�������zCÓ��Ç��p p � �Òq¨tõo��õ��{�}���{
z1{�qÕn z1z1n���{�qCtõp ����n2pÒ�*�ø��n�yiz1q����gq���Ç���1|.n2x��wqAn��1qCn�t×z1�"~�qwz�z1{�q�} x�z1q��1������Hzuzi�H�²q2Ó
�Ç��p p � ��qCtuoH����{�}���{�z1{�qE} x�z1q��1�1����z7} x��Ç���1|An2z1} ��x®} y7��n���ù�qwz1} úCq�t�n�x�t¼yq�x�z\z�*z{�qE�×n2yz1qw�
Ê(Ðº�w���1q�Ó2v�x�n2p p �A��n2}�yqEz1{�q�} x�z1q��1�1����zÒn2zÒz1{�q*�"n�yiz1q��ÒÊ(Ðº�w���1q�oH�.n zz�n2��{�qCtAp �H�Cn p � p n¨��q
�����gmE{H��y�Ó�} x�z1q��1�1����z%{�n2x�t�p } x�~A} xH����p ��qCy�z1{��1q�quyz1q���ywÎ%ÏT}�Ñ������~���n2|A|A} x�~®z1{�q��������
z1{�q � p�n¨��quÊ(Ð;�w���1qsz1�Õ�1qCn�tÕz1{�q®} x�z1q��1�1����z%zi�H�gqu}�x"z1{�q � pËn¨�2quÊ(Ð9�w�2��q�n xgt"��{�qw��qsz�
yq�x�t.} zC��ÏÇ} }ËÑ=��n���ù�qwz1} ú�q�n2x�t.yq�x�t¼z1{�q�} x�z1q��1�1����zÒz1�uz1{�qst�q�y1} ~�x�n2z1q�t.�×n�yiz1qw�¨Ó�n�x�t�ÏT} }�}�Ñ
��n2}�yq�z1{�qs} x�z1q��1�1����zEn zÒz1{�qs��n�yiz1q���Ê(Ð>�w���1q��\Á%qw�Çqw��} x�~®ogn���ù®z1�Am�n�o�p qur�Ó��Ç�2p�p � ��} x�~®} y
z1{�qu|Aq�|A���1���H} q����Ç���Ez1{�q��%�®Î

•

� �����*¿7¿7¿7À*��r¼z1�Õ� �����*¿7¿\¿=À*��ÆAn��1qun¨� n�} p�n2o�p�qsz�����1��~2�,n |øz1{�q�Ï�yipËn¨�2q¨Ñ����
n zz�n���{�qCt^z1�Jz1{�qDt�qCy} ~�x�n z1qCtì|.n�yiz1q���t�qC�H} ��q�z�^���1} z1q�z{�qõ}�x�z1q��1�1����z�} x��Ç���iÄ

126 Appendix B. Programmer’s Model for DTU NoC

û®ügý�þÿ�������ü��	��
��	�������� �=ü��������������Hþ û���� �!#" $��gþ%�'&�(*),+�-gþ%�#�,.&0/!1�>þü324�2þ5+#-�þ6�7. &68²þ�9),+�-gþ%�1.:�;4<=<?>@>A>*B :#: CED7F%D,G%H#D1I CJD7F%D,G6H�D1I:�;4<=<?>@>A>*B :�K L�M%N�MPO!F :RQTS4U�M%VWU�X!D1G%N�MPY U#S!N�ZK�QTU�X[D,G6N�M%Y U#S!N�Z:�;4<=<?>@>A>*B :�\�M6U]:#> >4U#GEY S�MPD1GPG%O�X4M ^�S�M6D,G6GPO�X�M_Ma`�X�Db N�S!I�Z Y S�c deMPU�f�D�I4D,g�S4D1I�h:�;4<=<?>@>A>*B K1:�M6U iEU#G%M bkj=l M%N�f!Z D CJD0M%O!GPS!F_g�G%FPMED7S�M%G%`K1> D,S�MPG6Y D1F CJD0M%O!GPS!FmZnN#FaMED7S�M%G%`:�;4<=<?>@>A>*B \�:�M6U B�N#FPM j?l M6N�f�Z D CJD0M%O!GPS!F_g�G%FPMED7S�M%G%`\�> D,S�MPG6Y D1F CJD0M%O!GPS!FmZnN#FaMED7S�M%G%`:�;4<=<?>@>A>*B o#:�M6U L4U�O4M b�j?l M6N�f�ZnD CJD0M%O!GPS!F_g�G%FPMED7S�M%G%`o#> D,S�MPG6Y D1F CJD0M%O!GPS!FmZnN#FaMED7S�M%G%`:�;4<=<?>@>A>*B p�:�M6U qrD�F�MJ^�s j=l M6N�f�Z D CJD0M%O!GPS!F_g�G%FPMED7S�M%G%`p�> D,S�MPG6Y D1F CJD0M%O!GPS!FmZnN#FaMED7S�M%G%`:�;4<=<?>@>A>*B t�:�M6U u	U4v7N#Z j?l M6N�f�ZnD CJD0M%O!GPS!F_g�G%FPMED7S�M%G%`t�> D,S�MPG6Y D1F CJD0M%O!GPS!FmZnN#FaMED7S�M%G%`:�;4<=<?>@>A>*B w#:�M6U]>A> CED7F%D,G%H#D1I x*U]f�D�I�D0g!S�D1I
xyN�f!Z Dzo�{@CEU�O4MPY S�cRi?U�I�D}|EI!I4GPD1F%Fm^�S�M6D,G6X4G%D7M%N�MPYnU�S�~

� N�MPYnU�S�FaO!v b N#F�� b U�v7GPD�N�MPD1I�M b D�Y S�M6D,G6GPO�X�M�dWL4�m|�N�S!I3v,U � X�U#S!D,S�M6h�N#S�IMa`�X[DRU#�?Y S#M6D,G6GPO!X4M7~ x b D�H�N#Z O!DRYnS�M b D�YnS�MPD7G%G6O�X�M5G%D7c#YnFaM%D7G5:�;�<?<=>A>A>A�=:�\�N�MM b D�d�F%ZnN�H#D1hki=|�N�MaM6N#v b D1I�M6U � N�F�M6D,G�I4D1H�Ynv,D b N#F���U#Z Z U��EY S�c�f4`#M%D,V�Z U4v7N�M%Y U#S�VI4D,X[D,S!I�D7S�M � D7N�S!Y S�c�F7{
�����4���4���4� {@L4�m|��4M6U]��S!U���� b D1GPD}M b Dz^�S#M6D,G%G%O!X4MEU�G6Y c�Y S!N�MPD1I
���#�����4���4� {@CmD1FPD7G%H#D1I
���#� ���4���4� { l U � X[U�S�D1S#M��4� b Y�v b v7U � X!U�S4D7S�MJN�MmM b N�M=L4�m|TI4D7g�S�D1I�Z U4v7N�VMPYnU�S�N�FPF%D,G%MPD�I�YnS#M6D,G6GPO!X4M�d�^�s�v,U�GPD��4iJ|�U#GES!U�I�D1h
������ 3�4���4� {A^�S�MPD7G%G6O�X4MmMa`�X!D���v,U � X�U#S!D,S�MJI4D,X�D7S!I�D7IkH�N�ZnO4D

x b D�GPD�FaM�U#�=M b D�Z U4v1N�MPY U#S¡:�;4<=<?>A>@>y�=:#o¢M6U�:�;�<?<=>A>A>A�=:�£¢N�G%D�`#D7M5M%U�f�DI4D,g�S!D7I	~
•

:�;4<J<}>y>A>A�}:�¤¢MPU�:�;�<=<?>A>A>@�?:�>�N#GPD�N�H�N�YnZ N#f4ZnDRM6U�X4G%U#c#G6N � M b D¥d � N#FaM6D,G0hiJ|¦N�MPM%N#v b D7I�M%UrM b D�FaZnN�H�D�I4D,H�Y�v0D#~¥^�M�v7N�S�f!D�X�G%U#c�G%N �5� D1I��EY M b � D � U�GP`Z U4v7N�MPYnU�S]�EY M b Y S]M b D?FPZ�N�H�DEI4D,H�Y�v0DE��G6U � � b D,G6DmMPUzG6D7N#I�M b DEY S�M6D,G6GPO�X�M@Ma`�X�D?N#S�IM b D�L4�m|�U��AM b D�I4D7F%Y c�S�N�M6D7I � N�FPMPD7G1~
iJU#MPD � O�Z M%Y X�Z D}Y S#M6D,G6GPO!X4M%F_v,N�S�f�D=FPD7S�M_MPUzM b D=F%N � D � N#FaM6D,G�~AL�Y S!v7DEM b D,G6DEYnF§U#S!Z `U�S!D_G6D7¨�O�D�F�M@X!N�M b deH�Y�N=M b DEG%D1v7D,YnH�Y S�c}i?|�© F§L4Z N�H�D1h,��Y M�YnF�N#O4MPU � N�MPYnv7N#Z Z `�¨�O4D7O�D1I	~A^�M�Y FO4X�MPU]M b D�ª�N#FPMPD1GE^�s�v0U#G%D#© FmYnS#M6D,G6GPO!X4MJv0U#S�M6GPU�Z ZnD,GmMPU=«aO!I�c�D}M b DzY S�M%D7G%G%O�X4M1© FmX!GPY U#G%Y Ma`N�S�IRM6N���DzF%O�Y M%N�f!Z D�N�v0MPYnU�S*~

¬ ¯®�°m±A®�²0°E³µ´�¶k·¹¸�º�¶k»_¼,½k¾*²,º�¶
>AY c�O�G%D�KzX4G6U�H�Y I4D�FmN�SRU�H�D,G6H�Y D1��U���M b DzX�G6U�c�G%N �5� D1G7© F � D � U�GP` � U4I4D7ZW~�x b YnFEI4U4v,O4V� D,S�MJYnFEFaO�f�«aD7v0MEM6U�v b N�S�c�D�~

127

02−07

7 03113 7 031

0x00 FF FF FF ¿ ¿�¿ ¿ ¿ ¿ ¿ ¿�¿ ¿ ¿ ¿ ¿¿ ¿�¿ ¿ ¿ ¿ ¿ ¿�¿ ¿ ¿ ¿ ¿À À�À À À À À À�À À À À ÀÀ À�À À À À À À�À À À À À
RESERVED

SBA Intrpt TypeRSV Comp
0x00 FF FD 00

0x00 FF FE 00
0x00 FF FD FF

0x00 FF FF 00 Á Á�Á Á Á Á Á Á�Á Á Á Á ÁÁ Á�Á Á Á Á Á Á�Á Á Á Á ÁÂ Â�Â Â Â Â Â Â�Â Â Â Â ÂÂ Â�Â Â Â Â Â Â�Â Â Â Â Â
Ã Ã�Ã Ã Ã Ã Ã Ã�Ã Ã Ã Ã ÃÄ Ä�Ä Ä Ä Ä Ä Ä�Ä Ä Ä Ä Ä

Address Field Data Field

0x00 00 00 00

IP CORE

D
E

V
IC

E
 #

1

Operational Status

D
E

V
IC

E
 #

2

CnID/InjID Table Entries

VC Table Entries

Interrupt Handling
Operational Status

NODE

NA Interrupt Handling

0x00 FF FC FF

0x00 FF FE FF

10−5F

02−0F

08−0F
10−2F

Intrpt

Table

Status

Table

Intrpt

Status

01

01

13

ÅyÆ Ç#È�É%Ê]Ë#Ì�Í�Ê7Î]Ï#Î�Ð�Í�Ñ#Ò�Ó=Ô#Ê7É%Ô�ÆnÊ,Õ

128 Appendix B. Programmer’s Model for DTU NoC

Appendix C

DTU NoC Network Interface

Specification

Specification of the Network Interface (NI) (ver 0.2)

System-on-Chip Group
Informatics and Mathematical Modelling
Technical University of Denmark (DTU)
edited by Tobias Bjerregaard, tob@imm.dtu.dk

C.1 Introduction

In our NoC, The network adapter (NA) will be the module linking the OCP
compliant cores with the underlying hardware structure (the actual network).
The hardware will provide a set of primitives for packet routing. The con-
cept is that the NA maps the services specified by OCP to these hardware
primitives. The NA implements two interfaces: the Core Interface (CI), an
OCP compliant interface [16] connecting the core to the NA, and the Net-
work Interface (NI) which interfaces the NA to the network hardware. How
OCP compliance is adapted for our NoC is specified in [17].

This document contains details of the NI and beyond. Thus its purpose
is to specify how the NA communicates with the network, and also how the
network is structured. It should evolve into a true specification, but at first
it will be a working text, to be used by all involved as a reference to our
ideas on what to build.

C.2 The Network

The network will route packets. The basic routing strategy is wormhole rout-
ing. Each network node will implement a number of in/out ports, through
which packet worms can be streamed. The network can have an arbitrary
architecture, but we will target grid-related topologies. The port to which

129

130 Appendix C. DTU NoC Network Interface Specification

the NA attaches itself is not different from the other ports. Thus the NA’s
task is to generate network compatible packets and stream these to the net-
work. In the following, details of the packet format for different types of
traffic will be explained.

C.2.1 NoC primitives and components

The primitive communication services provided by the network are:

BE - Best Effort routing.
GS - Guaranteed Service routing.

These services are supported by the network hardware. Its basic archi-
tecture, and the features it supports, will be explained in the following. The
basic components of the system are the Network Adapter (NA), the Network
Controller (NC), the Node Controller (NodeC) and the Links.

The NA handles the decoupling of communication and computation in
the system, by translating high level communication requests, i.e. across
OCP interfaces, to low level network primitive service requests. The NA
handles end-to-end control of the global communication in the system.

The NC is a special core which controls setup of access to the GS of
the network. The object of having such a core is to gain the advantages
of centralized control during setup while maintaining the advantages during
runtime of distributed control.

The NodeC controls the nodes, by offering a memory mapped view of the
setup registers in each node. Thus GS can be setup simply by writting to
these registers. In the future, it could prove interresting to investigate how
the NodeC could implement more complicated tasks, such as distributed GS
setup or other.

The Links provide the basic resource of the network: bandwidth. Each
link will implement a number of logically independent virtual channels (VCs)
sharing the same physical channel. These VCs will be used to provide dif-
ferentiated BE traffic as well as GS traffic, as will become more clear later
in the following sections.

C.2.2 BE

There are a number of ways that BE routing can be implemented. Two in
particular are source routing and progressive adaptive routing, which will be
impemented in our NoC:

Source Routing (SR) - the NA translates a (memory mapped) desti-
nation core address into a routing path. This is done through a table lookup.
The content of the table is uploaded by the NC at start-up or during run-
time. In any case, it is viewed as a static table. The routing path specifies

C.2. The Network 131

the exact hop-by-hop path from source to destination.
Progressive Adaptive Routing (PAR) - instead of specifying a rout-

ing path, the number of hops in each direction is provided. It is then up
to the node to decide which direction the packet takes. Thus the packet
always progresses towards the destination, but not by a predetermined path.
In order for this solution to have a simple implementation, a regular grid
topology is required.

The implementation of PAR constitutes an overhead in the node, in that
support for decision making, and for decrementing the hop count values is
needed. The time spent by the node to make the decision will be higher
because of the complexity of the decision. Also, the entire header needs to
be received before the packet can be transmitted. On the other hand, in a
highly loaded network, the packets will be routed around congested areas,
thus evening the network load, making the most out of available resources.
The trade-off to consider is whether PAR is worth the area/power. It might
be better to implement a wider datapath, making a simple network faster,
and thus avoiding high load in the network. Also, if some prior knowledge of
the global system communication is available, the sourcerouting paths can
be chosen as to avoid hotspots. These trade-offs need to be investigated for
a variety of applications.

Differentiated BE

Our network will implement 2 priority levels for BE packets: high (BEhi)
and low (BElo). Interrupts could be routed as high priority packets, since
they often require a minimal part of the total bandwidth. Each packet
type will be routed on a separate set of virtual channels. Thus they are
logically independent, and low priority packets cannot stall high priority
packets. Since high priority packets will take priority over low priority BE
packets, and furthermore not be stalled, they will zoom through the network,
independently of any other traffic.

Packet Format

In Figure C.1 the BE packet format is specified, and it is specified how the
packet context is interpreted at different levels in the path between NI and
CI (within the NA)

Network level: the Header contains the identifiers packet class and
routing operand. The packet class determines which class the packet belongs
to. This can be used to identify different priorities of best effort routing,
system packets, or other types of packets. In our initial scheme the different
packet types are routed on logically independent networks (on separate sets
of virtual channels), thus the packet class identifier is not stricktly necessary.
We include it however, in order to allow for future expansions. It will be 2

132 Appendix C. DTU NoC Network Interface Specification

Network

NA

Core

PayloadHeader

PayloadNA Head

Madr (local) MdataMcmd

Routing Operand (e.g. path)Packet Class

Figure C.1: The format of a network packet.

bits, and the default value will be 00. The routing operand field is used as
operand to the packet class identifier.

In the SR scheme the routing operand holds the routing path, hop by
hop. Note that it does not have a fixed length, as the routing path will be a
non fixed number of hops.

In PAR, the operand will be further subdivided, containing three fields:
direction (NE:00, SE:01, SW:10, NW:11), number of hops along one diag-
onal, and number of hops along the other diagonal. Example: 1010010011
means: direction SW (10), 9 hops south (1001), 3 hops west (0011).

In a fully adaptive routing scheme, the routing operand could simply
identify the destination core, leaving it to the network to find the optimal
path.

NA level: The NA header holds information that the NA needs to
identify threads, response channels etc. Some of this information is needed
by the destination NA to handle end-to-end control. The address provided
by the (source) core is partly global (specifying the destination core) and
partly local (specifying an address at the destination core). The global part
is what is being translated to a routing path. The local part is just being
forwarded to the destination core. Details of this and more is available in
[18]

Core level: The format at the core level is the format of the CI, which
in our case is determined by the OCP specification. Details of our subset of
OCP is available in [17].

When streamed through the network, different points on the packet need
to be identified: (i) end-of-header and (ii) end-of-payload. Start of header is
simply the first that happens after (ii).

Deadlock Avoidance

The network must be implemented so as to avoid deadlocks. This is done
by making sure that there are no cycles in the resource dependency graph
[19]. In our BE routing schemes many packets may simultaneously share the
network, thus the potential for deadlock is present. However, the fact that

C.2. The Network 133

the SR and PAR routing are incremental means that there are simplifications
that can be taken into account, making dealock avoidance easy to obtain.
Since the routing is incremental, we know that packets will always move in
one and only one of the following directions: NE, SE, SW, NW. Thus, by
having two virtual channels along each link, 1 and 2, and allocating their use
such that packets moving along particular directions make use of particular
channels as shown in Table C.1, packets in each of the four directions flow
along independent sets of VCs, thus deadlock is guaranteed to be avoided.
Stricktly speaking, 2 VCs along each link is not needed to avoid deadlock,
but it is nice and symmetric, also the fact that packets a routed along 4
logically independent paths relax interpacket dependencies, and minimize
congestion problems.

Table C.1: Virtual Channel (VC) Assignment

Packet Direction VC Assignment

NE N:ch1, E:ch1

SE S:ch1, E:ch2

SW S:ch2, W:ch1

NW N:ch2, W:ch2

Implementing the described scheme for VC assignment, there are no fur-
ther routing restrictions necessary to avoid deadlock. An advantage of the
scheme is also that less bits are needed in the header during SR, because
there are only three directions to take at each hop: straight, turn or arrive
(at local core).

C.2.3 GS

In the following, the use of GS is briefly described. A detailed explanation
of its use is beyond the scope of this document. Instead, we will focus on
the concept and implementation of the primitives needed to support GS
communication.

GS traffic is implemented by setting up a path from source to destination.
This is can be done by the NC. Upon receiving a request for a GS path from
the core, the NA should forward this request to the NC. What should be
forwarded is: the path (or at least the destination core - then the NC will
determine a path), the type of service (an integer specifying the service type
- see below) and the amount of the service (another integer). The request
will be forwarded to the NC as a normal BE packet. The data payload of the
packet (see Section C.2.4) is to contain the information mentioned. The NC
will program the nodes, by writting directly to the registers within, through

134 Appendix C. DTU NoC Network Interface Specification

a memory mapped access interface. The node will thus, through the NodeC
as explained earlier, look to the NC as a small memory (an OCP slave).

When the NC has setup the path, it will inform the NA, who will in turn
conclude the request from the core and provide the core with a connection ID
(a locally unique name for the service). If the path could not be guaranteed,
naturally the NA will conclude the request with a denial. A specific return
path may also need to be setup in the destination NA. All this is detailed in
[18].

The following types of path services are envisioned, the support for which
HW primitives are needed:

• Bandwidth: a guaranteed high bandwidth path.

• Low Power: a path which implements lowpower encoding on links.

• Latency: a path with a low latency bound.

The details of their implementation will follow in future documents.
When accessing a service which has been initialized, the connection ID is

provided to the NA by the core. This connection ID is translated (by table
lookup) by the NA to a channel by which the network is accessed. No routing
path is needed, since the channel maps directly to the (connection-oriented)
GS path, as will be described in Section C.2.3.

GS Routing

When routing GS packets, the Network Header described in Section C.2.2
is not necessary. A GS path is connection-oriented and as such it behaves
like a virtual point-to-point connection. Thus, when specifying the injection
channel at the source, this leads automatically to the packets ending up at
the destination according to the specification of the path. This is what we
define as a virtual circuit. Figure C.2 illustrates how a virtual circuit is
instantiated, by mapping input VCs to output VCs at each node.

If no header is used, it is required that the nodes contain some sort of
knowledge about which output channel any input channel which is part of a
GS path maps to. This can take the shape of a routing table in each node.
The information could also be carried in the header of the packet. The
header could contain a sequence of ’next hop’ channels, sort of like source
routing, except not only the direction of the routing is specified, but also the
specific VC to use. The paragraphs below describe these two different GS
routing styles. Table C.2 is an overview of the pros and cons of each.

No Header Routing: Routing information stored in local node table.
Pros: (i) no header in packet meaning optimal bandwidth utilization, also
low packet latency, (ii) fast routing: next hop can be looked up before packet
arrives, or ca be available always (in a dedicated register). Cons: (i) area

C.2. The Network 135

S
ou

rc
e

D
es

tin
at

io
n

W1->E3 W3->N1

S3->E3

Figure C.2: A set of virtual channels create a virtual circuit, for use as a
GS path. At each node, the input VC is mapped to one particular output
VC. The VCs are used only by that particular GS path, and traffic along the
path is thus logically independent of other traffic in the network.

overhead because nodes need local lookup table, (ii) slow setup since tables
needs to be updated in all nodes along the path before path can be used.

Source Routing: Routing information is stored in packet header. Pros:
(i) no local routing table, meaning no area overhead in node, also, low setup
time. Cons: (i) header causes lower bandwidth utilization and higher latency.
Also, if there are a large number of output channels to choose from, either a
decoding scheme is needed (increasing complexity of node circuitry) or the
header will be very large, (ii) central GS routing decisions a must.

Table C.2: GS Routing Schemes

Scheme pros cons

No header optimal bandwidth utiliza-
tion, low latency

slow setup, area overhead in
nodes

Soruce Routing no local routing table lower bandwidth utilization,
higher latency, central routing
decisions a must

Deadlock Avoidance

Since each GS path (virtual circuit) is formed by a unique set of logically
independent channels (VCs), deadlock will never be an issue. One thing to
keep in mind is: the path can only use each VC once, i.e. loops are allowed
(perhaps in a broadcast situation), but not with re-use of VCs.

136 Appendix C. DTU NoC Network Interface Specification

C.2.4 The Network Interface (NI)

The NI is the interface by which the NA plugs into the network. It consists of
two unidirectional ports, one port for each direction (in and out of the NA).
There are a number of fields: At each port a number of injection channels
(equivalent to VCs) are available by which the network can be accessed.
When the NA creates a packet, it determines such an injection channel, by
which the packet enters the local node. This choice depends on the type of
routing (BEhi, BElo, direction (NE, SE, etc), GS). This can be considered
part of the routing path. For GS transactions the injection channel uniquely
identifies the entire path, as it constitutes the starting point of a virtual
circuit. At each node, the particular input channel is mapped to a specific
output channel, and thus, hop by hop, the entire path is determined, as
decribed in Section C.2.3.

The fields which need to be created by the NA are thus:

• Injection Channel: the channel by which to engage the routing.

• Header: the header of the packet, as specified in Section C.2.2.

• Payload: the data payload to be carried by the packet.

The data of the fields need to be serialized for the network. Keep in mind
that the header and payload are not necessarily fixed length (more on that
as this specification gets more specific).

C.2.5 Network Architecture

The network consists of nodes connected by links. The basic implementation
is grid approximation, but it is not restricted to this. The deadlock avoid-
ance scheme described for BE routing, in section C.2.2, is based on a grid
architecture. It can easily be expanded to an irregular structure, as long as
it is a subset of a grid and incremental routing is ensured. For more complex
irregular structures, further investigations are necessary.

C.2.6 Node Architecture

Each node consists of the actual node, and a NodeC. The NodeC implements
a memory mapped access point to the internal registers of the node, in
particular those needed to setup virtual circuits. Other ideas for features
that could be setup by the NodeC include ways to specify prioritization,
algorithms for new routing schemes, etc. The node controller might also be
a more complicated module, used in distributed GS path allocation.

The NodeC is envisioned to share the NI of the NA, thus some of the
circuitry in the NA can be reused, such as synchronization and packet de-
coding circuitry. The NodeC is synchronously implemented. This makes its

C.2. The Network 137

design easy and redesign fast. The registers being setup for virtual circuits
are considered static when in use. They are setup long before being used,
and torn down long time after their use has ceased. Thus no conflicts con-
cerning synchronization between events in the asynchronous domain of the
network and the synchronous domain of the NodeC occur.

X-bar

next hop register

VC queue

BE routing (lo priority)

BE routing (hi priority)

inputs outputs

BE routing algorithm

Figure C.3: Node architecture.

The node itself will implement 16 channels on each input and output
port, and a X-bar routing between these. This is illustrated in Figure C.3.
Four channels will be used for BE routing (BEhi and BElo) and 12 channels
will be used for GS routing. We will adopt the GS routing scheme in which
the routing information is stored locally in the nodes (no header), thus each
of these 12 GS channels will have a register which identifies the next hop.

The exact implementation of the X-bar is not decided at present. It may
either be a traditional X-bar design, or perhaps a mesh of forks and joins.
Providing GS across a fully connected X-bar is a major issue. Also, a design
which is scalable to many more VCs is also an issue. Perhaps a design of
FLEETzero [20] type would be appropriate.

C.2.7 Link Architecture

The links will implement 16 virtual channels, to accomodate the 16 chan-
nels described in Section C.2.6. Issues to investigate are: arbitration and
prioritization (dynamic or static?), pipelining, and more..

138 Appendix C. DTU NoC Network Interface Specification

Appendix D

Slave Network Adapter Source

Code

The source code for the slave network adapter is burned on CD attached to
the back of this thesis.

139

140 Appendix D. Slave Network Adapter Source Code

Bibliography

[1] The international technology roadmap for semiconductors. Technical
report, Semiconductor Industry Association, 2001.

[2] Praveen Bhojwani and Rabi Mahapatra. Interfacing cores with on-
chip packet-switched networks. In Proceedings of the 16th International
Conference on VLSI Design, pages 382–387, 2003.

[3] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip intercon-
nect woes through communication-based design. In Proceedings of the
38th conference on Design automation, pages 667–672. ACM Press,
2001.

[4] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm. Computer, 35(1):70–78, 2002.

[5] Andrei Rădulescu, John Dielissen, Kees Goossens, Edwin Rijpkema,
and Paul Wielage. An efficient on-chip network interface offering guar-
anteed services, shared-memory abstraction, and flexible network config-
uration. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition Volume II (DATE’04), page 20878. IEEE
Computer Society, 2004.

[6] K. Goossens, J. van Meerbergen, A.Peeters, and P. Wielage. Networks
on Silicon: Combining Best-Effort and Guaranteed Services. DATE´02,
Proceedings of the 2002 Design, Automation and Test in Europe Con-
ference and Exhibition, 2002.

[7] OCP International Partnership. Open Core Protocol Specification, Re-
lease 2.0, 2001.

[8] Shankar Mehadevan. Programmer’s Model for DTU NoC. 2004.

[9] Tobias Bjerregaard. Specification of the Network Interface. 2004.

[10] Shankar Mehadevan. The GS-OCP Configuration for Networks-On-
Chip. 2004.

141

142 Bibliography

[11] Martin Hans. Architectural aspects of design for low static power con-
sumption. Master’s thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2004.

[12] STMicroelectronics. CORELIB8DHS HCMOS8D 3.1 User’s Manuals,
september 2001.

[13] The national technology roadmap for semiconductors. Technical report,
SIA – Semiconductor Industry Association, 1997.

[14] Dennis Sylvester and Kurt Keutzer. Impact of small process geometries
on microarchitectures in systems on a chip. In Proceedings of the IEEE,
volume 89, pages 467 – 489. IEEE, 2001.

[15] MIPS Technologies. Mips32 R© 4kTM family. http://www.mips.

com/content/Products/Cores/32-BitCores/MIPS324KFamily/

ProductCatalog/P_MIPS324KFamily/productBrief.

[16] Open Core Protocol Specification, Release 1.0, 2001.

[17] OCP Configuration for DTU Networks-on-Chip, 2004.

[18] Juliana Zhou. Network adapter specification, 2004.

[19] William J. Dally and Charles L. Seitz. Deadlock-free message rout-
ing in multiprocessor interconnection networks. IEEE Transactions on
Computers, C-36(5):547–553, May 1987.

[20] William S. Coates, Jon K. Lexau, Ian W. Jones, Scott M. Fairbanks,
and Ivan E. Sutherland. FLEETzero: An asynchronous switching ex-
periment. In Proceedings of the Seventh International Symposium on
Asynchronus Circuits and Systems, 2001 (ASYNC 2001), pages 173–
182. IEEE Computer Society, 2001.

